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Exoplanet atmospheric characterization is still in its early stages. Large sur-

veys like the Kepler Mission provide thousands of planet candidates, but follow-up

observations to characterize the individual candidates are often difficult to obtain. In

this thesis, I develop a method to detect small atmospheric signals in Kepler’s planet

candidate light curves by averaging light curves for multiple candidates with similar

orbital and physical characteristics. I also consider two applications of this method:

at secondary eclipse, to determine the average albedo of groups of planet candidates,

and near transit, to determine whether on average the planets have cloud-free, low-

mean-molecular-weight atmospheres, or cloudy/hazy/high-mean-molecular-weight

atmospheres. This approach allows the measurement of properties that are un-

measurable for candidates individually, because of their low signal-to-noise, and it

prevents biasing of the results by false positives (candidates that are not actually

planets) and outliers by not depending on only a few measurable candidates.

I first develop the method and apply it to the secondary eclipses of 32 close-in

Kepler planet candidates between 1 and 6 R⊕ with short cadence data available, in



order to determine their average albedo. I then adapt the method to the long cadence

data, accounting for the effects of the longer integration time. The increase in the

number of candidates available in long cadence allows for finer radius groupings of

1 to 2 R⊕, 2 to 4 R⊕, and 4 to 6 R⊕. The short cadence average includes 6,238

individual eclipses, while the long cadence averages contain 80,492 eclipses from 56

candidates in the 1 to 2 R⊕ bin, 22,677 eclipses from 38 candidates in the 2 to 4

R⊕ bin, and 4,572 eclipses from 16 candidates in the 4 to 6 R⊕ bin. In both studies, I

find that these planet candidates are generally dark, though there are bright outliers

like Kepler-10b, and I discuss the implications of these results for understanding

the atmospheres of these planets. Finally, I apply the method to Kepler planet

candidates in short cadence near transit, looking for a brief brightening due to light

that is refracted through the atmospheres of the planets and directed toward the

observer just before and just after transit. Refracted light is strongest in planetary

atmospheres that are cloud-free and have a low mean molecular weight. Preliminary

results suggest this strong refraction effect is not present in the selected group of 10

candidates with radii between 0.8 and 3 R⊕, but I begin to develop a more detailed

model and sketch out future plans to improve the model and to continue testing for

the presence of refracted light with greater sensitivity.
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Chapter 1: Introduction

The exoplanetary science community seeks to understand how common habit-

able, Earth-like planets around Sun-like stars are, as well as the physical properties

of those planets. The first confirmed planets discovered outside our solar system

were far from habitable. These planets were only a few times the mass of the Earth,

but they were detected as their orbits perturbed the precise timing of the radio

pulses from their host star, a neutron star (Wolszczan & Frail, 1992; Wolszczan,

1994). Shortly thereafter, the first exoplanet around a Sun-like star, 51 Pegasi, was

found using the radial velocity method (Mayor & Queloz, 1995). The radial velocity

method looks for the “wobble” of the star as the star and planet orbit their common

center of mass. This wobble produces a periodic Doppler shift in the spectral lines

of the star. The exoplanet, named 51 Peg b, is a gas giant, at least as massive as

Jupiter, but orbits its star in only 4.23 days. Jupiter, in contrast, takes nearly 12

years to orbit the Sun. The radial velocity method works best for massive, close-in

planets; These create the largest Doppler shifts, with amplitudes on the order of

100 m/s and periods on the order of days (Lovis & Fischer, 2010). Earth, on the

other hand, produces a shift with an amplitude of only 10 cm/s over a period of a

year. The radial velocity method was used to detect 159 exoplanets in its first 10

1



years1, but using it as a discovery method was slow going. The high-precision spec-

tra required for the radial velocity measurements means that many targets cannot

be monitored at once, and not all of the targets will even have detectable planets.

Radial velocity measurements cannot constrain the orientation of the orbit to

our line of sight (i.e. the inclination), and so they can only place a lower limit on

the mass of the exoplanet. If an exoplanet transits its host star, passing between

the star and our line of sight, not only is the inclination then determined, but the

radius of the planet can also be determined (cf. Fig. 1.1). The first exoplanet

transit (Charbonneau et al., 2000) was measured as a follow-up on a planet initially

discovered by the radial velocity method around the star HD 209458. This detec-

tion demonstrated that photometric techniques and technologies were sufficiently

developed to make searching for exoplanets via transit viable, as well as enabling

the first bulk density measurement of an exoplanet.

The Kepler mission was designed to use the transit method to determine

the fraction of stars in the solar neighborhood that harbor habitable exoplanets

(Borucki et al., 2009), often called η⊕ when considering only Sun-like stars. Kepler

used precision photometry to look for the transit signal, by staring for 4 years at a

single field located just above the Galactic plane. It provided near-continuous cov-

erage at a 30-minute cadence for about 150,000 target stars, as well as for a subset

of 512 targets at a 60-second cadence. After only four months of observations, the

mission found 1235 planet candidates (Borucki et al., 2011). The primary mission

1From the confirmed planet table at the NASA Exoplanet Archive at http://

exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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Figure 1.1 This figure, adapted from the EPOXI mission concept study
report, shows several pieces of information that can be derived from a
transiting planet. As the planet transits its star, the opaque part of
the planet blocks out light from the star completely. Light also passes
through the atmosphere of the planet, and so the planet looks larger at
wavelengths where strong absorption features occur in its atmosphere,
and smaller where the light freely passes deeper into the atmosphere.
As the planet passes behind the star during secondary eclipse, reflected
light and thermal emission from the planet is blocked. Lastly, delays in
the timing of subsequent transits can be used to determine the mass of
the planet and other, potentially unseen, planets in the system. These
delays are caused by gravitational interactions between the planets in
the system.
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ended after hardware failures made it impossible to continue pointing at the chosen

field. Analysis of the 4 years of data has yielded a total of 4696 planet candidates,

of which 2329 have been confirmed (Coughlin et al., 2016). The Kepler candidate

catalog lists any object with transits consistent with a planetary interpretation as

“planet candidates”, and it lists any object that fails one or more consistency checks

for the planetary interpretation as a “false positive” (Borucki et al., 2011). Planet

candidates are changed to “confirmed” planets via one of two paths. The first path

is measurements of the planet mass by radial velocity or transit timing variations

(cf. Fig. 1.1). The second path is by intensive review of the Kepler data to rule out

non-planetary interpretations. If the planetary interpretation is at least 100 times

more likely than non-planetary interpretations, the planet candidate graduates to

“confirmed” or “validated” status.

Transit observations provide several key pieces of information about an ex-

oplanet and its orbit, provided the host star’s parameters are well-known. Most

directly, the time between transits gives the period of the orbit. Combining the or-

bital period with the mass of the star determines the semi-major axis of the planet’s

orbit. The relative drop in light during transit compared to the total light from

the system outside of transit is simply the ratio of the areas of the planet and the

star: (Rp/R∗)
2, where Rp is the planet radius and R∗ is the stellar radius. This

relative drop is known as the transit depth, which is labeled as d in Fig. 1.2. If

the photometry is sufficiently precise and well-sampled in time, the planet radius

and the stellar radius can be measured directly from the shape of the transit light

curve (e.g. Brown et al., 2001), but the Kepler mission largely relies on host star

4



parameters derived from other means.

With the planet radius known from the transit, exoplanets are commonly

broken down into five broad groups: Earth-size (< 1.25R⊕), super-Earth-size (1.25-2

R⊕), Neptune-size (2-6 R⊕), Jupiter-size (6-15 R⊕), and larger than Jupiter (15-25

R⊕) (Borucki et al., 2011). For the purposes of this work, super-Earths include

planets down to 1 R⊕, and Neptune-size planets are broken down further into mini-

Neptunes (2-4 R⊕) and super-Neptunes (4-6 R⊕). Table 1.1 summarizes the groups

and also includes the eight planets in our solar system for reference.

A byproduct of the precision photometry obtained by Kepler in a few cases is

the measurement of the secondary eclipse of the planet. The secondary eclipse occurs

when the planet passes behind its star, at which time reflected light and thermal

emission from the planet are blocked. For planets in circular orbits, this occurs at

phase 0.5. The phase of an observation is calculated by taking the time elapsed

since some reference time, dividing by the period of the orbit, and subtracting the

integer number of cycles that have passed. This results in phase values from 0 to

1. The Kepler telescope has a broad bandpass in the optical, from 420 to 900 nm2,

and so secondary eclipses in Kepler light curves are mostly due to reflected stellar

light. An example of a Kepler light curve showing a transit and a secondary eclipse

is shown in Fig. 1.3, for Kepler Object of Interest (KOI) 13.01, which has a radius

of 1.61 times the radius of Jupiter. Since the signal is primarily reflected stellar

light, it can be several orders of magnitude fainter than the transit signal. The drop

in light during eclipse relative to the total light of the system just outside of eclipse

2http://keplerscience.arc.nasa.gov/the-kepler-space-telescope.html
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Figure 1.2 Adapted from Brown et al. (2001). Anatomy of a transit
curve. The planet moves in its orbit from left to right across the face of
the star. At first contact, the edge of the planet appears to first touch
the limb of the star. Second contact is when the whole planet first covers
the star. Third contact is the last moment when the entire planet covers
the star, and fourth, or last, is the final moment at which the edge of the
planet appears to touch the limb of the star. Ingress is defined as the
period between first and second contact (w), while egress is the period
between third and fourth contact. The curvature due to stellar limb
darkening is labeled c, while the depth of the eclipse is labeled d. The
duration of the transit is labeled l.

6



Figure 1.3 Adapted from Coughlin & López-Morales (2012). This figure
shows the Kepler light curve for KOI 13.01, a hot Jupiter. Note the
transit at phase 0, repeated at phase 1, and the secondary eclipse at
phase 0.5. The red points are data while the black curve is a fit to the
data. Also note the curvature in the transit due to stellar limb darkening,
which is not present in the secondary eclipse.
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Table 1.1. Radii of General Planet Groups and Solar System Planets

Planet/Group Radiusa

(R⊕)

Mercury 0.383
Mars 0.532
Venus 0.949
Earth 1.000
Earth-size < 1.25
super-Earth-sizeb 1.25-2
mini-Neptune 2-4
Neptune 3.88
Neptune-size 2-6
Uranus 4.01
super-Neptune 4-6
Jupiter-size 6-15
Saturn 9.45
Jupiter 11.21
Larger than Jupiter 15-25

aRadius bins for exoplanets
from Borucki et al. (2011), except
mini-Neptunes and super-Neptunes.
Radii for Solar System planets
from NASA’s Planetary Fact
Sheet - Ratio to Earth Values
at http://nssdc.gsfc.nasa.

gov/planetary/factsheet/

planet_table_ratio.html, cu-
rated by Dr. David R. Williams.

bIn this work, super-Earths in-
clude down to 1 R⊕.
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(i.e. the eclipse depth) is given by:

Fp

F∗

= Ag

(

Rp

a

)2

(1.1)

where Fp is the flux of reflected light from the planet, F∗ is the flux from the star, Ag

is the geometric albedo, Rp is the planet radius, and a is the orbital distance of the

planet. Maximum values of (Rp/a)
2 for the shortest-period (and therefore smallest

semi-major axis)Kepler sub-Saturn planet candidates are less than 100 parts per

million (ppm). For Earth, with a radius of 6371 km and a semi-major axis of

1.496×108 km, (Rp/a)
2 = 0.0018 ppm = 1.8 parts per billion (ppb). The geometric

albedo, typically ranging from 0 to near 1, is the ratio of the light reflected by a

body directly back toward the light source to the light reflected by a Lambertian

surface (a disk that is a diffuse, perfect reflector). The highest measured geometric

albedo in the solar system is Enceladus at 1.38 (Verbiscer et al., 2007), and values

this high are typical of cold, young surfaces found among the geologically active

icy satellites of giant planets in the solar system. Earth’s geometric albedo is 0.367

(Traub & Oppenheimer, 2010), so a distant observer would see secondary eclipses

of Earth that were only 66 ppb. The gas giants in our solar system have geometric

albedos of ∼ 0.5, with Neptune slightly lower at 0.4 (Traub & Oppenheimer, 2010).

Early modeling of giant planets outside the solar system suggested that hot giant

planets would be dark, while cooler planets, below 400 K, would have clouds of

water or other condensates that would make them bright (Marley et al., 1999). The

first observational constraints on the geometric albedos of extrasolar giant planets

came from work on τ Boötis. Collier Cameron et al. (1999) found, using a method
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other than secondary eclipses, a tentative reflected light signal of 190 ppm from the

hot Jupiter around τ Boo, but Charbonneau et al. (1999), using the same method,

set an upper limit on the signal of 50 ppm, resulting in a geometric albedo less than

0.3. Transit depths, in contrast, are typically on the order of 100 ppm or greater.

Earth seen from outside our solar system would have a transit depth of 84 ppm.

Kepler was designed to look for transits, and so secondary eclipses are measurable

only around the brightest stars in the sample, for which the photometric noise is

smallest.

The hottest exoplanets may have a thermal contribution to the secondary

eclipse depth, due to re-radiation of absorbed light from the host star. The Spitzer

Space Telescope, an infrared mission, has detected thermal emission at secondary

eclipse for many exoplanets (e.g. Charbonneau et al., 2005, 2008; Christiansen et al.,

2010; Deming et al., 2005, 2007; Fressin et al., 2010; Grillmair et al., 2007; Machalek et al.,

2008; Todorov et al., 2010). The planet-to-star contrast in the infrared is more fa-

vorable than in the optical bandpass of Kepler because of the emission from the

planet. Thermal emission has even been detected by Spitzer from super-Earths,

such as 55 Cancri e (Demory et al., 2012). The thermal contribution is given by the

ratio of the area of the planet to the area of the star times the ratio of the integral

of the blackbody flux from the planet to that of the stellar flux, modified by the

response function of the detector. The blackbody flux for the planet is calculated

assuming the equilibrium temperature for the planet, given by:

Tp = T∗

(

R∗

a

)1/2

[f(1 − AB)]1/4 (1.2)
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where Tp is the planet’s temperature, T∗ is the star’s effective temperature, a is the

planet’s orbital distance, R∗ is the stellar radius, and AB is the Bond albedo. The

redistribution factor f typically varies between a value of 1/4 for complete redistri-

bution of heat around the planet to 2/3 for instantaneous re-radiation of heat (see,

e.g. Esteves et al., 2013; Hansen, 2008; López-Morales & Seager, 2007; Rowe et al.,

2006). The Bond albedo is the total light reflected by a body divided by the total

light incident on the body, integrated over all wavelengths (as in, e.g. Sudarsky et al.,

2000). For a Lambertian surface, the Bond albedo is related to the geometric albedo

by AB = (3/2)Ag (as in, e.g. Esteves et al., 2013; López-Morales & Seager, 2007;

Rowe et al., 2006).

In addition to secondary eclipses, reflected light and thermal emission can

create a subtle variation in the light curve over the course of the planet’s orbit, called

a phase curve. The phase variation arises due to the changing fraction of the dayside

of the planet visible to the observer as the planet orbits its host star. Knutson et al.

(2007) studied the thermal emission phase curve of HD 189733b with Spitzer at 8µm,

shown in Figure 1.4. The authors find that the dayside of the tidally-locked planet

is brighter than the nightside, and the peak brightness occurs just before secondary

eclipse, suggesting a hot spot that has shifted slightly east of the substellar point.

Zellem et al. (2014) studied HD 209458b with Spitzer at 4.5 µm, finding a similar

eastward shift of the hot spot, which is predicted by circulation models due to

superrotational winds at the equator. The phase curve for super-Earth 55 Cancri e

has also been measured, and it suggests that the planet either has an optically thick

atmosphere with heat redistribution across only the dayside, or a molten surface
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capable of redistributing heat in a similar fashion (Demory et al., 2016).

In the seven years since its launch, the Kepler mission has delivered on its

original mission. Early estimates of η⊕ based on the 2011 February release of data

suggested that 1-3% of Sun-like stars hosted planets that were similar in radius

and insolation to Earth (Catanzarite & Shao, 2011). By 2013, estimates based on

added data suggested 15% of cool stars, less than 4000 K, hosted Earth-sized planets

in the habitable zone (Dressing & Charbonneau, 2013), and 11% (Petigura et al.,

2013) of Sun-like stars hosted Earth-like planets. Questions of completeness of the

candidate catalog posed a challenge to calculating these estimates. A more recent

analysis by Burke et al. (2015) includes the Q1-Q16 catalog from Mullally et al.

(2015) and a completeness study of the pipeline by Christiansen et al. (2015), and

finds a lower limit for η⊕ of 10% for Sun-like stars. Individual planets of interest

include Kepler-62e, Kepler-62f, Kepler-438b, Kepler-442b, and Kepler-452b. Kepler-

62e and Kepler-62f are two of five planets detected in their system (Borucki et al.,

2013). They are 1.61 R⊕ and 1.41 R⊕, respectively, and orbit in the habitable zone

of their K dwarf host. The most Earth-like planets found to date are Kepler-438b

and Kepler-442b (Torres et al., 2015). Kepler-438b has a radius of just 1.12+0.16
−0.17

R⊕ and receives 140% of the effective insolation of the Earth, though the host star

is less massive than the Sun. Meanwhile, Kepler-442b is larger at 1.34+0.11
−0.18 R⊕ but

receives only 66% of the effective insolation of the Earth. Kepler-442b also orbits a

host star that is less massive than the Sun. Kepler-452b, on the other hand, orbits

a G2 star like the Sun with a period of 384.843+0.007
−0.012 days, but its radius is 1.63+0.23

−0.20

R⊕ (Jenkins et al., 2015).
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Figure 1.4 Adapted from Knutson et al. (2007). The top panel shows the
phase curve for HD 189733b, from just before transit to just after sec-
ondary eclipse, measured at 8 µm with Spitzer. The bottom panel zooms
in to better show the subtle variation between the nightside (at transit)
and the dayside (at secondary eclipse). Overplotted is the model fit,
including the slight shift of the peak brightness to just before secondary
eclipse.
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The Kepler mission produced several surprises, one of which being that the

most common type of planet in our neighborhood has no analog in our solar system.

Of the 4,000 candidates discovered by the mission since launch, 2290 are less than

2 R⊕ in radius, and 1580 are between 2 and 6 R⊕ in radius3. The transition from

terrestrial planets with outgassed, secondary atmospheres to mini-Neptune ice giants

with accreted, H2-rich, primordial atmospheres occurs somewhere in the range of

1.5 to 1.7 R⊕ (e.g. Lopez & Fortney, 2014; Rogers, 2015), but it is likely not a

sharp transition. Understanding the divide between the Earth-like, rocky planets

and the Neptune-like, gas giant planets offers clues to the formation processes that

created these worlds and has important implications for the definition of habitable

planets and η⊕. To that end, we need to understand the atmospheres of these

planets. Mass measurements for the small fraction of targets bright enough for

radial velocity follow-up, combined with the measured radii, do not provide enough

information to definitively constrain the interior models of these worlds. Figure

1.5 shows the radius versus the mass of subsample of Kepler candidates with mass

measurements, as well as some other sub-Neptune-sized planets with radius and

mass measurements. Also plotted on the figure are the mass-radius relations for

various compositions. Planets larger than about 3 R⊕ are clearly low density, like

the gas giants in our solar system. Below that, uncertainties in the measurements

mean that any composition is possible.

In principle, the atmospheres of these planets can be probed with transmis-

3Counts taken from the Exoplanet Archive at

http://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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Figure 1.5 Adapted from Rogers (2015). This figure plots the mass and
radius of planets for which both measurements exist. Planets from the
Kepler mission are plotted in red. Solid lines indicate the mass-radius
relation for planets of the following compositions: pure water (blue), pure
MgSiO3 silicate (brown), and pure iron (grey). Dashed lines indicate the
relation for an Earth-like composition (brown) and for rocky planets that
have undergone collisional stripping (Marcus et al., 2010) (grey). Solar
system planets are indicated with black triangles, and confirmed sub-
Neptune transiting planets that are not from Kepler are indicated with
black points.

