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Centimeter-scale layers of eclogite and blueschist from Tiburon Peninsula, Franciscan 

Complex, CA were contrasted with a similarly layered sample from Dos Rios, CA. 

Eclogites from both localities have similar mineral assemblages (e.g., omphacite, 

glaucophane, phengite, garnet, epidote, and titanite). However, the Tiburon blueschist 

shows petrographic evidence for fluid-rock interaction, while the Dos Rios sample 

does not. Mineral phases common to both samples were contrasted via textural 

evidence, major and minor element concentrations, and lithium concentrations. 

Lithium concentrations of omphacite and chlorite decrease from the eclogite to the 

blueschist domains in the Tiburon sample. These lithium concentration differences 

are interpreted to be the result of fluid-rock interactions. These differences are not 

seen in the Dos Rios sample. I propose that a difference in the Dos Rios sample bulk 

composition produced the alternating eclogite and blueschist lithologies as a result of 

a process such as seafloor alteration prior to prograde metamorphism.  
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1 Introduction 

 Subduction zone fluids play a 

pronounced role in geologic processes 

such as plate tectonics, and the 

production of the continental crust. 

Fluids also play an important role in 

element cycling in the crust and 

subcontinental lithospheric mantle. As 

the subducting slab is exposed to 

pressure and temperature changes, 

elements are transferred from the slab 

to the overlying mantle by fluids and/or 

melts. This process ultimately leads to 

the production of island arc volcanoes 

and the formation of the continental crust 

(Manning, 2004), and is related to 

processes that include tectonic plate motion and seismicity. Tracing the record left 

behind in metamorphic rocks by subduction zone fluids can help answer questions 

about: (i) fluid flow pathways and mechanisms of fluid flow (e.g., intergranular flow 

or fracture flow) in subduction zones; (ii) sources of fluids in the subduction zone 

(e.g., fluids from subducted sea water, fluids derived from mineral dehydration in the 

oceanic crust, or fluids rising from the oceanic lithospheric mantle); (iii) mobility of 

Figure 1. Simplified sample locality 

map after Sorensen et al. (1997). 
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elements in subduction zone fluids; and (iv) time scales of subduction zone fluid 

flow. Mélange zones are areas where fluids can traverse and exchange elements 

among the downgoing slab, the overlying mantle wedge, and the material that breaks 

off and mechanically mixes between these two domains (Bebout, 2007; Cloos, 1986). 

Lithium is a moderately incompatible lithophile trace element with an average 

composition in oceanic crust estimated to be 10 µg/g and an average composition in 

the bulk continental crust estimated to be 18 µg/g (Teng et al., 2008). Lithium 

partitions strongly into an aqueous phase at high pressure-temperature conditions 

(Brenan et al., 1998). This behavior has allowed previous studies to use lithium to 

monitor fluid-rock interactions (e.g., Teng et al., 2006). Previous studies have used Li 

as a tracer of subduction zone processes and have identified at least three different 

processes that produce Li differentiation in subduction zone rocks: diffusion  

(Marschall et al., 2007), dehydration  (Zack et al., 2003), and fluid infiltration  

(Penniston-Dorland et al., 2010). 

 In this study, two samples from the Franciscan Complex were examined – 

one from the Tiburon Peninsula, California (T90-3A) and the other from Dos Rios, 

California (samples courtesy of Sorena Sorensen, Smithsonian Institution, 

Washington, DC; Figure 1.). Both samples have cm-scale domains of eclogite and 

blueschist. In both samples, the change from eclogite to blueschist correlates with a 

change in bulk rock Li concentration (Figure 2). This change in Li concentration in 

the Tiburon sample is interpreted as the product of fluid infiltration  (Penniston-

Dorland et al., 2010) since the blueschist layer in the Tiburon sample has petrologic 

evidence of fluid- induced, retrograde metamorphism, including chlorite after garnet 
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pseudomorphs. The blueschist layer in the Dos Rios sample, on the other hand, does 

not have similar evidence for fluid- induced metamorphism. The questions to be 

addressed in this study are: i) Does the Li concentration of individual minera ls vary in 

concert with the bulk rock Li concentration in the samples? ii) Did the blueschist in 

the Dos Rios sample undergo fluid- induced, retrograde metamorphism similar to the 

blueschist in the Tiburon sample? If not, iii) by what mechanism was the blueschist in 

the Dos Rios sample 

generated and iv) why is 

the Li concentration in 

blueschist domains 

different than in the 

eclogite domains in the 

Dos Rios samples. To 

answer these questions, 

the petrography and the 

major and minor element 

chemistry of phases in the 

samples were analyzed in both eclogite and blueschist domains (blue amphibole, 

chlorite, omphacite, phengite, garnet, epidote, and titanite). In each phase, the Li 

concentration was analyzed in order to get an accurate determination of Li budget in 

the rocks. A comparison of Li concentration in phases across the eclogite-blueschist 

interface in each sample will demonstrate whether the bulk rock variations are more 

likely due to differences in mineral modes (Li concentration in a given mineral phase 

Figure 2. In the Tiburon and Dos Rios samples, the blueschist 

domain has a lower Li concentration than their associated 

eclogite domains. Uncertainty for the Li concentration 

measurements is ±10%  (Penniston-Dorland et al., 2010).  



  

4 

 

will not vary significantly between layers) or due to exchange of Li with an 

intergranular fluid (Li concentration in a given mineral phase in fluid-altered rock 

layers will differ in altered layers compared to associated unaltered layers  

2 Geologic background 

 Mélange zone are 

hypothesized as areas of 

mechanical mixing at the 

interface between the mantle 

wedge and downgoing crustal 

slab (Bebout, 2007; Cloos, 

1986). Mélange zones consist 

of meter-scale high-grade 

blocks of blueschist, eclogite, 

garnet amphibolite, and/or 

graywacke entrained in a fine-

grained metasedimentary or 

ultramafic matrix. They are 

found in many subduction 

zones around the world (e.g., the 

Franciscan Complex, California; 

Samana Peninsula, Dominican Republic; Syros, Greece; Kyushu, Japan). The 

Franciscan Complex formed during the convergence of the North American and 

Pacific plates during a period of subduction that began between 150 and 153 Ma, 

Figure 3. Transmitted light photomicrograph of the 

Tiburon sample (top, 3a) and plane polarized light 

photomicrograph of the Dos Rios sample (bottom, 3b). 
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during the Late Jurassic (Coleman and Lanphere, 1971; Nelson, 1991). The 

Franciscan Complex is split into Coastal, Central, and Eastern belts and the mélange 

zones found within the Western and Central belts contain high-grade blocks of 

blueschist and eclogite [T = 200 – 600 °C; P = 0.6 to 1.0 GPa (Cloos, 1986; 

Giaramita and Sorensen, 1994; Wakabayashi, 1990)], .Most of the blocks are reported 

to be found in a matrix of fine-grained, argillaceous metasedimentary rock (Cloos, 

1983; Cloos, 1986; Moore and Blake, 1989). However, in the Tiburon and Dos Rios 

localities, the contact relations of these blocks with their immediate surroundings are 

unclear. The fine-grained matrix often weathers away, giving the landscape 

characteristic hummocks. 

Most of the blocks have a Mg-rich, actinolitic rind, thought to have formed as 

a result of metasomatism from fluids derived from serpentinized ultramafic rocks 

(Cloos, 1986; Nelson, 1995; Sorensen et al., 1997). Low εNd and large ion lithophile 

element (LILE) enrichment in the rinds provide evidence that fluids derived from 

subducting sedimentary rocks were added (Nelson, 1995; Sorensen et al., 1997). 

