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ABSTRACT. We study multigrid for solving the stochastic steady-state diffusion problem.
We operate under the mild assumption that the diffusion coefficient takes the form of
a finite Karhunen-Loéve expansion. The problem is discretized using a finite element
methodology using the polynomial chaos method to discretize the stochastic part of the
problem. We apply a multigrid algorithm to the stochastic problem in which the spatial
discretization is varied from grid to grid while the stochastic discretization is held constant.
We then show, theoretically and experimentally, that the convergence rate is independent
of the spatial discretization, as in the deterministic case.

1. Introduction

Mathematical models often contain partial differential equations (PDEs). The constituent parts of
the PDE, i.e. the differential coefficients and the source function, are most easily modeled as functions
of the spatial domain. However, uncertainty might exist as to the most appropriate functions to use
in the model. A more sophisticated model might therefore represent the differential coefficients and
source function not only as functions on the spatial domain but also as functions on some sample
space, i.e. as random fields. This gives rise to stochastic partial differential equations (SPDEs).

In this paper we consider the stochastic steady-state diffusion equation along with homogeneous
Dirichlet boundary value conditions. We are interested in the case when the diffusion coefficient is
stochastic and the source function is deterministic, i.e. the diffusion coefficient is a random field and
the source function is defined on the spatial domain only. However, we also treat the source function
as a random field as this is required for purposes of analysis and incorporates, as a special case, the
fact that the source function may be deterministic.

We will assume the diffusion coefficient to be of the form of a finite Karhunen-Loéve expansion.
This is common in the literature, e.g. see Babuška, Tempone & Zouraris (2004), Ghanem & Spanos
(1991), and Xiu & Karniadakis (2002). We require the diffusion coefficient to be of this form for
analytic as well as computational purposes.

We are interested in using a finite element methodology to find an approximate solution to the
problem. We therefore obtain a weak formulation to the boundary value problem and proceed to look
in a finite-dimensional subspace of the infinite-dimensional space that contains the weak solution in
order to obtain a matrix problem.
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The finite-dimensional subspace in which we look for the approximate solution will be a tensor
product of a space of functions defined on the spatial domain and a space of functions defined on
the sample space. For the finite-dimensional space of functions on the spatial domain we will choose
the set of piecewise linear polynomials defined on a triangulation. For the finite-dimensional space
of functions defined on the sample space we will choose the set of polynomials that are of degree no
greater than a chosen parameter.

For computational purposes the basis of the space of functions defined on the sample space will
correspond to that obtained by employing the polynomial chaos method as developed by Ghanem
& Spanos (1991) and generalized by Xiu & Karniadakis (2002). Indeed, this method provided the
foundation on which this work was developed. However, this is not the only basis which is possible.
Another choice would be the doubly orthogonal polynomials as discussed in Babuška et al. (2004).
Although we will not compute with the doubly orthogonal polynomials they will be vital to our
analytic argument.

Theoretically, we apply a two-grid correction scheme to solve the matrix problem. In this scheme
the spatial discretization is varied from grid to grid, giving a fine grid on the upper level and a
coarse grid on the lower level, while the stochastic discetization is kept constant. We show that
the convergence factor of this method is independent of the spatial mesh parameter. An induction
argument can then be used to show that the multigrid algorithm obtained by applying the two-grid
correction scheme recursively has a convergence factor that is also independent of the spatial mesh
parameter. We do not give this inductive argument but note that the reasoning would be the same
as that for the analogous deterministic problem which is discussed e.g. in Braess (2001) and Elman,
Silvester & Wathen (2005).

Experimentally, we consider two problems. These are obtained by defining the diffusion coefficient
to be a Karhunen-Loéve expansion consisting of random variables that are for the first problem
uniformly distributed and for the second problem normally distributed. In both these problems the
source function is set to unity. We then apply multigrid to a selection of matrix problems associated
with different discretization parameters, both spatial and stochastic, and tabulate the number of
iterates required for convergence. It will be seen from these tables that the number of iterates it
requires multigrid to converge remains, to within a close approximation, constant as the spatial
parameter is varied. This provides experimental evidence that the convergence factor associated
with the applied multigrid algorithm is indeed independent of the spatial mesh parameter.

2. The Stochastic Steady-State Diffusion Problem

In this section we introduce the stochastic steady-state diffusion problem along with its weak
formulation and finite element discretization. We then obtain a number of properties associated with
the discretized system. These properties are analogous to the properties of the system of equations
resulting from the deterministic steady-state diffusion problem and are proven similarly. Finally,
we introduce the doubly orthogonal polynomials which can be used as a basis for the stochastic
part of the problem. The doubly orthogonal polynomials will be vital to our theoretical arguments
concerning the convergence of multigrid in §3.