15



sion spectroscopy. As the planet transits its star, stellar light passes through the

atmosphere of the planet, imprinting any spectral features from the atmosphere, as

shown in Fig. 1.1. This imprint results in a greater loss of flux at wavelengths where

absorption features are strong, which manifests as a larger measured radius of the

planet at those wavelengths. In practice, this is a difficult measurement to make,

and, like radial velocity studies, it requires bright host stars. Further complicating

the measurement is a degeneracy between scale height of the atmosphere and lay-

ers of clouds or haze. The best-studied mini-Neptune thus far is GJ 1214b. Only

with 60 orbits of Hubble was its transmission spectrum measured well enough to

determine that, indeed, a high-altitude cloud or haze layer was preventing light from

reaching the lower layers of the atmosphere where the absorption features would be

present (Kreidberg et al., 2014). A study of 10 hot Jupiters by Sing et al. (2016)

shows a range of cloudiness in their atmospheres, with some being clear and others

increasingly cloudy.

Kepler is a photometric mission, and most host stars in its data set are too

faint for follow-up transmission spectroscopy measurements. The single, broadband

light curves, however, still contain information about the atmospheres of Kepler’s

planet candidates which can be used to determine the average cloudiness and scale

heights. The albedo and thermal emission information supplied by secondary eclipse

measurements and phase curves provides constraints on the types of hazes or clouds

that may be present, and perhaps even surface compositions in the case of the

smallest planets. A sample of measured secondary eclipses in the Kepler data is

given in Table 1.2. Phase curves and secondary eclipses are easiest to measure for
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large, close-in objects, so most of these individual secondary eclipse detections are

hot Jupiters. Many of these hot Jupiters are dark, as expected from theory, likely

due to absorption by alkali metals (Sudarsky et al., 2000). Kipping & Spiegel (2011)

used the amplitude of the phase curve in Kepler data for TrES-2b to determine that

the geometric albedo, if only due to reflected light, is 0.0253±0.0072. The authors

conclude that the true geometric albedo must be even lower, less than 1%, since

there is a significant thermal component. Other low-albedo hot Jupiters from the

mission include Kepler-423b (Ag = 0.055±0.028, Gandolfi et al. (2015)), Kepler-12b

(Ag = 0.14±0.04, Fortney et al. (2011)), and HAT-P-7b (Ag . 0.03, Morris et al.

(2013)), and others listed in Table 1.2. Some hot Jupiters have been found to be

bright, however, even at the same equilibrium temperatures as the dark planets.

Examples include Kepler-7b (Ag = 0.32±0.03, Demory et al. (2011)), Kepler-13Ab

(Ag = 0.33+0.04
−0.06, Shporer et al. (2014)), and others listed in Table 1.2. Further

examples of detected secondary eclipses of hot Jupiters in Kepler data can be found

in Angerhausen et al. (2015) and Coughlin & López-Morales (2012). The study by

Esteves et al. (2015) also reports a shift in the peak brightness of the phase curves

for six hot Jupiters in their sample, noting that the hottest two planets, Kepler-76b

and HAT-P-7b, have the brightness shifted toward the evening-side of the planet,

while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) have the

shift toward the morning-side of the planet. If this correlation between the direction

of the shift and the temperature of the planet holds, it indicates that the hottest

two planets are likely clear atmospheres dominated by thermal emission from a

substellar hot spot shifted slightly east, while the cooler planets are dominated by
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reflected light from clouds that are present in the cooler western hemisphere.

The secondary eclipses of smaller planets are more difficult to detect with

Kepler. Kepler-10b is one of only a few super-Earths in the Kepler data set that

orbits a star bright enough that the secondary eclipse stands out above the noise

(Demory, 2014; Sanchis-Ojeda et al., 2013, 2014). It is a 1.4 R⊕ planet in very close

orbit around its host star (Batalha et al., 2011). It is expected to be too hot to

have more than a tenuous atmosphere, and it may even have a molten surface. Its

light curve is shown in Fig. 1.6. Kepler-10b is also an interesting exception in that

the secondary eclipse depth is quite strong, suggesting a high geometric albedo of

0.4 to 0.6 (e.g. Batalha et al., 2011; Demory, 2014; Fogtmann-Schulz et al., 2014;

Hu et al., 2015; Rouan et al., 2011; Sanchis-Ojeda et al., 2014; Sheets & Deming,

2014), which is much higher than the albedos predicted and measured for larger

planets at similar equilibrium temperatures (e.g. Coughlin & López-Morales, 2012;

Esteves et al., 2013; Sudarsky et al., 2000). The remaining super-Earths with mea-

sured secondary eclipses in Kepler data are Kepler-78b (Sanchis-Ojeda et al., 2013),

Kepler-93b (Demory, 2014), and KOI 1169.01 (Demory, 2014). They are detectable

only because they are bright planets, with Ag greater than 0.25, orbiting bright

stars.

Light from the host star can also refract through the atmosphere of the planet

just before and just after transit. Depending on the viewing geometry, this light

may be bent toward an observer, resulting in a slight increase in flux, above the

level of the host star plus the night side of the planet, just outside of transit. This

effect has been observed, as well as resolved spatially, during transits of Venus
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Figure 1.6 Adapted from Batalha et al. (2011). This figure shows the
light curve for Kepler-10b, a hot Super-Earth. Crosses represent the
data phase-folded on the center of the transit, while circles show the
same data phase-folded on the center of the secondary eclipse. Note
that the phase scale here is given in hours before or after the reference
time, rather than on the dimensionless scale from 0 to 1. The red line
is the model fit for the crosses, and the vertical scale is read from the
left side. The green line is the model fit for the circles, and the vertical
scale is read from the right side. The scale for the green model and the
circles are greatly magnified to show the secondary eclipse, which is very
shallow compared to the transit.
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Table 1.2. Individual Detections of Secondary Eclipses in Kepler Data

KOI Confirmed Rp
a (Rp/a)

2a Deptha Ag Source
Name (R⊕) (ppm) (ppm)

1.01 TrES-2b 13.68 251.73 7.7±2.6 0.031±0.010 Esteves et al. (2015)
2.01 HAT-P-7b 15.57b 349.5 69.1±3.8 . 0.03 Morris et al. (2013)
10.01 Kepler-8b 15.31 191.3 26.2±5.6 0.137±0.029 Esteves et al. (2013)
13.01 Kepler-13Ab 15.43 362.20 90.81±0.27 0.33±0.06 Shporer et al. (2014)
17.01 Kepler-6b 14.83 194.38 22±7 0.11±0.04 Désert et al. (2011)
18.01 Kepler-5b 16.04 182.87 21±6 0.12±0.04 Désert et al. (2011)
20.01 Kepler-12b 18.60 202.96 31±8 0.14±0.04 Fortney et al. (2011)
72.01 Kepler-10b 1.42 12.86 5.8±2.5 0.61±0.17 Batalha et al. (2011)
69.01 Kepler-93b 1.51 2.45 2.2±0.8 0.87-0.88 Demory (2014)
97.01 Kepler-7b 17.71 145.83 44±5 0.32±0.03 Demory et al. (2011)
135.01 Kepler-43b 13.17 153.01c 17.0±5.3 0.06±0.02 Angerhausen et al. (2015)
183.01 Kepler-423b 13.08 241.58 14.2±6.6 0.055±0.028 Gandolfi et al. (2015)
196.01 Kepler-41b 9.77 193.74 64±12 0.30±0.07 Santerne et al. (2011)
202.01 Kepler-412b 14.54 457.39 47.4±7.4 0.013-0.094 Deleuil et al. (2014)
1169.01 . . . 1.26 19.2 13.5±3.1 0.48-0.67 Demory (2014)
1658.01 Kepler-76b 13.72 535.49c 75.6±5.6 0.22±0.02 Angerhausen et al. (2015)
2133.01 Kepler-91b 15.00 76.35 35±18 0.46±0.30 Esteves et al. (2015)
. . . d Kepler-78b 1.16 22.4 10.5±1.2 0.27-0.4e Sanchis-Ojeda et al. (2013)

aValues from the source paper unless otherwise noted. Asymmetric error bars are given as symmetric
with the larger of the two uncertainties.

bRadius value from Esteves et al. (2015).

c(Rp/a)2 calculated from Esteves et al. (2015).

dKepler-78b does not have a KOI number, because it was not initially detected by the Kepler mission
pipeline. It was discovered by an independent search of the data reported in Sanchis-Ojeda et al. (2013).

eAg estimated using Ag = (2/3)AB from AB given by the source paper.
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(Pasachoff et al., 2011; Tanga et al., 2012), but it has not yet been detected in ex-

oplanets. Sidis & Sari (2010) developed a simple model for refraction in the clear

atmospheres of giant planets to predict the scale of the effect, and Misra & Meadows

(2014) extended the model to smaller planets and incorporated potential clouds.

Much like in transmission spectroscopy, a large scale height (corresponding to a

low mean-molecular-weight atmosphere) leads to a larger signal, because there is a

greater volume of atmosphere to interact with the light. A weak refraction signal

would suggest either that high-altitude clouds or hazes are preventing light from

passing through the atmosphere, or that an atmosphere with a small scale height

(i.e. high mean molecular weight) is present, meaning that there is a smaller volume

of atmosphere present to interact with.

Though the signal for secondary eclipses and refraction is too small compared

to the noise for most systems with small planets in the Kepler data set when consid-

ered individually, planets with similar characteristics can be grouped and averaged,

increasing the signal to noise ratio. This group average provides a hint as to whether

the cloud or haze on GJ 1214b is typical of the planet class, as well as the smaller

super-Earths and larger Neptune-like planets. A group average can also tell us

whether Kepler-10b, with its oddly strong secondary eclipse, is typical of the hot,

rocky super-Earths or truly an outlier. The Kepler planet candidates have a 10

per cent false positive rate (Fressin et al., 2013), where a false positive is typically

some type of eclipsing binary star that mimics the light curve of a transiting planet.

Treating the planet candidates in aggregate rather than individually also guards

against putting too much weight on an individual system that may turn out to be
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a false positive. Lopez & Fortney (2014) indicates that radius is a good indicator of

bulk composition for exoplanets, and so planets of similar radius should be reason-

ably similar to each other. In this thesis, I use the availability of many candidates

of similar radii, stacking their light curves to reduce the noise and to tease out a

group-averaged secondary eclipse. This provides constraints on the average albedo

of the group members, which then constrains models of any clouds or hazes that

may be present. I also use this stacking technique to look for an average refrac-

tion signal, to tell whether the planet class is likely to be amenable to transmission

spectroscopy.

1.1 Outline of Thesis

Chapter 1 provides background and motivation for this thesis. In Chapter 24,

I discuss the planet candidate selection, the treatment of the light curve data to

prepare for averaging, and the results for the average secondary eclipse for a group

of sub-Saturn (1 to 6 R⊕) candidates with light curves sampled at 1 min cadence

(i.e. short cadence). I also discuss the modeling of the reflected light and thermal

emission, which is used to determine the average albedo for the group. In Chapter

3, I discuss the modifications required to work with the 30 min cadence (i.e. long

cadence) data, which contains many more candidates but degrades the shape of the

secondary eclipse. More available candidates means that the radius groups are more

narrowly defined, with groups of 1 to 2 R⊕ (super-Earths), 2 to 4 R⊕ (mini-Neptune

4Chapter included as published in the Astrophysical Journal with minor edits for consistency

with other chapters.
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and Neptune-like), and 4 to 6 R⊕ (Neptune-like and super-Neptune). I present the

results of the average secondary eclipse for the three groups and the modeling to

determine their average albedos. In Chapter 4, I discuss early work I have done

investigating and predicting the strength of the refraction effect on the light curves

of exoplanets using a simple model based on Sidis & Sari (2010). I also discuss

the similarities and differences in preparing the data for averaging around transit,

rather than around secondary eclipse. Furthermore, I discuss the work I will do in

the future, using more sophisticated models to predict the strength of the refraction

effect to compare to the results observed with the Kepler data set and other future

missions. In Chapter 55, I summarize the thesis.

5A portion of this chapter is taken from the published version of Chapter 2 in the Astrophysical

Journal with minor edits for consistency.
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Chapter 2: Statistical Eclipses of Short Cadence Close-in Kepler Sub-

Saturns

2.1 Introduction

Secondary eclipses have been detected in Kepler data for hot Jupiters (e.g.

Coughlin & López-Morales, 2012; Esteves et al., 2013), showing that these bodies

have very low albedos, as predicted by atmospheric models (Sudarsky et al., 2000).

For super-Earth-sized planets, eclipses were first detected with Kepler in the two

extremely hot, close-in planets Kepler-10b (Batalha et al., 2011) and Kepler-78b

(Sanchis-Ojeda et al., 2013). Unlike the hot Jupiters, these two planets show rel-

atively high geometric albedos, between 0.3 and 0.6. These planets are unlikely

to harbor substantial atmospheres at such extreme temperatures (> 1500 K) and

are possibly a new class of “lava ocean” planets (Léger et al., 2011; Rouan et al.,

2011). The Kepler data set contains many super-Earths and sub-Saturn-sized can-

didates at slightly less extreme temperatures. At slightly lower temperatures and

greater distances from the host star, the eclipse signals from these candidates are

much weaker. Demory (2014) constrains the geometric albedos for 27 super-Earth

candidates in the Kepler catalog and finds that the albedos for these candidates
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are statistically larger than those of hot Jupiters (0.16 to 0.30 versus 0.06 to 0.11),

with a subset of unusually bright candidates like Kepler-10b, with albedos greater

than 0.4. Only a few of the candidates Demory (2014) analyzed show significant

eclipses, while the remainder of the sample had upper limits set for their albedos.

The hierarchical Bayesian analysis of Demory (2014) also illustrates the potential

for extracting information on the atmospheres of Kepler’s planets using statistical

techniques.

In this chapter, I introduce a statistical method wherein I average the photo-

metric data from different planetary candidates, after linearly scaling their orbital

phases so that their eclipses have the same temporal cadence. This method has

two advantages. My grand average eclipse has a much higher signal-to-noise than

even the stacked eclipses of individual planets, and I avoid the selection bias that

could result from focusing on the most easily measured individual planets. I focus

on objects of less than 6 Earth radii. I choose this cutoff in radius to study the

smallest planets while still providing a large sample size.

This chapter is organized as follows. Section 2.2 describes how I select Kepler

data for candidate planets, and how I process those data to obtain high fidelity

for my grand average eclipses. Section 2.3 describes how I transform the individual

eclipses so that they reinforce in the grand average, and Section 2.4 calculates models

of reflected light and thermal emission for comparison to my results. Section 2.5

gives my results for my candidate list of sub-Saturn sized planets (2.5.1), for a

control group (2.5.2), and it briefly discusses notable individual planets (2.5.3),

and acknowledges the limitation of my technique (2.5.4). Section 2.6 discusses the
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implications of my results for atmospheres and surfaces of sub-Saturn sized planets,

and Section 2.7 summarizes my conclusions for this chapter.

2.2 Kepler Observations

I choose two groups of candidates with radii less than 6 R⊕ from the NASA

Exoplanet Archive’s Kepler Objects of Interest table1, downloaded on December 17,

2013. I select the groups based on the expected depth of the candidate’s eclipse, if

the eclipse was due solely to reflected light with a geometric albedo of 1. The depth

of the eclipse is given by the albedo times (Rp/a)
2, where Rp is the radius of the

planet and a is the orbital radius of the planet (cf. Section 2.4). The first group

consists of 32 candidates with (Rp/a)
2 > 10 ppm, which makes them more likely to

be detectable even with low albedo. The objects in this group and their parameters

are listed in Table 2.1. The second list of 376 candidates is the control list, with

(Rp/a)
2 < 1 ppm, which makes them undetectable. Fressin et al. (2013) determined

that 90 percent of the planet candidates are likely real planets across all radii, with

smaller planets having slightly better odds of being real. I use the short-cadence (≈

60 s exposure) PDC data from the Mikulski Archive for Space Telescopes (MAST2),

for quarters 0 through 16. I initially normalize each light curve file for a given

candidate by the mean flux outside of transit. I check if there are other candidates

in addition to the candidate of interest in the system, and, if so, I mask out all

the transits from those other candidates. I extract each individual eclipse from the

1http://exoplanetarchive.ipac.caltech.edu/
2http://archive.stsci.edu/kepler/
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light curve file, and I include a span of time centered on the eclipse and covering six

eclipse durations. For each extracted eclipse, I refine the normalization by fitting a

line across the out-of-eclipse section to determine the baseline and dividing by the

fit. I assume the orbits are circular, and therefore the eclipses are centered at phase

0.5. I expect these planets to have circularized, based on the finding of Kane et al.

(2012) that smaller Kepler candidates have a low mean eccentricity. I use a 3σ clip to

exclude unusually high or low points. I include only eclipses with at least 20 points

out of eclipse on each side of the eclipse, as well as 40 points within eclipse. I apply

this cut to ensure that I am adding eclipses with a well-determined out-of-eclipse

baseline level and with information during eclipse.

The Kepler light curves occasionally contain discontinuities and ramps in flux

due to systematic effects from the spacecraft and sudden changes in pixel sensitiv-

ity (Christiansen et al., 2013). I use the quickMAP PDC light curves (Smith et al.,

2012; Stumpe et al., 2012; Thompson et al., 2013), which have largely been cor-

rected for these effects. The PDC pipeline does not always catch every anomaly,

however, so I must screen the data before use. I check each individual, normalized

eclipse by applying three tests, which I refer to as the projection test, the slope test,

and the red noise test.

In the projection test, I fit a line to the points before ingress, and then calculate

the projection of that line for the points after egress. I take the mean of the actual

data points after egress and a mean of the projected points from the linear fit. If

the means differ by more than 0.001, the eclipse is dropped. I determined this value

by trial and error, to balance the necessity of eliminating poorly fit eclipses, while
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Table 2.1. Candidate Parameters

KOI # eclipses Rp
a (Rp/a)

2a a/R∗
a Max Teq

b Min Teq
c Teff

(R⊕) (ppm) (K) (K) (K)

Kepler-10b
K00072.01 898 1.37 11.78 3.7 2659.0 1170.1 5627

(Rp/a)
2

> 10 ppm
K00005.01 233 5.66 17.27 8.8 1786.8 786.3 5861
K00007.01 249 3.72 12.96 7.5 1939.0 853.3 5858
K00046.01 79 4.33 15.39 9.1 1721.9 757.8 5764
K00102.01d 556 3.69 29.36 5.8 2194.0 965.5 5838
K00104.01 309 3.36 17.71 9.7 1391.4 612.3 4786
K00141.01 256 5.43 39.06 8.5 1678.4 738.6 5425
K00191.03 547 1.24 12.39 3.7 2688.0 1182.9 5696
K00240.01 18 4.20 11.39 11.2 1679.8 739.2 6215
K00299.01 473 1.98 10.52 5.0 2229.4 981.1 5538
K00356.01 11 5.73 75.96 3.8 2498.2 1099.4 5364
K00433.01 55 4.60 18.14 11.9 1377.1 606.0 5262
K00505.03 31 3.35 11.54 4.9 2073.8 912.6 5058
K00676.02 290 2.56 13.21 11.3 1171.8 515.6 4367
K00697.01 123 4.24 17.63 5.4 2238.8 985.2 5779
K00739.01 121 1.48 11.00 7.6 1361.6 599.2 4153
K00755.01 13 2.80 10.97 7.7 1933.1 850.7 5953
K00800.01 21 3.20 12.21 8.4 1920.9 845.3 6157
K00936.02 71 1.47 17.42 6.5 1358.3 597.7 3834
K01128.01 37 1.41 9.99 4.7 2295.2 1010.0 5480
K01169.01e 41 1.49 15.73 3.4 2805.1 1234.4 5719
K01239.01 53 1.39 12.13 4.3 2548.2 1121.3 5849
K01300.01 336 1.34 22.62 4.1 2041.3 898.3 4602
K01367.01 236 1.41 25.04 3.7 2384.1 1049.1 5070
K01428.01 253 1.46 13.38 5.3 1899.9 836.1 4858
K01442.01 690 1.23 12.20 3.2 2749.2 1209.8 5476
K01510.01 40 1.47 15.31 5.3 1924.2 846.8 4885
K01784.01 13 5.20 15.09 13.8 1424.9 627.1 5853
K01805.01 51 5.60 11.61 10.1 1622.5 714.0 5708
K01835.02 51 2.92 14.20 3.9 2325.2 1023.2 5110
K02678.01 8 4.30 15.85 6.2 1945.5 856.1 5371
K02700.01 75 1.12 8.89 6.0 1635.9 719.9 4433

aRp, a, and R∗ are taken from the Exoplanet Archive candidate table, and
(Rp/a)2 and a/R∗ are calculated from them.

bAssumes f = 2/3 (instant re-radiation) and AB = 0.0.

cAssumes f = 1/4 (complete redistribution) and AB = 0.9 (i.e. Ag = 0.6).

dCoughlin & López-Morales (2012) find an eclipse depth of 13.6+8.83
−9.86 ppm, con-

sistent with the depth of 7.43+2.32
−2.30 found in this work.

eDemory (2014) finds an eclipse depth of 13.5+3.0
−3.1 ppm, using long cadence data.

