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Abstract:
Stability issues in a connectionless, one hop queueing system featuring servers with over-
lapping service regions (e.g. a Mode Select (Mode S) Radar communications network or
part of an Aeronautical Telecommunications Network (ATN) network) are considered, and
a stabilizing policy is determined in closed-loop form. The cases of queues at the sources
(aircraft) and queues at the servers (base stations) are considered separately. Stabilizabil-
ity of the system with exponential service times and Poisson arrival rates is equivalent to
the solvability of a linear program and if the system is stabilizable, a stabilizing open loop
routing policy can be expressed in terms of the coe�cients of the solution to the linear
program. We solve the linear program for the case of a single class of packets.

Introduction:
Many queuing problems in the literature have addressed the problem of routing mes-

sages from a single source to multiple servers or serving multiple queues with a single
server. This simple 1 : n or n : 1 topology will not hold in all one-hop queueing networks.

The topology we analyze is based on the Mode S system for the air/ground segment of
communication between aircraft and air tra�c control. Our system consists of multiple
servers with overlapping service areas. This topology also is appropriate for a connection-
less satellite or cellular network, or a network in which load sharing is employed as in the
Mobile IP standard.

In the Mode Select (Mode S) radar beacon system [2], Mode S base stations com-
municate with aircraft by \interrogation". In an interrogation, the base station sends
packets to the aircraft. Mode S regions overlap by necessity, and the overlap is largest at
high altitudes. For Mode S stations under di�erent controllers, there is a hard boundary
between their respective areas of responsibility: aircraft on one side of the region are
connected to one base station, and aircraft on the other side are connected to the other.
For two base stations under the same controller, control is decided on a per-aircraft basis
for aircraft in the overlap of their coverage regions. This decision is made by the central
ground controller, and uses dynamic information. The location of the aircraft is never
in question, nor must the location be measured by signal strength; the Mode S stations

1This paper is based on [14], written by the same authors



are also responsible for radar tracking of the aircraft, and the central ground station has
a composite picture of all the aircraft in the area. The Mode S radar beacon system is
only a part of the Aeronautical Telecommunications Network (ATN), which is a network
of networks comprising Mode S, Satellite, and VHF Data Link for the air/ground link.
The results in this paper apply a fortiori to the air/ground link of the ATN.

In this paper, we use the equivalence of stabilizability (de�ned below) of queueing
problems involving routing decisions to the existence of a solution to a linear program.
The linear program can be explicitly solved for the case of a single class of packets, and
we determine a stabilizing open loop control thereby.

Linear programming techniques have been used ([3], [4], [8], [9], [10], [12], and [13])
to analyze stability of queueing networks. In [3], [4], [10], and [12], linear programming
techniques were used to determine stabilizability of scheduling problems on reentrant lines.
In [8], [9], and [13], linear programming techniques were applied to routing problems.

Kumar, Down, and Meyn have explored the use of quadratic and piecewise linear
cost functions in linear programs to demonstrate stability of a queueing network under
a speci�c policy and also under a class of policies. The method to determine stability
of a policy is to construct a Lyapunov function using quadratic or piecewise linear cost
functions and then to use Foster's criterion. LPs are constructed, which, if solved, would
prove stabilizability. In [4], Kumar showed the equivalence of the existence of a solution
to a linear program (LP) to the stabilizability of a scheduling problem. In [12], Kumar
further found linear programs which, if solvable, implied the stability of all non-idling
policies for some scheduling problems. In [10], Down and Meyn analyzed stability of
reentrant line queueing systems. In [3], Kumar and Meyn used linear and nonlinear
programs to deduce an appropriate quadratic Lyapunov function.

In this paper, we tie the stabilizability of a routing problem to the solvability of a linear
program.

In [9], Tassiulas and Ephremides found an equivalence between stabilizability of a
general queueing network and the solvability of a linear program in constraint form.
Tassiulas and Ephremides also examine a multi-hop queueing system in [8], deriving
stabilizability conditions and demonstrating a closed- loop stabilizing policy that is a
special case of the policy constructed in [9]. Also, in [13], Tassiulas generalizes the results
to systems with a time-varying topology. Our stabilizability result is a special case of
the multi-hop result in [9], but here we solve the linear program explicitly in the case of
a single class of packets, yielding a stabilizing open loop policy. Similarly, if the linear
program of [9] is solved, a stabilizing policy for the more general, multi-hop network is
given in terms of the solution to the linear program.

We are concerned with controlled Markov chains describing queueing systems. We
de�ne a Markov chain consisting of the vector of queue lengths in a queueing network
to be stable if it converges to an ergodic distribution with �nite average queue length in
each queue, and we de�ne a controlled queueing network or system to be stabilizable if
there exists a stationary control policy that induces a stable Markov chain.

The contributions of this paper are the application of linear programming techniques



to a routing problem and the determination of open loop stabilizing policies for that
problem by solving the linear program in the case of a single class of packets. Open loop
control policies are of particular interest because in a real network, it is often di�cult for
a controller at one node to obtain queue length information at other nodes.

We make use of an equivalence between discrete time and continuous time systems
called \uniformization". This equivalence was discussed by Serfozo in [5] (see also ref-
erences therein), and appears in the context of a discounted optimal cost problem in [7]
(page 283).

