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ABSTRACT

This paper is concerned with the exploration of reduction and explicit solvability
of optimal control problems on principal bundles with connections from a Hamiltonian
point of view. The particular mechanical system we consider is a rigid body with two
driven oscillators, for which the bundle structure is (SO(3) x ®*, %%, 50(3)). The
optimal control problem is posed by considering a special nonholonomic variational
problem, in which the nonholonomic distribution is defined via a connection. The
necessary conditions for the optimal control problem are determined intrinsically by
a Hamiltonian formulation. The necessary conditions admit the structure group of the
principal bundle as a symmetry group of the system. Thus the problem is amenable
to Poisson reduction. Under suitable hypotheses and approximations, we find that the
reduced system possesses additional symmetry which is isomorphic to S1'. Applying
Poisson reduction again, we obtain a further reduced system and corresponding first

integral. These reductions imply explicit solvability for suitable values of parameters.
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1 Introduction and Background

An interesting problem in multibody mechanics is the problem of nonholonomic
motion planning, or the kinematic control problem. In recent research on various
multibody mechanical systems with symmetry, the theory of principal bundles with
connections has lead to clear insight into the geometric structure of the problem, and
provided a common framework for the formulation of related optimal control problems.
However, explicit or partially explicit solution to the necessary conditions, given by
differential equations on phase space, for the optimal path and control is still a challenge.
Although, under certain conditions, the symmetries of the systems imply the existence
of conserved quantities for the differential equations given by the necessary conditions,
working with local coordinates at the early stage of the analysis usually causes difficulties
in discovering such quantities. In this paper, we consider a particular mechanical system
consisting of a rigid body and two point-masses, for which the structure group of the
principal bundle is non-Abelian in general. We will formulate the related optimal control
problem and the corresponding necessary conditions intrinsically from a Hamiltonian
perspective and explore their explicit solvability. Some results in this paper have been
presented in our previous work [1]. Here, we provide detailed proofs of those results.

As in [1], the kinematic control problem considered is based on the following ab-
stract geometric objects. Consider a simple mechanical system with symmetry (following
terminology of Smale [2]), (@, K,V,G), where the configuration space @ is a Rieman-
nian manifold with metric K and the Lie group G acts freely on Q on the left by
isometries and leaves the potential energy V invariant. The action of G' on @ is de-
noted by ®. Together with this system is an equivariant momentum map with respect
to the tangential action ®7 of G on TQ, J : TQ — G* satisfying

(I(g,0), &) = (K'vg)(€0()) = K(a)(vg:€0(a)),  VEEG, (1.1)

where G* is the dual of the Lie algebra, denoted by G, of G and K" is the standard
Legendre transform. In addition, we also consider @ as the total space of a principal
fiber bundle, p = (@, B,7,G), where B = @Q/G is called the base (or shape) space
and 7 : Q — B is the bundle projection. On this bundle, the mechanical connection

is constructed as follows. At each point ¢ € @, define the locked inertia tensor as the
mapping
I(g): G — ¢~ (1.2a)

such that
(I(g)n, & = K(g)(ng(a)-belq)) Vn,E€g. (1.2b)

Then, the mechanical connection is defined by the G-valued one-form:

a:TQ — G: (q,v)f—»a(q,v):][‘l(q).](q,v). (1.3)
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Indeed, one can show that a(ég(q)) =&, V€ € G and
(®,a)(q,v) = Adya(q,v), Vg€ G.

The mechanical connection appears to be originally due to Smale and Kummer (see [3]).

With this well-defined connection, we have a vertical-horizontal splitting of the tangent
bundle TQ,

T,Q = (Ver), @ (Hor), (1.4a)
such that, for each v, € T,Q,

vy = (a(vg))@(e) + (vq — (a(vq))e(q))

i NN (1.4b)
= ((q)™ wa(q) + (vs = (M(q) ™ 1)q(q))
where pu = J(q,v). It is readily shown that
Hor = {(4,0) € TQ | 3(g,v) = 0}, (1.5)

and the splitting in (1.4) is the orthogonal one with respect to metric A.

To formulate the kinematic control problem explicitly, we consider the trivial
bundle, ie., p = (B x G, B,7,G). Here, the control is internal to the system, which
leaves invariant the conserved momentum map J. Since, by definition, a principal fiber
bundle is locally trivial, the equations we have below are locally true in general.

Represent the tangent space at each point (z,g) € Q hy
Tir, )@ =T B x TG

and let a tangent vector in T{, ;)@ be represented by v, oy = (%, §)(z,9) = (£,9€) (5.9,
where {(t) = TyL,~1g € G. The Lie group G acts on @ following the rule ®(h,(z,g)) =
(2z,hg), where h,g € G and = € B. Then the infinitesimal generator corresponding to
neQGis

d ,
no(a) = - _0@(earp(€n),(:v,g)) = (0,7-9). (1.6)

Using the G'-invariance of K, we have
J(g,v)-n = K(2,9)((% 9€),(0,n-9))
= K(z,e)((#,€),(0, Ady-17))
= ([(2)¢, Adg-am)+ (3(2)(&), Ady-1n)
= (Ads (K(2)E + 5(=)(#), ),
where e is the identity element in G'; i(a:) = I(z,e) is referred to as the (local) locked
inertia tensor at z, and represents the metric on G, and j(2): T, B — G* comes from

the cross term when the metric K is written in terms of metrics on B and . Here,
the metric on B is induced from K. Therefore, we have, for p = J(¢,v),

= A L)€+ Ad-ag(z)(). (1.7)
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or
-1

£=1(e) Adju - T(z) y(a)é
or, by left action,
() = g(t)- (@) Adip = T(z) " s(2)d). (1.8)

Given a closed curve in B and an initial point g9 = (2o, g0) in @, using (1.8) one will
be able to compute the shift, or the phase, in G. The phase generated by the first term
in (1.8) is referred to as a dynamic phase and the phase generated by the second term in
(1.8) is the holonomy, referred to as geometric phase. One can show that I(z)~1y(z)()
is, in fact, the value of the local connection form of the mechanical connection at (z,&).