With the more limited amount of short cadence data, I find a depth of 20.31+14.31
−14.35

ppm, consistent with the higher-precision measurement.
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maintaining a significant sample size. I repeat the test, fitting a line to the points af-

ter egress and projecting that fit to the points before ingress. The eclipse is dropped

if it fails either part of this test; it need not fail both parts. This test eliminates

eclipses in which there is an offset in the out of eclipse baseline due to instrumental

effects. It also helps to eliminate eclipses in cases where the approximation of a

linear baseline across the eclipse was not adequate for the normalization.

In the slope test, I compare the slopes of the two lines fitted during the pro-

jection test. I expect the slopes to be zero, since I have already normalized with a

straight line. If both slopes are consistent with zero within the 3σ uncertainties on

the fits, the eclipse is kept. Since the noise in any single eclipse is quite large, this

test is not sensitive enough to accidentally eliminate eclipses due to phase variations.

I implement the red noise test by calculating the standard deviation of the

light curve section under consideration when it is binned by 3, 5, 7, 9, 11, 13, and 15

points. Random noise, like photon-counting, should follow a log(σ) α −0.5∗log(N)

relation. For each individual eclipse, I fit a line to log(σ) versus log(N). I expect

the distribution of the slope of this fit to be a Gaussian distribution around −0.5, if

the noise in the eclipses is random noise. I compile the distribution of fitted slopes

for all eclipses in the group being averaged that pass the projection test. I then fit

a Gaussian distribution to the histogram of slopes and estimate the cutoff value at

which the distribution appears to deviate from the Gaussian fit. I then eliminate

any individual eclipse with a slope greater than the cutoff. For my group of close-in

candidates, this cutoff slope value is −0.30, while for the control group, it is −0.35.

I eliminated KOI 3.01 (a.k.a Kepler-3b, HAT-P-11b) and KOI 2276.01 from the
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Figure 2.1 A visualization of the rescaling of the phase to the reference
object, using simulated data. The top light curve is a single eclipse from
one candidate, which is rescaled to the phase of the reference object and
added into the group average, shown in the bottom light curve. The
phase of the single eclipse is broken into segments: 0.25 to 1st contact,
1st contact to 2nd contact (ingress), 2nd contact to 3rd contact (full
eclipse), 3rd contact to last contact (egress), and last contact to 0.75.

close-in group entirely because these two candidates have a very high rate of failure

for the red noise test. For KOI 3.01, 177 of 207 eclipses (85.5 %) fail this test, while

for KOI 2276.01, 234 of 319 eclipses (73.4 %) fail.

2.3 Averaging Candidate Light Curves

To constructively add the eclipses of multiple objects, I adopt the candidate

from the group being averaged with the largest duration eclipse in phase to serve as

a reference object. Then I transform the phase of all other objects in the group by
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scaling sections of the light curve phase for each candidate to the reference object.

Figure 2.1 shows how I break up the light curve into segments for scaling. Fixed

points for the transforms are phase equal to 0.25, 0.5, and 0.75, i.e. a phase of

exactly 0.25, 0.5, or 0.75 is transformed to be the same in the original coordinate

and the transformed coordinate. The other reference points are 1st, 2nd, 3rd, and

4th contacts. I choose these points so that ingress, egress, and full eclipse will add

constructively in the transformed phase. I also impose the cutoffs at 0.25 and 0.75

in phase because, for a simple circular orbit with reflected light, these points are

where the inflection point for the phase curve of the planet would be located. I

transform the phase using the following equations:

ψ = ψ1st + (φ− φ1st) ∗
ψ1st − 0.25

φ1st − 0.25
, (0.25 < φ < φ1st) (2.1)

ψ = ψ2nd + (φ− φ2nd) ∗
ψ2nd − ψ1st

φ2nd − φ1st

, (φ1st < φ < φ2nd) (2.2)

ψ = 0.5 + (φ− 0.5) ∗ 0.5 − ψ2nd

0.5 − φ2nd

, (φ2nd < φ < 0.5) (2.3)

ψ = 0.5 + (φ− 0.5) ∗ ψ3rd − 0.5

φ3rd − 0.5
, (0.5 < φ < φ3rd) (2.4)

ψ = ψ3rd + (φ− φ3rd) ∗
ψ4th − ψ3rd

φ4th − φ3rd
, (φ3rd < φ < φ4th) (2.5)

ψ = ψ4th + (φ− φ4th) ∗
0.75 − ψ4th

0.75 − φ4th

, (φ4th < φ < 0.75) (2.6)

where ψ is the transformed phase, φ is the native phase for the object, ψ1st, ψ2nd, ψ3rd,

and ψ4th are the contact points in phase for the reference object, and φ1st, φ2nd, φ3rd,

and φ4th are the contact points in the native phase of the object. The contact

points, assuming circular orbits, are calculated using Equations 14 and 15 from

31



Winn (2010):

Ttot =
P

π
sin−1

[

R∗

a

√

(1 + k)2 − b2

sini

]

(2.7)

Tfull =
P

π
sin−1

[

R∗

a

√

(1 − k)2 − b2

sini

]

(2.8)

where Ttot is the time between first and last contact, Tfull is the time between second

and third contact, b is the impact parameter, P is the period of the planet, i is the

inclination of the planet’s orbit, a is the orbital distance of the planet, R∗ is the

radius of the star, and k = Rp/R∗ with Rp being the radius of the planet. I use

b, P , a, R∗, and Rp from the Exoplanet Archive candidate table and calculate i

and Rp/R∗ from those values. I then bin the normalized flux data using this scaled

phase coordinate and average the points in each bin, weighted by their photometric

errors. The bin size is chosen such that there are 11 bins within full eclipse. Ingress

and egress are each given their own bin, as well, which results in a different bin size

for these two bins.

2.4 Reflected and Thermal Light Modeling

I calculate the reflected light contribution using Equation 1.1, and I add to

this the thermal emission component.

To calculate the thermal emission from the planet, I first estimate the effec-

tive temperature of the planet, using Equation 1.2, as in, Esteves et al. (e.g. 2013);

López-Morales & Seager (e.g. 2007); Rowe et al. (e.g. 2006). I then adopt a black-

body spectrum for that effective temperature, integrating over the wavelength range
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of Kepler, accounting for its transmission function3. I adopt AB = (3/2)Ag for a

Lambert sphere, as in Esteves et al. (2013) and López-Morales & Seager (2007), and

I do this calculation for the cases of f = 1/4 and f = 2/3, with Ag = 0.0, 0.1, 0.3,

and 0.6. I then normalize by the stellar flux and multiply by (Rp/R∗)
2. I calculate

the stellar flux for the close-in group by integrating over an ATLAS4 model atmo-

sphere (Kurucz, 1979) for the stellar effective temperature of each candidate’s host,

modified by the instrument’s transmission function. For the control group, I inte-

grate over a blackbody spectrum with the stellar effective temperature, rather than

a model atmosphere. I use the planetary and stellar parameters from the NASA

Exoplanet Archive candidate table, which includes the revised effective stellar tem-

peratures from Pinsonneault et al. (2012) and Buchhave et al. (2012). Some of the

KOIs in the candidate table also have updated effective temperatures based on the

methods of Valenti & Piskunov (1996).

2.5 Results and Discussion

2.5.1 Close-in Candidates

Figure 2.2 shows the result for the list of 31 close-in candidates, with param-

eters in Table 2.1, with (Rp/a)
2 > 10 ppm, containing 5340 individual eclipses and

excluding Kepler-10b. The bin size is approximately 0.0078 in phase, except for the

two bins that contain ingress and egress. Ingress and egress are binned separately,

3http://keplergo.arc.nasa.gov/kepler response hires1.txt
4http://kurucz.harvard.edu/
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Figure 2.2 Upper panel: The light curve, centered on secondary eclipse,
for the group of objects less than 6 R⊕ with (Rp/a)

2 > 10 ppm, excluding
Kepler-10b. The binned data are shown as points. The error bars are
the propagated photometric errors. The best fit curve is the solid black
line. Overplotted are the reflected light plus thermal emission models
for Ag = (2/3)∗AB = 0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red),
with the re-radiation factor f = 1/4 (dashed) and 2/3 (solid). Lower
panel: The distributions for the two parameters of the MCMC run, with
the depths from the reflected light plus thermal emission from the upper
panel plotted as vertical lines. The two fitted parameters are eclipse
depth (3.83+1.10

−1.11 ppm) and continuum offset from zero (-0.43±0.41).
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resulting in smaller bin sizes for these two points. To determine the probability

distribution of eclipse depths, I implement in IDL a simple Markov Chain Monte

Carlo (MCMC) procedure with 500,000 steps, fitting the equation Fb + δx, where

Fb allows for an offset from zero for the continuum of the light curve, x is the model

eclipse curve from Mandel & Agol (2002), rescaled so that the continuum is zero

and the full eclipse is -1, and δ is the scale of the eclipse curve. I use the Bayesian

information criterion (BIC, Liddle, 2007) to establish that the data in this case do

not support the addition of a sinusoidal phase curve parameter. The eclipse depth

is then the median value of δ. Also included in Figure 2.2 is the expected depth

of the eclipse calculated from the reflected light plus thermal emission for a range

of albedos, adopting Ag = (2/3)ABond. Error bars on the eclipse depth are set by

the central 68.27% of values from the MCMC chain. The lower panel of Figure 2.2

shows the distributions for the two parameters in the MCMC chain, with the vertical

lines indicating the same calculated reflected plus thermal emission values from the

upper panel. I find an average eclipse depth of 3.83+1.10
−1.11 ppm. The weighted average

of (Rp/a)
2 for this group is 17.13 ppm, so if the eclipse is due entirely to reflected

light, the average geometric albedo is 0.22 ± 0.06. I have excluded Kepler-10b from

this group, since it has an eclipse detectable when considered alone (Batalha et al.,

2011; Demory, 2014; Fogtmann-Schulz et al., 2014; Rouan et al., 2011), and the host

star is quite bright, at a magnitude in the Kepler bandpass of 9.12, allowing it to

dominate the weighted average. Note that Kepler-78b does not have short cadence

data, so it is not included either. Including Kepler-10b in the average results in a

larger eclipse depth of 5.08+0.71
−0.72 ppm, consistent with a higher albedo of 0.37 ± 0.05
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if due solely to reflected light. Since Kepler-10b is highly reflective, and the host

star Kepler-10 is so bright, its inclusion greatly influences the average.

Allowing for thermal emission from the planets in the Kepler bandpass does

not change the average geometric albedo appreciably. Including thermal emission

requires adjusting the geometric albedo downward slightly. I calculated the expected

eclipse depth given my average geometric albedo, including thermal emission, which

was slightly deeper than the average eclipse depth from the data. I only need to

adjust the geometric albedo downward by 0.001-0.002 (2-3%) to match the average

eclipse depth from the data in the case of full redistribution of heat, while I need

to adjust it downward by 0.026 to 0.027 (7%) to match in the case of instantaneous

re-radiation. These values are less than the uncertainty in the average geometric

albedo that I derived from reflected light only.

My average geometric albedo depends on accurate planet radii. It is known

that cooler stars (. 4500 K) in the original Kepler Input Catalog (KIC) have

more poorly-determined parameters (Brown et al., 2011), and uncertain stellar radii

translate to uncertain planet radii. To check how this affects my average, I deter-

mined the average geometric albedo for the close-in objects, excluding Kepler-10b,

around stars that are ≥ 5000 K, and also for those around stars that are ≥ 4500

K. For the 5000 K group, I find an average eclipse depth of 4.25 +1.16
−1.15 ppm, corre-

sponding to a geometric albedo of 0.25 ± 0.07. For the 4500 K group, I find an

average eclipse depth of 3.74 ± 1.11 ppm, corresponding to a geometric albedo of

0.22 ± 0.06. Table 2.2 summarizes the results for these sub-groupings as well as

other sub-groupings which follow. These are consistent with the result above for the
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Table 2.2. Eclipse depths and albedos

Group Avg Eclipse Depth Avg Ag

(ppm)

Close-in, (Rp/a)2 > 10 ppm

without Kepler-10b 3.83 +1.10
−1.11 0.22±0.06

with Kepler-10b 5.08 +0.71
−0.72 0.37±0.05

Teff > 5000 K 4.25+1.16
−1.15 0.25±0.07

Teff > 4500 K 3.74±1.11 0.22±0.06
Rp < 2R⊕

a 2.14±1.96 0.17±0.16
2R⊕ < Rp < 6R⊕ 4.68±1.22 0.23±0.06
Control, (Rp/a)2 < 1 ppm
376 candidates 0.36±0.37 0.75±0.77
31 candidates 0.75+0.51

−0.50 1.24+0.85
−0.83

Individual Candidates
Kepler-10b 7.08±1.06 0.60±0.09
KOI 102.01 7.43+2.32

−2.30 0.25±0.08
KOI 116.03 8.04+3.71

−3.67 . . . b

aExcludes Kepler-10b.

bThe calculated geometric albedo is unphysical.

full group, excluding Kepler-10b, so I conclude that the presence of planets orbit-

ing cooler stars in my sample does not present an ambiguity when interpreting my

results.

2.5.2 Control Group

Figure 2.3 shows the averaged light curve, containing 9249 individual eclipses,

for the control group of objects with (Rp/a)
2 < 1 ppm. The bin size is approximately

0.004 in phase. Using the same two-parameter equation as the close-in group for the

MCMC run, I find an average eclipse depth of 0.36 ± 0.37 ppm, which is consistent

with no detection, as expected. This result cannot constrain the average geometric

albedo for this group, which has a weighted average of (Rp/a)
2 = 0.48 ppm. The
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Figure 2.3 Upper panel: The light curve, centered on secondary eclipse,
for the group of objects less than 6 R⊕ with (Rp/a)

2 < 1 ppm. The
binned data are shown as points. The error bars are the propagated
photometric errors. The best fit curve is the solid black line. Overplotted
are the reflected light plus thermal emission models for Ag = (2/3)∗AB =
0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red), with the re-radiation
factor f = 1/4 (dashed) and 2/3 (solid). Lower panel: The distributions
for the two parameters of the MCMC run, with the depths from the
reflected light plus thermal emission from the upper panel plotted as
vertical lines. The two fitted parameters are eclipse depth (0.36±0.37
ppm) and continuum offset from zero (0.10±0.15 ppm).
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candidates and their parameters are listed in Table 2.3.

To examine the effect that a smaller sample size, similar to that of my close-in

group, would have on this result, I chose a subset of the control group randomly. For

31 candidates, noted in Table 2.3 with a footnote, I obtained 3059 eclipses, which

resulted in an average eclipse depth of 0.75 +0.51
−0.50 ppm, again consistent with no

detection. With the full control group, it is impractical to check the stacked eclipses

of all of the candidates in the group. However, for the smaller control group, I found

it both practical and important to screen it strongly for false positives, as I did for

the close-in group discussed in Section 2.5.1. This screening identified one system

(KOI 116) that I excluded, which I discuss further in Section 2.5.3.
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Table 2.3. Control Group Candidate Parameters

KOI # eclipses Rp
a (Rp/a)

2a a/R∗
a Max Teq

b Min Teq
c Teff

(R⊕) (ppm) (K) (K) (K)

K00005.02d 160 0.66 0.14 11.4 1571.3 691.4 5861
K00041.01 38 2.08 0.64 19.4 1211.9 533.3 5909
K00041.02 94 1.24 0.52 12.8 1494.4 657.6 5909
K00041.03 7 1.40 0.07 38.1 864.8 380.5 5909
K00042.01 5 2.71 0.67 22.3 1180.6 519.5 6170
K00046.02 40 0.96 0.37 13.0 1442.2 634.7 5764
K00070.04d 144 0.91 0.38 14.4 1294.7 569.7 5443
K00070.05d 43 1.03 0.10 31.4 878.0 386.4 5443
K00082.01 28 2.54 0.87 33.9 761.7 335.2 4908
K00082.02 40 1.34 0.44 25.1 884.6 389.3 4908
K00082.04 63 0.69 0.19 19.6 1002.2 441.0 4908
K00082.05 98 0.54 0.17 16.1 1106.2 486.8 4908
K00085.03d 97 1.41 0.51 15.1 1435.5 631.7 6172
K00102.02d 207 1.09 0.80 10.4 1638.5 721.0 5838
K00108.01 57 2.94 0.93 23.1 1123.1 494.2 5975
K00111.01d 85 2.14 0.98 21.3 1118.7 492.3 5711
K00111.02d 45 2.05 0.34 34.7 876.1 385.5 5711
K00115.03d 230 0.64 0.34 7.5 2112.6 929.7 6398
K00117.01 47 2.93 1.00 22.8 1126.1 495.6 5949
K00117.04 89 1.08 0.31 15.1 1382.0 608.2 5949
K00118.01 19 1.69 0.19 38.6 858.7 377.9 5906
K00119.01 9 3.90 0.43 57.7 670.2 294.9 5632
K00123.02 45 2.71 0.57 23.0 1105.9 486.6 5871
K00124.02 19 3.59 0.58 27.2 1021.5 449.5 5899
K00148.03 20 2.35 0.19 55.7 628.3 276.5 5190
K00150.02 26 3.70 0.77 33.7 906.7 399.0 5822
K00152.02 33 3.10 0.49 36.8 954.6 420.1 6405
K00156.01d 93 1.60 0.95 23.0 869.9 382.8 4619
K00156.02d 138 1.18 0.93 17.1 1009.2 444.1 4619
K00157.02 54 3.20 0.76 31.7 913.0 401.8 5685
K00157.06 107 1.72 0.63 18.7 1188.9 523.2 5685
K00162.01 27 2.54 0.93 25.1 1049.3 461.7 5817
K00168.02d 67 2.81 0.87 14.7 1446.4 636.5 6142
K00171.02 27 2.12 0.61 21.7 1260.0 554.5 6495
K00172.01 27 2.28 0.75 26.8 1028.0 452.4 5886
K00176.01 12 2.60 0.29 37.2 973.2 428.3 6568
K00177.01 17 1.84 0.28 30.2 946.2 416.4 5758
K00222.02 22 1.85 0.72 33.8 704.6 310.1 4533
K00232.03 44 1.82 0.25 34.4 940.5 413.9 6102
K00232.04 21 1.85 0.12 50.1 778.9 342.7 6102
K00238.01 11 2.50 0.61 27.9 1074.1 472.7 6274
K00241.01 8 2.23 0.80 30.8 860.8 378.8 5288
K00241.03 32 0.93 0.89 12.2 1367.6 601.8 5288
K00245.02 7 0.75 0.05 40.5 751.0 330.5 5288
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)

2a a/R∗
a Max Teq

b Min Teq
c Teff

(R⊕) (ppm) (K) (K) (K)

K00245.03 18 0.31 0.02 29.5 879.1 386.8 5288
K00246.02 43 1.11 0.27 15.8 1318.6 580.2 5793
K00247.01 13 1.94 0.82 38.3 577.3 254.0 3954
K00251.02 59 0.82 0.47 21.3 782.4 344.3 3996
K00255.02 48 0.80 0.14 37.5 . . . . . . . . . e

