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This dissertation studies the role that the information available to the par-

ticipants of private value procurement auctions prior to the auction has on the

equilibrium auction outcomes. Chapters 1 and 2 present two different models in

which the private type of one of the participants is persistent over time and can be

informative to her competitors. Chapter 3 looks at the effects of a policy change

making the information about upcoming procurement auctions more easily available

has on the entry of different types of firms in the auctions.

In Chapter 1 I build and estimate a model of repeated asymmetric first price

auction in which one of the bidders has a persistent private type, all bidders are

backward looking, and all bids are made public after the auction. In particular,

I show that the standard model without a binding reserve price misestimates ex-

pected procurement costs by 2-14% compared to my model, and withholding past

bid information from auction participants can reduce expected procurement costs

by up to 11%. These results are relevant for the estimation of both US highway



procurement auctions since all of the states’ Departments of Transportation publish

full auction results online.

In Chapter 2 I look at a theoretical model of repeated asymmetric first price

auction in which all bids are made public between the auctions, one of the bidders has

a persistent private type and is forward-looking. I show that a strictly monotonic

equilibrium would not exist in this game, and provide an example of a partially

pooling equilibrium in which the bidder with persistent type forgoes profits in the

earlier period to withhold the information from her competitors in future periods.

Chapter 3 studies the effect that the changes in public procurement rules in

Russia had on participation and bidding in regional gasoline procurement auctions.

In particular, I look at the difference in changes of entry and bidding patterns

for large and small firms after the information about upcoming auctions became

more easily available in Jan 2011. I show that the larger firms who have stations

both outside and inside of the studied region enter more auctions and bid more

aggressively, while local firms who only have stations inside the region do not change

entry patterns and bid less aggressively. I associate these changes to the differential

changes in entry costs for the different types of firms, and confirm this intuition

by comparing the structural estimates of entry costs between firm types and time

periods.
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Chapter 1: Autocorrelated Costs and Information in Repeated First

Price Procurement Auctions

1.1 Introduction

In this chapter I study the effect of transparency in repeated procurement auc-

tions on bidder behavior and optimal auction outcomes. The practice of publishing

the results of previous public procurement auctions provides additional information

on the rival bidders costs in markets where costs are correlated over time. I extend

the standard framework for the estimation of firm costs in an asymmetric first price

auction to account for the presence of past bid information. Using data on two types

of highway procurement auctions in Oklahoma I show that firms account for avail-

able information on past bids when the competitor bids are correlated over time.

In such markets all firms bid more aggressively when a low bid from the leading

firm was observed in the past, and less aggressively when the high bid was observed.

Increasing competition diminishes, but does not cancel out these effects. In my

counterfactual analysis I show that the standard model without a binding reserve

price misestimates expected procurement costs by 2-14%, and withholding past bid

information from auction participants can reduce expected procurement costs by
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up to 11%, and the leading firm markup by up to 3%. Setting an optimal reserve

price reduces expected procurement costs by 9% in the standard model, and by up

to additional 7% if the past bids are observed by the firms. Withholding past bid

information in an auction with optimal reserve price does not change the expected

cost of procurement significantly, but reduces the markup of the leading firm by 1%.

Transparency is a common requirement for public procurement auctions. In

practice this means that most of the government bodies conducting auctions publish

extensive information both before and after the auction. For example, Departments

of Transportation of all fifty US states publish auction results within several days

after the winner is determined. Full bid tabulations including the identities and bids

of all participating firms are published in most states, with a few remaining states

publishing only the identities and the bids of the winner and the runner-up in each

auction. At the same time auctions conducted by the private parties are usually

not so transparent. Most of the private company procurement policies protect the

identity of contractors, and Ebay has introduced “private auctions” in which bidders

can only see their own bid and losing or winning status both during and after the

auction. In both of these cases the identities of the bidders and their bids are known

either only to the auctioneer, or to the auctioneer and the direct auction participants.

The transparency of public procurement auctions is usually motivated by preventing

corruption and general government accountability, while the non-transparency of

the private auctions is motivated by personal and corporate privacy, and preventing

possible collusion by bidders. However, in the repeated auction setting the choice

between releasing and concealing the information about past auction may have
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additional consequences. In this chapter I argue that transparency can have a

direct effect on the outcomes of a set of repeated private value auctions through

the channels not related to corruption and collusion concerns since it can provide

valuable information to auction participants and promote competition from weaker

bidders.

Consider a typical highway procurement auction market. The firms in this

market compete repeatedly to fulfill contracts for similar projects. In this setting,

the firm’s bidding history might be informative to its competitors if firm’s costs

of completing these projects are serially correlated. The serial correlation can be

caused by overlapping timeline of completing the projects, or by the costs structure

including some of the slower changing costs, for example labor costs which are only

renegotiated once a year, long term supplier costs, etc. Previous work has tried to

control for the serial correlation in firm costs using observable firm backlog. But

backlog is likely to be an insufficient representation of the serial correlation of firm’s

costs since it reflects only some of the reasons for persistent costs, provides additional

information only for the winner of the last auction, and is in general less informative

than the past bids submitted by the firm.

In this chapter I estimate the effect of the past bid information on the behavior

of firms in the current auction. I develop a model of a first price procurement auc-

tion with private values in which all participating firms can observe an informative

signal about the past period costs of one of the firms. Auction participants update

their beliefs of the rival’s costs upon observing the signal and adjust their bidding

strategies accordingly. I use the parametric structural model introduced by Athey,

3



Levin, and Seira (2011) for the first price auctions with unobserved heterogeneity,

and introduce past bid information as an additional observable auction character-

istic to estimate the underlying firm characteristics in two highway procurement

markets in the state of Oklahoma. I compare the market for bridge construction

and repair contracts, with fulfillment times ranging from 3 to 12 months and the

bids of the leading firms are strongly correlated over time, and the market for pave-

ment contracts, in which a typical project takes 1 to 2 months to complete and the

bids of the leading firms are not significantly correlated over time.

I find that releasing the information about past bids significantly changes the

behavior of all firms participating in the bridge auctions, and almost does not distort

the behavior of the firms participating in the pavement auctions. The results of the

model estimation show that when the past bid information factors into the firm

bidding behavior, the firms submit lower bids for any draw of their own costs if they

have observed a signal about low competitor costs, and higher bids for the own costs

below some threshold value if they have observed a signal about high competitor

costs.

To quantify the consequences of the auction transparency for the auctioneer,

I compute several counterfactuals. The first scenario corresponds to the standard

asymmetric first price auction model in which neither the auctioneer nor the par-

ticipating firms account for the past bid information. The other scenarios simulate

the outcome for the case when either only the bidders, only the auctioneer, or both

the bidders and the auctioneer have access to and account for the available past bid

information. I show that ignoring the informational effect significantly changes both

4



the optimal reserve price and the expectations of the auctioneer with regards to the

price of the contract compared to the standard model. However, if the auctioneer

can set an optimal reserve price, additional benefits of withholding this information

from the bidders are small, which argues in favor of the existing practice of full

transparency.

To my knowledge, the effect of the past bid information on the current auction

has not been studied empirically. However, there are several categories of papers that

are methodologically and theoretically related to this question. In particular, this

chapter is related to the limited empirical literature on dynamic auctions originating

from Jofre-Bonet and Pesendorfer (2007). In these papers a discrete event, such as

winning an auction or participating in an auction, changes an observed dynamic

firm-level state variable, providing the link between time periods. The first group of

these papers focuses on the effect of firm backlog and capacity constraints in repeated

auction markets. The firms can participate in auctions each period, but, similarly to

the case studied in this chapter, it takes them longer than one period to fulfill most

of the contracts. This means that a firm already burdened by sufficient workload

might chose not to participate in the auction or bid less aggressively in the current

period. In the original paper by Jofre-Bonet and Pesendorfer (2007) regular bidders

take into account the effect of increased backlog in case of winning the current

auction when submitting a bid in the current auction. They show that an increase

in capacity utilization significantly increases the costs of regular bidders. Balat

(2013) extends this model to add unobserved auction heterogeneity and endogenous

firm participation. Saini (2012) and Jeziorski and Krasnokutskaya (2016) extend the
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model to include optimal scheduling and subcontracting respectively. Second group

of papers, for example Tiererova (2013) and Groeger (2014), use firm participation

and winning dynamics in a learning-by-doing model, showing that firms who have

experience in preparing bids have lower participation costs and firms who have

experience in performing the contracts have lower anticipated costs and would bid

more aggressively.

Another related subject of empirical auctions literature is sequential auctions

with complementarities or substitutabilities across units. Kong (2016) studies se-

quential auctions for oil and gas tracts let in adjacent pairs, and finds that both

synergy and value affiliation are present in these auctions, with affiliation being re-

sponsible for the allocation patterns. Donna and Esṕın-Sánchez (2018) study water

auctions in which the units sold can be complements or substitutes depending on

the auction timing. They find that firms show different pricing and participation

patterns depending on the relationship between objects sold in sequential auctions:

when units are complements, one bidder wins all units by paying a high price for

the first unit and deters entry by competitors; when units are substitutes, different

bidders win the units with positive probability. De Silva et al. (2005) show in a

reduced form study of Oklahoma DoT auctions that past winners are both more

likely to participate in and win future auctions in the same geographical location,

and attribute this fact to production synergy.

Finally, Somaini (2011) shows that the model with affiliated private firm costs

describes the Michigan DoT procurement auctions better than a model with stan-

dard private costs. In his model the firms receive correlated private signals about
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their own costs prior to the auction.

Some theoretical and experimental literature addresses the effect of informa-

tion disclosure in auctions with persistent bidder valuations or costs more directly.

However only partial and special case solutions of the problem exist, and it is not

clear if an equilibrium in a fully dynamic model with persistent firm characteristics

would always exist. Mart́ınez-Pardina (2006) looks at the auctions in which one of

the firm’s valuations is common knowledge prior to the auction. She finds the equi-

librium of this game, including the mixed equilibrium strategy of the player with

publicly known valuation, and shows that revealing one of the bidders’ valuations

serves as a random reserve price in the auction. She shows that for a particular set

of symmetric distributions it is beneficial for the auctioneer to commit to revealing

one of the bidder’s valuations ex ante, though this might hurt the auctioneer ex

post. Landsberger et al. (2001) study first price auctions in which the ranking of

the valuations is common knowledge. They show that bidders bid more aggressively

when this information is provided, and hence the auctioneer is better off provid-

ing this information. Fang and Morris (2006) consider a first price auction with

two bidders and discrete valuations, in which competitors can receive costly signals

about each others valuations. In this very limited setting they also show that the

auctioneer is better off providing very precise signals about the bidder valuations to

all players. Tu (2006) shows that announcing the winning bid is the most benefi-

cial disclosure policy for an auctioneer in a first price auction with two bidders and

uniformly distributed valuations. He also provides an example of a disclosure pol-

icy that would lead to non-existence of non-decreasing equilibrium. Thomas (2010)
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shows in a discrete type two bidder model that the auctioneer is better off either

revealing no information at all, or all information available about the past auction.

Bergemann and Hörner (2018) look at an infinitely repeated first price auction with

perfectly persistent values and show that minimal information disclosure is good for

the auctioneer. However they note that if the values are not perfectly persistent this

result might cease to hold. Finally experimental papers by Andreoni et al. (2007),

Cason et al. (2011), and Dufwenberg and Gneezy (2002), show that players learn,

play pooling equilibria in the discrete values case, and in general take into account

the past bid information released by the auctioneer.

This chapter provides an additional argument in support of the importance of

information disclosure regimes, and a simple approach for estimating the effects of

information disclosure in repeated procurement auction setting.

1.2 Data and institutional environment

I use the data on procurement auctions held by Oklahoma Department of

Transportation (DoT) between April 2000 and August 2003. In this period of time

the Oklahoma DoT held between 15 and 70 auctions per month with total budget

of 8.5 to 65.5 million dollars. The timeline of a typical auction starts about a

year before the letting date when the preliminary plan of works is published. More

detailed auction documentation describing the projects is published one month in

advance. Firms can purchase full project documentation, also known as a “plan”,

for a small fee (∼ $20), and the list of planholders is publicly available and regularly
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updated until the contract letting date. The firms that want to participate in the

auction must be prequalified1 and obtain the project documentation. After that

a firm can submit a sealed bid at any day between the last month’s letting date

and current month’s letting date. All of the Oklahoma DoT auctions are first

price low bid auctions, i.e. all submitted bids for a given auction are opened at

the same time, the firm with the lowest submitted bid wins and pays her own

bid. All auctions scheduled for the month are closed at the same letting date.

After all bids are opened and auction winners determined, the auction results and

detailed bid tabulations including names of all participating firms are published on

the Oklahoma DoT website. Since April 2000 Oklahoma DoT also publishes the

engineer’s estimate for the project with the detailed break-down of the estimate in

the planning documentation2 ahead of time. De Silva et al. (2008) show that the

publication of the engineer’s estimate has significantly changed the bidding behavior

of both the incumbents and the entrants suggesting that firms in the Oklahoma DoT

procurement market pay attention to the publicly released information. To avoid

conflating the effect of information available in the engineer’s estimate and the

information available in the rival bids, I would only use the data after April 2000.

There are six categories of works a firm may prequalify for in the state of

Oklahoma. I concentrate on the paving (category C) and bridge (category D) works

since they are the two most prevalent types of works both by the number of firms

participating and the number of auctions held. Bridge and pavement works can

1This requires filling in a simple application form, and undergoing a financial audit.
2Figures 1.14 and 1.15 in Appendix 1.7.6 provide and example of publicly available information

before and after the auction letting date.
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be viewed as separate markets. The firms performing bridge works and pavement

projects in general do not overlap and specialize only in one type of works. Though

about a third of the firms have participated in the auctions of both types during

the observed time period, only 19 out of 136 have won auctions in both markets,

and only one of them won more than 10 auctions in each of the markets. There are

several distinctions between pavement and bridge works markets that are related to

the subject of this chapter, namely to the way the firms’ costs are correlated over

time, and how much additional information about the rivals’ costs can be inferred

from her past bids. First of the prominent differences between the bridge works

and pavement contracts auctioned is the average duration of estimated work. A

typical bridge repair project (see Figure 1.14 in Appendix 1.7.6) takes 3-12 months

and is geographically concentrated while a typical pavement project (see Figure

1.15 in Appendix 1.7.6) takes 1-2 months to complete and sometimes covers long

distances. This distinction can affect the importance of the past bids information

for the current bidding. Both types of auctions are conducted once a month, and

it is more likely that the bids submitted for the bridge works auctions would be

informative about the next month’s costs since most of the time the bids on a bridge

project would include the anticipated costs of operation in the next month. Second,

the pavement works are more consistent and depend on certain inputs, which makes

contract costs largely depend on the costs of the materials which are known to all

market participants and in the state of Oklahoma are updated every month with the

baseline price publicly available in the “Asphalt Binder Price Index”. At the same

time bridge works have more variety and often include, among other things, the cost

10



of highly skilled labor which can vary between firms and is less public, while at the

same time being consistent over time. Finally, the work on pavement contracts is

more consistent with the standard measure of backlog used in the literature. It is

reasonable to assume that a firm performing a pavement contract paves some fixed

proportion of contracted surface each month. At the same time the tasks involved

in bridge works are less consistent and need to be performed in a particular order,

making the strain on the firm capacity uneven over the duration of the contract,

and the backlog a less informative measure of the possible shifts in firm costs. All of

these factors make it more likely that the firms in the bridge works market would pay

closer attention to the past bids of their competitors than the firms in the pavement

market.

For tractability, I would aggregate all of the past bids information into one ob-

servable signal. To do that first I select one “regular” firm in each market, and sum-

marize all bids submitted by the regular firm in one month into a one-dimensional

signal. In both markets the regular firm is the firm that participates in the largest

number of auctions: 203 out of 373, or more than 54%, in the bridge works market,

and 117 out of 397, or around 30%, in the pavement auctions.3

Second, as regular bidders participate in multiple auctions per month, I would

further aggregate the past month bid information into a one-dimensional signal I

would call an average bid residual.4 The bid residual is constructed as a predicted

3In both markets there are close “second contenders” with 188 and 113 appearances respectively,
with no further close contenders. Though both of the two top firms are most likely providing an
important information with their bids, to abstract from the strategic interaction between them, I
would consider the “second contenders” to be fringe bidders.

4I also use the average bid submitted in the past month for robustness checks. Though the
average bid is a more straightforward choice for a signal, it dos not capture possible auction
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residual from an OLS regression of the submitted bid on the observable characteris-

tics of the past auction. The main benefit of using the average bid residual instead

of the average bid, is that the residual makes the signals from different auctions

comparable regardless of the project size, location, number of bidders etc. The

details of the bid residual constructions can be found in Appendix 1.7.2.

Tables 1.1 and 1.2 show the summary statistics for the bridge and pavement

auctions in the sample. There are 373 bridge auctions with 1556 bids from 81

firms in the sample, and 397 pavement auctions with 1441 bids from 97 firms.

Details of sample constructions can be found in Appendix 1.7.1. There are several

notable differences between the two markets. First, the pavement contract are

almost five times larger in size on average. Second, even though in both markets

the regular bidder skips auction participation only in 5 time periods, the pavement

regular bidder participates in less auctions per month on average. This can make the

information contained in her past month bid less reliable and less useful to the fringe

bidders. The regular bidder in the pavement market submits 8.5% of all observed

bids, and the past bid information is available for 97% of the auctions the regular

bidder is participating in. The regular bidder in the bridge market submits about

10% of all observed bids. In 93% of the auctions with regular bidder participation

the past bid information is available for the regular bidder.

