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With the increasingly smaller electronic package size, warpage of electronic packages 

becomes an important measurement related to the reliability of the products.  Higher 

sensitivity out-of-plane deformation techniques are required to capture the smaller 

deformations of tiny packages for enhanced design analysis and model verification.  

The higher sensitivity is realized using non-zero viewing angles with the conventional 

shadow moiré technique.  Advanced configurations to accommodate the non-zero 

viewing angles are developed to cope with direct reflection encountered on the 

conventional setup.  An expanded governing equation for the configuration is derived 

and verified experimentally.  Then the proposed configuration was implemented in 

the testing of an actual package to demonstrate the advantages that accrue from the 

higher sensitivity.   
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Chapter 1: Motivation 
 

Introduction  to Warpage Measurement Techniques 

The need for small displacement measurements came from the microelectronic industry 

as electronics and their packages trended smaller [1]. The electronic package is part of a 

final commercial device that has several functions including protection of components 

and interconnects, signal and power distribution, and mechanical support [2].  The whole 

device is comprised of multiple materials with individual coefficient of thermal 

expansion (CTE).  

 

Figure 1.1: Example of package and industry trend [1] 

 

Warpages in PBGA packages occur when materials with different CTE are mechanically 

bonded together and subject to a temperature change.  The coefficient mismatch induces 

warpages as higher CTE material will have expanded more. At different temperatures 

other than the condition where the surfaces were initially flat, there will be more 
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deformation in one of the materials, leading to warpage. An example of the problem that 

arises during manufacturing is shown in Figure 1.2. Due to the CTE mismatch, the solder 

balls are no longer at the same height after undergoing thermal cycling. This causes 

reliability issues between interconnects due to the small differences in the height of the 

solder balls have the potential to affect solder ball fatigue life. Package warpage is 

associated with the reliability of the packaged device.  Therefore, measurement of 

distortion in packages has been used in order to better model the changes to the package 

that occurs under extreme loads like thermal loads from the solder reflow process. 

Different techniques have been developed to cover the range of out of plane 

measurements. 

 

Figure 1.2  Cross-section of Ball Grid Array package with material CTE [3] 

 

Shadow moiré, an out-of-plane displacement fringe pattern measurement technique, came 

about from the moiré topography concept first described by Takasaki [4] and Meadows et 

al. [5] in 1970. Shadow moiré has become a popular choice for sample distortion 

evaluation under mechanical and/or thermal loading in the microelectronics industry.  A 

JEDEC industry standard for high temperature testing adopted shadow moiré as one of 

the techniques to be used for those type of measurements [6]. The technique is robust 

with a diffuse sample surface requirement rather than a specular surface. It can be 

Substrate (>15 ppm/°C) 

Solder Balls  
(>23 ppm/°C) 

Chip (>3ppm/°C) 
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implemented with a variety of light sources [7]-[9] .  It is also a whole field technique, 

which allows for characterization of the entire specimen surface at one time. Whole field 

techniques are better for dynamic system measurements, as the surface displacements are 

quantified simultaneously rather than over a period of time with point by point 

measurement. The technique determines absolute displacement from the sample surface 

to the reference grating which can be utilized to determine relative distances.  

 

Use of shadow moiré on electronic packages is common in the literature, and its use 

continues to the present [7]-[22]. Some applications included samples placed in solder 

reflow conditions [17]-[19] and thermal loading of printed wiring boards and other 

electronic components [10]-[14]. Warpage under thermal treatment, as a result of 

differences in CTE between the materials in electronic packages, is important, as it  can 

be tied to reliability issues. Conventional shadow moiré on the micro scale could be 

realized down to 110 µm/fringe, and with the use of the half Talbot distance, the contour 

interval could be further brought down to 43 µm/fringe [23] with adequate dynamic 

range. Shadow moiré at non-normal angles has been explored [11], but the angles used 

were small. An example of shadow moiré, shown in Figure 1.3, details the measurement 

of a processor undergoing thermal cycling.  
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Figure 1.3: Shadow Moiré thermal cycling example 

 

Phase Shifting  

An important technique called phase shift is used to increase the overall pattern 

recognition of fringe based measurement techniques [25]-[30]. The intensity distribution 

is assumed to be sinusoidal in shape. The intensity distribution of the fringe pattern is 

then defined as: 

 
 

( , ) ( , ) ( , )cos( ( , ))

where is the background intensity, 

is the modulation intensity, and 

and  represents the angular phase of the fringe pattern; 

the  is related to fringe order ,

m a

m

a

I x y I x y I x y x y

I

I

N x y







 

 by 2 .N 
  (0.1) 

