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Abstract

Joint source-channel coding for stationary memoryless and Gauss-Markov sources and
binary Markov channels is considered. The channel is an additive-noise channel where the
noise process is an M-th order Markov chain. Two joint source-channel coding schemes
are considered. The first is a channel-optimized vector quantizer — optimized for both
source and channel. The second scheme consists of a scalar quantizer and a maximum
a posteriori detector. In this scheme, it is assumed that the scalar quantizer output
has residual redundancy that can be exploited by the maximum a posteriori detector
to combat the correlated channel noise. These two schemes are then compared against
two schemes which use channel interleaving. Numerical results show that the proposed
schemes outperform the interleaving schemes. For very noisy channels with high noise

correlation, gains of 4 to 5 dB in signal-to-noise ratio are possible.
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1 Introduction

Source and channel coding are two problems that have traditionally been dealt with indepen-
dently. This is due mainly to Shannon’s source-channel separation principle [1], [2], which
states that the two problems can be treated separately without loss of optimality. However,
the separation principle holds only in the asymptotic case — when delay and complexity are
not constrained. Recent works [3], [4], [5] have shown that, when delay and/or complexity are
constrained, treating these problems jointly (i.e., joint source-channel coding) may result in
improved performance over the traditional technique of tandem source-channel coding.

With the exception of [6] and (7], most of the previous work on joint source-channel coding
has assumed that the channel is memoryless, disregarding the fact that real-world communica-
tion channels often have memory. In this work, we will consider two joint source-channel coding
schemes for channels with memory. More specifically, the channel is assumed to be a binary
stationary ergodic M-th order Markov channel derived from the Polya contagion urn model
[8]. This is an additive-noise channel where the noise sample, Z;, depends only on the sum
of the previous M noise samples (Z;_1, Z; o, ..., Zi_n). Memoryless sources with generalized

Gaussian distributions and Gauss-Markov sources will be considered.
We first consider the design of a k-dimensional, rate R bits/sample channel-optimized vector

quantizer (COVQ) [9], [10] designed for the given source and channel. The COVQ encoder
output is transmitted over the Markov channel. For each block of k source samples, the COVQ
encoder produces kR bits for transmission. We assume that kR is large enough with respect
to M (kR > M) so that the memory in the channel can be exploited in kR channel uses.
Thus, by a proper design of the COVQ, we exploit the intra-block memory of the channel —
but not the inter-block memory. The COV(Q) design algorithm is a straightforward extension
of the algorithm described in [9] and [10], where the 25% x 2% channel transition matrix is
now given in terms of the transition probabilities of the Markov channel.

We then exploit both intra-block and inter-block memories of the channel. Here, we consider
a scalar quantizer (SQ) designed for the noiseless channel. The SQ output is assumed to be
redundant so that its entropy (in bits/channel use) is strictly less than the channel capacity
(bits/channel use). After a proper assignment of binary indices to the SQ output, we transmit
the indices directly over the channel. At the receiver, we exploit the redundancy of the SQ
output and the memory of the channel through the use of a sequence maximum a posteriori

(MAP) detector. This is analogous to previous works on MAP detection of a Markov source



over a memoryless channel [11], [12].

The performances of the two proposed schemes are compared against the performances of
two interleaving schemes. In the interleaving systems, the Markov channel is rendered mem-
oryless by an interleaver and de-interleaver!. Here, we assume that the source and channel
codes are designed for the memoryless channel. Thus, the purpose of the interleaver and de-
interleaver is to convert the Markov channel (with memory) into a memoryless channel. In
the first interleaving scheme, we consider a COV(Q designed for a memoryless channel with
the same bit error rate as the Markov channel. This COVQ is then used over the interleaved
channel (combination of interleaver, Markov channel and de-interleaver). This system is com-
pared against the COVQ designed for the Markov channel. In the second interleaving system,
we consider an SQ with its output transmitted over a memoryless (interleaved) channel. A
sequence MAP detector, designed for the memoryless channel, is then used at the receiver.
This scheme is compared against the MAP detection scheme operating directly on the Markov
channel (without the use of interleaving).

The rest of this paper is organized as follows. In Section II, we present the Markov channel
model. The two joint source-channel coding schemes are described in Section III. Simulation
results are provided in Section IV. In Section V, comparisons between the proposed schemes
and the corresponding interleaving schemes are made. Finally, the conclusions are stated in
Section VI.

2 Channel Model

Consider a discrete channel with memory, with common input, noise and output binary alpha-

bets and described by the following equation: Y; = X; & Z;, for i = 1,2, 3,... where:
e @ represents the addition operation modulo 2.

e The random variables X;, Z; and Y; represent, respectively, the input, noise and output

of the channel.

e {X;} L {Z}, ie., the input and noise sequences are independent from each other.

e The noise process {Z;}2, is a stationary mixing (hence ergodic) Markov process of order

M. By this we mean that the noise sample, Z;, depends only on the previous M noise

I* It is assumed that the interleaver and de-interleaver are ideal so that the Markov channel is perfectly
rendered memoryless.



samples, i.e., fori > M + 1,

PI‘{Z, = ei]Zl = €1y..., Zz—l = ei—l} =
Pr{Z;=e|Z_pm =€i-p,-.., Zicy = €1}

We assume that the marginal distribution of the noise process is given by
PI‘{ZZ = 1} =e=1-— PI‘{ZZ = 0},

where € € [0,1/2) is the channel bit error rate (BER). Furthermore, we assume that the process
{Z:} is generated by the finite-memory contagion urn model described in [8]. According to

this model, the noise sample Z; depends only on the sum of the previous M noise samples?.
Thus, for i > M + 1,