The paper is organized as follows: In Section 1, the problem is described and open loop
stabilizability results are presented which show that the solvability of a linear program
is a necessary and su�cient condition for stabilizability of the system, and a stabilizing
open loop policy is determined in terms of the coe�cients of the solution to the linear
program. Sections 2 and 3 contain the main results of this paper: explicit solutions of the
linear program for two cases. The proofs of the results in Sections 2 and 3 are presented
in the appendices. The proofs of Propositions 1 and 2 in Section [1] are omitted; they
can be deduced from the general stability result in [9].

Section 1: The general shared-queues problem
Let there be n servers and m = C � (2n � 1) arrival processes. Label the servers

fS1; :::; Sng. Each arrival process is dedicated to a subset L � f1; :::; ng of the servers.
Also, each arrival process contains only class j packets, where j = 1; :::; C. Since there are
2n�1 nonempty subsets of f1; :::; ng and C classes of packets, there arem arrival processes.
Label the arrival processes fAj

Lg.
1 We will examine two systems with this con�guration

of servers and arrival processes: the controlled arrival process problem (Figure 0.2) and
the controlled service process problem (Figure 0.1). (Note: the �gures depict the problems
for the simple case of 2 servers and 1 class of packets.) In the controlled arrival process
problem, there are n queues, 1 dedicated to each server. Label these queues fq1; :::; qng.
At the time a packet arrives in arrival process Aj

L, the controller must route it to a queue
qi; i 2 L. In the controlled service process problem, there are m queues, one for each
arrival process. Label the queue to which packets from arrival process Aj

L are routed qjL.
In this setup, the servers must select a nonempty queue to serve whenever they are idle.
Label the queue lengths xi, where i 2 f1; :::; ng in the controlled arrival process problem
and xjL, L � f1; :::; ng, j 2 f1; :::; Cg in the controlled service process problem. A queue
can be served by any of the servers which share it (packet class of a queue does not a�ect
which servers may serve the queue)in the controlled service process problem, and only
by its server in the controlled arrival process problem. In the controlled arrival process
problem, packets in each of the n dedicated queues are served on a FIFO basis. In the
controlled service process problem, if k packets are in a shared queue, no more than k
servers may serve it at one time. Let the set of queues be called Q and call the set of queue
lengths X. Each server has a constant service rate �i and each packet contains an amount

1Theorems 1 and 2 concern systems with a single class of packets, so we will drop the `j' from the
notation in those sections.
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Figure 0.1: Controlled Service Process: Queues at the Arrival Streams
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Figure 0.2: Controlled Arrival Process: Queues at the Servers



of work which is i.i.d. exponentially distributed with parameter 1, and arrival process Aj
L

undergoes Poisson arrivals at rate �jL. The arrival times and the work initially contained
in the packets are all mutually independent. Also, preemption is not permitted: once
a server begins serving a packet, it must complete service on that packet before serving
another packet.

Remark: While the controlled arrival process problem is a routing problem, the con-
trolled service process problem contains elements of both routing and scheduling since
the controller must decide not only which queue to serve with an idle server, but the
order in which to serve the queues.

Remark: The model of constant service rates and exponential work contained in a packet
is equivalent in distribution to a model with exponential service times.

The controlled service process problem
The system introduced in [1] can be transformed into the controlled service process

problem with one class of packets. In [1], a necessary and su�cient condition for stabi-
lizability of the single-class (C = 1) system was found and a closed-loop policy, \serve
the shortest queue" was demonstrated to stabilize the system when it is stabilizable. The
stabilizability condition for C = 1 is:

8K � f1; :::; ng;
X

i2K

�i >
X

L�K

�L (1.1)

The intuition behind (1.1) is that for every set of servers (fSiji 2 Kg), the total service
rate of the set is greater than the rate of work arriving that must be served by a server
from that set.

We now examine the stability of such systems under multiple classes of arrivals. Sup-
pose that the shared queue qL undergoes Poisson arrrivals of C di�erent classes, with the
arrival rate of class cj packets equal to �

j
L. Suppose that the service rate of server Si now

depends on both the queue and the class of packet being served, such that the service
time for server Si serving a class cj packet in queue qL is exponential with parameter �j;Li .
Also, consider a packet in service as not being in queue. The question is: Under what
conditions (parameter sets) is this system stabilizable? (We do not allow preemption of
packets in service.)

In an open loop policy, it is possible for a server to elect to serve a queue which is
empty. When that happens, we say that the server is serving a \null" packet, and the
latency time for the server to complete service of the null packet has the same distribution
as if it were serving a real packet.

We claim that the system is open loop stabilizable i� it is stabilizable, and we de�ne a
set of open loop Bernoulli service allocations as follows: When server Si completes service
on a packet (or a null packet if it was serving a class of packet in a queue containing
no packets of that class), then it selects a class j packet from queue qL with probability



pj;Li . If queue L contains a packet of class j, then the packet is removed immediately from
queue and processed in time distributed exponentially with parameter �j;Li . If there is no
such packet in queue, server Si is idle for the same period of time.

Proposition 1:
The system with controlled service process is stabilizable if and only if the following linear
program has a solution with � < 0. Furthermore, if � < 0, then the system is stabilized
by the set of open loop Bernoulli service allocations

pj;Li
:
=

zj;Li � �j;LiP
j=1;:::;C;L3i z

j;L
i � �j;Li

LP: min � such that:

zj;Li � 0; i = 1; :::; n; j = 1; :::; C; L 3 i

X

j=1;:::;C; L3i

zj;Li = 1; i = 1; :::; n

�jL �
X

i2L

�j;Li zj;Li � �; j = 1; :::; C;L � f1; :::; ng

The solution to the LP is f�; fzj;Li gg.

