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Abstract

This paper studies the asymptotic stabilization of two and three
dimensional nonlinear control systems. In the two dimensional case
we review some of our recent work and in the three dimensional case
we give some new sufficient conditions and necessary conditions.

1 Introduction

We consider the single input system,

¢ = f(z) + g(e)u (1.1)

where z € ®", u is a scalar input, and f, g are C! vector fields. It is assumed
that f(0) = 0,¢(0) # 0. The system is said to be C* feedback stabilizable
at the origin of R" if there exists a real valued C* function a(z) defined on
some small neighborhood of the origin in R such that £ = f(z)+ g(z)a(z)
is locally asymptotically stable at 0.

There has been much work done in the recent past on this problem.
Prominent among them are the techniques based on center manifold the-
ory, pioneered by Ayels [Ay1l] and used effectively by Kokotovic and co-
authors among others, the idea of zero dynamics introduced by Byrnes and
Isidori [BI1,BI2] etc., and the topological obstructions derived by Brockett
[Br1], Krosnosel'skii and Zabreiko [Krl], the work on continuous feedback
stabilization by Sontag and Sussmann [SS1], Kawski [Kal] etc.

An extremely important observation on asymptotic stabilization was
made by R. Brockett [Brl]. For the moment let us consider (1.1) with arbi-
trary state space dimension n and arbitrary number of inputsm. Brockett
proved that the following are necessary for stabilization of (1.1) with a C*
feedback function.

(B1:) The uncontrollable eigenvalues of the linearized system should be in
the closed left half of the complex plane.
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(B2:) (1.1) is locally asymptotically controllable to the origin i.e. For an ar-
bitrary open neighborhood W of the origin there exist a neighborhood
W of the origin and control u(:) such that for all z°¢W the solution
t— z(t, 2% u(t)) of (1.1) stays in U for all t > 0 and converges to the
origin as { s oo,

(B3:) The function (z,u) — f(z) + j(z)u : K" x R™ — R is locally onto
at (0,0).

The key condition here is (B3), which shows that very interesting patholo-
gies are possible. This condition follows from a theorem due to M. A.
Krosnosel’skii and P. P. Zabreiko [Krl], which states that the index of a
continous vector field in " at a locally asymptotically stable equilibrium
point is equal to (~1)*. The focus of much of the research work on low
dimensional cases has been on finding further necessary conditions and on
finding rather strong sufficient conditions.

In section 2. of this paper we wil review our recent work on the two
dimensional stabilization problem for real anlytic systems. In particular it
will follow that (B3) is necessary and sufficient for C° stabilization. We will
give some sufficient conditions for C! stabilizability and ¢ stabilizability.
In section three we will derive some necessary conditions and some sufficient
conditions for the asymptotic stabilizability of homogeneous polynomial
systems i.e. f(z) is a homogeneous polynomial vector field and g(z) is a
constant vector.

2 Stabilization of two dimensional systems

In this section we will review some of our recent work on the stabilization
problem for two dimensional systems. Throughout we will assume that the
system is real analytic.

Since g(0) # 0 in (1.1) we may assume without any loss of generality
that the system has the form,

z = f(.’l'l,;lfg) (22)
.’i’z = u, (23)

where f(0) = 0;r1, 22 € R, u € R and f is real analytic.

The following theorem was proved in [DMK].
Theorem 2.1 Consider the sysiem (2.1). The fellowing conditions are
equivalent.

(i) The system (hence (1.1)) is locally asymptotically stabilizable by C°
Jeedback.

(ii) The Brockelt condition (B3) is satisfied.

(ii1) For all € > 0 there exist peB(0) N RY and geB(0) N R such
that f(p) < 0 and f(q) > 0. (Here R% = {(z1,z2)|x1 > 0} and R2 =



{(xy,22)|x1 < 0} and B(0) denotes the Euclidean ball of radius ¢ around
the origin.

Remark 2.1 : The stabilizing feedback can be found to be Holder conti-
nous.

Remark 2.2 : Prior o our work M. Kawski has shown that (see [Kal] )
that small time local controllability is a sufficient condition for C° stabi-
lization. Theorem 2.1 strengthens this result.

The C! and € feedback stabilizability are much more subtle even in
the two dimensional case. We derived some sufficient conditions in [DMK].
We first define two indices.