Assuming that the vector & or the velocity of the path in B can be directly

controlled, from (1.8), an associated kinematic control system can be set up as

T=1u
{ . o o (1.9a)

or simply
q=Xu(q) +H(g)u, (1.9b)

for ¢ = (g,2) € Q, where X,(¢) = (0,¢- i(m)_lAd’g‘u) is the drift, H(q) : Tr((B) —
T,Q is the horizontal lift operator and u € Tr(4)(B) is a tangent vector on shape space
representing controls. Two control problems for this system can be framed as follows:

(P1) Given two points go and ¢ in @, find u(-) steering ¢ to ¢ at a specified time;
(P2) Given two points ¢ and ¢; in @ on the same fiber, find u(-) steering qy to ¢

T
/ <u,u>pgdt
0

for the Riemannian metric < -,- >p on B and the fixed final time 7" > 0 subject
to (1.9).
The problems (P1) and (P2) are standard problems in control theory, namely

while minimizing

controllability and optimal control. If x4 = 0, the problem of controllability is settled by
appealing to Chow’s theorem [4]. In addition, if g = 0 and the system is controllable,
(P2) is the isoholonomic problem in [5], or a special case of the problem of singular
Riemannian/sub-Riemannian/nonholonomic geodesics [6,7].

In the next section, we will formulate the control system and corresponding optimal
control problem for the system of a rigid body with two oscillators following the above
procedure.



2 Mechanical Connection for the System

In this section, we give an explicit expression for the mechanical connection for the

system consisting of a rigid body with two ( driven ) oscillators.

Figure 2.1 A Rigid Body with Two Oscillators

The mechanical system we consider is shown in Figure 2.1. Here, 7y is the position
vector of the center of mass of the rigid body or carrier relative to the center of mass of
the system; r; and 7y are the position vectors of two oscillators with point masses mq
and mq relative to the center of mass of the system, respectively; the mass and moment
of inertia tensor of the carrier are denoted as mg and Iy, respectively; @, and Q. are
the position vectors of two oscillators relative to a frame (not displayed) fixed on the
carrier. We assume that no exterior force/torque affects the system and the potential
energy V is zero. The inertial frame can be placed at the center of mass of the system

and ro,r; and ro are related by
9
> mry =0, (2.1)
i=0

For now, r; and ry (or 1 and ;) are assumed to be arbitrary time dependent
vectors. Later, we will impose constraints on them to study the effect of their motion
on the motion of the carrier.

9

From the above setting, we have the configuration space @ = (®*)? x SO(3) with
coordinates ¢ = (1,79, A) and its tangent bundle TQ = (TR*)* x TS0(3) with local
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coordinates (¢,v) = ((r1, 72, A), (71, 72, Aﬁ)) Here, denoting by © the vector of angular

velocity of the carrier with respect to the body fixed frame, we used the fact

A= AQ (2.2)

with the standard isomorphism
0 —Z3 Z9
TR S s0(3) (g, ag,e3) - | 3 0 -z
—T9 1 0

The Lagrangian of the system can be determined easily as

0
mi

A 1 1 ..
L((r1, 79, A), (71,72, AQ)) = < Q,,Q > +§(ml + - ) < 1,71 >
0 2.3
1 m3 . MMy S (23
+ —(ma + —) < Fa,72 > + <T1.T2 >,
2 my mg

where < -,- > is the inner product in ®3. This Lagrangian is given by a Riemannian
metric K on @,ie. L(g,v)= %K(q)(v,v), where, for (ul,uQ,Aﬁ) and (wq, wg,Ag) €
T(Tl,Tg,A)Q’
- a FaTNVAN
K (Tla T2, A)((U] , U2, AQ)7 (wlv wa, A:')) -
_ m? m3 ,
<L IE > +(mp + —) < up wy > +H(me + —=) < ug, wy > (2.4)
mo My
mymo mimso

< Uy, We > +
myo my

4 < Ug, Wy > .

Let G = SO(3) act on @ by

®: SO(3) x (R*)* x §0(3)) = (R*)? x 50(3)

(2.5)
(A7 (T27T27B)> = (AT17 AT27AB>' l

From (2.4), one can show that G acts on @Q by isometries. Therefore, the system
(@ = (R*)? x SO(3),K,V = 0,G = 50(3)) is a simple mechanical system with
symmetry.

By standard intrinsic calculations on SO(3) (cf. [8]), one finds the Legendre
transform, at (¢,v) € TQ, as

2
mi1ms ms . . M1 1Me
m

P2, (my+ —2)7a+
mo

e 2
K*(g)(2) = D2L(q,v) = (AT, (mat L)+ ). (2.6)

The infinitesimal generator of the action in (2.5) corresponding to §A € s0(3) is

d 7 PPN
€o(0) = 7| _ B(e,(raya, 4)) = (6, B, EA), (2.7)
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Then, using (1.1), (2.6) and (2.7), the momentum map can be written explicitly as, for
n= J((Tla T2, A)a (7.'17 722a AQ)) s

2
—L)ry x 1+
mo

mj
+(mg + —=)ry X 7y +
Mo

m mims

r1 X 7"2
1o (2.8)

myima

p= AL+ (my +

9 X 721-

One can show that u is, in fact, the total angular momentum of the system.

It is clear that ((R?)% x SO(3)) is a trivial bundle with the structure group SO(3)
and the base space (%%)? coordinatized by (Q1,Q2). Using coordinates (Q1,Qs, A) for
the configuration space @, the angular momentum (2.8) of the system can be rewritten

as follows. From Figure 2.1 and Equation (2.1), we have

r =+ AQ;, i=1,2
and
r=-Al6Q1 + €Q>),
where ¢; = m0+7721.+m2’i =1,2. Equation (2.8) can be rearranged as
= A((Io + Alo)Q + D1Q1 + DyQs) (2.9)
where

Aly = —m(aQ} + €03} = (6,01 + ©05)%)
Dy =m[(1-a)aQ1 — e160s]
Dy = m[—€162@1 + e (1~ €2)@2]-
By (2.9), we have

Q= (Io+ Al) " (A"n = (D1Q1 + D2Q2)) (2.10)
or, by (2.2),
A= AT+ ALY ATy — (Ip + Aly) " (D101 + D302)], (2.11)
where []Aé (\) Comparing (2.11) with (1.8), we see that

Liock(@1,Q2) £ Io+ Al

is the (local) locked inertia tensor, and

W(Q1,Q2)(Q1,02) & [(Jo + AL)"M(D1Q1 + D20y)]

is the value of the (local) connection form at the point ((Q1,Q2), (Qh Qz)) € TB with
respect to the mechanical connection. This connection form can be explicitly given by
&(Q1,Q2) = Iy (D1dQy + D2dQ;)
= mI L [((1 - e)a Q1 — ee2Q2)dQ; (2.12)
+(~aeQ: + el - )J2)dQs),
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where the operator ~ is the inverse of operator ™.