2.1. Boundary Value Problem. The stochastic steady-state diffusion equation with homogeneous
Dirichlet boundary value conditions is given by{

−∇ · (c∇u) = f in D × Ω,
u = 0 on ∂D × Ω,(1)
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where D is the spatial domain, Ω is a sample space, c : D × Ω → R is the diffusion coefficient, and
f : D × Ω → R is the source function. The sample space in turn belongs to a probability space
(Ω,F , P ) where F is a σ-algebra and P is a probability measure.4

The spatial domain, D, is assumed to be a two-dimensional simply connected bounded open set
with piecewise smooth boundary. In particular we take D to be the interior of a polygon.

We will let Ω = Γm where Γ = (a, b). We will assume the diffusion coefficient to be of the form

c(x, ω) = c0(x) +
m∑
r=1

√
λrcr(x)ξr(ω)(2)

where ξr : Ω → R are identically distributed independent random variables with zero mean and for
ω = (ω1, . . . , ωm) ∈ Ω, ξr(ω) = ωr. Note that the distribution of ξ = (ξ1, . . . , ξm) will dictate the
probability measure to be used. For example, if ξr is uniformly distributed on (−1, 1) then P will
be the probability measure associated with an m-dimensional uniform distribution.

We necessarily expect the solution to be a random field, u : D×Ω→ R, such that for each value
of ω ∈ Ω the resulting PDE is satisfied in the classical sense.

We note that this problem is extensively discussed from a modeling perspective in Ghanem &
Spanos (1991) and from an analytic perspective in Babuška et al. (2004).

2.2. Weak Formulation. In stating the weak formulation of (1) we will use tensor products of
Hilbert spaces which are defined and discussed in Babuška et al. (2004) and Treves (1967). Let
c ∈ L∞(D) ⊗ L∞(Ω) and f ∈ L2(D) ⊗ L2(Ω). The weak formulation of (1) is given by: find
u ∈ H1

0 (D)⊗ L2(Ω) such that

a(u, v) = l(v) ∀v ∈ H1
0 (D)⊗ L2(Ω)(3)

where5

a(u, v) =
∫

Ω

∫
D

c∇u · ∇v,(4)

l(v) =
∫

Ω

∫
D

fv.(5)

The Lax-Milgram lemma can be used to show that there exists a unique solution to this problem
providing that there exist positive constants α and β such that

α ≤ c(x, ω) ≤ β P -a.e. ∀x ∈ D.(6)

2.3. Finite Element Formulation. We are interested in applying a finite element methodology
to find an approximation to the solution of the variational problem given in §2.2. This entails a
discretization of both the spatial and stochastic parts of the problem.

The spatial domain is discretized using a triangulation T = {41, . . . ,4K}. Denoting the longest
side of the t-th triangle in the triangulation as ht, we define the mesh parameters h = maxht and
h = minht. We also denote the smallest angle in the t-th triangle as θt. We assume that any
triangulation used belongs to a family of triangulations that is quasi-uniform, i.e. there exists ρ > 0

4Note that the nabla operator only operates on the spatial components of the function, that is to say, that if

f : D × Ω→ R and x = (x1, x2) ∈ D, ω ∈ Ω, then

∇f(x, ω) =

(
∂f(x, ω)

∂x1
,
∂f(x, ω)

∂x2

)
.

5Note that the integral over Ω is with respect to the probability measure, i.e.∫
Ω

∫
D

=

∫
Ω

∫
D
dx dP.
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such that h > ρh for every triangulation in the family, and shape regular, i.e. there exists θ∗ > 0 such
that θ∗ ≤ min θt for every triangulation in the family. The finite-dimensional subspace of H1

0 (D) is
then taken to be S = span{φ1, . . . , φN} where φk : D → R, k = 1, . . . , N , are the usual piecewise
linear basis functions defined at the nodes of T . (Here N is the number of internal nodes in the
triangulation.)

For the subspace of L2(Ω) we take the space of all v ∈ L2(Ω) such that v is a polynomial of degree
at most p. We denote this space by T . For the purposes of analysis any basis of T is sufficient. We
will use the notation T = span{ψ1, . . . , ψM} where M = M(m, p) and is in fact given by

M =
(m+ p)!
m!p!

.(7)

The basis with which we choose to compute in §4 is that derived from the generalized polynomial
chaos method as discussed in Xiu & Karniadakis (2002). In this method the functions chosen to
be a basis for T are those polynomials from the Askey scheme of hypergeometric polynomials that
satisfy ∫

Ω

ψkψl = dkδkl.(8)

For example, if ξr, r = 1, . . . ,m, are uniformly distributed on (−1, 1) then the basis of T would be
the set of m-dimensional Legendre polynomials of degree at most p.

We thus have S ⊗ T ⊂ H1
0 (D) ⊗ L2(Ω) which leads to the finite element formulation: find

uhp ∈ S ⊗ T such that

a(uhp, v) = l(v) ∀v ∈ S ⊗ T(9)

where a(·, ·) and l(·) are as in (4) and (5). This will possess a unique solution under the same
conditions that apply to the weak formulation.