40Ar/39Ar ages from phengite grains in Franciscan Complex blocks indicate fluid-rock 

interactions continued for up to 60 million years (Catlos and Sorensen, 2003).  The 

bulk rock major element composition and the concentrations of rare-earth elements 

(REE) and high-field strength elements (HFSE) show that most Franciscan blocks are 

similar in composition to mid-ocean ridge basalts, a likely protolith (Sorensen et al., 

1997). In addition, the unaltered cores of these blocks have εNd of 9.3 ± 1.4, consistent 

with a normal depleted-mantle source (Nelson, 1995). 
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2.1 Retrograde metamorphism in the Franciscan Complex 

 Evidence for retrograde metamorphism in rocks is rarer than for prograde 

metamorphism. This is commonly due to: (i) lower temperatures after peak 

metamorphism, which leads to much 

slower reaction rates; (ii) lack of active 

tectonism after peak metamorphism; or 

(iii) lack of available fluids to mediate 

chemical reactions after peak 

metamorphism. There is, however, 

evidence of fluid-mediated retrograde 

metamorphism in the high-grade 

Franciscan Complex blocks, including: 

(i) chlorite after garnet pseudomorphs; 

(ii) replacement of epidote by 

pumpellyite; omphacite by 

glaucophane, chlorite, phengite, and 

lawsonite; (iii) the random orientation 

and cross-cutting of the foliation by the 

replacement minerals (Cloos, 1986; 

Nelson, 1995; Penniston-Dorland et al., 

2010). 

 

Figure 4. Backscattered electron (BSE) images 

of Tiburon omphacites after Penniston-

Dorland, et al. (2010). ‘o’ indicates omphacites, 

‘a’ indicates amphiboles, ‘p’ indicates 

phengite, and ‘e’ indicates epidotes. 4a shows 

the sodic, homogeneous texture of the 

omphacites in the eclogite domain. 4b shows 

the altered omphacites in the Dos Rios sample. 

The sodic omphacite has altered to diopside 

and pumpellyite, indicated by the light patches 

within the mineral. 
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2.2 Samples 

The Tiburon sample has roughly equal eclogite and blueschist portions 

coexisting in the sample, separated by a sharp contact between the two (Figure 3a). 

The Dos Rios sample has multiple, cm-scale eclogite and blueschist regions (Figure 

3b). The most common phases in both samples include omphacite, phengite, sodic 

amphibole, epidote, garnet, and titanite (See Tables 1 and 2). The blueschist domain 

of Tiburon shows evidence for fluid- induced, retrograde metamorphism. This 

evidence includes chlorite after garnet pseudomorphs and altered, “patchy” 

omphacites in the blueschist and the presence of pumpellyite in the blueschist layer 

(Figure 4a and 4b). In contrast, the Dos Rios sample has no distinct petrological 

evidence for fluid- induced, retrograde metamorphism in the blueschist: for example, 

there are no chlorite after garnet pseudomorphs and the omphacites are unaltered in 

the blueschist domains. 

Penniston-Dorland et al. (2010) performed bulk Li concentration analyses on 

whole-rock slices cut along a traverse across the sample in the Tiburon sample 

(Figure 5). The authors found that the bulk  Li concentration in the blueschist portion 

of the rock was consistently lower than that of the eclogite portion of the rock (17 – 

20 µg/g and 21 – 28 µg/g, respectively), indicating that the fluid that interacted with 

the blueschist depleted the rock in Li concentration.  

The Dos Rios sample shows a similar difference in bulk Li concentration 

between blueschist and eclogite (13 – 16 µg/g and 19 – 21 µg/g, respectively; 

Penniston-Dorland, unpublished data). The methods outlined here will be used to  
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Table 1 and Table 2. Results of point counting for eclogite (green) and blueschist (blue) of 

Tiburon (left) and Dos Rios (right) samples. 1σ is the absolute uncertainty, in modal percent, 

calculated after Van Der Plas and Tobi (1965). Refer to section on Error Analyses for an in-

depth discussion about calculating uncertainty associated with point counting. Mineral modes 

were measured by Hanson and Penniston-Dorland (unpublished data) counting ≥2000 points in 

thin section with back-scattered electron (BSE) imaging using a JEOL JXA-8900 Superprobe 

electron probe microanalyzer.

phase count % total σ Phase Count Vol. % σ

Amphibole 256 13% 0.74% Amphibole 296 15% 0.78%

Apatite 17 0.84% 0.20% Apatite 10 0.49% 0.16%

Chlorite 66 3.3% 0.39% Chlorite 1 0.05% 0.05%

Epidote 292 14% 0.78% Epidote 435 21% 0.91%

Garnet 165 8.1% 0.61% Garnet 307 15% 0.79%

Omphacite 793 39% 1.1% Omphacite 666 33% 1.0%

Phengite 356 18% 0.84% Phengite 241 12% 0.72%

Titanite 82 4.0% 0.44% Titanite 76 3.7% 0.42%

Total 2029 100% Total 2032 100%

phase count % total σ Phase Count % σ

Amphibole 958 47% 1.1% Amphibole 1228 56% 1.10%

Apatite 17 0.83% 0.20% Apatite 10 0.46% 0.15%

Chlorite 198 9.7% 0.65% Chlorite 1 0.05% 0.05%

Epidote 26 1.3% 0.25% Epidote 579 26% 0.98%

Garnet 2 0.1% 0.07% Garnet 111 5.1% 0.49%

Omphacite 183 8.9% 0.63% Omphacite 96 4.4% 0.45%

Phengite 412 20% 0.89% Phengite 37 1.7% 0.29%

Pumpellyite 132 6.4% 0.54% Titanite 125 5.7% 0.51%

Titanite 108 5.3% 0.49% Total 2187 100%

Total 2049 100%

Eclogite

Blueschist

Eclogite

Blueschist

Tiburon Dos Rios
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Figure 5. Bulk rock Li concentration  in Tiburon sample. Bulk Li concentration generally decreases going from eclogite to blueschist 

domains. Data after Penniston-Dorland et al. (2010).  
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determine if the Dos Rios sample has undergone fluid- induced, retrograde 

metamorphism similar to the Tiburon sample. 

3 Methods 

3.1 Petrography 

Examples of the four major mineral phases were identified using a 

petrographic microscope: omphacite, chlorite, phengite, and amphibole. Examples of 

the low-Li phases – titanite, epidote, and garnet – were also identified. The criteria for 

a grain to be included for analysis were: (i) relatively few inclusions; (ii) distinct 

grain boundaries in plane polarized light and in reflected light; and (iii) easy to 

distinguish mineral boundaries in both transmitted and reflected light. Grains were 

selected along traverses across the blueschist/eclogite interface in each sample to look 

for systematic changes in composition, and as a function of distance across the 

interface. More grains around the contact between blueschist and eclogite domains 

were chosen to attempt to identify the mm-scale features the infiltrating fluid may 

have left behind.  

3.2 Electron Probe Microanalyzer (EPMA) 

Major and minor element concentrations (Si, Ti, Al, Fe, Mn, Mg, Ca, Ba, Na, 

and K) of the phases were determined by a JEOL JXA-8900 Superprobe electron 

probe microanalyzer at the University of Maryland, College Park. Initial analysis 

consisted of confirmation of phase identities via energy dispersive spectrometry 

(EDS).  Major and minor element analysis was accomplished via wavelength 

dispersive spectrometry (WDS). Minerals were analyzed using a beam potential or 
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accelerating voltage of 15 kV, a 5 µm spot size, and a 20 nA cup current. Count times 

of 10 – 60 s on peak and 5 – 30 s on background were used. Raw count rates were 

corrected using a ZAF algorithm to obtain concentrations. Table 3 has information on 

the standard reference materials that were used for the WDS analysis. 

Phengite Amphibole Omphacite and Chlorite 

Element Standards Element Standards Element Standards 

Al Garnet-12442 Al 
Kakanui 

hornblende 
Al Garnet-12442 

Ba Orthoclase   Ca Engels hornblende 

Fe Garnet-12442 Fe 
Kakanui 

hornblende 
Fe Garnet-12442 

K Microcline K 
Kakanui 

hornblende 
K Orthoclase 

Mg 
Kakanui 

hornblende 
Mg 

Kakanui 

hornblende 
Mg 

Kakanui 

hornblende 

Mn Rhodonite Mn Rhodonite Mn Rhodonite 

Na Albite Na 
Kakanui 

hornblende 
Na Albite 

Si Staurolite Si 
Kakanui 

hornblende 
Si Staurolite 

Ti 
Kakanui 

hornblende 
Ti 

Kakanui 

hornblende 
Ti 

Kakanui 

hornblende 

Table 3. Standards used in EPMA analyses. 