Equation (2.11) can be used for computing the phase of the system and the related
optimal control problem mentioned in the preceding section. In particular, when pu =0,
it can be used to compute holonomy, or geometric phase and to solve the isoholonomy
problem. In this case, the angular velocity vector of the rigid body in a body fixed frame

relates to the connection form by

Q= -0(Q1,Q2)(@1,Q2)
=mI L [(1-« Jer@1 — e162Q2)01 (213)
+ (“6162@1 +e(l - 62)@2)(22]'

In the following sections, we will consider the case p = 0 only. In addition, we will
assume that the oscillators are confined to move along certain guide ways. Under this
assumption, the bundle structure will be simplified and the equations for phases and the

connection form on such a bundle can be easily derived from those we have found.

3 Planar System

We now assume that the vectors r, BQ; and B@Q, are kept in the same plane in
inertial space and that m; = ms (s0 ¢ = € 2 €). In addition, we choose a body-fixed
coordinate system (or frame) 0-zyz on the carrier with 0-» axis perpendicular to the
plane and the origin of this frame is placed at the center of mass of the carrier (see Figure
3.1). We also assume that the two oscillators move along two parallel guide ways such

that, in the 0-zyz frame, at each time ¢,

Ql = (_l7x1(t)70)T and QE = ( l7m2(t)7O)T*
where z1(1),29(t) € R and [ is the distance of the guide ways to the origin of 0-zyz
frame. It is clear that the configuration space is reduced to Q@ = R? x §1, which will be
coordinatized by (1, %,6), and the principal fiber bundle is (% x S, R2, 7, 5).
Setting o = 0, the angular velocity Q = (Q,,Q,, Q)T in (2.13) is of the form

Q, =0
2, =0 (3.1)
- .
Qz =0= e (371 - *7}2)7
lock

where
2

Lioen 2 I+ me(212 + (1 =€)z — 2ez129 + (1 — €)z3)

with I, the moment of inertia of the carrier about z axis. It is obvious that the local

connection form corresponding to the mechanical connection on the principal bundle
(R? x ST, R% 81 is
mel

lock

w21, 22) = — (dzq — dzs). (3.2)
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Figure 3.1 A Rigid Body with Two Oscillators: Planar Case

For simplicity, we further assume that the amplitude of motion of each oscillator

is very small in comparison with the the spacing of two guide ways, i.e.

||/l << 1. (3.3)
Under this assumption, using Taylor expansion (up to quadratic terms of ; ), we get an
approximate w (with the same notation)

mel(L; + 2mel® — me(212 + (1 — €)z? — 2ex120 + (1 — €)23))
- 2 ' — dzy).
¢ (I + 2mel?)? (da1 = das)

The above procedure is called localization in [g]. Since we are interested in the motion
of the carrier generated by the motion of the point masses on a closed curve in shape
space, the above w can be further simplified as follows. Applying the exterior derivative

to the above equation, we have

! ‘ 5
dw = e 5 d(z}dzy — xidey).

(I, + 2mel?)
Then, under the assumption (3.3), we can take (for closed paths in shape space)

mel g .
w= —m—ﬁ—)—g(m{dm — :c%d:z:l), (3.4)

modulo an exact one-form.
Let ¢(-) be any closed curve in shape space %%. Since 5! is Abelian, from (1.8),

the corresponding geometric phase or holonomy, i.e. the drift of the carrier about the

z-axis, will be

mel 3 .
(52 = — /w = —/(T—W(x%dxz - 375(13171). (135)

Using (3.5), we now compute the geometric phase for the case in which both
oscillators follow sinusoidal motions with different amplitudes, frequencies and phase

angles.



Let
z1(t) = a1sin(@t + ¢1) and  z(t) = apsin(nwt + ¢2)
for t € [0,27 /@], where @, a;, ¢; are real numbers and n is an integer. Then, the closed

curve in the shape space forms a Lissajous figure. Substituting the above z;(¢) in (3.5),

we have

8, = { “”2((11;2267)71’2;233"9 cos(¢2 — 2¢1) if n =2;
otherwise.
Therefore, n = 2 is the necessary condition for generating a nonzero geometric phase
under the assumption (3.3). With this condition, ¢, —2¢;, = 2kw, for k = 0,=%1, ... gives
the largest phase shift and ¢o — 2¢1 = (2k + 1)7/2, for k = 0,+£1, ..., gives zero phase
shift.

Next we formulate the optimal control problem for this particular mechanical

system. For convenience, we re-scale the coordinate 8 of S' by the factor (—[Jrgn—;fd?
Then the third equation of (3.1) becomes
é = JL‘%JIZ - ”C%”(Il
The optimal control problem is to find control uy(:) and uy(-) to
1
minimize/ (u? + ul)dt (3.6a)
0
subject to
i‘l = Uy
Ty = Uy (3.6b)
é - LL%?IQ - x%ul
with given boundary conditions
1‘1(0) = 5121(1) = 372(0) = wz(l) = 0, 0(0) = (90, 0(1) = (91 (360)

Since the optimal control problem (3.6) has fixed boundary conditions, one needs
to check the reachability for the system (3.6b). Define two vector fields on % x 51 by
g1(q) = (1,0,22)T and g2(¢) = (0,1, —2%)T. Then (3.6b) can be represented as

¢ = g1(Q)ur + g2(q)ua.

It is easy to check that [g1,[g1,92]l(¢) = (0,0,2)" and g1(q),92(a),[91, (91, 9211(q) are
linearly independent for any ¢ = (z1,22,60) € £2 x §*. By Chow’s theorem, we conclude
that, for the system (3.6b), there is an open set about the point ¢ = (0,0,8) (or any
other point in R? x §') such that any point in this set can be reached from ¢ by a

piecewise constant input (uy,us2).
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Theorem 3.1: If (z1(-),z2(-),0(+)) is an optimal trajectory with control (uj(-),u3(-))
for the optimal control problem (3.6), then there exists A(-) = (A1(+), A2(+), As(-))T on

[0,1] satisfying the ordinary differential equations

j?l = ’UJI Al = —2)\3:1:1u§
Ty = ’U/; }\2 = 2)\3x2uf (37&)
0 = 22u} — adul As =0,
where X
* 1 N .
ui(g) = —~2-()\1 — Agxg) and wuy(q) = 5(/\2 + /\3x%) (3.7b)

with boundary conditions
$1(0) = .’131(1) = CL‘Q(O) = :1:2(1) = O, 0(0) = 00, 0(1) = 01.