Pr{Z;=1Zi—y =€i—pm,..., Zi1 = €;_1}

i—1

=Pe{Zi=1 ¥ %= Y. o)

j=i-M j=i-M

et ( §~;§_M e;)d
1+M§
where e; = 0 or 1, for j =4 — M,...,i — 1. The non-negative parameter § determines the
amount of correlation in {Z;}. The correlation coefficient of the noise process is 6/(1 + 6).
Note that if 6 = 0, the noise process {Z;} becomes independent and identically distributed
(ii.d.) and the resulting additive noise channel reduces to a binary symmetric channel (BSC).
Finally, we note that the channel is entirely characterized by three parameters: ¢, § and M.

The above channel model offers an interesting and less complex alternative to the Gilbert-
Elliott model and others [13].

2.1 Distribution of the Noise

For an input block X = (X3, X5,...,X,) and an output block Y = (¥1,Y%,...,Y,), we denote
the block channel transition probability matrix Pr{Y = y|X = x} by Q(y|x).

e For block length n < M, we have [§]:

2For M = 1, the model is general, i.e., it can represent any binary first-order Markov chain with positive
transition probabilities.



Q(y|x) = L(n,d, ¢, ),

where d = dy(x,y) is the Hamming distance between x and y and

(125 (e + 48)| [T (1 — € + j6)]
[T (1 + 16)]

L(n,d,e,d) =

e For n > M + 1, we have [8]:

Q(ylx) = Pr{Z = e}

i €450 % e+ 86"
= LM;s,60) ]I [1+M6] [1_1+M5] ’

i=M+1

(1)

where e = (e1,€y,...,6,), 6, =2; Dy, s=e1+---+ey and s; = €1 + -+ ;.

2.2 Capacity of the Channel

The capacity C' of this channel is given by [8]:

M (M €+ s
oot (st (25

s=0

where hy(z) = —zlogy(z) — (1 — z) logy(1 — z) is the binary entropy function. The capacity
is monotonically increasing with § (for fixed €, M) and M (for fixed ¢,d), and monotonically

decreasing with e (for fixed 4, M).

3 Joint Source-Channel Coding Schemes

3.1 Channel Optimized Vector Quantizer (COVQ)

The ensuing formulation of COVQ follows that of [10]. Consider a real-valued stationary and
ergodic source, ¥V = {V;}2,. The source is to be encoded by a k-dimensional, n-bit/vector
COVQ whose output is to be transmitted over the binary Markov channel. The coding system,

depicted in Figure 1, consists of an encoder mapping, v, and a decoder mapping, 3. The
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Figure 1: Block Diagram of a COV(Q System.
encoder mapping v : R¥ — {0, 1} is described in terms of a partition P = {Sx C R* : x ¢
{0,1}"} of R* according to
y(v)=x ifveSx, xe{0,1}"

where v = (vy,vs,...,vk) is a block of k successive source samples. The channel takes an

input sequence x and produces an output sequence y. It is given in terms of the block channel
transition matrix Q(y|x). Finally, the decoder mapping 3 : {0,1}" — R” is described in terms
of a codebook € = {cy € R* : y € {0,1}"} according to

By)=cy, vye{01}"

The encoding rate of the above system is R = n/k bits/sample and its average squared-error

distortion per sample is given by [10]:

p-1% f(v){ZQ<y|x>||v—cy||2}dv, ©)
x /5x y

where f(v) is the k-dimensional source probability density function (p.d.f.). For a given source,
channel, ¥ and n, we wish to minimize D by a proper choice of P and C.

From (2), we see that for a fixed C the optimal partition P* = {S%} is given by [10]:

Sx = {V Q) — eyl
y

< ;Q(ﬂi)nv - Cy”z,Vi € {07 1}n} ) (3)
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Figure 2: Block Diagram of Joint Source-Channel Coding System Using MAP Detection (SQ-
MAP).

x € {0,1}". Similarly, the optimal codebook C* = {c},} for a given partition is [10]:

_ Yx Q(ylx) fsx vf(v)dv

V= Tk Q) foy VY “

The COVQ design algorithm is a straightforward extension of the iterative algorithm in
[10], [14]. The algorithm starts out with an initial codebook, C(®). With this fixed, it finds the
optimal partition, P), using (3). With P(1) fixed, it uses (4) to find the optimal codebook,
CY). This procedure is repeated until the relative change in distortion is sufficiently small.
Note that the average distortion, D, forms a monotonically non-increasing sequence. Thus,
the algorithm is guaranteed to converge to a locally optimal solution (since D > 0). We will
assume that n > M + 1. Therefore, the block channel transition matrix, Q(y|x), will always

be given by (1).

3.2 MAP Detection

Next consider the system depicted in Figure 2. Here, instead of using COVQ we use a scalar
quantizer (SQ). The SQ is also described by «y and 3 as above — except that k =1 and R =n
bits/sample. Instead of optimizing the SQ for the Markov channel, we make use of the residual
redundancy of the SQ to combat channel noise. This is in the spirit of the approaches in [5],
[11] and [12].

The SQ in Figure 2 is designed using the Lloyd-Max formulation [15], [16] which assumes



the channel is noise-free.