K00260.01d 63 1.66 0.53 16.6 1368.8 602.3 6164
K00260.03d 26 1.79 0.23 27.1 1069.1 470.5 6164
K00261.01 2 2.65 0.82 26.4 1000.3 440.2 5692
K00263.01 10 2.02 0.34 22.6 1106.8 487.0 5820
K00269.01 45 1.47 0.19 24.8 1155.8 508.6 6364
K00270.01 10 1.80 0.54 15.3 1281.7 564.0 5552
K00270.02 5 2.13 0.20 29.6 921.9 405.7 5552
K00271.02 6 2.33 0.24 34.2 953.0 419.4 6169
K00271.03 29 1.41 0.23 21.3 1206.7 531.0 6169
K00273.01d 71 1.82 0.63 19.7 1178.4 518.6 5783
K00274.01 40 1.13 0.14 17.6 1310.8 576.8 6090
K00274.02 15 1.13 0.08 23.2 1143.1 503.0 6090
K00275.01 8 1.96 0.41 20.6 1154.8 508.2 5795
K00277.02d 60 1.21 0.20 15.5 1371.0 603.3 5973
K00279.02 16 2.50 0.69 21.0 1265.0 556.7 6418
K00282.01 18 2.81 0.46 34.1 908.7 399.9 5873
K00282.02 59 1.03 0.30 15.5 1347.8 593.1 5873
K00283.01 39 2.41 0.66 26.2 1003.7 441.7 5687
K00283.02 11 0.84 0.04 35.6 861.6 379.2 5687
K00284.01 28 1.68 0.29 28.0 1012.1 445.4 5925
K00284.02 81 1.28 0.66 14.0 1431.3 629.9 5925
K00284.03 82 1.22 0.62 13.8 1442.1 634.6 5925
K00285.02 1 2.60 0.36 25.9 1045.2 459.9 5883
K00291.01 6 2.73 0.35 31.6 899.9 396.0 5600
K00294.01 3 2.30 0.21 44.7 827.8 364.3 6125
K00295.02 8 1.63 0.57 19.1 1226.7 539.8 5936
K00296.01 6 2.40 0.30 37.6 897.4 394.9 6089
K00298.01 11 1.43 0.18 31.0 938.4 413.0 5780
K00301.02 10 1.16 0.23 18.5 1331.8 586.0 6337
K00304.02d 86 1.16 0.58 7.6 2021.5 889.6 6150
K00307.01 11 1.80 0.26 29.5 1021.5 449.5 6141
K00307.02 44 1.15 0.64 12.1 1596.4 702.5 6141
K00308.01 4 3.15 0.35 40.5 898.3 395.3 6323
K00312.01 9 1.91 0.58 19.0 1275.9 561.5 6158
K00312.02 5 1.84 0.34 23.8 1140.1 501.7 6158
K00313.01 27 2.21 0.49 33.6 833.8 366.9 5348
K00313.02 67 1.61 0.75 19.8 1085.9 477.9 5348
K00314.01 50 1.94 0.82 32.0 623.1 274.2 3900
K00314.03 67 0.79 0.20 26.4 686.4 302.1 3900
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)2a a/R∗

a Max Teq
b Min Teq

c Teff

(R⊕) (ppm) (K) (K) (K)

K00316.01 35 2.63 0.79 23.0 1060.0 466.5 5622
K00321.02d 188 0.84 0.44 10.5 1547.0 680.8 5538
K00332.02 11 0.56 0.12 17.5 . . . . . . . . . e

K00333.01 4 2.50 0.83 21.5 1273.8 560.6 6538
K00337.01 5 1.96 0.33 33.2 943.4 415.2 6014
K00339.02 8 2.06 0.61 23.2 1178.7 518.7 6278
K00343.03 8 1.58 0.08 44.3 779.5 343.0 5744
K00350.01 6 2.40 0.88 21.7 1167.1 513.6 6018
K00351.05 56 1.36 0.44 17.5 1367.7 601.9 6330
K00351.06 71 1.16 0.43 15.1 1473.1 648.2 6330
K00352.01 1 2.24 0.29 35.9 905.0 398.2 6002
K00354.01 33 2.36 0.62 26.4 1044.3 459.6 5935
K00354.02 73 1.22 0.47 15.7 1355.3 596.4 5935
K00369.01 5 1.33 0.71 12.9 1603.5 705.6 6377
K00369.02 3 1.26 0.31 18.5 1339.6 589.5 6377
K00370.01 12 4.32 0.50 28.4 1021.9 449.7 6022
K00370.02 31 2.65 0.43 18.7 1258.8 554.0 6022
K00385.01 2 2.06 0.70 23.8 1045.0 459.9 5639
K00386.01 4 3.40 0.52 38.4 905.7 398.6 6212
K00392.02 2 1.33 0.29 19.0 1222.5 538.0 5894
K00393.01 1 1.97 0.29 32.5 994.1 437.5 6269
K00416.01 10 3.00 1.01 37.4 775.4 341.2 5249
K00440.01 7 2.20 0.70 32.6 796.8 350.6 5031
K00446.01 27 1.86 0.51 38.0 678.7 298.7 4631
K00475.02 5 2.49 0.90 30.5 856.8 377.0 5236
K00490.03d 82 1.54 0.99 20.3 985.0 433.5 4909
K00510.03 5 2.30 0.78 24.6 1009.0 444.0 5540
K00518.01 17 2.02 0.80 33.9 709.0 312.0 4565
K00523.02 10 2.90 0.31 44.8 836.3 368.0 6197
K00563.01 7 1.92 0.43 26.7 1078.8 474.7 6166
K00564.01 7 2.70 0.59 35.1 908.8 399.9 5956
K00564.03 16 1.41 0.80 15.7 1359.8 598.4 5956
K00567.02 35 2.40 0.50 34.8 891.0 392.1 5817
K00568.02d 162 0.74 0.91 9.2 1604.1 705.9 5390
K00571.02 23 1.81 0.73 37.0 598.7 263.5 4031
K00574.01 3 2.53 0.63 40.6 740.0 325.6 5220
K00574.02 5 1.17 0.33 26.0 925.2 407.1 5220
K00584.02 12 2.08 0.37 39.0 799.4 351.8 5524
K00584.03 44 0.91 0.34 17.7 1184.9 521.4 5524
K00612.01 16 2.10 0.43 35.2 796.2 350.4 5231
K00623.01d 80 1.40 0.45 16.2 1318.5 580.2 5877
K00623.02d 48 1.36 0.25 21.3 1149.9 506.0 5877
K00623.03d 133 1.18 0.73 10.8 1619.3 712.6 5877
K00623.04d 32 1.12 0.09 29.2 983.3 432.7 5877
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)2a a/R∗

a Max Teq
b Min Teq

c Teff

(R⊕) (ppm) (K) (K) (K)

K00624.01 4 2.37 0.59 33.1 898.5 395.4 5725
K00626.01 1 2.11 0.55 24.0 1136.5 500.1 6157
K00626.02 2 0.96 0.25 16.0 1389.0 611.2 6157
K00627.02 4 1.22 0.93 9.7 1778.2 782.5 6125
K00632.01 2 1.46 0.77 16.9 1193.3 525.1 5437
K00639.01 1 2.70 0.66 27.5 1108.1 487.6 6433
K00645.02 5 2.90 0.50 22.5 1200.2 528.2 6306
K00655.01 4 2.77 0.43 31.2 991.8 436.4 6133
K00657.02 22 2.05 0.62 36.2 715.0 314.7 4763
K00658.03 10 1.18 0.26 23.4 1106.6 487.0 5924
K00661.01 2 2.20 0.63 23.7 1131.4 497.9 6098
K00661.02 1 1.47 0.13 34.8 934.4 411.2 6098
K00662.01 3 2.10 0.91 19.1 1272.0 559.7 6148
K00664.01 3 1.98 0.59 18.6 1253.2 551.5 5986
K00664.02 3 1.29 0.51 13.0 1497.8 659.1 5986
K00670.01 3 1.77 0.79 17.2 1251.9 550.9 5754
K00671.02 43 1.23 0.50 16.4 1305.2 574.3 5845
K00671.03 18 1.45 0.25 27.4 1008.3 443.7 5845
K00671.04 31 1.17 0.27 21.2 1145.9 504.3 5845
K00672.02 4 4.03 0.56 49.5 709.7 312.3 5524
K00679.01 1 2.61 0.29 38.4 862.4 379.5 5913
K00679.02 4 0.94 0.09 24.5 1080.0 475.2 5913
K00689.01 2 1.96 0.46 31.9 870.3 383.0 5438
K00691.01 1 3.26 0.51 35.5 951.3 418.6 6277
K00691.02 1 1.39 0.21 23.7 1165.2 512.7 6277
K00693.01 2 2.04 0.20 38.8 921.5 405.5 6352
K00693.02 8 2.16 0.52 25.7 1131.5 497.9 6352
K00694.01 1 2.87 0.88 32.5 915.8 403.0 5779
K00695.01 1 2.80 0.37 36.8 927.5 408.1 6226
K00700.02d 68 1.71 0.72 17.3 1287.0 566.3 5922
K00700.03d 46 1.57 0.33 23.3 1108.1 487.6 5922
K00701.01 38 1.91 0.48 41.9 671.2 295.4 4807
K00701.02 120 1.23 0.94 19.3 988.0 434.8 4807
K00707.02 18 4.69 0.62 30.0 973.7 428.5 5904
K00707.03 19 4.10 0.67 25.3 1060.8 466.8 5904
K00708.01 10 2.73 0.72 28.1 1070.8 471.2 6278
K00709.01 1 2.16 0.39 36.3 848.1 373.2 5658
K00710.02 2 1.83 0.73 14.4 1582.3 696.3 6653
K00710.03 4 1.25 0.97 8.6 2054.1 903.9 6653
K00717.01 2 1.74 0.38 24.2 1045.2 459.9 5686
K00717.02 5 0.95 0.74 9.4 1677.0 738.0 5686
K00718.02 10 3.07 0.62 27.3 1001.8 440.8 5788
K00719.01 13 1.64 0.84 25.0 848.1 373.2 4689
K00719.04 41 0.81 0.59 14.8 1102.2 485.0 4689
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)

2a a/R∗
a Max Teq

b Min Teq
c Teff

(R⊕) (ppm) (K) (K) (K)

K00723.02 5 3.30 0.67 48.7 691.8 304.5 5342
K00730.02 32 1.98 0.92 18.4 1229.3 541.0 5832
K00730.03 12 2.50 0.58 29.2 974.6 428.9 5832
K00730.04 23 1.64 0.92 15.2 1349.7 593.9 5832
K00749.03 25 1.42 0.62 20.4 1110.9 488.8 5559
K00759.01 2 4.20 0.85 50.3 714.7 314.5 5608
K00775.01 4 1.93 0.61 41.2 594.3 261.5 4222
K00812.02 5 2.10 0.55 47.1 558.4 245.7 4243
K00812.04 17 1.28 0.73 24.9 767.7 337.8 4243
K00817.01 5 1.74 0.31 54.6 495.9 218.2 4055
K00829.01 17 3.10 0.88 31.3 983.5 432.8 6086
K00829.02 36 2.10 0.97 20.2 1224.2 538.7 6086
K00834.02 25 2.30 0.82 25.8 1027.8 452.3 5779
K00872.02 50 1.48 0.91 18.7 1105.8 486.6 5289
K00886.02 3 1.23 0.40 35.8 581.8 256.0 3855
K00898.03 5 2.36 0.64 44.6 628.5 276.6 4648
K00899.03 17 1.54 0.47 42.0 530.4 233.4 3803
K00904.02 2 1.56 0.18 55.4 547.5 240.9 4509
K00904.05 8 1.67 0.81 28.2 766.9 337.5 4509
K00907.02 9 3.80 0.75 36.9 873.2 384.2 5870
K00912.02 7 1.26 0.83 21.9 849.4 373.8 4397
K00921.02 16 2.90 0.96 38.2 752.9 331.3 5148
K00934.03 2 2.89 0.78 32.5 944.1 415.4 5956
K00935.04 52 1.96 0.79 17.6 1403.8 617.7 6514
K00939.04 5 1.62 0.53 23.0 1107.0 487.1 5870
K01001.01 9 4.80 0.63 22.8 1178.9 518.8 6235
K01060.01 18 2.02 0.59 19.4 1369.0 602.4 6678
K01060.03 7 1.96 0.28 27.6 1149.0 505.6 6678
K01060.04 23 1.46 0.52 14.9 1562.3 687.5 6678
K01102.03 9 3.00 0.83 26.9 1053.1 463.4 6043
K01113.01 3 2.90 0.48 34.1 977.4 430.1 6314
K01115.01 2 2.13 0.75 18.4 1198.8 527.5 5685
K01127.02 5 1.70 0.82 19.3 1151.2 506.6 5602
K01145.01 11 2.70 0.35 43.7 829.0 364.8 6064
K01148.01 1 1.87 0.58 17.6 1380.8 607.6 6419
K01148.02 1 1.59 0.14 29.9 1060.5 466.7 6419
K01151.01 6 1.46 0.47 20.2 1158.4 509.8 5759
K01151.02 9 1.15 0.46 16.0 1302.4 573.1 5759
K01151.03 12 0.70 0.26 12.9 1451.0 638.5 5759
K01151.04 4 1.10 0.13 28.4 . . . . . . . . . e

K01161.02 3 2.00 0.92 22.8 1001.1 440.5 5289
K01165.02 8 1.05 0.77 9.4 1714.5 754.5 5810
K01198.01 13 2.84 0.83 25.1 1171.6 515.6 6495
K01198.02 25 1.89 0.67 18.5 1364.8 600.6 6495
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)

2a a/R∗
a Max Teq

b Min Teq
c Teff

(R⊕) (ppm) (K) (K) (K)

K01198.03 6 2.80 0.28 42.5 900.7 396.4 6495
K01203.01 11 2.90 0.38 45.3 813.3 357.9 6057
K01203.02 20 2.40 0.78 26.3 1068.0 470.0 6057
K01215.01 17 2.92 0.80 18.1 1262.2 555.4 5946
K01215.02 9 3.36 0.45 27.9 1017.2 447.6 5946
K01216.01 2 1.79 0.59 18.4 1290.1 567.7 6117
K01218.01 1 2.27 0.27 37.9 861.6 379.2 5870
K01236.01 1 4.30 0.62 39.3 977.2 430.0 6779
K01236.02 21 2.60 0.94 19.3 1394.0 613.5 6779
K01258.01 1 4.90 0.98 54.0 697.6 307.0 5675
K01258.02 6 2.20 0.66 29.4 945.0 415.8 5675
K01261.02 2 2.02 0.51 28.0 1020.8 449.2 5976
K01279.01 5 1.56 0.33 28.1 994.5 437.6 5835
K01279.02 10 0.88 0.18 21.5 1136.9 500.3 5835
K01282.01 8 3.00 0.41 22.4 1121.1 493.4 5873
K01283.01 4 1.46 0.64 10.2 1607.0 707.2 5671
K01306.03 54 1.46 0.92 15.0 1391.1 612.1 5969
K01308.01 1 2.16 0.32 37.5 879.2 386.9 5956
K01315.01 5 1.47 0.72 13.9 1461.2 643.0 6029
K01316.01 4 1.47 0.58 9.6 1669.7 734.8 5721
K01316.02 3 1.47 0.31 13.2 1422.3 625.9 5721
K01344.01 9 1.10 0.75 12.2 1560.3 686.6 6038
K01358.02 5 1.58 0.80 24.1 847.3 372.8 4601
K01378.01 1 1.20 0.15 33.0 823.6 362.4 5234
K01379.01 6 1.15 0.62 15.0 1370.3 603.0 5870
K01408.01 4 1.25 0.30 38.6 605.6 266.5 4166
K01445.01 39 1.28 0.49 13.8 1506.3 662.9 6182
K01445.02 3 1.12 0.03 52.7 769.4 338.6 6182
K01445.03 7 0.92 0.06 27.2 1072.0 471.8 6182
K01486.02 4 2.80 0.39 44.7 804.8 354.2 5952
K01529.01 15 2.22 0.46 28.4 1070.4 471.0 6314
K01529.02 28 1.23 0.24 21.5 1230.2 541.3 6314
K01530.01 2 1.89 0.52 22.1 1204.6 530.1 6267
K01531.01 6 1.46 0.97 12.8 1533.8 674.9 6069
K01532.01 1 2.15 0.41 23.8 1193.6 525.2 6450
K01534.01 1 1.64 0.21 29.6 1063.6 468.0 6401
K01534.02 4 0.95 0.26 15.4 1475.6 649.4 6401
K01537.01 28 0.82 0.14 18.1 1287.1 566.4 6063
K01567.03 4 2.31 0.59 31.3 812.1 357.4 5027
K01573.02d 75 1.62 0.87 16.2 1369.0 602.5 6106
K01589.02 31 2.40 0.90 22.6 1144.1 503.5 6013
K01589.03 10 2.40 0.33 37.4 888.7 391.1 6013
K01590.01 8 1.63 0.52 29.1 826.2 363.6 4931
K01590.03 8 1.14 0.94 15.1 1144.8 503.8 4931
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)

2a a/R∗
a Max Teq

b Min Teq
c Teff

(R⊕) (ppm) (K) (K) (K)

K01599.01 10 1.90 0.32 33.4 900.1 396.1 5760
K01601.01 6 1.59 0.54 23.3 1072.3 471.9 5726
K01608.01 4 1.85 0.78 17.1 1373.7 604.5 6285
K01608.02 2 1.61 0.21 28.4 1065.2 468.8 6285
K01612.01d 67 0.78 0.85 5.9 2240.0 985.7 6027
K01613.01 21 1.07 0.14 25.6 1061.3 467.0 5945
K01616.01 1 1.38 0.24 22.9 1140.4 501.8 6037
K01618.01d 145 0.77 0.79 6.2 2231.5 982.0 6134
K01621.01 12 2.48 0.46 18.9 1243.6 547.3 5990
K01665.01 10 1.15 0.45 16.2 1374.3 604.7 6119
K01665.02 12 0.96 0.40 14.4 1456.4 640.9 6119
K01677.02 9 0.81 0.19 20.2 1149.5 505.9 5724
K01692.02 42 0.84 0.99 8.1 1742.0 766.6 5501
K01725.01 7 1.15 0.82 43.0 446.4 196.4 3240
K01760.02 6 1.70 0.86 19.5 1099.0 483.6 5372
K01831.02 14 1.04 0.78 14.3 1269.2 558.5 5319
K01843.02 13 0.80 0.40 23.5 712.4 313.5 3823
K01860.02 26 2.50 0.99 20.5 1137.8 500.7 5708
K01867.03 48 1.07 0.90 19.7 822.0 361.7 4042
K01895.02 1 2.31 0.74 42.4 624.3 274.7 4496
K01908.01 2 1.44 0.47 33.5 678.4 298.5 4347
K01908.02 2 1.16 0.13 52.0 544.8 239.7 4347
K01909.01 29 1.48 0.33 23.4 1137.4 500.5 6095
K01909.02 62 1.11 0.58 13.3 1508.1 663.7 6095
K01916.01 2 2.16 0.38 33.6 945.2 415.9 6064
K01916.02 4 1.89 0.80 20.2 1220.2 537.0 6064
K01929.01 34 2.00 0.90 13.3 1464.1 644.3 5900
K01930.01 24 2.21 0.66 16.5 1310.9 576.8 5897
K01930.02 10 2.14 0.29 24.2 1082.8 476.5 5897
K01930.03 5 2.46 0.17 36.2 885.9 389.8 5897
K01930.04 32 1.36 0.41 12.8 1488.2 654.9 5897
K01931.02 36 1.37 0.40 23.8 1043.5 459.2 5639
K01931.03 48 1.23 0.56 18.1 1196.3 526.5 5639
K01952.02 11 2.06 0.24 38.3 875.7 385.3 6000
K01952.03 57 1.25 0.81 12.6 1529.5 673.1 6000
K01955.01 8 2.06 0.48 24.4 1182.7 520.5 6464
K01955.02 3 2.08 0.14 46.3 858.5 377.8 6464
K01964.01d 164 0.73 0.89 7.3 1854.2 815.9 5548
K01977.02 30 0.69 0.22 23.4 822.7 362.0 4401
K02007.02 12 1.52 0.18 30.9 985.2 433.5 6064
K02025.01 23 3.10 0.90 22.5 1188.1 522.8 6234
K02025.02 8 2.80 0.44 29.1 1044.0 459.4 6234
K02025.03 37 1.64 0.47 16.5 1386.9 610.3 6234
K02036.02 4 0.98 0.64 21.2 803.0 353.4 4090
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)2a a/R∗

a Max Teq
b Min Teq

c Teff

(R⊕) (ppm) (K) (K) (K)