Since multiplication of f by a strictly positive function and coordinate
changes do not affect stabilizability of (2.1), we may assume without any
loss of generality that f is a Welerstrass polynomial, z7* + al(:cg):cT'I +
...+ am{z2) and a;(0) =0, 1 <1< m. It is well known that the zero
set of a Weierstrass polynomial can be written locally as the finite union of
graphs of convergent rational power series zo = ¢(z) where z; € [0,¢) or
z; € (—¢,0] . Let us denote the positive rationals by @4 and define,

At = {ye Q.| flz1,6(z1)) <0 for all z; € (0, ¢), for some € > 0.
and for some convergent rational power series ¢(z1) with leading

1
exponent equal to —}
~

A™ = {y€Q4 | f(=z1,¢(z1) > 0 for all z; € (0, ¢), for somee > 0
and for some convergent rational power series ¢(z;) with leading

exponent equal to l}
Y
Definition 2.1 The indez of stabilizability of f ismax{ inf {y}, inf {7}}.
yeEAT VTEA™
Definition 2.2 The fundamental stabilizability degree of f 1s the order of

the zero of am(x2) at 2o = 0. The secondary stabilizability degree of f is
the order of the zero of am—1(x2) at 23 = 0.

Notation:
I = Index of stabilizability of f
s; = Fundamental stabilizability degree of f
ss = Secondary stabilizability degree of f.



Theorem 2.2 The system (2.2) and hence (1.1)) is C*-stabilizable if 51 >
21 -1

If 81 €1+ 2s2 and sy is odd, then (2.1) is C¥ stabilizable.

If 1 < 1+ 2sq, then (2.1) is not C*° stabilizable.

3 Stabilization of homogeneous systems
In this section we consider a single input homogeneous system,
2= f(z) + bu (3.4)

where ¢ € R™, u € RN, bis a real vector and f is a homogeneous polynomial
vector field of some degree pi.e. f(Az) = AP f(z) for all zR"™ and A > 0..
For the most part we will be seeking to find a feedback function u = a(z)
which is homogeneous of degree p along rays from the origin i.e. a(Az) =
Aa(z). For the sake of clarity henceforth we will use the term, positively
homogeneous , to describe such functions. We remark that for this class of
feedback the local and global stabilization are equivalent. Unless specified
otherwise we will assume that f is C*.

The following theortem is due to Andreini, Bacciotti and Stefani [ABS].
Theorem 3.1 Consider the system,

.’8'1 = F(.’l?l,:rg)
¥ = u (3.5)

where (z1,x2) € RP x R™,u € R™, F is homogeneous of some odd degree p.
The system is asymptotically stabilizable by homogeneous feedback of degree
p if &1 = F(21,0) is asymptotically stable.

The following example captures the spirit of this theorem.

Example 3.1 Consider the system,

£ = xf
1,‘.2 = .’L’3p
r, = u (3.6)

where p is an odd inleger. We show that this system is asymplotically
stabilizable . This is done by using an induction arqument.

When n = 1, u = —zf is a stabilizing feedback law and V(z) = %z? is
a Lyapounov function.

Suppose that for some n > 1 (3.6) admits a stabilizing feedback func-
tion u(x) = —{l(z1,...,2n), where l is a linear function, and admils a

quadratic Lyapounov function V{z) = }E:CTQx. Let us consider the n 41



dimensional case. First let us change coordinates as, y; = ¢;;i=1,...,n
and Yup1 = Tuyr +1(z1, ..., 2,). By applying the Holder’s inequality and
by using the Lyapounov function V(yi,...,yn)+ —}zyﬁﬂ 1t is easily seen that
for large enough K,u = —K(yf,H) ts a stabilizing feedback function. This
concludes the asymptotic stabilizability of (3.6).

For the rest of the section we will focus on the stabilization problem
for three dimensional homogeneous systems. Necessary and sufficient con-
ditions for the asymptotic stability of three dimensional homogeneous sys-
tems were derived by Coleman in [Co] (see {Hal] also). Let us consider the
system

z = F(z) (3.7)

where z € " and F is a positively homogeneous vector field (not neces-
sarily polynomial) of degree p. One can derive an associated system on the

i " . d
n — 1 dimensional sphere S"~! by first writing an equation for at (”_x—ﬂ)
z

a's’

d < z ) 1 T F(z)

e ) = o F(2) - ——2 3.8)

@ \TeT) = Tl EE (
and then changing the time scale, in an ||z|| dependent way so that the
equation depends only on -ﬂ;]—l Thus we obtain,

d ( z ) 1 2T F(z)

| e ) = F(z)— ——==z (3.9)

dt \|jzl|/  lj=|lP l|z||p+2

Coleman’s theorem states the following.