Proof:
The proof is omitted as this proposition can be shown to be a special case of the theorem
proved by Tassiulas and Ephremides in [9].

The intuition behind the LP is as follows: zj;Li is the fraction of the time that server Si
spends serving a class j packet in queue qL in the limit (the ergodic distribution). The
�rst constraint ensures that each server is not utilized more than all of the time, while
the second constraint ensures (if � < 0) that the arrival rate of class j packets to queue
qL is less than the total ergodic service rate (the product of fraction of time spent and
exponential service time parameter) applied to class j packets in queue qL from all servers.
The binomial splitting probabilities are found by normalizing the fraction of time spent
(z) by the exponential service time parameter (�).

The controlled arrival process problem
It can be shown using the general stabilizability result from [8] that the condition for

stabilizability of the controlled arrival process problem with one class of packets is given
by (1.1). Thus it is the same as the stabilizability condition for the controlled service
process problem with a single class of packets.



The simplicity of the stability condition for the case of a single class of packets indicates
that a simple solution may exist for the linear program in that case. In the proofs of
Theorems 1 and 2, the linear programs of Propositions 1 and 2 are solved iteratively by
repeatedly reducing the dimensionality of the system until it consists of a set of n stable
M=M=1 queues.

In the multi-class case, the stability condition must be di�erent for the controlled arrival
process problem and the controlled service problem since the parameters are di�erent.
Speci�cally, in the controlled service process problem, the service rate �j;Li depends on
three parameters, whereas in the controlled arrival process problem, the service rate �ji
depends on only two parameters. But as remarked after Proposition 2, when �j;Li is
independent of L, the stability conditions are the same.

De�ne the set of open loop Bernoulli routing probabilities fpj;Li g as follows: When
a packet of class j arrives in arrival process AL, we assign it to queue qi; i 2 L with
probability pj;Li .

Proposition 2:
The system with controlled arrival process is stabilizable if and only if the following linear
program has a solution with � < 0. Furthermore, if � < 0, then the system is stabilized
by the set of open loop Bernoulli routing probabilities fpj;Li g.

LP: min � such that:

pj;Li � 0; i = 1; :::; n; j = 1; :::; C;L 3 i

X

i2L

pj;Li = 1;L � f1; :::; ng; j = 1; :::; C

CX

j=1

P
L3i p

j;L
i �jL

�ji
< 1 + �; i = 1; :::; n

The solution to the LP is f�; fpj;Li gg.

Proof:
The proof is omitted; this proposition is a special case of a theorem proved by Tassiulas
and Ephremides in [9].

The intuition behind the LP is as follows: pj;Li is the fraction of packets from arrival
process Aj

L that are routed to server Si. The �rst constraint ensures that the splitting
probabilities of packets in arrival stream Aj

L sum to 1, while the second constraint ensures

that server Si's utilization (
PC

j=1

P
Lji2L

p
j;L
i

�
j
L

�
j
i

) is less than 1 + � < 1 if � < 0.

Remark: This LP is solvable with � < 0 i� the LP of Proposition 1 is solvable with
� < 0 for �j;Li

:
= �ji 8L 3 i, i.e. the controlled arrival process problem and the controlled



service process problem are stabilizable under the same parameter sets if the service
time distribution in the controlled service process problem is independent of L, the queue
served, and is identical to the service time in the controlled arrival process problem (where
there is only one queue accessible to each server).

Section 2: Open-loop policies for the controlled arrival process problem with
a single class of packets

The stability result in [8] implies the stability of the \route to the shortest queue"
policy for the case of a single class of packets (C = 1) when the system is stabilizable.
An open loop policy that stabilizes the system can be determined by applying the 
ow
rates of the stationary distribution induced by any stabilizing policy. (A 
ow rate of a
stationary distribution is the expected fraction of the time an arrival to a given arrival
process is routed to a given queue.) The intuition behind this is that, since the system is
ergodic and irreducible under the \route to the shortest queue" policy, the limit as t goes
to in�nity of the rate at which any given arrival process routes its packets to each of the
queues to which it is connected exists. We know that the sum of the rates at which each
arrival process routes its packets to a queue must be less than the service rate of that
queue because the system is stable under the \route to the shortest queue" policy.

Therefore, if we use open loop Bernoulli routing at the arrival processes, splitting at
the rate given by this limit, then we will obtain stability as the arrival rate of packets
to each queue will be less than the service rate. The problem with this approach is
that computation of these rates requires knowledge of the limiting distribution. However,
we may construct a stable open loop Bernoulli routing policy given knowledge only of
the arrival and service rates by using the following algorithm, as shown in the proof of
Theorem 1.

Algorithm 1
GIVEN: The arrival rates f�LjL � f1; :::; ngg and the service rates f�iji 2 f1; :::; ngg

CONSTRUCT: a stabilizing set of Bernoulli routing probabilities fpLi ji 2 L � f1; :::; ngg

Do(j=n,n-1,...,2)
8L � f1; :::; ng such that jLj = j
Select B;D � L such that B \D = ; and B [D = L
Select two numbers1 b and d such that b+d = �L and the system with the following

1The constraints on b and d are given in terms of 	K , de�ned as follows:

	K =
X

Si2SK

�i �
X

AL2AK

�L (2.1)

	K is the \slack" available between service and arrival rates for subset K, i.e. between the servers
SK

:
= fSi; i 2 Kg and the arrival processes AK

:
= fAL;L � Kg. The system is stabilizable i� 	K > 0

8K.



modi�ed arrival rates is still stable:

�L = 0; �B is increased by b; �D is increased by d; all other arrival rates unchanged.