There are three unknowns in the above equation, which means three equations need to be 

solved in order to determine mI , aI  and . At least three fringe patterns with equal phase 

differences are required to implement phase shifting. The   term is especially important 
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because it provides information on the points between the fringe patterns.  Different 

algorithms were developed that used more than the requisite three phase-shifted images, 

since more phase steps smooth out those phase shift errors. The most widely used 

algorithm takes the information from four images to calculate the phase and is given as:  
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4 2

1 3
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 

  

  

  





  (0.2) 

Errors when acquiring the images after phase shift can result in significant deviations 

from the true phase value.  Current research has developed numerical analysis that can 

apply the phase shift technique even if the phase shift is arbitrary[26] or constant but 

unknown[28].  It is also necessary to unwrap the phase diagram after the use of the phase 

shifting algorithm. The absolute value of the phase is lost when the phase range extends 

over 2π due to the properties of the arctangent function used in its calculation.  

 

 A systematic error is introduced in phase shifting techniques by assuming a sinusoidal 

intensity distribution.  In reality the intensity distribution of shadow moiré is a complex 

function of different experimental parameters [31]-[33]. The error of the 4-image phase 

shift algorithm was experimentally tested and derived, and known to introduce a 

maximum error of 1.7% of the contour interval [23] [32]. The error is therefore more 

pronounced when using a lower measurement sensitivity system. High basic 

measurement sensitivity is necessary with use of phase shifting.  
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Summary of Work 

There is a need for warpage measurement techniques in the microelectronics industry as 

packages continue to grow smaller while the designs grow more diverse.  To that end, an 

existing shadow moiré technique is modified to create a framework for taking 

measurement that will surpass current existing limits dictated by the traditional high-

sensitivity moiré setup. The non-coplanarity of the new configuration will solve inherent 

issues in the conventional setup of shadow moiré regarding the reflection from the 

grating and widens the viewing angles that are viewable in a traditional setup.  The 

following chapters will be used to illustrate an advanced shadow moiré technique that 

uses non-standard viewing angles to decrease contour interval size. The new contour 

interval equation associated with the modified shadow moiré that uses a non-coplanar 

setup was derived and then experimentally verified. The modified technique was used to 

demonstrate the improvement in sensitivity for package warpages measurement. 

Sensitivity improvements at very large angle non-normal values are shown to have the 

potential of reducing the contour size by half as compared to normal viewing. 

Equation Section (Next)
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Chapter 2: Conventional Shadow Moiré  
 

Rectilinear Propagation of Light  

The shadow moiré technique can be described utilizing the assumption of rectilinear 

propagation of light. The rectilinear assumption only holds when the distance between 

the grating and specimen is small compared to the Talbot distance. This grating self-

imaging distance will be discussed later in the thesis. The method requires an amplitude 

grating, a light source, a prepared sample, and an observer, normally a camera, to record 

the images. The sample is sprayed with a thin layer of white matte paint. The paint allows 

the sample to uniformly diffuse the visible rays of light and is considered thin enough to 

not significantly alter the out-of-plane displacement.  

 

The grating required is the Ronchi grating. It is a series of alternating transparent and 

opaque bars of equal width; the physical grating is typically made by depositing the metal 

pattern layer on one side of a glass plate. The flat grating has to be placed so that the bars 

are perpendicular to the imaging plane. Previous researchers have used Ronchi type 

flexible [34] and non-flat gratings [35] for specific applications; this thesis will solely be 

using flat glass gratings. As stated previously, a variety of light sources can be used. The 

typical light source is a bright white light with a small size, approximating a point source 

or a slit that is parallel to the grating lines.  

 

The light source illuminates the grating, which casts a shadow grating on the specimen 

surface. The camera captures the interference between the shadow grating on the sample 
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and the superimposed reference grating, producing a moiré fringe pattern. For a pinhole 

aperture, there is only one light beam which will be scattered from the surface that will 

reach the observer. The interference pattern is equivalent to a contour map, the number of 

fringes between two points indicate the out of plane displacement between the points.  

 

The concept behind the technique is shown in Figure 2, with the setup having the 

following variables: z is the displacement between the reference grating and the specimen 

surface; g is the reference grating pitch, α is the illumination angle, and ψ (or β) is the 

incident light to the camera angle. Example of how the fringes look at the different points 

can be seen. The first point of interest is point A. As the light passes through the grating 

and reaches the observer, that point is seen as a bright fringe. Point A is assigned the zero 

fringe order, as there is zero distance between it and the grating. Similarly points E and C 

are seen as bright fringes. Points B and D are dark fringes as the light diffuse from the 

surface interferes with the dark part of the grating; a dark fringe would also occur if the 

source light has interference with the dark part of the shadow fringe. The fringe order can 

be determined by the number of fringes between the entrance of the light and the exit of 

the light. A full fringe is the distance between one bright fringe to the next. In the case of 

point C, there are four fringes between point A (the zero reference) and the light entrance. 

