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Chapter 1

Introduction

1.1 Weightings of trivalent trees

Let T denote an abstract trivalent tree with leaves V (T ), edges E(T ), and

non-leaf (internal) vertices I(T ), by trivalent we mean that the valence of v is three

for any v ∈ I(T ). Let ei be the unique edge incident to the leaf i ∈ V (T ). Let Y be

the unique trivalent tree with three leaves. For each v ∈ I(T ) we pick an injective

map iv : Y → T , sending the unique member of I(Y ) to v. We denote the members

of E(Y ) by E, F , and G. We call a leaf in V (T ) lone if it is attached to an edge

which is the unique leaf-edge incident to an internal vertex. Leaves which are not

lone are called paired leaves. We will be concerned with properties of weightings of

trivalent trees, defined as a functions

ω : E(T ) → Z≥0.

The maps iv define pull-back operations on weightings by the formulas

i∗v(ω)(E) = ω(iv(E)),

i∗v(ω)(F ) = ω(iv(F )),

i∗v(ω)(G) = ω(iv(G)).
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Definition 1.1.1 Let ST be the graded semigroup where ST [k] is the set of weight-

ings which satisfy the following conditions.

1. For all v ∈ I(T ) the numbers i∗v(ω)(E), i∗v(ω)(F ) and i∗v(ω)(G) satisfy

|i∗v(ω)(E) − i∗v(ω)(F )| ≤ i∗v(ω)(G) ≤ |i∗v(ω)(E) + i∗v(ω)(F )|

These are referred to as the triangle inequalities.

2. i∗v(ω)(E) + i∗v(ω)(F ) + i∗v(ω)(G) is even.

3. 1
2

∑

i∈V (T ) ω(ei) = k

Note that because the triangle inequalities hold for the integers i∗v(ω)(E),

i∗v(ω)(F ), and i∗v(ω)(G) if and only if a triangle exists with these side lengths, the

condition is symmetric in E, F, and G. This semigroup is also multigraded, with

the grading given by the weights ω(ei) on the leaf edges of the tree.

Definition 1.1.2 Let r : V (T ) → Z≥0 be a vector of nonnegative integers. Let

ST (r) be the multigraded subsemigroup of ST formed by the pieces ST [kr].

Proposition 1.1.3 If r has an odd total sum, then ST (r)[1] = ∅.

Proof 1.1.4 This follows from the parity condition. Note that it is true by definition

for T = Y. Suppose now that the result holds for every trivalent tree with n−1 leaves,

and consider T with n leaves. Pick a pair of paired leaves e, f in V (T ), and let

T ′ be the trivalent tree obtained by forgetting e and f , and the edges connected to

them. Let g be the internal edge of T which shares a vertex with f and g. Note that
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we may consider g a leaf of T ′. Any weighting ω ∈ ST defines a weighting of T ′

by restriction. By the induction hypothesis, ω|T ′ weights an even number of V (T ′)

with odd numbers. There are two cases, if g is weighted odd then by parity only one

of e or f may be weighted odd. If g is weighted even, then either both e and f is

weighted odd, or neither is weighted odd.

Because of the previous proposition, we focus on r with even total sum. Forget-

ting the grading for a moment, geometrically ST is the semigroup of lattice points in

a cone PT in R|E(T )|. The inequalities defining PT are given by the triangle inequali-

ties, and the parity condition defines a certain sublattice of Z|E(T )|. We will see now

that PT has the structure of a fibered product of cones. Let T1 and T2 be trivalent

trees with N1 and N2 leaves, respectively. Identify the leaf 1 from T2 with the leaf

N1 from T1, relabeling the leaves of T2 as follows, 1 → N1, . . . , N2 → N1 + N2 − 1.

This creates a tree with a unique vertex of valence 2, replace this vertex and both

of its incident edges with a single edge, the resulting tree T1 ∗T2 is trivalent. We call

this operation merging. Let i ∈ V (T ), and denote the projection onto the ei − th

component of R|E(T )| by πi. It is simple to check that

PT1∗T2
= P (T1)πN1

×π1
P (T2).

In particular this implies that all P (T ) are fibered products of copies of P (Y ),

so in some sense all of the algebraic information in any P (T ) can be extracted

from P (Y ), we will call this the fibered-product principle. It is reminiscient of the

theory of moduli of orientable surfaces, where structures on a surface of high genus
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can be glued together from structures on three-punctured spheres over a pair-of-

pants decomposition. The reason for this resemblance is not entirely accidental, see

[HMM] for a moduli-of-surfaces interpretation of spaces associated to the semigroup

ST . Bucynski and Wisniewski defined merging in [BW], where they show that a

similar formula holds for a class of semigroups of weightings which we will now

introduce.

E1 E2

E3E4

E1 E2

E3E4

E1 E2

E3

E4

E5E6

E1 E2

E3

E4

E5E6

Figure 1.1: Merging two trees

Definition 1.1.5 For a trivalent tree T let ∆(T ) be the polytope in R|E(T )| formed

by the convex hull of weightings ω such that ω(e) ∈ {0, 1} for all e ∈ E(T ), and

i∗v(ω)(E) + i∗v(ω)(F ) + i∗v(ω)(G) ∈ 2Z for all v ∈ I(T ).

It is shown in [BW] (Proposition 1.13) that ∆(T ) is a fiber product of |I(T )|

copies of ∆(Y ), using the same merging operation. The lattice point semigroup of

L∆(T ) is isomorphic to the following semigroup.
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Definition 1.1.6 Let L be a positive integer. Let SL
T be the graded semigroup where

SL
T [k] is the set of weightings ω of T which satisfy

1. For all v ∈ I(T ) the numbers i∗v(ω)(E), i∗v(ω)(F ) and i∗v(ω)(G) satisfy the

triangle inequalities.

2. i∗v(ω)(E) + i∗v(ω)(F ) + i∗v(ω)(G) is even.

3. i∗v(ω)(E) + i∗v(ω)(F ) + i∗v(ω)(G) ≤ 2kL

This is last item is referred to as the level condition.

Note that S1
T has a fibered product decomposition into copies S1

Y in a way

completely analagous to ST . To see that the lattice points of ∆(T ) correspond with

the first graded piece of S1
T , one need only use the fibered product decomposition of

both objects. We observe that the lattice points of ∆(Y ) are given by the degree 1

members of S1
Y . Fixing a level L and an edge multigrade r picks out the multigrade

(L, r) subsemigroup SL
T (r).

Each of the semigroups defined here has a corresponding semigroup algebra.

The semigroup algebras C[ST ] and C[S1
T ] were studied in [SpSt] and [BW], respec-

tively. In [SpSt] the authors show that the projective coordinate ring of Gr2(C
n)

with respect to the Plücker embedding flatly degenerates to each of the C[ST ], in

particular this establishes that the Hilbert function of C[ST ] does not depend on T .

In [BW] Bucynska and Wiesniewski studied the algebras C[S1
T ], proving that

they are all deformation equivalent, and generated in degree 1 with relations gen-

erated in degree 2. Notably Bucynska and Wiesniewski constructed the algebras
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C[S1
T ] as a step in the study of phylogenetic algebraic geometry. They study the

spaces Proj(C[S1
T ]) because the toric ideal of C[S1

T ] vanishes on a phylogenetic sta-

tistical model used to relate taxa in phylogenetic biology. See [BW] and [BW2] for

details.