Then modify the system and de�ne the Bernoulli routing probabilities fpLi ji 2 Lg as
follows:

pLi =
b

�L
pBi +

d

�L
pDi

Then set pii = 1 8i and the recursion is complete.

Theorem 1
The queuing system of the `controlled arrival process problem' with one class of packets
is stabilizable i� (1.1) holds.

Furthermore, if the system is stabilizable, there exists an open loop stabilizing policy
which can be computed explicitly through the recursive procedure de�ned in Algorithm
1.

Proof: see Appendix 1

Example 1
Now let us solve an example problem (i.e. recursively determine the open loop Bernoulli

routing probabilities.) Consider the arrival processs problem with three servers such that
�i = 1; i = 1; 2; 3 and where the arrival rates for the seven arrival processes are:

�1 = :2;�2 = :3;�3 = :1;�1;2 = :4;�1;3 = :5;�2;3 = :6;�1;2;3 = :6

The following procedure is Algorithm 1 applied to the above system.
First, let us break arrival process �1;2;3 into two pieces, say f1; 2g and f3g. We see

that 	1;2 = �1 + �2 � �1 � �2 � �1;2 = 1:1. Similarly, 	3 = �3 � �3 = :9. Because
�1;2;3 = :6 < 	3, we can set p1;2;33 = 1, giving us the following new set of arrival rates:

�1 = :2;�2 = :3;�3 = :1 + :6 = :7;�1;2 = :4;�1;3 = :5;�2;3 = :6;�1;2;3 = 0

Now, let us split arrival process �2;3. We see that 	2 = :7 and 	3 = :3. Because
�2;3 = :6 < 	2, we can set p2;32 = 1, giving us the following new set of arrival rates:

�1 = :2;�2 = :3 + :6 = :9;�3 = :7;�1;2 = :4;�1;3 = :5;�2;3 = 0;�1;2;3 = 0

Now, let us split arrival process �1;2. We see that 	1 = :8 and 	2 = :1. Because
�1;2 = :4 < 	1, we can set p1;21 = 1, giving us the following new set of arrival rates:

The stability constraints on b and d are that b < 	K 8K such that B � K, D 6� K, and that d < 	K

8K such that D � K, B 6� K.



�1 = :2 + :4 = :6;�2 = :9;�3 = :7;�1;2 = 0;�1;3 = :5;�2;3 = 0;�1;2;3 = 0

Now, we split arrival process �1;3. We see that 	1 = :4 and 	3 = :3. �1;3 = :5 is
therefore too large to send to either server exclusively, so let us set p1;31 = 3

5
and p1;33 = 2

5
,

giving us the following set of arrival rates:

�1 = :6 + :3 = :9;�2 = :9;�3 = :7 + :2 = :9;�1;2 = 0;�1;3 = 0;�2;3 = 0;�1;2;3 = 0

Thus we have determined a stabilizing, open loop policy.

It is interesting to point out that, since Theorem 1 ensures that the recursive algorithm
for determining a set of stabilizing Bernoulli splitting probabilities will work when the
system is stabilizable, one can just apply the algorithm in order to determine whether the
system is stabilizable. The system is stabilizable i� the algorithm terminates successfully.

Section 3: Open loop stability of the controlled service process problem with
a single class of packets

In addition to assuming there is a single class of packets, we make the assumption
that service time depends only on the server, i.e., it is independent of the queue served.
The controlled service process problem under these assumptions can be shown to be
equivalent to a system �rst introduced in discrete time by Tassiulas and Ephremides [1].
The continuous-time framework we use here is equivalent to their discrete-time framework
by uniformization [5]. In [1], Tassiulas and Ephremides found necessary and su�cient
conditions for the system to be stabilizable under the assumptions of this section. In
the proof of Theorem 2, we use the same techniques used in the proof of Theorem 1 to
explicitly determine an open loop stabilizing policy when a stabilizing policy exists.

Theorem 2
The queueing system of the `controlled service process problem' with one class of packets
and service time independent of queue served is stabilizable i� (1.1) holds.

Furthermore, if the system is stabilizable, then there exists an open loop stabilizing
policy which can be computed explicitly through the recursive procedure speci�ed in
Algorithm 2.

Proof: see Appendix 2

Theorem 2 is a special case of Theorem 2a, which is proved in the appendix. Theorem
2a considers a discrete time system, but the system in Theorem 2a can be transformed
through uniformization [5] into a continuous time system. The system of Theorem 2a
allows servers to serve an arbitrary subset of the set of all queues. Thus, we see that the
restriction in Theorem 2, which requires each server to serve only queues that contain its



index, is less general than Theorem 2a. Algorithm 2 will determine a stabilizing open
loop Bernoulli service policy for the controlled service process problem i� the system is
stabilizable.

In recursively reducing the arrival rates in Algorithm 1, there was no need to use
arti�cial representations because each subset of servers had its own arrival process, so as
arrival processes were split, they decomposed into other arrival processes. In Algorithm 2,
the situation is di�erent. There are only n servers, but there are 2n�1 possible subsets of
queues. As these service sets are decomposed, we pass through arti�cial subsets of queues
on the way down to the actual Bernoulli splitting probability to a single queue. Therefore,
new notation is required before the presentation of Algorithm 2. Note: Theorem 2a,
proved in Appendix 2, is more general in that it permits a server to be dedicated to any
subset of queues.