Moreover, the system (3.7) is completely integrable.
The equations (3.7) can be derived easily from variational principles. The deriva-
tion is omitted here. We just prove the solvability. From (3.7) one can get differential

equations for the geodesics:

il - A3($1 + .ng)ig =0
5'6.2 + /\3(.’[71 + $2)i‘1 =1 (‘;8)
F3 + 2(zy — @1)d13y + As(1 + 22)(eidy + 25d2) =0

for some constant A3. To integrate (3.8), let w = 2y + 2 and v = 21 — 5. We have
U= /\3ww
W = ——)\3’w2').

By integrating the first equation and substituting the result in the second equation, we

get, for some constant c,

w -+ )\3’UJ(C+ %%wg) =0

which is the equation for a quartic oscillator, solvable by elliptic function, i.e.

. / dw LC
~ ) VO + aw? + but 2

for a = —’\—gf,b = %g’, where €7 and C, are integral constants. Therefore, we conclude
that an optimal solution (g(%),u(¥)) to (3.6) can be determined explicitly, i.e. the
boundary value problem (3.6) is solvable.
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4 Three Dimensional System

Starting from this section, we assume that the system is free to move in three
dimensional space. Again, we assume that the masses of the two oscillators are equal,
l.e., m; = mg. On the carrier a coordinate system 0-zyz is set such that the three axes

are principal axes, i.e., the inertia tensor Iy of the carrier can be represented as
Iy = diag(1;,1,,1,).

Two oscillators are allowed to move on the carrier such that ¢, and €, satisfy

Q1(t) = (21(t)eos(1), z1(t)sin(yr), DT

Qa(t) = (w2(t)cos(th), wa(t)sin(a), —1)7,
where [ > 0 and ; for i = 1,2 are constants. This means that the two oscillators are
restricted to move along their guide ways which are parallel to the 0-zy plane and are
at an equal distance (/) from the plane (see Figure 4.1). The configuration space now

becomes @ = R? x SO(3) which will be coordinatized by (21,22, A), and the principal
bundle is (R? x SO(3), %2, SO(3)).

Figure 4.1 A Rigid Body with Two Oscillators: 3D System

By the above setting and condition g = 0, the angular velocity of the carrier in

(2.14) is of the form
0= Ql(xl,wg)a':l +Qz(ﬂ?1,l’2)i72, (4.1)

12



where

W1 Wa

A 1 A 1
Ql = — W12 Qz = T Wag
det(Ilock) wi3 det(Ilock) Wos

with det(ljocr) and w;; for ¢ = 1,2;75 = 1,2,3 are polynomials of 2y and z,. And, the

local connection form for the mechanical connection on (R* x SO(3),R%, SO(3)) is
w =~ (21, 22)dzy — Q3(21,25)dws. (4.2)

Although the above choice of parameters simplifies the bundle structure of the system,
the expression of the connection form is still very complicated. In the rest of this section
we will only consider some problems with special choices of ;.

An interesting question is how to choose the constant parameters so that the above
three dimensional system reduces to the planar system discussed in the preceding section.

A natural guess may be that
N
Py =y = 1. (4.3)

But this is not enough. In fact, when (4.3) is satisfied, w3 and w3 have simple

expressions:

W13 = —Wweg = %3([1, — I)m*Psin(29) (20 — z1).

Thus, if I = Iy or p = 0 or ¥ = T, w1z = w3 = 0, i.e. the rigid body will only
move (rotate) about the axis perpendicular to the plane formed by the guide ways of
two oscillators. Otherwise, in general, the parallel motion of the two oscillators will cause
the rigid body to drift about the z axis. In other words, when v = 15 holds, a sufficient
condition for planar drift is that the carrier has axial symmetry about z-axis, or that
the two oscillators move along the lines which are parallel with the same principal axis
(0-z or 0-y) of the carrier.

Explicitly, if ¥ = 0, i.e. both oscillators move parallel to principal axis 0-z, the
local connection form is
eml(dzy — dzs)

= (0, - : , 0T,
w= (0, me(e — 1)a? + 2e2maq 22 + em(e — )23 — 2emi? - I, )
It v = 3, ie. both oscillators move parallel to principal axis 0-y, the local
connection form is
W= ( eml(dm - diﬂg) : 07 O)T

me(e — 1)z3 + 22mazy29 + em(e — 1)a3 — 2eml? — I,
The nonzero terms in the above w’s are the same as w in (3.2) (up to the choice of the
coordinate system).

From the above discussion, it is apparent that if one is interested in full three

dimensional motion of the carrier, some skewness in the directions of motion of the

oscillators would be necessary. In the following, we set +; = 0 and ¢, = § so that
Q1(t) = (z4(1), 0, =0T and  Q(2) = (0, z2(1), DT. (4.4)
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We will show that the kinematic control system corresponding to (1.9) with x4 = 0 is
controllable in a neighborhood of (0,0, A) for any A € SO(3).
From (2.11) and (4.4) with g = 0, the kinematic control system is of the form

T1 = Uy
ig = U2 (45)
A = A(ﬁlul + QQUQ).

Let = (z1,22) and ¢ = (¢, A) be a point in Q. Equation (4.5) can be represented as
¢ = X1(q)ur + Xo(q)ue (4.5)'

where Xi(q) = ((1,0), AQy(2)) and X3(q) = ((0,1), AQy(2)).

Again, we can use the rank condition in Chow’s theorem [4] to check the control-
lability of the system. To this end, we need a formula to compute the Lie bracket of
vector fields X; and X, on ®? x SO(3), where X; is represented as, in general,

Xi(z, A) = (Fi(z), AGi(z)) i=1,2 (4.6)

for smooth mappings F; : ®2 — R? and G, : R? — 3.
Proposition 4.1: Given two vector fields X; and X; on R% x SO(3) shown in (4.6),
the Lie bracket of X; and X5 is given by

OF, 0F, . 0G, 0G4 A
[Xl,Xg](.’E,A) ( P Fl Dz FQ, A[Gl X Gg + Je F1 a’L‘ Fg] ) (1/)
for any point (z,A4) € R2 x SO(3).