Notably Bucynksa and Wiesniewski did not construct an analogue of the pro-

jective coordinate ring of the Grassmannian of two planes in proving that the C[S1
T ]

are deformation equivalent. This was accomplished by Sturmfels and Xu in [BW].

In this paper the authors also establish a common algebro-geometric framework for

both C[ST ] and C[S1
T ]. These results are discussed in more detail in the following

sections.

1.2 Grobner degenerations of C[Gr2(C
n)]

In this subsection we will review the construction of one Grobner deformation

of A = C[Gr2(C
n)] (from now on assumed to be the projective coordinate ring

associated to the Plücker embedding) for each trivalent tree T with n ordered leaves,

following the work of Speyer and Sturmfels in [SpSt]. We will also review results of

[HMSV] on presentations of the rings C[ST (r)].

Our presentation of the Grobner theory of A follows that in [HMM] and [SpSt].

There is a well-known presentation of the ring A as the polynomial ring over the

invariants Zij with 1 ≤ i < j ≤ n modulo the ideal generated by the Plücker

equations,
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ZijZkℓ − ZikZjℓ + ZiℓZjk = 0,

for i < j < k < ℓ. We let wT
ij denote the number of edges in the unique path in

T connecting the i-th and the j-th leaf. Now we may define the T -weight of any

monomial term in A by

w(
m
∏

k=1

Zikjk
) =

m
∑

k=1

wT
ikjk

.

This weighting induces an increasing filtration on the ring A, let F T
m denote

the m-th part of this filtration. Note that we must have F T
mF T

k ⊂ F T
m+k. From this

information we can define the Reese Algebra AT =
⊕

tmF T
m with multiplication

defined by tmx ◦ tky = tm+kxy. We also may define the associated graded ring

AT
0 =

⊕

F T
m/F T

m−1. It is a standard fact of the theory of Grobner degenerations

[AB] that AT is flat over C[t], AT ⊗C[t] C[t, t−1] ∼= A[t, t−1], and AT ⊗C[t] C[t]/(t) ∼=

AT
0 . To each monomial M =

∏m

k=1 Zikjk
we may assigne a multigrading r(M) =

(r1(M), . . . , rn(M)) where ri(M) is the number of Zij in the product M with i

as an index. This multigrading naturally extends to the Reese algebra and the

associated graded algebra. The grading g corresponding to the projective embedding

of Gr2(C
n) is obtained from the multigrading by the formula g(M) = 1

2

∑

ri(M)

(compare with the definition of the grading on ST ).

Proposition 1.2.1 With respect to the grading g, the scheme Proj(AT ) is fibered

in projective schemes over the affine line A1 = Spec(C[t]), with a generic fiber home-

omorphic to Gr2(C
n), and the special fiber over 0 equal to Gr2(C

n)T0 = Proj(AT
0 )

7



The connection to semigroup algebras of weighted trees comes from the fol-

lowing proposition, which can be found in [HMM].

Proposition 1.2.2 As graded rings, AT
0
∼= C[ST ].

Let A(r), AT (r) and AT
0 (r) denote the sum of the kr graded components of

A, AT , and AT
0 respectively, over nonegative integers k. We obtain the following

propositions, which can be found in [HMM].

Proposition 1.2.3 With respect to the multigrading r, the scheme Proj(AT (r)) is

fibered in projective schemes over the affine line A1 = Spec(C[t]), with a generic

fiber equal to Gr2(C
n)/rT, and the special fiber over 0 equal to Proj(AT

0 (r))

Proposition 1.2.4 As graded rings, AT
0 (r) ∼= C[ST (r)].

Here Gr2(C
n)/rT is the r-weight variety of the Grassmannian of 2-planes.

This variety is equal to the GIT quotient of (P1)n by SL(2, C) with respect to the

character corresponding to the weight r, see [HMM] and [HMSV]. Hence, the T -

weight construction of Speyer and Sturmfels defines one Grobner degeneration of

(P1)n//rSL(2, C) for each T to the toric varieties Proj(C[ST (r)). The results of this

subsection so far show that varieties Proj(C[ST ]) for each T , and Gr2(C
n) all lie

in the same component of a multigraded Hilbert Scheme. In particular, this implies

that the Hilbert functions of C[ST (r)] and C[ST ] (with the grading g) do not depend

on T . Of main interest is the following proposition, which is a standard result from

the theory of Grobner degenerations.

8



Proposition 1.2.5 A presentation of the ring A (resp. A(r)) can be lifted from a

presentation of C[ST ] (resp. C[ST (r)]).

This is a key step in [HMSV], where presentations of the projective coordinate

ring of (P1)n//rSL(2, C) are constructed for r = (1, . . . , 1) (from now on this weight

is denoted 1n), and a good trees T , defined below.

Definition 1.2.6 A trivalent tree T is a good tree if all leaves in V (T ) are paired.

Figure 1.2: A Good Tree

In [HMSV], the authors prove that the ideal of relations of C[(P1)n//rSL(2, C)]

is generated in degree at most 4. The workhorse of their proof is the following

theorem, which can be found in [HMSV]. We let 1n be the vector (1, . . . , 1).

Theorem 1.2.7 The algebra C[ST (1n)] is generated in degree 1 if and only if T is

a good tree. In this case relations are generated in degree less than or equal to 3.

This result is obtained via an impressive graphical calculus. We will obtain a

more general result by different techniques.
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1.3 SAGBI degenerations of the Cox-Nagata rings of Sturmfels and

Xu

In this subsection we review material from [StX], specifically their construction

of the Cox-Nagata ring of a blow-up of Pn at d points, and multigraded SAGBI

degenerations of these rings. First we must construct the Cox-Nagata ring RG.

We follow [StX]. Let K be a field, and let ℓ1, . . . , ℓn be linear forms over K

which together span Kd, with ℓi = a1ie
1 + . . . + adie

d. Let G be the nullspace of

the linear transformation Kn → Kd defined by ei → ℓi, so G is the space of linear

relations

λ1ℓ1 + . . . + λnℓn,

among the linear forms ℓi. We define an action on the polynomial ring R = K[~x, ~y],

~x = {x1, . . . , xn}, ~y = {y1, . . . , yn} defined by letting λ ∈ G take xj → xj and

yj → yj + λjxj. The invariant subring defined by this action is called the Cox-

Nagata ring RG. When G is generic, RG only depends on the numbers n and d (see

[StX]). The Cox-Nagata ring RG is naturally an algebra over K and comes with

a multigrading by Zn+1 given by deg(xi) = fi and deg(yi) = deg(xi) + f0 where

Zn+1 = Z[f0, . . . , fn]. The action of G on the polynomial ring R was used by Nagata

in a special case to resolve Hilbert’s 14th problem, showing that RG is not finitely

generated when G is a generic subspace of K16 of codimension 3. Mukai took this

further in [M], proving the following theorem.