Notation: In the following discussion, capital English letters denote subsets of f1; 2; :::; ng
and capital Greek letters denote sets of subsets of f1; 2; :::; ng, with the exception that B
and D also denote sets of subsets of f1; 2; :::; ng.

Let us rewrite the Bernoulli splitting probability pLi as p
L
fKji2Kg. Here, we use p

L
�, where

L � f1; 2; :::; ng and � � fKjK � f1; 2; :::; ngg to represent the Bernoulli probability that
a server capable of serving any queue in the set fqK jK 2 �g will serve queue qL. Let us
extend this further by using the notation p��, where �;� � fKjK � f1; 2; :::; ngg, � � �,
to represent the Bernoulli probability that a server capable of serving any queue in the
set fqKjK 2 �g will serve a queue selected from the set fqKjK 2 �g. Also, instead of �i,
the service rate of server Si, let us write �fKji2Kg. In general, ��, where � � fKjK �
f1; 2; :::; ngg, will be used to represent the service rate of the server capable of serving any
queue qKjK 2 �. These changes in notation for the Bernoulli splitting probability and
the service rate create a natural representation for use in describing Algorithm 2.

The set fKji 2 Kg has cardinality 2n�1, and before the Bernoulli splitting probabilities

of each server are determined, we have only that p
fKji2Kg
fKji2Kg = 1 8i 2 f1; 2; :::; ng. Our

objective is to reduce these down to the p
fKg
fKji2Kgs, or in the original notation, the pKi s.

Algorithm 2
GIVEN: The arrival rates f�LjL � f1; :::; ngg and the service rates f�fKji2Kgji 2

f1; :::; ngg

CONSTRUCT: a stabilizing set of Bernoulli splitting probabilities fpLfKji2Kgji 2 L �
f1; :::; ngg

Do(j=2n�1,2n�1 � 1,...2)
8 � � fKjK � f1; 2; :::; ngg such that j�j = j
if �� > 0, then
Select B;D � � such that B \D = ; and B [D = �



Select two numbers1 b and d such that b+d = �� and the system with the following
modi�ed service rates is still stable:

�� = 0; �B is increased by b; �D is increased by d; all other service rates unchanged.

Then set pB� = b
b+d

, pD� = d
b+d

.

Solve for each pLfKji2Kg by multiplying the appropriate chain of intermediate splitting
probabilities together.

Example 2
The controlled service process problem takes a long time to break down because in-

termediate sets of queues have to be stepped through, so an example with three servers
would be tedious. Let us examine a problem with two servers with service rates �1 = 3
and �2 = 2. Let the arrival rates to the three queues be given by �1 = 1, �2 = 1, and
�f1;2g = 2.

Following Algorithm 2, we start out with:
�ff1g;f1;2gg = 3; �ff2g;f1;2gg = 2
Now let us split service process �ff1g;f1;2gg into two pieces: �ff1gg and �ff1;2gg. This

split will not a�ect the values of 	ff2gg, 	ff1g;f1;2gg, or 	ff1g;f1;2g;f2gg, but it will a�ect the
values of the other 	s. Their current values are:

	ff1gg = �ff1g;f1;2gg � �1 = 2
	ff1;2gg = �ff1g;f1;2gg + �ff2g;f1;2gg � �f1;2g = 3
	f1g;f2gg = �ff1g;f1;2gg + �ff2g;f1;2gg � �f1g � �f2g = 3
	ff1;2g;f2gg = �ff1g;f1;2gg + �ff2g;f1;2gg � �f1;2g � �f2g = 2
Splitting �ff1g;f1;2gg will decrement the value of 	ff1gg by �ff1;2gg, will decrement the

value of 	ff1;2gg by �ff1gg, will decrement the value of 	f1g;f2gg by �ff1;2gg, and will decre-
ment the value of 	ff1;2g;f2gg by �ff1gg.

Therefore, we are constrained that �ff1;2gg + �ff1gg = 3, �ff1gg < 2, and �ff1;2gg < 2.

We choose �ff1gg = 1:5 and �ff1;2gg = 1:5, giving us splitting probabilities of p
f1g
ff1g;f1;2gg =

1:5
1:5

and p
f1;2g
ff1g;f1;2gg =

1:5
1:5
, and service rates of:

�ff1gg = 1:5; �ff1;2gg = 1:5; �ff2g;f1;2gg = 2
Now let us split service process �ff2g;f1;2gg into two pieces: �ff2gg and an increment to

1The constraints on b and d are given in terms of 	�, � � fKjK � f1; 2; :::; ngg, de�ned as follows
(Note: this is di�erent from the de�nition of 	K for the controlled arrival process problem.):

	� =
X


�fKjK�f1;2;:::;nggj
\�6=;

�W �
X

K2�

�K (3.1)

	� is the \slack" available between service and arrival rates for subset �, i.e. between the servers with
service rates �K ; K � �, and the arrival processes with rates �K ; K 2 �.

The stability constraints on b and d are that 	� > b 8� such that �\B 6= ; and �\D = ;, and that
	� > d 8� such that � \D 6= ; and � \B = ;.