Since the source, ¥V = {V;}2,, is stationary and X; is a function of V; for each 4, the SQ
encoder output process, X = {X;},, is also stationary. Let Hy(X) be the entropy rate of X
and H(X;) be the entropy of X;. Define

1>

PD R'“H(Xl),

o = H(Xy) — Ho(X),
pr 2 pp + pp = R — Hyo(X),

as the redundancy due to the non-uniformity of the distribution, the redundancy due to the
memory and the total redundancy, respectively. We will assume that pr > 0. In the following,
we will make use of the redundancy in X’ (the amount of which is measured by pr) to combat
channel errors. This is accomplished by using a sequence MAP detector. We first consider the

case where V is i.i.d.
If Visiid., sois X. Thus ppy = 0 and the only redundancy is that due to the non-

uniform distribution of X;. In this case the sequence MAP detector is described as follows.
The sequence MAP detector observes a sequence Yy~ = (y1,¥s,...,¥y) € {0,1}*" and makes

"=

an estimate of the sequence x X1,X2,...,Xn) € {0,1}™ according to

%V = argmax Pr{X" = x"|Y" = y"}.
X

It can be easily shown that (see [12]) if n > M,

% = arg max{ log [Q(y, [x1)p(x.)

N
+3log [Q(ei|ei_1>p<xi)]} , )
=2
where ; = x; &y, € {0,1}", Q(e;lei_1) = Pr{Z; = €;|Z;_; = e;_,}, and p(x;) = Pr{X; = x;}.
Here, p(x;) is determined by integrating the marginal source p.d.f. f(v;) on the interval Sx,.
Note that for ¢ > 2,

~ ni €+ 561 e+s:0]
Q(eilez—l) = H [ ! } ll - 2 ] >
sty (T3 L+ Mo




where €;_1 = (€n(i-2)+1, En(i-2)42; - - - €n(i-1)), € = (En(i-1)+1) €n(i-1)+2; - - -, €ni) and 85 = €;_; +
ey

As expressed in (5), the sequence MAP detector can be implemented using a modified
version of the Viterbi algorithm, where x; is the state at time instant ¢. The trellis has 2"
states with 2" branches leaving and entering each state. For a branch leaving state x;_; and
entering state x;, the path metric is log[Q(x; ® y;|x;—1 ® y,_,)p(x:)].

If YV has memory, it is in general difficult to characterize the memory of X. However, in
this case, we will make a simplifying assumption that X forms a first-order discrete Markov

chain® with transition probability matrix
P(Xi|Xi_1) = PI‘{:X.z = X,;|Xi_1 = xi—-l}, (6)

x;,X;—1 € {0,1}". In this case, (5) is replaced by
% = argmax{ 10g [Q(,[x))p(x)]
N ~
+ Zlog [Q(eilei—l)P(xilxi—l)]} ) (7)
=2

and the path matrix from state x,_; to state x; is log[Q(x; @ y;|xi—1 ® y;_1) P(xi|xi_1)]. The
transition probability matrix, P(x;|x;_1), is determined by measuring the relative frequency
of occurences of a long training sequence (640,000 source samples). From here on, the above
scheme will be referred to as SQ-MAP. We note that the complexity and delay of SQ-MAP is
due mainly to the MAP detector.

In some special circumstances, the output of the MAP detector will always be identical to
its input. In such cases, we say that the MAP detector is useless. As an example, when X is
iid. and M = n =1, it is shown in [17] that the MAP detector is useless if

l—e+6| [1—p
e+ D
where p = Pr{X = 0} € (1/2,1]. If (8) does not hold, then the sequence MAP detector will be

useful for sufficiently large N [17]. Detailed analyses of the sequence MAP detector are given
in [17] for the case of M = n = 1.

> 1, (8)

3Note that this assumption is not accurate in general — even in the case where V is a first-order Gauss-
Markov source.



In this paper, we are mainly interested in cases where M = 1 and n > 1. In these cases, little
is known about the usefulness of the MAP detector. However, an important factor contributing
to the performance of the MAP detector is how the binary codewords are assigned to the SQ

quantization levels. This issue will be discussed in the following section.

4 Numerical Results

4.1 Memoryless Sources

In this subsection, we will assume that the source is i.i.d. with distribution given by

_an(o,0) N o
) = S esp{=lafas o), )
where n(a,0) = 07! [['(3/a)/T(1/a)]"'/2, a > 0 is the exponential rate of decay and o2 is
distribution variance. Note that for o = 2 the above is the Gaussian p.d.f. For o = 1, it is the
Laplacian p.d.f. Any i.i.d. source with distribution given by (9) is referred to as a generalized

Gaussian source.
Numerical results for COVQ over binary Markov channels with § = 10 and M = 1 and

generalized Gaussian sources with shape parameter o = 0.5, 1 and 2 are presented in Tables 1,
2 and 3, respectively. Signal-to-noise ratio (SNR) performances are given in dB for rates
R = 2, 3 and 4 bits/sample and channel BER ¢ = 0.0, 0.005, 0.01, 0.05 and 0.1. Also
provided in Tables 1-3 are the optimal performances theoretically attainable (OPTA) obtained
by evaluating D(RC), where D(-) is the distortion-rate function of the source for the squared-
error distortion measure and C' is the channel capacity in bits per channel use.