Theorem 3.2 ([Co]): Let A denote the union of all equilibrium points
and periodic orbits of (3.8) on S"~1. Let C denote the cone generated
by C. Then the system (3.7) is asymptotically stable if and only if it is
asymptotically stable when restricted 1o C.

This can be used to generalize the theorem of Andreini, Bacciotti and
Stefani {[ABS] as follows in the three dimensional case. This theorem was
proven independently by M. Kawski (see [Ka2] ) also.

Theorem 3.3 Consider the positively homogeneous control system
y = h(yz)
= u (3.10)

where y € N2, 2 € N, u € N and h is positively homogeneous of degree p
i.e. h{ay,az) = oh(y,z) for all a € R.



Suppose that there exist a Lipschitz continuous funclion z = ¢(y) : R* —
R which is a positively homogeneous of degree 1 such that the system

= h(y, é(v)),

is asymplotically stable. Then there exists a Lipschitz continuous feedback
function, u = a(y,z), which is homogeneous of degree p, such that the
system,

vy = h(y2)
z = oy,2) (3.11)
s asymptotically stable.

Proof: After a small perturbation of ¢, we may assume that the function
Y =l : ST — R is C. (Here S* — denotes the standard unit circle in

R2). Now let M denote the intersection of the positive cone C wf {(y,2) |
z = ¢(y), y € R?} and S2%. Let o : S? — S? be a smooth diffeomorphism
which preserves poles and moves points longitudinally such that oqy(S?)
is the equator of S2.
Now let, i
8 = a(6) + b(f)u (3.12)

be the associated system on S2, obtained by (3.10), as described in the
introduction. Let g, and ¢, denote the north and the south poles of S
and let D be a band around the equator bounded by two latitudes and
such that the inverse image of D under o contains the equator. Now first
transform (3.11) by o to obtain,

3 = (a...acr"l) (3) + (a.ba"l) (Bu
e(B8) + d(B)u. (3.13)

Now find a smooth function 5 : S* — % such that it has the following
properties.

Il

(p1) v < 0 above D and 4 > 0 below D

(p2) For all 3 € D, the positive limit set w(8) of the solution of
P = () + dB)(8)

is contained in the equator. (In particular the equator is positively
invariant).

Now consider the feedback function,

o=olo5 =l (o (ngﬁ Z;n» |

ty



Then it follows at once that € is an invariant cone of
y = h(y2)
z = a(yz2) (3.14)

and that the system is asymptotically stable on €. Moreover all other in-
variant one or two dimensional cones meet S? outside of ¢! o D. Since
za(y, z) < 0 outside of the cone generated by o~! o D it follows that the
system Is asymptotically stable on all such invariant cones. Hence by Cole-
man’s theorem the asymptotic stability of (3.14) follows.

Q.E.D.

In view of this lemma, one can use known results on the stability of two
dimensional homogeneous systems in order to derive sufficient conditions
for asymptotic stabilization of three dimensional systems. The following
theorem 1s of interest to us.

Theorem 3.4 ([Hal]): Consider the two dimensional system,

[21, 23] = [fi(2), folo)]" (3.15)

where f = [fl,fg]T i1s Lipschitz continuous and is positively homogeneous
of degree p. The system is asymptotically stable if and only if one of the
following s satisfied:

(i} The system does not have any one dimensional invariant subspaces
and

/‘2” cos 0 f1(cos 8, sin 6) + sin 8 f2(cos §, sin ) 40 <0
g cosfBfz(cosf,sinf) — sin b fi(cos b, sin d)
or

(ii) The restriction of the system to each of its one dimensional invariant
subspaces 1s asymptotically stable.

As an application of theorems 3.2 and 3.3, let us consider the problem
of stabilization of the angular velocity of a rigid body when only onc of the
control torques is available. This system has the structure,

Ty = a;x1z2+bu
s = aaxix3 +bou
I3 = aaxiro+ bau.

D. Ayels and M. Szafranski have shown in [AS ] that this system is
locally asymptotically stabilizable when no two principal moment of inertia



are equal. The case when two of the principal moment of inertia are equal
(equivalently a; = —az) was the topic of study of the recent paper [SS2]
by E. Sontag and H. J. Sussmann . They have shown that if none of the
bi’s are equal to zero, then indeed the system is globally stabilizable by
smooth feedback. Below we show that the system is globally stabilizable
by Lipschitz continous, positively homogeneous feedback.