As a first step to establish the relationship between the past bid signal and

heterogeneity not observed by the researcher, but observed by all participants in the market. It is
also harder to interpret: while a negative bid residual signals about lower than average costs, and a
positive bid residual signals about higher than average costs, we would need additional information
about bid averages to interpret the value of the average bid signal.
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Table 1.1: Auction summary statistics: Bridge auctions

Variable N Mean SD Min Max

Number of auctions per month 41 9.1 4.84 3 20
Number of regular bidder participations
per month

41 4.59 3.84 0 16

Engineer’s estimate ($000) 373 546.77 1278.89 7.9 18664.31
Number of plan holders. 373 6.83 2.65 2 19
Regular bidder participation 373 .69 .46 0 1
Number of fringe bidders 373 3.48 1.59 1 12
Lagged average bid (% of Eng. est.) 340 1.01 .13 .8 1.47
Lagged bid residual 340 -.02 .1 -.35 .32
Winning bid (% of Eng. est.) 373 .92 .14 .7 1.49
Regular bidder bid (% of Eng. est.) 188 .99 .17 .73 1.85
Bid (% of Eng. est.) 1556 1.05 .24 .7 2.44

Table 1.2: Auction summary statistics: Pavement auctions

Variable N Mean SD Min Max

Number of auctions per month 41 9.68 7.18 2 37
Number of regular bidder participations
per month

41 2.76 2.4 0 11

Engineer’s estimate ($000) 397 2521.61 4407.27 24.25 32487.49
Number of plan holders. 397 6.89 4.57 2 25
Regular bidder participation 397 .39 .49 0 1
Number of fringe bidders 397 3.24 1.76 1 11
Lagged average bid (% of Eng. est.) 383 .99 .14 .69 1.32
Lagged bid residual 383 0 .17 -.44 .32
Winning bid (% of Eng. est.) 397 .94 .13 .71 1.48
Regular bidder bid (% of Eng. est.) 113 1.02 .15 .78 1.57
Bid (% of Eng. est.) 1441 1.02 .17 .32 1.95

current firm bids, I run a number of OLS regressions of the form:

Bti = α + βXt + γSt−1 + δYit, (1.1)

where Bti is the bid firm i submits at time t, Xt are auction characteristics such

as the number of bidders, project size, project location etc., Yit are firm-specific

characteristics at time t such as backlog and distance to the project, and St−1 is the
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past bid signal with γ being the coefficient of interest.

Tables 1.3 and 1.4 present the results of these regressions using past month’s

average bid residual of the regular bidder as an observable signal. All specifications

include project size and location fixed effects, second specification in both tables

includes firm fixed effects 5. The results suggest that both the bids of the regular

bidder and the bids of the fringe bidders positively and significantly depend on the

value of the signal in the bridge market. At the same time there is no relation

between the value of the signal and current bids of either type of bidders in the

pavement market. The bids of the pavement regular bidder are significantly related

to the bidder backlog, while there is no significant dependence between bids and

backlog of the bridge regular bidder. In addition the participation of the regular

bidder significantly reduces the bids submitted by fringe bidders in both markets,

which might signify that the fringe bidders are aware of the regular bidder status in

both markets.

The correlation between lagged bid residual of the regular bidder and current

bids of all market participants might be a result of a general time trend of the costs

of all firms on the market. To control for this I construct an additional observed

signal, a lagged market bid residual, which aggregates the bids of all fringe bidders

observed in the past month. Tables 1.5 and 1.6 present the results of the regressions

controlling for this additional signal. As with previous results, the firms on the

bridge market pay attention to the signal from the regular bidder, and only the

5Tables 1.15 and 1.16 in Appendix 1.7.3 contain results of the similar regressions for average
bid of the regular bidder in past month as an observable signal. Since the results of these two sets
of regressions are qualitatively the same, and it is easier to interpret and model the average bid
residual, I would use it as the signal for the rest of the chapter.
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Table 1.3: Bridge projects with bid residual signal

Full sample Full sample Full sample ID FE Regular bidder Fringe bidders
(1) (2)† (3) (4)

N (fringe) bidders −0.0055∗ −0.0074∗∗ −0.0064∗ −0.0168∗∗ −0.0066∗

(0.0033) (0.0033) (0.0033) (0.0072) (0.0036)
Distance 0.0002∗∗∗ 0.0002∗∗∗ 0.0001 −0.0001 0.0002∗∗∗

(0.0000) (0.0000) (0.0001) (0.0002) (0.0000)
Backlog 0.0017 −0.0136 0.0411∗ 0.0521 −0.0203

(0.0217) (0.0219) (0.0246) (0.0532) (0.0238)
Lagged bid residual 0.2020∗∗∗ 0.1580∗∗∗ 0.2488∗∗ 0.1971∗∗∗

(0.0559) (0.0546) (0.1154) (0.0618)
Regular participa-
tion dummy

−0.0357∗∗ −0.0356∗∗ −0.0082 −0.0353∗∗

(0.0141) (0.0148) (0.0159) (0.0154)
N 1556 1428 1410 181 1246
adj. R2 0.1220 0.1373 0.2540 0.1826 0.1268

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Standard errors in parentheses.
All models include contract size and location fixed effects; † includes firm fixed effects.

Table 1.4: Pavement projects with bid residual signal

Full sample Full sample Full sample ID FE Regular bidder Fringe bidders
(1) (2)† (3) (4)

N (fringe) bidders −0.0107∗∗∗ −0.0114∗∗∗ −0.0107∗∗∗ −0.0002 −0.0119∗∗∗

(0.0024) (0.0024) (0.0026) (0.0125) (0.0025)
Distance 0.0000 0.0000 −0.0000 −0.0000 0.0000

(0.0000) (0.0000) (0.0001) (0.0002) (0.0000)
Backlog −0.0260∗ −0.0230 0.0204 −0.1713∗∗ −0.0174

(0.0149) (0.0154) (0.0184) (0.0687) (0.0159)
Lagged bid residual 0.0085 0.0126 0.0668 −0.0004

(0.0257) (0.0253) (0.0821) (0.0270)
Regular participa-
tion dummy

−0.0409∗∗∗ −0.0388∗∗∗ −0.0256∗∗ −0.0398∗∗∗

(0.0093) (0.0103) (0.0121) (0.0104)
N 1441 1378 1356 110 1268
adj. R2 0.1475 0.1457 0.2183 0.2258 0.1441

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Standard errors in parentheses.
All models include contract size and location fixed effects; † includes firm fixed effects.

regular bidder pays attention to the rest of the market. On the other hand, the

firms on the pavement market pay no attention to the regular bidder signal, but

make the current bids significantly correlated with the observed market average

residual from past month, with the regular bidder basing a larger proportion of her

bid on this signal.

The reduced form evidence suggests that the behavior of the regular bidder
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Table 1.5: Bridge projects with market level bid residual signal

Full sample Full sample ID FE Regular bidder Fringe bidders
(1) (2)† (3) (4)

N (fringe) bidders −0.0060∗ −0.0061∗ −0.0235∗∗∗ −0.0052
(0.0034) (0.0034) (0.0078) (0.0038)

Distance 0.0002∗∗∗ −0.0000 −0.0004 0.0002∗∗∗

(0.0000) (0.0001) (0.0004) (0.0000)
Backlog −0.0088 0.0419∗ 0.0779 −0.0171

(0.0220) (0.0247) (0.0543) (0.0240)
Lagged bid residual 0.2069∗∗∗ 0.1583∗∗∗ 0.2790∗∗ 0.1983∗∗∗

(0.0578) (0.0560) (0.1151) (0.0641)
Lagged market bid residual 0.0292 0.1068 0.4342∗∗ −0.0021

(0.0994) (0.0949) (0.2067) (0.1095)
Regular participation dummy −0.0365∗∗ −0.0064 −0.0307∗

(0.0159) (0.0170) (0.0168)
N 1428 1410 181 1246
adj. R2 0.1360 0.2558 0.1871 0.1275

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Standard errors in parentheses.
All models include contract size and location fixed effects; † includes firm fixed effects.

Table 1.6: Pavement projects with market level bid residual signal

Full sample Full sample ID FE Regular bidder Fringe bidders
(1) (2)† (3) (4)

N (fringe) bidders −0.0107∗∗∗ −0.0107∗∗∗ −0.0063 −0.0112∗∗∗

(0.0025) (0.0027) (0.0126) (0.0026)
Distance 0.0000 −0.0000 −0.0004 0.0000

(0.0000) (0.0001) (0.0003) (0.0000)
Backlog −0.0171 0.0217 −0.1923∗∗∗ −0.0102

(0.0154) (0.0184) (0.0665) (0.0160)
Lagged bid residual −0.0587∗ −0.0474 −0.0935 −0.0567

(0.0356) (0.0355) (0.1095) (0.0375)
Lagged market bid residual 0.1972∗∗∗ 0.1828∗∗ 0.5201∗∗ 0.1687∗∗

(0.0711) (0.0709) (0.2155) (0.0749)
Regular participation dummy −0.0308∗∗ −0.0291∗∗ −0.0340∗∗∗

(0.0120) (0.0133) (0.0126)
N 1378 1356 110 1268
adj. R2 0.1551 0.2206 0.2948 0.1523

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Standard errors in parentheses.
All models include contract size and location fixed effects; † includes firm fixed effects.

in the bridge works market shows significant autocorrelation, and the fringe bidders

take this into account. At the same time, there is no significant autocorrelation

in the pavement regular bidder behavior. In my further analysis I would use this

difference between the two markets to contrast the effects of information disclosure

on the auction outcomes.
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1.3 Model

In this section I describe the model of an asymmetric first price procurement

auction with one regular and n fringe bidders in which a public informative signal

about the costs of the regular bidder is released to all bidders prior to the auction. I

show that after the signal is observed by all auction participants the model becomes

equivalent to a standard asymmetric first price auction, and its identification follows

the results of Guerre et al. (2000), and Flambard and Perrigne (2006).

1.3.1 Setup

There are two types of risk neutral bidders participating in a first price sealed

bid procurement auction. The signal s ∼ S(0, σ2
s) is released publicly before the

auction. This signal is informative of the regular bidder’s costs of completing the

contract in the sense that after receiving the signal all auction participants know

that the regular bidder would draw her costs from a conditional distribution F (·|s),

and F (·|s′) �FOSD F (·|s) for any s′ ≥ s6. There are n fringe bidders independently

drawing costs from a distribution Z(·) which does not depend on the signal.

The regular bidder submits a bid b, and each fringe bidder i ∈ 1..n submits

a bid bi taking into account their own cost draw, the value of the signal observed,

and the number of participants in the auction.7

6Similar condition arises in the models of auctions with affiliated values. However the models
with affiliated or public values assume that receiving a public signal changes the firms’ beliefs
about her own costs or valuations, and not the beliefs about the competitors’ costs or valuations.

7The number of fringe participant is treated as an exogenous auction characteristic in this
model, however considering an endogenous entry model would be a logical model extension.
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As I would show below, after the signal is observed, and given some regularity

assumptions on the equilibrium bidding strategies and the underlying cost distri-

butions, the problem reduces to a standard asymmetric first price auction with the

regular bidder drawing costs from the distribution F (·|s), and fringe bidders inde-

pendently drawing costs from Z(·). Hence, following Maskin and Riley (2000a) and

Maskin and Riley (2000b), a unique set of monotone equilibrium bidding functions

exists. However the following assumptions are useful for identification purposes.

A1.1. The regular bidder bids according to a bidding function β(c, s), and each of

the fringe bidders bids according to a bidding function ζ(ci, s) in equilibrium.

A1.2. β(c, s) is a monotonically increasing function of both arguments, and a func-

tion β−1(b, s), such that β(β−1(b, s), s) = b exists for any value of s.

A1.3. ζ(ci, s) is a monotonically increasing function of both arguments, and a func-

tion ζ−1(bi, s), such that ζ(ζ−1(bi, s), s) = bi exists for any value of s.

1.3.2 Optimal bidding and equilibrium

To find the optimal bidding strategies of both types of bidders one would solve

for the Bayesian-Nash Equilibrium (BNE) in an asymmetric first price procurement

auction for the cost distributions F (·|s) for the single regular bidder, and Z(·) for

n fringe bidders.

To show this, consider the regular bidder problem:

(b− c)(1− Z(ζ−1(b, s))n → max
b

(1.2)
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Similarly to the standard first price auction problem, the first order condition is:

1 =
n(b− c)z(ζ−1(b, s))ζ−1

1 (b, s)

1− Z(ζ−1(b, s))
, (1.3)

where ζ−1
1 (·, s) is the derivative of ζ−1 with respect to the first argument.

Assuming there are n fringe bidders in the auction the i’th fringe bidder’s

problem is:

(bi − ci)(1− Z(ζ−1(bi, s)))n−1(1− F (β−1(bi, s)|s))→ max
bi

(1.4)

With the first order condition:

1 =
(n− 1)(bi − ci)z(ζ−1(bi, s))ζ−1

1 (bi, s)

1− Z(ζ−1(bi, s))
+

(bi − ci)f(β−1(bi, s)|s)β−1
1 (bi, s)

1− F (β−1(bi, s)|s)
, (1.5)

where β−1
1 (·, bt−1) is the derivative of β−1 with respect to the first argument.

The pair of functions β(c, s) and ζ(ci, s) satisfying first order conditions (1.3)

and (1.5) constitute a BNE of this game. Since the firms ex post payoffs are linear

in their own type (and hence are supermodular in own and competitor type), and

the firm costs are privately and independently drawn from the distributions with

finite support and a common upper endpoint with a positive mass for each firm type,

according to Maskin and Riley (2000b), Maskin and Riley (2003), and Maskin and

Riley (2000a) this equilibrium would be unique and monotonic in c for the regular

bidder or ci for the fringe bidders.
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1.3.3 Identification

In order to identify the unobserved costs of regular and fringe bidders using the

methodology introduced by Guerre et al. (2000) (GPV), the relationship between

the distribution of bids and the distribution of costs for each of the bidders should be

established. In this section I would show that the standard relationship between the

observed bid distributions and unobserved cost distributions, allowing to eliminate

the bid function derivatives from equations (1.3) and (1.5), hold for this model.

However, the distributions of bids conditional on the signal should be used instead

of marginal bid distributions for both regular and fringe bidders.

Proposition 1.1. The following relationships between the distributions of costs

F (·|s), Z(·), and conditional distributions of bids GR(·|s), GF (·|s), hold if the firms

bid according to equilibrium bidding functions β(c, s) and ζ(ci, s):

1. For the regular bidder:

F (β−1(y, s)|s) = GR(y|s), and

f(β−1(y, s)|s)β−1
1 (y, s) = gR(y|s)

2. For the fringe bidder:

Z(ζ−1(y, s)) = GF (y|s), and

z(ζ−1(y, s))ζ−1
1 (y, s) = gF (y|s)
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Taking into account the relationships in Proposition 1.1 the system of first

order conditions (1.3) and (1.5) can be rewritten as:

c = b−
[ ngF (b|s)

1−GF (b|s)

]−1

,

ci = bi −
[(n− 1)gF (bi|s)

1−GF (bi|s)
+

gR(bi|s)
1−GR(bi|s)

]−1

.

(1.6)

This allows the identification of the costs of regular and fringe bidders using

the observed values of bids, signals, and other auction characteristics.

1.4 Structural estimation

I use the parametric structural model introduced by Athey et al. (2011) for

first price auctions with unobserved heterogeneity to estimate the probability dis-

tributions of observed bids. I introduce past bid signal as an observable auction

characteristic, and assume the common parametric functional form of the Gamma-

Weibull distribution for the joint distribution of bids of regular and fringe firms in

both the bridge and the pavement market. Using a parametric method for the esti-

mation of bid distributions helps to alleviate the small size of the data for each of

the realizations of the signal. I use the system of first order conditions (2.1) to calcu-

late pseudo costs, and estimate the conditional distribution of costs for the regular

bidders, and the (marginal) distribution of costs for the fringe bidders nonparamet-

ricaly in both markets. Finally, to illustrate the results of the last estimation step,

I approximate the bidding functions for a particular set of auction characteristics

and contrast the bidding function estimates resulting from the estimation of the
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standard model and the model with the past bid signal.

1.4.1 Parametric estimation of bid distributions

To account for the observed value of the past bid signal explicitly I use a semi-

parametric approach. First I estimate the conditional bid distributions of regular

and fringe bidders parametrically, accounting for the unobserved auction hetero-

geneity.

The bid distributions of regular and fringe bidders are estimated using a

Gamma-Weibull distribution families:

Gj(bj, bt−1) = 1− exp(−u · ( bj
λj

)ρj), (1.7)

where j = R,F for regular or fringe bidder, and the scale parameters λj and the

shape parameters ρj are of the form:

ln(λj) = βj0 + βjX
j
1

ln(ρj) = γj0 + γjXj
2

u ∼ Gamma(
1

θ
, θ)

ln(θ) = θ0

(1.8)

In particular, Xj
1 and Xj

2 are the observable auction or firm characteristics.