The COVQ results were obtained from 500,000 training vectors. A vector quantization
codebook (optimized for the noiseless channel) with codewords assigned by a simulated an-
nealing algorithm (described in [18]) is chosen as the initial codebook for the COVQ with

€=0.005. The final codebook for ¢=0.005 is chosen as the initial codebook for e=0.01, and so
on.
Simulation results for SQ-MAP are given in Tables 4-6. The simulations were run 100

times, with N=1000 source samples used in each run. The average distortion, averaged over
the 100 runs, is given in dB. The SQ’s used in the simulations were symmetric Lloyd-Max
scalar quantizers. As mentioned earlier, how the quantization levels are mapped to binary
codewords is an important consideration. We have examined two codeword assignments: the

natural binary code (NBC) and the folded binary code (FBC). An example of these two codes

9



is illustrated in Figure 3. Note that the least significant bit (LSB) is the leftmost bit. Also, the
FBC sign bit is the LSB. From our observations, FBC consistently outperforms NBC. FBC
was used in the SQ-MAP results in Tables 4, 5 and 6.

T I I I I I
NBC 000 100 010 110001 101 o011 111
FBC 011 001 010 000100 110 101 111

Figure 3: NBC and FBC Codeword Assignments for an 8-Level Lloyd-Max Scalar Quantizer;
Generalized Gaussian Source with Shape Parameter oo = 1.

Note that, when M=1, Q(ei|ei_1) depends only on e; and ep;—_1) (most significant bit
(MSB) of e;_1). Thus, for fixed yV, the path metric from state x;_; to state x; depends
only on x; and z,,—1) (MSB of x;_;). Therefore, the MSB of the binary codeword plays an
important role in the Viterbi search. Now note that, because of symmetry, the MSB of NBC
is 0 or 1 with equal probability. Hence, the MSB of NBC has zero redundancy. FBC, on the
other hand, has the property that the MSB is much more likely to be 0 than 1. Hence, the
MSB of FBC has high redundancy. Therefore, it is easier to determine whether e,;_1y=0 or 1
with FBC than with NBC. We believe that this is the reason for the superiority of FBC over
NBC in the SQ-MAP scheme. Also, note that the performance of the MAP detector tends
to increase as the amount of residual redundancy increases. The redundancies of symmetric
Lloyd-Max scalar quantizers are tabulated in Table 7. We next compare COVQ and SQ-MAP.

The COVQ system is a (locally) optimal system that efficiently exploits the intra-block
memory. Both encoder and decoder of this system are optimal in the sense of minimizing the
mean squared error. However, this system does not make any use of the inter-block memory.
On the other hand, the SQ-MAP system, which exploits both memories, consists of a sub-
optimal encoder and a MAP decoder that minimizes the error probability but not the mean
squared error. For fixed M, the effect of the intra-block memory of the channel becomes more
dominant as kR increases. Therefore, for large blocks of kR bits (kR >> M), the COVQ
system outperforms the SQ-MAP system (e.g. for k =1, R = 4 in Tables 1-6).

10



So far, we have only considered the case where M =1 and § = 10. In Tables 8 and 9, we
provide COVQ and SQ-MAP results for source shape parameter o = 0.5, § = 10.0, rate R = 4
bits/sample and M = 0, 1, 2 ,3 and 4. Note that for almost all cases, the performances of
both schemes increase as M increases. This is essentially due to the fact that as the memory
M increases, both intra-block and inter-block memories increase; the MAP detector exploits
this increase in combating channel errors. Similarly, the COV(Q scheme exploits the increase
in intra-block memory as long as kR is sufficiently larger than M. In Table 10, we provide
results for parameters: o = 0.5, M =1, R = 4 bits/sample, and § = 0,1,2,5,10. In general,
the performances increase as J, and hence, channel capacity, increases. However, there are
some instances where the SNR decreases when d goes from zero to one. For COVQ), this may
be due to the poor choice of initial codebook used in the design of the COVQ. For SQ-MAP,
we have observed that the bit and symbol error probabilities of the sequence MAP detector

actually decreases as § increases. However, this does not directly translate to an increase in

SNR.

4.2 (Gauss-Markov Sources

In this subsection, we consider a first-order Gauss-Markov source which is described by the

recursion
Vi=oVioi + U,

where ¢ € (—1,1) is called the correlation parameter of the process and {U;} is an i.i.d.
sequence of Gaussian random variables. Results for COVQ and SQ-MAP are given in Tables 11
and 12, respectively, for ¢ = 0.9. The SQ-MAP results here are consistently better than the
results for the i.i.d. Gaussian source (Table 6). This is expected since there is an additional
redundancy due to memory. The amounts of residual redundancy of symmetric Lloyd-Max

scalar quantizers are listed in Table 7.

5 Comparisons with Interleaving

The traditional technique for handling a channel with memory is to use interleaving. In
the following, we consider two channel interleaving schemes and compare their performances
against COVQ and SQ-MAP. The reasoning for making such comparisons is the following.
Suppose we are given a channel with memory. Suppose further that we know exactly how the

channel memory is characterized (say by the Markov condition). Then how much improvement

11



in our system does this knowledge provide us? If we know nothing about the channel memory,
the best approach is to use interleaving to render the channel memoryless and then design a
system for the memoryless channel. On the other hand, if we know exactly how the channel is
characterized, then we may be better off designing our system ‘optimally’ for this channel. In
the following, we examine how much the quantization system can be improved with knowledge
of the channel memory characteristics.