�ff1;2gg. This split will not a�ect the values of 	
ff1gg, 	ff2g;f1;2gg, or 	ff1g;f1;2g;f2gg, but it

will a�ect the values of the other 	s. Their current values are:
	ff2gg = �ff2g;f1;2gg � �2 = 1
	ff1;2gg = �ff1;2gg + �ff2g;f1;2gg � �f1;2g = 1:5
	f1g;f2gg = �ff1gg + �ff2g;f1;2gg � �f1g � �f2g = 1:5
	ff1;2g;f1gg = �ff1gg + �ff1;2gg + �ff2g;f1;2gg � �f1;2g � �f1g = 2
Splitting �ff2g;f1;2gg will decrement the value of 	ff2gg by the increment to �ff1;2gg,

will decrement the value of 	ff1;2gg by �ff2gg, will decrement the value of 	f1g;f2gg by the
increment to �ff1;2gg, and will decrement the value of 	ff1;2g;f1gg by �ff2gg.

Therefore, we are constrained that �ff2gg+ the increment to �ff1;2gg = 2, �ff2gg < 1:5,
and the increment to �ff1;2gg < 1.

We choose �ff2gg = 1:25 and the increment to �ff1;2gg = :75, giving us splitting proba-

bilities of p
f2g
f2g;f1;2gg =

1:25
2

and p
f1;2g
f2g;f1;2gg =

:75
2
, and service rates of:

�ff1gg = 1:5; �ff1;2gg = 2:25; �ff2gg = 1:25.
And we have found a stabilizing open loop control.

Conclusion
We have shown closed-form algorithms to quickly solve for an open loop control given

that the system is stabilizable. Furthermore, each algorithm can be applied as a check
on stabilizability. If the algorithm terminates successfully, the system is stabilizable. If
it doesn't terminate successfully, the system is not stabilizable. The two main results
proved in Theorems 1 and 2 display an interesting duality, best seen by comparing (2.1)
and (3.1).
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Note on the appendixes:
In the proofs of Theorems 1 and 2, the dimensionality of the system is reduced until it

is 1, and then a trivial solution to the linear program exists.

Appendix 1: Proof of Theorem 1



Before proceeding with a proof, recall the de�nition of the slack variable 	K given by
(2.1):

	K =
X

Si2SK

�i �
X

AL2AK

�L

The theorem assumes that the slack for each K � f1; :::; ng is strictly greater than
zero.

We will be using sets of the form �VW , where W;V � f1; :::; ng; W 6= ;. �VW is de�ned
by

�VW = fK � f1; :::; ngjV � K;W 6� Kg

Also, de�ne �V; by

�V; = fK � f1; :::; ngjV � Kg

For example, if n = 3, then �
f1g
f3g = ff1g; f1; 2gg; �f1;2g; = ff1; 2g; f1; 2; 3gg.

We will be interested in the slack quantity 	V
W , where

	V
W = min

K2�V
W

	K

Note that 	V
W is strictly greater than zero since the minimum over a �nite set is

achieved.
Recall that there is only one class of packets for Theorem 1, so the superscript j is

dropped from all notation, e.g. �1K
:
= �K .

Two lemmas will be required in the proof of Theorem 1:

Lemma 1.1
Given D;B � f1; :::; ng,

X

AK2AD[B

�K =
X

AK2AD

�K +
X

AK2AB

�K+

X

AK2[AD[B�AD�AB ]

�K �
X

AK2AD\B

�K

Proof:

AD[B = AD [ AB [ [AD[B � AD � AB]

AD \ [AD[B � AD � AB] = AB \ [AD[B � AD � AB] = ;



AD \ AB = fAK jK � Dg \ fAKjK � Bg = fAKjK � D \ Bg

The result follows.

Lemma 1.2
Given D;B � f1; :::; ng, G � D [B, G 6� D, G 6� B, and the assumptions of Theorem 1,
we have

	D +	B > �G

Proof:
We know that

	D[B =
X

Si2SD[B

�i �
X

AK2AD[B

�K

Let us examine the �rst and second terms of the right side of the above equation. For
the �rst term we have:

X

Si2SD[B

�i =
X

Si2SD

�i +
X

Si2SB

�i �
X

Si2SD\B

�i

The second term (the subtracted term) is:

X

AK2AD[B

�K

which, by lemma 1.1 equals

X

AK2AD

�K +
X

AK2AB

�K +
X

AK2[AD[B�AD�AB]

�K �
X

AK2AD\B

�K

Using the de�nition of 	K, we have

	D[B = 	D +	B � 	D\B �
X

AK2[AD[B�AD�AB]

�K <

	D +	B �
X

AK2[AD[B�AD�AB ]

�K �

	D +	B � �G

Using the fact that 	D[B > 0, we have the result.



Proof (Theorem 1):
For every K � f1; :::; ng, we will use Bernoulli splitting of the arrival process AK,

so that when an arrival from the process AK occurs, it will be routed to queue qi with
probability piK, where piK = 0 for i 62 K, and

P
i2K piK = 1. For W � K, de�ne

pWK =
P

i2W piK. Therefore, we have p
K
K = 1.

We now de�ne a method to construct fpiKg for each arrival process AK. For K = fkg,
we have pkK = 1 and we are done (Note that Afkg is an uncontrolled arrival process { it
is routed to qfkg). Suppose that jKj = l > 1. Let K = fa1; :::; alg. We now de�ne a
recursive method to determine paiK ; 1 � i � l.

