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Abstract

This paper presents a technique for dependence analysis on programs with pointers or dynamic
recursive data structures. It differs from previously proposed approaches in analyzing structure access
conflicts between traversal patterns before gathering alias and connection information. Conflict analysis
is conducted under the assumption that each unique path leads to a distinct storage location, and hence
traversal patterns can be analytically compared to identify possible conflicts. The rationale of this
assumption is that if statements are deemed to be dependent by this approach, they are inherently
sequential regardless of the shapes of the data structures they traverse. Consequently, there is no need to
perform alias/connection analysis on the statements that construct such data structures. Furthermore, the
information of traversal patterns gathered in conflict analysis phase can direct alias/connection analysis
algorithm to focus on statements that are crucial to optimizations or parallelization. A such traversal-
pattern-sensitive pointer analysis algorithm will also be presented.
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1 Introduction

Dependence analysis is the key technique behind parallelization and optimizationson programs with pointers

or recursive data structures. There have been several algorithms proposed by researchers [7, 8, 9, 10, 14].

It is a considerably complicated problem, since it involves other pointer analysis techniques as well, such

as alias analysis [2, 4, 5, 12, 20], side effect analysis [2, 13], and even shape analysis [1, 6, 16, 18].

These proposed dependence analysis techniques first identify aliases of pointer variables and connections of

recursive data structures by examining all pointer assignment statements, and then apply the information to

dependence test after read and write sets are gathered. In other words, analysis process of these techniques

can be divided into two phases: an alias/connection analysis phase followed by an interference/conflict

analysis phase.

None of these techniques performs the alias/connection analysis with any knowledge derived from the

second phase. One implication of this approach is that all alias/connection information must be gathered,

since patterns of traversal are unknown in this phase. The drawback is that information of aliases and

connections might be inappropriate for interference/conflict analysis [11]. Consider programs that construct

cyclic recursive data structures but have acyclic traversal patterns, e.g. graph algorithms that traverse

cyclic graphs following acyclic spanning trees. The results of alias/connection analysis on this type of

programs will show that constructed data structures are cyclic and hence provide no useful information

for parallelization or optimizations [6]. Furthermore, if programs are inherently sequential regardless

of connections of recursive data structures, prior knowledge of traversal patterns can avoid unnecessary

alias/connection analysis.

Another implication is that access conflicts can not be judged by the sets of reference patterns alone.

Every reference pattern in the read and write sets will have to be mapped onto all possible aliases and

connections before interference/conflict analysis can proceed. This process of mapping all reference patterns

to all possible aliases and connections makes interference/conflict analysis complicated.

This paper presents a different approach — interference/conflict analysis process is performed before

alias/connection analysis. Interference/conflict analysis is conducted on the assumption that each unique

path leads to a distinct storage location. Under this assumption, any programs fragments which are deemed

to be dependent in this phase are inherently sequential regardless of the shapes of actual data structures.

Only the reference patterns of those program fragments with parallelism will be mapped onto possible

aliases and connections by alias/connection analysis phase to confirm the results of the first phase. The

DEF/USE information of pointer statements will be used to connect these two analysis phases [11]. The

special feature of this approach is its ability to identify traversal patterns and estimate possible shapes of the

structures specified by the traversal patterns.

The first advantage of this approach is that it simplifies the interference/conflict analysis process. Each

reference pattern in the read and write sets can be analytically represented by a single symbolic path

expression, instead of a set of reachable locations. Access conflicts will be identified by comparing the

path expressions of reference patterns. Furthermore, path expressions symbolize the patterns of traversal

on recursive data structures. This paper will introduce an algorithm to determine access conflicts among

iterations of the same loops and dependence within sequences of statements.
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The second advantage is that alias/connection analysis can focus on the statements which will contribute

to construction of recursive structures that are specified by traversal patterns identified in the interfer-

ence/conflict analysis phase. This approach can be called traversal-pattern-sensitive pointer analysis. This

paper will present an algorithm to estimate possible shapes of dynamic recursive data structures specified by

traversal patterns. The result of shape estimation can be used to confirm the results of interference/conflict

analysis phase.