K02038.02 16 2.20 0.83 26.4 996.9 438.7 5666
K02038.03 5 1.56 0.26 33.5 884.0 389.0 5666
K02038.04 5 1.61 0.17 42.3 787.7 346.6 5666
K02051.01 9 2.82 0.47 36.8 883.7 388.9 5929
K02051.02 19 1.59 0.46 20.9 1172.4 515.9 5929
K02110.01d 84 1.14 0.63 10.3 1818.9 800.4 6470
K02113.01 10 2.80 0.96 31.6 832.0 366.1 5177
K02113.02 9 2.38 0.97 26.7 905.4 398.4 5177
K02149.01 14 1.53 0.32 17.3 1371.8 603.7 6314
K02160.01 14 1.78 0.33 32.6 919.0 404.4 5810
K02160.02 15 1.41 0.25 29.7 963.8 424.1 5810
K02163.01 7 1.95 0.76 20.2 1201.3 528.7 5980
K02169.01 51 0.97 0.53 13.2 1355.6 596.5 5447
K02169.02 86 0.75 0.64 9.3 1618.2 712.1 5447
K02169.03 51 0.71 0.40 11.1 1477.2 650.1 5447
K02169.04 113 0.48 0.43 7.2 1838.2 808.9 5447
K02174.01 3 1.35 0.95 22.2 835.6 367.7 4356
K02174.03 6 0.95 0.39 24.4 796.1 350.3 4356
K02195.01 4 2.50 0.48 25.4 1165.3 512.8 6502
K02195.02 1 2.10 0.20 33.2 . . . . . . . . . e

K02218.02 20 1.43 0.23 31.4 935.8 411.8 5803
K02220.04 9 1.10 0.37 17.1 . . . . . . . . . e

K02220.05 6 1.20 0.24 23.0 . . . . . . . . . e

K02248.02 5 1.56 0.64 23.8 980.5 431.5 5294
K02261.01 17 1.05 0.99 12.3 1337.0 588.3 5179
K02261.02 9 0.82 0.31 17.2 1129.9 497.2 5179
K02295.01 2 0.67 0.06 28.2 927.9 408.3 5453
K02311.02 5 0.77 0.08 24.9 1044.1 459.4 5765
K02352.01 19 1.15 0.16 19.6 1355.9 596.7 6638
K02352.02 46 0.82 0.26 11.0 1810.4 796.7 6638
K02352.03 33 1.09 0.27 14.2 1594.0 701.5 6638
K02390.01 6 1.66 0.31 22.4 1155.5 508.5 6052
K02414.01 17 1.18 0.10 36.5 881.1 387.7 5889
K02433.01 16 2.07 0.51 25.6 1085.6 477.7 6084
K02442.01 1 1.89 0.27 43.3 711.9 313.3 5184
K02442.02 1 1.40 0.39 27.0 . . . . . . . . . e

K02443.01 7 1.20 0.49 14.4 1503.2 661.5 6314
K02443.02 7 1.02 0.17 20.9 1247.5 549.0 6314
K02457.01d 70 1.14 0.87 7.0 2293.9 1009.4 6733
K02462.01 30 1.43 0.33 15.9 1369.1 602.5 6050
K02545.01 25 0.78 0.20 12.9 1589.9 699.7 6321
K02595.01 33 1.82 0.67 12.0 1757.2 773.3 6742
K02595.02 20 2.07 0.46 16.4 1502.1 661.0 6742
K02597.01 42 1.63 0.70 16.2 1433.7 630.9 6392
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2.5.3 Individual Candidates

I consider Kepler-10b on its own, shown in Figure 2.4, using 898 eclipses from

Q2 to Q15, excluding Q8 and Q12. Data do not exist for these two quarters for this

planet because of hardware failure (Fogtmann-Schulz et al., 2014). The bin size is

approximately 0.008 in phase. I perform a similar MCMC procedure as for the close-

in group, but now I include a third term, the semi-amplitude of a sinusoidal phase

curve which peaks at phase 0.5. This sine curve reproduces the phase curve seen in

previous studies of Kepler-10b, and its inclusion is supported by the BIC. I find a

semi-amplitude of 2.96 ± 1.36 ppm for the phase curve, since I am only fitting from

phase 0.25 to phase 0.75, and an eclipse depth of 7.08 ± 1.06 ppm, giving a geometric

albedo of 0.60 ± 0.09 if due solely to reflected light. If the semi-amplitude from phase

0.25 to phase 0.75 represents half of the peak-to-peak amplitude of the phase curve,

then my eclipse depth and amplitude values are consistent with those found by

Batalha et al. (2011); Demory (2014); Fogtmann-Schulz et al. (2014); Rouan et al.

(2011), shown in Table 2.4. Figure 2.4 also shows the distributions for the three

parameters in the MCMC chain, as well as the calculated reflected light plus thermal

emission eclipse depths for several geometric albedo values.

I find that KOI 102.01 also has a significant, physically plausible detection at

7.40+2.42
−2.45 ppm, shown in Figure 2.5. I keep this candidate in the average for Figure

2.2 because at a magnitude in the Kepler bandpass of 12.57, it does not dominate

the weighted average. For the individual analysis of this candidate, I include data

that is ± 5 times the duration of the full eclipse, centered on phase 0.5 to improve
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Table 2.3 (cont’d)

KOI # eclipses Rp
a (Rp/a)

2a a/R∗
a Max Teq

b Min Teq
c Teff

(R⊕) (ppm) (K) (K) (K)

K02597.02 32 1.70 0.44 21.3 1251.1 550.5 6392
K02597.03 57 1.37 0.81 12.7 1620.1 712.9 6392
K02632.01 13 1.14 0.39 11.5 1722.2 757.9 6461
K02639.01 5 3.10 0.60 32.6 965.0 424.6 6102
K02650.02 7 1.13 0.67 24.3 742.9 326.9 4050
K02674.02 7 1.37 0.35 17.0 1309.0 576.1 5973
K02720.01 1 0.80 0.24 14.3 1457.7 641.5 6109
K02722.01 11 1.43 0.76 12.2 1687.5 742.6 6534
K02722.02 6 1.41 0.33 18.4 1377.8 606.3 6534
K02722.03 18 1.14 0.84 9.3 1939.4 853.4 6534
K02722.04 5 1.30 0.38 15.7 1488.2 654.9 6534
K02768.01 4 1.30 0.31 26.0 995.1 437.9 5612
K02801.01 29 1.56 0.74 8.0 1947.0 856.8 6095
K02956.01 39 0.77 0.37 7.5 2217.2 975.7 6717
K03097.01 17 1.82 0.51 13.1 1574.5 692.8 6306
K03097.02 25 1.25 0.50 9.0 1898.1 835.3 6306
K03097.03 24 1.09 0.28 10.6 1752.3 771.1 6306
K03158.01 10 0.50 0.21 9.9 . . . . . . . . . e

K03158.04 5 0.83 0.21 16.5 . . . . . . . . . e

K03158.05 3 0.84 0.16 19.2 . . . . . . . . . e

K03196.01 21 0.65 0.21 9.3 . . . . . . . . . e

K03196.02 14 0.97 0.30 11.5 . . . . . . . . . e

K03225.01 14 0.96 0.56 7.7 . . . . . . . . . e

K04146.01 17 0.83 0.75 11.8 . . . . . . . . . e

aRp, a, and R∗ are taken from the Exoplanet Archive candidate table, and
(Rp/a)2 and a/R∗ are calculated from them.

bAssumes f = 2/3 (instant re-radiation) and AB = 0.0.

cAssumes f = 1/4 (complete redistribution) and AB = 0.9 (i.e. Ag = 0.6).

dIncluded in smaller control group of 31 candidates.

eStellar effective temperature not given in the Exoplanet Archive candidate ta-
ble.
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Figure 2.4 Upper panel: The light curve, centered on secondary eclipse,
for Kepler-10b. The binned data are shown as points. The error bars are
the propagated photometric errors. The best fit curve is the solid black
line. Overplotted are the reflected light plus thermal emission models
for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6
(red), with the re-radiation factor f = 1/4 (dashed) and 2/3 (solid).
Note that the best fit curve is very similar to the red Ag = 0.6 line and
that the ingress and egress bins have large error bars due to the small
size of those two bins (cf. Section 2.3). Lower panel: The distributions
for the three parameters of the MCMC run, with the depths from the
reflected light plus thermal emission from the upper panel plotted as
vertical lines. The three fitted parameters are eclipse depth (7.08±1.06
ppm), continuum offset from zero (-1.61±0.86 ppm), and semi-amplitude
of the phase curve (2.96±1.36 ppm).
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Figure 2.5 Upper panel: The light curve, centered on secondary eclipse,
for KOI 102.01. The binned data are shown as points. The error bars are
the propagated photometric errors. The best fit curve is the solid black
line. Overplotted are the reflected light plus thermal emission models
for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6
(red), with the re-radiation factor f = 1/4 (dashed) and 2/3 (solid).
Lower panel: The distributions for the two parameters of the MCMC
run, with the depths from the reflected light plus thermal emission from
the upper panel plotted as vertical lines. The two fitted parameters are
eclipse depth (7.40+2.42

−2.45 ppm) and continuum offset from zero (-0.08±0.73
ppm).
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Table 2.4. Kepler-10b Studies

Authors Phase Curve Amplitude Eclipse Depth
(ppm) (ppm)

Batalha et al. (2011) 7.6±2.0 5.8±2.5
Rouan et al. (2011) 5.6±2.0 5.6±2.0
Fogtmann-Schulz et al. (2014) 8.13±0.68 9.91±1.01
Demory (2014) · · · 7.4+1.1

−1.0

This Work 5.92±2.72 7.08±1.06

the baseline. I also change the bin size to approximately 0.0058 in phase, such

that there are 5 bins within full eclipse. The candidate has (Rp/a)
2 = 29.36 ppm,

resulting in a geometric albedo of 0.25 ± 0.08 if due only to reflected light. With

Rp = 3.69 R⊕, this albedo puts the candidate in a class of reflective hot Neptunes.

KOI 676.02 may have an eccentric orbit. Ioannidis et al. (2014) suggest the

most probable configuration for the KOI 676 (Kepler-210) system is that the inner

planets, KOI 676.01 and KOI 676.02, have a large eccentricity, based on the mis-

match of a/R∗ between the two. A third member of the system is hypothesized from

transit timing variations (TTVs). The suggested configuration has the major axis

of the orbit of KOI 676.02 along the line-of-sight to Earth. I include KOI 676.02 in

my close-in group at the moment but will remove it if the eccentricity is confirmed.

Note that KOI 676 has Teff < 4500 K, so this candidate was not included in the

averages above for stars with Teff > 5000 K and Teff > 4500 K.

I exclude KOI 116 (Kepler-106) from my control group. The original control

group contained KOI 116.01 (Kepler-106c), KOI 116.03 (Kepler-106b), and KOI

116.04 (Kepler-106d). KOI 116.03 is the innermost of 4 known planets in this system,
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Figure 2.6 Upper panel: The light curve, centered on secondary eclipse,
for KOI 116.03. The binned data are shown as points. The error bars are
the propagated photometric errors. The best fit curve is the solid black
line. Overplotted are the reflected light plus thermal emission models
for Ag = (2/3)∗AB = 0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red),
with the re-radiation factor f = 1/4 (dashed) and 2/3 (solid). Note that
the ingress and egress bins have large error bars due to the small size of
those two bins (cf. Section 2.3). Lower panel: The distributions for the
two parameters of the MCMC run, with the depths from the reflected
light plus thermal emission from the upper panel plotted as vertical
lines. The two fitted parameters are eclipse depth (9.80+3.64

−3.65 ppm) and
continuum offset from zero (-0.75±1.48 ppm).

53



with periods of 6.2 days, 13.6 days, 24.0 days, and 43.8 days. When considering the

shortened control group, I found that KOI 116.03 has a 2σ detection of an eclipse on

its own, 9.80+3.64
−3.65 ppm, which is far deeper than expected even for a high geometric

albedo. I use a bin size of approximately 0.0028 in phase, which corresponds to 7 bins

inside of full eclipse. The candidate has (Rp/a)
2 = 0.273 ppm. The candidate has a

maximum equilibrium temperature of 1434 K, assuming AB = 0 and instantaneous

re-radiation, so thermal emission due to stellar irradiation cannot explain the large

eclipse depth either. Given the value of (Rp/a)
2, the nominal eclipse is much greater

in amplitude than would be possible for a normal planet, and I conservatively exclude

this system from my average. In principle, the presence of multiple planets of this

type in my sample could bias my average result. This, however, is a very obvious and

easily detected case, and there is no evidence for other comparable systems in my

sample. Although the evidence for the planetary nature of KOI 116.03 seems solid

(Marcy et al., 2014), my stacked eclipse data suggest that there may be other effects

at play in this system. Possibilities include the presence or a highly back-scattering

dust cloud surrounding the planet, or the transit of a Mercury-sized planet in an

orbit with half the period of KOI 116.03. Exploration of these possibilities is beyond

the scope of this work. I show my stacked eclipses for KOI 116.03 in Figure 2.6.

2.5.4 Advantages and Limitations of the Technique

My average is biased towards brighter, and hence closer, stars, due to the

weighting by photometric noise. There is no reason to expect a correlation between
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the stellar distance from Earth and planet type or albedo, so I do not expect this

bias to favor bright or dark planets. The case of Kepler-10b shows that I must be

careful in my sample selection, however, when the sample size is small, because an

atypically bright planet around an atypically bright star in the sample can alter the

results. Likewise, false positives could have a bigger influence when the sample size

is small, so it is important to screen the individual candidates for any obvious signs

that they could be strongly influencing the result. To limit the risk of including false

positives, I only considered objects deemed to be “planet candidates”, which means

that the candidate has not failed any of the false positive tests in Batalha et al.

(2013) applied thus far. I also examined the stacked eclipses of each candidate

individually, to discriminate against non-physically large effects such as I find for

KOI 116.03, but found no further irregularities.

The major disadvantage of my technique is that I cannot tell whether the

average represents a typical object in the group. The underlying distribution could

be bimodal, with the average representing a non-existent object in between the two

groups.

There are a number of astrophysical dilution effects that must be considered

when interpreting my result. I mention these effects here, but I defer my quantitative

consideration of them to Chapter 3, where the much larger sample available in long

cadence gives me a better statistical basis for rejecting them. If any of the planet

candidates are in eccentric orbits, their eclipses would not occur at the expected

phase and would destructively add to the signal. False positives could also dilute

the signal, because there may be no eclipse to detect. For example, eclipsing binaries
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in which the two stars are of similar type could have primary and secondary eclipses

that are approximately equal. If the binary is blended with the KOI star, both

the primary and the secondary eclipses would look like planetary transits at half

the period of the binary, and, if included in the average, the object would add in

a flat signal when looking at phase 0.5 based on the planetary interpretation (e.g.

Borucki et al., 2011). Cases in which we see a planetary transit but do not see the

eclipse due to the geometry of system would result in extra light at the expected

eclipse, creating a bump in the light curve that would decrease my average signal.

This scenario would only occur if the orbits are not circular, and I expect that the

orbits of the close-in candidates have circularized. Uncertainties in the host star

parameters could also be detrimental, as the planet radius is tied directly to the

stellar radius when measured using the transiting technique. Changing the size of

a planet would affect my calculated albedo, since the calculation depends on the

planet radius.

In spite of its limitations, an overwhelming advantage of my technique is that I

reach a much greater signal-to-noise ratio in the eclipse light curve than is achievable

for many of these planet candidates individually. Moreover, I can use a large sample

of planet candidates to obtain information about the average albedo without being

biased towards the candidates that are most easily measured, which tend to be more

reflective than average. Future space missions such as TESS (Ricker et al., 2015)

and PLATO (Rauer et al., 2014) will discover even greater numbers of transiting

planets, many of which will be too faint to allow individual characterization of their

atmospheres. Grouping planets to determine their average atmospheric properties

56



will become an increasingly relevant and important tool in the future.

2.6 Implications for Atmospheres and Surfaces of Sub-Saturns

2.6.1 Presence of Atmospheres in My Sample

Heng & Kopparla (2012) model the stability of atmospheres on tidally-locked

Earth-like planets, where the body is mostly rocky with a thin atmosphere of varying

mean molecular weights (µ). They consider the stability against condensation on

the night-side of the planet, for planets around G, K, and M dwarfs. They place

Kepler candidates up to 6 R⊕ on these stability diagrams in their Figures 3 and 6.

Two of my close-in candidates have F dwarf hosts, but I can locate the remaining

30 candidates around G, K, and M dwarfs on their stability diagrams. All but one

candidate lie in the stable region if the atmospheres have low µ, but none are stable

with an Earth-like atmospheric composition. The single candidate outside the stable

region even at low µ is KOI 356.01, though it is very close to the boundary.

Many of my close-in candidates, however, are likely to be more Neptune-

like than Earth-like. Lopez & Fortney (2014) suggest a cut-off radius for rocky

planets of 1.75 R⊕, based on the radius-composition relation they find in their

planet formation models. Rogers (2015) sets the bar even lower, determining a

cut-off of 1.6 R⊕ through a hierarchical Bayesian analysis of Kepler planets with

mass limits determined from radial velocity studies. Of my 32 close-in candidates,

12 would be considered rocky based on these cut-off values. KOI 356.01 would be

more Saturn-like, at a radius of 5.73 R⊕. There remains a small probability that
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Figure 2.7 The calculated equilibrium temperatures of the close-in group,
excluding Kepler-10b, plotted versus planet radius. The equilibrium
temperatures are calculated assuming our average geometric albedo and
Lambert’s law. The blue symbols use f = 2/3, for instantaneous re-
radiation, while the red symbols use f = 1/4, for complete redistribution
of heat.

the planet candidates above 1.6 R⊕ could be rocky. Kepler-10c, despite being 2.35

R⊕, has a density of 7.1 g cm−3 (Dumusque et al., 2014), suggesting a rocky nature

with a significant amount (5 to 20 wt.%) of water or some other high µ volatile. The

candidates smaller than 1.5 R⊕ are quite likely to be rocky, while the candidates

above 2.5 R⊕ are likely Neptune-like with substantial atmospheres, and KOI 299.01,

at 1.98 R⊕, may fall somewhere in between the two types, like Kepler-10c.
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2.6.2 Expected Albedos

The candidates in my close-in group in Section 2.5.1 are too hot to have

water clouds in their upper atmospheres (Morley et al., 2014). Figure 2.7 shows

the equilibrium temperature, calculated using my average geometric albedo, versus

planet radius for all of the objects in the close-in group, excluding Kepler-10b. If

the candidates all have poor heat redistribution (i.e. f = 2/3), they are all above

1000 K. Thus the albedo I determine cannot be due to water clouds.

For giant planets, Sudarsky et al. (2000) show that alkali metals like Na strongly

absorb visible light in atmospheres that are too hot for water clouds but cool enough

that a silicate layer does not form. Above 900 K, a silicate layer forms, but it forms

at low enough altitudes that the alkali metals above the layer still absorb a sig-

nificant amount of the incident visible light, producing the lowest albedos. As the

temperature increases, the silicate layer forms higher up in the atmosphere, po-

tentially reflecting the incident light before it can interact with the alkali metals,

producing much higher albedos. The Bond albedo due to silicates could be as

high as 0.55, which translates to a geometric albedo of 0.37 for Lambertian sur-

faces. Demory et al. (2011) find Ag = 0.32 ± 0.03 for Kepler-7b, which agrees with

the predictions of Sudarsky et al. (2000) for reflective cloud layers, but they find

that the high albedo can also be explained solely with Rayleigh scattering if the

planet’s atmosphere is depleted in alkali metals relative to solar abundances by a

factor of 10-100. Other hot Jupiters with similiar equilibrium temperatures, such as

HD 209458b, have been found to be very dark, with upper limits on the geometric

59



albedo of 0.12 (Rowe et al., 2008), suggesting that if reflective clouds produce the

high albedo of Kepler-7b, then there must be some mechanism that suppresses the

cloud formation in HD 209458b and other dark hot Jupiters.