Proof: Let
éi(T) = (2 + 7Fi(z), Aewp(r@i(m)))

be an integral curve of X; at (2, A) for ¢ = 1,2. Then,

[Xl,Xz](CL',A): % (F2($+TF1)—F1($+TF2),

T7=0
Aezp(tG)Ga(z + TF) — Aexp(r@y)Gh(z + 7Fy))
OF. oF A a oA A 0G 0Gy _ ~
= (5. 11— 5 AlGL Gy = GhGh + [ R~ R )
8F oF 0G aG4
= (G = 5 by AlGL X Gad 5 2P = =B ).

Theorem 4.2: For system (4.5), there is an open set about (0,0, A) for any A € SO(3)

such that any point in this set can be reached from (0,0, A) by a piecewise constant input

(ul,ug).
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Proof: Let

Xa(z, A) = [X1, Xs)(e, 4) = (F3(z), AGs(x)),
Xy(2, A) = [X1, Xs)(z,A) = (F4(m),AG4(w)),
Xs(z, A) £ [X2, X3)(z, A) = (F3(2), AG5()),

where F; and G;, ¢ = 1,2,3 are computed by using (4.7) and (4.5)'. It is easy to see

that
F; = (g) for ¢ =3,4,5.

Using Macsyma, one can check that, for @1 and @, given in (4.4),
det(Gs, G4, G5)|5=0,0) # 0.

Since Ty, 4)(R? x SO(3)) ~ R® and the vector fields shown in (4.5). which generate

the smallest involutive distribution, have special forms, namely Fi(z) = (1,0)7 and

Fy(z) = (0,1)T, the above equations are sufficient to show that vector fields X;

for ¢ = 1,...,5 are independent. Consequently, the control system given in (4.5) is
controllable by Chow’s theorem.

|

We now turn to the optimal control problem. Corresponding to (P2) in Section 1.

the goal here is to find u4(+) and uz(-) to

1
minimize/ (ui + ud)dt (4.8a)
0
subject to
l"l = U
d?g = U2 (‘lgb)

A = A(ﬁlul + ﬁgﬂz)

for given boundary conditions
21(0) = 21(1) = 22(0) = 25(1) = 0, A(0) = Ag € SO(3), A(1) = A1 € SO(3). (4.8¢)

The necessary conditions for the above problem are given in the following theorem.
Theorem 4.3: If (z(:), A(+)) is an optimal trajectory with controls (uy(-),u3(-)) for
the optimal control problem given by (4.8), then there exist u(-) = (u1(+), po(+)) and
A(+) on [0,1] satisfying the ordinary differential equations

091 L
J‘leuf lu’lz—/\T( 1+ Dz 2 )
by = u3 o Q. 492
&9 = uj [y = _/\T(a 1 *+g__zu;<) (4.9a)

A:Aﬁu*-{—ﬁu: .
(i + Ry03) /\:/\x(Qlu1+qu2),
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where 1
UI(.’L”, Aaf"v )‘) = ~_2'(//’1 + /\TQI)
2 (4.9b)
U;(.’IJ,A,M, )‘) = '—5(:“2 + /\TQ2)

with boundary conditions
21(0) = 1(1) = 2(0) = a3(1) = 0, A(0) = Ao € SO(3), A(1) = A; € SO(3). (4.9¢)

Proof: Here, we first consider a slightly more general form of the problem (4.8). The

optimal control problem now is to determine a control (uq(-),uz(-)) to

1
minimize/ (uf + u3)dt (4.10a)
0
subject to
i = fl(f)ul + f2(5i)u2 (4.10b)
A= A(Ql(:r)ul + QQ(.T)UQ)
with boundary conditions
(2(0), A(0)) = (2o, 40) and (z(1),A(1)) = (z1, A1) (4.10c¢)

where (2(t), A(t)) € R2 x SO(3),Vt € [0,1], f; : R = R?, Q; - N2 — 3 for i = 1,2
and u(-) = (u1(-),ua(+)) : [0,1] — R? is a piecewise smooth function. Applying the
maximum principle to this problem, we have the following result.

Denoting by z = ((z, A), (1, A4)) = ((ZL‘,A),(:,LL,A:\\)) ~ ((z,A), (. A\)) a point in
T*(R? x SO(3)), we define the pseudo-Hamiltonian, H : T*(R? x SO(3)) x R* — R, by

H(zu) 2 < u,u> + <, fi(e)us + fole)us > +{A4, A (2)ur + Do(2)ur))
=< u,u >+ < p, filx)ur + fo(2)uy >+ < A, Q(z)ug + Qauy > .

Here, we have used ( -, ) to denote the real-valued pairing of a vector space and its
dual. Define Hamiltonian
H(z) 2 min H(z,u).
uER?

Since the control space is unbounded, one can find functions w*(z) = (uj(2),u5(z)) on

T*(R? x SO(3)) with
ui(2) = 5 (W7 ) + AT (2)

u3(2) = —5 (47 o(2) + AT ()

so that

2

H(z) = H(z,u"(2)) = —% D(<m fi> + <A >) (4.12)
i=1

16



From the maximum principle, we know that the existence of an optimal control for

problem (4.10) implies that there is a solution to the following system on T*(R*x 50(3)):
i = XH(Z) (413)

with
7(2(0)) = (o, Ao) and 7(2(1)) = (21, A1),
where X is the Hamiltonian vector field with respect to the Hamiltonian (4.12) and
T T*(R? x SO(3)) — R? x SO(3) is the canonical projection. Our goal now is to
determine the vector field Xy on T*(R? x SO(3)).
Recall that, for given n-dimensional smooth manifold @, its cotangent bundle

T*@Q has a canonical symplectic form Qg ([10]). Given a Hamiltonian H on 7@, the
corresponding Hamiltonian vector field Xy on T*Q is defined by

Qo(Xg, Y) = H(Y) (4.14)

for any vector field Y € £(7*Q). The local expression of (4.14) can be given as (cf.
Theorem 3.2.10 in [10])

w(w5a)((x»aaelaﬁl)a ('Taave%ﬂ?)) - <ﬂ2, €1> - </617€2> (415)

for (z,a) € T*Q and (e;, ;) € T(4,)T"Q, i = 1,2. In our problem, @ = R* x SO(3).
For the Hamiltonian given in (4.12), the corresponding Hamiltonian vector field Xy in
(4.13) will be determined by (4.14).

Let

y(t) = (@ + tv, A™), (u + 1, A’ (X + 1))

be an integral curve on T*(R? x SO(3)) at z = ((m,A),(u,AX)) for any v,¢ € N2,
a, € ®3. Then its tangent vector at z is given by

Y (2) = (2, A), (g, AN), (v, AG), (¢, A(@X + B))).