We know that 9B;D 6= ; such that K = D[B and D\B = ;. Also, we know that the
minimum which de�nes 	B

D is achieved. Let us say that U � �BD achieves the minimum.
We also know that 9V � �DB which achieves the minimum in 	D

B . From lemma 1.2 we
have that 	V +	U > �K . Therefore,

	B
D +	D

B > �K

Therefore, 9b; d > 0 such that b + d = �K and

b < 	B
D; d < 	D

B

We claim that if �B is increased by b, �D is increased by d, and �K is set to zero, the
equation

X

Si2SW

�i >
X

Aa1;:::;al2A
W ;1�l�jW j

�a1;:::;al

still holds 8W � f1; :::; ng.
Proof of claim: Examination of the above equation (which is equivalent to the condition

	W > 08W � f1; :::; ng), reveals that only the value of

X

Aa1;:::;al2A
W ;1�l�jW j

�a1;:::;al

is a�ected by the change and that it is only a�ected for W 2 [�BD [ �DB ]. (The value
is una�ected for W 2 �K; since b and d are subtracted, but �K is added to 	W , and it is
totally una�ected for W 2 [�;B \ �;D]) Recall that b and d were chosen so that

b < 	B
D; d < 	D

B

Therefore, the value of 	W is reduced, but still greater than zero for W 2 �BD [ �DB .
Since

fW � f1; :::; ngg = [�BD [ �DB ] [ �K; [ [�;B \ �;D]

The claim is proved.



We have just seen that if the AK is Bernoulli split by de�ning pBK = b
�K

and pDK = d
�K

,
and if an AK arrival split to B (respectively D) is treated exactly like an AB arrival
(respectively an AD arrival), then the 	s are all still strictly greater than zero.

Let us begin with the system given in the assumption of theorem 1. First, we Bernoulli
split the Af1;:::;ng arrival process into two pieces, and record what the two subsets and
their Bernoulli probabilities are. We now have a new system satisfying the assumption of
theorem 1. Next, split each of the arrival processes AK , where jKj = n� 1. Record their
Bernoulli splitting probabilities as well as the subsets they were split into and update the
values of the �s accordingly. Then split each of the arrival processes with jKj = n � 2.
Proceed until all of the controlled arrival processes have zero arrival rate. By construction,
it holds that

�i < �i8i 2 f1; :::; ng

so the resulting system of M=M=1 queues is trivially stable. The Bernoulli splitting
probability piK can be found by taking the Bernoulli probability of the subset containing i
that K was split into, multiplying it by the splitting probability of the subsequent subset
that contains i which that subset was split into, and proceeding until you are split into
fig itself.

We have speci�ed a method to construct (given the �s and the �s) an open loop
Bernoulli splitting routing policy which stabilizes the \controlled arrival process" routing
problem.

Appendix 2: Proof of Theorem 2
Rather than prove Theorem 2 as stated, we prove a version in discrete time stated

as Theorem 2a. Before stating Theorem 2a, we introduce the discrete time controlled
service process system with a single server which may serve any one of a randomly selected
subset of the queues at each time instant. It can be shown through uniformization [5]
that the Theorem 2a is equivalent to Theorem 2. Thus, not only is a discrete-time
system equivalent to the continuous time system of Theorem 2, but the discrete time
system has a single server with random, time-varying connectivity rather than multiple
servers. The discrete time controlled service process system is equivalent to a single-server
system introduced by Tassiulas and Ephremides [1]. It is important to note that while
the controlled service process problem can be reduced to the case of a single server, the
controlled arrival process problem cannot, even through uniformization.

The system which Tassiulas and Ephremides address in [1] is a discrete-time system
with a single server and n queues. At each time instant, there are At

i arrivals at queue qi
where E[At

i] = ai, and A
t
i is bounded 8t. The number of arrivals to queue qi at time t1 is

independent of and identically distributed to the number of arrivals to queue qi at time
t2. At each time t, a subset Wt � f1; :::; ng of the queues is connected to the server. Wt

is distributed as follows:

P [Wt = K] = P t
K; K � f1; :::; ng



Tassiulas and Ephremides de�ne a connectivity variable Ct
i such that Ct

i = 1 if i 2 Wt

and Ct
i = 0 otherwise. They require that Ct1

i and Ct2
i are independent and identically

distributed. This is ensured by the stronger requirement that P t
K = PK 8t. However, in

their remark 4 (p. 472), they generalize their result to the case of dependent connectivity
variables at time t (Their derivation assumed the independence of Ct

i and Ct
j; i 6= j.)

Therefore, this stronger requirement is appropriate and parsimonious. At each time t,
the server decides which connected queue to serve based on the current queue lengths,
the history of the queue lengths and the history of past decisions. If queue qi is chosen
for service at time t, the service is completed successfully if the random variable M t

i = 1,
and it is unsuccessful if M t

i = 0. It is also required that M t1
i and M t2

i are independent
and identically distributed, and the expected value of Mi is denoted by mi. Finally, the
arrival, connectivity, and service completion random variables are independent.

In [1], it was determined that the system is stabilizable i�

X

i2K

ai
mi

<
X

W2SK

PW ; 8K � f1; :::; ng

(see their eqn 3.2, p. 468 and remark 4, p. 472)
where SK is de�ned by

SK = fW � f1; :::; ngjW \K 6= ;g

Remark: SK refers to a set of subsets of the n queues which may be connected to the
server at a particular time.

We can now state Theorem 2a:

Theorem 2a
The discrete time controlled service process problem is stabilizable i�

X

i2K

ai
mi

<
X

W2SK

PW ; 8K � f1; :::; ng

Furthermore, if the system is stabilizable, then there exists an open loop stabilizing
policy that can be deterimined directly through a recursive algorithm analogous to Algo-
rithm 2.