The rest of this paper is organized as follows. Section 2 describes the programming model and outline

of the dependence analysis algorithm. Section 3 presents the algorithm to conduct dependence test for

loop iterations and sequences of statements. Section 4 describes an algorithm to perform traversal-pattern-

sensitive shape estimation. Related work is compared in Section 5 and summary is presented in Section 6.

2 Background

2.1 Programming Model

The algorithms presented in this paper are designed to analyze programs with dynamic recursive data

structures that are connected through pointers defined in the languages like Pascal and Fortran 90. Pointers

are specified by declared pointer variables, and are simply references to nodes with a fixed number of fields,

some of which are pointers. Memory allocations are done by the function new(). Pointer arithmetic and

casting in languages such as C are not allowed. Although multi-level pointers are not considered in this

paper, they can be handled by converting them into levels of records, each of which contains only one field

that carries the node location of the next level. Consequently, pointer dereferences of multi-level pointers

can be treated as traversal of multi-level records.

Programs will be normalized such that each statement contains only simple binary access paths, each

of which has the form v:n where v is a pointer variable and n is a field name. Therefore, excluding regular

assignment statements, the three possible forms of pointer assignment statements are

1. p = q (aliasing statements)

2. p = q:n (link traversing statements)

3. p:n = q (link defining statements)

The first two forms of statements will induce aliases without changing any connections of recursive data

structures, whereas the execution of each statement of the last form will remove one (maybe null) link from

existing dynamic data structures and then introduce a new link. Note that although the other possibilityp:m = q:n is also valid, it is represented by two consecutive statements, t = q:n and p:m = t, for the

reason of simplicity.

2.2 Intermediate Program Representation and Path Expressions

Programs will be transformed into an SSA (Static Single Assignment) intermediate representation [3].

Although SSA form is designed specially for programs with fixed-location variables only, e.g. Fortran-77
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programs, same transformation can be applied to pointer variables since contents (i.e. location addresses)

of pointer variables can be treated as values in regular variables.

Once programs are transformed into SSA form, each pointer instance will have a unique name. Further-

more, instances of pointer variables are defined by alias statements and link traversing statements, since link

defining statements do not define new instances. In other words, the associations of pointer variables with

storage locations are defined by alias statements and link traversing statements. Therefore, every pointer

instance can be represented by a path expression, which is denoted by a tuple< p; e; f; r >
where p is the the pointer variable instance, e is the entry point of the referenced data structure, and f is the

path that induction pointer advances forward at each iteration, and r is the relative path from the induction

pointer to the instance. It is equivalent to the regular expression p : e (:f) ?:r.

C Create a doubly-linked list
S1 list1 = new()
S2 do i = 1, N
S20 list2 = � (list1, list3 )
S3 node = new()
S4 node.next = list2
S5 list2.neigh = node
S6 list3 = node
S7 end do
C Reverse the doubly-linked list
S11 rlist1 = nil
S12 do while (list3 )
S120 list3 = � (list2, list4 )
S1200 rlist2 = � (rlist1, rlist3 )
S13 temp = rlist2
S14 rlist3 = list3
S15 list4 = list3 .next
S16 rlist3.next = temp
S17 end do
C Traverse the reversed doubly-linked list
S21 ptr1 = rlist2
S22 do while (ptr2)
S220 ptr2 = � (ptr1, ptr3)
S23 neigh = ptr2.neigh
S24 ptr2.result += neigh.value
S25 ptr3 = ptr2.next
S26 end do

(a) Create, Reverse and Traverse a Doubly-Linked List
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(b) Interval Flow Graph
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Figure 1: Example Program and Its Interval Flow Graph

2.3 The Interval Flow Graph

The dependence analysis algorithm in this paper performs an interval analysis since it considers loop nesting

hierarchies of programs. The control flow information is represented by interval flow graphs [19]. The

advantage of interval flow graphs is that interval analysis can be performed without explicitly constructing

a sequence of graphs in which intervals are recursive collapsed into single nodes. An interval flow graph
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is a directed graph G = (N;E), where N is the set of nodes and E is the set of edges. For each noden 2 N , Level(n) is the loop nesting level of n. Figure 1(b) depicts the interval flow graph of a simple

program which creates a doubly-linked list, reverses it, and then traverses the reversed linked list, as shown

in Figure 1(a). Note that �-function statements at the headers of loops are part of loop header nodes.