3.3 Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) 

The Li concentration in the phases was measured at the University of 

Maryland, College Park using a New Wave frequency-quintupled Nd-YAG laser (213 

nm) coupled to a Thermo-Finnigan Element2 single collector ICP-MS with He 

flushing the ablation cell. Analyses were performed with a laser fluence of ~2 - 3 

Jcm-2, a repetition rate of 7 Hz, and a spot size of 40 - 80 µm. The spot size used 

depended on the size of the mineral grain that was analyzed; the smaller minerals of 

any type required a smaller spot size. An analysis consisted of 15-20 s of background 

gathering, followed by 60 s of laser ablation. Analyses were performed in groups of 
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20 for ease of data reduction. Concentrations of B, Al, Ca, and Si were also analyzed. 

The first and last four analyses of each group were standard reference materials, 

BCR-2G and NIST 610. Data reduction was performed using LAMTRACE. Silicon 

was used as an internal standard to correct for ablation yields. The advantages of 

analyzing via LA-ICP-MS compared to methods such as solution are: 1) high 

precision, ng/g measurements; 2) little sample preparation; 3) small analytical blanks; 

4) the ability to measure μm-sized samples with moderately little sample destruction; 

and 5) avoidance of surface and grain boundary contamination. Use of LA-ICP-MS 

allows for precise measurements of Li concentration in specific phases, instead of 

bulk portions of the rock. This will be useful to tell which phases Li preferentially 

partitions into, as well as the ability to measure small parts of mineral grains in 

context to the rest of the rock. 

3.4 Error analyses  

3.4.1 Point counting  

 The absolute 1σ uncertainty associated with counting mineral modes (refer to 

Tables 1 and 2) was calculated using the equation found in Van der Plas and Tobi 

(1965): 

   √
          

 
 

where pi=volume percent mineral in a given rock and n is the total number of points 

counted.    is the absolute uncertainty, in volume percent.  
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3.4.2 EPMA 

 The 1σ uncertainty is based on Poisson counting statistics on each analysis on 

the probe. The counting statistical error is calculated as σ= 
 

√ 
, where n= the number 

of x-ray counts collected by the EPMA. Each grain analyzed has 1-5 separate 

analyses per grain. For each element, the uncertainty for each grain was calculated 

by: 

 σm=√
     

 

 
, 

where σm  is the standard deviation from the mean, Σ    
  is the sum of the squares of 

all the errors of the analyses of a grain, and n is the number of analyses. This process 

is repeated for each element analysis of a grain. BSE imaging revealed that some 

omphacite, phengite, and amphibole grains are zoned. No zones are large enough to 

be analyzed by LA-ICP-MS (smaller than 20 μm in diameter), so no special protocol 

was followed to account for zonation.  

3.4.3 LA-ICP-MS 

 The 1σ uncertainty is based on Poisson counting statistics on each analysis on 

the laser. Each calculation is based upon the number of counts of Li given by the MS.  

The counting statistical error for each analysis is calculated as: σ = 
 

√  
, where t = 

time, in seconds, of ablation; and c = counts of 7Li per second. 7Li is the preferred 

isotope for error analysis, as 7Li represents 92.5% of natural Li and thus produces 

many more counts during ablation. The greater number of counts will produce a 

smaller σ for each analysis.   
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3.4.4 Error propagation 

 Each mineral grain was analyzed 1-5 times. The Li concentration of each 

grain is the average of all Li concentrations of the analyses of a grain. The uncertainty 

of the Li concentration for each grain is calculated by averaging the error per analysis 

using the standard deviation from the mean: σm=√
     

 

 
, where Σ    

  is the sum of 

the squares of all the errors of the analyses of a grain, and n = the number of analyses. 

The uncertainty of eclogite and blueschist is calculated as the standard deviation of 

the Li concentration of the population. The statistical difference between populations 

was determined using t-tests. A two-tailed, unpaired t-test was performed on each 

population of analyses. If the populations had a similar standard deviation, a standard 

unpaired t-test was used; if the standard deviations were different, Welsh’s t-test was 

performed. P-values of 0.05 or less were considered statistically significant (Ruxton, 

2006).  

 The total uncertainty for each analysis is based on the total uncertainty from 

the counting statistics on each LA-ICP-MS measurement, the EPMA uncertainty on 

the internal standard measurement, and the systematic error on BCR2g. The total 

uncertainty on an analysis is calculated as: 

√(
  

 
)
 

 (
  

 
)
 

 (
  

 
)
 

 

where (
  

 
)
 

is the uncertainty from the Poisson counting statistics from the Li 

concentration measurements on the LA-ICP-MS, (
  

 
)
 

is the uncertainty from the 
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EPMA, and (
  

 
)
 

is the standard deviation of the standard reference material BCR2g. 

The 1σ standard deviation on 22 analyses of 7Li is 6.9% and the 1σmean is 1.5%. The 

accuracy of BCR2g is  5.8% at 9.6 μg/g Li using the prefered GeoReM value of 9±1 

µg/g. NIST610 was also measured, but not used for error propagation due to its much 

different Li concentration from the samples in this study. The 1σ standard deviation 

for 24 analyses of NIST610 is 1.4% and the 1σmean is 0.3%.  

4 Results 

 Minerals of interest (i.e., grains with well-defined grain boundaries and no 

apparent grain overlap) were identified using petrographic microscope and their 

identies confirmed using qualitative EDS analysis. Major and minor element 

concentrations were determined using quantitative WDS analysis. Those minerals 

were then subsequently analyzed via LA-ICP-MS to determine their Li concentration. 

Amphibole, omphacite, phengite, and chlorite in eclogite and blueschist domains 

were analyzed in the Tiburon sample. Amphibole, omphacite, and phengite were 

analyzed in both domains in the Dos Rios sample. In addition, minor lithium-bearing 

phases (garnet, titanite, and epidote) were analyzed in both samples.  

4.1 Textural observations 

4.1.1 Tiburon 

 The Tiburon sample has textural evidence of fluid-mediated retrograde 

metamorphism. The Tiburon sample has garnets in the eclogitic domain, grading to 

partially chloritized garnets within the blueschist adjacent to the eclogite/blueschist 

contact, to fully chloritized garnet pseudomorphs farther away from the contact in the 
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blueschist domain (Figure 6). Given chlorite is interpretated as forming during 

retrograde metamorphism and chlorite is a hydrous phase, then these pseudomorphs 

are indicators of fluid-rock interaction. Pumpellyite is another hydrous phase found 

only in the blueschist domain of the Tiburon sample. Pumpellyite is stable at 

temperatures lower than the peak metamorphic assemblage found in the eclogite layer 

(Liou et al., 1987). Further evidence of fluid-rock interaction is apparent in 

backscattered electron (BSE) images of the omphacites in the Tiburon sample. 

Omphacites from the eclogite domain appear to be relatively homogeneous with some 

zoning that is likely growth zoning on the rims. Approaching the contact and into the 

blueschist layer, omphacites are mostly homogeneous but have some light-colored, 

Ca-rich (i.e., more diopsidic rather than jadeitic, in some places replaced by 

pumpellyite) patches  (Figure 4) . Further into the blueschist layer, away from the 

contact, the omphacites have more of these Ca -rich patches. 

4.1.2  Dos Rios 

 In contrast, the Dos Rios sample has no textural evidence of fluid-mediated 

retrograde metamorphism. Both the eclogite and blueschist domains have, compared 

to the Tiburon sample, unaltered garnets (see Figure 3). Pumpellyite is not a phase 

that is seen in either the blueschist or the eclogite domain in the Dos Rios sample. 