The first interleaving scheme, COVQ-IL, consists of a COVQ optimized for a BSC and
an interleaver. It is assumed that the interleaving length is sufficiently large so that the
combination of interleaver, Markov channel and de-interleaver is equivalent to a BSC. The SNR,
performances of this scheme are given in Tables 1, 2, 3, 8, 10 and 11. COVQ-IL is compared
against COVQ (optimized for the Markov channel). Observe that in almost all cases COVQ
outperforms COVQ-IL. For low values of the channel BER ¢, COVQ-IL sometimes slightly
beats COVQ-IL (e.g., Table 1, ¢ = 0.005, k = 1 and R = 3). This may be due to the fact
that the index assignment scheme (simulated annealing), used to choose the initial codebook
for the COVQ algorithm, operates under the assumption that the channel is memoryless.
This assignment, may therefore perform poorly over the Markov channel. When COVQ beats
COVQ-IL, the largest gain is 5.47 dB which occurs in Table 11 for R = 4 bits/sample, k = 2
and € = 0.1. In general, 4 to 5 dB gain is possible for large values of € and high noise correlation
(6 = 10). The gain of COVQ over COVQ-IL is due to the fact that COVQ exploits the noise
memory whereas COVQ-IL does not.

The second interleaving scheme, SQ-IL-MAP, consists of a symmetric SQ designed by
the Lloyd-Max formulation, an interleaver/de-interleaver combination and a sequence MAP
detector. The SQ binary codewords are assigned by FBC. The argument here is that FBC is
a good codeword assignment for BSC [19] and the purpose of the interleaver/de-interleaver is
to convert the Markov channel into a BSC. The MAP detector is designed for the BSC. The
SNR results of SQ-IL-MAP are also provided in Tables 4, 5, 6, 9, 10 and 12. This scheme
is compared against SQ-MAP. Note that SQ-MAP beats SQ-IL-MAP in most of the cases.
The largest gain is 7.5 dB which occurs in Table 9 for M = 4 and € = 0.05. For comparison
purposes, we also provide in Tables 4, 5, 6, 9 and 12 the results of the second interleaving
scheme without MAP detection (denoted as SQ-IL). Note that for memoryless sources, the
MAP detector offers no improvement in the interleaving scheme for small values of €. Since
the interleaver renders the channel memoryless and the source is also memoryless, the sequence

MAP detector is actually a memoryless MAP detector. That is, each observation Y; is decoded

12



independently of every other observation. For such a MAP detector, it can be easily shown
that MAP detection is useless whenever

€ S Pmin ,
Pmin T Pmax

where puin = mingeo1)» Pr{X; = x} and ppy = maxxeqo,1}» Pr{X; = x}. The above is only
a sufficient condition and it is independent of the binary codeword assignment.

Finally, we note that the two interleaving schemes have large encoding and decoding delays
(due to the interleaver and de-interleaver). The COVQ scheme only have a block delay of k — 1
samples. The SQ-MAP scheme has the MAP detector delay.

6 Conclusions

We considered joint source-channel coding for generalized Gaussian and Gauss-Markov sources
and binary Markov channels. Two schemes were considered, COVQ and SQ-MAP. COVQ
outperforms SQ-MAP when kR is large. COVQ has a high encoding complexity and a small
decoding complexity. SQ-MAP, on the other hand, has a small encoding complexity and a
large decoding complexity. These schemes were compared against two interleaving schemes.
The performance gain is as much as 5 dB when the channel is very noisy with high noise

correlation. This may correspond to the behavior of land mobile radio channels during deep
fades.
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|R| k [System |e=0.000]e=0.005]¢=0.01]e=0.05]e=0.1]
2[1[COVQ 577 | 510 | 4.66 | 3.07 | 2.88
COVQ-IL| 577 | 517 | 471 | 2.77 | 1.69
2 [COVQ 886 | 7.33 | 7.10 | 6.04 | 4.94
COVQ-IL| 8.86 | 7.62 | 6.82 | 4.06 | 2.48
3 [COVQ 10.25 | 9.05 | 852 | 7.36 | 6.25
COVQ-IL| 10.25 | 8.77 | 7.83 | 4.85 | 3.13
oo |OPTA 15.64 | 15.54 | 15.46 | 14.89 |14.30

311 [COVQ 10.43 7.80 7.75 | 6.2 | 5.23
COVQ-IL| 10.43 8.35 7.23 | 4.05 | 2.32
2 |COVQ 14.14 | 11.58 | 10.97 | 9.17 | 7.64
COVQ-IL| 14.14 | 1099 | 9.65 | 5.73 | 3.75
3 |COVQ 16.01 | 13.59 | 12.72 | 10.35 | 9.11
COVQ-IL| 16.01 | 11.63 | 10.50 | 6.78 | 4.43
oo | OPTA 21.74 | 21.59 | 21.46 | 20.63 | 19.76

4|1 |COVQ 15.75 | 11.26 | 10.39 | 8.73 | 7.22
COVQ-IL| 15.75 | 10.81 | 9.06 | 5.10 | 3.41
2 1COVQ 20.02 | 15.21 | 14.43 | 11.58 | 9.88
COVQ-IL| 20.02 | 13.75 | 12.11 | 7.48 | 4.94
oo | OPTA 2779 | 27.59 | 27.42 | 26.31 | 25.18