Miguel et al. (2011) model rocky planets at these temperatures with tenuous

atmospheres due to vaporization of the surface. For atmospheres up to nearly 2900

K, monatomic Na dominates the atmosphere, with the fraction of SiO increasing

with temperature, and, by 2900 K, the atmosphere becomes dominated by SiO and

monatomic Na. If the smaller planets can also form a silicate layer high in their

atmospheres, that could boost their albedos. Alternatively, if their atmospheres

are tenuous enough, the light may be reflecting off the surfaces such as in the

“lava ocean” model proposed for Kepler-10b and Kepler-78b (Léger et al., 2011;

Rouan et al., 2011; Sanchis-Ojeda et al., 2013).

My average albedo for the close-in sub-Saturns suggests that the high albedos

of Kepler-10b and Kepler-78b are atypical and that sub-Saturns are typically more

reflective than hot Jupiters. Limiting my close-in group to planets < 2R⊕, excluding

Kepler-10b, results in a non-detection of an eclipse with a depth of 2.14 ± 1.96

ppm, using an MCMC trial similar to those described above. This result gives less

than a 1% chance of an average geometric albedo ≥ 0.6 and a 21% chance of an

average geometric albedo ≥ 0.3. Moreover, thermal emission alone cannot explain

the eclipse depth of Kepler-10b, unless the planet has some source of internal heat

or a spectrum that is not a blackbody curve (Fogtmann-Schulz et al., 2014). If the

“lava ocean” model proposed for Kepler-10b and Kepler-78b is indeed the source

of the high albedo needed to match the eclipse depths for these two planets, then
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close-in super-Earths more typically have darker surfaces, or absorption due to alkali

metals or hazes in their tenuous atmospheres. They could also have mildly reflective

clouds that shield the more reflective lava ocean surface.

Limiting my close-in group to the planets > 2R⊕ results in an average eclipse

depth of 4.68 ± 1.22 ppm, giving a geometric albedo of 0.23 ± 0.06. The Neptune-

like sub-Saturns likely also have clouds or hazes that reflect the incident light back

before being substantially absorbed by the alkali metals in their atmospheres. Al-

ternatively, the average eclipse depth I find could be due to thermal inversions in the

Neptune-like atmospheres, as have been seen in and modeled for some hot Jupiters

(e.g. Fortney et al., 2008; Zahnle et al., 2009). Spiegel et al. (2010) note that Nep-

tune and Uranus have much higher metallicities than Jupiter, and so Neptune-like

planets could have extra absorbers due to the increased metals that could aid the

creation of thermal inversions. If a thermal inversion exists, the thermal emission

contribution to the eclipse depths could be greater, reducing the albedo necessary

to match the depths.

2.7 Chapter 2 Summary

I average eclipses of 31 close-in planet candidates < 6R⊕ to determine the

average albedo of the group. I find that, on average, close-in sub-Saturns are not

extremely dark, with an average geometric albedo of 0.22. This albedo is consistent

with the results for close-in super-Earths by Demory (2014), and it is in contrast to

many hot Jupiters, which have albedos < 0.1, and to Kepler-10b and Kepler-78b,
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which have albedos of 0.4-0.6. The super-Earths may have darker surfaces than

Kepler-10b and Kepler-78b, or they may have clouds or hazes in their tenuous alkali

metal atmospheres that either absorb some of the light or reflect the light before

it can reach the higher albedo surface. The Neptune-like planets may also have

reflective clouds or hazes, preventing absorption lower in their atmospheres by the

alkali metals that produce the very low albedos in hot Jupiters. The Neptune-like

planets may also have thermal inversions that add extra thermal emission to the

eclipse depths, making the albedo appear higher than it is.
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Chapter 3: Statistical Eclipses of Long Cadence Close-in Kepler Sub-

Saturns

3.1 Introduction

Secondary eclipses of a transiting planet occur when the planet passes behind

the star, resulting in a slight decrease in the total light from the system. Secondary

eclipses are often measured in the infrared, where the planet-to-star contrast is

optimal due to infrared emission from the planet (e.g. Charbonneau et al., 2005;

Deming et al., 2005). In the Kepler bandpass, however, reflected light dominates.

The reflected light signal is proportional to the square of the ratio of the planet

radius to its semi-major axis ((Rp/a)
2), which is, at best, tens of parts per mil-

lion (ppm), but more typically a few ppm or smaller. This is difficult to detect for

most individual candidates, even in the Kepler data (e.g. Angerhausen et al., 2015;

Batalha et al., 2011; Coughlin & López-Morales, 2012; Demory, 2014; Esteves et al.,

2013, 2015). Detecting reflected light provides insight into the atmosphere and/or

surface by constraining the albedo. In Sheets & Deming (2014), henceforth Chapter

2, I demonstrated that short cadence Kepler light curves of many individual candi-

dates can be co-added constructively to detect an average secondary eclipse for the
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group of planets.

In this chapter, I adapt the statistical method of Chapter 2 to the Kepler long

cadence data. The two main challenges presented by the long cadence data are the

distortion of the eclipse by convolution with the 30-minute integration time for each

observed data point, and also the subsequent reduction in the number of data points

per eclipse compared to the short cadence data. The long cadence data, however,

offer a larger sample of planet candidates, allowing me to group the planets into

more restrictive and more physically meaningful radius bins than the broad 1 to 6

R⊕ bin of Chapter 2.

In Section 3.2, I describe the Kepler candidate data selection. In Section 3.3, I

discuss the modifications to the data processing and averaging method for the long

cadence data. In Section 3.4, I describe how I modify the thermal plus reflected

light models for the long cadence data. Section 3.5 considers the potential effects of

false positives on my results, and Section 3.6 presents the results for super-Earths

(1-2 R⊕), mini-Neptunes (2-4 R⊕), super-Neptunes (4-6 R⊕), as well as a discussion

which explores the implications of the albedo results. Lastly, Section 3.7 provides a

summary of the chapter.

3.2 Kepler Data and Candidate Selection

The number of planets confirmed by follow-up observation (985) is a small

fraction of the total planet candidates identified (4696) by the Kepler mission

(Coughlin et al., 2016). To provide a larger sample, I therefore select my targets
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from the planet candidates. The false positive rate for objects labeled as planet

candidates is low, near 10 percent (e.g. Désert et al., 2015; Fressin et al., 2013), so I

expect that the benefit of additional targets to increase my signal to noise will out-

weigh the potential interference of false positives. In Section 3.5, I discuss scenarios

in which false positives may influence my results.

I select candidates with radii of 1 to 2 R⊕, 2 to 4 R⊕, and 4 to 6 R⊕ from

the cumulative table of the NASA Exoplanet Archive’s Kepler Objects of Interest

catalog1, downloaded on 23 Feb 2015. I further limit the selection to candidates

in these radius bins with (Rp/a)
2 ≥ 10 parts per million (ppm), where Rp is the

planet radius and a is the semi-major axis of the orbit. The expected depth of the

secondary eclipse, assuming reflected light only, is the geometric albedo times this

value, so I am selecting candidates that are most likely to be detectable in aggregate.

I exclude candidates with grazing transits (i.e. impact parameter b ≥ 1 − (Rp/R∗),

where Rp is the planet candidate radius and R∗ is the host star radius). I adopt

circular orbits, with the center of the transit at phase 0.0 and the center of the

secondary eclipse at phase 0.5. I address the possibility of non-circular orbits in

the discussion in Section 3.5.4. The KOI catalog has evolved while this manuscript

was in preparation. Using the Feb 2015 download of the KOI cumulative table,

my selection criteria combined with the tests performed in Section 3.3.1 result in

56 super-Earth (1-2 R⊕) candidates, 38 mini-Neptune (2-4 R⊕) candidates, and 16

super-Neptune (4-6 R⊕) candidates, whose parameters are given in Table 3.1 and

Table 3.2. The various catalogs that feed into the cumulative table were finalized

1http://exoplanetarchive.ipac.caltech.edu/
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late in 2015, resulting in some of these objects changing status to false positives.

Additionally, Morton et al. (2016) provided false positive probabilities for nearly all

of the candidates in the cumulative table. To demonstrate the robustness of my

results against false positives, I present in Section 3.6 both the results using the Feb

2015 catalog, as well as the results using subsets of the 3 groups, from which I have

removed planet candidates with a false positive probability greater than 1% and a

few newly-identified false positives. The shortened groups contain 40 super-Earth

candidates, 28 mini-Neptune candidates, and 13 super-Neptune candidates. The

objects removed are identified in Table 3.1 and Table 3.2 with a footnote. Most of

the host stars in my sample are sun-like or nearly so; The distribution of spectral

types and stellar effective temperatures is given in Fig. 3.1 for the Feb 2015 version

of the groups.
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Table 3.1. Candidate Parameters

KOI # eclipses a Rp
b (Rp/a)

2b a/R∗
b Max Teq

c Min Teq
d Teff

(R⊕) (ppm) (K) (K) (K)

Kepler-10b
K00072.01 814 (792) 1.45 13.51 3.4 2748.6 1209.6 5627
super-Earths
K00191.03e 1315 (0) 1.25 12.60 3.7 2674.6 1177.0 5700
K00739.01 1005 (957) 1.42 10.46 7.9 1201.1 528.6 3733
K00936.02 1296 (1193) 1.22 13.77 6.8 1236.9 544.3 3581
K00952.05e 1024 (0) 1.88 38.52 5.5 1429.6 629.1 3727
K01050.01 866 (788) 1.78 13.41 5.8 1915.8 843.1 5095
K01169.01e 1829 (0) 1.29 12.56 3.6 2691.3 1184.3 5676
K01202.01 1385 (1311) 1.47 13.56 5.1 1962.3 863.5 4894
K01239.01 1210 (1160) 1.74 18.35 3.6 2903.7 1277.8 6108
K01300.01 1828 (1673) 1.10 16.31 4.7 1849.5 813.9 4441
K01367.01 2159 (1985) 1.40 23.12 3.7 2394.6 1053.8 5076
K01424.01 1071 (1026) 1.58 10.88 6.1 1766.0 777.1 4845
K01442.01 1379 (1291) 1.21 11.49 3.1 2904.2 1278.0 5626
K01475.01 717 (671) 1.81 11.95 8.6 1252.3 551.1 4056
K01510.01 1485 (1412) 1.70 20.22 4.7 2052.6 903.3 4924
K01655.01 1108 (1071) 1.48 11.48 4.0 2651.6 1166.8 5902
K01662.01e 1319 (0) 1.66 18.81 4.2 2401.8 1056.9 5463
K01875.02 1691 (1595) 1.31 19.00 3.0 3119.6 1372.8 5953
K01880.01 1041 (940) 1.56 14.41 7.1 1307.1 575.2 3855
K01981.01 900 (876) 1.61 11.99 4.3 2307.6 1015.5 5265
K02119.01 2032 (1904) 1.38 20.76 3.2 2625.0 1155.1 5203
K02223.01 1104 (1070) 1.64 13.80 5.4 1950.4 858.3 5002
K02250.02 1040 (985) 1.71 29.98 3.5 2385.5 1049.8 4922
K02266.01 827 (782) 1.70 17.12 5.1 1984.1 873.1 4949
K02325.01e 1181 (0) 1.35 10.09 4.9 2050.7 902.4 5035
K02350.01 1132 (1109) 1.75 14.46 4.3 2325.8 1023.5 5325
K02355.01 1047 (1007) 1.64 12.07 5.7 1837.2 808.5 4859
K02393.02e 1247 (0) 1.11 10.34 4.5 2082.2 916.3 4894
K02396.01 2287 (2037) 1.88 44.52 2.8 3008.5 1323.9 5529
K02409.01 1732 (1604) 1.47 25.49 3.7 2469.3 1086.6 5256
K02453.01e 778 (0) 1.54 11.31 10.5 994.8 437.8 3565
K02480.01e 1875 (0) 1.31 20.57 4.8 1649.8 726.0 3990
K02493.01 1537 (1446) 1.48 19.70 3.9 2375.5 1045.4 5166
K02589.01 1920 (1816) 1.19 12.56 3.8 2388.7 1051.2 5177
K02607.01e 1620 (0) 1.49 15.53 3.9 2697.9 1187.2 5883
K02668.01 1321 (1227) 1.25 13.67 4.0 2534.2 1115.2 5596
K02694.01 1422 (1360) 1.57 16.83 4.1 2151.2 946.6 4818
K02699.01 2069 (1916) 1.51 24.85 3.5 2514.9 1106.7 5216
K02708.01 1438 (1366) 1.71 19.72 4.8 1967.6 865.9 4790
K02716.01 1281 (1218) 1.48 11.86 4.9 2322.0 1021.8 5693
K02735.01e 2195 (0) 1.39 21.39 3.5 2507.3 1103.3 5154
K02763.01e 2337 (0) 1.13 18.46 3.4 2354.9 1036.3 4787
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Table 3.1 (cont’d)

KOI # eclipses a Rp
b (Rp/a)2b a/R∗

b Max Teq
c Min Teq

d Teff

(R⊕) (ppm) (K) (K) (K)

K02796.01f 2262 (0) 1.01 10.62 2.8 3270.6 1439.2 6108
K02797.01 1275 (1243) 1.80 16.28 3.7 2904.4 1278.1 6173
K02817.01 956 (895) 1.45 20.62 3.9 2399.8 1056.0 5238
K02852.01 1600 (1498) 1.44 16.07 3.4 2913.1 1281.9 5966
K02882.02 1528 (1381) 1.04 17.46 3.7 2094.6 921.8 4467
K02886.01 1250 (1184) 1.28 10.16 4.7 2186.0 961.9 5260
K03089.01e 1284 (0) 1.36 12.03 4.2 2335.0 1027.5 5269
K03246.01 1126 (1118) 1.86 27.52 1.9 3218.6 1416.4 4854
K03867.01 1390 (1346) 1.55 12.20 4.4 2508.0 1103.7 5825
K04002.01e 1609 (0) 1.42 23.04 2.9 2856.2 1256.9 5396
K04109.01 1450 (1436) 1.53 20.19 1.8 3367.4 1481.9 4968
K04325.01 2017 (1908) 1.19 12.39 3.2 2993.9 1317.5 5936
K04512.01e 1800 (0) 1.07 13.50 3.4 2576.4 1133.8 5286
K04595.01e 2081 (0) 1.25 18.73 4.2 2203.3 969.6 4985

aListed are the number of eclipses used for the group based on the Feb 2015
catalog. In parenthesis are the number of eclipses used for the shortened group.

bRp, a, and R∗ are taken from the Exoplanet Archive candidate table, and (Rp/a)2

and a/R∗ are calculated from them.

cAssumes f = 2/3 (instant re-radiation) and AB = 0.0.

dAssumes f = 1/4 (complete redistribution) and AB = 0.9 (i.e. Ag = 0.6).

eHas false positive probability (Morton et al., 2016) > 1 %.

fIs now listed as a false positive in the cumulative candidate table due to a non-
transit-like shape.
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Table 3.2. Candidate Parameters

KOI # eclipses a Rp
b (Rp/a)

2b a/R∗
b Max Teq

c Min Teq
d Teff

(R⊕) (ppm) (K) (K) (K)

mini-Neptunes
K00102.01 583 (576) 3.76 31.79 5.0 2324.7 1023.0 5731
K00104.01 461 (438) 2.49 11.63 11.0 1156.4 508.9 4238
K00191.02e 383 (0) 2.79 12.14 8.4 1773.9 780.6 5700
K00220.01 525 (521) 3.60 19.98 8.9 1695.6 746.2 5588
K00439.01 676 (656) 3.92 32.24 7.7 1774.8 781.0 5438
K00496.01 796 (764) 2.54 17.58 5.2 2145.3 944.1 5417
K00517.01 429 (420) 3.64 16.30 7.1 1955.2 860.4 5749
K00526.01 619 (608) 2.96 14.50 7.3 1908.7 839.9 5705
K00676.02e 436 (0) 2.23 10.58 11.9 1027.4 452.1 3914
K00697.01 205 (205) 3.49 12.83 5.7 2292.6 1008.9 6042
K00732.01 944 (895) 3.69 45.88 5.2 2193.5 965.2 5546
K00780.01 551 (529) 2.38 10.22 9.4 1472.0 647.8 4989
K00800.01 472 (462) 3.62 14.93 8.1 1962.1 863.4 6167
K00844.01 271 (267) 3.96 13.33 11.7 1475.3 649.2 5576
K00916.01 395 (387) 3.63 12.75 9.9 1613.6 710.1 5609
K00926.01 401 (401) 3.97 15.32 9.3 1778.9 782.8 6007
K00941.02 382 (376) 2.67 11.66 7.4 1727.8 760.3 5188
K01357.01e 356 (0) 3.09 10.93 9.0 1570.4 691.1 5209
K01393.01e 650 (0) 2.55 22.10 8.8 1177.7 518.3 3872
K01428.01 1360 (1252) 2.10 27.68 4.7 2053.5 903.6 4911
K01557.01 268 (257) 3.80 15.81 9.8 1416.2 623.2 4910
K01762.01e 1480 (0) 2.24 29.72 4.3 2619.3 1152.6 5985
K01835.02 338 (337) 2.55 10.90 4.4 2225.9 979.5 5192
K01845.01 615 (609) 3.35 22.17 3.9 2231.5 982.0 4883
K01988.01 1312 (1280) 3.48 64.88 2.2 2907.0 1279.2 4777
K02034.01 228 (226) 3.47 10.55 11.3 1525.3 671.2 5668
K02104.01 590 (551) 3.11 15.45 6.5 2174.7 957.0 6153
K02269.01e 1850 (0) 2.78 57.60 2.6 3634.2 1599.3 6517
K02715.02 271 (262) 3.26 21.13 9.2 1306.3 574.8 4385
K02795.01e 424 (0) 3.87 18.04 7.2 2105.6 926.6 6237
K02842.01 310 (292) 2.61 29.11 9.6 1015.7 447.0 3485
K03913.01e 2126 (0) 2.53 59.23 3.0 3275.9 1441.6 6263
K03984.01 858 (849) 2.20 14.62 3.6 2513.6 1106.1 5305
K04098.01e 814 (0) 2.38 20.85 1.9 3330.4 1465.6 5023
K04561.01 58 (50) 2.34 14.25 4.5 2692.0 1184.6 6302
K04928.01 85 (80) 2.27 16.50 27.1 557.7 245.4 3212
K05566.01 30 (30) 3.19 37.45 1.7 4445.5 1956.3 6456
K05717.01e 125 (0) 3.94 60.91 6.1 1689.1 743.3 4611
super-Neptunes
K00007.01 258 (258) 4.14 16.13 6.2 2104.8 926.2 5781
K00046.01 350 (349) 4.36 15.74 8.3 1803.3 793.6 5761
K00141.01e 430 (0) 5.14 34.63 9.1 1610.4 708.7 5377
K00221.01 371 (367) 4.55 22.78 12.2 1377.7 606.2 5332
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Table 3.2 (cont’d)

KOI # eclipses a Rp
b (Rp/a)2b a/R∗

b Max Teq
c Min Teq

d Teff

(R⊕) (ppm) (K) (K) (K)

K00240.01 303 (296) 4.07 10.62 11.1 1688.4 743.0 6225
K00242.01 177 (175) 5.70 10.88 17.2 1228.1 540.4 5638
K00433.01 261 (259) 4.86 17.99 11.7 1467.9 646.0 5551
K00470.01 273 (268) 4.74 17.40 11.0 1576.6 693.8 5776
K00531.01e 322 (0) 5.69 36.88 14.3 962.8 423.7 4030
K00766.01 307 (306) 4.46 12.89 10.3 1737.0 764.4 6174
K00782.01 196 (196) 5.38 11.69 14.6 1418.4 624.2 5992
K00851.01 262 (260) 5.69 20.52 13.1 1450.6 638.3 5815
K00953.01 349 (348) 4.87 20.15 10.8 1579.6 695.1 5739
K01815.01 354 (353) 5.46 31.55 5.1 1943.8 855.4 4854
K01845.02e 219 (0) 5.99 20.24 7.3 1631.3 717.9 4883
K02688.01 140 (139) 5.20 19.31 18.3 874.4 384.8 4141

aListed are the number of eclipses used for the groups based on the Feb 2015
catalog. In parenthesis are the number of eclipses used for the shortened groups.

bRp, a, and R∗ are taken from the Exoplanet Archive candidate table, and
(Rp/a)2 and a/R∗ are calculated from them.

cAssumes f = 2/3 (instant re-radiation) and AB = 0.0.

dAssumes f = 1/4 (complete redistribution) and AB = 0.9 (i.e. Ag = 0.6).

eHas false positive probability (Morton et al., 2016) > 1 %.