XR
1 contains the number of fringe bidders (number of regular bidders is = 1 and

omitted for multicollinearity), and the past bid signal. XR
2 contains the number of
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Table 1.7: Gamma-Weibull estimates: Bridge projects

Regular
Scale

Constant 2.1816∗∗∗ (0.1379) 2.2205∗∗∗ (0.1270)
N (fringe) bidders 0.0255 (0.0311) 0.0388 (0.0307)
Lag av bid residual 1.5825∗ (0.8304)

Shape
Constant −0.0154 (0.0341) −0.0332 (0.0354)
N (fringe) bidders −0.0099 (0.0062) −0.0075 (0.0063)
Backlog 0.0765∗ (0.0455) 0.0481 (0.0442)
Distance 0.0817 (0.1519) 0.1101 (0.1612)
Lag av bid residual 0.3864∗∗∗ (0.0929)

Fringe
Scale

Constant 1.9291∗∗∗ (0.0589) 1.9131∗∗∗ (0.0563)
N (fringe) bidders −0.0084 (0.0114) −0.0085 (0.0113)
Regular dummy 0.2813∗∗∗ (0.0431) 0.2763∗∗∗ (0.0429)
Lag av bid residual −0.2615 (0.3257)

Shape
Constant 0.0812∗∗∗ (0.0234) 0.0700∗∗∗ (0.0237)
N (fringe) bidders −0.0033 (0.0055) −0.0017 (0.0056)
Regular dummy −0.0527∗∗∗ (0.0180) −0.0612∗∗∗ (0.0181)
Lag av bid residual 0.3400∗∗∗ (0.0877)

Heterogeneity

ln(θ) −0.0098 (0.0888) 0.0298 (0.0881)

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Asymptotic standard errors
in parentheses.

fringe bidders, backlog, distance to the project, and the past bid signal. XF
1 and XF

2

have the same structure which contains the number of fringe competitors, regular

bidder participation dummy, and the past bid signal.8 The estimation for bridge

and pavement projects is performed separately.

Table 1.7 presents parameter estimates for the bridge projects with the lagged

average bid residual included in X1 and X2 (the unrestricted model) on the left,

and no lagged information (the restricted model) on the right. The lagged average

8Versions with backlog and distance for fringe bidders were estimated and do not change the
estimates much while hurting the standard errors. Versions with ln(θ) depending on past bid signal
st−1 were also estimated and do not change core results.
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Table 1.8: Gamma-Weibull estimates: Pavement projects

Regular
Scale

Constant 2.5248∗ ∗ ∗ (0.1739) 2.4943∗ ∗ ∗ (0.1306)
N (fringe) bidders −0.0182 (0.0408) −0.0106 (0.0400)
Lag av bid residual −0.0392 (0.8240)

Shape
Constant 0.0986∗ ∗ ∗ (0.0343) 0.1006∗ ∗ ∗ (0.0342)
N (fringe) bidders −0.0280∗ ∗ ∗ (0.0078) −0.0273∗ ∗ ∗ (0.0076)
Backlog −0.1455∗ ∗ ∗ (0.0554) −0.1590∗ ∗ ∗ (0.0518)
Distance 0.1232 (0.1688) 0.1224 (0.1676)
Lag av bid residual 0.0520 (0.0732)

Fringe
Scale

Constant 2.2441∗ ∗ ∗ (0.0617) 2.2333∗ ∗ ∗ (0.0548)
N (fringe) bidders 0.0057 (0.0100) 0.0068 (0.0099)
Regular dummy 0.1134∗∗ (0.0512) 0.1147∗∗ (0.0511)
Lag av bid residual −0.0460 (0.1997)

Shape
Constant 0.0917∗ ∗ ∗ (0.0165) 0.0927∗ ∗ ∗ (0.0165)
N (fringe) bidders −0.0190∗ ∗ ∗ (0.0037) −0.0192∗ ∗ ∗ (0.0037)
Regular dummy −0.0578∗ ∗ ∗ (0.0148) −0.0592∗ ∗ ∗ (0.0147)
Lag av bid residual −0.0484 (0.0406)

Heterogeneity

ln(θ) 0.0236 (0.0949) 0.0226 (0.0950)

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Asymptotic standard errors
in parentheses.
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bid residual has a large and statistically significant (at a 10% level and 1% level

accordingly) effect on both the scale and the shape parameter of the regular bidder

bid distribution. The likelihood ratio test rejects the restricted model with p-value

less than 0.0001. Table 1.8 presents parameter estimates for the pavement projects.

The lagged average bid residual does not have a significant effect on any of the

estimates, and in this case the likelihood ratio test does not reject the restricted

model with p-value 0.222. It is also worth noting that the competition between

fringe bidders does not have a significant role in the estimated bid distributions for

the bridge projects, but does enter the estimated bid distributions for the pavement

projects. Also the backlog is more important than the lagged information in the

pavement projects, and does not appear to play a role for the bidding in bridge

projects.

To contextualize the effect that the estimated coefficients for the value of the

past bid signal has on the bid distributions, I plot the estimated bid distributions

for each market and each bidder type conditional on the mean values of all other

observable auction and firm characteristics, and the full range of the value of the

lagged average bid residual in Figures 1.1 through 1.4.

Figures 1.1 and 1.2 present the conditional distributions for the regular and

fringe bidders in bridge market with the left panel presenting a 3D view, and the right

panel tracing the mean and variance of the estimated distribution in the bid-signal

space. For both of the bidder types mean value of the distribution is increasing with

the signal, the variance of the regular bidder bid distribution is decreasing with the

signal, and the variance of the fringe bidder bid distribution increases slightly with
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Figure 1.1: Estimated conditional bid distribution for regular bidders in the bridge
market

Figure 1.2: Estimated conditional bid distribution for fringe bidders in the bridge
market

the signal. Figures 1.3 and 1.4 present the conditional distributions of the regular

and fringe bidders in the pavement market. The estimated distributions vary much

less with the value of the past bid signal than in the bridge market. The mean of

the regular bidder bid distribution increases slightly with the value of the signal, the

mean of the fringe bidder distribution does not change significantly. The variance

for both the regular and the fringe bidders stays roughly the same regardless of the

value of the signal.
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Figure 1.3: Estimated conditional bid distribution for regular bidders in the pave-
ment market

Figure 1.4: Estimated conditional bid distribution for fringe bidders in the pavement
market

1.4.2 Estimation of cost distributions

After obtaining the conditional bid distributions for all groups of bidders, I can

use (2.1) to calculate pseudo costs for each observed bid and estimate the correspond-

ing cost distributions nonparametrically. I use the standard kernel density estimator

(1.9) with an optimal bandwidth h = 1.06σ̂n−1/5 for all marginal density estimates

and the one-step conditional density estimator (1.10) with the optimal bandwidth
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matrix [h, hs] = [σ̂n−1/6, σ̂sn
−1/6] for the estimation of regular bidder conditional dis-

tribution of costs. In both cases I use the Gaussian kernel with boundary correction

to allow for common support of costs in the further counterfactual analysis.

f̂(x) =
1

n

n∑
i=1

Kh(x−Xi) (1.9)

f̂(x|s) =

∑n
i=1Kh(x−Xi)Khs(s− Si)∑n

i=1Khs(s− Si)
(1.10)

Figures 1.5 and 1.6 show the difference between the marginal cost distribution

estimates within the standard model and the model accounting for the presence of

the past bid signal in the first step of the estimation procedure. For both regular and

fringe bidders there is no difference in these estimates for the firms in the pavement

market. In the bridge market, the marginal distribution of costs for the regular

bidder is slightly less precise when we take the past bid signal into account in the

estimation procedure, since some of the observed bid variation would be associated

with the signal variation. The marginal distribution of costs for the fringe bidder is

slightly more precise. In general, there is no big difference in the estimates of the

marginal distribution of costs of both the regular and fringe bidders. In addition

the estimated marginal cost distributions from different models lie within the 95%

confidence interval of each other for both types of the bidders. This changes, how-

ever, if we look at the conditional distributions of regular bidder costs for different

values of the signal.

Figure 1.7 presents the results of the estimation of the regular bidder cost
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Figure 1.5: Marginal pdf’s of regular bidder costs for bridge projects (left) and
pavement projects (right)

Figure 1.6: Marginal pdf’s of fringe bidder costs for bridge projects (left) and pave-
ment projects (right)

Figure 1.7: Conditional and marginal pdf’s of regular bidder costs

(a) Bridge market (b) Pavement market
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Figure 1.8: Conditional distribution of regular bidder costs in the pavement market

distribution conditional on several selected values of the signal observed in the data

along with the marginal distribution of costs and the 95% confidence intervals for

each of the estimates. The estimates for the bridge projects are presented on the left

panel. For this market, though the cost distribution conditional on the median value

of the signal is close to the marginal distribution estimate from the standard model,

conditioning on the extreme values of the signal produces drastically different cost

distribution estimates. In particular, the distribution conditional on the low value of

the signal is significantly more precise and has a lower mean, while the distribution

conditional on the high value of the signal is less precise and gives higher weight for

high cost realizations in the current period. The estimates for the paving projects

are presented on the right panel. The estimated conditional cost distributions for

different values of the signal are closer together than similar distribution estimates

for the bridge projects, have comparable means, and can not be differentiated from

each other with the 95% confidence.

Figures 1.8 and 1.9 present the full range of the estimated conditional distri-
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Figure 1.9: Conditional distribution of regular bidder costs in the pavement market

butions of costs for the regular bidders in the bridge and the pavement market. The

panels on the left present the 3D view of the conditional distribution map, and the

panels on the right trace the maximum of conditional probability distribution func-

tion (which in several cases does not represent the true mean due to dual peaked

pdf estimate) and the variance in the cost-signal space. The estimated conditional

distribution of costs of the regular bridge bidder is visibly more precise at the low

end of the signal, and the mean does not shift between the minimum of the signal

value -0.36 and -0.27. There is a sharp jump in the variance of the estimated dis-

tribution and a steady increase of the distribution mean after that. At the same

time the estimated conditional distribution of costs of the regular pavement bidder

is roughly equally precise for all values of the signal.

As the following bidding function example and the series of counterfactuals

show, the difference in the conditional cost distributions leads to a sufficient differ-

ence in expected bidder behavior, and, as a result, expected procurement costs and

the optimal behavior for the auctioneer.
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1.4.3 Bid function example

After obtaining the estimates of the conditional cost distributions for the reg-

ular bidders and the marginal cost distribution estimates for the fringe bidders one

can attempt to solve a generic asymmetric first price auction for a given number

of fringe bidders numerically using (1.3) and (1.5) with the appropriate boundary

conditions. However it is useful to first look at a simpler approximation of the bid-

ding functions using the parametric estimates of the bid distributions I have already

established to inverse (2.1). This section provides an example of bidding function

estimates for regular and fringe bidders in both the bridge and the pavement market

following this strategy. In each case I estimate the bidding functions for the auctions

with one regular and one fringe bidder, the mean values of backlog and distance for

the regular bidder in the given market, and several different values of the signal

value:

XR
1 = [1, st−1];

XR
2 = [1,BacklogR,DistanceR, st−1];

XF
1 = XF

2 = [0, 1, st−1].

(1.11)

To obtain the bidding function estimates I solve the equations:

c = b−
[ ngF (b|s)

1−GF (b|s)

]−1

,

ci = bi −
[(n− 1)gF (bi|s)

1−GF (bi|s)
+

gR(bi|s)
1−GR(bi|s)

]−1

,

(1.12)
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Figure 1.10: Bid functions for fringe bidder, low signal, nf = 1
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which we used to identify the costs earlier, for b and bi using the parametric

distribution of the bidding function and a sufficient number of random cost draws

from the distributions estimated earlier.

Figure 1.10 presents the estimated bidding functions of the fringe bidders after

observing a low value of the past bid signal in the bridge market in the top panel, and

in the pavement market in the bottom panel. The solid line on each panel represents

the bidding function approximated using the standard model, while the dashed lines

represent the bidding functions approximated with the observed signal included in

the model at every estimation stage. In both of the markets the fringe bidders bid

more aggressively if the low signal is observed, yet the fringe bidder would reduce

the bid by up to 10% if the low signal is observed in the bridge market, and only

by roughly 4% in the pavement market.

Similar patterns hold for the regular bidders and different values of the signal.

Figure 2.1 presents a larger set of the bidding function estimates for different types
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of bidders in both the bridge and pavement markets. On each figure the panels on

the left show the bidding functions for the extreme values of the signal observed prior

to the auction: minimal observed signal at the top, and maximal observed signal at

the bottom. The right panels show the bidding function estimates for the median

observed value of the signal, which by construction is close to 0. Since the standard

model does not take the value of the signal into account the solid lines representing

the bidding functions derived from it are the same for the market-bidder type pair

regardless of the value of the signal.

The top row of figures, 1.11a and 1.11b, show the bidding function approxima-

tion for the regular bidders. In the case of one fringe competitor, the regular bidder

strategy approximation differs significantly at lower cost values in the bridge market

when the value of the past bid signal is included in the estimation. As expected,

the regular bidder bids more aggressively if a low value of the signal was observed,

and less aggressively if a high value of the signal was observed. At the same time

there is no significant difference between the approximations of the regular bidder

strategy under different values of the signal being released in the pavement market.

The same pattern is true for the fringe bidders and can be seen in figures

1.11c and 1.11d. The only participating fringe bidder bids more aggressively upon

observing a low signal about the regular bidder costs, and less aggressively upon

observing a high signal in the bridge market. And though there is a slight difference

in the fringe bidder strategy approximations for different signals observed in the

pavement market, they are much smaller. The reaction of the fringe bidders to the

signal is stronger than the reaction of the regular bidder. This can be explained by
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the fact that the signal brings less new information to the regular bidder than to

the fringe bidder, i.e. the variation between possible cost draws for the fringe bidder

are more important for the regular bidder than the shift in the fringe bidder bidding

function in response to the signal being released.

The effect that the past bid signal has on the bidding behavior of both the

regular and the fringe bidders diminishes with competition. Figure 1.12 shows the

estimated bidding functions of the fringe bidders conditional on the low value of

the signal being observed when four fringe bidders participate in the auction, which

is close to the level of competition in an average auction in both markets. With

higher competition from the other fringe bidders the fringe bidder in bridge market,

depicted on the left panel, would reduce her bid by approximately 5% when her

costs are low compared to the 10% reduction when she is a sole fringe bidder in the

auction. The fringe bidders in the pavement market, in the Figure 1.12b, do not

change their bidding strategy conditional on observing a low past bid signal.
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Figure 1.11: Estimated bidding functions for nf = 1
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(b) Pavement market, regular bidder
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(c) Bridge market, fringe bidder
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(d) Pavement market, fringe bidder
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Figure 1.12: Bid functions for fringe bidders, low signal, nf = 4
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Figure 1.13 shows a set of estimated bidding functions for the auction with

four fringe bidders conditional on several different values of the signal being observed

in both markets. It shows that in the bridge market (Figures 1.13a and 1.13c) the

effect of the past bid information also diminishes with competition for the regular

bidder, and a high value of the signal being observed, yet is still present, especially

for lower cost draws. The effect of the signal on the bidding function in the pavement

market (Figures 1.13b and 1.13d) disappears.

To summarize, in an average auction firms change their bidding strategies

depending on the value of the signal observed in the market with serially correlated

bids, but not in the market with independent bids. When the past bid information

matters, both regular and fringe firms bid more aggressively when a low bid signal

is observed, and less aggressively when a high signal is observed.

Fringe bidders estimated bid functions are affected more strongly by the pres-

ence of the past bid signal in the model than the regular bidders. This can be ex-
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plained by the fact the the regular bidders receive less additional information with

the signal, as they only have to take into account the deviation in the fringe bidders

bidding strategies, while the fringe bidders take into account both the change in

competitor bidding, and the change in their beliefs about the regular bidder costs.

The corrections to the bidding strategies are larger for lower cost draws. Since

both fringe and regular firms with lower cost draws would have higher probability

of winning, they have both more incentives to adjust upwards when a high signal

is observed, and more room to adjust when a low signal is observed. Finally, all of

these effects get smaller when competition grows, but do not completely disappear.
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Figure 1.13: Estimated bidding functions for nf = 4
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(b) Pavement market, regular bidder
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(c) Bridge market, fringe bidder
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(d) Pavement market, fringe bidder

0.7 0.8 0.9 1 1.1 1.2

Costs/Eng.Estimate

0.7

0.8

0.9

1

1.1

1.2

B
id

/E
n

g
.E

s
ti
m

a
te

Low past bid signal

s = -0.46854

0.7 0.8 0.9 1 1.1 1.2

Costs/Eng.Estimate

0.7

0.8

0.9

1

1.1

1.2

B
id

/E
n

g
.E

s
ti
m

a
te

Mean past bid signal

s = 0.0093109

0.7 0.8 0.9 1 1.1 1.2

Costs/Eng.Estimate

0.7

0.8

0.9

1

1.1

1.2

B
id

/E
n

g
.E

s
ti
m

a
te

High past bid signal

s = 0.31758

Standard model

Model with signal

39



1.5 Counterfactual analysis

The differences in the bidding function estimates shown in the previous section

are sufficient to imply that the different access to the past bid information may lead

to large differences in the auction outcomes. In this section I use the estimates of

the cost distributions of all players to solve asymmetric first price auctions under

four different information regimes which I would refer to as the standard model,

the public signal model, the näıve auctioneer model, and the informed auctioneer

model. In addition I allow the auctioneer to set a binding reserve price and find the

optimal auction outcomes in terms of minimal expected procurement costs for each

of the four information regimes.