Theorem 1.3.1 Let G be a generic subspace of Kn of codimension d. Then RG is

10



finitely generated if and only if

1

2
+

1

d
+

1

n − d
> 1

Now let d ≥ 3 and let XG denote the blow-up of Pd−1 at the points defined by

ℓ1, . . . , ℓn. Let L be divisor on XG defined by the pullback of the hyperplane class

on Pd−1, and let E1, . . . , En be the exceptional divisors of the blow-up. We identify

Zn+1 with the Picard group of this blow-up. The Zn+1-graded ring

Cox(XG) =
⊕

Γ(XG, rL + (u1 − r)E1 + . . . + (un − r)En)

is called the Cox-ring of the blow-up XG. The following is essentially a result of

Ensalem and Iarrobino [EI].

Theorem 1.3.2 If d ≥ 3 then Cox(XG) ∼= RG as Zn+1 graded K-algebras.

This explains the name Cox-Nagata ring. The multigrading on RG defines a

natural (K∗)n+1 action on RG, we have identified Zn+1 with the Pic(XG), so from

now on we call this the action of the Picard Torus. The Cox Ring Cox(XG) is

the affine coordinate ring of the Universal Torsor over XG. This space captures

properties of all projective embeddings of XG, in particular the statement that

Spec(Cox(XG)) degenerates to a toric variety implies that the same holds for each

projective embedding of XG.

Now we will review the SAGBI theory of RG. Fix K to be Q(t), and let R be

as above. Recall that the initial form in(f) ∈ Q[~x, ~y] of an element f ∈ R is the

11



coefficient of the lowest power of t appearing in f. For any subset F ⊂ R we may

define in(F ) ⊂ Q[~x, ~y]. A subset F is called moneric if every element of in(F ) is

a monomial. For any subalgebra U ⊂ R we may define the algebra of initial forms

in(U) ⊂ Q[~x, ~y]. A subset F ⊂ U is called a SAGBI basis of U if F is moneric and

the subalgebra generated by in(F ) equals in(U). The acronym SAGBI stands for

Subalgebra Analogue to Grobner Basis for Ideals, and was introduced by Robbiano

and Sweedler in [RS]. The following is a standard property of SAGBI bases.

Proposition 1.3.3 Let the algebra U have a finite SAGBI basis. Then U defines

a flat deformation of Q algebras from U(a) to in(U), where U(a) is a specialization

of U with a generic.

We will now see how to define SAGBI degenerations of the Cox-Nagata ring

RG for G generic, recall that these are all isomorphic. Let G ⊂ Kn be the rowspan of

a generic 2×n matrix B with entries in K. This means that the Plücker coordinates

are non-zero on B and the same is true for generic specializations of B. The following

follows from results in [StX].

Theorem 1.3.4 Let R be as above and let n = d+2, then for each trivalent tree T ,

there is a matrix B(T ) with rowspan G such that in(RG) ∼= Q[S1
T ], and all Plücker

coordinates of B(T ) nonzero. The associated flat degenerations preserves the action

of the Picard Torus.

From this it follows that for K = Q, and G generic, the Cox-Nagata ring RG

flatly degenerates to Q[S1
T ] for each trivalent tree T .

12



. . .

Figure 1.3: The Caterpillar Tree

Example 1.3.5 The tree T0 pictured below is called the Caterpillar tree.

The matrix

B =









1 t . . . tn

tn tn−1 . . . 1









defines the SAGBI degeneration to Q[S1
T0

].

In fact, much in the spirit of the fibered product principle, Sturmfels and Xu

construct B(T ) out of the B(T0) for various n. The SAGBI degenerations defined

by Sturmfels and Xu preserve the multigrade by Zn+1, however there is a change

of grade by an invertible matrix of determinant 1 to get the multigrade on S1
T

described above. We relabel the (r, ~u) component of RG with the multigrade (L, r)

with L = (
∑n

i=1 ui)− r, r1 = u1, . . . , rn−1 = un−1, and rn = (
∑n

i=1 ui)− r − un. Let

RG(L, r) be the subalgebra of components which are multiplies of (L, r). The next

theorem follows from the previous theorem.

Theorem 1.3.6 There is a SAGBI degeneration of RG(L, r) to Q[SL
T (r)].

Properties of presentations of C[SL
T (r)] lift to those of projective coordinate

rings of the blow-up of Pn−1 at n + 2 points for n = |V (T )|, as well as the invariant

13



subring RG(L, r) for the appropriate linearization of the action of the Picard Torus.

It is also prudent to mention that the blow-up XG for G of codimension 2 is related

to the moduli space of parabolically semistable rank 2 bundles on P1, N(0,n)(~α) by

a sequence of flops, see [B]. This implies that their Cox-rings are the same. As a

consequence we get that the multigraded Hilbert function of the ring C[S1
T ] is given

by the Verlinde formula from mathematical physics. This establishes a combinatorial

link between mathematical physics and phylogenetic algebraic geometry, and hints

at a deeper representation-theoretic structure in the rings RG. In [StX] Sturmfels

and Xu construct all SAGBI degenerations of Cox(XG) when G is of codimension 1.

The ring Cox(XG) in this case is isomorphic to the ring A from the last section, and

Sturmfels and Xu are able to construct the Grobner degenerations discussed there.

This is an attractive result as it suggests that C[SL
T (r)], and C[ST (r)] are related by

more than their combinatorial presentation, as both objects are useful in the study

of blow-ups of projective spaces.

1.4 Statement of results

We now state our main results concerning the rings C[SL
T (r)]. We begin with

the definition of an admissible triple (T , r, L).

Definition 1.4.1 We call the triple (T , r, L) admissible if L is even, r(i) is even

for every lone leaf i, and r(j) + r(k) is even for all paired leaves j, k.

Remark 1.4.2 The assumption that r has an even total sum implies that an even

number, 2M of the entries of r are odd. Choosing T with 2M paired leaves then

14



4 1

3

17

9

X Y

Figure 1.4: An admissible weighting

guarantees that (T , r, L) is admissible, provided that L is even. This is important for

constructing presentations of RG(r, L), since this ring always has a flat deformation

to C[SL
T (r)] for some admissible (T , r, L) when L is even. Also note that the sec-

ond Veronese subring of C[SL
T (r)] is the semigroup algebra associated to (T , 2r, 2L),

which is always admissible.

Theorem 1.4.3 For (T , r, L) admissible with L > 2, C[SL
T (r)] is generated in de-

gree 1.

Theorem 1.4.4 For (T , r, L) admissible with L > 2, C[SL
T (r)] has relations gener-

ated in degree at most 3.

As a corollary we get the same results for ST (r) when (T , r) satisfy admissi-

bility conditions. These theorems will be proved in sections 2, 3, and 4. In section 5

we will look at some special cases, and investigate what can go wrong when (T , r, L)

is not an admissible triple. The following proposition is easy to prove from the tri-

angle inequalities, and shows that as L becomes large the rings C[SL
T (r)] stabilize

to C[ST (r)], and hence Theorems 1.4.4 and 1.4.3 apply without level condition as

well.

Proposition 1.4.5 There is a number N(T , r) such that ω(e) ≤ N(T , r) for every

e ∈ E(T ).
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Corollary 1.4.6 The results of Theorems 1.4.3 and 1.4.4 hold for the algebras

RG(2L, r) and A(r) for L > 1.