There are three fringes between point A and C, the point where the observer sees the light 

passing through the grating, meaning that point C has a fringe order of one.  
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Figure 2.1: Rectilinear Demonstration of Shadow Moiré [36] 
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From geometry, the relationship between z and the fringe order N is determined as: 

 

 ,   ( , )
tan( ) tan( )

g
z x y N x y

 




  

(1.1)  

 Note that the sensitivity is not constant across due to the specimen as the angles are 

constantly changing at every point. A solution to achieving constant sensitivity can be 

seen in equation 2.1. The two ways to achieve constant sensitivity would be to keep 

tan(α)+tan(β) constant or keep the angles the same at every point. A method to achieve 

the theoretical constant sensitivity by keeping  tan(α)+tan(β) constant is to place the light 

source and observer the same distance away (L) from the reference grating plane [36]. It 

can then be approximated that 

 

   tan tan
D D

L z L
   



  

(1.2)

 

where D is the distance between the light and the observer.  

The approximation in equation 2.2 allows the z displacement at every point to be 

correlated directly to the fringe order. Combining equation 2.1 and 2.2, the constant 

contour interval, which is the amount the fringe order is multiplied by, can be then 

calculated as:  

 

*
   

tan( ) tan( )
( )

g g L g

D D

L

 
   



  

(1.3) 

The assumption inherent in this approximation is that the range of displacement across all 

the points is much smaller than the L distance. The previously described method for 

constant sensitivity for the fringe patterns is shown, with oblique angle viewing in Figure 

2.2a and normal viewing in Figure 2.2b.  
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The second method to achieve constant sensitivity, but not pursued in this thesis, is to 

keep the angle constant at all points by the use of collimating lenses (as shown in Figure 

2.3). The divergent light from the source will be collimated onto the sample surface so it 

hits the sample at a specific α. The diffuse light from the specimen would then be 

observed through a collimating lens as well, resulting in a known constant β. The use of 

this version of shadow moiré would not be constrained by any distance requirements for 

source and observer placement; however the sample size is limited to the size of the 

collimating lenses used.  

 

Figure 2.2: Constant sensitivity configuration for shadow moiré by keeping 

   tan tan   constant, (a) oblique viewing, (b) normal viewing [36] 
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Figure 2.3: Constant sensitivity with collimating lenses at oblique angles [36] 

 

Normal viewing is popular in shadow moiré configurations because there are no visual 

distortions of the sample during viewing. However, in order to have the large values of α 

at normal incidence, the light placement gets progressively further away. This becomes a 

practical setup problem as well as light intensity decrease the further away from the 

source it is. Reflection from dielectric surface also means less light is being transmitted 

through the grating, which is also limiting the intensity of the light beam that the camera 

is picking up.  A practical limit of tan (α) = 3 was suggested for normal incidence to have 

usable light intensity.[23] 

 

Diffraction: Talbot Distance and its impact in Shadow Moiré  

The equation for shadow moiré seems to indicate that the fringes will appear at any 

displacement.  In reality, the fringe contrast changes based on the sample’s distance away 

from the reference grating.  The fringe contrast is affected by the Talbot effect, a grating 

self-imaging effect that occurs due to diffraction from a periodic structure.  The 
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illuminated reference grating splits the light beam into multiple diffracted beams. The 

diffracted beams will then interfere with each other, producing a virtual grating at a 

specific distance that is the same pitch as the reference grating. Those virtual gratings are 

called “Talbot images,” with the replication occurring at the Talbot Distance (TD). The 

TD equation for normal incidence is:  

 

22
T

g
D




 [36] (1.4) 

For shadow moiré, the TD based on oblique illumination was given by Testorf as: 

 

2
32

* ( )
g

TD cos 


 
 [38] (1.5) 

 

 

Figure 2.4: Illustration of Talbot distance for oblique illumination with complimentary 

virtual gratings at multiples of ½ the Talbot distance [37]. 
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A simple geometric derivation of Talbot distance can also be utilized to describe the 

interaction of the diffracted beams [37]. When collimated light enters the grating at an 

angle of α, defined perpendicular from the grating bars, the effective grating is   

 ' co ( )sg g    (1.6) 

From equation 2.3, the distance between the grating and the virtual grating is: 

 

2 2 2
22 ' 2( cos( )) 2

* ( )
g g g

TD cos 
  

 
  

  (1.7) 

The distance of the virtual grating parallel to the grating surface is calculated to be:  

 

2 2
2 32 2

*cos( ) ( * ( ) cos( ))* * ( )
g g

D TD cos cos 
 

     
  (1.8) 

The equation is equivalent to the equation derived in reference [38], which utilized a 

mathematical derivation of off-axis light diffraction through a Ronchi grating. This 

equation was used to calculate the TD from 45° to 63° with two different pitches, shown 

in Figure 2.5.  It can be seen that both the decrease of grating pitch and increase of α 

greatly affects the TD. The increase of sensitivity through those two means are 

constrained by how quickly the Talbot distance is modified.   