2.4. Matrix Formulation. By substituting the expansion

uhp =
N∑
j=1

M∑
l=1

ujlφjψl(10)

into (9) and varying v over the basis functions of S⊗T we find that we can obtain the finite element
approximation by solving the matrix problem: find u ∈ RMN such that

Au = f(11)

where

A =

 A11 · · · A1M

...
...

AM1 · · · AMM

 , [Akl]ij =
∫

Ω

∫
D

c∇φi · ∇φjψkψl,(12)

and

f =

 f1
...

fM

 , [fk]i =
∫

Ω

∫
D

fφiψk,(13)

with u = [u11, . . . , uN1, . . . , u1M , . . . , uNM ]T .
Once we have computed u then we have uhp. From this we can calculate such things as the

mean, variance, and covariance of the approximation. Formulas for these quantities in terms of the
coefficients of (10) are readily obtainable once a basis for T has been chosen.
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2.5. Matrix and Right Hand Side Properties. We here establish some results concerning the
system matrix, A, and the right hand side vector, f , that will be required for the analysis of multigrid
in §3.

In the following, E refers to the stochastic mass matrix and B refers to the (deterministic) mass
matrix, which are defined by

[E]kl =
∫

Ω

ψkψl, [B]ij =
∫
D

φiφj ,(14)

respectively. By E ⊗B we will mean the matrix Kronecker product as given by

E ⊗B =

 e11B · · · e1MB
...

...
eM1B · · · eMMB

 .(15)

We now introduce some notation for the coefficient vector of a function in S ⊗ T . Let v ∈ S ⊗ T ,
then we have the expansion

v =
N∑
i=1

M∑
k=1

vikφiψk.(16)

We define the coefficient vector v ∈ RMN of v by

v =

 v1

...
vM

 , [vk]i = vik.(17)

Theorem 1. Let f ∈ S ⊗ T with coefficient vector f̂ , then f = (E ⊗B)f̂ , where f is as in (13).

Proof. This follows upon substituting the expansion of f into (13). �

Theorem 2. Let f ∈ S ⊗ T with coefficient vector f̂ , then ||f ||2L2(D)⊗L2(Ω) = ((E ⊗B)f̂ , f̂).

Proof. This follows upon substituting the expansion of f into || · ||L2(D)⊗L2(Ω). �

Theorem 3. The inequality

C1h
2 ≤ ((E ⊗B)v,v)

(v,v)
≤ C2h

2(18)

holds for all v ∈ RMN , where C1 = C1(p) and C2 = C2(p).

Proof. Let v ∈ RMN be the coefficient vector of some v ∈ S ⊗ T . Then,

((E ⊗B)v,v) =
N∑
i=1

M∑
k=1

[vk]i
N∑
j=1

M∑
l=1

[E]kl[B]ij [vl]j(19)

=
N∑
i=1

M∑
k=1

vik

N∑
j=1

M∑
l=1

vjl

∫
Ω

ψkψl

∫
D

φiφj

=
K∑
t=1

N∑
i=1

M∑
k=1

N∑
j=1

M∑
l=1

vikvjl

∫
Ω

ψkψl

∫
4t
φiφj .
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Let Bt be the local mass matrix and vt ∈ R3M be a vector that contains only those values of v that
are associated with the t-th triangle in the mesh, viz.,

vt =


v(t)

1
...

v(t)
M

 , [v(t)
k ]i = v

(t)
ik(20)

where v(t)
k ∈ R3 contains the values of v at those vertices of the t-th triangle associated with the

k-th basis function of T . Let B∗ be the mass matrix on the canonical triangle (with vertices (0, 0),
(1, 0), (0, 1)). Then

((E ⊗B)v,v) =
K∑
t=1

3∑
i=1

M∑
k=1

3∑
j=1

M∑
l=1

v
(t)
ik v

(t)
jl

∫
Ω

ψkψl

∫
4t
φ

(t)
i φ

(t)
j(21)

=
K∑
t=1

2|4t|
3∑
i=1

M∑
k=1

[v(t)
k ]i

3∑
j=1

M∑
l=1

[E]kl[B∗]ij [v
(t)
l ]j

=
K∑
t=1

2|4t|((E ⊗B∗)vt,vt)

where |4t| is the area of the t-th triangle.
For any triangle with longest side ht and smallest angle θt we have the inequality

1
4
h2
t sin θt ≤ |4t| ≤

1
2
h2
t sin θt,(22)

and given that E ⊗ B∗ is a symmetric positive definite matrix there exists γ = γ(p) and δ = δ(p)
such that

γ(vt,vt) ≤ ((E ⊗B∗)vt,vt) ≤ δ(vt,vt)(23)

for all vt.
Using (22) and (23) along with the assumptions of quasi-uniformity and shape regularity, and

continuing with (21) we have

(E ⊗Bv,v) ≥
K∑
t=1

1
2
γh2

t sin θt(vt,vt)(24)

≥ 1
2
γρ2h2 sin θ∗

K∑
t=1

(vt,vt)

≥ 1
2
γρ2h2 sin θ∗(v,v)

and noting that there exists η > 0 such that
∑K
t=1(vt,vt) ≤ η(v,v), we also have

(E ⊗Bv,v) ≤
K∑
t=1

δh2
t sin θt(vt,vt)(25)

≤ δh2
K∑
t=1

(vt,vt)

≤ δh2η(v,v).