2.4 Algorithm Outline

The algorithm to perform dependence analysis can be broken into three steps.� DEF/USE Information Construction

This step identifies aliases of pointer variables induced by aliasing statements, and constructs

DEF/USE chains between link defining statements and link traversing statements [11].� Dependence Analysis

Dependence test is performed on references based on the assumption that each unique path expression

leads to a distinct location. Any programs which are deemed to be dependent in this process

are inherently sequential regardless of the shapes of actual data structures. The algorithm will be

presented in Section 3.� Traversal-Pattern-Sensitive Shape Analysis

Shapes and connections of recursive data structures specified traversal patterns obtained from the

previous step are analyzed to confirm the results of dependence analysis. The relationships between

traversal patterns and the statements that build the structures specified by traversal patterns are

established by the DEF/USE information. The algorithm of traversal-pattern-sensitive shape analysis

will be introduced in Section 4.

The example program in Figure 1 will be used to demonstrate that this approach will be able to identify

parallelism on programs even with cyclic data structures. The first loop creates a doubly-linked list since it

contains cycles, and the second loop reverses the list to show that the algorithms presented in this paper can

handle destructive updating.

3 Dependence Analysis

3.1 Access Conflicts

Access conflicts occur when two statements potentially access the same storage locations during the program

execution. Let Read(S) denote the set of locations read by statement S, and let Write(S) denote the set

of locations written by statement S. Statements S1 and S2 have access conflicts if(Write(S1) \ (Read(S2) [ Write(S2))) [(Write(S2) \ (Read(S1) [ Write(S1))) 6= ;
In contrast to other techniques, this approach does not build graphs or matrices to represent connection

information [8, 14]. It assumes that each unique path expression leads to a distinct location. Consequently,
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elements of Read and Write sets can be represented by path expressions. To determine if two path

expressions can reach same locations, comparison operations similar to the Match operation defined in

Deutsch [4] can be applied.

Since programs will be normalized, each reference pattern in Read or Write sets will be either of two

forms – a pointer variable p or a simple binary access path p:n. The former form will not cause any structure

access conflicts and the dependence between pointer variables can be traced following the edges of SSA

representation. On the other hand, each of the reference patterns with the latter form reads or writes the fieldn of structure node specified by the pointer p, which in turn can be represented by a single path expression.

Therefore, access conflicts can be determined by comparing the path expressions.

Access conflict analysis provides essential information for recognizing dependence in programs. The

dependence analysis algorithm presented in this section will determine dependence among a sequence of n
statements, which correspond to the statements on the same levels of the interval flow graph, and dependence

among loop iterations, which can be viewed as inter-level dependence.

3.2 Inter-Level Dependence

Iterations of loops can be executed in parallel if they carry no dependence. However, since elements of

recursive data structures must be traversed through links sequentially, dependence always exists between

iterations for loops that traverse recursive data structures. On the other hand, if sequential traversal is the

only dependence between iterations of a loop, the computation of loop body will generate the same results

regardless of order of traversal. That is, the computations of the iterations of such loop carry no dependence.

Therefore, the algorithm in this section will identify the loops with this property.

3.2.1 Alias Information and Path Expressions

Aliases of pointer variables are gathered during the DEF/USE construction phase [11]. The process is

performed iteratively until a fixed point is achieved.

Pointer variables in a loop can be classified into three groups: global pointers, local pointers, and iteration

pointers. Global pointers are the pointers that are defined before entering the loop and not redefined during

the execution of the loop, while local pointers are defined at every iteration and are only referenced at

the iterations they are defined. In contrast to local pointers, contents of iteration pointers might be passed

between iterations. Iteration pointers can be further divided into two classes, induction pointers and non-

induction pointers. Each induction pointer points to a certain location of a recursive data structures before

entering the loop and then advances a fixed path at every iteration, whereas non-induction pointers do

not have this property. The DEF/USE construction algorithm will differentiate induction pointers from

non-induction pointers.

Pointer types can be easily identified from SSA representation. Each definition of a �-function at

the header of a loop corresponds to an iteration pointer, while every definition in loop body creates a local

pointer. Therefore, the fixed-point solutions are only required for iteration pointers, since every local pointer

can be represented by a path expression with an entry starting from an iteration pointer or a global pointer.