We will refine this result further in section 5.

1.4.1 Outline of Techniques and Organization of Thesis

To prove Theorems 1.4.3 and 1.4.4 we use two main ideas. First, we employ

the following trivial but useful observation.

Proposition 1.4.7 Let (T , r, L) be admissible, then for any weighting ω ∈ SL
T (r),

ω(e) is an even number when e is not an edge connected to a paired leaf.

This allows us to drop the parity condition that i∗v(ω)(E)+i∗v(ω)(F )+i∗v(ω)(G)

is even by forgetting the paired leaves and halving all remaining weights.

Definition 1.4.8 Let c(T ) be the subtree of T given by forgetting all edges incident

to paired leaves.

Figure 1.5: Clipping the paired leaves

Definition 1.4.9 Let UL
c(T )(r) be the graded semigroup of weightings on c(T ) such

that the members of UL
c(T )(r)[k] satisfy the triangle inequalities, the new level condi-

tion i∗v(ω)(E) + i∗v(ω)(F ) + i∗v(ω)(G) ≤ kL, and the following conditions.

16



1. ω(ei) = k r(i)
2

for i a lone leaf of T .

2. k|r(i)−r(j)|
2

≤ ω(e) ≤ k|r(i)+r(j)|
2

for e the unique edge of T connected to the

vertex which is connected to the paired leaves i and j.

3. ω(e) + kr(i)+kr(j)
2

≤ kL

Let UL
c(T ) be the graded semigroup of weightings which satisfy the triangle

inequalities and the new level condition for L. The following is a consequence of

these definitions.

Proposition 1.4.10 For (T , r, L) admissible,

UL
c(T )(r)

∼= SL
T (r)

as graded semigroups.

The next main idea is to undertake the analysis of UL
c(T )(r) by first considering

the weightings i∗v(ω) ∈ UL
Y . After constructing an object in UL

Y , like a factorization

or relation, we “glue” these objects back together along edges shared by the various

iv(Y ) with what amounts to a fibered product of graded semigroups. This is once

again the fibered product principle. We obtain information about UL
Y by studying

the following polytope. Let P3(L) be the convex hull of (0, 0, 0), (L
2
, L

2
, 0), (L

2
, 0, L

2
),

and (0, L
2
, L

2
).

The graded semigroups of lattice points for P3(L) is UL
Y . By a lattice equiv-

alence of polytopes P , Q ⊂ Rn with respect to a lattice Λ ⊂ Rn we mean a com-

position of translations by members of Λ and members of GL(Λ) ⊂ GLn(R) which

17



(0, 0, 0)

(L, 0, L)

(0, L, L)

(L, L, 0)

Figure 1.6: P3(2L)

takes P to Q. If P and Q are lattice equivalent it is easy to show that they have

isomorphic graded semigroups of lattice points. When L is an even integer (admis-

sibility condition) the intersection of this polytope with any translate of the unit

cube in R3, is, up to lattice equivalence, one of the polytopes shown in figure 1.7.

Figure 1.7: Cube Polytopes

Each of these polytopes is normal, meaning that their associated semigroup of

lattice points are generated in degree 1. Also, the relations of the associated semi-

groups of each of these polytopes are generated in degree at most 3. Proving these

18



two facts is the focus of Chapter 2. In Chapter 3 we will lift these properties to

UL
c(T )(r), and therefore SL

T (r) for (T , r, L) admissible. Facts about the six polytopes

above also allow us to carry out a more detailed investigation into the properties of

the semigroups SL
T (r) in Chapter 4, for example they allow us to show the redun-

dancy of the cubic relations for certain (T , r, L).
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Chapter 2

The Cube Semigroups

In this chapter we will prove that the intersection of any translate of the unit

cube of R3 with the polytope P3(L) produces a normal polytope whose semigroup

of lattice points has relations generated in degree at most 3 when L is even. First

we will recall some facts about Graver bases.

2.1 The Graver bases of the semigroup algebra of a polytope

We follow [St] for all information concerning Graver bases. For anything to do

with the toric variety associated to a polytope we suggest Fulton’s book, [Fu]. Let P

be a lattice polytope in Rn, and fix a lattice L ⊂ Rn such that L⊗R = Rn. To P we

associated a graded semigroup SP where SP [k] is the collection of lattice points from

kP, the kth Minkowski sum of P . The polytope P is called normal if SP is generated

in degree 1, in general this is not the case, the simplest counterexample known to

author being the convex hull of {(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 0} ⊂ R3 with regards

to the standard lattice. We may form the semigroup algebra C[SP ]. For a collection

of vectors with integer entries {a1, . . . , an}, in our case the generators of SP , we

can consider the matrix A = [a1, . . . , an] and its kernel as a linear transformation,

Ker(A). The semigroup algebra C[SP ] then has a presentation
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0 → IA → C[xa1
, . . . , xan

] → C[SP ] → 0,

with IA generated by binomials. Let x~u
A be the monomial

∏

xui
ai

. For any vector

with integer entries ~u we may rewrite ~u as ~u = ~u+ − ~u− for unique vectors with

nonnegative entries. The ideal IA is generated by the elements of the form xu+

A −xu−

A

for ~u ∈ Ker(A).

We write ~v ≤ ~u if the same is true for each index. A nonzero integer vector

~u ∈ Ker(A) is called primitive if there does not exist a vector ~v ∈ Ker(A) \ {0, ~u}

such that ~v+ ≤ ~u+ and ~v− ≤ vecu−.

Definition 2.1.1 Let Gr(A) be the collection of primitive vectors for the matrix A,

this is called the Graver Basis of A.

We will use the following two properties of Graver bases.

Proposition 2.1.2 The Graver basis Gr(A) gives a generating set for the ideal IA.

Proposition 2.1.3 Let {b1, . . . , bk} ⊂ {a1, . . . , an} with associated matrix B. Then

Gr(B) ⊂ Gr(A).

This means that for any polytope P contained in a (perhaps more compu-

tationally tractable) polytope Q, generators of IP are among the members of the

Graver basis of IQ. In particular the maximal degree of relations in Gr(Q) bounds

the degree of relation generation for the semigroup algebra generated by P.

21



2.2 The cone P3 and the cube rooted at a lattice point

Recall from Chapter 1 that PY is the cone of triples of nonnegative integers

which satisfy the triangle inequalities. From now on let C(m1,m2,m3) denote the

unit cube rooted at (m1,m2,m3) ∈ R3,

C(m1,m2,m3) = conv{(m1 + ǫ1,m2 + ǫ2,m3 + ǫ3)|ǫi ∈ {0, 1}}.