The inequalities (24) and (25) prove the theorem. �
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Theorem 4. Let f ∈ S ⊗ T . Then h
√
C1||f ||L2(D)⊗L2(Ω) ≤ ||f ||2, where C1 is as in Theorem 3.

Proof. Using Theorem 1 we have ||f ||22 = ((E ⊗ B)f̂ , (E ⊗ B)f̂). Now setting g = (E ⊗ B)
1
2 f̂ and

using Theorems 2 and 3 we have

C1h
2 ≤ ((E ⊗B)g,g)

(g,g)
=

((E ⊗B)f̂ , (E ⊗B)f̂)

((E ⊗B)f̂ , f̂)
=

||f ||22
||f ||2L2(D)⊗L2(Ω)

(26)

as required. �

Theorem 5. The inequality

C3h
2 ≤ (Av,v)

(v,v)
≤ C4(27)

holds for all v ∈ RMN , where C3 = C3(p) and C4 = C4(p).

Proof. We omit the proof. Suffice to say that it follows the proof for the analogous deterministic
problem as given in Elman et al. (2005). �

Note that Theorem 5 implies that the maximum eigenvalue of A is bounded above by a constant,
viz., C4.

2.6. Doubly Orthogonal Polynomials. We here establish two results concerning a basis for T
comprised of the so-called doubly orthogonal polynomials. The doubly orthogonal polynomials are
discussed in Babuška et al. (2004). They are the set {Ψ1, . . . ,ΨM} that satisfy∫

Ω

ΨkΨl = δkl,

∫
Ω

ξrΨkΨl = κrkδkl,(28)

where δkl is the Kronecker delta function.
An important consequence of the doubly orthogonal polynomials is that when they are used as a

basis for T the system matrix in §2.4 becomes block diagonal. This allows us to think of the discrete
problem as M decoupled (deterministic) steady-state diffusion problems. As this is an important
point that will be used in the proof of the approximation property in §3.4 we state it explicitly in
the following theorem. This is then followed by a theorem concerning the source functions of these
decoupled problems that will also be used in proving the approximation property.
Theorem 6. If the finite element approximation uhp is expanded using the doubly orthogonal poly-
nomials, viz.,

uhp =
M∑
k=1

ukΨk,(29)

then each uk ∈ S is the finite element approximation to a steady-state diffusion problem.

Proof. If {Ψ1, . . . ,ΨM} is used for the computational basis then the system matrix in §2.4 will be
of the form

A =

 A1

. . .
AM

 , [Ak]ij =
∫
D

bk∇φi · ∇φj ,(30)

where

bk = c0 +
m∑
r=1

√
λrκrkcr(31)

where cr, κrk, r = 1, . . . ,m are from (2) and (28) respectively. This proves the theorem. �
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Theorem 7. Let f ∈ S ⊗ T and consider the expansion of the finite element approximation uhp
is terms of the doubly orthogonal polynomials as given in (29). Then the source function fk of the
steady-state diffusion problem to which uk is the solution satisfies

||fk||L2(D) ≤ ||f ||L2(D)⊗L2(Ω).(32)

Proof. As f ∈ S ⊗ T we can expand it in the doubly orthogonal polynomials as

f =
M∑
l=1

f̂lΨl.(33)

Using {Ψ1, . . . ,ΨM} as the computational basis and substituting (33) into (13) we have

[fk]i =
∫

Ω

∫
D

( M∑
l=1

f̂lΨl

)
φiΨk =

M∑
l=1

∫
Ω

ΨlΨk

∫
D

f̂lφi =
∫
D

f̂kφi.(34)

This shows that fk = f̂k. Now

||f ||2L2(D)⊗L2(Ω) =
∫

Ω

∫
D

( M∑
l=1

f̂lΨl

)2

=
M∑
l=1

∫
Ω

Ψ2
l

∫
D

f̂2
l(35)

=
M∑
l=1

∫
D

f̂2
l =

M∑
l=1

||fl||2L2(D) ≥ ||fk||
2
L2(D),

for k = 1, . . . ,M , which proves the theorem. �

3. Multigrid

In this section we give a two-grid correction scheme for solving the system of equations given
in §2.4. This scheme varies the mesh parameter from grid to grid, i.e. there is a coarse grid and
a fine grid, while the stochastic discretization parameter, p, is held constant. Thereby, the scheme
resembles that that would be applied to the regular deterministic problem. It is known that such a
scheme when applied to the deterministic problem will converge at a rate independent of the value
of the mesh parameter, h. We show that this is also the case for the stochastic problem. To show
this we follow a regular multigrid analysis, as given e.g. in Braess (2001) or Elman et al. (2005),
and show that a smoothing property and an approximation property hold. In order to establish the
approximation property we make use of the doubly orthogonal polynomials introduced in §2.6. Once
the convergence of the two-grid scheme has been shown to be independent of the mesh parameter it
follows, by an inductive argument, that the convergence of a multigrid algorithm, which applies the
two-grid algorithm recursively, is also independent of the mesh parameter.