 

It is known that complimentary images of the grating appear at ½ TD, while at ¼ and ¾ 

TD a destructive interference virtual grating will occur [37]. Therefore, at the ¼ and ¾ 

TD, the virtual grating will cause the contrast to go to zero. Example of self-imaging is 

shown in Figure 2.6. The TD is proportional to the grating pitch squared, from equation 

2.4, so decreasing the gratings pitch quickly results in very small usable distances.  Note 

that the TD is not dependent on the β angle, so any gains in sensitivity from using the β 

angle will not hinder the contrast of the technique based on diffraction.  
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Figure 2.5: Calculated Talbot distance for range of 45-63°, pitch of 0.1 and 0.2 mm 

 

 
Figure 2.6: Self-imaging of 10 line/mm Ronchi gratings at n-talbot distance where n is 

equal to a) 0, b) ¼, c) ½ , d) ¾ [37] 
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The dynamic range of the technique is dependent on the magnitude of the TD; a larger 

TD means a larger dynamic range, assuming that the TD is the constraint. The knowledge 

of the dynamic range is crucial as measurements of deformation outside of the dynamic 

range can result in fringe disappearance. An example of this is shown from [23], where 

there a clear areas where the fringe is no longer visible.  

 

Figure 2.7: Warpage of flip chip BGA with g=0.1mm and α=63° for a 50um/fringe 

contour interval [23] 

 

To balance the grating pitch and the alpha angle, a relation was found between the 

contour interval and the TD. By combining equation 2.1 and 2.6, the TD relation to the 

contour interval is:  

 

2
3 22

* ( ) *(tan tanTD cos 


 
  

  (1.9) 

The critical angle can then be found by differentiating Eq. 2.7 with respect to α. An 

assumption of β = 0 was used as the Talbot distance is not dependent on β: 

 

2

2 2
2

3 2* tan(
2

* ( ( )

( sin 2 sin 2sin (3cos 1) 0

)
TD

cos 


 

  


 

  
      




  (1.10) 
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The value that solves Eq. 2.8 is c = 54.7°, from [23]. This means that utilizing angles 

near that angle will also result in the highest Talbot distance with the corresponding 

grating size for a specific contour interval. However, the function shows there is a limit to 

the α useable in the higher angle region due to TD.  

 

Figure 2.8: Talbot Distance for contour interval of 100um/fringe with β = 0° [23] 

 

Previous work ([23]-[3], [39]-[40]) utilized the shadow moiré at distances other than the 

zeroth distance in order to take advantage of the increase in dynamic range. At the zeroth 

order, the maximum dynamic range before contrast goes to zero is only ¼ TD. Since 

there is a complimentary image at half TD, placing the samples at that location expands 

the dynamic range from ¼ to ¾ TD.  In practice, the constraints for the half TD are still α 

and grating pitch.  
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Constraint of incident angle and grating due to contrast 

In order for fringe pattern techniques to work, a visually distinctive pattern is required; 

therefore, the contrast between the dark and light fringe patterns is an important 

constraint for the shadow moiré technique.  Previously, Han et al. derived and verified 

equations for the contrast of shadow moiré patterns at different displacements from the 

grating [39].  Equations for fringe contrast in shadow moiré were also established for a 

laser light diode source and a white light.   It was determined that the virtual grating and 

the aperture of the camera lens are the two major factors that affect the contrast of moiré 

pattern. The virtual grating depends on the Z displacement, the Talbot distance, and the 

secondary Talbot distance. The aperture of the camera lens has an impact on how the 

light gets captured in the camera.  

 

From equation 2.6, it can be deduced that the light source’s properties play a large role in 

the virtual grating. The contrast is dependent on the spectral bandwidth and the 

wavelength of the light source itself [23]-[3]. Contrast consideration also limits the 

possible placement of the specimen due to the limitations of the dynamic range.  

 

The aperture of the camera affects the contrast and produces another limiting effect when 

certain camera setups are used. In a purely theoretical configuration, the camera would 

have a pin-hole aperture, and the only light entering would be that exiting the grating. In 

practice, it is possible for the camera to pick up some light being scattered by light 

exiting the grating. With this secondary light source, the dark fringes will become slightly 

brighter, thus decreasing the contrast. Figure 2.9  illustrates this.  
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Figure 2.9: Aperture effect: (top) pinhole aperture (bottom) large aperture [3] 

 

Smaller apertures will decrease the contrast less by decreasing the amount of secondary 

light coming into the camera; however, apertures too small will receive too little light, 

resulting difficulties in detecting fringes. Reference [41] mathematically determined the 

intensity of the shadow moiré based on the pitch and aperture size. The max and 

minimum intensity, respectively, is given for a circular aperture as: 

 
max min

1 2 2
,

2 3 3
input input

dz dz
I I I I

gL gL 

   
     

      (1.11) 

    

With increasing distance between the grating and sample, the max intensity and 

minimum intensity will eventually be equal; at that point, the washout distance, the 
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contrast is zero regardless of any effect. The contrast due to a circular aperture can then 

be calculated through:   

 

max min

max min

8
1

3

e
a

I I d z
C

I I g


  


  (1.12) 

 

where de is the aperture diameter/distance from the camera [23]. The term de, the 

effective aperture, allows a more realistic determination of the size of hole that light will 

get through to the camera.  