I use the long cadence (≈ 30 min exposure) Pre-search Data Conditioning

(PDC) data from the Mikulski Archive for Space Telescopes (MAST2), for quarters

0 through 17. I first eliminate statistical outliers from the photometric data by

removing any point that is more than three times the photometric error away from

the median value of the point and the four points to each side. I normalize the light

curves by dividing the photometric time series for each quarter by its mean value,

and then subtracting 1 and multiplying by 106 to convert to ppm. I mask any transits

of other known objects in the system. I select data within ± 12 hours of each eclipse

time, with two restrictions, and I fit a quadratic baseline to the portion of those data

2http://archive.stsci.edu/kepler/
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Figure 3.1 The spectral types of the host stars for each radius group.
Super-Earths are in red, mini-Neptunes in green, and super-Neptunes
in blue. Also shown is the total of the 3 groups in black. Most of
the host stars are G and K stars. The two M stars in the sample host
mini-Neptunes.
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that lie outside of the eclipse. For candidates with transits (and, therefore, eclipses)

whose duration is greater than 4 hours, I widen the data selection window from

12 hours to 3 times the duration of the candidate’s transit. This provides a better

baseline for longer-duration eclipses. For candidates with orbital periods around 1

day or less, the 12 hour selection window around the eclipse center would include

the transits, so I also adapt the data selection window for these candidates to be

short enough to avoid the transits. I then subtract the quadratic fit, and repeat

the process for all eclipses of the candidate in each photometric data file. For the

long cadence data, each file spans one observing quarter, which is about 3 months.

I eliminate any eclipses that do not have at least 1 point whose midpoint of the

exposure time falls between second and third contact, and I also eliminate eclipses

that do not have at least 8 data points before eclipse and at least 8 data points

after eclipse. I eliminate additional statistical outliers from the photometric data

by removing any point that is more than three times the standard deviation of the

data points around the quadratic fit.

3.3 Averaging the Long Cadence Data

3.3.1 Scaling and Stacking the Individual Eclipses

I apply four tests to individual eclipses for each object in each group to elimi-

nate excessive noise or instrument artifacts. The 30 min integration time of the long

cadence data means that there are fewer data points per eclipse, thus I cannot apply

the red noise test used for the short cadence data in Chapter 2. In its place, I use
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two tests. First, I check that the scatter of the points (σ) around the quadratic fit

from Section 3.2 is consistent with the mean photometric noise (σphot). The mean

photometric noise is the average of the propagated photometric errors for the data

points. I record the value of σ/σphot for every eclipse, whether it passes or fails, for

all of my selected candidates, and plot a histogram of the values. The histograms of

these values are consistent with a Gaussian distribution until a ratio of about 1.3,

shown in Figure 3.2, so I eliminate any eclipse with a ratio greater than 1.3. I also

check that the scatter of the points inside eclipse (σecl) is consistent with the overall

scatter of the points (σ). The histograms of the ratio σecl/σ begin to deviate from

Gaussian at a value of about 1.5, shown in Figure 3.3. For the Feb 2015 versions of

the 3 radius groups, I allowed values up to 2, but for the shortened groups I used

the cut-off of 1.5. Note that the typical photometric errors for a single eclipse are

several orders of magnitude larger than the eclipse signatures for these candidates,

so this test should not be eliminating the signal of interest (see Sections 3.3.2.4-5).

The third test I perform is a modification of the projection test from Chapter

2. An example of an eclipse which fails this test is given in Figure 3.4. I take a linear

fit to the data points before ingress and use that fit to calculate a value for each of

the data points after egress. Previously I considered only the difference between the

mean value of the calculated points after egress and the mean value of the actual

data points after egress. Now I instead eliminate eclipses where the difference is

more than three times the mean photometric noise of the data (i.e. more than 3σ).

I also fit a line to the points after egress and project that line to the points before

ingress. The eclipse fails the test if either of the two projections fail to match the
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Figure 3.2 Shown is the histogram of the ratio of the scatter about the
quadratic fit (σ) to the photometric noise (σphot) for all eclipses. I use
a cut-off of 1.3 for this parameter, keeping all eclipses with a value less
than the cut-off.

74



Figure 3.3 Shown is a histogram of the ratio of the scatter about the
quadratic fit for the in-eclipse points only (σecl) over the scatter about
the quadratic fit for all of the points (σ). I use a cut-off of 2.0 for the
parameter for the groups using the Feb 2015 catalog, keeping all eclipses
with a value less than the cut-off. I use a slightly more restrictive cut-off
of 1.5 for the results using the shortened groups.
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Figure 3.4 Shown is a single eclipse from KOI 1300.01 which fails the
long cadence projection test. In the test, a line (in red) is fit to the
data points (in black, with error bars) on the left (before ingress) and
extrapolated (red points) for the data points (again, in black with error
bars) on the right. Similarly, a line (in blue) is fit to the black points on
the right (after egress) and extrapolated (blue points) for the black points
on the left. For each side of the eclipse, the mean of the extrapolated
points is calculated, as is the mean of the data points. If the mean of the
extrapolated points differs from the mean of the data points, on one side
or the other, by more than three times the mean photometric errors, the
eclipse is excluded.

data.

The fourth test I perform is the slope test from Chapter 2. I use the slopes

from the linear fits in the projection test and check that they are both consistent

with zero. Any phase curve variation would be well below the photometric noise of

an individual eclipse, and so no slope should be detectable. If the slope of both of

the fits before ingress and after egress are within 3σ of zero, the eclipse is retained.
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I track the number of eclipses kept for each candidate as well as the num-

ber of eclipses rejected by each of the four tests above. Candidates with more

total rejected eclipses than retained eclipses are eliminated from the groups en-

tirely. I eliminate four super-Earths (KOIs 1957.01, 2324.01, 2548.01, and 3204.01),

three mini-Neptunes (KOIs 2035.01, 2276.01, and 2678.01), and four super-Neptunes

(KOIs 3.01, 1779.01, 1803.01, and 1804.01).

To average the light curves constructively, I use the same equations as Section

2.3 to transform the phase before binning the data. Transforming the phase ensures

that I am adding data points inside of eclipse for one object to points inside of eclipse

for another object, and likewise for points outside of eclipse. Though I use points at

phase outside of the 0.25 to 0.75 range to normalize the data, I only average points

inside of this range. For my assumption of circular orbits, phases of 0.25 and 0.75

are the inflection points of the phase curve, so I select these points as limits. The

only modifications I make to accommodate the long cadence data are to remove

the separate ingress and egress bins that I utilized for the short cadence data and

to reduce the number of bins within eclipse to 7 from 11. Ingress and egress are

typically quite short compared to the 30 min cadence, so separate bins for these two

stages are no longer useful.

As I stack the eclipses of all of the candidates in each group, I also check the

stacked eclipses for each candidate alone for significant secondary eclipses. I elimi-

nate candidates with a significant secondary eclipse (i.e. greater than 3σ detection)

if the depth of the eclipse is incompatible with the planet interpretation, such as for

KOIs 4294.01 and 4351.01 (see Sections 3.3.2.4-5).
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3.3.2 Notes on Individual Candidates

We first constructed lists for the three radius bins from the cumulative table

downloaded from the NASA Exoplanet Archive on 27 August 2014. The various

versions of the catalog that are combined to create the cumulative table were not

all finalized at that time. Many of the candidates discussed in this subsection came

to our attention either while working with the Aug 2014 version of the cumulative

table, or while comparing the Aug 2014 version, the downloaded version from 23

Feb 2015, and the now-finalized versions of the catalogs through the Q1-17 DR 24

release (Coughlin et al., 2016). We comment here on the objects that we found

notable, as guidance for other investigations.

3.3.2.1 KOI 1662.01

KOI 1662.01 was listed as a 1.66 R⊕ candidate in the Q1-12 catalog with a

period of 0.784 days. It is now listed as a false positive in the Q1-17 catalog due

to a significant secondary eclipse. The period is still listed as 0.784 days, but the

true period is twice this value. The Q1-17 DR25 TCE (Threshold-Crossing Events)

table at the NASA Exoplanet Archive lists two “planets” for this star: one at the

0.784 day period and one at twice that period. Fig. 3.5 shows the data phase-folded

at the 1.568 day period, with a significant secondary eclipse, indicating that it is

a blended eclipsing binary. It is included as a super-Earth in the tests discussed

in Section 3.5 as well as the Feb 2015 group in Section 3.6, but removed from the

shortened group of super-Earths.
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Figure 3.5 The light curve for KOI 1662.01, phase-folded at twice the
period listed in the current KOI catalog. This KOI is now listed as
a false positive for a significant secondary eclipse, and I confirm that
the secondary eclipse is significantly different in depth than the primary
eclipse, making it some type of eclipsing binary.
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3.3.2.2 KOIs 2396.01 and 2882.02

KOIs 2396.01 and 2882.02 are also now listed in the Q1-17 catalog as false

positives for significant secondaries. I retain these two candidates in my shortened

group of super-Earths because I do not see a secondary eclipse when folding at their

planet candidate periods, nor do I see a significant difference between the “primary”

and “secondary” eclipse depths when folding at twice the listed period. Furthermore,

they have less than a 1% false positive probability in Morton et al. (2016), unlike

KOI 1662.01.

3.3.2.3 KOI 2795.01

KOI 2795.01 is listed as a 2.4 R⊕ candidate in the Q1-8 catalog and as a false

positive due to a significant secondary eclipse in the Q1-17 DR 24 catalog. I find

that the signal strength for 2795.01 changes depending on the orientation of the

telescope. It appears strongly in Q6, Q10, and Q14, and to a lesser extent in Q7,

Q11, and Q15. There are no data for Q0-3, and the signal appears only weakly

in the remaining quarters. Furthermore, the shape of the light curve changes when

comparing the weak signal quarters, shown in Fig. 3.6, to the strong signal quarters,

shown in Fig. 3.7. The spacecraft rolls by 90 degrees at the end of each quarter, and

so on every fourth quarter, a target returns to the same CCD. This correlation with

certain orientations of the telescope suggests contamination by electrical cross-talk,

a column anomaly, or internal reflections (Coughlin et al., 2014). It is included in

my tests discussed in Section 3.5 and my Feb 2015 mini-Neptunes group in Section
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Figure 3.6 Averaged light curve for KOI 2795.01 from Q4, Q5, Q8, Q9,
Q12, Q13, Q16, and Q17, where only a weak signal is present. Here I
see a significant secondary eclipse at phase 0.5.

3.6, but it is not included in the shortened group of mini-Neptunes.

3.3.2.4 KOI 4294.01

KOI 4294.01 was listed as a 5.02 R⊕ candidate in the cumulative KOI table

downloaded on 27 August 2014. I detected a significant secondary eclipse that was

much too deep to be the secondary eclipse of a planet. It was independently found

to have a significant secondary in the Q1-17 DR 24 catalog and is now listed as a

false positive. I do not include it in either of my super-Neptune groups.
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Figure 3.7 Averaged light curve for KOI 2795.01 from Q6, Q10, and Q14,
where a strong signal is present. Here I see a much stronger primary
eclipse at phase 0.0 (and repeated at phase 1.0) than the primary eclipse
in Fig. 3.6.
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Figure 3.8 Averaged light curve for KOI 4351.01, which is listed in the
KOI catalog as a planet candidate. It shows a significant secondary
eclipse at phase 0.5 and so must be an eclipsing binary.

3.3.2.5 KOI 4351.01

KOI 4351.01 was listed as a 5.47 R⊕candidate in the cumulative KOI table

downloaded on 27 August 2014. Like KOI 4294.01 above, I detected a significant,

non-planetary secondary eclipse while screening the candidates to be used in my

average, indicating the object is actually an eclipsing binary. Unlike KOI 4294.01,

this candidate was not re-evaluated in the Q1-17 DR 24 catalog (Coughlin, private

communication). It is listed in the finalized Q1-12 catalog and the current cumula-

tive table as a 24.4 R⊕ candidate. The secondary eclipse is shown in Fig. 3.8. I do

not include it in either of my super-Neptune groups.
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3.3.2.6 KOI 4924.01

KOI 4924.01 was listed as a 3.65 R⊕candidate in the cumulative KOI table

downloaded on 27 August 2014. Subsequently, it was listed as a false positive in

the cumulative KOI table downloaded on 23 February 2015. In the finalized Q1-16

catalog, it is still listed as a false positive due to a centroid offset flag, but in the

finalized Q1-17 DR 24 catalog, it is listed as a 3.49 R⊕candidate. I do not include

it in either of my mini-Neptune groups.

3.4 Modeling Reflected Light and Thermal Emission

As in Chapter 2, the reflected light is given by Equation 1.1, while the thermal

emission calculation begins with the equilibrium temperature from Equation 1.2. I

again consider f = 1/4 for uniform redistribution of heat around the planet and f

= 2/3 for instantaneous re-radiation (see, e.g. Esteves et al., 2013; Hansen, 2008;

López-Morales & Seager, 2007; Rowe et al., 2006). I also adopt AB = (3/2)Ag,

which is the relation for a Lambertian surface. I treat the planet as a blackbody

with this effective temperature, integrated over the bandpass of Kepler using its

transmission function3. I calculate the planet’s intensity for the two extremes of f .

I integrate the ATLAS4 model atmosphere (Kurucz, 1979) over the bandpass for the

appropriate stellar parameters to calculate the stellar intensities. I finally divide the

planet’s intensity by the stellar intensity and scale by (Rp/R∗)
2.

3http://keplergo.arc.nasa.gov/kepler response hires1.txt
4http://kurucz.harvard.edu/
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The combination of the thermal emission and reflected light gives the ex-

pected depth of the secondary eclipse. I then take that depth and multiply it by

a Mandel & Agol (2002) model for the eclipse, which has been rescaled so that the

continuum is 0 and full eclipse is -1. To account for the 30 min cadence of the

long cadence data, I oversample the Mandel & Agol (2002) model and average it

over the 30 min exposure corresponding to each data point before multiplying by

the expected depth for the thermal emission plus reflected light. I then build up a

thermal emission and reflected light model for the averaged data by generating a

model point for each data point and averaging the model points just as the data

are averaged. To determine the average geometric albedo, I iteratively adjust the

geometric albedo used to calculate the model until the averaged model matches the

fitted depth of the averaged data.

3.5 False Positive and Other Detrimental Scenarios

In anticipation of my results, I here discuss possible scenarios that could falsely

drive down my measured albedos.

3.5.1 Dilution by Unknown Objects in Aperture

I considered the possibility that some of the host stars in my candidate sample

may have a close, unresolved companion star in the Kepler data, due to the large

pixel scale of 3.98 arcsec pixel−1 (Koch et al., 2010). Unresolved companions dilute

the signal from the planet in transit and in eclipse, making the planet seem smaller
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than it truly is. This possible dilution means that some of my candidates may be in

the wrong radius bin. Even if the inferred radius of a candidate is wrong, however,

the geometric albedo calculated from the candidate is unaffected. For clarity, I

demonstrate that the inferred albedo is unaffected for one particular example of

dilution. This demonstration, however, is easily generalized to an arbitrary degree

of dilution.

If there is only one star, the undiluted transit depth is just R2
p/R

2
∗
, where Rp is

the real planet radius and R∗ is the host star radius. If there are two stars, and the

diluting star is equally as bright as the host star, then the observed transit depth is

R2
p,inf

R2
∗

=
1

2

R2
p

R2
∗

(3.1)

where R2
p,inf is the inferred planet radius from the diluted transit. Thus the inferred

radius is

Rp,inf =
Rp√

2
(3.2)

The real secondary eclipse depth is Ag ∗ (Rp/a)
2, where Ag is the actual geometric

albedo of the planet and a is the semi-major axis of its orbit, while the observed

eclipse depth is

Ag,infR
2
p,inf

a2
=
AgR

2
p

2a2
(3.3)

where Ag,inf is the inferred geometric albedo from the diluted transit. Substituting

Equation 3.2 into Equation 3.3 gives

Ag,infR
2
p

2a2
=
AgR

2
p

2a2
(3.4)

which means that Ag,inf = Ag. I thus conclude that dilution has no effect on my
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inferred albedos. It does affect the radius groups to which I assign each planet, but

I do not believe this secondary effect is of importance to my analysis.

3.5.2 Eccentric Eclipsing Binaries

Eccentric eclipsing binaries lurking in my sample could weaken the average

secondary eclipse measured. I believe that my inspection of individual candidates

in Section 3.3.2, combined with the use of the false positive probabilities from

Morton et al. (2016), eliminates significant contamination of my sample by con-

ventional eclipsing binaries. There remains, however, the possibility that unusual

eclipsing binaries, such as those with highly eccentric orbits, may still be present in

the sample. The eccentric binary might have a weak secondary eclipse that occurs

at a phase much different than 0.5, or the eccentricity may be so high that, due

to viewing geometry, only the primary eclipse or the secondary eclipse occurs, but

not both. In either case, it would introduce a flat light curve where I am expecting

a secondary eclipse for a planet. I tested the effect of possible eccentric eclipsing

binaries as false positives contaminating my sample. Santerne et al. (2013) and ref-

erences therein report that less than 1% of eclipsing binaries with periods under

10 days have significant eccentricity. This is the period regime of my candidate

sample. I fit a model to stacked eclipses of each individual candidate to find the

candidate’s eclipse depth and calculated the weight of the candidate in the overall

stacked eclipse. I then used those weights and candidate eclipse depths to determine

a weighted average eclipse depth for the group. I considered the worst case scenario,
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where all the candidates in the sample are eclipsing binaries, with 1% being eccentric

(Santerne et al., 2013). I randomly drew ∼ 1% of the individual eclipse depths and

set them to zero to represent an absence of the eclipse at phase 0.5. I repeated this

100,000 times and found that the resulting average depth varies from the original

average depth by at most a few hundredths of a ppm, so I conclude that eccentric

eclipsing binaries are not a significant source of concern within my sample.

3.5.3 Half-Period Eclipsing Binaries

An eclipsing binary consisting of two similar stars would result in a light curve

with a primary eclipse and secondary eclipse that have similar depths. This mimics

a planet at half the period of the binary, resulting in a flat light curve at phase 0.5

when phase-folding to the planet candidate period. The false positive probability

calculations of Morton et al. (2016) take into account this scenario. Only a few of my

original candidates show greater than a 1% chance of being an eclipsing binary false

positive for this scenario, so I do not believe this could be a significant contributor

to the low albedos I find in Section 3.6.