We wish to classify the polytopes which have the presentation C(m1,m2,m3) ∩ P3,

since P3 is symmetric we may assume that (m1,m2,m3) is ordered by magnitude

with m3 the largest. In this analysis we keep track of the triangle inequalities with

the quantities ni = mj +mk −mi. For a point (m1,m2,m3) to be in P3 is equivalent

to ni ≥ 0 for each i. Immediately we have the following inequalities.

n1 ≥ n2 ≥ n3, n2 ≥ 0

If n3 < −2 then no member of C(m1,m2,m3) can belong to P3. If n3 ≥ −2 then

there are six distinct possibilities, we list each case along with the standard lattice

members of C(m1,m2,m3) ∩ P3 − (m1,m2,m3).
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Condition C(m1,m2,m3) ∩ P3 − (m1,m2,m3)

n3 = −2 (1, 1, 0)

n3 = −1 (1, 1, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)

n1 = n2 = n3 = 0 (1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0)

n1 > 0, n2 = n3 = 0 (1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0), (0, 0, 1)

n1, n2 > 0, n3 = 0 (1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 0)

ni > 0 all points

The figure below illustrates these arrangements.

N_3 = −2 N_3 = −1 N_1 = N_2 = N_3 = 0

N_1, N_2, N_3 > 0 N_1, N_2 > 0, N_3 = 0 N_1 > 0, N_2 = N_3 = 0

Figure 2.1: Primitive cube semigroups

Now we will see what happens when we intersect P3 with the half space defined

by the inequality v1 + v2 + v3 ≤ 2L to get P3(2L). The reader may want to refer to

figure 2.2 for this part. The convex set C(m1,m2,m3) ∩ P3(2L) can be one of the

above polytopes (up to lattice equivalence), or one of them intersected with the half

plane v1 + v2 + v3 ≤ 2L. Note that a vertex v in C(m1,m2,m3) ∩ P3(2L) lying on

a facet of P3 necessarily satisfies v1 + v2 + v3 = 0 mod 2. In Figure 2.2 these points

are colored black.
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Figure 2.2: Cube semigroups with the lattice v1 + v2 + v3 = 0 mod 2

The hyperplane defined by the equation v1 + v2 + v3 = 2L must intersect

these polytopes at collections of three black points. If we assume that the lower

left corner is (0, 0, 0), these points have coordinates {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, or

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Figure 2.2 represents the new possibilities for C(m1,m1,m3)∩

P3(2L)− (m1,m2,m3). The polytope pictured lower center in Figure 2.3 is the only

case which is not lattice equivalent to one pictured in Figure 2.1. It is rooted at

(0, 0, 0) and occurs only when L = 1 (level condition is 2). The point (1, 1, 1) in

its second Minkowski sum cannot be expressed as the sum of two lattice points of

degree one, so this is not a normal polytope. This is the reason we stipulate that

L > 2 in Theorem 1.4.3. Now we analyze each C(m1,m2,m3) ∩ P3(2L). Since lat-

tice equivalent polytopes have isomorphic semigroups of lattice points, it suffices to

investigate the polytopes listed in Figure 2.1.

Caution 2.2.1 In [BW], Buczynska and Wisniewski study a normal polytope with

the same vertices as the non-normal polytope mentioned above. This is possible

because they are using the the lattice v1 +v2 +v3 = 0 mod 2, not the standard lattice.
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Figure 2.3: New Possibilities for C(m1,m2,m3) ∩ P3(2L)

2.3 Graver bases of the unit cube

We make use of the computational algebra package 4ti2, [4ti2] to compute the

Graver basis of the toric ideal of the unit 3-cube.

(1,0,0) + (1,1,1) = (1,0,1) + (1,1,0) (0,1,0) + (1,1,1) = (0,1,1) + (1,1,0)

(0,0,0) + (1,1,1) = (0,0,1) + (1,1,0) (0,0,1) + (1,1,1) = (0,0,1) + (1,0,1)

(0,0,0) + (1,1,1) = (0,1,0) + (1,0,1) (0,0,1) + (1,1,0) = (0,1,0) + (1,0,1)

(0,0,0) + (1,1,1) = (0,1,1) + (1,0,0) (0,0,1) + (1,1,0) = (0,1,1) + (1,0,0)

(0,1,0) + (1,0,1) = (0,1,1) + (1,0,0) (0,0,0) + (1,1,0) = (0,1,0) + (1,0,0)

(0,0,0) + (1,0,1) = (0,0,1) + (1,0,0) (0,0,0) + (0,1,1) = (0,0,1) + (0,1,0)
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(0,1,0) + (1,0,0) + (1,1,1) = (0,0,1) + (1,1,0) + (1,1,0)

(0,0,0) + (1,1,1) + (1,1,1) = (0,1,1) + (1,0,1) + (1,1,0)

(0,0,1) + (1,0,0) + (1,1,1) = (0,1,0) + (1,0,1) + (1,0,1)

(0,0,1) + (0,0,1) + (1,1,0) = (0,0,0) + (0,1,1) + (1,0,1)

(0,0,0) + (0,1,1) + (1,1,0) = (0,1,0) + (0,1,0) + (1,0,1)

(0,0,0) + (1,0,1) + (1,0,1) = (0,1,1) + (1,0,0) + (1,0,0)

(0,0,1) + (0,1,0) + (1,1,1) = (0,1,1) + (0,1,1) + (1,0,0)

(0,0,0) + (0,0,0) + (1,1,1) = (1,0,0) + (0,1,0) + (0,0,1)

Operating on this set of monomials, one can show that the toric ideal of every

sub-polytope of the unit 3-cube which is not a simplex has a square-free Gröbner

basis. This, combined with the fact that the sub-polytopes with n3 = −2 and −1

are unimodular simplices shows the following theorem, see Proposition 13.15 of [St].

Theorem 2.3.1 Suppose L 6= 1, then for all (m1,m2,m3), if C(m1,m2,m3) ∩

P3(2L) is non-empty, then it is a normal lattice polytope.

Remark 2.3.2 This theorem implies, among other things, that if ω ∈ U2L
Y [k], then

ω =
k

∑

i=1

Wi

for Wi ∈ P3(2L) with the property that each

Wi = X + (ǫ1, ǫ2, ǫ3)

with ǫj ∈ {0, 1} for all i for a fixed X ∈ R3. It is easy to show that
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X = (⌊
ω(E)

k
⌋, ⌊

ω(F )

k
⌋, ⌊

ω(G)

k
⌋)

Therefore each Wi is (ω(E)
k

, ω(F )
k

, ω(G)
k

) with either floor or ceiling applied to each

entry.

Now we move on to relations, Let S(m1,m2,m3) be the semigroup of lattice

points for C(m1,m2,m3)∩P3(2L)− (m1,m2,m3), once again it suffices to treat the

cases represented in Figure 2.1.

Theorem 2.3.3 All relations for the semigroup S(m1,m2,m3) are reducible to quadrics

and cubics.

Proof 2.3.4 This follows from the fact that the Graver basis of the unit 3-cube is

composed of members of degree at most 3.

Up to equivalence and after accounting for redundancy, all relations considered

here are of the form

(1, 0, 0) + (0, 1, 0) = (1, 1, 0) + (0, 0, 0)

(1, 0, 1) + (0, 1, 0) = (1, 1, 1) + (0, 0, 0)

(1, 0, 1) + (1, 1, 0) = (1, 1, 1) + (1, 0, 0)

(1, 1, 1) + (1, 1, 1) + (0, 0, 0) = (1, 1, 0) + (1, 0, 1) + (0, 1, 1),

with the last one the only degree 3 relation, we refer to it as the “degenerated Segre

Cubic” (see [HMSV]).
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Chapter 3

Proof of main theorems

In this Chapter we will lift theorems on the cube semigroups to semigroups of

weighted trees.