 
Figure 2.10: Contrast due to aperture effect for  de=.003 

 

From equation 2.4, smaller effective aperture, larger grating pitch, and appropriate 

specimen placement will produce higher contrast. Grating pitch needs to be kept 

sufficiently small in order to gain desired sensitivity in measurement. However, as shown 

in Figure 2.10, decreasing grating pitch means worse contrast due to the aperture effects.  
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The grating is a limiting factor for increasing sensitivity and will be kept at smallest 

0.1mm for typical applications.  

 

Limitation of oblique viewing angles 

Due to the constraints limiting α and grating pitch, the usage of the β angle to improve 

sensitivity is the next step. The choice to stick with normal viewing comes from the 

distortion that is introduced with non normal viewing. The visual distortion is a linear 

distortion along the direction of the imaging plane. For example, a simple square shape 

will have its length along the direction of the imaging plane shrink by cosine β.  Figure 

2.11 shows the image of a square sample, where the left image is shrunk along the 

horizontal direction due to the β angle.  

     
(a)      (b) 

Figure 2.11: Fringe patterns of α = 63°, β = 25°, g=0.1 mm , (a) unmodified          

(b) Stretch correction to have square specimen 

 

From the governing equation it would appear that all angles of α and β are viable. 

However, light reflection and diffraction issues come into play at specific angle 
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combinations. The grating surface is a dielectric, so a portion of the incident light will 

reflect off from the surface. At higher incident angles, the intensity of the reflected light 

grows larger. The reflected light off the grating will exit at the incident angle. Therefore, 

if the camera is placed in or close to the reflected light’s path, the reflected light’s 

intensity would dominate the light contribution from the diffuse scattered light coming 

from the specimen. This would result in the lightening of the dark fringe; or, in the worst 

scenario, the saturation of the camera’s sensors as can be seen in  

Figure 2.13. Thus, if the camera is placed at an angle approximated to the reflected angle 

of the light source, the fringes could potentially disappear.   

 

Assuming the system is coplanar, there are two possible areas outside of the reflected 

beam’s path to place the camera. Figure 2.12 shows the potential light paths of the 

reflected light, with the orange colored area representing the reflected light. The camera 

would have to be placed either above or below where the reflected light is propagating. 

Large β angles result in distortion of the specimen image and a similar issue to α with the 

camera distance being too long. At small β angles, distortion is negligible; however, 

tan(β) is close to zero, and there would not be significant improvements of sensitivity 

from normal incidence. With the above cited concerns/limitations, neither of these two 

camera locations is acceptable for use to improve sensitivity.  Therefore, a change in the 

setup has to be made in order to access the angles normally unviable.  
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Figure 2.12: Light paths for shadow moiré with non-zero beta 

 

.  

Figure 2.13: Reflection captured at α=63°, β=60°, g= 0.2mm 
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Chapter 3: Advanced Shadow Moiré Technique  
 

Shadow Moiré using Non-conventional angles  

Due to the issues associated with using oblique viewing at certain angles for traditional 

shadow moiré, a modification to the technique is proposed. This advanced technique 

introduces a rotation of the components in relation to the initial visual plane. The system 

positioning is shown in Figure 3.1. The configuration introduces two new angles: one 

affects the light source (θ), while the other affects the camera (γ). Both angles are defined 

between the original main axis and the subsequent light or viewing path axes. The two 

angles are introduced so the reflected light will be directed away from the camera. The 

shadow moiré technique still applies as sufficient light that  diffuses off of the specimen 

will be captured by the camera.  
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(a) 

 

(b) 

Figure 3.1: Proposed Shadow Moiré Configuration a) Rotated camera b) Rotated light 

source 
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The governing equation for this new system is obtained from projecting the light vector 

and the viewing light vector onto the main plane. The component of the light in the 

viewing plane is obtained by multiplying the light vector by cos(θ) or cos( γ), depending 

on which component was rotated. Even if both were rotated, the fringes between the light 

entrance and exit would still be N*g, as seen in Figure 3.2. The horizontal value, and 

subsequently the z displacement, could be calculated as:  

 *   *   *z tan cos z tan cos N g       (1.13) 

    

g
z N

tan cos tan cos   


   (1.14) 

 

 

Figure 3.2: Geometric side view of modified technique 

 

By introducing the rotational angle, the amount of light decreases as tan(α) gets larger, 

and the rotation will always decrease the overall sensitivity. Therefore, non-coplanar 

viewing should only be used at β angles for which the oblique configuration could not be 

achieved due to light effects in a coplanar setup.  In addition, only the camera or the light 

source should be rotated but not both, because the rotation of one already solves the 

θ 
γ 
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problem posed by reflected light. Having both components rotated will unnecessarily 

diminish the sensitivity.  