The difference between the four information regimes is summarized in Table

1.9. Each of the models is characterized by whether the auctioneer and/or the fringe

bidders have access to the past bid information and internalize it in their optimiza-

tion decisions. If the fringe bidders have access the the past bid information they

would use the true cost distribution conditional on the value of the signal as their

belief about the regular bidder costs when solving for the optimal bidding function.

If the fringe bidders have no access to the past bid information they would use the

marginal cost distribution as their belief about the regular bidder. In the same way

if the auctioneer observes the past bid information she would use the true condi-

tional cost distribution as her belief about the regular bidder costs. The standard

model assumes that neither the auctioneer nor the fringe bidders have access to the

past bid information, the public signal model assumes that both the auctioneer and
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the fringe bidders have access to this information. The náıve auctioneer and the

informed auctioneer models assume in turn that either the auctioneer or the fringe

bidders do not use the past bid information in their decision-making while the other

party does.

Table 1.9: Cost distribution estimates under different information regimes

Fringe bidders

Uninformed,
Marginal distribution

Informed,
Conditional distribu-
tion

A
u
ct

io
n
ee

r Uninformed,
Marginal distribution

Standard model Näıve auctioneer

Informed,
Conditional distribu-
tion

Informed auctioneer Public signal

1.5.1 Solving for the counterfactual equilibrium and the optimal re-

serve price

In the structural estimation part of this chapter I have implicitly assumed that

the Oklahoma DoT auctions are run without a binding reserve price, and that the

observed bids are generated by either the standard model or the public signal model.

Introducing a binding reserve price would change the system of equations

defining the BNE of the game to:

nz(ζ−1(b))ζ ′−1(b)

1− Z(ζ−1(b))
=

1

b− β−1(b)
,

(n− 1)z(ζ−1(bi))ζ ′−1(bi)

1− Z(ζ−1(bi))
+
f(β−1(bi))β′−1(bi)

1− F (β−1(bi)
=

1

bi − ζ−1(bi)
,

(1.13)
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with the boundary conditions for the bidding functions:

β−1(R) = ζ−1(R) = R,

β−1(b) = ζ−1(b) = c

(1.14)

Since the closed form solution of this system of differential equations does

not exist in the general case, and both of the equations are not well defined at

the boundary points making standard numerical methods for solving the systems of

differential equations less reliable, polynomial approximation methods are usually

used to solve this type of problem. In particular, I use the method described in

Hubbard et al. (2013a) adjusted for the procurement auctions and the presence of

a binding reserve price.

This method involves approximating the inverse bidding functions by Cheby-

shev polynomials and use the MPEC approach to solve the following problem for

the auction with reserve price R, n fringe bidders, and one regular bidder, assuming
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common cost distribution support [c, c] for both types of bidders9:

min
β−1(b),
ζ−1(b);b

[
FOC2

R + FOC2
F

]

s.t. β−1(R) = ζ−1(R) = R (a) Left boundary conditions

β−1(b) = ζ−1(b) = c (b) Right boundary conditions

z(c)ζ ′−1(b) =
1

b− c
(c) Right boundary condition for regular

bidder FOC

f(c)β′−1(b) + (n− 1)z(c)ζ ′−1(b) =
1

b− c
(d) Right boundary condition for fringe

bidder FOC

β′−1(R) = ζ ′−1(R) =
n+ 1

n
(e) Left boundary condition for regular

and fringe bidder FOCs

β′−1(b) ≥ 0, ζ ′−1(b) ≥ 0 ∀b ∈ [b, R] (f) Monotonicity

b ≥ β−1(b), b ≥ ζ−1(b) ∀b ∈ [b, R] (g) Rationality

(1.15)

where:

FOC2
R =

[n(b− β−1(b))z(ζ−1(b))ζ ′−1(b)

1− Z(ζ−1(b))
− 1
]2

, (1.16)

and

FOC2
F =

n∑
i=1

[
(n− 1)(bi − ζ−1(bi))z(ζ−1(bi))ζ ′−1(bi)

1− Z(ζ−1(bi))
+

((bi − ζ−1(bi))f(β−1(bi))β′−1(bi)

1− F (β−1(bi)
−1
]2

(1.17)

Conditions (15.c) - (15.e) introduced in Fibich et al. (2002) apply LHospitals

rule to estimate the first order conditions for each bidder type at the boundary

9Though only conditions (a) and (b) are necessary, conditions (c), (d), and (e) hold if the FOCs
are satisfied, and conditions (f) and (g) are assumed for the existence of PBNE in the asymmetric
auction game. Including these conditions improves the quality of the estimates.
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points. Conditions (15.f) and (15.g) define the desirable properties of the solution

and are applied at each approximation point. The KNITRO solver with the help of

the NEOS10 server is used to handle the nonlinear nature and the large number of

the constraints.

After obtaining the estimates for the inverse bidding functions, the expected

price of the contract is calculated as:

EP (R) =

∫ R

b

xd[1− (1− F (ζ−1
R (x)))(1− Z(β−1

R (x)))n], (1.18)

which can be rewritten in terms of the expected probability of zero bidders

submitting a bid, Φ(x) = (1− F (ζ−1
R (x)))(1− Z(β−1

R (x)))n:

EP (R) =

∫ R

b

Φ(x)dx−RΦ(R) + b. (1.19)

Since lowering the reserve price down to the lower bound of the cost support,

c, would bring the expected price of the contract to zero, it is important to account

for the potential harm that holding a void auction can cause the auctioneer. To do

this I introduce a penalty for not determining the contractor in the current round of

auctions. I assume that the auctioneer loses twice the value of the engineer’s estimate

if the auction fails11, and hence the auctioneer the expected cost of procurement

10See Czyzyk et al. (1998), Dolan (2001), and Gropp and Moré (1997) for details on the NEOS
server; Byrd et al. (2006) for using KNITRO for nonlinear optimization.

11Different penalty coefficients were also tested. The results under different values of the penalty
maintain the same order, yet call for less realistic values of the optimal reserve price.
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Table 1.10: Counterfactual estimation results for the Standard model, nf = 4

Reserve price Expected
price

Probability
of sale

Expected
cost

Exp. markup
of regular

bidder

Exp. markup
of fringe
bidder

Bridge projects

None 1.08 1.00 1.08 4.0% 2.3%
0.99 0.93 0.98 0.97 2.3% 1.6%

Pavement projects

None 1.07 1.00 1.07 3.4% 2.6%
0.99 0.94 0.99 0.97 2.0% 1.4%

*All reserve prices are optimal reserve prices

calculated as:

EC(R) = EP (R) + 2Φ(R) (1.20)

For each of the information regimes I search for the optimal reserve price by

solving the auctions over a finite grid of candidate reserve prices, calculating the

values of expected contract price and the probability of void auction, and finding

the minimum of EC(R) over this grid.

1.5.2 The standard model

I present the results of the counterfactual simulations starting with the bench-

mark auction outcomes predicted by the standard model in Table 1.10. For each

market the first row shows the simulated outcomes without a binding reserve price,

and the second row shows an optimal reserve price which minimizes the expected

cost of procurement and the simulated auction outcomes under this reserve price.

Under the assumptions of the standard model bridge and pavement market out-
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comes are very similar both with and without the optimal reserve price, with the

exception of expected firm markups. Setting an optimal reserve price saves 10% of

the engineer’s estimate in the expected costs of procurement in both markets. The

optimal reserve price is the same in both markets, so the auctioneer can set the same

optimal reserve price for both types of auctions.12 Finally, the bidder asymmetry,

as measured by the difference in expected markups, is more prominent in the bridge

market.

1.5.3 The public signal model

Accounting for the presence of the past bid information changes some of the

key model predictions and highlights the difference between the two markets. The

results of the public signal model simulation are presented in Table 1.11. The

simulated auction outcomes in two markets are still similar if there is no binding

reserve price, but diverge significantly when the optimal reserve price comes into

consideration. In particular, the optimal reserve price in the bridge market varies

depending on the signal observed, with the lowest optimal reserve of 92% of the

engineer’s estimate being set when the minimal signal is observed. The optimal

reserve price in the pavement market stays largely the same regardless of the value

of the signal. As a consequence, the simulated auction outcomes under optimal

reserve are vastly different between the bridge and the pavement market, with both

expected price of the contract and expected procurement costs being much lower

12Here and throughout I present the counterfactual results up to second decimal due to the
limited precision of the grid search procedure.
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Table 1.11: Counterfactual estimation results for the Public signal model, nf = 4

Reserve price Expected
price

Probability of
sale

Expected cost Exp. markup
of regular

bidder

Exp. markup
of fringe
bidder

Bridge projects

None 1.06† – 1.22‡ 1.00 1.06† – 1.22‡ 6.9%† – 3.7%‡ 2.1%† – 2.5%‡

0.92† – 0.99‡ 0.88† – 0.93‡ 0.99† - 0.98‡ 0.90† – 0.97‡ 3.4%† – 1.2%‡ 0.9%† – 1.6%‡

Pavement projects

None 1.07† – 1.19‡ 1.00 1.07† – 1.19‡ 2.6%† – 2.3%‡ 2.5%† – 2.2%‡

0.99† – 0.98‡ 0.93† – 0.92‡ 0.99† – 0.98‡ 0.97† – 0.96‡ 1.1%† – 1.5%‡ 1.4%† – 1.3%‡

*All reserve prices are optimal reserve prices ; † Conditional on minimum realization of the signal; ‡ Conditional
on maximum realization of the signal.

when a low value of the signal is observed.

Setting an optimal reserve is even more important within the public signal

model and brings between 16% and 25% of savings in expected costs in the bridge

market, and 10% to 23% in the pavement market.

The asymmetry between bidders in the bridge market is even more prominent

under the public signal model, especially when no binding reserve price is set. At

the same time, the bidders in the pavement market get closer expected markups in

the public signal model than in the standard model.

Finally, using the standard model to simulate the auction outcomes when the

public signal game is played in reality would lead to a misestimation of expected

procurement costs by up to 14% without a binding reserve price, and up to 7% with

the optimal reserve price.
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1.5.4 The näıve auctioneer model

Since the optimal reserve price changes depending on the value of the signal

in the bridge market, failing to account for this information in setting the optimal

reserve price should lead some losses in the expected procurement cost. Comparing

the results of the náıve auctioneer model simulation in Table 1.12 with the results in

Table 1.11 shows that the auctioneer would lose up to 3% in expected procurement

costs or 4% in expected contract price by setting a sub-optimal reserve price in the

bridge market. The fact that the auctioneer does not use all of the information

available also brings additional markups to all firms in the market with the low-

signal regular bidder gaining additional 0.8% compared to the public signal model,

and the fringe bidders gaining between 0.5% and 0.1% depending on the value of the

signal. At the same time the main outcomes of the pavement auctions, including

expected firm markups do not change significantly between the public signal and

the náıve auctioneer model.

1.5.5 The informed auctioneer model

Finally, I estimate the cost of information transparency in each of the markets

by calculating the outcomes of the informed auctioneer model. The results of this

model are presented in Table 1.13.

Concealing the past bid information from the fringe bidders reduces the vari-

ation in the expected costs if no binding reserve price is set in either of the markets.
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Table 1.12: Counterfactual estimation results for the Näıve auctioneer model, nf = 4

Reserve price Expected
price

Probability of
sale

Expected cost Exp. markup
of regular

bidder

Exp. markup
of fringe
bidder

Bridge projects

None 1.06† – 1.22‡ 1.00 1.06† – 1.22‡ 6.9%† – 3.7%‡ 2.1%† – 2.5%‡

(1.08) (1.00) (1.08)
0.99 0.92† – 0.93‡ 1.00† – 0.98‡ 0.93† – 0.97‡ 4.2%† – 1.2%‡ 1.2%† – 1.7%‡

(0.93) (0.98) (0.97)

Pavement projects

None 1.07† – 1.19‡ 1.00 1.07† – 1.19‡ 2.6%† – 2.3%‡ 2.5%† – 2.2%‡

(1.07) (1.00) (1.07)
0.99 0.93† – 0.93‡ 0.99† – 0.99‡ 0.97† – 0.97‡ 1.1%† – 1.5%‡ 1.4%† – 1.3%‡

(0.94) (0.99) (0.97)

*All reserve prices are optimal reserve prices ; † Conditional on minimum realization of the signal; ‡ Conditional
on maximum realization of the signal; Auctioneer-predicted numbers in parenthesis.

Table 1.13: Counterfactual estimation results for the Informed auctioneer model, nf = 4

Reserve price Expected
price

Probability of
sale

Expected cost Exp. markup
of regular

bidder

Exp. markup
of fringe
bidder

Bridge projects

None 1.06† – 1.11‡ 1.00 1.06† – 1.11‡ 3.9%† – 4.1%‡ 2.3%† – 2.3%‡

0.91† – 0.99‡ 0.87† – 0.93‡ 0.91† – 0.98‡ 0.91† – 0.97‡ 1.4%† – 2.3%‡ 1.0%† – 1.6%‡

Pavement projects

None 1.08† – 1.10‡ 1.00 1.08† – 1.10‡ 3.5%† – 3.7%‡ 2.6%† – 2.6%‡

0.99† – 0.99‡ 0.93† – 0.93‡ 0.99† – 0.99‡ 0.97† – 0.96‡ 2.0%† – 1.8%‡ 1.4%† – 1.4%‡

*All reserve prices are optimal reserve prices ; † Conditional on minimum realization of the signal; ‡ Conditional
on maximum realization of the signal.

In the bridge market it also reduces the low-signal regular bidder markup by 3-4%

without the binding reserve price, or 1-2% with the optimal reserve price. It also

reduces the expected procurement costs by 1% compared to the public signal model.

There are no notable differences between the outcomes of the informed auc-

tioneer and the public signal models for the pavement market.
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1.6 Conclusions

This chapter studies the effect of the availability of information about past

auctions on the current auction in two highway procurement markets. I show that

the information about the past bids of the participants has a significant effect on

their bidding behavior in the market for bridge construction and repair projects

where bids, and, consequently, contract fulfillment costs are correlated across time.

In particular, all bidders bid more aggressively if the signal about low cost of one

of the bidders in the previous period was received, and less aggressively if the high

signal was received. There is no significant effect of the past bid information on

bidder behavior in the market for pavement projects where there is no correlation

between firm bids and construction costs over time.

I also show that it is beneficial for the auctioneer to account for the existence of

the dynamic nature of the market when setting the optimal reserve price. Using the

standard model to calculate the optimal reserve price, or in other words, being the

“näıve auctioneer” would bring a loss of 2-3% of the engineer’s estimate in expected

cost of procurement and up to 4% of the engineer’s estimate in expected contract

price in the markets with autocorellated costs.

Throughout the chapter I assume that all players are myopic, and that there

is no endogenous entry to the auction. Relaxing these assumptions might change

the conclusions of this chapter. If the players are not myopic, a forward looking

regular firm might reduce the spread of its bids to conceal the information about its

costs and have an information advantage in the next period. This would reduce the
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effect of the past bid information on current bids. On the other hand, if we allow for

endogenous entry, a low cost signal would deter entry by the fringe bidders, reducing

the gains of releasing the information for the auctioneer. At the same time the high

cost signal would encourage entry, and reduce the auctioneer’s losses of releasing

the information.
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1.7 Appendix

1.7.1 Sample selection and variable construction

I started with 1181 bridge and pavement auctions in Oklahoma from April 2000

to August 2003. I dropped 209 auctions with less than two recorded bidders, and 76

auctions in which no winner was determined by the Oklahoma DoT. In addition, I

dropped 19 auctions in which the winning bid was either too high (higher than 150%

of the engineer’s estimate), or too low (less than 40% of the engineer’s estimate),

and 8 auctions in which the maximum submitted bid is higher than 250% of the

engineer’s estimate. Since the engineer’s estimate was publicly available to bidders

before the auction, and the winning bids are within reason, these high bids do not

look strategic, and dropping just the extreme bids without dropping the full auction

data would distort the estimates.