Before we proceed to the proof, we need to introduce some notation and prove two
lemmas. First, a brief explanation:

Similarly to the proof of Theorem 1, we shall construct a stabilizing policy using
Bernoulli splitting. Instead of splitting at the arrival process AK , we now split at the
service process Wt. For each K 2 f1; :::; ng, we decide on the probabilities piK of serving
queue qi given that the set of connected queues at time t is Wt = K.

Similarly to Theorem 1, we introduce some notation. De�ne 	k, the \slack" available
between the connectivity rate and arrival of work rate for subset K by



	K =
X

W2SK

PW �
X

i2K

ai
mi

> 0

Remark: The above de�nition is the same as (3.1), where now we use PW in place of �W
and ai

mi
in place of �i.

Lemma 2.1
Given D;B � f1; :::; ng,

X

K2SD[B

PK =
X

K2SD

PK +
X

K2SB

PK �
X

K2SD\B

PK �
X

K2[(SD\SB)�SD\B]

PK

Proof:

SD[B = fK � f1; :::; ngjK \ fD [ Bg 6= ;g =

fK � f1; :::; ngjfK \Dg [ fK \ Bg 6= ;g =

fK � f1; :::; ngjK \D 6= ;g [ fK � f1; :::; ngjK \B 6= ;g =

SD [ SB

Also,

SD \ SB = SD\B [ [(SD \ SB)� SD\B]

and

SD\B \ [(SD \ SB)� SD\B] = ;

The result follows.

Lemma 2.2
Given D;B;G � f1; :::; ng, such that G \D 6= ;, G \ B 6= ;, G \D \ B = ; and given
that the assumptions of Theorem 2 hold, we have

	D +	B > PG

Proof:
We know that



	D[B =
X

K2SD[B

PK �
X

i2SD[B

ai
mi

By lemma 2.1, the �rst term on the right side of the above equation can be written as

X

K2SD[B

PK =
X

K2SD

PK +
X

K2SB

PK �
X

K2SD\B

PK �
X

K2[(SD\SB)�SD\B]

PK

The second (subtracted) term can be written as

X

i2SD[B

ai
mi

=
X

i2SD

ai
mi

+
X

i2SB

ai
mi

�
X

i2SD\B

ai
mi

So, by the de�nition of 	K, we can write

	D[B = 	D +	B �	D\B �
X

K2[(SD\SB)�SD\B]

PK

So we have that

0 < 	D[B +	D\B = 	D +	B �
X

K2[(SD\SB)�SD\B]

PK �

	D +	B � PG

We now introduce more new notation. Please note that 	K, �BD , and 	B
D are de�ned

di�erently here than they were in the proof of Theorem 1.
De�ne �DB as

�DB = fK � f1; :::; ngjD \K 6= ;; B \K = ;g

Furthermore, de�ne �;B as

�;B = fK � f1; :::; ngjB \K = ;g

And de�ne 	D
B as

	D
B = min

K2�D
B

	K

We are now ready to proceed with the proof of Theorem 2.

Proof:



We now describe how to split PG into two pieces so that the assumptions of Theorem
2a still hold. The rest of the proof (i.e. constructing the branching leading down to the
individual Pfigs, and de�ning the Bernoulli splitting probabilities as the product of the
splitting probabilities going down the branching) is identical to the proof of Theorem 1,
and is not repeated here.

Let G � f1; :::; ng, jGj � 2. Then 9B;D � f1; :::; ng such that B;D 6= ;, B \D = ;,
and B [D = G. Let U � f1; :::; ng achieve the minimum over K 2 �DB in 	D

B . Also, let V
achieve the minimum over K 2 �BD in 	B

D. We know by lemma 2.2 that 	U + 	V > PG.
Choose b; d > 0 such that b < 	U = 	D

B , d < 	V = 	B
D, and b + d = PG. We claim that

if PG is set to zero, PB is increased by b, and PD is increased by d, then the assumptions
of Theorem 2 still hold.

Proof of claim:
We must verify that we still have that 	K > 0, 8K � f1; :::; ng. If K 2 �;B[D, then PG,

PB, and PD have no e�ect on the value of 	K, so it is still greater than zero. Similarly,
if K 2 [�D; \ �B; ], then the value of 	K remains unchanged because b and d are added to
it, while PG is subtracted from it. If K 2 �BD , then PG is subtracted from 	K while b is
added to it. So in e�ect, d is subtracted from it. But d < 	B

D < 	K, so 	K is still larger
than zero. By an analogous argument (switch the bs and ds), if K 2 �DB , then 	K, while
reduced is still greater than zero. Since

fK � f1; :::; ngg = �DB [ �BD [ �;B[D [ [�D; \ �B; ]

the claim is proved.
If we reduce down to the Pfigs as in the proof of Theorem 1, then we have by construc-

tion that

ai
mi

< Pfig8i 2 f1; :::; ng

Since we know that

E[xt+1
i � xti] = E[At

i �M t
iP

t
fig] =

E[At
i]� E[M t

i ]E[P
t
fig] = ai �miPfig < 0

and we know that the Markov chain de�ned under this Bernoulli splitting policy is
irreducible and that xt+1

i �xti is bounded since A
t
i is bounded, we have by Foster's theorem

on ergodicity of a Markov chain ([6]) that the system is stable.