As a result, the aliases of iteration pointers at each iteration represent the aliases caused by the previous
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iterations of loop execution. For instance, the iteration pointer ptr2 of S220 in Figure 1 might be an alias

to ptr1 of S21 before the loop or ptr3 of S25 of previous iteration, whereas the local pointer neigh can be

represented by the path expression ptr2:neigh. Another example is that the local pointer temp of S13 is a

must-alias to the iteration pointer rlist2 of S1200, regardless of the aliases of rlist2.

3.2.2 Dependence Test

The iterations of a loop can be executed in parallel if there are no structure access conflicts and data

dependence between iterations. Therefore, if any iteration pointers of a loop are non-induction pointers and

are referenced by link defining statements, i.e. they are involved in structure construction process, then the

iterations of the loop can not be executed in parallel. The result of parallel execution of such loop will be

nondeterministic. Consider the program in Figure 1(a). The iteration pointers list2 of loop S2 and rlist2
of loop S12 are referenced by link defining statements that create and then reverse a doubly-linked list.

Consequently, loops S2 and S12 have to be executed sequentially.

If iteration pointers of a loop are induction pointers, they will start from certain locations and advance

fixed paths after each iteration. Furthermore, if operations on these induction pointers and local pointers do

not cause any access conflicts and data dependence, the iterations of this loop are independent. Specifically,

let S be the statements of the loop body and let S (i) specify the ith iteration, then the conditions for

inter-level dependence test of a loop are as follows:� Iteration pointers are induction pointers.� [i 6=j " Write(S (i)) \ (Read(S (j)) [ Write(S (j))) [Write(S (j)) \ (Read(S (i)) [ Write(S (i))) # = ;
Take loop S22 of the program shown in Figure 1(a). The iteration pointer ptr2 is an induction pointer

with the path expression <ptr2; ptr1; next; �>. That is, at ith iteration, the induction pointer ptr2

will point to location ptr1:nexti�1. The element of Write set that might contribute to access conflicts

is <S24; ptr2:result>, and those of Read set are <S24; ptr2:result> and <S24; neigh:value>. Since

the same reference pattern <S24; ptr2:result> in Read and Write will not cause any access conflicts,

unless the path specified by induction pointer ptr2 is cyclic, the iterations of this loop can be declared as

independent in this phase. This situation will be confirmed by traversal-pattern-sensitive shape analysis in

the next phase.

The structures specified by induction pointers are called main traversal structures and the links of main

traversal structures can be called main traversal links, while the rest links can be called secondary traversal

links. The main traversal structure of this example is specified by induction pointer ptr2 and the main

traversal links are traversed by the statement S25. The DEF/USE information reveals that the statement that

defines these main traversal links is S16, which in turn reverses a list defined by statement S4. The links

traversed by S23 are secondary traversal links and are constructed by S5. Shape analysis phase will use

above information to estimate the main traversal structure and confirm the result of dependence test.

Note that the reference pattern <S24; neigh:value> does not contribute to structure access conflicts

since it references a different field than that of the other patterns. Consequently, the connections caused
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by second traversal link ptr2:neigh need not to be examined by shape estimation phase. However, if the

statement S24 is replaced by

S24 ptr2.result += neigh.result

the shape analysis phase will have to determine if the second traversal links cause access conflicts, even

though this phase will consider this loop has independent iterations.

3.3 Intra-Level Dependence

The statements on the same level, either simplebasic statements or loops, will be examined if access conflicts

might occur to prohibit parallel execution. Since in most cases it is not practical to expect that n sequential

statements on the same level can be transformed into a single parallel statement, the technique presented in

this section will identify the dependence among the n statements. The results of this analysis can be used

either to parallelize the statements or to remove redundant synchronizations.

Unlike inter-level dependence test, which needs to construct explicit Read and Write sets since it

determines dependence between iterations of the same sets of statements, access conflicts among a sequence

of statements on the same levels can be inferred from the edges of SSA form and DEF/USE chains. A

dependence graph DG = (V;E) will be constructed for each sequence of statements on the same level,

where V is the set of nodes and E is the set of edges. Each node of a dependence graph represents either a

statement, a �-statement at the header of a loop, or a definition to a global variable. A directed edge <i, j>

means node j is dependent on node i.
Since programs are normalized, the rules to build a dependence graph for a sequence of n statements

can be summarized as follows.