1.7.2 Construction of the bid residual

I use the lagged average bid residuals in my estimates. The bid residuals

are constructed from an OLS regression of normalized bids on the set of observed

auction and bidder characteristics including number of plan holders, auction date,

size quintile based on the engineer’s estimate, project location, and the bidder’s

backlog and distance to the project.
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Table 1.14: Construction of the bid residual

Variables Bid divided by eng. estimate
Number of planholders 0.0072∗∗∗

0.0016
Backlog 0.0296∗

0.0167
Distance 0.0002∗∗∗

0.0001
N 5537
adj. R2 0.1791

*, **, and *** denote significance at the 10%, 5%, and 1%
levels respectively.
Standard errors in parentheses.
Firm ID, date, project size, and project type fixed effects
included

1.7.3 Reduced form regressions with average bid as a signal

Table 1.15: Bridge projects with average bid signal

Full sample Full sample Full sample ID FE Regular bidder Fringe bidders
(1) (2)† (3) (4)

N (fringe) bidders −0.0055∗ −0.0074∗∗ −0.0061∗ −0.0176∗∗ −0.0066∗

(0.0033) (0.0033) (0.0033) (0.0071) (0.0036)
Distance 0.0002∗∗∗ 0.0002∗∗∗ 0.0001 −0.0001 0.0002∗∗∗

(0.0000) (0.0000) (0.0001) (0.0002) (0.0000)
Backlog 0.0017 −0.0153 0.0418∗ 0.0641 −0.0230

(0.0217) (0.0217) (0.0245) (0.0524) (0.0237)
Lagged average bid 0.2339∗∗∗ 0.1986∗∗∗ 0.2950∗∗∗ 0.2298∗∗∗

(0.0426) (0.0417) (0.0944) (0.0466)
Regular participa-
tion dummy

−0.0357∗∗ −0.0273∗ −0.0030 −0.0272∗

(0.0141) (0.0148) (0.0158) (0.0154)
N 1556 1428 1410 181 1246
adj. R2 0.1220 0.1475 0.2618 0.2054 0.1366

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Standard errors in parentheses.
All models include contract size and location fixed effects; † includes firm fixed effects.
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Table 1.16: Pavement projects with average bid signal

Full sample Full sample Full sample ID FE Regular bidder Fringe bidders
(1) (2)† (3) (4)

N (fringe) bidders −0.0107∗∗∗ −0.0115∗∗∗ −0.0108∗∗∗ −0.0003 −0.0120∗∗∗

(0.0024) (0.0024) (0.0026) (0.0125) (0.0025)
Distance 0.0000 0.0000 −0.0000 −0.0000 0.0000

(0.0000) (0.0000) (0.0001) (0.0002) (0.0000)
Backlog −0.0260∗ −0.0234 0.0196 −0.1835∗∗∗ −0.0175

(0.0149) (0.0153) (0.0184) (0.0679) (0.0158)
Lagged average bid 0.0264 0.0247 0.0550 0.0217

(0.0308) (0.0302) (0.0971) (0.0323)
Regular participa-
tion dummy

−0.0409∗∗∗ −0.0393∗∗∗ −0.0255∗∗ −0.0406∗∗∗

(0.0093) (0.0103) (0.0120) (0.0104)
N 1441 1378 1356 110 1268
adj. R2 0.1475 0.1461 0.2186 0.2232 0.1444

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Standard errors in parentheses.
All models include contract size and location fixed effects; † includes firm fixed effects.

1.7.4 Gamma-Weibul log-likelihood function

The Gamma-Weibul log-likelihood function for a given auction is:

ln(Lt) =(nRt + nFt)ln(θ) + ln
[
Γ(

1

θ
+ nRt + nFt)

]
− ln

[
Γ(

1

θ
)
]
+

+

nRt+nFt∑
i=1

ln
[ρit
λit

(
bit
λit

)ρit−1
]
−

−
(1

θ
+ nRt + nFt

)
ln
[
1 + θ

nRt+nFt∑
i=1

( bit
λit

)ρit],
(1.21)

where nRt is the number of regular bidders (in my application is equal to 0 or 1),

and nFt is the number of fringe bidders.
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1.7.5 Numerical integration details

I use alternative extended Simpson’s rule to calculate the expected price of

the contract:

∫ b

a

f(x) =
b− a
28N

[
17f(x0)+59f(x1)+43f(x2)+49f(x3)+48

N−4∑
i=4

f(xi)+49f(xN−3)+

+ 43f(xN−2) + 59f(xN−1) + 17f(xN)
]

(1.22)

The integration is performed in the bid space since values of the functions

F (ζ−1(b)) and Z(β−1(b)) on the uniform b-grid are calculated in the process of

numerically solving the auction at hand. The approximate value of expected price

is calculated as:

EP (R) =
R− b
28N

[
17Φ(b0)+59Φ(b1)+43Φ(b2)+49Φ(b3)+48

N−4∑
i=4

Φ(bi)+49Φ(bN−3)+

+ 43Φ(bN−2) + 59Φ(bN−1) + 17Φ(bN)
]
−RΦ(R) + b, (1.23)

where R is the reserve price, b is the minimal calculated bid, and Φ(b) = (1 −

F (ζ−1(b)))(1− Z(β−1(b)))n, and n is the number of participating fringe bidders.

1.7.6 Typical auction documentation published before and after the

auction
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Figure 1.14: Typical project description and bids: Bridge project

(a) Short Form

(b) Long Form

(c) Submitted bids
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Figure 1.15: Typical project description and bids: Pave project

(a) Short Form

(b) Long Form

(c) Submitted bids
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Chapter 2: Partial pooling in repeated auctions with autocorrelated

costs

2.1 Introduction

In chapter 1 I have limited my analysis to the backward-looking model of re-

peated procurement auctions in which the bidder with autocorrelated costs does not

take into account the effect her behaviour in the current auction will have on her

future profits. This assumption is limiting and most likely does not reflect the real

behavior of bidders in repeated auctions. In this chapter I study a simple model

of repeated procurement auctions in which the bidder with autocorrelated costs is

forward-looking. When she chooses the optimal strategy in the first round, she is

balancing the effects her bid would have on the current auction and on the expecta-

tions of other bidders in the next auction. I show that in the model with exogenous

entry the forward looking bidder would always bid higher than in the standard

model. Moreover, an equilibrium in strictly monotonic bidding strategies does not

exist in this game. I also provide an example of a partially pooling equilibrium with

the forward looking bidder pooling towards the weak position (high costs). 1

1Following this result, identification of the forward looking dynamic model from the data used
in Chapter 1 would not have been possible.
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This result expands related results of a number of papers studying repeated

auctions with perfectly persistent types and auctions with resale. Literature on auc-

tions with resale can provide useful intuition and reference for the model presented

in this chapter since the participants of such auctions also care about the way they

would be perceived by their competitors after the initial auction. Similar results

appear in a number of papers on auctions with resale. In particular, Haile (2000)

shows that there is partial pooling at reserve price in auctions with resale if the

bidders get a noisy signal of their true type at the time of the auction. Hafalir and

Krishna (2008) note that if a losing bid is revealed after an asymmetric first price

auction “there is no nondecreasing equilibrium with (partial) pooling” in an auction

with resale.

Existing repeated auctions literature mostly focuses on persistent discrete

player types. Ding et al. (2010) study repeated first price auctions with stable

discrete types and show that there would be “signal jamming”, the practice of the

strong (high value) bidder bidding as the weak bidder, in equilibrium. Bergemann

and Hörner (2018) provide more general results for the case of persistent discrete

types. They show that “a low-revenue pooling equilibrium might exist” if any bid

information is released between auctions, and in case of full bid disclosure “the exis-

tence of a pooling equilibrium rules out the possibility of a separating equilibrium”.

Kannan (2012) show that in the setting of procurement auctions with n bidders

having binary types there exists a semipulling equilibrium in which some low-cost

suppliers bid as high-cost suppliers in the first period.

In this chapter I show that a similar result holds in case of autocorrelated
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continuous types. In particular I show that if only one of the bidders has autocorre-

lated continuous costs in a series of two procurement auctions, no strictly monotone

(separating) equilibrium exists, and if an equilibrium exists, this bidder would be

pooling at the high cost, “pretending” to be a weaker bidder. To obtain this result

I combine the methodology used in the auctions with resale literature with sev-

eral results on comparative statics in asymmetric first price auctions from Lebrun

(1998) and de Castro and de Frutos (2010). I also describe how a partially pooling

equilibrium can be constructed using a particular family of type distributions as an

example.

2.2 Model

Consider a sequence of two sealed bid first price procurement auctions with

(n + 1) bidders participating in each auction. One of the bidders, which I would

call a regular bidder, has autocorrelated costs. In the first period her costs are

drawn from a distribution F1(c) with support [c, c], and in the second period her

costs are drawn from a distribution F2(c|c1) where c1 is the realization of her first

period costs, and F2(c|c1) has the same support as F1(c). Both the first round

and the second round cost distributions are differentiable with the corresponding

probability density functions f1(c) and f2(c|c1). The second period distribution is

“positively related” to the first period costs, in particular, the following assumption

holds:2

2Note that this assumption also implies first order stochastic dominance ordering.
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A2.1. F2(c|c1) satisfies monotone hazard rate properly with respect to c1:

f2(c|c′1)

1− F2(c|c′1)
<

f2(c|c1)

1− F2(c|c1)
∀c′1 > c1

The other n bidders, which I would call fringe bidders, draw their costs in-

dependently from a distribution Z(c) with support [c, c] and a probability density

function z(c) before each of the auctions. Cost realizations of each of the fringe

bidders are independent across time as well as across bidders. All bids submitted in

the first auction are common knowledge before the second auction starts.

Upon observing the first round bids the fringe bidders would form new expec-

tations about the regular bidder type F̂ (c|b1), where b1 is the regular bidder bid

in the first period. If the bidding strategies in the first periods are strictly mono-

tone these beliefs are true and F̂ (c|b1) = F (c|c1). I would assume that F̂ (c|b1) also

satisfies the monotone hazard rate with respect to b1.3

2.2.1 Second period solution

In the second period, after b1 = y is observed, the problem reduces to an

asymmetric first price auction where, from the perspective of the fringe bidders

the regular bidder draws costs from F̂2(c2|y), and the fringe bidder draws costs

from Z(c). The exact shape of F̂2(c2|y) depends on whether the fringe bidders can

perfectly identify the costs of the regular bidder from the first period, but from a

perspective of the fringe bidders it is a well-defined distribution. This means that in

3This implies that only non-decreasing bidding strategies can constitute an equilibrium in the
first round, yet they don’t have to be strictly increasing.

61



the second period there exists a unique monotone equilibrium {β2
R(c2, y); β2

F (c, y)}

with the corresponding inverse bidding functions {φ2
R(b, y);φ2

F (b, y)}. Using Lebrun

(1998) and de Castro and de Frutos (2010) the following comparative statics result

holds when F̂2(c2|y) satisfies the monotone hazard rate assumption (A2.1):

Proposition 2.1. For any y′ > y, and for any c and b:

β2
F (c, y′) > β2

F (c, y),

F2(φ2
R(b, y′)|y′) < F2(φ2

R(b, y)|y).

(2.1)

Proposition 2.1 implies that fringe bidders would bid more aggressively after

observing a lower bid from the regular bidder regardless of their types. And even

though we can not establish the same order of bidding functions for the regular

bidder, we know that her distribution of second round bids would would follow a

first order stochastic dominance with respect to her first period bids. Using the first

part of proposition 2.1 also allows to provide useful comparative statics result for

the second round payoffs of the regular bidder:

Proposition 2.2. If F̂2(c2|y) satisfies the monotone hazard rate assumption ex-

pected profit of the regular bidder in the second period is an increasing function of

her first period bid.

Proof. The interim second round expected profit of the regular bidder is:

Π∗2(y) = max
b2

(b2 − c2)(1− Z(φ2
F (b2, y)))
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By proposition 2.1:

Z(φ2
F (b2, y

′)) < Z(φ2
F (b2, y)) ∀y′ > y,

hence:

(b2 − c2)(1− Z(φ2
F (b2, y

′))) > (b2 − c2)(1− Z(φ2
F (b2, y))) ∀y′ > y, ∀b2

And Π∗2(y′) > Π∗2(y).

2.2.2 First period problem

First, assume that there exists an equilibrium in strictly increasing bidding

strategies in the first round auction {β1
R(c); β1

F (c)}, with corresponding inverse bid-

ding functions {φ1
R(c);φ1

F (c)}. Then the equilibrium condition for the fringe bidder

follows that of the standard asymmetric first price auction:

b− φ1
F (b) =

[ f1(φ1
R(b))

1− F1(φ1
R(b))

∂φ1
R(b)

∂b
+

(n− 1)z(φ1
F (b))

1− Z(φ1
F (b))

∂φ1
F (b)

∂b

]−1

(2.2)

However The regular bidder problem for the first round auction would include

expected second period profits, since they also depend b1. Assuming no intertem-

poral discounting, the regular bidder expected profits are:
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Π(b1) = [b1 − c1][1− Z(φ1
F (b1))]n + Ec1,b1 Π∗2(b1). (2.3)

The set of first order conditions defining the BNE of the game is:

b− φ1
F (b) =

[ f(φ1
R(b))

1− F (φ1
R(b))

∂φ1
R(b)

∂b
+

(n− 1)z(φ1
F (b))

1− Z(φ1
F (b))

∂φ1
F (b)

∂b

]−1

(1− Z(φ1
F (b)))n − n(b− φ1

R(b))z(φ1
F (b))(1− Z(φ1

F (b)))n−1∂φ
1
F (b)

∂b

+
∂ Ec,b Π∗2(b)

∂b
= 0

(2.4)

With standard boundary conditions:

φ1
F (b) = φ1

R(b) = c,

b = c, and

φ1
F (b) = φ1

R(b) = c

(2.5)

Proposition 2.3. The pair of strictly increasing functions φ1
F (b) and φ1

R(b) satisfy-

ing conditions (2.4) and (2.5) at any point of their support [b, c] does not exist.

Proof. Following Hubbard et al. (2013b) and Fibich et al. (2002), several additional

boundary conditions should be added, noting that the first order conditions (2.4)

should hold at b and b as well as at all interior points. Evaluating these conditions

at boundary points gives:
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f(c)
∂φ1

R(b)

∂b
+ (n− 1)z(c)

∂φ1
F (b)

∂b
=

1

b− c
,

nz(c)(b− c)∂φ
1
F (b)

∂b
= 1− ∂ Ec,b Π∗2(b)

∂b
,

∂φ1
F (b)

∂b
= 1 +

1

n
, and

∂ Ec,b Π∗2(b)

∂b
= 0.

(2.6)

L’Hospital rule is used to derive the third condition:

lim
b→b

(b− φ1
F (b))

[ f(φ1
R(b))

1− F (φ1
R(b))

∂φ1
R(b)

∂b
+

(n− 1)z(φ1
F (b))

1− Z(φ1
F (b))

∂φ1
F (b)

∂b

]
=

f(c)
∂φ1

R(b)

∂b
lim
b→b

b− φ1
F (b)

1− F (φ1
R(b))

+ (n− 1)z(c)
∂φ1

F (b)

∂b
lim
b→b

b− φ1
F (b)

1− Z(φ1
F (b))

=

n(1− ∂φ1
R(b)

∂b
) = 1

(2.7)

However in the presence of additional second round profits the first order

condition for the regular bidder can only hold is the derivative of expected profit

at the upper boundary is equal to zero. This contradicts Proposition 2.2 implying

that the equilibrium in monotonic strategies does not exist in this game. Since

the proof of Proposition 2.4 did not depend on the existence of a monotone bidding

function for the regular bidder, this also implies that if an equilibrium exists, all bids

submitted by the regular bidder are higher that those of the standard equilibrium,

and any pooling should happen at the higher end of the cost distribution.

Let βR(c) and φR(c) be the equilibrium bidding and inverse bidding functions

of the regular bidder in the standard asymmetric first price auction with own cost

distribution of F1(c) and the fringe bidder cost distribution of Z(c). Then the
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following proposition is true.

Proposition 2.4. The regular bidder overbids in the first period of the repeated

auction model compared to the standard auction model:

β1
R(c) > βR(c) ∀c ∈ (c, c).

Proof. In the standard model the regular bidder solves the problem

Π∗1(b1) = max
b1

[b1 − c1][1− Z(φ1
F (b1))]n

with ∂Π1(b1)
∂b1

= 0. In the first round of the repeated auction the regular bidder

solves the problem

Π∗(b1) = max
b1
{[b1 − c1][1− Z(φ1

F (b1))]n + Ec1,b1 Π∗2(b1)}

with ∂Π1(b1)
∂b1

+
∂ Ec1,b1 Π∗2(b1)

∂b1
= 0. Following proposition 2.2 the second term in

this equation is greater than zero, which means that the first term must be less than

zero and the solution of the first round of the repeated game must lie on the right

from the solution of the standard game. Or, in other words, β1
R(c) > βR(c).

Propositions 2.3 and 2.4 combined together let me state the following main

result:

Proposition 2.5. The equilibrium in strictly increasing bidding strategies {β1
R(c); β1

F (c)}

does not exist in the first stage game. If an equilibrium of the first stage game exists,

66



the regular bidder would be at least partially pooling at the high type.

2.3 Example: Beta distribution family

Since no analytic solution for the general problem can be found, it is useful to

consider a tractable example showing both the construction of the partially pooling

equilibrium in the first round auction and the consequences of using monotonic

functions solving (2.4) and (2.5) numerically instead of true equilibirum bidding

functions. In this section I would assume that in the first period both types of

bidders are symmetric with costs independently drawn from a uniform distribution

with support [0,1]. In the second period the regular bidder draws her costs from a

distribution which depends on her first period costs. In particular, I would consider

a family of Beta distributions with the first shape parameter equal to 1, and and

the second shape parameter equal to α
c1

, Beta(1, α
c1

). The fringe bidders draw their

costs in the second period from the same uniform distribution with support [0,1]

independently of their first period costs, or any of the competitor costs.

The CDF and PDF of the second period regular bidder costs are:

F2(c,
α

c1

) = 1− (1− c)
α
c1 ,

f2(c,
α

c1

) =
α

c1

(1− c)
α
c1
−1
.

(2.8)

This distribution family has several useful properties in relation to my model

setup:

• It has support [0,1] regardless of the value of the parameters;
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• It has a clear stochastic ordering with respect to both c1 and α;

• For any invertible bid in the first period it allows to solve a standard asym-

metric first price procurement auction that happens in the second period an-

alytically.

Proposition 2.6. F2(c, α
c1

) = 1 − (1 − c)
α
c1 satisfies the monotone hazard rate

assumption

Proof. Note that the hazard rate conditional on a realization of first price costs

c1 = y for the Beta distribution function is:

f2(c|y)

1− F2(c|y)
=

α

y(1− c)

and since c ∈ [0, 1],

α

y′(1− c)
<

α

y(1− c)
∀y′ > yand∀c ∈ [0, 1].