Finally, BSE imaging of omphacites in the Dos Rios sample shows no patchy, Ca-

rich regions in omphacites. 
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Figure 6. Plane polarized light (images in left column) and reflected light (images in right column) 

photomicrographs of garnets in Tiburon sample, showing gradation to chlorite pseudomorphs 

farther away from the eclogite/blueschist boundary. The top two photos are of unaltered garnets 1 

cm away from the eclogite/blueschist contact in the eclogite domain. The center two photos are of 

partially chloritized garnets 1 cm away from the contact in the blueschist domain. The bottom two 

photos are completely chloritized garnets 2 cm away from the contact in the blueschist domain. 
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4.2 EPMA Results 

4.2.1 Amphibole 

 Tiburon amphiboles comprise about 13% of the volume of the eclogite and 

about  47% of the volume of the blueschist. In the eclogite, the average amphibole 

formula is Na0.2(Na1.7Fe0.2Ca0.2)(Mg2.1Fe 1.3Al 1.7)(Si7.8Al0.2)O 22(OH)2. In the 

blueschist, the average amphibole formula is Na0.2(Na1.7Fe0.1Ca0.2)(Mg 2.2Fe 12Al 

1.6)(Si7.8 Al0.2)O 22(OH)2. Refer to Figure 7 for a graphical representation of the 

amphibole compositions. All but one of the amphibole compositions fall within the 

compositional range for glaucophane (Hawthorne and Oberti, 2007). That anomalous 

amphibole has slightly less Na and classifies as winchite. The composition of the 

Tiburon amphiboles from the eclogite and blueschist domains are similar.  

Dos Rios amphiboles comprise about 15% of the volume of the eclogite and 

about 47% of the volume of the blueschist. In the eclogite, the average amphibole 

formula is Na0.2(Na1.6 Fe0.2Ca0.2)(Mg2.0Fe1.4Al1.6)(Si7.9 Al0.1)O22(OH)2. In the 

blueschist, the average am phibole formula is 

Na0.2(Na1.6Fe0.2Ca0.2)(Mg1.9Fe1.5Al1.6)(Si7.9 Al0.1)O22(OH)2. Refer to Figure 7 for a 

graphical representation of the amphibole compositions. All but one of the amphibole 

compositions fall within the range for glaucophane (Hawthorne and Oberti, 2007). 

That anomalous amphibole has slightly less Na and classifies as winchite. The 

composition of the Dos Rios amphiboles from the eclogite and blueschist domains are 

similar. Compared to the Tiburon amphiboles, the Dos Rios amphiboles have slightly 

more Si, slightly more Fe, and slightly less Mg.  
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avg. wt% σ avg. wt% σ avg. wt% σ avg. wt% σ

SiO2  56.8 0.5 56.7 SiO2  55.1 0.7 54.7 0.7

TiO2  bd bd 0.3 TiO2  bd

Al2O3 11.3 0.4 11.0 0.8 Al2O3 10.0 0.5 8.7 1.5

FeO 11.7 0.6 11.8 1.2 FeO 7.6 0.7 8.6 1.0

MnO bd bd MnO bd bd

MgO 10.0 0.5 10.2 1.2 MgO 7.2 0.4 7.6 0.4

CaO 1.7 1.8 0.6 CaO 13.5 0.6 14.1 1.1

BaO bd BaO bd bd

Na2O 6.9 0.6 6.7 0.3 Na2O 6.2 0.3 6.1 0.6

K2O bd bd bd K2O bd bd

Total 98.3 0.5 98.3 0.5 Total 100 0.9 100 1.0

No. analyses 8 18 No. analyses 14 9

avg. wt% σ avg. wt% σ avg. wt% σ avg. wt% σ

SiO2  49.6 0.5 50.2 0.7 SiO2  27.9 0.4 28.5 0.4

TiO2  TiO2  bd bd

Al2O3 28.2 0.5 27.7 0.7 Al2O3 18.4 0.5 18.6 0.5

FeO 2.5 0.1 2.5 0.2 FeO 27.2 2.2 24.2 1.90

MnO bd MnO bd bd

MgO 2.9 0.2 3.1 0.2 MgO 14.1 1.7 17.0 1.4

CaO bd bd CaO bd bd

BaO bd bd BaO bd bd

Na2O 0.9 0.1 0.8 0.2 Na2O bd bd

K2O 10.1 0.3 10.30 0.3 K2O bd bd

Total 94.2 0.4 94.6 0.5 Total 88.8 0.8 88.6

No. analyses 10 17 No. analyses 17 23

Eclogite Blueschist

Amphibole Omphacite

Eclogite Blueschist

Chlorite

BlueschistEclogite

Phengite

Eclogite Blueschist

Table 3. EPMA results for major Li-bearing phases in the Tiburon sample. 
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Table 4. EPMA results for major Li-bearing phases in the Tiburon sample. 

 

  

avg. wt% σ avg. wt% σ avg. wt% σ avg. wt% σ

SiO2  56.2 0.6 56.4 0.4 SiO2  54.7 0.3 54.5 0.3

TiO2  bd bd TiO2  bd

Al2O3 9.9 0.6 10.3 0.4 Al2O3 7.5 0.6 7.4 1.0

FeO 13.3 1.3 12.5 0.7 FeO 8.7 0.5 9.1 0.8

MnO bd bd MnO bd

MgO 9.3 0.7 9.8 0.4 MgO 7.7 0.5 7.6 0.5

CaO 1.2 0.5 1.1 0.2 CaO 13.5 0.6 13.4 0.8

BaO bd bd BaO bd bd

Na2O 6.8 0.4 7.0 0.2 Na2O 7.0 0.4 7.0 0.4

K2O bd bd bd bd K2O bd bd

Total 96.9 0.4 97.1 0.4 Total 99.2 0.5 99.2 0.3

No. analyses 10 11 No. analyses 11 11

avg. wt% σ avg. wt% σ

SiO2  51.7 0.5 51.8 0.9

TiO2  bd bd

Al2O3 24.8 0.8 24.8 0.8

FeO 3.5 0.4 3.5 0.4

MnO bd bd

MgO 3.9 0.2 3.9 0.2

CaO bd bd

BaO bd bd

Na2O 0.2 0.1 0.2 0.1

K2O 10.7 0.8 10.7 0.8

Total 94.9 0.8 94.9 0.8

No. analyses 11 8

Phengite

Eclogite Blueschist

Amphibole Omphacite

Eclogite Blueschist Eclogite Blueschist
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4.2.2 Omphacite 

 Tiburon omphacites comprise about 39% of the volume of the eclogite and 

about 8.9% of the volume of the blueschist. In the eclogite, the average omphacite 

formula is (Na0.4 Ca0.5)(Fe0.2 Mg0.4 Al0.4)Si1.9O6. For the omphacites in the blueschist, 

only the Na-rich portions of the omphacite were measured, not the Ca-rich patches.  

In the blueschist, the average omphacite formula is (Na0.4 Ca0.5)(Fe0.3 Mg0.4 

Al0.4)Si1.8O6. The omphacite compositions are plotted in Figure 8, where %Jadite is 

the NaAl pyroxene endmember, %Diopside-Hedenbergite is the Ca(Fe2+
, Mg) 

endmember, and %Acmite is the Fe3+ endmember. The omphacites are homogeneous 

in composition, as they cluster together in one portion of the quadrilateral. The Fe and 

Mg content of the omphacites do not vary between eclogite and blueschist domains.  

  Dos Rios omphacites comprise about 33% of the volume of the eclogite and 

about 4% of the volume of the blueschist. In the eclogite, the average omphacite 

formula is (Na0.5Ca0.5)(Fe0.3Mg0.4Al0.3)Si2.0O 6; in the blueschist, the average 

omphacite formula is. (Na0.5Ca0.5)(Fe0.3Mg0.4Al0.3)Si2.0O 6. The Dos Rios omphacites 

are, like their Tiburon counterparts, generally homogeneous in composition. The Fe 

and Mg content of omphacites from eclogite and blueschist domains are similar.  