3.1. Stationary Iteration. Central to the idea of multigrid is the understanding that certain
stationary iterations when applied to particular matrix problems tend to smooth the associated
error.

Consider a general matrix problem Au = f . Then the matrix splitting A = M −N inspires the
stationary iteration

u(k+1) = M−1Nu(k) +M−1f(36)

= M−1(M −A)u(k) +M−1f

= (I −M−1A)u(k) +M−1f .

The matrix I−M−1A is the iteration matrix of the method and in the context of multigrid is called
the smoother.
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3.2. Two-grid Correction Scheme. Let T ⊂ L2(Ω) and S2h ⊂ Sh ⊂ H1
0 (D) be as defined in

§2.3. Then defining V 2h = S2h ⊗ T and V h = Sh ⊗ T we have V 2h ⊂ V h ⊂ H1
0 (D)⊗ L2(Ω). Finite

element formulations in V h and V 2h give rise to matrix equations which we represent as Au = f
and Āū = f̄ respectively.

We now define a prolongation operator Ih2h : V 2h → V h via natural inclusion, i.e. for v2h ∈ V 2h,
Ih2hv2h = v2h. To see how Ih2h can be represented we note that any basis function φ2h

j of S2h can be
expanded in the basis functions of Sh, viz.,

φ2h
j =

Nh∑
i=1

pijφ
h
i , j = 1, . . . , N2h.(37)

We define a matrix P using the coefficients above, i.e. [P ]ij = pij . Now we have, for v2h ∈ V 2h,

v2h =
N2h∑
j=1

M∑
k=1

v2h
jkφ

2h
j ψk =

N2h∑
j=1

M∑
k=1

v2h
jk

Nh∑
i=1

pijφ
h
i ψk(38)

=
Nh∑
i=1

M∑
k=1

(N2h∑
j=1

pijv
2h
jk

)
φhi ψk =

Nh∑
i=1

M∑
k=1

[Pv2h
k ]iφhi ψk.

As v2h ∈ V h we also have the expansion

v2h =
Nh∑
i=1

M∑
k=1

vhikφ
h
i ψk.(39)

Comparing (38) and (39) we see that [Pv2h
k ]i = vhik or that Pv2h

k = vhk . From this it follows that
if v2h is the coefficient vector of v2h in V 2h, then (I ⊗ P )v2h is the coefficient vector of v2h in V h.
(Here I is an M×M identity matrix.) We therefore call I⊗P the prolongation matrix and introduce
the notation P = I ⊗ P .

We next define a restriction operator I2h
h : V h → V 2h such that the corresponding restriction

matrix R satisfies R = PT (or equivalently R = I ⊗ R where R = PT ). That is to say, that if I2h
h

maps vh ∈ V 2h to v2h ∈ V 2h and vh and v2h are the respective coefficient vectors of these functions,
then v2h = Rvh = PTvh. With the prolongation and restriction operators related in this way we
have the desirable relationships f̄ = Rf and Ā = RAP.

Using these definitions we have the following algorithm for a two-grid iterative correction scheme.

choose initial guess u
for i = 0, 1, . . .

for j = 1 : k
u← (I −M−1A)u +M−1f

end
r̄ = R(f −Au)
solve Āē = r̄
u← u + P ē

end

The success of this algorithm necessarily depends on how well the smoother works and how well the
functions are passed between the coarse and fine grids.

3.3. Convergence of Two-Grid Correction Scheme. We wish to establish that the two-grid
algorithm given in §3.2 converges and that the contraction rate is independent of h. This can be
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shown to be true providing the smoothing property and the approximation property are satisfied, as
is shown in the following theorem.

Theorem 8. Providing the smoothing property,

||A(I −M−1A)ky||2 ≤ η(k)||y||A ∀y ∈ RMNh ,(40)

with n(k)→ 0 as k →∞, and the approximation property,

||(A−1 − PĀ−1R)y||A ≤ C5||y||2 ∀y ∈ RMNh ,(41)

with C5 = C5(p), are satisfied, then, providing k is sufficiently large, the two-grid algorithm given in
§3.2 converges and the contraction rate is independent of h.