Proposition 2.7. In an asymmetric first price auction with one regular bidder draw-

ing her costs from the distribution Beta(1, α
c1

) and n fringe bidders drawing their

costs from the distribution U(0, 1) there exists an equilibrium in strictly increasing

strategies. The inverse bidding functions composing the equilibrium are:
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φ2
R(b) = b

n+ 1

n
− 1

n
, for the regular bidder,

φ2
F (b) = b

n+ α/y

α/y + n− 1
− 1

α/y + n− 1
, for the fringe bidder

(2.9)

Proof. With the regular bidder drawing her costs from Beta(1, α
c1

), and fringe bid-

ders drawing their costs from U(0, 1) the first order conditions for the second period

auction simplify to:

(b− φ2
F (b))

[ α

y(1− φ2
R(b))

∂φ2
r(b)

∂b
+

(n− 1)

1− φ2
F (b)

∂φ2
F (b)

∂b

]
= 1

(b− φ2
R(b))

n

1− φ2
F (b)

∂φ2
F (b)

∂b
= 1

(2.10)

Plugging in the candidate solutions in the system of first order conditions

above verifies the statement of the proposition.

This means that, assuming that the fringe bidder’s expectations about the

regular bidder’s bidding in the first round are φ1
R(b, y), the expected second period

profit of the regular bidder can be written as (with the realization of c1 = y):

EΠ2 =

∫ 1

0

1− b2

n

(1− b2)(α/φ1
R(b1) + n)

α/φ1
R(b1) + n− 1

[α
y

(1− c2)
α
y
−1
]
dc2 =

=

∫ 1

0

1

n

(n(1− c2)

n+ 1

)2 α/φ1
R(b1) + n

α/φ1
R(b1) + n− 1

[α
y

(1− c2)
α
y
−1
]
dc2 =

=
n

(n+ 1)2

nφ1
R(b) + α

(n− 1)φ1
R(b) + α

α

y

∫ 1

0

(1− c2)α/y+1dc2 =

=
n

(n+ 1)2

φ1
R(b)

α + 2y

nφ1
R(b) + α

(n− 1)φ1
R(b) + α

(2.11)

In the first round the regular bidder solves the problem:
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(b1 − c1)(1− φ1
F (b1))n +

n

(n+ 1)2

φ1
R(b)

α + 2c1

nφ1
R(b) + α

(n− 1)φ1
R(b) + α

→ max
b1

(2.12)

And the set of equations defining the equilibrium inverse bidding functions in

the first period is:

(b− φ1
F (b))

((n− 1)∂φ1
F (b)/∂b

1− φ1
F (b)

+
∂φ1

R(b)/∂b

1− φ1
R(b)

)
= 1

(1− φ1
F (b))n − n(1− φ1

F (b))n−1(b− φ1
R(b))φ1′

F (b) +
∂ EΠ2(b)

∂b
= 0

(2.13)

I proceed to solve the system of equations (2.13) numerically using the stan-

dard Hubbard et al. (2013b) methodology described in Chapter 1 for various values

of α and n. Figure 2.1 shows the resulting bidding functions for n = 1 along with

the solution of a symmetric auction with standard uniform cost distributions for ref-

erence. The regular bidder always bids higher than both the fringe bidder and the

standard symmetric bidder. The higher is the value of α, the lower is the correlation

between first period and second period costs of the regular bidder, and the closer

are the first round simulated bidding functions to the standard one-shot symmetric

auction.

However we can also see that the simulated bidding function do not constitute

an equilibrium by finding best response functions to each of the proposed solutions.

In particular, plugging in the simulated φ1
F (b) and φ1

R(b) into the regular bidder

problem for n = 1 and numerically finding optimal b1 that solves:
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(b1 − c1)(1− φ1
F (b1)) +

φ1
R(b1) + α

4(α + 2c1)
→ max

b1
(2.14)

for each c1 shows that the assumption of monotone first round bidding strategies

is violated, especially for low values of α. Figure 2.2 shows the regular bidder best

response functions along with the simulated monotone bidding functions for various

values of α. For values below 0.3 the best response function is fully pooling at

φ1
R(b) = b = c = 1. At α = 0.5 there is some partial pooling at the right end of the

best response function. The pooling interval reduces with α but is present even for

high values.
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Figure 2.1: Bidding functions for different values of α

(a) α=0.01 (b) α=0.02

(c) α = 0.5 (d) α = 1

(e) α = 5 (f) α = 10

Theoretical intuition for this result can be obtained by explicitly applying the

Hubbard et al. (2013b) and Fibich et al. (2002) boundary conditions and evaluating

(2.13) at points b and b = 1 and taking into account the boundary conditions for

the inverse bidding functions (φ1
F (b) = φ1

R(b) = c = 0, and φ1
F (1) = φ1

R(1) = 1).
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Figure 2.2: Bidding functions for different values of α
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Evaluated at the lower boundary, (2.13) would provide additional conditions

for the shape of φ1
F (b) and φ1

R(b) at the lower boundary:

(b− 0)φ1′
R(b)− (1− 0) = 0

(b− 0)φ1′
F (b)− (1− 0) +

φ1′
R(b)

4(α + 2 ∗ 0)
= 0,

(2.15)

or:

φ1′
R(b) =

1

b

φ1′
F (b) =

1

b
− 1

4αb2 ,

(2.16)

Evaluated at the upper boundary, however, (2.13) shows that there should be

some pooling by the regular bidder, which contradicts our initial assumption about

the monotonicity of the equilibrium:

(1− 1)φ1′
R(b)− (1− 1) = 0

(1− 1)φ1′
F (b)− (1− 1) +

φ1′
R(b)

4(α + 2)
= 0

(2.17)

We can use L’Hospital rule to estimate the first equation in (2.17) providing

additional condition on φ1′
R(b) = 2 or φ1′

R(b) = 0, however the second equation can

only hold if φ1′
R(b) = 0.
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2.4 Partially pooling solution for the Beta distribution family

In this section I describe the algorithm for finding a partially pooling solution

for a selected Beta distribution. In particular I assume that α = 0.5, and in the first

period the regular bidder bids according to some monotonic function β1
R(c) up to a

cut-off point ĉ and 1 after this cut-off point. Since the first round bidding function

of the regular bidder is not invertable at 1, the beliefs of the fringe bidder in the

second round have to be corrected to solve the second round auction appropriately.4

F̂2(c|b1) =


1− (1− c)α/φ1

R(b1), if b1 < 1;

∫ 1
ĉ (1−(1−c)α/ydy

1−ĉ , if b1 = 1.

(2.18)

Despite the changes in the fringe bidder beliefs about the regular bidder costs,

the second round auction is still a standard asymmetric first price procurement auc-

tion and a unique monotonic equilibrium exists for any given value of b1. Moreover,

for any c1 = y < ĉ and b1 < 1 the solution of the auction is still described by (2.9).

When b1 = 1 the solution of the second round auction satisfies the following system

of first order conditions:

(b− φ2
F (b))

[(n− 1)φ2′
R(b)

1− φ2
F (b)

+HR(φ2
R(b))

]
= 1

(b− φ2
R(b))

nφ2′
F (b)

1− φ2
F (b)

= 1

(2.19)

where HR(c) is the hazard ratio for the regular bidder conditional on b1 = 1.

4The analytical expression for the integral in (2.18) involves the exponential integral special
function and is not very useful. I would use the integral form in further derivations and a numerical
approximation for the simulated solutions.
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Figure 2.3 shows the numerical solutions for this system of equations for dif-

ferent values of ĉ, α = 0.5, and n = 1. It is clear that for high values of ĉ both

bidding functions are increasing with ĉ, but the relation is less clear for the lower

values of ĉ. Figure 2.4 shows the expected profits of the regular bidder in the second

round auction conditional on b1 = 1 as a function of ĉ. As we can see it is not a

monotone function of ĉ and it is minimized at ĉ ≈ 0.5.

Figure 2.3: Second round bidding functions for b1 = 1, α = 0.5, and several values
of ĉ
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Figure 2.4: Expected profits of the regular bidder in second round auction, α = 0.5,
n = 1

In the first round the regular bidder would balance the profits from the first

round auction with the expected profits from the second round auction and is un-

likely to chose a low value of ĉ. So we might expect the optimal cut-off value to be

above 0.5.

To solve the first round problem, first assume that the regular bidder bids

according to some monotonic function β1
R(c) if her first period costs are less than

the cut-off value ĉ, and 1 if her costs are greater or equal than ĉ.

Proposition 2.8. If the regular bidder is playing the partially pooling strategy, the

fringe bidders would play a strictly increasing strategy in the equilibrium.

Proof. Assume that the regular bidder is playing a partially pooling strategy with

the strictly increasing inverse bidding function φ1
R(b), φ1

R(1) = ĉ, φ1
R(0) = 0, and

bids 1 whenever her costs are above ĉ. If n > 1 the fringe bidders would have no

incentives to play a partially pooling strategy, since they will be competing with

other fringe bidders who don’t value the future and have incentives to undercut the
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bid b = 1 whenever their cost draw is below 1. If n = 1 the expected profits of the

fringe bidder bidding some b < 1 are:

ΠF (b, c) = (b− c)(1− ĉ+ (1− φ1
R(b))ĉ),

and, if the ties are decided by a fair coin flip, her expected profits when bidding 1

are:

ΠF (1, c) = (1− c)1− ĉ
2

Since for any ĉ > 0:

ΠF (b, c) =(b− c)(1− φ1
R(b)ĉ) ≥ (b− c)(1− ĉ2)

the fringe bidder chooses to play a strictly monotonic strategy whenever:

b− c
1− c

>
1

2(1 + ĉ)
,

the left hand side is a decreasing function of c and for any b there exists a threshold

ĉF such that:

ĉF =
2b(1 + ĉ)− 1

1 + 2ĉ

such that the fringe bidder prefers the mixed strategy whenever c ≥ ĉF . At b = 1

this means that ĉF = 1 and the fringe bidder plays a strictly increasing bidding

strategy in the equilibrium.
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If the fringe bidder is playing a strictly increasing equilibrium strategy φ1
F (b),

expected profits of the regular bidder are:

ΠR(b, ĉ) =


Π∗2(ĉ), if b = 1;

(b− c)(1− φ1
F (b))n + Π2(b), if b1 < 1.

(2.20)

where Π∗2(ĉ) is the expected second round profit from the pooling signal shown in

figure (2.4), and Π2(b) is the expected second round profit from signal φ1
R(b) = c.

Equilibrium threshold value ĉ is defined by equality:

Π∗2(ĉ) = EΠ2(1) =
n

(n+ 1)2

φ1
R(b)

α + 2φ1
R(b)

nφ1
R(b) + α

(n− 1)φ1
R(b) + α

(2.21)

In case of n = 1:

Π∗2(ĉ) = Π2(1) =
φ1
R(b) + 0.5

4(0.5 + 2φ1
R(b))

=
ĉ+ 0.5

4(0.5 + 2ĉ)
. (2.22)

However in this example the right hand side of equation (2.22) is maximized

at ĉ = 0 with the value 0.25, which is below the minimum value of Π∗2(ĉ). Hence no

equilibrium exists in an auction with one fringe bidder. 5

A partially pooling equilibrium would exist if more than one fringe bidder

is participating in the auctions. Similar solution strategy can be used to find the

threshold values of ĉn for higher values of n. For example, Figure 2.5 shows numerical

solutions of the second round auction for selected values of α and n = 2.

5Alternatively, we might assume that the ties are always broken in favor of the fringe bidder.
Then multiple equilibria with both the regular and the fringe bidder bidding b = 1−

√
Π∗2(0) would

exist in this game.
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Figure 2.5: Second round bidding functions for b1 = 1, α = 0.5, 2 fringe bidders,
and several values of ĉ

Applying condition (2.21) for these solutions and n = 2, graphically shown in

Figure 2.6, would provide the value of ĉ∗2 = 0.0358. As shown in Figures 2.7 and 2.8

the solutions for three and seven fringe bidders are ĉ∗3 = 0.0656 , and ĉ∗7 = 0.2666.

To finish constructing a partially pooling equilibrium one would solve the

following system of differential equations numerically:

(1− φ1
F (b))n − nφ1′

F (b)(b− c)(1− φ1
F (b))n−1 +

∂Π2(b)

∂b
= 0,

(b− φ1
F (b))

[(n− 1)φ1′
R(b)

1− φ1
F (b)

+
φ1′
R(b)

1− φ1
R(b)

]
= 1,

φ1
F (b) = φ1

R(b) = 0,

φ1
F (1) = 1, φ1

R(1) = ĉ.

(2.23)

Though the unique solution to such system exists, the fact that the system is
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not fully fixed at the lower end of support, and the functions we are seeking have

different supports make standard solution numerical solution methods unstable.

Figure 2.6: Expected profits of the regular bidder in second round auction with two
fringe bidders: ĉ∗ = 0.0358

Figure 2.7: Expected profits of the regular bidder in second round auction with
three fringe bidders: ĉ∗ = 0.0656

2.5 Conclusions

In this chapter I have studied a simple two-period model of repeated procure-

ment auction with autocorrelated costs and forward-looking bidders. I have shown
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Figure 2.8: Expected profits of the regular bidder in second round auction with
three fringe bidders: ĉ∗ = 0.2666

that in this model the equilibrium in strictly increasing strategies does not exist in

the first time period. In particular, the bidder with autocorrelated type would have

incentives to hide her true type in the earlier period partially pool at her weakest

type in equilibrium.

I have also provided equilibrium solutions for several examples of two-period

auction games with mostly symmetric players, and shown that the bidder with

persistent type would pool towards the higher type even if the competition is high.

This result provides an extension of previously existing literature on repeated

auctions with persistent bidder types, and can inform future work concerning auction

transparency and estimation of data from repeated auctions.
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Chapter 3: The role of information in repeated procurement auc-

tions: monitoring and entry

3.1 Introduction

On Jan 1, 2011, Russian public procurement system experienced a change in

the rules of publishing information. Before this date the information was published

in a decentralized manner, separated into municipal (published mostly offline or on

the municipal administration website), regional (published on regional procurement

websites), and federal (published on the federal procurement website). Since Jan 1,

2011, all the information is published on the federal website in a unified format.

This shift makes acquiring information about upcoming and past auctions

cheaper both for the firms considering entering and for the regulators monitoring

the procurement system for the cases of possible corruption. From the point of

view of policy makers increased information should increase competition and reduce

procurement costs through both of these channels. However in a repeated auction

setting releasing information about past auctions might have adverse effects on com-

petition both by facilitating collusion and by providing incumbents with additional

instruments to deter entry. Although better information about upcoming auctions
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induces entry, information about past auctions allows bidders to coordinate, and

may discourage entry by weaker bidders if they observe a strong incumbent in sim-

ilar past auctions.

I suggest that in a repeated auction framework firms make not only entry and

bidding decisions, but also monitoring decisions in each period of time. If a firm

wants to participate in an auction it has to acquire information about upcoming

auctions. It can also get information about past auctions’ outcomes and use this

information while making entry and bidding decisions. Increase of information trans-

parency lowers monitoring costs, the costs of acquiring both types of information.

The existence of third-party firms that specialize in collecting information about

procurement auctions and selling it to potential entrants can serve as an anecdotal

evidence of existence of monitoring costs in the system.

In this chapter I study the effect of increased information transparency on entry

and bidding decisions in repeated public procurement auctions for gasoline service

contracts in one of the Russian regions. I use the difference in the role of monitoring

for big and small firms and the variation in their entry and bidding decisions to

provide some reduced form evidence of the ambivalent role of increasing information

transparency. I also suggest an (incomplete) structural model showing the different

effects that the policy change had on the different types of firms participating in

this market. The results of the estimation of a static model with selective costly

entry suggest that the new information policy changed entry costs benefiting the

large federal firms and potentially decreasing competition. However the resulting

estimates of cost distributions before and after the policy change are significantly
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different for the same types of firms suggesting that a more comprehensive model

incorporating forward-looking behavior by some or all firms is needed to reflect the

data.

Related literature can be separated into four main groups: evaluation of in-

formation disclosure policy for procurement auctions; endogenous entry in one-shot

auctions; bidding and entry behavior in repeated auctions with no entry costs; and

theoretical models of repeated auctions with monitoring. Coviello and Mariniello

(2014), Leslie and Zoido (2011), Ohashi (2009), De Silva et al. (2008) evaluate the

effects of various rules of disclosing information about procurement auctions in Italy,

Argentina, Japan and USA. Ohashi (2009) and De Silva et al. (2008) study the ef-

fects of providing more precise information about the costs of performing a public

work on entry and bidding behavior. Ohashi (2009) finds both an increase in num-

ber of entrants and decrease in price of contracts due to improved information; De

Silva et al. (2008) find reduced information asymmetries between “entrants” and

“incumbents”, but no proof of increased overall entry. Since public works (such

as construction, repair, gardening etc.) are associated with common costs for all

firms, the policies studied in both papers are aimed at reducing ex ante information

asymmetries between different types of bidders, and between the buyers and the

bidders. In my chapter I would focus on auctions for a simple product (gasoline)

with well defined characteristics which I assume to be private cost auctions. Yet

these papers provide useful insights in possible reduced form techniques (differences-

in-differences) as well as an example of ambiguous results of increasing information

transparency on auction outcomes. Papers by Coviello and Mariniello (2014), and

85



Leslie and Zoido (2011) are studying private value auctions and are focused on the

effect of publicity on auction outcomes. Coviello and Mariniello (2014) use a re-

gression discontinuity design to show that entry and winning rebate are lower in

auctions with reserve prices below 500,000 euros which are publicized on local bul-

letin boards in Italian municipalities than for auctions with reserve prices above

500,000 euros which are publicized in a number of regional newspapers. Leslie and

Zoido (2011) study the effect of “informational entrepreneurs”, the third-party firms

that sell bundled auction announcements to potential bidders, on auction outcomes

in Buenos Aires. They show that firms that buy information services enter into

auctions with less competitors, and as a consequence bid less aggressively, but the

appearance of informational entrepreneurs reduces costs of procurement by 2.9%.