 The omphacites in the Dos Rios sample have a restricted compositional range 

when compared to the Tiburon sample. Both samples are homogeneous; that is, the 

omphacites in both samples have similar %Al, %Ca, and %Fe3+components. The Dos 

Rios sample has greater %Ca and less %Fe3+ components than the Tiburon sample.  
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Figure 7. Diagram showing the distribution of amphibole compositions in the Tiburon and Dos Rios sample, where Mg# is (Mg+Fe)/Mg 

and Mg and Fe are measured in atoms per formula unit (apfu), and Si is measured in  apfu. Subscript B represents Na in octahedral site. 

All of the amphiboles fall within the compositional range for a glaucophane or winchite, depending on their Na composition. Amphibole 

composition scheme after (Hawthorne and Oberti, 2007). 



  

23 

 

 

 

 

Figure 8. Quadrilateral diagram showing the composition of omphacites in the Tiburon and Dos Rios samples. Jd=Jadeite; Di-Hd= 

Diopside-Hedenbergite; Ac=Acmite. The omphacites mostly cluster between 40 % Jd and 55 % Di-Hd for the Tiburon sample and 30%  Jd 

and 65%  DiHd for the Dos Rios samples. The Tiburon and Dos Rios samples have distinct omphacite compositions.  The average pyroxene 

composition is 39%  Jd, 54%  Di-Hd, 7%  Ac for the Tiburon sample and 31%  Jd, 66%  Di-Hd, and 3% Ac for the Dos Rios sample. 
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4.2.3 Phengite 

4.2.3.1 Tiburon phengites 

Tiburon phengites comprise about 18% of the volume of the eclogite and 

about 20% of the blueschist. In the eclogite, the average phengite formula is  

(K0.9 Na 0.1)(Fe0.2 Mg0.3 Al1.5)(Al0.7 Si3.3)O10(OH)2. In the blueschist, the average 

phengite formula is (K0.8Na 0.1)(Fe0.2 Mg0.4 Al1.5)(Al0.6 Si3.4)O10(OH)2. These mineral 

formulae are similar to the ones calculated in the same sample in Sorensen et al. 

(1997). In that study, the average phengite formula was 

(K0.9Na0.1)(Fe0.2Mg0.3Al1.5)(Al06Si3.4)O10(OH)2 in the eclogite domain and  

(K0.9 Na 0.1)(Fe0.2 Mg0.3Al1.5)(Al07Si3.4)O10(OH)2 in the blueschist domain.  

All of the compositions of phengite fall below the line for an idealized 

Tschermak substitution (e.g., MgSi ⇆ AlVIAlIV), meaning that the phengite 

compositions are dominated by Tschermak substitution (Figure 9). The eclogite and 

blueschist phengite compositions mostly overlap – there are no systematic changes 

between phengite compositions going from eclogite to blueschist domains. There is 

some variability in phengite compositions across the sample (ranging from 3.3 to 3.45 

atoms per formula unit), although this variability is not systematic going from 

eclogite to blueschist.  These phengites have a similar Mg. vs. Si trend as in Sorensen 

et al. (1997), which analyzed phengites from the same locality.  

The phengite compositions in the Tiburon sample have variable paragonite 

content; i.e., the Na concentration ranges from 0.05 to 0.15 apfu (Figure 10). There is 

no systematic change in paragonite content going from eclogite to blueschist 

domains), and the phengites in the blueschist domain tend to have a higher phengite 
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Figure 9. Mg vs Si concentrations of Tiburon (closed symbols) and Dos Rios (open symbols) phengites. All of the phengites fall 

below the line representing an perfect MgSi – AlAl substitution. 
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Figure 10. Na vs Si concentrations of Tiburon (closed symbols) and Dos Rios (open symbols) phengites. The phengites in the Tiburon 

sample tend to have a higher paragonite component (i.e., higher in Na composition), than the  phengites in the Dos Rios sample.  
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component (i.e., lower in Na composition). Phengites with a relatively high 

paragonite content (about 0.12 apfu, similar to the phengites in the Tiburon eclogite 

domain) are generally found in rocks that have experienced  moderate to high-T 

subduction zone metamorphic conditions (Sorensen et al., 1997 and  references 

therein). Phengites with lower paragonite content – similar to many of the phengites 

in the blueschist domain in the Tiburon sample – are correlated with late retrograde 

crystallization of phengite. Thus, the paragonite content of phengite in the blueschist 

reflects the period in the metamorphic history that it crystallized (Sorensen et al., 

1997).  Phengites that crystallized earlier are expected to have similar paragonite 

content as those in the eclogite domain, but phengites that crystallized later are 

expected to have lower paragonite contents when compared to those in the eclogite 

domain.  

4.2.3.2 Dos Rios phengites 

Dos Rios phengites comprise about 12% of the volume of the eclogite and 

1.7% of the volume of the blueschist. In the eclogite, the average phengite formula is 

K0.9(Fe0.2Mg0.4Al1.4)(Al0.5Si3.5)O10(OH)2. In the blueschist, the average phengite 

formula is K0.9(Fe0.2Mg0.4Al1.4)(Al0.5Si3.5)O10(OH)2. These phengite formulas are 

similar to the average phengite formula calculated for the same sample in Sorensen et 

al. (1997) –  K0.9Na0.1(Fe0.2Mg0.4Al1.4)(Al0.6Si3.4)O10(OH)2. However, the phengites in 

the Sorensen et al. (1997) study have a higher Na content than the phengites analyzed 

in this study.  

Figure 9 shows that all compositions of Dos Rios phengites fall below the line 

for an idealized Tschermak substitution. This means that the phengite compositions in 



  

28 

 

the Tiburon sample are dominated by Tschermak substitution. The phengites 

analyzed in the Dos Rios sample in this study follow a similar Mg. vs. Si trend as in 

Sorensen et al. (1997), which found that the phengites were also defined by 

Tschermak substitution. There is some variability in phengite compositions across the 

sample (ranging from 3.45 to 3.60 atoms per formula unit), although this variability is 

not systematic going from eclogite to blueschist. As with the Tiburon phengites, these 

Dos Rios phengites have a similar Mg. vs. Si trend as in Sorensen et al. (1997). 

The Na content in the Dos Rios sample is lower than in the Tiburon sample 

(Figure 10). Similar compositions were observed in phengites analyzed in Sorensen et 

al. (1997). The phengite compositions that are above the detection limit for Na (~0.02 

apfu Na) all cluster together, not in distinct compositional regimes as in the Tiburon 

sample. The Dos Rios phengites also have a higher Si content than the Tiburon 

phengites.  

4.2.4 Chlorite 

 In the Tiburon sample, the chlorites comprise about 3.3% of the volume of the 

eclogite and about 9.7% of the volume of the blueschist. In the eclogite, the average 

chlorite formula is (Fe2.4 Mg2.2 Al1.4)(Al0.9Si2.9)O10(OH)8. In the blueschist, the 

average chlorite formula is (Fe2.1 Mg2.6 Al1.3)(Al1.0Si2.9)O10(OH)8. The average 

chlorite formula falls in the solid solution series between the Mg-rich endmember, 

clinochlore, and the the Fe2+-rich endmember, chamosite. The eclogite chlorites have 

a slightly higher chamosite component than the chlorites in the blueschist domain. 

The Al and Si components are about the same for the Tiburon chlorites in both 

domains. The Fe/Mg ratio decreases in a linear fashion (R2=0.6) traversing across the 



 

 

29 

 

 

Figure 11. The Fe/Mg ratio in chlorites going horizontally along a traverse across the Tiburon sample, based on EPMA results. The ratio 

decreases from the eclogite to the blueschist portion of the sample
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Tiburon sample from eclogite to blueschist (Figure 11). The significance of this trend 

is unclear. There is not a significant amount of chlorite in the Dos Rios sample (refer 

to Table 2), so a chlorite formula is not presented.  