1. Reference to p
An edge will be added from the node that represents the statement defining p to the current node.

2. Definition to p
No new edges will be created because of the SSA renaming property.

3. Reference p:n
In addition to the edge caused by the reference to p as rule 1, edges will be added to represent

dependence of p:n, which can obtained from the DEF/USE information.

4. Definition to p:n
Since the last statements that reference the reaching definitions of p:n before this definition must be

executed before the current statement, edges from these statements will be built. Dependence of p is

handled by rule 1.

Note that these rules basically copy the edges of SSA representation and DEF/USE chains to build a

dependence graph. If current statement is the header node of a loop, any edges of SSA form or DEF/USE

chains into or from the loop body can be copied to the dependence graph. In other words, the current node

can be treated as the result of collapsing the whole loop body into a single node.
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(a) Loop S2 in Figure 1
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S1 do nsteps = 1, N
S11 ptr1 = h-nodes
S12 do while (ptr2)
S120 ptr2 = � (ptr1, ptr3)
S13 e-node = ptr2.neigh
S14 ptr2.result += e-node.value
S15 ptr3 = ptr2.next
S16 end do

S21 ptr4 = e-nodes
S22 do while (ptr5)
S220 ptr5 = � (ptr4, ptr6)
S23 h-node = ptr5.neigh
S24 ptr5.result += h-node.value
S25 ptr6 = ptr5.next
S26 end do
S27 end do
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Figure 3: Simplified EM3D Loop and Its Interval Flow Graph

Figure 2(a) shows the dependence graph for the sequence of statements (S3–S6) in the loop body of

loop S2 in Figure 1(a). It demonstrates that not much parallelism is available among these statements. On

the other hand, Figure 2(b) depicts the dependence graph of a simplified version of EM3D loop [15], which

is displayed in Figure 3. This graph shows that the two sequences of statements S11–S12 and S21–S22

can be executed independently, i.e. the loops that traverse lists of E nodes and H nodes respectively can

be executed independently. Furthermore, if the inter-level dependence test is applied to the EM3D loop,

it will reveal that both loops have independent iterations. Combining the results of inter- and intra-level

dependence test, iterations of both loops can be executed independently and synchronization between these

two loops can be removed. Note that although the overall graphs referenced by EM3D loops are bipartite,

the traversal-pattern-sensitive shape analysis algorithm in the next section will recognize that both loops

traverse the graphs via singly-linked lists specified by induction pointers ptr2 and ptr5, respectively.

4 Traversal-Pattern-Sensitive Pointer Analysis

This section presents an algorithm to perform traversal-pattern-sensitive shape analysis. This algorithm is

adapted from the shape analysis algorithm proposed by Sagiv et al [18]. The main difference is its ability

to represent the links of main traversal structures and to maintain the connection information of secondary
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traversal links on the same shape graphs. It explicitly represents the main traversal links by edges on shape

graphs and performs shape estimation on these links, whereas the information of secondary traversal links

is stored implicitly in the nodes of shape graphs. The shape estimation of main traversal structures will be

especially useful for parallelization since it can aid dependence test to determine any dependence among

instances of iterative or recursive traversal.

4.1 Shape Graphs

Shape analysis is performed on finite directed graphs, called shape graphs, which represent unbounded

recursive data structures. The shape graphs presented in this paper are closely related to the Storage Shape

Graph (SSG) proposed by Chase et al. [1], the Abstract Storage Graph (ASG) by Plevyak et al. [16], and

Shape-Graphs by Sagiv et al. [18]

Shape graphs have two types of nodes: pointer stances and storage nodes, which can be further divided

into simple nodes that represent allocated allocations and summary nodes each of which represents a set of

allocated locations. New storage nodes can be created by calling the storage allocation function new() or

extracted from summary nodes by link traversing statements (it is called materialization [18]). On the other

hand, storage nodes will be removed when they are no longer reachable, or be absorbed by summary nodes

when they are not directly connected to any pointer instances (i.e. summarization). In order to uniquely

name each storage node, every storage node will be annotated by a distinct tag. The purpose of assigning

tags to storage nodes is to specify secondary traversal links without creating edges on shape graphs such

that shape analysis on main traversal structures will be simplified.