The second group of related papers models one-shot auctions with costly entry

and estimates the entry costs. Krasnokutskaya and Seim (2011), and Athey et al.

(2011) use a model of non-selective endogenous entry suggested by Levin and Smith

(1994) (LS). It is assumed that potential entrants do not know their private values

(or costs in the case of procurement auctions) before making an entering decision.

Both papers model two types of firms differing in the distribution of their values

either because of the difference in the size of the firms or because of bid preferences

provided by the auctioneer. The empirical parts of the papers focus on highway

procurement and timber auctions in various US states respectively. In both types

of auctions only general information about the auctioned work contract or tract is

publicly released and firms have to pay a small fee to acquire further information.

This allows to observe the number of “planholders” or firms choosing to “cruise the
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tract” and assume that all of these firms are potential entrants in the auction game,

while firms that submit bids are actual entrants. Yet the “planholders” represent

an already refined group of firms that chose to incur costs of acquiring further

information, and in the logic of my chapter are firms that made a positive monitoring

decision, paid the monitoring cost, and as a result of this monitoring know that they

are eligible to take part in the auction. Hubbard and Paarsch (2009) model and

parametrically simulate the consequences of a bid preference program with selective

entry following Samuelson (1985) (S) model. Under Samuelson assumption potential

entrants learn their private values before making the entry decision so that only firms

with valuations higher than a certain threshold (or costs lower than threshold in case

of procurement auctions) are participating in the auction. Roberts and Sweeting

(2010) model and parametrically estimate partially selective entry allowing potential

entrants to observe signals affiliated with their private valuations prior to making

entry decision. Li and Zheng (2012) suggest a method of discriminating between

selective and non-selective entry models and provide evidence in favor of selective

entry in timber auctions.

Although assuming that there is at least some degree of selection in entry

decision seems natural, the truncated nature of observed bids make identification of

the entry costs and distribution of bids difficult. Gentry and Li (2014) show that if

the number of potential entrants, number of bidders and full set of bids is observed

the bounds on the entry costs and conditional distribution of values can be identified

in the affiliated signal model. These bounds would collapse to point estimates if the

variation in entry is continuous (there exists a continuous auction level instrument),
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and if entry is non-selective (LS), but not if entry is fully selective (S).

In this chapter I am focusing on the impact of accumulated information and

the repeated nature of procurement auctions on entry decisions. Jofre-Bonet and

Pesendorfer (2000) and Jofre-Bonet and Pesendorfer (2007) (JBP) suggest a model of

repeated procurement auction in which past actions taken by the firm accumulated

in a state variable affect its bidding decisions in the current auction. Jofre-Bonet

and Pesendorfer use firms’ backlog as such state variable, Balat (2013) allows for

more general intertemporal links in private costs, Groeger (2014)allows for entry

costs that depend on the state variable. The estimation of JBP model relies on

observing the state variable for all regularly participating firms and the distribution

of bids conditional on the state variable.

Finally, as monitoring provides potential entrants with information about past

auctions, I have to make certain assumptions on the way this information may be

used. Papers by Danak and Mannor (2009), Han et al. (2009), Figliozzi et al.

(2008) build and simulate models of repeated auctions with monitoring and provide

some insight to deriving the expected upcoming auction characteristics with both

perfectly and boundedly rational potential participants.

In this chapter I provide some evidence of ambiguous effect of increased infor-

mation transparency on key auction outcomes (participation and costs of procure-

ment) which might be attributed to the presence of asymmetric monitoring costs. I

further suggest a model of repeated auction with monitoring and endogenous entry

by building up on the JBP model of repeated procurement auction.
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3.2 Data and institutional environment

I start with the data from approximately 7000 sealed bid and open bid gasoline

procurement auctions in Sverdlovsk region of Russia conducted in 2008-20131. Prior

to January 2011 both calls for bids and auction protocols were publicized on different

levels depending on financing features of the organization. Municipal procurements

were published on either municipal or regional procurement website; regional pro-

curements were published on regional websites; federal procurements were published

separately on a centralized federal website. The information about auctions from

2008 to 2011 is obtained from a number of archived municipal administrations web-

sites and the regional procurement website for Sverdlovsk region. Auctions after

Jan 2011 are obtained from the centralized federal procurement website2.

Starting from January 2011 two changes to the procurement system were im-

plemented. First, the information about procurements of any level is published on a

centralized website, potentially decreasing monitoring efforts for all interested par-

ties. Second, electronic applications for both sealed bid and open bid auctions were

introduced, potentially reducing entry costs for all bidders.

A typical gasoline procurement auction is run to provide cars owned by a

government or government-financed organization3 with gasoline supplied through

1Sverdlovsk region is chosen for several reasons. It is consistently in top-10 Russian regions by
gross regional product, has substantial population density so that consumer market for gasoline
suppliers is of more importance than government contracts, yet has not many big federal buyers
with potentially large bargaining power (unlike buyers in Moscow, St. Petersburg and Tatarstan),
finally the pre-2011 data for the region is relatively well preserved.

2Data published on the federal website prior to Jan 2011 is currently not available, though
might be used as a control grouped if ever obtained. This makes the set of buyers covered by the
data after 2011 about 10% larger than those covered before 2011.

3Such as a local administration, school, or hospital.
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existing gas stations in a particular locality. At least two weeks before the auction

the procurer has to publish auction documentation which specifies area and duration

of service, amount of gasoline demanded, the type of auction (open or sealed bid),

and the place and time that this auction would take place in. An example of such

procurement auction is described below.

A local police station buys 14300 liters of AI92 gasoline to be supplied over the

second quarter of 2009 through gas stations within municipality borders. Figure 3.1

shows the procurer labeled with tax-payer id, area of service, and local gas stations

labeled with green dots. There are 5 eligible bidders. The call for bids was published

on April 2, 2009 on the regional website. It specified the duration of service (during

second quarter), area of service (within municipality borders), reserve price 267670

RUB which is approximately 3% higher than the market price of this volume of

AI92 at the time of auction, and the date and time by which bids should be received

by the procurer (April 8, 18:00). Two bidders submitted their bids, but one of

them was excluded from the auction since it had no stations in the service area.

The only remaining bidder was announced the winner with the price 265980 (2.3%

higher than the market price). On April 10 the protocol was published on the same

website.
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Figure 3.1: Krasnoturyinsk police station procurement

Sealed bid and open bid auctions run by standard rules with a public reserve

price. In a sealed bid auction bidders submit their bids and supporting documents

(such as safety certificates, list of stations in operation etc.) either in an envelope

or electronically, the buyer opens the bid packages at a designated time, decides

whether all bidders satisfy auction requirements and announces the bidder who

submitted the lowest admitted bid the winner. In an open bid auction firms register

to bid and submits supporting documents before the beginning of the auction, buyer

decides and announces whether all bidders satisfy auction requirements. At the

predefined time of the auction admitted bidders submit their descending bids either

in person or electronically until no bidder is willing to submit another bid. The
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last bid is announced the winning bid and the winner receives the amount of this

bid as his payment4. Buyers have to conduct open bid auctions if the reserve price

is above 500,000 RUB (˜$15,500 by 2011 exchange rate), they are free to choose

between sealed bid and open bid auction if the reserve price is below this threshold5.

Auction results are protocoled and published within three days after the auction and

contain the information about bidder identities, winner identity, winning bid, and

sometimes second and subsequent bids. Procurer has the right to exclude a bidder

from the auction if certain documentation is not supplied or if bidder doesn’t satisfy

criteria of the contract (for example, if bidder doesn’t have stations in the specified

service area). Bidders in an open bid auction can apply but not submit any bids. The

information about excluded bidders is published in the protocols. The information

about non-active bidders is not necessarily published and in some cases the identity

of a non-active bidder is unknown.

An important feature of the data is the variation in potential number of bid-

ders across auctions in the same municipality and sometimes for the same buyer.

Some buyers change the definition of area of service over time, providing exogenous

variation in the number of potential bidders6. The aforementioned police station

4In practice open auctions have a discrete bid step initially equal to 5% of reserve price and
reducing by 0.5% of reserve price each time there are no new bids in a given round. Here I would
assume that the bids in open bid auctions are continuos and hence open bid first price auction can
be treated as a second price sealed bid auction if there are two or more bidders present.

5No auction is necessary if the reserve price is below 50,000 RUB, or total quarterly spending
on a given type of product is below 500,000RUB, or if the buyer can prove that the purchased
good is a product of local monopoly. These small purchaces are rare in gasoline procurement and
are not a part of the data set.

6The degree of freedom that definition of area of service and the reserve price gives to the
buyer might be used for implicitly executing preferences that the buyer has over potential entrants
(for corrupt or benevolent resons). But for the purpose of this chapter I would ignore strategic
considerations that the buyers might have.
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defined are of service within city limits in 2008, first half of 2009, and after second

half of 2011. It conducted four auction with area of service defined as “within 2

km radius” (blue circle on Figure 3.2) in 2009 cutting down the number of potential

entrants to 3, and four auctions “within 4 km radius” in 2010 with 4 eligible bidders.

3.2.1 North subsample

Since defining the volume demanded, area of service and the number and

identity of potential bidders for each auction is labor-intense, I will be using a

small subsample of 348 auctions in eight municipalities in the north of the region.

Appendix 1 shows the geographic area covered by the subsample (top of Figure

3.6) and the locations of buyers and gas stations in the covered area and reasonable

vicinity (bottom of Figure 3.6)7. There are 46 procurers from 8 municipalities in the

sample, each conducting 1 to 28 auctions from 2009 to 2013. 13 of these procurers

are “federal” organizations8.

One of the main concerns about the data is missing information for some

procurers. To see if it affects my subsample I study the changes in volume of

gasoline demanded over time (Appendix 3). Although it doesn’t seem to be an issue

for the whole subsample since there seems to be no substantial break in demand

patterns over the years(Figure 3.7), it affects municipality level data (Figure 3.8).

7This area consistes of both small and medium municipalities and is separated from the rest of
the region which makes definition of areas of service simpler. In further data collection process I
will add municipalities moving south from the current subsample border.

8These include prisons, extra-territorial police units and tax agencies. The presence of federal
buyers in the subsample is higher than in the full sample since prisons are clustered around two
of the municipalities: Ivdel and Gari. Though if this adds a bias to my reduced form results, the
bias should be in my favor since no big firms take part in “prison auctions”.
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Figure 3.2: Krasnoturyinsk police station: variation in area of service
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Two of the municipalities don’t show up in the pre-2011 data at all, suggesting that

they used alternative methods of publishing information, Ivdel is severely affected

by the lack of pre-2011 federal data and has more auctions for higher volumes of

gasoline documented after 2011. One municipality has no data after 2008 which

may be explained by local administrative reforms.

Appendix 2 presents summary statistics for the subsample (Table 3.7), pre-

2011 part of the subsample (Table 3.8) and post-2011 part of the subsample (Table

3.9). Some important features of the data include low participation rates (there

is no auction with more than 4 bidders, and no auction with more than 3 active

bidders), prevalence of sealed bid auctions for both pre- and post-2011 periods, and

a shift to smaller auctions with better reserve prices closer to current market prices

for the same bundles of gasoline at the time of auction after 2011. The shift to

sealed bid auctions and to the smaller contracts can be linked since the choice of

auction format depends on the reserve price. The shift to smaller contracts can

be explained by reduced costs of conducting an auction and by the shift to fewer

centralized auctions, for example Severouralsk administration used to buy gasoline

for several city hospitals before 2011 and after 2011 hospitals run these auctions

separately. In this chapter I would ignore possible strategic behavior of the buyers.

Since the number of active bidders is low in the observed auctions I also look at

the summary statistics by number of bidders (Table 3.10). There are less auctions

with no entry after 20119. Auctions with no entry have higher dispersion of reserve

9Although there is no zero-entry auctions in the subsample after 2011, they do exist in the full
sample.
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prices, but no other obvious differences from auction with nontrivial entry. Also

there are significantly more open bid auctions among auctions with only one active

bidder after 2011 which might be explained by higher visibility of “big efficient firm”

presence in big auctions after the introduction of new information policy which scares

off other potential entrants.

3.3 Reduced form strategy and results

In this section I estimate the results of policy change for two key auction out-

comes: entry and price of the auction. I start by running naive OLS regressions of

relative price of the procurement contract10 and winning discount11 on the policy

dummy variable and the set of auction characteristics. The results of these regres-

sions are presented in Table 3.1. They show that the mean relative price is higher

when I control for the relative reserve price and the mean discount is lower after

the introduction of the new information policy12. Or, in other words, the average

cost of gasoline procurement goes up after the introduction of the new information

policy.

10Relative price is equal to the ratio of winning bid to the average market price of the contract
at the Sverdlovsk region station at the time of the auction.

11Winning discount is equal to the difference between relative start price and relative winning
price.

12It also shows that the variation in relative reserve price explains most of the variation in final
relative price, so if we take into account the changes in buyer behavior the estimation of policy
results might be different since summary statistics in Tables 3.8 and 3.9 show that reserve prices
are consistently set closer to market prices after 2011.
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Table 3.1: Wining bid and winning rebate naive regressions

Normalized
contract price

Normalized
contract price

% Discount

Intercept 1.0806*** 0.1953*** 0.0121
(0.0178) (0.0411) (0.0115)

After -0.0082 0.0125** -0.0174***
(0.0100) (0.0063) (0.0065)

Open auction 0.0382*** 0.0055 0.0022
(0.0128) (0.0081) (0.0083)

Duration of con-
tract

-0.0001 -0.0001* 0.0001*

(0.0001) (0.0000) (0.0000)
N bidders -0.0158** -0.0193*** 0.0201***

(0.0072) (0.0045) (0.0047)
N products 0.0054 0.0052 -0.0052

(0.0054) (0.0034) (0.0035)
Volume -0.0000 0.0000 -0.0000

(0.0000) (0.0000) (0.0000)
Normalized
reserve price

0.8102***

(0.0362)
Observations 321 321 321
R-squared 0.077 0.645 0.090

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively.
Standard errors in parentheses.

If firms have to pay monitoring costs to obtain information about auctions in

our sample the policy would have different effect for small local firms and big firms

that have stations both inside and outside the region. For local firms that have

stations in one or several geographically close municipalities new policy means a

switch to a new website that provides information about the same set of upcoming

auctions. Although the quality of information provided might be slightly higher

reducing monitoring costs this change should be relatively small. For bigger firms

operating stations in several regions the new policy means a reduction in number

of sources they have to monitor significantly reducing monitoring costs per auction.
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The asymmetric reduction of monitoring costs should facilitate entry for big firms.

As the monitoring efforts don’t change for the small firms their entry is either

unchanged, or reduced if they are faced by new competition from the big firms and

chose to abandoned these auctions. The lower monitoring costs should also reduce

the price in the auctions where big firms participate (because they are more likely to

be an “additional entrant” and increase competition and because they tend to have

lower costs of performing the contract), but not necessarily the prices in auctions

where only small firms are present. Table 3.2 shows the presence of big and small

firms in the markets defined by average auctions before and after 2011; and the

entry decisions by small and big firms before and after 2011.

Table 3.2: Possibility of entry and entry by small and big firms

Share of station in
municipality

Entry

Big firms

Before 0.3080 0.2707
(0.1268) (0.4456)

After 0.3136 0.5570
(0.1480) (0.4974)

Small firms

Before 0.2003 0.2731
(0.0754) (0.4466)

After 0.1718 0.2447
(0.0672) (0.4302)

Standard deviations in parenthesis.

To estimate the effect of the policy on small and big firms I use the differences-

in-differences approach. I estimate linear models of the following general form:

Outcomejit = α0 + α1Pt + α2Fj + α3Pt × Fj +X ′itβ + Z ′ijtδ + uijt,
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where Outcomejit is entry decision, bidding decision or probability of winning

conditional on entry of firm j in auction i at time t; Pt is a policy dummy equal

to one after 2011 and to zero before 2011; Fj - firm type dummy equal to one for

firms that have stations outside of Sverdlovsk region as well as inside the region,

and to zero for firms that operate only inside the region; Xit is a set of auction

characteristics (same for all firms);Zijt - a set of firm-specific auction characteristics

(such as participation eligibility, number of stations in the defined area of service

etc.)

Table 3.3 presents the results of OLS and differences-in-differences analysis

for all observed bids. It shows that small firms bid less aggressively under the

new information policy while big firms bid more aggressively. Table 3.4 presents

the results of probability of entrance regressions. Since interpreting the coefficients

associated with the interaction terms in non-linear models is somewhat fuzzy I focus

on linear probability model for the differences-in-differences results. As predicted

big firms enter significantly more often after 2011 than before 2011, while there is

no significant effect on small firm entry. It is also worth noting that conditional

on eligibility big firms entered significantly less often than small firms prior to 2011

(firm type coefficient in LPM-DD model in Table 3.4) and enter more often after

2011 (the sum of firm type and after×firm type coefficients in Table 3.4). Table

3.5 presents the results for probability of winning conditional on entry. It shows

no significant differences in probability of winning for small vs big firms before and

after the change of information policy. This means that we would see more big firms

winning the auctions after 2011 - they have the same chance of winning the auction
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if they entered and enter more auctions. These results are in line with my initial

assumption about the effect that the new policy has on monitoring costs13.