4.2.5 Low-Li phases 

 In the Tiburon sample, the average garnet formula is 

(Ca0.9Fe1.7Mg0.3Mn0.2)Al2.0Si3.0O12, the average titanite formula is  

Ca 0.9(Al 0.1Ti1.0)Si1.1O5, and the average epidote formula is 

Ca2.1(Al2.4Fe0.6)Si3.1O12(OH). In the Dos Rios sample, the average garnet formula is 

(Ca0.9Fe1.8Mg0.2Mn0.2)Al2.0Si3.0O12, the average titanite formula is  

Ca 1.1(Al 0.1Ti0.9)Si1.1O5, and the average epidote formula is 

Ca2.0(Al2.3Fe0.7)Si3.1O12(OH). 

4.3 LA-ICP-MS Results 

All Li concentration results are represented by box and whisker plots. For n<4 

in the bin of analyses, the boxes show the Li concentration of that sample and its 

spatial location in the sample. For n>4 for the bin, the yellow line within the box 

indicates the median of the data and the horizontal whisker intersects the box at the 

mean of the data. The top vertical whisker represents the highest extent of data within 

1.5 interquartile range (abbreviated IQR, where IQR=3rd quartile – 1st quartile) of the 

upper quartile and the bottom whisker represents the lowest extent of data within 1.5 

IQR of the lower quartile. The crosses indicate outliers outside of 1.5 IQR of the 

upper or lower quartile. 
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4.3.1 Amphibole 

Tiburon amphiboles have an average Li concentration of 20±4.7 (1σ) g/g in 

the eclogite portion of the sample and 16±3.6 g/g in the blueschist portion of the 

sample (Figure 12). A t-test was performed on the two Li concentration populations 

and yielded a p-value of 0.04, indicating the difference between eclogite and 

blueschist is statistically significant.  Dos Rios amphiboles have an average Li 

concentration 30±3.1 g/g in the eclogite portion of the sample and 31±5.1 g/g in 

the blueschist portion of the rock (Figure 13). A t-test performed on the two Li 

concentration populations and yielded a value of 0.6, indicating that the difference 

between eclogite and blueschist is not statistically significant. The Li concentration of 

amphiboles is higher in the Dos Rios sample than in the Tiburon sample. 

 

 
Figure 12. Tiburon amphibole Li concentrations. 
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Figure 13. Dos Rios amphibole Li concentrations. 
 

4.3.2 Omphacite 

 Tiburon omphacites have an average Li concentration of omphacites is 56±11 

g/g in the eclogite portion of the sample and 33±21 g/g in the blueschist portion of 

the sample (Figure 14). For the omphacite in the Tiburon sample, the average Li 

concentration is higher in the eclogite domain than in the blueschist domain; the  t-

test yielded a p-value of 0.004, indicating that this difference is statistically 

significant. Dos Rios omphacites have an average Li concentration of 46±3.9 g/g in 

the eclogite portion of the sample and 37±8.1 g/g in the blueschist portion of the 

sample (Figure 15). In the Dos Rios sample, there is a statistically significant 

difference between omphacites in the eclogite and blueschist domains. The Li 

concentration of omphacites in the eclogite is higher in the Tiburon sample than in the 
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Dos Rios sample; the t-test yielded a p-value of 0.01 for the two populations, so this 

difference is statistically significant. 

4.3.3 Phengite 

 Tiburon phengites have an average Li concentration of phengites is 37±2.2 

μg/g in the eclogite portion of the sample and 33±6.8 μg/g in the blueschist portion of 

the sample (Figure 16). The t-test yielded a p-value of 0.07, indicating that the 

difference between eclogite and blueschist domains are not statistically significant.   

 

Figure 14. Tiburon omphacite Li concentrations. 
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Figure 15. Dos Rios omphacite Li concentrations. 

 
Figure 16. Tiburon phengite Li concentrations. 
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Figure 17. Dos Rios phengite Li concentrations. 

Dos Rios phengites have an average Li concentration of phengites is 14±5.0 μg/g in 

the eclogite portion of the sample and 16±4.5 μg/g in the blueschist portion of the 

sample (Figure 17). The t-test yielded a p-value of 0.3, indicating that the difference 

between eclogite and blueschist are not statistically significant. 

4.3.4 Chlorite 

 Tiburon chlorites have an average Li concentration of 82±6.2 g/g in the 

eclogite portion of the sample and 69±9.2 g/g in the blueschist portion of the sample 

(Figure 18).  The t-test yielded a value of 0.003, indicating a statistically significant 

difference between eclogite and blueschist domains. There were not enough chlorites 

to measure in the Dos Rios sample to compare to the Tiburon sample. 
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Figure 18. Tiburon chlorite Li concentrations. 

4.3.5 Low-Li phases 

 The epidote in the Tiburon sample has an average Li concentration of 7.2±1.2 

g/g in the blueschist domain. No epidote was analyzed in the eclogite domain due to 

difficulties with differentiating between epidote and phengite phases in optical 

microscopy.  The titanite has an average Li concentration of 4.1±1.0 g/g in the 

eclogite domain and 4.8±1.1 g/g in the blueschist domain. The garnet has an average 

Li concentration of 3.5±1.1 g/g in the eclogite domain and 3.4±1.1 g/g in the 

blueschist domain. In the Dos Rios sample, the epidote has an average Li 

concentration of 3.6±0.5 g/g in the eclogite domain and 5.4±1.6 g/g in the 

blueschist domain. The titanite has an average Li concentration of 3.4±0.3 g/g in the 

eclogite domain and 5.4±0.6 g/g in the blueschist domain. The garnet has an average 
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Li concentration of 2.9±0.01 g/g in the eclogite domain and 2.7±0.2 g/g. Analyses 

only number 3-4 for each phase, there may not be enough data to differentiate 

between eclogite and blueschist domains in the two samples.  

4.4 Bulk rock reconstruction 

A reconstruction of the bulk rock Li concentration budget was calculated. 

Calculations were modeled after the bulk rock trace element reconstructions in 

Spandler et al. (2003). Briefly, the bulk rock reconstruction used the average Li 

concentration of each mineral and combined the Li concentration with the modal 

abundance of each mineral calculate its contribution to the bulk rock Li 

concentration. Bulk rock recontruction of the Tiburon sample (Figure 19) shows that, 

in the eclogite domain, omphacite is the greatest contributor to the bulk Li 

concentration, followed by phengite, amphibole, chlorite, and the sum of the low-Li 

concentration phases. In the blueschist domain, the greatest contributor to the bulk Li 

concentration is amphibole, followed by phengite, chlorite, omphacite, and  the sum 

of the low-Li concentration phases. 

Bulk rock reconstruction (Figure 20) of the Dos Rios sample shows that, in 

the eclogite domain, omphacite is the greatest contributor to the bulk Li 

concentration, followed by amphibole, the sum of the low-Li concentration phases, 

and phengite. In the blueschist domain, the greatest contributor to the bulk Li 

concentration is amphibole, followed by phengite, omphacite, the sum of the low-Li 

concentration phases, and phengite. Omphacite is the greatest contributor to the bulk  
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Figure 19. Tiburon bulk rock Li concentration reconstruction. 

  

Figure 20. Dos Rios bulk rock Li concentration reconstruction. 
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Li concentration in the eclogite domain in both samples and amphibole is the greatest 

contributor to the bulk Li concentration in the blueschist domain of both samples. 

Since omphacite has a higher average Li concentration than amphibole, it would 

follow that the bulk Li concentration of the eclogite would be higher than the bulk Li 

concentration of the blueschist, as shown in Figure 2.  

5 Discussion 

 The Tiburon and Dos Rios samples differ texturally and geochemically. These 

variations are interpreted to be fluid-mediated alteration producing the cm-scale, 

eclogite and blueschist rock in the Tiburon sample and another mechanism producing 

the same alternating rock types in the Dos Rios sample.  The following discussion 

will present evidence to support this interpretation and propose a possible mechanism 

to produce the alternating eclogite and blueschist layers in the Dos Rios sample. 