Now the right-hand-side of (4.14) can be calculated as

7Y =G| HOw)

_1d

1|,y &
=< ¢, ful + foui > + < B, Quf + Qaus >
+ < u, (Dflui‘ + ngug) >+ < /\,(DQl?iT + DQQU;) v >, (4.16)

2

(< p+1g, fiz +10) >+ < A+ 18, (2 + tv) >)*
1

where u; is given in (4.11) and

Dfi=(2L 2Ly and DO = (%L 2

dzy  Oza dzry  dzg
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for : = 1,2 are 2 X 2 and 3 X 2 matrices, respectively.
On the other hand, let

X (z) = ((z,A), (n, AN), (w, 49), (1, AEX + §)))

for some vectors w,n € R? and ¢,6 € R® which will be determined. Applying (4.15), we

have
Qo(2)(X,Y) = (6, A@GA + B)), (w, AD) — (1, A(X + 5)), (v, AG))
—<gw> — <mu> 4 < B> —%tr([aX] +Ha. (417

In order to have equation (4.14), we need to make (4.16) equal to (4.17). This leads to
following choice of w,¢,n and §.
w = fiu] + fau;

n=—(Dfiuj + D fous)' o — (DQuf + DQaus) '

(4.18)
€= Quui + Qauy
d=AX (Ql?Lik + QZ“;)
With the above equations, the vector field X g can be completely determined.
In summary, the differential equation (4.13) now has the following form.
& = fi(z)u] + fo(z)u;
A= A@u()uf + Qa()u3)
. . . (4.19a)
fo = =(DfA(@)u] + Dfo(x)uz)” p — (D (2)u] + DQa(z)ug)” A
A=A ((e)u] + Qa(e)u3),
where )
uj = —‘Q‘(MTfl(x) + A (=)
: (4.19b)
45 = 3 (67 @) + N7 ()
When f; = (1,0)T and f; = (0,1)7, (4.19) leads to (4.9).
[ |

Remark 4.4: From the proof of Theorem 4.3, we can see that the geometric treatment
of the optimal control problem allows us to define a Hamiltonian vector field on the
manifold 7*(R? x SO(3)). The solution of the optimal control problem will correspond
to a trajectory of this vector field. Of course, in general, it is almost impossible to find
explicit solutions, although we did find one for the planar system as shown in Section
3. However, as we will show in the next section, identification of symmetries in such
a Hamiltonian system will allow a reduction in the order of the system by applying

symplectic or Poisson reduction theory [11,12].
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5 Symmetry and Reduction

Recall that the manifold P = T*(R? x SO(3)), parameterized by z = (2, A, i, AX) ,
is symplectic. Hence, it is also Poisson. Omne can verify that the Poisson bracket of
functions Fy and F; on P is given by
oF, 0F, O0F, 0F
dz  dp Oz oy (5.1)
+ (DAFI,DA’A‘F2> — (DAFQ,DA&\Fl).

{F, F2}p(2) =

In the preceding section we have shown that, for the Hamiltonian

1 2
H(z)= -3 > (it < A, >)%, (5.2)

i=1
the Hamiltonian vector field is
ui
uj

_ A(ﬁlu{ -+ ﬁgug) .
Xu(z) = AAT(Qyf 4 B | (5.3)

AT (Gebut + gi2u)
A X (Qlui‘ + qu;)
where . )
wi(z) = —5(m + 2%, ui(2) = —5(m + 2 ).
Consider an action of SO(3) on R% x SO(3) given by
$: 50(3) x (R* x $0(3)) = R* x SO(3)
(B, (2, 4)) — (z, BA)
and its cotangent lift on T*(%? x SO(3)),
®T" 1 SO(3) x TX(R? x 50(3)) — T*(R* x SO(3))
(B, (z, A, i, AN)) — (v, BA, i, BAN).
The quotient space P = T*(R? x SO(3))/50(3) = R? x R2 x R* can be coordinatized
by z = (z,p,A). Let T be the canonical projection from P to P. We then have the
following theorem.
Theorem 5.1: The Hamiltonian system (P,{, }p, Xg) has SO(3) symmetry and is

Poisson reducible. The Poisson reduced system is given by
Z=A(Z)VH, (5.4)

where A(Z) is the Poisson structure given by

~ 0 I
AD=|-I 0
0



for I denoting the 2 x 2 identity matrix and 0’s null matrices with suitable dimensions,
and H the reduced Hamiltonian given by Ho%=H.In addition, the Casimir functions
of the Poisson reduced system are all real-valued smooth functions of [|A||*> which is a

first integral for the system, i.e. for some constant 'y,
AP = Cy. 5.6)

Proof: It is obvious that the Hamiltonian (5.2) is invariant under the action ®7" since
it does not have A in its expression. This immediately implies the SO(3)-symmetry for
the system. Moreover, the reduced Hamiltonian H on T*(R* x SO(3))/SO(3) is simply

H(z,p,\) = H(z, A, 1, AN). 5.7)

Let f; and f, be smooth functions on P = T*(R* x 5O(3))/50(3). Let Fy and
F, be lifted functions on P = T*(R? x SO(3)) such that

Fi(z, A, AN) = filz, 1, A),  i=1,2.
We need to find the expression of {f, fa} 5 such that
{f17f2}5($7H>A): {FlaFZ}P($7A7ﬂ7AX)7 (5'8)

where {Fy, F3} p is given in (5.1). As we have seen in the proof of Theorem 4.3, a tangent
vector Y on T*(R? x SO(3)) at z = (m,A,y,AX) has the form

Y(2) = (v, Ad, w, A(GA + 3))s,
where v,w € R? and a,3 € R2. An integral curve of Y at z can be written as,
y(t) = (z + to, Aeia,,u + tw, Aetg(x + tB))
Then by the definition of F; we have

d o~ S -~
dF; - Y(2) = EltzoFi(a: + tv, Ae', p + tw, Ae**(\ +t3))

d
= =0 file +tv, i+ 1w, A + 1) (5.9)
_0fi 0fi /i
=2 "t T an

On the other hand

F; OF; P
dFi-Y(z):a .v+(DAFi,Aa)+d cw (D 5 F, A@GA+ B))

= —5—1—‘1— v+ —-a—ui cw + <DAFZ' — (DA’{F,)/\,ABD + (DA/\\F“A[?}
Comparing (5.9) with (5.10), we get
oF; _0f; OF _ 0f; af; 9fis
=0 = ~F; = AL Fy = AZLN, 5.11
0r 0z’ Op  ou’ Dgli=4 oN’ Da oA (5.11)
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From (5.1), (5.8) and (5.11), we have