Proof. It can be shown that the error associated with the two-grid algorithm obeys the recursive
relationship

e(i+1) = (A−1 − PĀ−1R)A(I −M−1A)ke(i).(42)

Hence,

||e(i+1)||A = ||(A−1 − PĀ−1R)A(I −M−1A)ke(i)||A(43)

≤ C5||A(I −M−1A)ke(i)||2
≤ C5η(k)||e(i)||A.

Since η(k)→ 0 as k →∞ there exists some minimal number of smoothing steps such that C5η(k) <
1. �

The proof that the smoothing property holds is dependent on the choice of smoother, i.e. the
value of M . For the case of M = θI, θ ∈ R, which choice corresponds to Richardson’s iterative
method, the proof follows that given in Braess (2001) and Elman et al. (2005). We will prove that
the approximation property holds in §3.4.

3.4. Approximation Property. We here wish to show that the approximation property given in
(41) is satisfied.

Theorem 9. For the problem under consideration, the approximation property given in Theorem 8
holds.

Proof. Given y ∈ RMNh we can find some f ∈ Sh⊗T such that y = f . Let uhp and u2h,p be the fine
and coarse grid solutions respectively with coefficient vectors u = A−1f and ū = Ā−1f̄ = Ā−1Rf .
Then we have

||(A−1 − PĀ−1R)y||2A = ||u− Pū||2A = (u− Pū,u− Pū)A(44)

= a(uhp − Ih2hu2h,p, uhp − Ih2hu2h,p)

= a(uhp − u2h,p, uhp − u2h,p).

Utilizing the fact that c is bounded above P -a.e. by β and expanding uhp and u2h,p using the doubly
orthogonal polynomials we have

||(A−1 − PĀ−1R)y||2A ≤ β
∫

Ω

∫
D

∣∣∣∣∇( M∑
k=1

uhkΨk −
M∑
k=1

u2h
k Ψk

)∣∣∣∣2.(45)
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Now using the fact that the doubly orthogonal polynomials are orthonormal we get

||(A−1 − PĀ−1R)y||2A ≤ β
M∑
k=1

∫
Ω

Ψ2
k

∫
D

|∇(uhk − u2h
k )|2(46)

= β
M∑
k=1

∫
D

|∇(uhk − u2h
k )|2

≤ β
M∑
k=1

||uhk − u2h
k ||2H1(D).

From Theorem 6 we know that uhk ∈ Sh, u2h
k ∈ S2h, k = 1, . . . ,M , are finite element approximations

to (deterministic) steady-state diffusion problems. Let uk ∈ H1
0 (D), k = 1, . . . ,M , be the weak

solutions to these problems. Furthermore, let fk ∈ Sh, k = 1, . . . ,M , be the source functions of the
associated problems. Then there exists constant Cd > 0 such that ||u− uhk ||H1(D) ≤ Cdh||fk||L2(D)

for all k. Therefore,

||(A−1 − PĀ−1R)y||2A ≤ β
M∑
k=1

(||uk − uhk ||H1(D) + ||uk − u2h
k ||H1(D))2(47)

≤ β
M∑
k=1

(Cdh||fk||L2(D) + 2Cdh||fk||L2(D))2

= β
M∑
k=1

(3Cdh||fk||L2(Ω))2.

Now using Theorems 4 and 7 we have

||(A−1 − PĀ−1R)y||2A ≤ β
M∑
k=1

(3Cdh||f ||L2(D)⊗L2(Ω))2(48)

≤ βM
(

3Cd√
C1

||f ||2
)2

= βM

(
3Cd√
C1

||y||2
)2

which completes the proof. �

3.5. Extension to Multigrid. The two-grid correction scheme given in §3.2 only contains pre-
smoothing. In practice post-smoothing is often also applied. In the numerical experiments given in
§4 post-smoothing is applied. We have neglected post-smoothing in the preceding analytic argument
in order to keep things a little simpler. It can be shown, though we omit the details here, that the
two-grid correction scheme with post-smoothing also converges with a contraction factor independent
of the spatial mesh parameter.

Recursively applying the two-grid correction scheme, gives rise to a multigrid scheme. A number
of variations are possible, see, for example, Briggs, Henson & McCormick (2000). That multigrid
converges with a contraction factor independent of the spatial mesh parameter can be established
by an inductive argument once the two-grid scheme has been shown to converge with a contraction
factor independent of the spatial mesh parameter. This inductive argument will be no different for
the stochastic problem than for the analogous deterministic problem and is discussed e.g. in Braess
(2001) and Elman et al. (2005).
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4. Numerical Experiments

We now perform some numerical experiments to provide practical support for the theoretical
results obtained in §3. The model that we use follows that given in Ghanem & Spanos (1991)
and Xiu & Karniadakis (2002). We would also like to direct the reader’s attention to Mâitre,
Knio, Debusschere, Najim & Ghanem (2003) where multigrid was applied to stochastic steady
and unsteady diffusion problems and in which the conclusions reached are in agreement with the
conclusions that we reach in §4.6 and §4.7.