3.1 Proof of theorem 1.4.3

In this section we use Theorem 2.3.1 to prove that UL
c(T )(r) is generated in

degree 1, which then proves Theorem 1.4.3. For each v ∈ I(T ) we have the morphism

of graded semigroups

i∗v : UL
c(T )(r) → UL

Y .

Given a weight ω ∈ UL
c(T )(r) we factor i∗v(ω) for each v ∈ I(c(T )) using Theorem

2.3.1. Then, special properties of the weightings obtained by this procedure will

allow us to glue the factors of the i∗v(ω) back together along common edges to obtain

a factorization of ω. First we must make sure that the factorization procedure does

not disrupt the conditions at the edges of c(T ).

Lemma 3.1.1 Let ω ∈ UL
c(T )(r)[k], and let v ∈ I(T ) be connected to a leaf of

c(T ), at E. Then if i∗v(ω) = η1 + . . . + ηk is any factorization of i∗v(ω) with ηi ∈

C(⌊ i∗v(ω)(E)
k

⌋, ⌊ i∗v(ω)(F )
k

⌋, ⌊ i∗v(ω)(G)
k

⌋) Then ηi(E) satisfies the appropriate edge condition

for elements in UL
c(T )(r)[1].
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Proof 3.1.2 If E is attached to a lone leaf of T then i∗v(ω)(E) = kr(e) for iv(E) =

e, e ∈ V (T ). By Remark 2.3.2

ηi(E) = ⌊r(e)⌋ = r(e)

or

ηi(E) = ⌊r(e)⌋ + 1 = r(e) + 1

Since
∑k

i=1 ηi(E) = kr(e) we must have ηi(E) = r(e) for all i. If E is a stalk of

paired leaves i and j in T then we must have

k
|r(i) − r(j)|

2
≤ ωY (E) ≤ k

|r(i) + r(j)|

2

Note that both bounds are divisible by k. Since floor preserves lower bounds we have

|r(i) − r(j)|

2
≤ ⌊

i∗v(ω)(E)

k
⌋,

and since ceiling preserves upper bounds we have

⌈
i∗v(ω)(E)

k
⌉ ≤

|r(i) + r(j)|

2
.

Therefore each ηi satisfies

|r(i) − r(j)|

2
≤ ηi(E) ≤

|r(i) + r(j)|

2

Now that we can safely use Theorem 2.3.1 with each i∗v : UL
c(T )(r) → UL

Y , we

will establish tools to extend factorization properties of UL
Y to UL

c(T )(r) by exploiting
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the fibered product structure of the ambient semigroup UL
c(T ). The following concept

allows us to control conditions on the edges of two trees we wish to merge.

Definition 3.1.3 We say a list of nonnegative integers {X1, . . . , Xn} is balanced if

|Xi − Xj| = 1 or 0 for all i, j.

Lemma 3.1.4 If two lists {X1, . . . , Xn} and {Z1, . . . , Zm} are balanced, have the

same total sum, and n = m, then they are the same list up to permutation.

Proof 3.1.5 Let C1 be the smallest member of {X1, . . . , Xn}, and C2 be the smallest

member of {Z1, . . . , Zn}. Let S be the total sum of either list. Both lists are balanced,

so we must have S = nC1 + k1 = nC2 + k2, where k1 and k2 are nonegative integers

less than or equal to n. Suppose without loss of generality that k2 −k1 is nonegative,

then it must be divisible by n. By assumption, this can only happen if k2 = k1, in

which case C1 = C2, and the lists have the same members.

Proposition 3.1.6 The semigroup UL
c(T )(r) is generated in degree 1.

Proof 3.1.7 Recall that by Remark 2.3.2, for any edge E ∈ Y the edge weights

of a factorization i∗v(ω) = η1 + . . . ηk satisfy ηi(E) = ⌊ i∗v(ω)(E)
k

⌋ or ⌈ i∗v(ω)(E)
k

⌉. Take

any two v1, v2 which share a common edge E in c(T ). Let ω ∈ UL
c(T )(r)[k] and

let {η1
1, . . . , η

1
k} and {η2

1, . . . , η
2
k} be factorizations of i∗v1

(ω) and i∗v2
(ω) respectively.

Then the lists {η1
1(E), . . . , η1

k(E)} and {η2
1(E), . . . , η2

k(E)} are balanced and have the

same sum, so by Lemma 3.1.4 they are the same list up to some permutation. We

may glue factors η1
i and η2

j when η1
i (E) = η2

j (E), the above observation gurantees

that any η1
i has an available partner η2

j . The proposition now follows by induction

on the number of v ∈ I(c(T )). This implies Theorem 1.4.3.
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3.2 Proof of theorem 1.4.4

In this section we show how to get all relations in UL
c(T )(r) from those lifted

from UL
Y . The procedure follows the same pattern as the proof of Theorem 1.4.3.

We consider the image of a relation ω1 + . . . + ωn = η1 + . . . + ηn under a map

i∗v : UL
c(T )(r) → UL

Y , using Theorem 2.3.3 we convert this to a trivial relation using

relations of degree at most 3. We then give a recipe for lifting each of these relations

back to UL
c(T )(r). The result is a way to convert ω1 + . . . + ωn = η1 + . . . + ηn to a

relation which is trivial over the trinode v using quadrics and cubics. In this way

we take a general relation to a trivial relation one v ∈ I(c(T )) at a time.

Definition 3.2.1 A set of degree 1 elements {ω1, . . . , ωk} in UL
c(T )(r) is called Bal-

anced when the list {ω1(E), . . . , ωk(E)} is balanced for all E ∈ c(T ). A relation

ω1 + . . . + ωk = η1 + . . . + ηk in UL
c(T )(r) is called Balanced when {ω1, . . . , ωk} and

{η1, . . . , ηk} are balanced.

The following lemmas show that we need only consider balanced relations.

Lemma 3.2.2 Any list of nonegative integers S = {X1, . . . , Xn} can be converted

to a balanced list T = {Y1, . . . , Yn} with
∑n

i=1 Yi =
∑n

i=1 Xi by replacing a pair Xi

and Xj with ⌊Xi+Xj

2
⌋ and ⌈Xi+Xj

2
⌉ a finite number of times.

Proof 3.2.3 Let d(S) be the difference between the maximum and minimum ele-

ments of S. It is clear that with a finite number of exchanges

{Xi, Xj} → {⌊
Xi + Xj

2
⌋, ⌈

Xi + Xj

2
⌉}
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We get a new set S ′ with d(S) > d(S ′), unless d(S) = 1 or 0. Since this happens if

and only of S is balanced, the lemma follows by induction.

Lemma 3.2.4 Let

ω1 + . . . + ωk = η1 + . . . + ηk

be a relation in UL
c(T )(r) then it can be converted to a balanced relation

ω′
1 + . . . + ω′

k = η′
1 + . . . + η′

k

using only degree 2 relations.