 

Theoretically, rotating either the light or the camera should have a similar effect on the 

contour interval. However, in practice, moving the camera adds one more rotational 

distortion to the image on top of the horizontal shrinking already introduced by the 

oblique viewing. The additional rotational distortion will necessitate image processing 

software to reorient and convert the non-normal viewing image to normal viewing. 

Therefore, the focus of the advanced technique under investigation will be on the 

positioning of the non-coplanar light source with a coplanar camera to avoid introducing 

the extra rotational distortion.  
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Figure 3.3: Theoretical contour interval values at α=63°, g=0.2mm 

 

From the theoretical derivation, it can be surmised that when the camera is placed at a 

large angle of β, additional increases to the β angle does not decrease the contour interval 

linearly.  A high γ angle can undo the gains from using the β angle, with more of an 

effect when the β angle is set smaller. However, the contour interval changes slightly for 

small γ angles when compared to the normal configuration. The small increase of contour 

is due to the non-linearity of the cosine function in the derived formula. For example, a γ 

angle of 20° still results in a contribution of 0.94 of the α term. The use of the modified 

technique should be limited to cases that need to avoid the reflection and that the rotation 

should be kept as small as possible.  
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Implementation Verification  

Experiment Configuration 

As stated previously, the proposed technique requires a light source, observer/camera, 

and reference grating. The setup has a mobile light source and camera for easy 

adjustment in order to attain the necessary angles during the experiment. Both the camera 

and the light source were placed on a rotation stage, which was then subsequently 

attached to a magnetic base. The setting of each individual rotation stage determined the 

α and β angles. The magnetic bases were then placed so that the center of each 

component was at the desired angle from the sample surface. An illustration of the 

placements can be seen in Figure 3.4.  

 

Either the grating or the sample has to be vertically translatable for phase shifting to 

work. In this configuration, the sample is stationary, and the grating is attached to a 

holder on a servo motor. The change in L will slightly affect the sensitivity between 

phase-shifted images; as previously assumed the displacement is negligible in 

comparison to the distance that the camera and light are placed.  
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Figure 3.4: Illustration of Modified Shadow Moiré setup 

 

The contour intervals associated with the configuration were determined by comparing a 

reference image to an image taken after a known out-of-plane grating shift. A grating 

movement equal to the contour interval results in the fringes moving one fringe order. 

Utilizing this fact, moving the grating to values close to the estimated contour interval 

will result in fringes. The different fringes are then compared to the fringes from the 

original grating setting by finding the absolute difference between the corresponding 

pixels in the fringe images. Plotting the absolute difference found for the images versus 

grating displacements will result in a valley at the desired range of contour interval. An 

exact match will not be found due to the contrast change at further distances, hence the 

use of the smallest difference as the contour interval indicator.  
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The acquired images were not compared to the same original position image. As a 

precaution against the sample moving or the grating not moving exactly back into the 

original position, the images were taken in pairs.  The first image was at the initial grating 

position and the second was the image after grating movement. To prevent backlash, the 

servo was moved slightly back past the original position and then moved forward into the 

desired position. Therefore, all grating movements to the desired positions were 

approached in the direction of increasing displacement.   

 

Theoretically, two images taken in the same configuration should result in an absolute 

pixel difference of zero. In practice, this is not the case due to random noise. A 

background noise level was taken to ensure that the difference between the image pairs 

were significant. Prior to the experiment, two average images were taken at the initial 

grating placement and compared. The absolute difference between the two images was 

the background noise value. If the absolute differences in the acquired image pairs was 

less than the noise difference than the change was deemed too small 

 

Hardware/Software  

The light source was a 150W white light (Fiberoptic Systems, Inc. model 1060-150W) 

with a 2.375 inch line source attachment. The experiment was placed in a dark 

windowless room in order to eliminate background light.  The magnitude of light 

intensity is adjustable, but was kept at maximum intensity to ensure consistent light 

intensity.  As previously stated, a small aperture means less light entering the camera, so 

a high intensity light would be needed to achieve the desired contrast.  
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The camera used was a Pulnix TM-7CN, a ½” format CCD camera with pixel 

arrangement of 752 (H) x 582 (V) with a zoom lens. The camera was connected to a 

frame grabber installed on a computer (PIXCI sv4 board). XCAP 2.2 was the software 

associated with the frame grabber that was used for image acquisition and processing. 