6:<S3,2>

list

2:<S1,->4:<S1,->

n

n
2:<S1,->4:<S1,->

list

2:<S1,->3:<S1,->

p
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list n

Allocation
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S3:  p = list.n
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list
n

n n n

n n

n n

n n

S1:  q = new()

q

5:<S3,2>

Figure 4: Storage Nodes and Tags

Each tag is denoted by the form c:<s, l>, where c is a unique number generated from a global counter,s is the statement that generates the corresponding node, and l is the link to the tag of a summary node if

the node is extracted (materialized) from the summary node and is nil otherwise. Figure 4 depicts the tag

creation processes and corresponding nodes operations. A new storage node with tag 1:<S1, –> is created

when S1: q = new() is executed. On the other hand, the tag of the summary node will remain the same when

summarization is performed after S2: p = nil is executed, since both nodes are allocated at S1. However,

the tag of the summary node is modified after materialization by the statement S3: p = list.n to reflex the

fact that the summary node before execution of S3 is different from that after execution. The new summary

node has the tag 5:<S3, 2> and the materialized node is denoted by tag 6:<S3, 2>.
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Since each summary node represents a set of nodes, extra tags (called sharing tags) are required to

specify the connection relationships among these nodes. The tag has the form ff1; f2; � � � ; fng, where f1,f2, � � �, fn are the field names of self-cyclic edges of the summary node. This tag means all nodes along

any paths specified by the regular expression (f1jf2j � � � jfn)? will be distinct. For example, the summary

node with sharing tag fng in Figure 5(a) represents an unshared list specified by the path (n)?. Similarly,

the summary node with tag fl; rg of Figure 5(b) is a tree-like structure accessible via the path (ljr)?. On the

other hand, if a summary carries more than one sharing tag, it means nodes on the path designated by the

field names of the same tag will be distinct, but the same assertion might not hold when field names are not

from the same tag. Figure 5(c) symbolizes that (n)? and (p)? each references a list of unshared nodes, but(njp)? or (n)?(p)? might reference cycles. Similarly, Figure 5(d) means multiple paths of the form (ljr)?
might reach the same node.

p
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Figure 5: Sharing Information of Summary Nodes

Tail nodes of recursive data structures usually are not summarized into summary nodes to distinguish

cyclic structures from acyclic structures. Figure 6 depicts the shape graphs that characterize different types

of data structures. The difference between the tail nodes of Figure 6(a) and Figure 6(d) distinguishes a

singly-linked list from a circular list. However, the tail nodes will be summarized when it is not possible to

locate them, such as the arbitrary graphs shown in Figure 6(f).
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Figure 6: Data Structures Represented by Shape Graphs

The edges presented on shape graphs are used to symbolize the links of main traversal structures. The
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secondary traversal links are not represented on shape graphs, but the connections caused by these links are

described by node tags. Figure 7 depicts some examples of cyclic recursive data structures with acyclic

traversal patterns, where the dashed edges represent the secondary traversal links and their destinations are

specified by tags of storage nodes. When cyclic structures with acyclic traversal patterns are modeled by

the shape graphs, their acyclic structures specified by the traversal patterns can be easily characterized. As

a result, this representation can facilitate pointer analysis on programs even with cyclic data structures.
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p

(b) of an unshared list
A cyclic list with a traverse pattern

(c) linear traverse patterns
A bipartite graph with (d) patterns of a tree and list

A leaf-linked  tree with traverse

(a) singly-linked list traverse pattern
A doubly-linked list with a

{n} {n}

{n}

{n} {n}

5:<S3,->6:<S3,-> 4:<S3,->

Figure 7: Cyclic Structures with Acyclic Traversal Patterns

In summary, a shape graph is a finite directed graph G = (V;E) where V is the set of nodes and E is

the set of edges.� V consists of two types of nodes: pointer stances and storage nodes, which can be further divided

into simple nodes that represent allocated allocations and summary nodes each of which represents a

set of allocated allocations.� The set of edges is comprised of two kinds of edges: pointer edges each of which has the form [v; n]
where v is a pointer instance and n is a storage node, and field edges, each of which is denoted by a

tuple <s, f, t> where s and t are storage nodes and f is a field name. Consequently, E = <Ep, Ef>.� A unique tag is associated with each storage node.� Sharing tags are annotated on each summary node to characterize the sharing information along the

path specified by the field names of self-cyclic edges.� Edges which are not part of main traversal structures are not represented as edges on shape graphs.