Proof 3.2.5 First we note that using the proof of Theorem 1.4.3 we can factor the

weighting ω1 + ω2 into ω′
1 + ω′

2 so that {ω′
1, ω

′
2} is balanced. Using this and Lemma

3.2.2 we can find

ω′
1 + . . . + ω′

k = ω1 + . . . + ωk

such that the set {ω′
1(E), . . . , ω′

k(E)} is balanced for some specific E, using only

degree 2 relations. Observe that if {ω1(F ), . . . , ωk(F )} is balanced for some F , the

same is true for {ω′
1(F ), . . . , ω′

k(F )}, after a series of degree 2 applications of 1.4.3.

This shows that we may inductively convert {ω1, . . . , ωk} to {ω′
1, . . . , ω

′
k} with the

property that {ω′
1(E), . . . , ω′

k(E)} is a balanced list for all edges E, using only degree

2 relations. Applying the same procedure to the ηi then proves the lemma.

The next lemma shows how we lift a balanced relation in UL
Y to one in UL

c(T )(r).

Lemma 3.2.6 Let {ω1 . . . ωk} be a balanced set of elements in UL
c(T )(r). Let i∗v(ω1)+

. . .+ i∗v(ωk) = η1 + . . .+ηk be a degree k relation in the appropriate S(m1,m2,m3) ⊂
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UL
Y . Then the ηi may be lifted to weightings of c(T ) giving a relation of degree k in

UL
c(T )(r) which agrees with the relation above when i∗v is applied, and is a permutation

of i∗v′(ω1) . . . i∗v′(ωk) for v′ 6= v.

Proof 3.2.7 Let c(T )(E) be the unique connected subtrivalent tree of c(T ) which

includes v and has the property that any path γ ⊂ c(T )(E) with endpoints at a ver-

tex v′ 6= v in c(T )(E) and v includes the edge E (see Figure 3.1), define c(T )(F )

and c(T )(G) in the same way. To make η′
1 . . . η′

k over c(T ), note that the list

{i∗c(T )(E)(ωi)(E)} is the same as the list {ηi(E)} up to permutation, because they

are both balanced lists with the same sum and the same number of elements, so we

may glue these weightings together to make a tuple over c(T ).

E

G

c(T)(F)

c(T)(E) c(T)(G)

F

Figure 3.1: Component subtrees about a vertex

Suppose we are given a balanced relation

ω1 + . . . + ωk = η1 + . . . + ηk.

We can pick any v ∈ I(c(T )), and consider the relation
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i∗v(ω1) + . . . + i∗v(ωk) = i∗v(η1) + . . . + i∗v(ηk).

We convert this to a trivial relation using a series of relations in the appropriate

S(m1,m2,m3), then lift the result back to UL
c(T )(r). For any v′ 6= v in I(c(T )), this

process only permutes the members of {i∗v′(ω1), . . . , i
∗
v′(ωk)} and {i∗v′(η1), . . . , i

∗
v′(ηk)},

which does not change whether or not this was a balanced relation. In this way, we

may convert any balanced relation in UL
c(T )(r) to a trivial relation one v ∈ I(c(T ))

at a time.

Proposition 3.2.8 Let N be the maximum degree of relations needed to generate

all relations in the semigroups S(m1,m2,m3). Then the semigroup UL
c(T )(r) has

relations generated in degree bounded above by N .

This proposition, coupled with Theorem 2.3.3 proves Theorem 1.4.4. We recap

the content of the last two sections with the following theorem.

Theorem 3.2.9 Let (T , r, L) be admissible. Then the ring C[UL
c(T )(r)] has a pre-

sentation

0 −−−→ I −−−→ C[X] −−−→ C[UL
c(T )(r)] −−−→ 0

where X is the set of degree 1 elements of UL
c(T )(r), and I is the ideal generated by

two types of binomials,

[ω1] ◦ . . . ◦ [ωn] − [η1] ◦ . . . ◦ [ηn].

1. Binomials where n ≤ 3, i∗v(ω1) + . . . + i∗v(ωn) = i∗v(η1) + . . . + i∗v(ηn) is
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a balanced relation in UL
Y for some specific v, and {i∗v′(ω1), . . . , i

∗
v′(ωn)} =

{i∗v′(η1), . . . , i
∗
v′(ηn)} for v 6= v′.

2. Binomials where n = 2 and i∗v(ω1)+i∗v(ω2) = i∗v(η1)+i∗v(η2) such that {i∗v(ω1), i
∗
v(ω2)}

is balanced for all v ∈ I(c(T )).

This induces a presentation for C[SL
T (r)] by isomorphism.
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Chapter 4

Special cases and observations

In this chapter we collect results on some special cases of C[SL
T (r)]. In par-

ticular we study some instances when cubic relations are unnecessary, we give some

examples where the semigroup is not generated in degree 1, we analyze the case when

L is allowed to be odd, and we give instances where cubic relations are necessary.

4.1 The caterpillar tree

One consequence of the proof of Theorem 2.3.3 is that a semigroup U2L
c(T )(r)

which omits or only partially admits the semigroup S(0, 0, 0) or S(L − 1, L − 1, 0)

as an image of one of the morphisms i∗v manages to avoid degree 3 relations entirely.

This happens for (T0, 2r, 2L) where T0 is the Caterpillar tree.

Proposition 4.1.1 Let T0 be the caterpillar tree, then S2L
T0

(2r) is generated in degree

1, with relations generated by quadrics.

Proof 4.1.2 We catalogue the weights i∗v(ω) which can appear in degree 1. For the

sake of simplicity we divide all weights by 2. Suppose iv(G) is an external edge, then

i∗v(ω)(E) and i∗v(ω)(F ) satisfy the following inequalities

i∗v(ω)(E) ≤ i∗v(ω)(F ) + r(i)

i∗v(ω)(F ) ≤ i∗v(ω)(E) + r(i)
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i∗v(ω)(E) + i∗v(ω)(F ) + r(i) ≤ 2L

where i∗v(ω)(G) = r(i). These conditions define a polytope in R2 with vertices (L,L−

r(i)), (L−r(i), L), (r(i), 0) and (0, r(i)). Pictured below is the case L = 9, r(i) = 3.

Figure 4.1: The case L = 9, 2r(i) = 6

When two edges are external, the polytope is an integral line segment. Note

that the intersection of any lattice cube in R2 with the above polytope is a simplex or

a unit square. Both of these polytopes have at most quadrics for relations in their

semigroup of lattice points. Hence the argument used to prove Theorem 1.4.4 shows

that U2L
c(T0)(r) needs only quadric relations.

Corollary 4.1.3 If L > 1, and r is a vector of nonnegative integers, the ring

RG(2L, 2r) has a presentation with defining ideal generated by quadrics. In par-

ticular, the second Veronese subring of any RG(r, L) has such a presentation if

L > 1.
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4.2 Counterexamples to degree 1 generation

Now we’ll see examples of (r, T , L) such that SL
T (r) is not generated in degree

1. We will begin by defining a certain class of paths in the tree T . Let T have

an even number of leaves. We claim that there is a set of edges A(T ) ⊂ E(T ) the

members of which are assigned odd numbers by any weighting ω which assigns an

odd number to each leaf of T . It suffices to establish the stronger result that the

parity of members of V (T ) determines the parity of every edge in T . To see this,

first note that the parity of two edges of a trinode determines the parity of the third

edge, an induction argument on the number of edges in T does the rest.