Table 1: SNR (in dB) Performances of COVQ and COVQ-IL Operating Over a Markov Channel

with § = 10 and M = 1; Generalized Gaussian Source with Shape Parameter o = 0.5; R = Rate

(Bits/Sample); k = Vector Dimension; ¢ = Channel Bit Error Rate; In the Interleaved System,

XOVQ ]1381 Designed for Memoryless Channels; OPTA = Optimal Performance Theoretically
ttainable.
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|R| k [System [e=0.000]e=0.005]c=0.01]e=0.05]¢=0.1]
2[1]COVQ 755 | 6.99 [ 6.54 | 4.53 | 4.52
COVQ-IL| 755 | 695 | 6.45 | 4.01 | 2.51
2 [COVQ 8.83 | 8.09 | 757 | 6.70 | 5.86
COVQ-IL| 8.83 | 8.03 | 741 | 475 | 3.31
3 [covQ 948 | 871 | 816 | 7.27 | 6.32
COVQ-IL| 948 | 850 | 7.80 | 5.13 | 3.59
oo |OPTA 12.66 | 12.57 | 12.49 | 11.93 [11.37

3|11 [COVQ 12.64 | 10.50 | 9.45 | 827 | 7.17
COVQ-IL| 12.64 | 10.49 | 9.17 | 5.21 | 3.62
2 |1COVQ 14.25 | 11.88 | 10.97 | 10.00 | 8.64
COVQ-IL| 14.25 | 11.67 | 10.28 | 6.60 | 4.47
3 |[COVQ 15.16 | 13.01 | 12.43 | 10.68 | 9.48
COVQ-IL| 15.16 | 11.52 | 10.67 | 7.08 | 4.84
oo |OPTA 18.69 | 18.54 | 18.42 | 17.59 |16.74

411 |COVQ 18.08 | 13.57 | 13.19 | 10.54 | 8.61
COVQ-IL| 18.08 | 12.76 | 11.03 | 6.82 | 4.79
2 |[COVQ 20.09 | 15.38 | 15.09 | 12.27 |10.68
COVQ-IL| 20.09 | 14.41 | 12.92 | 8.33 | 5.71
oo | OPTA 24.74 | 24.51 | 24.35 | 23.24 |22.10

Table 2: SNR (in dB) Performances of COVQ and COVQ-IL Operating Over a Markov Channel

with 6 = 10 and M = 1; Generalized Gaussian Source with Shape Parameter o = 1; R = Rate

(Bits/Sample); k = Vector Dimension; ¢ = Channel Bit Error Rate; In the Interleaved System,

XOVQ is Designed for Memoryless Channels; OPTA = Optimal Performance Theoretically
ttainable.
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|R| k [System [e=0.000]e=0.005]e=0.01]¢=0.05]e=0.1]
2] 1]COVQ 929 | 864 | 811 | 572 | 5.92
COVQ-IL| 9.29 | 852 | 7.87 | 4.86 | 3.05
2 |[COVQ 951 | 897 | 841 [ 7.08 | 6.62
COVQ-IL| 951 | 870 | 8.06 | 544 | 3.86
3 [COVQ 987 | 9.15 | 856 | 7.74 | 7.10
COVQ-IL| 9.87 | 894 | 829 | 570 | 3.99
oo |OPTA 12.04 [ 11.95 [ 11.86 | 11.31 [10.74

3|11 [COVQ 14.60 | 12.39 | 11.17 | 9.29 | 7.47
COVQ-IL| 14.60 | 12.04 | 10.50 | 6.47 | 4.67
2 |COVQ 15.21 | 12.81 | 11.89 | 10.59 | 9.42
COVQ-IL| 15.21 | 1246 | 11.15| 7.36 | 5.15
3 | COVQ 15.66 | 13.55 | 12.90 | 11.35 |10.05
COVQ-IL| 15.66 | 12.01 | 11.40 | 7.67 | 5.37
oo | OPTA 18.06 | 17.92 | 17.80 | 16.96 |16.11

41 1COVQ 20.17 | 15.67 | 1493 | 11.24 | 9.13
COVQ-IL| 20.17 | 14.15 | 12.30 | 7.81 | 5.60
2 |COVQ 21.06 | 16.70 | 16.11 | 13.28 | 11.52
COVQ-IL| 21.06 | 1528 | 13.70 | 9.06 | 6.40
oo | OPTA 24.08 | 23.89 | 23.73 | 22.61 | 21.48

Table 3: SNR (in dB) Performances of COVQ and COVQ-IL Operating Over a Markov Channel

with § = 10 and M = 1; Generalized Gaussian Source with Shape Parameter o = 2; R = Rate

(Bits/Sample); k = Vector Dimension; ¢ = Channel Bit Error Rate; In the Interleaved System,

gOVQ is Designed for Memoryless Channels; OPTA = Optimal Performance Theoretically
ttainable.

| R | System | €=0.000 | €=0.005 | €=0.01 | €=0.05 | e=0.1 |
2 |SQ-MAP 5.60 5.54 5.34 441 | 3.43
SQ-IL-MAP| 5.60 5.00 447 | 1.65 | 0.88
SQ-IL 5.60 5.00 4.47 1.65 |-0.40
3 |SQ-MAP 10.35 9.27 837 | 5.67 | 4.03
SQ-IL-MAP| 10.35 7.91 6.35 | 1.81 | 1.02
SQ-IL 10.35 7.91 6.35 | 0.85 |-2.13
4 1SQ-MAP 15.69 11.15 9.46 4.72 | 2.73
SQ-IL-MAP| 15.69 9.02 6.47 1.66 | 1.03
SQ-IL 15.69 9.02 6.47 | -0.39 | -3.71