5.1 Textural observations 

Textural evidence suggesting fluid-mediated retrograde alteration is present in 

the Tiburon sample, but not in the Dos Rios sample. The Tiburon sample has garnets 

in the eclogitic domain that grade into chlorite-replaced garnet pseudomorphs in the 

blueschist domain over a distance of about 2 cm over the thin section, which is 

interpreted to be an indicator of fluid-rock interaction. The Dos Rios sample has no 

evidence of even partial chloritization of garnets, indicating that there was no fluid 

that altered the garnets in the blueschist domain. Moreover, chlorite is a major phase 

found in the blueschist domain in the Tiburon phase, comprising 10% of the volume 

of the blueschist. The blueschist domain in the Dos Rios sample contains no chlorite, 
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further showing that there was likely no fluid-rock interaction to produce chlorite. 

Pumpellyite is another hydrous phase that exists in only in the blueschist domain of 

the Tiburon sample and not in the Dos Rios sample.  

BSE imaging of the two samples shows further evidence for fluid-rock 

interaction. The omphacites in the Tiburon sample of the blueschist domain show 

high-Ca patches as well as some pumpellyite alteration. These textures are not seen in 

the omphacites of the Dos Rios sample blueschist domain, which is interpreted as 

evidence of a lack of fluid-alteration in the Dos Rios sample.  

5.2 Major and minor element mineral compositions 

 The major and minor element compositions of the minerals in the Tiburon and 

Dos Rios samples are largely similar, with a few exceptions. The average 

composition of the omphacites varies between the two samples: the Tiburon samples 

are more jadeitic (i.e., more sodic) in composition (with an average 39% jadeite 

component), while the Dos Rios omphacites are more diopsidic (e.g., more calcic) in 

composition (with an average 31% jadeite component; note that the portions of the 

omphacite analyzed were not the altered diopside/pumpellyite patches). The 

phengites in the Tiburon sample are also more sodic in composition – the phengites in 

the Tiburon sample have 0.8±0.2 wt.% Na2O, and the phengites in the Dos Rios 

sample have 0.2±0.1 wt.% Na2O. the phengites of the two samples have a different Si 

content, ranging from 3.3-3.45 apfu in the Tiburon phengites, and 3.45-3.60 apfu in 

the Dos Rios phengites. 
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5.3 Li concentration analysis results 

 Measuring Li concentration in individual phases in each of the sample 

revealed some systematic differences between the Tiburon and Dos Rios samples. 

The two phases in the Tiburon sample that show textural differences indicating fluid-

rock interaction – the omphacites and the chlorites – both systematically have higher 

Li concentration in the eclogite domain than in the blueschist domain (omphacite: 

56±3.9 g/g to 33±8.2 g/g; chlorite: 82±4.3 g/g to 69±5.8 g/g). The Li 

concentration of the blueschist omphacites does not decrease near the contact, but 

rather decreases farther away from the contact. This differs from the Dos Rios sample 

in that the low Li concentration population is near located near blueschist/eclogite 

contact (32±2.8 g/g, n= 6). Omphacites farther away from the contact within the 

blueschist have a Li concentration that is indistinguishable from those in the eclogite 

(45±2.4 g/g, n= 3 compared to 46±2.8 g/g in the eclogite). It is not clear why some 

omphacites in the blueschist domain in the Dos Rios sample are similar to the 

omphacites in the eclogite domain and others are different.  

5.4 Comparison to other studies 

  Marschall et al. (2006) measured Li concentrations in a variety of high 

pressure subduction zone rocks from the island of Syros, Greece. Lithium 

concentrations were determined in the same phases as outlined in this study 

(glaucophane, clinopyroxene, chlorite, phengite, garnet, titanite, and epidote) via 

secondary ion mass spectrometry (SIMS). The ranges of Li concentration measured in 
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the phases in this study are comparable with the ranges found in this study. Table 3 

compares the Li concentration results in this study and in Marschall et al. (2006).  

Li concentration in phase  

(ug/g) 

Clinopyroxene/ 

Omphacite Phengite Glaucophane Chlorite 

This study 33-56 14-37 16-31 69-82 

Marschall et al., 2006 6.81-130 2.57-48.7 5.94-115 3.45-115 

Table 6. Range of Li concentrations measured in this study for individual minerals in this study 

and in Marschall et al. (2006).  

 

All of the Li concentrations measured in this study overlap with the range of 

Li concentrations measured in the Marschall et al. (2006) study. The minerals 

analyzed in the Marschall et al. (2006) study are much more variable in their range of 

Li concentrations than in this study. Both studies show that clinopyroxene 

(omphacite), gualcophane, phengite, and chlorite have the bulk of the Li 

concentration – 94% of the Li concentration budget in this study and 95% of the 

budget in the Marschall et al. (2006) study (refer to previous section on bulk rock Li 

concentration reconstruction).  

5.5 Possible mechanisms for coexisting blueschist and eclogite in Dos Rios 

sample 

 This study has outlined a variety of textural, mineralogical, and geochemical 

differences between the Tiburon sample, which has evidence for fluid-mediated 

alteration, and the Dos Rios sample, which does not. One way to produce differences 

in mineralogy and geochemistry without fluid-rock interactions would be to have a 

different protoliths for the eclogite and blueschist. For instance, blueschist facies 

metagreywackes in the Catalina Schist (a related subduction zone complex in 

California) can have mineral assemblages that have some overlap with the Dos Rios 
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blueschist assemblages (e.g., Platt, 1975). However, the high field strength element 

(HFSE) composition of the rocks show that most Franciscan blocks – including the 

ones in this study – are similar in composition to mid-ocean ridge basalts, indicating 

that this is the blocks’ most likely protolith  (Sorensen et al., 1997). In addition, the 

high-grade blocks of the Franciscan Complex have a εNd of 9.3 ± 1.4, indicating that 

the protoliths had a normal depleted-mantle source (Nelson, 1995). Moreover, various 

studies that have looked at blueschist recrystallized from metagraywacke have found 

that there are different mineral phases that recrystallize that are not found in 

metabasalts; i.e., lawsonite instead of epidote as the CaAl favored CaAl silicate; 

significant amounts of quartz and albite, greater amounts of calcite and aragonite; and 

little glaucophane (e.g., Ernst, 1963; Ghent, 1965; Blake, 1967; Platt, 1975). 

Therefore, the chemistry and mineralogy of the Dos Rios blueschist domain is not 

consistent with a different protolith from the eclogite domain.  

 The most likely reason for the alternating blueschist and eclogite domains in 

the Dos Rios sample is variations in bulk composition in the original mafic rocks. 

Coleman and Lanphere (1971) recognized high-grade blocks with eclogite layers 

“contemporaneous and in apparent equilibrium” interlayered with blueschist with no 

apparent retrograde features, similar to the Dos Rios sample of this study. Coleman 

and Lanphere (1971) commented on the interlayered blueschist and eclogite layers: 

 “There seems little reason to doubt that garnet-omphacite (eclogite) layers of 

larger masses crystallized at the same time as the associated blueschists. The 

variation in mineral assemblages is a function of bulk composition and, 

perhaps, of the availablility of water (p. 2404).” 
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Moore and Blake (1989) also recognized that the the metamorphic textures of high 

grade blocks of the Franciscan Complex showed that the eclogite and blueschist can 

form at the same time.  These blocks metamorphosed from a mafic protolith to a 

hornblende schist and then to blueschist and eclogite. The blueschist and eclogite 

domains replaced the original hornblende with glaucophane simultaneously, showing 

that the blueschist and eclogite simultaneously recrystallized. They also hypothesized 

that the simultaneous formation of blueschist and eclogite was due to differences in 

bulk chemistry of the protolith.  

 Brovarone et al. (2011) also proposed that coexisting eclogite and blueschist 

rock can arise as a result of variations in bulk rock composition of the mafic protolith. 