They are described by connections to node tags.
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S5: list.neigh = node

S6: list = node

Figure 8: Shape Graphs Generated by Doubly-Linked List Building Program

4.2 Algorithm

This algorithm performs traversal-pattern-sensitive shape analysis, which estimates the possible shapes of

dynamic recursive data structures specified by traversal patterns. It works as follows:� The set of pointer assignment statements to be examined is determined by results of dependence

analysis phase and DEF/USE information.� Perform the iterative algorithm to compute a shape graph for every pointer statement. The transfor-

mations of shape graphs are defined by the types of pointer statements. Only those sets that will be

modified are presented.

– S : pi = new()V = Vin [ fC :< S;� >gEp = Epin [ f[pi; C :< S;� >]g
– S : pi = qjEp = Epin [ f[pi; s]j[qj; s] 2 Eping
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– S : pi = qj :nEp = Epin [ f[pi; t]j[qj; s] 2 Epin ^ [s; n; t] 2 Efing
Materialization will occur if [pi; t] 2 Ep and t is a summary node.

– S : pi:n = qjEf = Efin [ f[s; n; t]j[pi; s] 2 Epin ^ [qj ; t] 2 Eping
– S : pi = �(pj ; pk)V = Vin j [ Vin kEi = Ein j [ Ein kEp = Ei [ f[pi; s]j[pj; s] 2 Eig [ f[pi; s]j[pk; s] 2 Eig � f[pj ; ?]g� f[pk; ?]g

4.3 Examples and Features

Take the example shown in Figure 1(a) which builds a doubly-linked list, reverses the list, and then traverses

the reversed list through the next link. The main traversal structure is determined by statement S25, and

the statement that constructs this structure is S16, which in turn reverses a list defined by statement S4.

Consequently, only the edges constructed by statements S4 and S16 will be shown on shape graphs explicitly

and hence only these edges will participate in the process of deciding possible shapes of the constructed

data structure. The shape graphs which will be generated when this algorithm is applied to the first loop of

this example are listed in Figure 8.

The same process will be applied to the second loop of the program, and the shape graphs are displayed

in Figure 9. This process recognizes the linear traversal structure of the reversed list, and validates the

results of dependence analysis phase on the program shown in Figure 1. Similarly, shape analysis can build

shape graphs for the EM3D loop and the final graph will resemble the shape graph shown in Figure 7(c).

7:<S15,2>

list list
next

next

nextneigh neigh neigh neighneigh
next

next

next

next next

next

next

next

next

nextneigh neigh neigh neigh neigh

{next} {next}

{next} {next}

(a) Before S12 (b) After S16 (c) After S17

rlist rlist rlist

list
1:<S1,->

temp

2:<S3,->5:<S3,->

5:<S3,->
2:<S3,-> 2:<S3,->

5:<S3,->

1:<S1,->

5:<S3,-> 1:<S1,->

11:<S15,2>

9:<S15,2>10:<S15,2>

6:<S15,2>
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5:<S3,->
7:<S15,2>

7:<S15,2>9:<S15,2>

10:<S15,2>
11:<S15,2>
6:<S15,2> 6:<S15,2>

7:<S15,2>

7:<S15,2>
5:<S3,->

Figure 9: Shape Graphs Generated by Cyclic List Reverse Program

A similar example can be presented and compared with this cyclic list reverse loop to demonstrate

the special ability of this approach. If a program splits a singly-linked (unshared) list into two lists and

then converts both singly-linked lists into cyclic lists, this approach will be able to specify that the set of

destinations specified by neigh links of one list will be distinct from the set of the other list (see Figure 10).
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{next}
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3:<S1,->

1:<S1,->
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(b) Split into Two Lists (c) Convert to Cyclic Lists(a) Original List
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{next} {next}

{next}

4:<S3,2>

5:<S3,2> 5:<S3,2>

4:<S3,2>

4:<S3,2> 4:<S3,2> 4:<S3,2>

5:<S3,2> 5:<S3,2>

Figure 10: Shape Graphs Generated by Program that Splits a List and Constructs Cyclic Lists

Another interesting feature of this shape analysis algorithm is its ability to detect that a circular list

is broken into an unshared list, as the outcome of execution of the program shown in Figure 11(a). This

program traverses the circular list and stops at a node when the condition is met. It then removes the next
link of the node pointed by tail after forwarding list to the next node. The result of this program execution

is to turn a circular list into an unshared list. The shape graphs for this program, shown in Figure 11,

demonstrate this ability.