Bk~ O, 0%~ 01
{fl’f2};5(2): <A8_f/.\1/\’Aa_j)‘\2>—<A 8§-A,A_a%>

ofi 0fy 0fx Ofi

% A P SRS At S

S o AR Pl il el

N A Y

— a 9 2] 2
=" gt )0 o) m )

0 0 A Of2

[2D)

where I is 2 X 2 identity matrix. Therefore, the matrix in (5.5) is the reduced Poisson
structure. The proof of the rest of this Theorem can be easily carried out.

|
Remark 5.2: Since we are dealing with a trivial principal bundle here with structure
group as the symmetry group, after recognizing the coordinates for P one should be
able to find the Poisson reduced system by eliminating the third equation of (4.9a) and
determine the reduced Poisson structure from it. The first integral in (5.6) follows also

from the last equation of (4.9a).

6 Approximation and Further Reduction

Up to now, we have made no simplifications or approximations of the optimal
control problem. It is customary to make ad hoc approximations in the interest of
ensuring analytic integrability or numerical solvability. However, in the process one can
easily destroy symmetries inherent to the problem. This is highly undesirable. On the
other hand, in many physical systems, simplification and/or approximation may bring
symmetries to the system. Qur purpose in this section is to impose suitable assumptions,
explore further symmetry and reduce the order of the system again.

As in Section 3, we assume that the distances of the point masses to 0-z axis, z;,

are very small in comparison with their distances to the zy plane, i.e.
||/l << 1. (6.1)

By doing so, we ignore the higher order terms with (£1)*(%2)/ for ¢+ j > 2 in both
numerators and denominators of Q4 (21, 22) and Qs(21,22). In addition, inspired by the
symmetric heavy top, we posit one more important assumption. We assume that the

rigid body is symmetric about 0-z axis which implies

I, =1, (6.2)



Under the above approximation and assumption, the angular velocity Q takes the form:

0 a
Q= a |11+ 0 Ty
b.TCQ —-bil?l

a= —%em[zl(%ml2 + 1)

where

b= %ezm(QemIZ + Ix)(2€mlz —ml®+ 1)
A = [,(2eml® + I,,)°.
The approximation of H is, for z = (z, u, A),
Fa(3) = —((homs + i +ada) + (Bhszr — o — ada)).
Applying Hyy to (5.4), we get corresponding Poisson dynamics
Z=AZ)VHy,

or, explicitly,

_ bA3zy + 1 + al;

T = 2
o :b)\gafl - Mo — a/\1

- 2

. b2A§Z‘1 — b)\g,U,Q - abAlAg
= 5

. 023z 4 bAsuy + ab)a)s
Ho = 5

X] = - %(b2/\2/\3$§ + (b/\gﬂl et (lb)\g + (Lb/\%)mg + b2A2/\3I{I)

+ (—b)\2,u,2 - ab/\lAg)ml - a/\gul - a2/\2/\3)
c1 ) A
/\2 =§(b2)\1/\3$§ + (b’\lﬂl + ab)\l/\g).’l}jg + b“)\l)\giv%
+ (——bAl[J,Q + ab/\g — (lb/\%)l‘l _ Cl,/\3/1,2 — agAlAg)
abAiAszg + abhodzzy — adgps + alpn
5 .

o = -

(6.3)

(6.4)

(6.5)

Next, we show that the above system admits a symmetry group and the order of the

reduced Hamiltonian system can be finally brought down to 4. Consider a one-parameter

group Go ~ S with each element having the form:
gr = Diag(Rot(7), Rot(T), Rot*(—T))

where

cos(t)  sin(T)

) and Rot?’(.r): —sin(T) cos(T)
0 0

cos(t)  sin(T)
—sin(T) cos(T)

Rot(r) = (

22

(6.6)

0
01.
1



Define the action ¥ of Gy on P = T*(R? x S0(3))/50(3) ~ R” by
W!GoX%7—+%7 ,()H)
5.
(7, (2, p, X)) = (Rot(7)z, Rot(t)p, Rot>(—7)X). (0

We then have the following striking fact.
Theorem 6.1: Following the rule of (6.7), the group G acts on the Poisson manifold

P canonically, i.e., for any g, € Gy,

{fi,falpo¥y, ={fio¥, ,fa0¥, }5 Vfic C*(P),Yg, € Go.
In addition, the approximate Hamiltonian Hy5 is Gy-invariant, i.e.
Hyp(2) = Hy2(V,,(2)).
Proof: The first assertion is equivalent to
DY, (HEE DY, (3 = A(¥,,(3)).

This can be shown by a straightforward calculation. So is the second assertion.

Remark 6.2: Irom this theorem, one immediately concludes that G is a symmetry

group of the system (6.5).

[ |
Recall that, given a Poisson manifold (M,{, }ar) and a function H on 3, the

Hamiltonian vector field Xz is defined by
XH[F]:{F,H}M VFECOO(M) (6.8)

Let the group G act canonically on M by the action ® : G x M — M. A momentum
map J: M — G* (the dual of Lie algebra of GG) of this action is defined by

(J(2), &) = J(€)(=) (6.9)
forall £ € G and 2 € M, where J : G — C'*°(M) is a linear map such that

Xy =Eme (6.10)

From (6.8)-(6.10), we see that the momentum map can be determined by the following
equation:

{F,J(E)}m = EmlF]. (6.11)

The Hamiltonian version of Noether’s theorem states that if the Lie group, G, acting
canonically on the Poisson manifold M admits a momentum mapping J : M — G* and
H e C*®(M) is G-invariant, i.e. Ho®,=H or éyq[H] =0 forall £ € G, then J is a

constant of the motion for H,i.e. Jo¢; = J, where ¢; is the flow of Xz .
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We now return to our problem. It is clear that by Theorem 6.1 conditions of
Noether’s theorem are satisfied and, consequently, the admitted momentum map will be
an integral of the reduced system (6.5). Indeed, we have the following theorem.
Theorem 6.3: The constant momentum map for the system (P, { , }3) corresponding
to the action ¥ of Gy on P is

J(f)(?) = —I1 M2 + T + )\3. (612)
Proof: We will determine a function J(&) which satisfies
(£, J()}p = &), Vf € C™(P), V&€ Go.