This study resported bulk rock compositions of coexisting eclogite and blueschist 

rock from Alpine Corsica, France using ICP-MS. Based on the bulk rock 

compositions, phase equilibria diagrams were calcuated to determine the P-T 

conditions in which the two lithlogies were stable. The study found that a higher CaO 

content strongly affects the formation of omphacite versus glaucophane under high P-

T conditions – a higher CaO content favors the formation of eclogite rather than 

blueschist under the same P-T conditions. Brovarone et al. (2011) favor the 

suggestion in Seyfried et al. (1988) that demonstrated that CaO depletion in the 

original mafic protolith can arise from shallow seafloor alteration. The CaO 

composition of the eclogite and blueschist of the Dos Rios sample in this study are 

consistent with the mechanism proposed by Brovarone et al. (2011) – the eclogite 

portion of the rock has a higher average bulk CaO composition (12.1±0.8 wt.% 

[Sorensen et al., 1997; average and σm of all eclogite layers of DR block]; c.f. 14.35 
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wt% in Brovarone et al., 2011) than the blueschist portion of the rock (10.9±0.1 wt.% 

[Sorensen et al., 1997; average and 1σm of all blueschist layers of DR block]; cf. 

10.95 wt% in Brovarone et al., 2011).  

 Altered basalts can be found throughout the Franciscan complex, and have a 

wide range of igneous textures, including tuffs, pillows, and breccias. Pillows are 

widespread throughout the complex, and range from sub-meter sized to several 

hundred meters in size (Bailey et al., 1964). These pillows commonly have features 

consistent with shallow sea-floor alteration, including zeolitization and spilitization. 

Bailey et al. (1964) analyzed unaltered Franciscan pillow cores and rinds that appear 

to have undergone seafloor alteration. They determined that CaO and Na2O decreased 

going from unaltered core to altered rind (15.8 to 8.5 wt. % and 3.1 to 2.7 wt. %, 

respectively), while FeO and MgO increased going from core to rind (4.4 to 6.6 wt. % 

and 4.8 to 7.9 wt.%, respectively). They attribute this change in bulk rock chemistry 

to differences in temperatures between rind and core when the pillow basalt erupted. 

After eruption, the rind cooled quickly, and sealed off the core from sea water 

interaction. The large difference in temperature allowed for sufficient time for major 

element migration to occur. Other studies also found CaO depletion going from 

unaltered core to altered rind in pillow basalts (Vuagnat, 1946, 1949). These bulk 

rock core-rind analyses are compatible with the experiments done in Seyfried et al. 

(1988). 

Based on these previous studies, I propose that eclogite and blueschist 

domains in the Dos Rios sample may have formed as a result of variations in the 

original mafic protolith. As Bailey (1964) and Vuagnat (1946, 1949) found, pillow 
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basalts may undergo alteration when exposed to seawater, which can differentiate 

CaO between unaltered core and altered rind. When metamorphosed at the same 

pressure and temperature conditions, the CaO enriched core will recrystallize to 

eclogite and the CaO depleted rind will recrystallize to blueschist, as found in the 

Brovarone et al. (2011) study. The multiple, interlayered blueschist and eclogite rock 

in the Dos Rios may have formed as a result of alteration along fractures in the 

original pillow basalt. Pillow basalts may fracture when erupted on the seafloor. 

Seawater can move along these fractures and alter the basalts along the fractures, 

while leaving the cores intact (Miller et al., 2000, 2001). Brovarone et al. (2011) 

notes that the metamorphosed pillows analyzed have an eclogite mineral assemblage 

in the core and a blueschist assemblage in the cores. Another mechanism that could 

produce the interlayered eclogite and blueschist could be several smaller pillow 

basalts pushed together and metamorphosed together.  

The Dos Rios sample does not have as dramatic of a difference between CaO in 

eclogite and blueschist domains (12.1±0.8 wt.% and 10.9±0.1 wt.%; Sorensen et al, 

1997) as in the Brovarone, et al., (2011) study, nor in the basalts in Bailey et al., 

(1964) or Vuagnat (1946, 1949) studies. However, in the absence of evidence of other 

mechanisms that could produce cm-scale eclogite and blueschist (e.g., P-T 

differences and/or fluid-mediated alteration), differences in bulk mafic composition 

are probably the most likely mechanism. The Tiburon sample has a larger difference 

in CaO in eclogite vs blueschist (11.9 vs 7.0 wt.%). Although there still may have 

been a difference in the mafic protolith in the Tiburon sample, textural evidence 

suggests that fluid-mediated alteration may have produced the differences in chemical 
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composition. There is not a sharp contact between eclogite and blueschist 

compositions, as in the Dos Rios sample; instead, fluid-mediated eclogite phases 

seem to gradationally alter into the blueschist domain. For example, as in Figure 4, 

the garnets appear to become more chloritized farther away from the contact, 

indicating that the entire rock was eclogite and the fluid-mediated reactions did not to 

go completion closer to the contact. 

6 Conclusions 

 The Tiburon and Dos Rios samples both have coexisting cm-scale blueschist 

and eclogite domains. Textural and geochemical evidence demonstrates that differing 

mechanisms produced the coexisting lithologies. Textural evidence includes: 

a) Chlorite after garnet pseudomorphs in the blueschist domain of the Tiburon 

sample that indicate fluid-mediated alteration of the eclogite.  

b) Pumpellyite in the blueschist domain of the Tiburon sample, another hydrous 

phase that indicates retrograde fluid-mediated alteration.  

c) Omphacites in the eclogite domain of the Tiburon sample appear relatively 

homogenous in BSE, while omphacites are altered to diopside and 

pumpellyite patches in the blueschist domain.  

Both samples have different Li concentration.  The concentration of Li in both 

chlorite and omphacite in the Tiburon sample decreases going from eclogite to 

blueschist domains. These phases appear to have recrystallized going from eclogite to 

blueschist, so it is likely that the lower Li concentration of these phases is a result of 

fluid-mediated alteration. The Li concentration of the phases of the Dos Rios sample 
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does not change significantly going from eclogite to blueschist domains, so the 

mechanism that produced the alternating lithologies is different from the Tiburon 

sample. I infer that the trends in Li concentration and the petrological observations 

are the result of the infiltrating fluid imparting a different Li concentration to the 

minerals in the blueschist layer compared to the original eclogite. The alternating 

blueschist and eclogite domains in the Dos Rios sample likely arise from a 

heterogeneous bulk rock composition of the protolith basalt that underwent seafloor 

alteration.  

 The techniques used and the results of this study can be applied in a number 

of different ways. The results of this study suggest that Li concentration analyses can 

be used as a monitor of fluid-rock interactions in subduction zone metamorphic rocks. 

The ability to track fluid behavior in rocks can be also useful in a variety of 

geological settings besides subduction zones – i.e., fluid-rock interactions in other 

parts of the upper and lower crust. Other techniques that could be used in this study 

include Li isotopic analyses of mineral separates in both samples to compare the Li 

isotopic signatures of the two samples. The bulk rock δ7Li of the blueschist layer is 

higher than the associated eclogite layer for both the Tiburon and Dos Rios samples 

(Penniston-Dorland et al., 2010). The results from Penniston-Dorland et al. (2010) 

suggest that the difference in bulk rock δ7Li between blueschist and eclogite in the 

Tiburon sample is due to fluid-mediated alteration. Based on the results of this study 

and of Penniston-Dorland et al. (2010), I predict that individual mineral phases in the 

Tiburon sample for which the Li concentration is altered by fluid-rock interaction 

would also have a higher δ7Li in the blueschist layer than the eclogite layer. The 
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results of this study suggest that the bulk rock difference in δ7Li for the Dos Rios 

sample is the effect of different abundances of different mineral phases, so the 

predicted result of analysis of mineral separates is that they will have similar δ7Li in 

blueschist and eclogite. 
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7 Appendices 

7.1 Appendix A: Tiburon data tables 

Refer to supplemental spreadsheet: tiburon supplemental.xlsx 
 

7.2 Appendix B: Dos Rios data 

Refer to supplemental spreadsheet: dos rios supplemental.xlsx 

 
7.3 Appendix C: Accuracy and precision data 

Refer to supplemental spreadsheet: accuracy and precision supplemental.xlsx 
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