Table 3.3: All bids

All bids, OLS All bids, DD
Normalized

bid
% Discount Normalized

bid
% Discount

Intercept 0.1529*** 0.0599*** 0.1622*** 0.0672***
(0.0383) (0.0121) (0.0379) (0.0123)

After 0.0154*** -0.0184** 0.0314*** -0.0306***
(0.0056) (0.0057) (0.0070) (0.0072)

Large firm 0.0084* -0.0107** 0.0381*** -0.0334***
(0.0049) (0.0050) (0.0094) (0.0097)

After×Large
firm

-0.0356*** 0.0270***

(0.0096) (0.0099)
Open auction 0.0011 0.0039 0.0010 0.0043

(0.0067) (0.0069) (0.0067) (0.0069)
Normalized
reserve price

0.8174*** 0.8011***

(0.0313) (0.0312)
N pot. entrants 0.0036* -0.0068*** 0.0027 -0.0063***

(0.0020) (0.0020) (0.0020) (0.0020)
Stations share -0.0243 0.0280* -0.0263* 0.0298*

(0.0154) (0.0159) (0.0153) (0.0158)
Contract con-
trols

Yes Yes Yes Yes

Observations 519 519 519 519
R-squared 0.597 0.091 0.608 0.104

*, **, and *** denote significance at the 10%, 5%, and 1% levels respectively. Standard
errors in parentheses.

13These results hold if municipalities with partial data and “federal” buyers are left out of the
sample, see Appendix 5.
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Table 3.4: Probability of entry

Probit LPM LPM-DD
Intercept -1.7292*** -0.1411 0.0004

(0.6369) (0.2029) (0.2026)
After 0.3595*** 0.1325*** 0.0020

(0.0923) (0.0302) (0.0381)
Large firm 0.3124*** 0.1117*** -0.0907***

(0.0860) (0.0283) (0.0461)
After×Large
firm

0.2915***

(0.0528)
Open auction -0.5695*** -0.1743*** 0.0010

(0.1291) (0.0403) (0.0067)
Normalized
reserve price

0.6200 0.2153 0.8011***

(0.5109) (0.1617) (0.0312)
N pot. entrants -0.0858** -0.0259* 0.0027

(0.0398) (0.0133) (0.0020)
Stations share 2.3417*** 0.8478*** -0.0263*

(0.3890) (0.1297) (0.0153)
Contract con-
trols

Yes Yes Yes

Observations 1503 1503 1503
R-squared 0.121 0.138

*, **, and *** denote significance at the 10%, 5%, and 1%
levels respectively. Standard errors in parentheses.
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Table 3.5: Probability of winning conditional on entry

Probit LPM LPM-DD
Intercept -1.4758 0.0059 -0.0130

(1.2815) (0.4317) (0.4326)
After 0.0709 0.0025 -0.0351

(0.1697) (0.0600) (0.0775)
Large firm -0.6101*** -0.2280*** -0.2893***

(0.1645) (0.0573) (0.0985)
After×Large
firm

0.0791

(0.1033)
Open auction 0.7850*** 0.2349*** 0.2335***

(0.2654) (0.0825) (0.0825)
Normalized
reserve price

0.0329 0.0097 0.0497

(1.0329) (0.3489) (0.3518)
N pot. entrants 0.2081*** 0.0734*** 0.0823***

(0.0711) (0.0242) (0.0252)
Stations share 3.6337** 1.3133*** 1.3645***

(0.6300) (0.2128) (0.2172)
Contract con-
trols

Yes Yes Yes

Observations 502 502 502
R-squared 0.119 0.120

*, **, and *** denote significance at the 10%, 5%, and 1%
levels respectively. Standard errors in parentheses.

3.4 Estimation of entry costs

To tackle the structural effect of the policy change on behavior of both large

and small firms, I assume that all bidders must obtain information about the auction

prior to the auction. A more centralized source of information would then reduce

entry costs for all types of bidders. However, since I study a simple product which is

sold by all auction participants in an open market, I would assume that all potential

bidders know their true costs of fulfilling the project prior to entry, and the entry
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costs consist of searching the auction, fulfilling the eligibility criteria, preparing bid-

ding documentation etc. To estimate the cost distributions of large and small firms,

and their entry costs before and after policy change, I use the Samuelson (1985)

model of selective entry: the bidders would enter as long as their expected profits

are higher than the entry costs, and each equilibrium bidding strategy includes a

threshold value of costs such that bidders with higher costs do no enter the auction.

I would also use the methodology of estimating truncated cost distributions of small

and large firms based on Guerre et al. (2000) and further on Flambard and Perrigne

(2006).

Assume that there are nF small firms and nR large firms who are eligible to

participate in the auction. Small firms draw their costs independently from a dis-

tribution FF (c), and large firms draw their costs independently from a distribution

FR(c). To enter into the auction, the small firm has to incur entry costs κF , and

the large firm has to incur entry costs κR.

If all other bidders bid according to some monotonic strategies φR(b) and φF (b)

the expected profits of bidder type i = F,R are:

Πi(b) = (b− c)(1− Fi(φi(b)))ni−1(1− Fj(φj(b)))nj . (3.1)

The bidder enters the auction if Π∗i (c) ≥ κi, and in equilibrium should chose

her bid to follow the inverse bidding function φi(b) and the set of standard first

order conditions:
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1

b− c
=

(ni − 1)fi(φi(b))φ
′
i(b)

1− Fi(φi(b))
+
njfj(φj(b))φ

′
j(b)

1− Fj(φj(b))
, i = F,R (3.2)

As Flambard and Perrigne (2006) note, the distribution of bids we observe in

this case is truncated, and if ĉi is the threshold entry value for the bidder of type i

her bids and costs distributions have a following relation:

Fi(φi(b))Fi(ĉi) = Ĝi(b),

fi(φi(b))φ
′
i(b)Fi(ĉi) = ĝi(b)

(3.3)

This means that it is enough to observe the distribution of bids and the entry

probability F̂i(ĉ) to be able to estimate both the distribution of costs and the entry

costs of each type of bidder.

Since the distribution of reserve prices in my data changes over the time (shown

on figure 3.3), I start the estimation by calculating the entry probabilities for both

types of bidders conditional on the reserve price:

F̂i(ĉi) =
ni

E(ni|r)
=

ni∫ r
0
niẑr(p)dp

, (3.4)

where ni is the number of entrants in the auction and ẑr(p) is the nonparametrically

estimated distribution of reserve price.

I then estimate the bid distributions for small and large firms before and after

the policy change. Figure 3.4 shows the resulting estimates of these distributions.

Both small and large firms bid lower on average after the policy change, though it

is hard to say whether it is linked to the changes in the reserve prices or in entry
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Figure 3.3: Kernel estimates of reserve price distribution before and after the policy
change

costs.

Figure 3.4: Kernel estimates of relative bid distributions for small and large firms

Finally, I use the equations:

1

b− c
=

(ni − 1)ĝi(b)

1− Ĝi(b)
+

nj ĝj(b)

1− Ĝj(b)
, i = F,R (3.5)

to calculate cost estimates for each bidder and estimate the truncated cost distri-

butions for both types of bidders before and after the policy change.

The resulting estimates of the truncated cost distributions for small and large

firms are shown on Figure 3.5. One can note that the large firm costs are visibly
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smaller on average after the policy change. However the small firms cost distribution

before the policy change is bimodal with one of the modes lower than the post change

average costs of a small entrant, and the other one larger. This might indicate that

three types of firms rather than two should be used, especially since the market

structure can also be represented by three distinct types of firms (local, regional,

and federal). However the difference in estimated cost distributions of the large

firms might also indicate that a more comprehensive model accounting for forward-

looking behavior of these firms is needed. Though it can be partially explained by

smaller entry costs that allow large firms to enter even when expected profits are

low, it might also be a sign of the large firms entering to prevent future competition

or signal their current state to the small firms as in the model of Chapter 2. These

results might also indicate the identification problems linked to a small sample size

of the auctions before the policy change.

Figure 3.5: Kernel estimates of relative costs distributions for small and large firms

However if we trust the estimated cost distributions above, we can derive the

estimates or entry costs for each type of firms before and after the policy change.

To estimate the entry costs for each type of bidders, I assume that I observe the

threshold bidder of each type before and after the change, and that the expected
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Table 3.6: Estimated entry costs for large and small firms

Large Small
Before 0.000092 0.000016
After 0.000002 0.000033

profits at ĉi = max ci are the entry costs. The estimates shown in Table 3.6 suggest

that the entry costs are relatively small (less than 0.01% of the market price of the

contract), but were decreased by the policy change order of magnitude for the large

firms, and increased for the small firms.

3.5 Conclusions

In this chapter I have looked at the effects of reducing costs of obtaining infor-

mation about upcoming and past auctions for key auction outcomes. The informa-

tion policy introduced in Jan 2011 in Russian public procurement had ambiguous

effects. The reform had different effect on small and large firms: there is no signif-

icant effect on observed small firms entry, significant positive effect on large firms

entry; large firms bid more aggressively after the introduction of new policy, while

small firms bid less aggressively. Although it did increase participation rates espe-

cially for big firms that have stations in several Russian regions, it did not increase

the overall competitiveness of bidding.

The asymmetry of the reaction of big firms and small firms to the reform is in

line with the “monitoring costs” intuition: firms have to obtain information about

upcoming and past auctions in order to participate and bid optimally. The new

information policy should significantly reduce these costs for the big firms but not
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for small firms.

The existence of monitoring costs should be taken into account when policies

stimulating entry into auctions are implemented. For example, reducing entry costs

may be not sufficient to induce more entry if the costs of acquiring information stay

the same. In order to asses the relevant importance of informational (monitoring

costs) and non-informational (entry costs) barriers to entry we should be able to see

how these costs factor in firms participation rate and bidding decisions.

Estimates of a static selective entry model show that the entry costs did de-

crease substantially for large firms, and increased for the small firms, potentially

decreasing the overall competitiveness of the auctions. However the resulting esti-

mates of cost distributions for both types of firms also change significantly over type,

suggesting that a more comprehensive model capturing the dynamic considerations

of both types of firms is needed to capture the full effects of the policy change.
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3.6 Appendix

3.6.1 Choice of subsample

Figure 3.6: Subsample definition
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3.6.2 Summary statistics

Table 3.7: Summary statistics: North subsample

Variable Description Mean St.dev Min Max Count
After dummy: 0 before Jan

1 2011; 1 after
0.7155 0.4518 0 1 348

Federal dummy: 1 for federal
procurers (are not in
“before”-database)

0.2069 0.4057 0 1 348

Auct type dummy: 1 for open
bid auctions; 0 for

sealed bid

0.2213 0.4157 0 0 348

Sprice Reserve price in RUR 360992 329688 10000 2335800 348
Volume Liters of gasoline

procured
14246.27 14801.23 380 123702 348

nNprodtypes number of types of
gasoline and related
products procured

1.6523 0.8367 1 7 348

Market price market price of
bundle procured at
the time of auction

337105 306585 9283 2369575 348

Rel start price relative reserve price
= (reserve

price)/(market price)

1.0735 0.0772 0.3712 1.5401 348

Npot potential number of
entrants, firms that
have stations in the

area of service defined

4.1876 1.0267 2 7 348

Npart number of active
bidders who were

accepted and
submitted a bid

1.4454 0.6704 0 3 348

Rel price relative winning bid
= (winning

bid)/(market price)

1.0519 0.0683 0.5498 1.540 324

Rel bid1 relative second bid
where there were 2 or

more bidders

1.0637 0.046 0.9228 1.2059 182
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Table 3.8: Summary statistics: North subsample before Jan 1, 2011

Variable Mean St.dev Min Max Count
Auct type 0.3637 0.4835 0 0 99

Sprice 466191 469157 27000 2335800 99
Volume 22140 22568 1139 123702 99

Nprodtypes 2.1717 0.9902 2 7 99
Market price 433487 434522 24227 2369574.60 99

Rel start price 1.0795 0.1267 0.3712 1.5401 99
Npot 4.2528 0.741 3 7 99
Npart 1.0404 0.7412 0 3 99

Rel price 1.0621 0.1035 0.9112 1.540 75
Rel bid1 1.0151 0.0431 0.9511 1.0759 8

Table 3.9: Summary statistics: North subsample after Jan 1, 2011

Variable Mean St.dev Min Max Count
Federal 0.2892 0.4542 0 1 249

Auct type 0.1647 0.3716 0 0 249
Sprice 319166 242758 10000 1357200 249

Volume 11108 8397 380 44800 249
Nprodtypes 1.4457 0.6645 1 4 249
Market price 298785 227427 9283 1310800 249

Rel start price 1.0711 0.0445 0.9229 1.1776 249
Npot 4.1646 0.9883 2 7 249
Npart 1.6064 0.5659 1 3 249

Rel price 1.0488 0.0532 0.5498 1.1657 249
Rel bid1 1.0659 0.0450 0.9228 1.2059 174
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Table 3.10: Summary statistics by number of participating bidders

Npart Auct type Nprodtypes Rel start price Volume Npot Rel price N
B

ef
or

e

0
0.3333 2.3333 1.0341 21303.88 3.5833 NA

24
(0.4815) (1.3077) (0.1670) (2867.0) (0.7755)

1
0.4167 2.00 1.0965 26623.48 4.0208 1.0840

48
(0.4982) (0.8251) (0.1168) (26112.59) (1.0208) (0.1085)

2
0.3077 2.3462 1.0851 14581.71 3.9615 1.0184

26
(0.4707) (0.9356) (0.0916) (12622.48) (0.9992) (0.0795)

3 1 2 1.211 23490 4 1.1543 1

A
ft

er

1 0.3491 1.3397 1.0707 13608.83 4.3396 1.0579
106

(0.4789) (0.6155) (0.0425) (10392.73) (1.0680) (0.0482)
2 0.0231 1.5462 1.0716 9195.86 4.0462 1.0417

130
(0.1507) (0.7056) (0.0452) (5695.28) (1.0555) (0.0567)

3 0.0 1.300 1.0561 9013.40 5.100 1.0320
10

(0.0) (0.4830) (0.0518) (5726.41) (0.7379) (0.0473)
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3.6.3 Consistency of demand over time and municipalities

Figure 3.7: Volume demanded: North subsample
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Figure 3.8: Volume demanded: North subsample by municipality
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3.6.4 Robustness to potential biases in data

Table 3.11: Without municipalities with partial data

Relative bid Bid discount Probability of
entry

Probability of
winning

(conditional
on entry)

Intercept 0.1224*** 0.0680*** 0.0088 -0.1164
(0.0396) (0.0148) (0.2077) (0.4492)

After 0.0253*** -0.0245*** 0.0021 0.02
(0.0082) (0.0084) (0.0400) (0.0836)

Big firm 0.0300*** -0.0253** -0.0868* -0.2356**
(0.0097) (0.0100) (0.0476) (0.1039)

After×Big firm -0.0293*** 0.0216** 0.2886*** 0.0149
(0.0100) (0.0102) (0.0540) (0.1075)

Open bid -0.0032 0.0075 -0.1729*** 0.2447***
(0.0070) (0.0072) (0.0408) (0.0844)

Rel start price 0.8324*** 0.2004 0.0372
(0.0324) (0.1645) (0.3684)

Potential entrants 0.0041* -0.0067*** -0.0293** 0.0831***
(0.0021) (0.0021) (0.0137) (0.0254)

Stations share -0.002 0.0066 0.7992*** 1.3612***
(0.0180) (0.0185) (0.1319) (0.2185)

Contract controls Yes Yes Yes Yes
Observations 456 456 1446 484

R-squared 0.634 0.074 0.140 0.123
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Table 3.12: Without municipalities with partial data and “federal” firms

Relative bid Bid discount Probability of
entry

Probability of
winning

(conditional
on entry)

Intercept 0.1249*** 0.0613*** -0.0226 -0.3913
(0.0442) (0.0164) (0.2128) (0.4759)

After 0.0275*** -0.0297*** -0.0362 0.0019
(0.0088) (0.0090) (0.0401) (0.0877)

Big firm 0.0326*** -0.0264** -0.0880* -0.2413**
(0.0102) (0.0104) (0.0465) (0.1047)

After×Big firm -0.0358*** 0.0313*** 0.3760*** 0.0537
(0.0107) (0.0109) (0.0545) (0.1120)

Open bid -0.0039 0.0088 -0.1528*** 0.2372***
(0.0074) (0.0075) (0.0416) (0.0849)

Rel start price 0.8343*** 0.1544 0.2616
(0.0367) (0.1680) (0.3940)

Potential entrants 0.0048* -0.0067*** -0.013 0.0862***
(0.0024) (0.0025) (0.0151) (0.0275)

Stations share -0.0061 0.0058 0.8612*** 1.3716***
(0.0197) (0.0202) (0.1393) (0.2293)

Contract controls Yes Yes Yes Yes
Observations 350 350 1133 378

R-squared 0.644 0.099 0.194 0.151
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