4.1. Model Problem. We take the spatial domain to be D = (−1, 1)2 and consider the determin-
istic source function f = 1.

To construct the diffusion coefficient we consider a process with mean function c0(x), constant
variance ν, and covariance function r(x, y). Such a process will have a Karhunen-Loéve expansion
of the form

c(x, ω) = c0(x) +
∞∑
k=1

√
λkck(x)ξk(ω)(49)

where (ξk) is a sequence of uncorrelated and identically distributed random variables, and (λk) and
(ck) can be computed by solving the eigenvalue equation∫

D

r(x, y)ck(x) dx = νλkck(y).(50)

If need be we make the further assumption that (ξk) is a sequence of independent random variables.
The sequence (λk) is ordered so as to be non-increasing.

For computational purposes we need a finite term expansion so we approximate (49) by

c(x, ω) = c0(x) +
m∑
k=1

√
λkck(x)ξk(ω)(51)

where λk, ck, k = 1, . . . ,m, still satisfy (50). From the modeling perspective the replacement
of the infinite expansion with the finite expansion is justified providing (λk) decays rapidly. We
demonstrate the decay of (λk) in §4.2 where we discuss the covariance function that we will use.

We will consider two cases for the distributions of the random variables ξk, k = 1, . . . ,m. In §4.6
we take ξk, k = 1, . . . ,m, to be uniformly distributed on (−1, 1) with c0(x) = 10 and ν = 1/3. In
§4.7 we take ξk, k = 1, . . . ,m, to be normally distributed with c0(x) = 10 and ν = 0.01.

For information on the Karhunen-Loéve expansion the reader is referred to Loéve (1994). And for
a discussion of its use in mathematical modeling the reader is referred to Ghanem & Spanos (1991).

4.2. Exponential Covariance. We consider for the covariance function of the diffusion coefficient
the exponential covariance function given by

r(x, y) = νe−
1
b |x1−y1|− 1

b |x2−y2|(52)

where x = (x1, x2), y = (y1, y2) ∈ D. The constant b is called the correlation length and will affect
the decay of (λk), a larger value producing faster decay.

Analytic expressions for (λk) and (ck) can be obtained for this choice of covariance function.
The derivation is given in Ghanem & Spanos (1991). We here will simply state the results. Given
D = (−a, a)2, let

λ1
k =

2/b
θ2
k + (1/b)2

, k = 1, 2, . . .(53)
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and

c1k(x) =
cos(θkax)√
a+ sin(2θka)

2θk

, k = 1, 3, . . . ,(54)

c1k(x) =
sin(θkax)√
a− sin(2θka)

2θk

, k = 2, 4 . . . ,(55)

where c1k : (−a, a)→ R and (θk) > 0 is an increasing sequence satisfying the transcendental equations

(1/b)− θk tan(θka) = 0, θk + (1/b) tan(θka) = 0.(56)

Then

λk = λ1
iλ

1
j , ck(x) = c1i (x1)c1j (x2),(57)

where the ordering is such that (λk) forms a non-increasing sequence. We note that (λ1
k) and (c1k)

are in fact the eigenvalues and eigenfunctions of the equivalent 1-dimensional problem.
We give these analytic expressions of (λk) and (ck) so that the reader may better see the nature

of the diffusion coefficient. In practice, however, the covariance function may be such that analytic
expressions for (λk) and (ck) are not available and (50) will need to be solved numerically. In fact,
in the numerical experiments given in §4.6 and §4.7 we solved (50) numerically. This is not a trivial
task as it involves solving a generalized eigenvalue problem in which the right hand side matrix, in
this context sometimes called the Galerkin covariance matrix, is in general dense. This can be done
efficiently by using the Lanczos algorithm together with fast methods for matrix-vector products,
as discussed in Eiermann, Ernst & Ullmann (2005). This issue is also discussed in Karniadakis, Su,
Xiu, Lucor, Schwab & Todor (2005).

For further discussion on appropriate choices of covariance functions see Ghanem & Spanos (1991)
and Xiu & Karniadakis (2002).

4.3. Matrix Expansions. With c and f defined as in §4.1 we find that the matrices A and f given
in §2.4 have the form

A = G0 ⊗A0 +
m∑
k=1

√
λkGk ⊗Ak,(58)

f = g0 ⊗ f0(59)

where, defining ξ0 = 1,

[Gk]ij =
∫

Ω

ξkψiψj , [g0]i =
∫

Ω

ψi,(60)

[Ak]ij =
∫
D

ck∇φi · ∇φj , [f0]i =
∫
D

φi.(61)

We note that the matrices Ak will be sparse due to the choice of spatial basis functions for S. These
will form the blocks of the system matrix, A. The block structure will be determined by the matrices
Gk and so it is important that the basis functions for T are chosen so that these too are sparse.