From (6.7) we know that £ € Gy is of the form

0 -1 0
e=eviag ( (% o) (% 0)o(1 0 o)),
0 0 0
where ¢’ is any constant in ® which will later be chosen to be 1. It is easy to show that

the infinitesimal generator of £ is given by

d , -
£5(2) = e V(exp(€7),Z) = (wa, — @1, o, —fi1. — A2, A1, 0)7.
7=0

Then, for any smooth function f on P,

~ _of of af of | 9f af | of
§p(f)(5)—x28wl e TR0 T M Mgi-+hgy 0550 (6.13)

On the other hand, let J(£) be a function on M, then

{£,JONZ) =df(Z)TAEZ)dJ (£)(7)
_ONQof 9I(&) 0f 9J(§) Of 9I(€) Of
T O Oz Ouy O0zy Oxy 0wy Oz Ous

9J(&) _, (&), of 0J() , 9J(&),0f  (6:14)
T T o T T o,
9J(§) , 0J(), of
L vl b yeabl v
Comparing (6.13) and (6.14), we have the following PDE
94 _
o NG (G I
01 _ 2V
opr dJE) | 8I(E) _
aJ(E) T T, TN
Toa T LOIE) 05
aI(€) o an,
\ B (93:2 =T
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One can check that
J(E)Z) = —wipy +xopy + A3

is a solution of the above PDE. Therefore, from Noether’s theorem, this function is a

constant of motion of Xy, i.e.
—Z1le + xop1 + A3 = O (615)

for some constant Cs.
|
Since the reduced system has Gy-symmetry, by using the standard Poisson reduc-
tion procedure again, we can drop the system (6.5) to the quotient space P 2p /Go =~
T*(R? x SO(3))/S0(3)/S* with projection 7 : P — P. In the following, we will find an
induced Hamiltonian Hy,, an induced Poisson structure A and a reduced Hamiltonian

vector field Xz on the manifold P. First, consider a change of coordinates

P P—P
- - (6.16a)
Z = (x1, @2, 1, 2, A1, A2, A3) = 2 = (71,72, 73,01, 05,03, A3)
given by relations
z1 = r1c0s(61),
A1 = rzcos(f3),
zy = rysin(6y), ‘
)\2 = -—T3.S’l'77,(03), (616b)
p1 = recos(fs),
A3 = As.
po = resin(fz),
With these new coordinates, the Hamiltonian Hys becomes
H'm('g') :-211-(2&7‘27'331.77,(93 — 92) -+ 2ab)\3r1r3cos(03 — 91) (6 1’_')
A7
+ 2bA3ri7asin(0y — 61) — a27‘§ - 7‘% — b%\%r{ ).
And the corresponding dynamics Xp,, is given by
( ; argsin(fs — 01) — rocos(6y — 61)
1 =
2
0- . aT3608(03 — 01) + r2sin(02 — 01) - b/\37‘1
L= 27‘1
b abAaracos(f3 — 63) — b2 Airicos(6; — 61)
2= 2
. 1 ~
by = — 2—7.2((1())\37’381'71(03 — 02) + b2 AJrysin(6y — 6;) — bAzrs) (6.18)
. G,/\37'2608((93 — (92) — ab/\grlsin(% — 01)
T =
3 2
0y = — —2—1—(a/\3r23in(93 — 8y) + (abXiry — abryr3)cos(83 — 6;)
T3
— bryrarasin(fy — 01) 4 (b2 Asr] — a®A3)r3)
5 arqerycos(fs — 02) — abAsrirasin(fs — 61)
3= — :
2
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Observing that the Hamiltonian H'y2 in (6.17) and the right-hand-side of differential
equation (8.18) depend on relative values of 6y, 6 and 63 only, we can reduce the order

of this system as follows. Let
031 = 02 — 01 and 032 = 03 - 02.

By using z = (71,72, 73,021,032, A3) to parameterize P, the induced Hamiltonian on P
is given by
_ 1
H12(2) == (2abA 0 0: 2 in{6
12(2) 4( abAzrirzcos(3z + 031) 4 2ararzsin(fsg) (6.19)
+ 2())\37‘17‘28i71(921) - a2r§ — 7':22 — b2/\:237’%)
The corresponding induced dynamics Xpg  on P is given by

P arssin(fsz + 621) — racos(fa1)

1
2

; abAzrzcos(sz) — b Airicos(fa)

2 = —

2
“bA%)ﬁSin(eaz + 021) — aAsrycos(f32)
Ty = —
2

. 1
02 = 5 (argrzcos(fsz + 921) — abAzryrysin(fsz)
r

e (6.20)
+ (r5 — b*A3ry)sin(f21))

8.32 = ((abrlrgr§ - (I,b)\grng)COS(e:;Q + 021)
27‘27‘3
+ (abAsrs — a/\3r§)sin(032) + (bryr: 4 b2 A3r1)r3sin(fyy)
+ ((a* = b)Az = b2 Agri )rors)
5 abAsrirssin(fsg + 021) — aryrscos(fss)
\ 3= 2
Moreover the first integrals in (5.6) and (6.15) now take the form:
i\ =0 (6.21)
and
T17‘28in(021) + A3 = Cs. (622)

Therefore, as we claimed before, the final reduced system with the above integrals is a
four-dimensional Hamiltonian system.
Remark 6.4: One can further show that the final reduced system (6.20) with (6.21)

and (6.22) is also Poisson. Indeed, the equations in (6.20) can be written as

z=AN2)VH2(%)

where .
0 cos(fa1) O —"-—“—"sm,fm) J—Si"ﬁl) 0
—cos(f1) 0 0 sinfa) 0
_— nO 0 0 ’6 0 7}_33
A(»«) ,(.52 ) _ .)'p'rorle) U 0 % U
sin(fz21) 0 0 _ cos(821) 0 0
0’ o -2 " 0 0
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For a detailed derivation of the above expression, see [13].

7 Final Remarks

The model problem described in this paper is strongly motivated by a troublesome
phenomenon of drift observed in the Hubble Space Telescope due to thermo-elastically
driven vibrations of the solar panels arising from the day-night thermal cycling on-orbit.
The point mass oscillators in our problem may be viewed as one-mode truncations of
this elasto-mechanical problem.

It should be noted that in Section 4 and 5, the whole analysis does not depend
on the contents of the vectors Q; and ©; and the dimension of the shape space is not
important either. Therefore, the analysis in that part can be extended to systems with
bundle structure (R™ x SO(3),R™, SO(3)), with m > 1.
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