It is easily seen that (see [SS2]) the problem can de reduced to the
stabilization of,

Iy = ZIox3

. 2
£y = -—rzzr;—bxj
.’6'3 = u

where b is a nonzero constant. By theorem 3.2, if we can show that there
is a Lipschitz continous function z3 = ¢(z1, 23) which is positively homo-
geneous of degree 1, which stabilizes,

2?'1 = X273
—z23 — bz (3.16)

T3

then the desired conclusion follows.

Without any loss of generality we assume that b > 0. Since the stability
is preserved under multiplication of the vector field by strictly positive
functions we will first consider,

£ = z
-2 — b1:3 (317)

it

k)

and seek to find a strictly positive stabilizing Lipschitz continous feedback
function 23 = z3(x1,22) which is positively homogeneous of degree one
. Since asymptotic stability of a positively homogeneous system is robust
under small purtubations by functions of the same degree of homogeneity,
we can relax the requirement of strictly positiveness to positiveness. It is
seen at once by using the Lyapounov function z? 4 z2 that,

0;z0<0
L3 =

rosLa >0

satisfies the requirements. This concludes the proof that the system is
asymptotically stabilizable by globally Lipschitz continous feedback which
is positively homogeneous of degree one.

Theorems 3.2 and 3.3 can be used to gencrate further suflicient condi-
tions for the asymptoiic stabilizability of positively homogeneous systems.



Let us consider the system

21 = fi(zi,22,23)
Za = fax1,x2,23)
3 = u (3.18)

where (z1, 22, 23) = (f1, f2)(z1, 22, 23) : R3 — R? is a positively homoge-
neous function of some degree p.

Theorem 3.5 :Suppose that there exists a smooth function ¢ : S? — R

such that at least at one 65 € S, the vector (f1, f2)T (cos 6o, sin 8, (o))

points radially inwards and at no points 6y € S*, the vector field (f1, f2)¥ (cos 6,sin 4,
w(6)) points radially outwards. Then the system is asymptotically stabiliz-

able.

Proof: By (ii) of theorem (3.3) the system

3}

N
= [ }(rz,wz)l!(rx,rz)lw(ll(%mz)ll(rz,xz))

Ty 2

is asymptotically stable. Now the theorem follows from theorems 3.2 and
3.3.  Q.E.D. The sufficient condition given in theorem 3.4 can be tested

quite easily by using the locus of zeros of a certain function. Note that the
crucial properties in the theorem are satisfied by the roots of the equation

fl(xl,::g,xa)—z3f2(z'1,:c2,x3) = 0. (319)
Using homogeneity we rewrite (3.19) as
since fi(cosf,sinb, z3) — 23 f2(cosf,sin b, 23) = 0. (3.20)

One can now draw the locus of the zeros of (3.20) against 4 € [0,27] in
a graph and decide at once the existence or nonexistence of a function ¢ as
desired.

Our next suflicient condition is applicable to to homogeneous polynomial
svstems of odd degree and relates to (i) of theorem (3.3).

Now we consider the generic case and rewrite (ii) in the form,

£ = 2b+gi(x1, 22, 23)
gy = —2b+ga(z1,c2,23)
iy = u (3.21)



where g1 and g2 are homogeneous polynomials of odd degree p; g1 does not
contain 2} terms and g, and g, do not contain zf terms. A generic system
can be written in this form after a suitable linear change of coordinates.

Theorem 3.6 Suppose that the function
n:ez—14+91(0,1,z3) : R - R

takes either strictly positive values or strictly negative values. Then (3.21)
is asympiotically stabilizable.

Proof: Let
fl(xl)x2vz3) = -'Eg +gl(l'1,1'2,1‘3)

and
fo(z1, 29, 23) = —25 + go(21, 22, 23).

The objective here is to construct a “base” which is positively invariant
and use it to establish the asymptotic stability. We will first consider the
case when Rng(n) C (0,00). Then the leading term of the polynomial
f1(0,1,z3) is of even power. Now it follows at once that there exists a
neighborhood U = [r/2 — €, 7/2 + €] of 7/2 such that,

fi(cos8,sin, z3) > 0

forall z3 € R, and all § € U.

Similarly,
fi(cosf,sinf,z3) <0 forall § € U + {r} and all 23 € R.

Let

folcos8,sinf, z3)

fi{cos b, sin 6, x3)

/\:max{ ber/2—¢ /2, 1‘36[0,00)}

and

— x| Zfe(cosO,sin8,0) |, T3 37r_€]}
H = max fl(cos 9,si11970) 2 ’ 2 |

Existence of p is clear. Existence of A follows since

Sfo(cos 8,816, r3)
fi(cosB,siné, x3)

. . .y T
goes to — oo uniformly in ¢ € [—2— — €, 3]

as r3 goes to infinity.
Now define the angle 8y € (7/2 — €, /2] via the following construction.