(e) Unshared List After S6

list
next next next next next next next next

next next next

list{next} {next} {next}

list

next

nextnext
{next}

1:<S0,->2:<S0,->3:<S0,->

1:<S0,->3:<S0,-> 5:<S3,2> 7:<S3,2> 4:<S3,2> 7:<S3,2>8:<S5,4>9:<S5:,4>

next

8:<S5,4>

{next}

9:<S5:,4>7:<S3,2>

listtail

tail

S5: list = tail.next

S1: tail = list
S2: do while (tail.vaule = ...)
S3:    tail = tail.next
S4: end do

(c) After S4

{list is a circular list}

(b) Circular List Before S1(a) Program

S6: tail.next = nil

(d) After S5

next

next

next

Figure 11: Shape Graphs Generated by Program that Breaks a Circular List

5 Related Work

Various dependence analysis techniques have been proposed for programs with pointers or dynamic recursive

data structures [7, 8, 9, 10, 14]. Horwitz et al. developed an algorithm to determine dependence by detecting

interferences in reaching stores [9], while Larus and Hilfinger proposed to identify access conflicts on alias

graphs [14]. These methods build either stores or alias graphs to represent associations of pointers and
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storage locations, and the former imposes the k-limited rule to limit store sizes while the alias graphs of

the latter method are not ideal for analyzing loop iterations. Furthermore, this store-based approach might

miss the dependence between pointer variables. In contrast to these approaches, Hendren and Nicolau

used path matrices to record connection information among pointers and presented a technique to recognize

interferences between computations for programs with acyclic structures [8].

The approach proposed by Guarna, Jr. is similar to this work since it determines dependence between

patterns of traversal using syntax tree matching [7]. However, multiple syntax trees would be generated

for each pointer if aliases exist, and syntax trees might be complicated caused by structure traversal by

sequences of statements. Unlike the above techniques, the method proposed by Hummel et al. relies

on alias information provided by users [10]. Commutativity analysis proposed by Rinard and Diniz is

another approach for parallelization [17]. It is designed for objected-based programs and can discover when

operations of objects commute.

The distinct feature of this work is that conflict analysis is performed before alias/connection analysis

phase. Each reference pattern can be represented by a path expression under the assumption that each unique

path leads to a distinct location, and hence conflict analysis can be done by comparing path expressions. The

outcome of conflict analysis will be forwarded to guide traversal-pattern-sensitive pointer analysis. This

dependence analysis approach was briefly outlined in [11] and a simple shape analysis was also presented,

which could only handle programs without destructive updating. This paper develops an algorithm to

perform such dependence analysis. Furthermore, the shape analysis algorithm presented in this paper uses

a different approach and can handle destructive updating such as list reverse operations.

The shape analysis algorithm is adapted from the approach proposed by Sagiv et al [18]. The main

difference is its ability to represent the links of main traversal structures and to maintain the connection

information of secondary traversal edges on the same shape graphs, and hence it is an ideal technique for

traversal-pattern-sensitive shape analysis. Other proposed shape analysis methods can not handle destructive

updating [1, 6, 16].

Symbolic path expressions have been proposed by other researchers [4, 14]. Larus and Hilfinger used

path expressions to specify nodes in alias graphs [14], whereas Deutsch paired symbolic access paths to

represent alias information between recursive data structures [4]. On the contrary, path expressions are

used in this paper to specify traversal patterns. In other words, the difference is that their symbolic path

expressions are decided by the statements that construct recursive data structures, whereas path expressions

in this paper are defined by statements that perform structure traversal.

6 Summary

This paper presents a dependence analysis algorithm that first analyzes structure access conflicts between

statements and then applies the traversal-pattern-sensitive shape analysis to confirm the results. The

DEF/USE information is used to connect these two phases. This approach can identify parallelism from

programs even with cyclic data structures.
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