Table 4: SNR (in dB) Performances of MAP Detection Schemes for a Markov Channel with
0 = 10 and M = 1; Generalized Gaussian Source with Shape Parameter o = 0.5; R = Rate
(Bits/Sample); € = Channel Bit Error Rate; In SQ-IL-MAP, MAP Detector is Designed for
Memoryless Channels.
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| R | System | €¢=0.000 | €=0.005 | e=0.01 ! €e=0.05 | e=0.1 ]
2 |[SQ-MAP 7.54 7.11 6.80 | 4.92 | 3.68
SQ-IL-MAP| 7.54 6.93 6.40 | 3.56 | 1.53
SQ-IL 7.54 6.93 6.40 | 3.56 | 1.53
3 [SQ-MAP 12.64 10.78 | 9.75 | 6.01 | 3.98
SQ-IL-MAP| 12.64 10.36 | 887 | 3.61 | 0.83
SQ-IL 12.64 10.36 | 8.87 | 3.61 | 0.83
4 |SQ-MAP 18.13 12.90 | 10.86 | 5.73 | 3.43
SQ-IL-MAP| 18.13 12.14 | 9.71 3.71 | 1.11
SQ-1L 18.13 12.14 | 9.71 3.15 | 0.09

Table 5: SNR (in dB) Performances of MAP Detection Schemes for a Markov Channel with
d = 10 and M = 1; Generalized Gaussian Source with Shape Parameter o = 1; R = Rate
(Bits/Sample); ¢ = Channel Bit Error Rate; In SQ-IL-MAP, MAP Detector is Designed for
Memoryless Channels.

[R[System  [e=0.000]€=0.005]¢=0.01]¢=0.05e=0.1]
2[SQ-MAP | 927 | 858 | 810 | 521 | 3.18
SQIL-MAP| 9.27 | 850 | 7.84 | 4.58 | 2.41
SQ-IL 9.27 | 850 | 7.84 | 458 | 2.41
3[SQ-MAP | 1462 | 12.20 | 10.91 | 5.77 | 3.35
SQ-IL-MAP| 14.62 | 11.99 | 10.36 | 4.94 | 2.19
SQ-IL 14.62 | 11.99 | 10.36 | 4.94 | 2.19
1[SQ-MAP | 20.15 | 13.90 | 11.89 | 5.58 | 2.93
SQ-IL-MAP| 20.15 | 13.83 | 11.35 | 4.84 | 2.39
SQ-IL 20.15 | 13.83 | 11.35 | 4.84 | 1.89

Table 6: SNR (in dB) Performances of MAP Detection Schemes for a Markov Channel with
0 = 10 and M = 1; Generalized Gaussian Source with Shape Parameter a = 2; R = Rate
(Bits/Sample); ¢ = Channel Bit Error Rate; In SQ-IL-MAP, MAP Detector is Designed for
Memoryless Channels.
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| Source | R | oo | pu | pr=pp+pu }
GG (a=0.5) 2 | 057 | 00 0.57
3 0.88 0.0 0.88
4 1.056 0.0 1.05
GG (a=1) 2 | 028 | 0.0 0.28
3 0.42 0.0 0.42
4 0.50 0.0 0.50
GG (a=2) 2 | 009 | 0.0 0.09
3 0.18 0.0 0.18
4 0.23 0.0 0.23
GM (¢=0.9) 2 0.09 0.77 0.86
3 0.18 1.03 1.20
4 0.23 1.14 1.38

Table 7: Residual Redundancy (in Bits/Sample) of Symmetric Lloyd-Max Scalar Quantizer;
GG = Generalized Gaussian Source; oo = Shape Parameter; GM = Gauss-Markov Source; ¢ =
Correlation Coeflicient; R = Rate of Scalar Quantizer in Bits/Sample; pp = Redundancy Due
to Non-Uniform Distribution; pa; = Redundancy Due to Memory; pr = Total Redundancy.
(par for GM Source is Estimated from Training Data Using the Markov Chain Assumption.)

|M | k [System [e=0.005]e=0.01]€=0.05]e=0.1]

0]1]|]COVQ-IL| 10.81 | 9.06 | 5.10 | 3.41
2 [COVQ-IL| 13.75 | 12.11 | 7.48 | 4.94
oo | OPTA 26.69 | 25.84 | 20.85 | 16.41

1[1]|COVQ 11.26 | 10.39 | 873 | 7.22
2 |COVQ 15.21 | 14.43 | 11.58 | 9.88
oo |OPTA 27.59 | 27.42 | 26.31 | 25.18

211|COVQ 11.50 | 10.48 | 7.90 | 6.89
2 |COVQ 15.46 | 14.49 | 11.56 | 9.91
oo |OPTA 27.66 | 27.54 | 26.73 | 25.88

311]COVQ 11.57 | 10.56 | 7.89 | 6.56
2 |ICOVQ 15.63 | 14.56 | 11.37 | 9.75
oo | OPTA 27.68 | 27.58 | 26.90 |26.18

4|2 |COVQ 15.67 | 14.55 | 11.21 | 9.63
oo | OPTA 27.69 | 27.61 | 26.98 | 26.32

Table 8: SNR (in dB) Performances of COVQ for Different Values of M; R = 4 Bits/Sample;
& = 10.0; Generalized Gaussian Source with Shape Parameter o = 0.5; k = Vector Dimension;
¢ = Channel Bit Error Rate; OPTA = Optimal Performance Theoretically Attainable.
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Iﬁ [ System

| €=0.005 | e=0.01[e=0.05 [ e=0.1]