The images used for the fringe analysis and amplitude comparisons are a composite 

image composed of the average of twenty images to avoid camera noise. The averaging 

eliminates random high frequency noise that occurs with taking a single measurement.  

 

The grating holder setup was attached to a vertical translation stage to allow for fringe 

shifting. The NPZ-1/2 vertical translation stage from JA Noll was actuated by a Thorlabs 

Z625B servo motor. The vertical translation stage has a two-axis tilt platform to allow for 

leveling of the grating. The control of the servo was through the Thorlabs DCS-P110 

board with the commands sent through the Thorlabs Advanced Positioning Technology 

(APT) software.  The stage has a horizontal to vertical ratio of two to one; the servo 

displacements reading from the APT software are double the actual movement of the 

grating holder. Therefore, for one full phase, the displacement required was double the 

contour interval.  

 

The sample holder is rigidly mounted to the table and the height of the specimen holder 

could be manually configured. Similar to the grating holder, it incorporates a two-axis tilt 

platform to level and tilt the sample. In this way, both holders can be configured to be 

initially parallel to each other and then induce a specific rigid body deformation. The 
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sample holder was with a small gap between the grating and the sample. The sample 

cannot be placed touching the grating, since fringes would be affected.  Having the 

grating touching the sample will introduces an extra constraint to the system, which 

invalidates the results of the experiment.  

 

Verification of the Governing Equation  

To prove the new configuration’s derivation is correct, the first step was to tune the α 

angle with the camera at normal incidence. The sample used was a glass slide that was 

painted on one side to ensure that the specimen was initially flat. The grating and the 

specimen holder were both leveled through the use of the 2-axis stages to ensure that the 

fringes seen on the sample came solely from the difference in displacements of the 

sample and not from any rigid motion from the set up. A bar fringe pattern was then 

created when the sample holder was tilted in a single direction. The light source was 

rotated to the desired angle and then moved until the contour interval reflected the 

original equation’s derived value. To ensure the same α angle, the distance away from 

center of the light source to the sample was kept the same while moving the light source 

to test the different θ angles. 

 

In order to show the trend, the light was rotated to four different θ angles. The contour 

interval was determined using the previously described method of comparing images 

after grating movements to their original grating position image. As part of that analysis, 

an area of interest was selected to be compared since the sample is only a small part of 

the image.  Since the camera does not move, the sample’s location in the capture image 
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does not change.  Since the sample image is a rectangle, the region of interest is a square. 

The same pixel placement values were used when checking the same configurations.  

 

The first test had the camera at normal viewing incidence with a set α angle of 40° 

(Figure 3.7). Subsequent trials utilized a different α angle (45°) and β angles (20° and 

30°). Examples of the image comparisons for this test are shown in Figure 3.5 and Figure 

3.6. The top images are the initial images with the second row corresponding to images 

after different movements of the grating. The middle image of Figure 3.5b shows the 

fringe that closest approximates the initial image. The first image shows fringes that have 

not moved far enough to be in the initial fringe’s location.  The third image shows fringes 

that have moved further than the original fringe’s position. Therefore, the movement that 

yielded the middle image is determined as the measured contour interval.  

 

The increase in the contour interval size can be readily seen with the fringe pattern when 

comparing Figure 3.5 and Figure 3.6. The former has 2.5 fringes on the glass specimen 

while the latter, with a large rotation angle, shows closer to 2 fringes. As seen from 

Figure 3.7-Figure 3.10, the measured value followed the trend of the expected values. 

With increasing θ angle, the contour interval grew larger which is especially pronounced 

after the 45° mark.  
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 (a1)   (a2)    (a3) 

   
 (b1)   (b2)    (b3) 

Figure 3.5: Image pairs (a) Fringes for α=40°, β=0°, θ=0°, g= 0.2 mm at starting position 

(b) Fringes after contour interval of (1)0.236, (2)0.238, (3) 0.240 (mm) 

    
 (a1)   (a2)    (a3) 

   
 (b1)   (b2)    (b3) 

Figure 3.6: Image pairs (a) Fringes for α=40°, β=0°, θ=50°, g= 0.2mm at starting 

position.  (b) Fringes after contour interval of (1) 0.365, (2) 0.367, (3) 0.369(mm) 
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Figure 3.7: Experimental data compared with theoretical values for setup of α = 40°, β = 

0° and g= 0.2mm 

 

Figure 3.8: Experimental data compared with theoretical values for setup of α = 40°, β = 

20° and g= 0.2mm. 
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Figure 3.9: Experimental data compared with theoretical values for setup of α = 45°, β = 

0° and g= 0.2mm 

 
Figure 3.10: Experimental data compared with theoretical values for setup of α = 40°, β = 

30° and g=0.2mm 
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Application of Advanced Technique  

The technique was tested on a processor package to demonstrate the increase of 

sensitivity with the use of non-normal angles. The specimen tested was a 35mmx35mm 

plastic ball grid array (PBGA) package from Marvell. The package was prepared with 

white paint on the side with the ball grid array.  