4.4. Polynomial Chaos. There are a number of choices on how to construct T . As mentioned in
§2.3 we follow the methodology given in Xiu & Karniadakis (2002) which generalizes the method
of polynomial chaos as given in Ghanem & Spanos (1991). The functions thus chosen to be the
computational basis for T are those from the Askey scheme of hypergeometric polynomials that are
orthogonal to with respect to the probability measure, i.e.∫

Ω

ψkψl = dkδkl,(62)
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Figure 1. Block structure of system matrix A.

and are of degree p or less. It follows directly that the matrix G0 will be diagonal. Furthermore,
the matrices Gk, k = 1, . . . ,m, will turn out to be sparse due to the three-term recurrence relation
that all orthogonal polynomials satisfy. The resultant block structure of A is shown in Figure 1 for
two choices of m and p. We emphasize that the solid block shown in the figure represents a sparse
matrix having the struture of a stiffness matrix arising from a deterministic steady-state diffusion
problem, as discussed in §4.3.

4.5. Spatial Mesh. As mentioned in §4.1 the spatial domain is taken to be D = (−1, 1)2. For the
triangulation of D we will use uniform meshes consisting of an underlying grid of n×n squares each
of which is further subdivided into two equal triangles.

4.6. Multigrid for Diffusion with Uniform Distributions. We now let ξk, k = 1, . . . ,m, be
uniformly distributed on Γ = (−1, 1). Therefore, Ω = (−1, 1)m and dP = dω/2m. We also set
ν = 1/3.

Given the nature of λk, ck, k = 1, . . . ,m, as given in §4.2, and the form of the diffusion coefficient
as given in §4.1, it can be shown that (6) will be satisfied providing the mean is sufficiently large.
We here take c0(x) = 10.

Applying the generalized polynomial chaos method as described in §4.4 the basis of T will be the
set of m-dimensional Legendre polynomials of degree p or less.

Now multigrid is applied. A full V-cycle is used with an n × n finest mesh and a 2 × 2 coarsest
mesh. For the smoother we use the damped Jacobi method with the damping parameter set to 2/3.
Three pre-smoothing and three post-smoothing iterates are carried out. The iterations stop when
the relative residual reaches a tolerance of 10−6. Table 1 shows the number of iterations required for
convergence for varying values of m, n, and p. The results clearly support the theoretical conclusion
that the contraction rate of the multigrid algorithm is mesh independent. The table also indicates
that the method is apparently insensitive to the parameters m and p.

4.7. Multigrid for Diffusion with Normal Distributions. We now let ξk, k = 1, . . . ,m,
be normally distributed with zero mean and variance ν. Now we have Ω = R

m and dP =
e−ω

2/(2ν)/(2πν)m/2. We take c0(x) = 1.
Note that the diffusion coefficient as defined in §4.1 will now fail to satisfy condition (6) no matter

what the choice of ν. However, we have reason to believe that the theory still applies. We give here
only a heuristic argument. Given a sufficiently small variance the probability of c being outside of
two positive bounds becomes negligibly small. That is to say, that if the normal distributions were
replaced by similar distributions that looked like the normal distributions with their tails cut off
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n = 4 m = 1 m = 2 m = 3 m = 4
p = 1 6 6 6 6
p = 2 6 6 6 6
p = 3 6 6 6 6
p = 4 6 6 6 6
n = 8 m = 1 m = 2 m = 3 m = 4
p = 1 7 7 7 7
p = 2 7 7 7 7
p = 3 7 7 7 7
p = 4 7 7 7 7
n = 16 m = 1 m = 2 m = 3 m = 4
p = 1 7 7 7 7
p = 2 7 7 7 7
p = 3 7 7 7 7
p = 4 7 7 7 7
n = 32 m = 1 m = 2 m = 3 m = 4
p = 1 7 7 7 7
p = 2 7 7 7 7
p = 3 7 7 7 7
p = 4 7 7 7 7

Table 1. Number of iterations required for multigrid to converge for diffusion
defined via uniform distributions.

so as to ensure that c satisfies (6), then the difference would not be noticed computationally. We
emphasize that we have not pursued this reasoning analytically. We have found that sufficiently
small variance results in positive definite systems that yield sensible results. We note that this
problem has been tackled in Ghanem & Spanos (1991) and Xiu & Karniadakis (2002). We take
ν = 0.01.

Applying the generalized polynomial chaos method as described in §4.4 the basis of T will be the
set of m-dimensional generalized Hermite polynomials of degree p or less.

Now multigrid is applied. A full V-cycle is used with an n × n finest mesh and a 2 × 2 coarsest
mesh. For the smoother we use the damped Jacobi method with the damping parameter set to 2/3.
Three pre-smoothing and three post-smoothing iterates are carried out. The iterations stop when
the relative residual reaches a tolerance of 10−6. Table 2 shows the number of iterations required for
convergence for varying values of m, n, and p. The results support the theoretical conclusion that
the contraction rate of the multigrid algorithm is mesh independent. The table also indicates that
the method is apparently insensitive to m and only slightly sensitive to p.
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