0 |SQ-IL 8.95 6.43 | -0.39 |-3.71

SQ-IL-MAP| 8.95 6.43 | 1.65 | 1.03
1 |SQ-MAP 11.15 | 9.46 | 4.72 | 2.73
2 |[SQ-MAP 13.23 | 1241 | 7.84 | 5.94
3 |SQ-MAP 13.84 | 12.61 | 8.55 | 6.59
4 |SQ-MAP 14.22 | 12,55 | 9.15 | 6.81

Table 9: SNR (in dB) Performances of SQ-MAP for Different Values of M; R = 4 Bits/Sample;
§ = 10.0; Generalized Gaussian Source with Shape Parameter o = 0.5; ¢ = Channel Bit Error

Rate.

Table 10: SNR (in dB) Performances of COVQ and SQ-MAP for Different Values of 6; M
1; Generalized Gaussian Source with Shape Parameter o = 0.5; R = 4 Bits/Sample; ¢

COVQ (k=2) | SQMAD
R| 6 [€=001]e=0.1]e=001]e=01
410 12.11 4.94 6.47 1.03
1] 11.68 5.06 4.72 0.52
2| 11.88 6.01 5.29 0.17
5| 1318 | 8.00 | 7.30 | 1.10
10| 14.43 9.88 9.46 2.73

Tl

Channel BER; k = Vector Dimension; (For § = 0, COVQ and SQ-MAP are Equivalent to

their Interleaving Counterparts).
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|R| k |System [e=0.000]€e=0.005]e=0.01]e=0.05]¢=0.1]
2] 1[COVQ 9.26 | 8.62 | 8.08 | 5.69 | 5.90
COVQ-IL| 9.26 | 849 | 7.85 | 4.84 | 3.03
2 [COVQ 13.46 | 11.93 [ 11.02 | 10.08 | 8.97
COVQ-IL| 1346 | 11.52 | 10.33 | 7.26 | 5.29
3 [COVQ 1494 | 13.07 | 13.14 | 11.28 [ 10.30
COVQ-IL| 14.94 | 12,54 | 11.69 | 8.49 | 6.30
oo |OPTA 19.25 | 19.16 [ 19.08 | 18.51 [17.95

311 COVQ 14.57 | 12.40 | 11.20 | 9.78 | 8.56
COVQ-IL| 14.57 | 12.00 | 10.47 | 5.61 | 4.64
2 |ICOVQ 1895 | 15.68 | 15.70 | 12.29 | 10.57
COVQ-IL| 18.95 | 14.69 | 13.54 | 9.27 | 6.77
3 |COVQ 20.57 | 17.74 | 16.62 | 14.47 | 13.00
COVQ-IL| 20.57 | 16.05 | 14.91 | 10.71 | 8.07
oo |OPTA 25.27 | 25.13 | 25.01 | 24.17 | 23.32

411 |COVQ 20.13 | 15.80 | 14.50 | 11.84 |10.64
COVQ-IL| 20.13 | 14.05 | 11.77 | 821 | 5.84
2 |COVQ 24.74 | 19.42 | 18.69 | 15.50 | 13.77
COVQ-IL| 24.74 | 1771 | 16.23 | 11.29 | 8.30
oo |OPTA 31.29 | 31.11 | 30.94 | 29.83 | 28.69

Table 11: SNR (in dB) Performances of COVQ and COVQ-IL Operating Over a Markov
Channel with § = 10 and M = 1; Gauss-Markov Source with Correlation Coefficient ¢ = 0.9;
R = Rate (Bits/Sample); k£ = Vector Dimension; ¢ = Channel Bit Error Rate; In the Inter-
leaved System, COVQ is Designed for Memoryless Channels; OPTA = Optimal Performance
Theoretically Attainable.

|R[System  [e=0.005]e=0.01]¢=0.05]e=0.1]
2 [SQ-MAP 9.13 | 897 | 7.47 | 6.12
SQ-IL-MAP| 9.11 | 889 | 7.32 | 6.57
SQ-IL 8.50 | 7.84 | 4.58 | 2.41
3 [SQ-MAP 14.42 | 14.10 | 11.30 | 9.59
SQ-IL-MAP| 13.85 | 13.19 | 10.11 | 7.74
SQ-IL 11.99 | 10.36 | 4.94 | 2.19
41SQ-MAP 19.42 | 18.74 | 14.45 [12.29
SQ-IL-MAP| 17.71 | 16.35 | 11.33 | 8.41
SQ-IL 13.83 | 11.35 | 4.84 | 1.89

Table 12: SNR (in dB) Performances of MAP Detection Schemes for a Markov Channel with
6 = 10 and M = 1; Gauss-Markov Source with Correlation Coeflicient ¢ = 0.9; R = Rate
(Bits/Sample); ¢ = Channel Bit Error Rate; In SQ-IL-MAP, MAP Detector is Designed for
Memoryless Channels.
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