 

Figure 3.11: Marvell PBGA Package (left) front (right) back 

      

The α angle was kept constant at 63° to maintain both high sensitivity and high contrast. 

The specimen was placed within the zero-Talbot distance in order to maximize contrast. 

The package was examined under three conditions: normal incidence, non-normal 

incidence, and non-normal incidence with non-coplanar light. The setup configuration 

was the same as the verification experiment. Images were taken at one-quarter of the 

contour interval to approximate phase changes of 90°. The four images were then used 

with the Moiré program to determine the displacement. The contour intervals achieved 

were 0.1mm for normal incidence, 0.082mm for a β=25°, and a contour interval of 

0.0542 for the non-coplanar setup.   
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    (a)      (b) 

 

 
    (c) 

 

Figure 3.12: Setup of  α=63°, β=0°, θ=0°, g=0.2mm a) Phase shifted images of specimen 

b) Specimen wrapped phase map c) 3D-model of displacement pattern 
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    (a)      (b) 

 

 
     (c) 

 

Figure 3.13:  Setup of  α=63°, β=25°, θ=0°, g=0.2mm a) Phase shifted images of 

specimen b) Specimen wrapped phase map c) 3D-model of displacement pattern 
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(a)        (b) 

 

 
(b) 

    

Figure 3.14: Setup of  α=63°, β=60°, θ=20°, g=0.2mm a) Phase shifted images of 

specimen b) Specimen wrapped phase map c) 3D-model of displacement pattern 
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The relative displacement in all the forward stated conditions was in agreement with each 

other showing that the setups are consistent.  The peak relative displacement value was 

0.1mm.  The increase in the number of fringes is readily seen between the normal 

configuration, as shown in Figure 3.12, and the new modified technique as shown in 

Figure 3.14.  As expected, the new configuration has doubled the number of visible 

fringes, since the large β gives a contour interval of 
tanα 63 tanβ 60 3.69

g g


   
 in 

comparison to the normal configuration which gives an interval of

tanα 63 tanβ 0 2

g g

   



. The increase in sensitivity can be seen in the better definition 

of the warpage seen in Figure 3.14c. The influence of small β angles can be seen, as only 

one fringe appears in Figure 3.13a, which is the same number of fringes seen in the 

normal configuration of Figure 3.12a. The gain of a single fringe becomes important 

when measurements are needed with partial fringes in the normal viewing configuration.  
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Chapter 4: Potential Future Investigation  
 

One of the applications of shadow moiré is high-temperature warpage measurements. In 

existing tests [21], a convection oven is used, where there is typically slits for light to 

enter and exit. A new system setup without the constraint imposed by the oven is 

necessary for a dynamically configurable shadow moiré system. To achieve this, a 

conduction heater could be used as the heating source to replace the oven. The rest of the 

setup could then be fitted accordingly with the grating being the moving part. This would 

also potentially eliminate warpage of the reference grating from the heating.  

 

The shadow moiré implementation depends on the accurate positioning of both the 

illuminator source and the camera. A major issue with the use of non-normal angles is 

that the distance between the light source and the camera could get prohibitively large in 

order to obtain the correct angles.  A modification to the technique would be to use 

collimating lens, as shown in the second setup in Figure 2.3. This setup is not distance 

based, versus the current setup which requires the camera and light to be placed apart 

from each other at four times the distance from the sample to the height of the 

camera/light source. However, this change would be application specific as the sample 

size that can be measured is dependent on the collimating lens, whereas no such 

limitation is present in the current technique. .  
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Chapter 5:  Conclusions 
 

The need for better sensitivity warpage measurements comes from the electronics 

industry’s smaller package profile. The use of non-normal angles was utilized to increase 

the base sensitivity. However, with a range of angles not accessible in a traditional setup, 

a modification to the configuration was implemented. A new governing equation was 

derived and experimentally verified over different α and β angles. This showed that large 

rotations could potentially nullify the benefits of non-normal angles. However, at the 

smaller rotation angles, even up to 30°, the difference in contour interval from the normal 

viewing is very small. Therefore, a new range of angles could now be utilized.  The 

warpage of a processor package was then measured to demonstrate the increase in 

sensitivity gained by using the non-normal angles.  This experiment showed that the 

contour interval could be reduced by almost in half as compared to normal viewing. The 

new configuration was shown to be application dependent, with improvements to 

sensitivity and dynamic range limitations driving its implementation.  
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