Proposition 4.2.1 Let T be as above. The set A(T ) is a union of edges from

disjoint paths in T .

Proof 4.2.2 Exactly two out of three edges in each trinode can be assigned an odd

number, by the parity condition. This establishes the proposition.

From now on we let O(T ) denote the set of paths established by the previous

proposition.

E1

E8

E7

E6

E5

E4

E3

E2

Figure 4.2: E2 and E3 are lone leaves connected by an element of O(T )
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Proposition 4.2.3 Let (r, T , L) be such that the edges connected to the endpoints

of each member of O(T ) are given the same parity by r. Assume further that there

is a γ ∈ O(T ) such that end points of γ are connected to edges e and f with r(e)

and r(f) odd. If there is a degree 2 weighting which assigns 0 to any edge in γ, then

S2L
T (r) is not generated in degree 1.

Proof 4.2.4 All degree 1 elements must assign odd numbers to the edges in γ. No

two odd numbers add to 0.

Corollary 4.2.5 For simplicity, let L > 1. The semigroup S2L
T (~1) is generated in

degree 1 if and only if T is good.

Proof 4.2.6 First note that the if portion of this statement is taken care of by

Theorem 1.4.3. Suppose now that T has lone leaves. Then two of these leaves are

connected by a member γ of O(T ). Pick any non-leaf edge e in γ, and consider

the weighting ω which assigns 0 to e and 2 to every other edge in T . We have

ω ∈ S2L
T (~1)[2] for any L, and by proposition 4.2.3 ω cannot be factored.

4.3 The case when L is odd

When the level L is odd, the polytope P3(L) is no longer integral, however

its Minkowski square P3(2L) is integral, so clearly there are elements of P3(2L)

which cannot be integrally factored, specifically the corners. This observation has a

generalization.

Definition 4.3.1 Let IP3(L) be the convex hull of the integral points of P3(L). Let
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Ω be the set of elements in the graded semigroup of lattice points of P3(L) such that

1
deg(Q)

Q ∈ P3(L) \ IP3(L).

Let (E,F,G) = Q ∈ P3(L) be integral with L odd, and suppose E, F , or

G ≥ L−1
2

+ 1. Then, by the triangle inequalities we must have F + G ≥ L−1
2

+ 1, so

E + F + G ≥ L + 1, a contradiction. This shows that IP3(L) is contained in the

intersection of P3(L) with the halfspaces E,F,G ≤ L−1
2

, this identifies IP3(L) as

the convex hull of the set

{(0, 0, 0), (
L − 1

2
,
L − 1

2
, 0), (

L − 1

2
, 0,

L − 1

2
), (0,

L − 1

2
,
L − 1

2
),

(
L − 1

2
,
L − 1

2
, 1), (

L − 1

2
, 1,

L − 1

2
), (1,

L − 1

2
,
L − 1

2
)}.

The case IP3(5) is pictured below.

Figure 4.3: The Polytope IP3(5)

Proposition 4.3.2 Any Q ∈ Ω cannot be integrally factored.

Proof 4.3.3 This follows from the observation that if Q = E1 + . . . + En then 1
n
Q

is in the convex hull of {E1, . . . , En}.
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A factorization of any element ω such that i∗v(ω) = Q gives a factorization of

Q. So any ω ∈ UL
c(T )(r) with a i∗v(ω) ∈ Ω is necessarily an obstruction to generation

in degree 1, this also turns out to be a sufficient obstruction criteria.

Theorem 4.3.4 Let T and r satisfy the same conditions as admissibility, and let

L 6= 2. Then UL
c(T )(r) is generated in degree 1 if and only if

i∗v(ω) ∈ UL
Y \ Ω

for all v ∈ I(c(T )), ω ∈ UL
c(T )(r). In this case all relations are generated by those of

degree at most 3.

Proof 4.3.5 We analyze IP3(L) in the same way we did P3(2L). The reader can

verify that the integral points of C(m1,m2,m3)∩ P3(L) are the same as the integral

points of C(m1,m2,m3) ∩ IP3(L). The possibilities are represented by slicing the

cubes in Figure 2.2 along the plane formed by the upper right or lower left collection

of three non-filled dots, depending on the cube, and then restricting to the convex

hull of the remaining integral points. All cases are lattice equivalent to one of the

polytopes listed in Figure 2.1, after considering two and one dimensional cases as

facets of neighboring three dimensional polytopes. Since any element of UL
Y not in

Ω is necessarily a lattice point of a Minkowski sum of IP3(L), the theorem follows

by the same arguments used to prove Theorems 1.4.3 and 1.4.4
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4.4 Necessity of degree 3 relations

Now we show that there are large classes of admissible (T , r, L) which require

degree 3 relations. We will exhibit a degree 3 weighting which has only two factor-

izations. The tree T with weight ωT is pictured below, it is an element of ST (~2). In

all that follows all weightings are considered to have been halved.

2

3 5

3
3

2

5

3

33

2

3

5
3

3

Figure 4.4: ωT

Notice that ωT has 3-way symmetry about the central trinode, we will exploit

this by considering the tree T ′ with restricted weighting ωT ′ pictured in Figure 4.5.

We find the weightings that serve as a degree 1 factors of ωT ′ . First of all, any

degree 1 weighting which divides ωT ′ must be as in Figure 4.6.

3 5

2

3
3

Figure 4.5: ωT ′

It suffices to find the possible values of X and Z. Both must be ≤ 2, which

shows that Z can be either 2 or 1. This implies that two factors have Z = 2 and

one factor has Z = 1. For X, we note that X = 0 cannot be paired with Z = 2
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1

1

1

X

Z

Figure 4.6:

because of the triangle inequalities. This implies that X cannot equal 2, and that

both factors with Z = 2 have X = 1, and Z = 1 is paired with X = 0. This

shows that there are exactly two possibilities determined by the value of X, both

are shown in Figure 4.7. Any factorization of ωT is determined by its values on

the central trinode, and these values must be weights composed entirely of 0 and 1.

There are exactly two such variations, making the Degenerated Segre Cubic.

1 2

1

1
1 1 1

1
1

0

Figure 4.7:

We have not specified a level L for this weighting, but the same argument

applies for any level large enough to admit ωT as a weighting in degree 3. For any

tree T ∗, edge e∗ ∈ tree∗, and weight ωT ∗ we can create a new weight on a larger tree

by adding a vertex in the middle of e∗, attaching a new leaf edge at that vertex, and

weighting the both sides of the split e∗ with ωT ∗(e∗), and the new edge with 0. Using

this procedure on any (T ∗, e∗, ωT ∗), and (T , e, ωT ) for any edge e ∈ T , can create

a new weighted tree by identifying the new 0-weighted edges. This construction is

called the pointed graft of two pointed trees, and was introduced in Definition 2.25
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of [BW]. An example is pictured below. In this way many examples of unremoveable

degree 3 relations can be made.

X

0

X X

Z
Z Z

Figure 4.8: Grafting two tree weightings.
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