10



Let us define ¢y by,

0o < max{z ¢, tan~! (2cosc+(7‘n+2)\)sine>}.
2 sin €

This choice of f3 can be explained via figure 1 rather easily.

Let us start with an arbitrary § > 0 and draw a line of slope A through

(0, —48) until it meets the line with polar coordinate equal to 37/2 + € at

A. Now draw a line vertically upwards until it meets the line of slope m

through (0,26) at B. The polar coordinate of this point of intersection

i

L[ 2eoset (n:lj 22 sin ¢ . Of course one may need to
si

decrease ¢ if necessary in order that the required intersection occur.

is equal to tan™

. T
slope = ™ B
(0,286)
E /

~N [

BN

0,-6 O
© )\%\JA

slope =73

4

|
w0.-@sen b N/ €
F

slope . 4D

Figure 1
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Now lets define a line segment £, and an angle v € (0, ¢) in the following
way. Start from B and draw £ to be of very large negative slope until it
hits the line # = 37/2 + ¢ at C. Now draw a vertical line downwards until
it hits the line 6 = 37 /2 + ¢ — 4 at D. The choice of the slope of £ and 7 is
made such that the line of slope m through D meets the negative zs-axis

(057
Let E = (0,26) and F = (0,-36/2).

We will now define a Lipschitz continuous function 3 = ¢(z1, 22) which
is homogeneous of degree 1 such that the system

i‘l = fl(xlyxg)so(rl’z?))

2y = falzi, 29, 9(x1, T3)) (3.22)

is asymptotically stable. Let us first consider the line £. We fix ¢ to be
fa(z1, 22, p(21, 22))
fi(z1, 22, p(21, 22))
greater than the magnitude of the slope of £. This is obviously possible
from the hypothesis on g; and g;. Vary ¢ smoothly from L at C to zero
at D along C'D. Set ¢ = 0 on FD. Increase ¢ from 0 at E to L smoothly
along EB. Now use homogeneity to define » on ®2. It is clear that one
can construct a Lipschitz continuous function ¢ this way.

Now let us consider (3.22). It is clear that there aren’t any one di-
mensional invariant unstable subspaces, for by our construction the vec-
tor field [f1, f2]7 points into the region EBCDF along the portion of the
boundary which does not lie on the zj-axis. Suppose that there aren’t
any one dimensional invariant stable subspaces either. Then the solution
with initial condition (0,26) enters into EBCDF and cannot leave it on
EBUBCDUDF and hence has to cross OF. But by homogeneity this
now implies asymptotic stability. Now by theorem 3.2 the stabilizability of
(3.21) follows.

In the case when Rng(n) C (-00,0), one can do essentially the same
construction in the left half plane instead of the right half plane as above.
Q.E.D.

Now we discuss some topological aspects of the stabilization problem
for the homogeneous three dimensional systems(3.10). We focus on finding
some stronger requirement of the Krosnosel'skii - Zabreiko theorem which
cannot be captured by (B3).

For the sake of simplicity we will assume that h(z) only has isolated
zeroes on the unit sphere S2. Let u = a(z) be a (not necessarily homo-
geneous) continous feedback function. Let ¢(x) = [(h(2)T,a(2)]T. Let S?
denotes a small enough ball in 33 such that the origin is the only zero of
¢ on and inside S?. Let Z = {peS?|h(p) = 0}. Let deg(h,p,w) denotes the
Brower degree of h with respect to p € S? and w € R?.

a large positive constant L on £ such that is always

12



Theorem 3.7 : A nccessary condition for the asymptotic stabilizability of
3.10 is that there exist W C Z such that o,ewdeg(h,p,0) = —-1.

Proof: Let y = ¢/ || ¢ ||: S? — S? and let deg(4, p,¢) denotes the Brower
degree of ¥ with respect to p € S? and q¢ € S7. Then it is easily seen
that deg(¥, p, ¥(p)) = sgn a(p)deg(h,p,0) for all p € Z. Since a necessary
condition for stabilizability is that index ¢ = 37, 5. deg (,p,[0,0, 1M =
—1, the conclusion follows. Q.E.D.

Some other necessary conditions which are similar in spirit appear in

[Ka2] and [Cor].
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