3.5.4 Eccentric Planets

I also considered my adoption of circular orbits of the planets. If any of the

planet candidates in my sample are eccentric, the secondary eclipse is displaced

from phase 0.5. To test how this affects my results, I assigned each object in the

super-Earth group (excluding Kepler 10b) a random eccentricity, drawing from a
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Rayleigh distribution with scale parameter σe = 0.017. Hadden & Lithwick (2014)

found that small planets (< 2.5 R⊕) in multi-planet systems have eccentricities

with this distribution, while larger planets have smaller eccentricities, with σe =

0.008. Because planets in multi-planet systems can have non-zero eccentricities

due to mutual perturbations, this is a worst-case scenario for my sample, which

contains many single-planet systems. After assigning a random eccentricity and a

random argument of pericenter (uniformly distributed from 0 to 2π), I calculated

a thermal plus reflected light model for each individual eclipse for every candidate,

assuming f = 1/4 and Ag = 0.108, which is the average albedo I found for the group

(see Section 3.6.1). I then averaged the model eclipse curves just as the data are

averaged. I repeated this for a total of 100 trials, and the resulting averaged model

curves are shown in green in Figure 3.9. Overplotted in black is the model curve

using zero eccentricity for all of the candidates. The 100 averaged model curves

have a mean depth of 2.449 ppm, and the shallowest averaged model curve has a

depth of 2.412 ppm, versus the depth for the zero eccentricity of 2.473 ppm. The

difference is similar to the error bars on the measured depth of the averaged data,

which means that this effect does not drastically change the measured albedo for

the group.
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Figure 3.9 Shown are the averaged model curves for 100 trials of the
super-Earth group, in green, assuming eccentricities for the planets
drawn from a Rayleigh distribution. In black is the averaged model
curve assuming zero eccentricity for all planets.
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3.6 Results and Discussion

3.6.1 Super-Earths

3.6.1.1 Excluding Kepler-10b

As in Chapter 2, I average the 1-2 R⊕ group without Kepler-10b, because

Kepler-10 dominates the average. Kepler-10 is a bright star, and the weighting is

done by the photometric errors. Kepler-10b also has an unusually deep secondary

eclipse, requiring either a high albedo or some emission source beyond the blackbody

emission for a planet in equilibrium with the incoming stellar light. To determine

the fitted depth of the averaged data, I generate a model for the eclipse. I create a

model point that corresponds to each data point, using the Mandel & Agol (2002)

model, scaled so that the continuum is 0 and full eclipse is -1, and averaged over the

30 min exposure for the corresponding data point. I average the model points with

the same weights as the corresponding data points. I then use a simple 2-parameter

Markov Chain Monte Carlo (MCMC) procedure with 500,000 steps, as in Chapter

2, fitting the equation Fb +δx, where Fb adjusts the continuum level, x is the model,

and δ is the depth of the eclipse.

The result for the Feb 2015 list of super-Earths is shown in Figure 3.10. This

group contains 55 candidates and 79,678 individual eclipses. The weighted average

depth is 2.44 ± 0.99 ppm, which corresponds to a geometric albedo Ag = 0.11 ±

0.06 in the case of complete redistribution of heat. In the case of instantaneous

re-radiation, the measured depth corresponds to an unphysical, negative value for
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albedo, but I can set an upper, 3σ limit of Ag < 0.17. The shortened group,

removing false positives identified in the finalized catalogs and candidates with high

false positive probability, gives similar results, shown in Figure 3.11. The shortened

group contains 39 candidates and 50,805 eclipses. The weighted average depth is

2.63 +1.13
−1.14 ppm, but the weighted average (Rp/a)

2 increases as well, from 1.517 R⊕ to

1.578 R⊕, and so the change in eclipse depth is not sufficient to change the values of

the albedos significantly. I know that the Feb 2015 list contained one definite false

positive, KOI 1662.02, which was removed from the shortened list. Including KOI

1662.02 in the average was adding a flat curve at secondary eclipse. Since removing

it did not appreciably change the group’s average albedo, this suggests that most of

the candidates are indeed dark, rather than the average being pulled down by false

positives.

3.6.1.2 Including Kepler-10b

Adding Kepler-10b to the group, not surprisingly, increases the average albedo.

The result for the Feb 2015 group is shown in Figure 3.12, with 56 candidates and

80,492 individual eclipses. The weighted average eclipse depth is 3.56 ± 0.65 ppm,

corresponding to an average geometric albedo of Ag = 0.19 ± 0.04 in the case of

full heat redistribution, or Ag = 0.04 ± 0.07 for instantaneous re-radiation. The

shortened list result, consisting of 40 candidates and 51,597 eclipses, is shown in

Figure 3.13, with the same eclipse depth of 3.56 ppm, but slightly larger error bars

of ±0.67 ppm. This results in the same geometric albedo as the Feb 2015 group for
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Figure 3.10 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the super-Earth group using the Feb 2015 catalog,
excluding Kepler-10b. The binned data are shown as points. The er-
ror bars are the propagated photometric errors. The best fit curve is
the solid black line. Overplotted are the reflected light plus thermal
emission models for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green), 0.3 (or-
ange), and 0.6 (red), with the re-radiation factor f = 1/4 (dashed) and
2/3 (solid). Lower panel: The distributions for the two parameters of
the MCMC run, with the depths from the reflected light plus thermal
emission from the upper panel plotted as vertical lines. The two fitted
parameters are eclipse depth (2.44± 0.99 ppm) and continuum offset
from zero (-0.12±0.42 ppm).
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Figure 3.11 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the shortened super-Earth group using the final-
ized catalog and false positive probabilities, excluding Kepler-10b. The
binned data are shown as points. The error bars are the propagated pho-
tometric errors. The best fit curve is the solid black line. Overplotted are
the reflected light plus thermal emission models for Ag = (2/3) ∗ AB =
0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red), with the re-radiation
factor f = 1/4 (dashed) and 2/3 (solid). Lower panel: The distribu-
tions for the two parameters of the MCMC run, with the depths from
the reflected light plus thermal emission from the upper panel plotted
as vertical lines. The two fitted parameters are eclipse depth (2.6± 1.1
ppm) and continuum offset from zero (-0.02±0.50 ppm).
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the case of full heat redistribution, but a slightly (though not significantly) lower

Ag = 0.02+0.07
−0.08 for the case of instantaneous re-radiation.

3.6.2 Mini-Neptunes

The average secondary eclipse for the Feb 2015 list of mini-Neptunes is shown

in Figure 3.14. This group contains 38 candidates and 22,677 eclipses, with an

average secondary eclipse depth of 2.42 ± 0.76 ppm. The depth corresponds to Ag

= 0.07 ± 0.03 for full heat redistribution. For instantaneous re-radiation, as with

the super-Earths, I can only set an upper, 3σ limit, but this limit is much lower,

Ag < 0.04, than for the super-Earths. The shortened list consists of 28 candidates

and 13,580 eclipses, with the result shown in Figure 3.15. The average secondary

eclipse depth is 1.69 ± 0.85 ppm, corresponding to Ag = 0.05 ± 0.04 for full heat

redistribution. Again I can only set an upper, 3σ limit of Ag < 0.07 for instantaneous

re-radiation.

3.6.3 Super-Neptunes

Figure 3.16 shows the result for the Feb 2015 group of super-Neptunes, which

contains 16 candidates and 4,572 eclipses. The average secondary eclipse depth is

2.16+1.37
−1.38 ppm. This depth corresponds to a geometric albedo Ag = 0.12 ± 0.08

for full heat redistribution and Ag = 0.09 ± 0.08 for instantaneous re-radiation.

The shortened group contains 13 candidates and 3,574 eclipses, and the result is

shown in Figure 3.17. The average secondary eclipse depth is 1.99+1.37
−1.38 ppm, which
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Figure 3.12 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the super-Earth group with the Feb 2015 catalog,
including Kepler-10b. The binned data are shown as points. The er-
ror bars are the propagated photometric errors. The best fit curve is
the solid black line. Overplotted are the reflected light plus thermal
emission models for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green), 0.3 (or-
ange), and 0.6 (red), with the re-radiation factor f = 1/4 (dashed) and
2/3 (solid). Lower panel: The distributions for the two parameters of
the MCMC run, with the depths from the reflected light plus thermal
emission from the upper panel plotted as vertical lines. The two fit-
ted parameters are eclipse depth (3.56±0.65 ppm) and continuum offset
from zero (-0.10±0.27 ppm).
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Figure 3.13 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the shortened super-Earth group with the final-
ized catalog and false positive probabilities, including Kepler-10b. The
binned data are shown as points. The error bars are the propagated pho-
tometric errors. The best fit curve is the solid black line. Overplotted are
the reflected light plus thermal emission models for Ag = (2/3) ∗ AB =
0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red), with the re-radiation
factor f = 1/4 (dashed) and 2/3 (solid). Lower panel: The distribu-
tions for the two parameters of the MCMC run, with the depths from
the reflected light plus thermal emission from the upper panel plotted
as vertical lines. The two fitted parameters are eclipse depth (3.56±0.67
ppm) and continuum offset from zero (-0.05±0.29 ppm).
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Figure 3.14 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the mini-Neptune group with the Feb 2015 catalog.
The binned data are shown as points. The error bars are the propagated
photometric errors. The best fit curve is the solid black line. Overplotted
are the reflected light plus thermal emission models for Ag = (2/3)∗AB =
0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red), with the re-radiation
factor f = 1/4 (dashed) and 2/3 (solid). Lower panel: The distribu-
tions for the two parameters of the MCMC run, with the depths from
the reflected light plus thermal emission from the upper panel plotted
as vertical lines. The two fitted parameters are eclipse depth (2.42±0.76
ppm) and continuum offset from zero (-0.16±0.25 ppm).
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Figure 3.15 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the shortened mini-Neptune group with the finalized
catalog and false positive probabilities. The binned data are shown as
points. The error bars are the propagated photometric errors. The best
fit curve is the solid black line. Overplotted are the reflected light plus
thermal emission models for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green),
0.3 (orange), and 0.6 (red), with the re-radiation factor f = 1/4 (dashed)
and 2/3 (solid). Lower panel: The distributions for the two parameters
of the MCMC run, with the depths from the reflected light plus thermal
emission from the upper panel plotted as vertical lines. The two fit-
ted parameters are eclipse depth (1.69±0.85 ppm) and continuum offset
from zero (-0.15±0.27 ppm).
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corresponds to Ag = 0.11 ± 0.08 for full redistribution of heat and Ag = 0.09 ± 0.09

for instantaneous re-radiation.

3.6.4 Comparison to Short Cadence

To compare my results in this chapter with those of Chapter 2, I also take

the average of the three radius bins combined, matching the 1-6 R⊕ radius bin

of the earlier work. Figure 3.18 shows the result for the Feb 2015 group of 1-

6 R⊕ candidates, excluding Kepler-10b. There are 109 candidates for a total of

106,927 eclipses. The average eclipse depth is 2.50 ± 0.62 ppm, for Ag = 0.10 ±

0.03 for full heat redistribution, and Ag < 0.07 for instantaneous re-radiation. The

shortened group result, shown in Figure 3.19, is similar, with a depth of 2.36 ± 0.71

ppm, corresponding to Ag = 0.09 ± 0.04 for full redistribution of heat, and Ag <

0.08 for instantaneous re-radiation. The shortened group contains 80 candidates,

with 67,959 eclipses. Including Kepler-10b with the Feb 2015 group, shown in Figure

3.20, brings the average eclipse depth to 3.26 ± 0.48 ppm, corresponding to Ag =

0.16 ± 0.03 for full heat redistribution, and to Ag = 0.01 ± 0.04 for instantaneous

re-radiation. For the shortened group, shown in Figure 3.21, adding Kepler-10b

brings the average eclipse depth to 3.09 ± 0.50 ppm. This gives Ag = 0.15 ± 0.03

for full heat redistribution, and Ag = 0.00 ± 0.05 for instantaneous re-radiation.

For the short cadence data, excluding Kepler-10b, I found Ag = 0.22 ± 0.06,

when only considering reflected light, and the inclusion of thermal emission changed

the albedo by less than the uncertainty. The albedos found from the long cadence
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Figure 3.16 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the super-Neptune group with the Feb 2015 catalog.
The binned data are shown as points. The error bars are the propagated
photometric errors. The best fit curve is the solid black line. Overplotted
are the reflected light plus thermal emission models for Ag = (2/3)∗AB =
0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red), with the re-radiation
factor f = 1/4 (dashed) and 2/3 (solid). Lower panel: The distribu-
tions for the two parameters of the MCMC run, with the depths from
the reflected light plus thermal emission from the upper panel plotted
as vertical lines. The two fitted parameters are eclipse depth (2.16±1.38
ppm) and continuum offset from zero (-0.14±0.46 ppm).
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Figure 3.17 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the shortened super-Neptune group with the finalized
catalog and false positive probabilities. The binned data are shown as
points. The error bars are the propagated photometric errors. The best
fit curve is the solid black line. Overplotted are the reflected light plus
thermal emission models for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green),
0.3 (orange), and 0.6 (red), with the re-radiation factor f = 1/4 (dashed)
and 2/3 (solid). Lower panel: The distributions for the two parameters
of the MCMC run, with the depths from the reflected light plus thermal
emission from the upper panel plotted as vertical lines. The two fit-
ted parameters are eclipse depth (1.99±1.47 ppm) and continuum offset
from zero (-0.09±0.54 ppm).
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Figure 3.18 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the 1 to 6 R⊕ group with the Feb 2015 catalog,
excluding Kepler-10b. The binned data are shown as points. The er-
ror bars are the propagated photometric errors. The best fit curve is
the solid black line. Overplotted are the reflected light plus thermal
emission models for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green), 0.3 (or-
ange), and 0.6 (red), with the re-radiation factor f = 1/4 (dashed) and
2/3 (solid). Lower panel: The distributions for the two parameters of
the MCMC run, with the depths from the reflected light plus thermal
emission from the upper panel plotted as vertical lines. The two fit-
ted parameters are eclipse depth (2.50±0.62 ppm) and continuum offset
from zero (-0.10±0.24 ppm).
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Figure 3.19 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the shortened 1 to 6 R⊕ group with the finalized cat-
alog and false positive probabilities, excluding Kepler-10b. The binned
data are shown as points. The error bars are the propagated photomet-
ric errors. The best fit curve is the solid black line. Overplotted are
the reflected light plus thermal emission models for Ag = (2/3) ∗ AB =
0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red), with the re-radiation
factor f = 1/4 (dashed) and 2/3 (solid). Lower panel: The distribu-
tions for the two parameters of the MCMC run, with the depths from
the reflected light plus thermal emission from the upper panel plotted
as vertical lines. The two fitted parameters are eclipse depth (2.36±0.71
ppm) and continuum offset from zero (-0.07±0.28 ppm).
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Figure 3.20 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the 1 to 6 R⊕ group for the Feb 2015 catalog, in-
cluding Kepler-10b. The binned data are shown as points. The error
bars are the propagated photometric errors. The best fit curve is the
solid black line. Overplotted are the reflected light plus thermal emis-
sion models for Ag = (2/3) ∗ AB = 0.0 (blue), 0.1 (green), 0.3 (orange),
and 0.6 (red), with the re-radiation factor f = 1/4 (dashed) and 2/3
(solid). Lower panel: The distributions for the two parameters of the
MCMC run, with the depths from the reflected light plus thermal emis-
sion from the upper panel plotted as vertical lines. The two fitted pa-
rameters are eclipse depth (3.26±0.48 ppm) and continuum offset from
zero (-0.10±0.18 ppm).
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Figure 3.21 Upper panel: The averaged light curve, centered on sec-
ondary eclipse, for the shortened 1 to 6 R⊕ group for the finalized cat-
alog and false positive probabilities, including Kepler-10b. The binned
data are shown as points. The error bars are the propagated photomet-
ric errors. The best fit curve is the solid black line. Overplotted are
the reflected light plus thermal emission models for Ag = (2/3) ∗ AB =
0.0 (blue), 0.1 (green), 0.3 (orange), and 0.6 (red), with the re-radiation
factor f = 1/4 (dashed) and 2/3 (solid). Lower panel: The distribu-
tions for the two parameters of the MCMC run, with the depths from
the reflected light plus thermal emission from the upper panel plotted
as vertical lines. The two fitted parameters are eclipse depth (3.09±0.50
ppm) and continuum offset from zero (-0.08±0.20 ppm).
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data using the Feb 2015 groups are plotted versus the average group radius in Figure

3.22, along with the short cadence results. Including Kepler-10b in the short cadence

raised the albedo to Ag = 0.37 ± 0.05. While the albedos found in this chapter are

lower than those I found for the short cadence data, excluding Kepler-10b, the

difference is only 0.12 ± 0.07, and so is consistent within 2σ. A possible explanation

for the lower albedos found here is the greater number of candidates included. The

short cadence analysis only had 31 candidates, plus Kepler-10b, so if any of those

candidates are part of the higher-albedo population of candidates like Kepler-10b,

it would more strongly influence the mean. Also note that, in Figure 3.22, the 1-6

R⊕ long cadence group, including Kepler-10b, contains the most data and therefore

shows greater separation between the f = 1/4 and f = 2/3 thermal models.

There are also eight candidates in my short cadence list that now, with updates

to their parameters since publication of Chapter 2, have radii between 6 and 8

R⊕ (KOIs 356.01 and 1784.01), or have (Rp/a)
2< 10 ppm (KOIs 5.01, 299.01, 505.03,

755.01, 1128.01, and 1805.01). One might expect removing the latter six candidates

from the long cadence sample to increase the average albedo, rather than lower

it, since their maximum eclipse depths would be smaller than expected and thus

appear to have a lower albedo. The albedo does not increase, so perhaps some

of these are part of the higher-albedo population or are false positives. One short

cadence candidate, KOI 2678.01, was eliminated from the long cadence group due

to a high failure rate of the tests in Section 3.3.1, while another, KOI 2700.01, was

not included in the long cadence because of its revised impact parameter.
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Figure 3.22 The geometric albedo is plotted versus the weighted average
radius for the long cadence data for the super-Earth (excluding Kepler-
10b), mini-Neptune, and super-Neptune groups with an asterisk (*), for
the super-Earth group including Kepler-10b with an x, for the 1 to 6 R⊕

group without Kepler-10b with a diamond, and for the 1 to 6 R⊕ group
with Kepler-10b with a triangle. Points in red assume a redistribution
factor f = 1/4, while points in blue assume a redistribution factor of f
= 2/3. Also shown in black are the short cadence results for the 1 to 6
R⊕ without Kepler-10b (square) and with Kepler-10b (dot). The error
bars show the 1σ uncertainty on the albedo. Points with down arrows
instead of error bars (for f = 2/3: the super-Earths without Kepler-10b,
the mini-Neptunes, and 1 to 6 R⊕ without Kepler-10b) represent 3σ
upper limits. The radius range and median albedo for the super-Earths
in Demory (2014) are shown as the solid red (f = 1/4) and solid blue
(f = 2/3) lines. Also included are solar system planets with a black +
(Me = Mercury, V = Venus, E = Earth, J = Jupiter, U = Uranus, and N
= Neptune). Radii for the solar system are taken from Table 1.1, while
the albedos are from Traub & Oppenheimer (2010). Plotted with green
points is a representative sample of the bright and dark hot Jupiters and
Kepler-10b from Table 1.1. Right arrows indicate that the true radius
is larger than plotted. Jupiter and the hot Jupiters are plotted near a
radius of 6 to fit within the plot.
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3.6.5 Comparison to Demory (2014)

The study of 27 long cadence super-Earths by Demory (2014) finds a median

geometric albedo Ag = 0.30 after thermal decontamination, assuming a null Bond

albedo (AB) and efficient heat redistribution, and a median Ag = 0.16 after thermal

decontamination, assuming AB = 0 and no redistribution of heat. While I adopt

AB = (3/2)Ag rather than AB = 0 for thermal removal, this cannot explain my

lower mean albedos. Adopting non-zero Bond albedos means that my equilibrium

temperatures overall are lower, therefore weakening the thermal contribution and

requiring a higher albedo for a given eclipse depth. I instead look to several dif-

ferences in the candidate sample selection to explain my lower albedos. Only two

candidates in my long cadence sample overlap with the sample of Demory (2014).

Kepler-10b is one of the candidates, and the other is KOI 1169.01, which now has a

high false positive probability from Morton et al. (2016). My long cadence sample

is larger, with 56 candidates including Kepler-10b, or 40 for the shortened group

with Kepler-10b, and it is comprised of candidates with fainter host stars and larger

(Rp/a)
2 values. As with the comparison between my short cadence and my long

cadence results, the larger sample size could be a factor, since the error in the mean

should decrease with a larger sample size. Furthermore, the selection cut of Demory

(2014) based on a total albedo uncertainty of less than 1.0 may be preferentially

selecting high-albedo candidates from the lower signal-to-noise stars.
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3.6.6 Biases in the Albedo Due to Averaging

The average albedo is slightly biased toward the objects in the group with

larger (Rp/a)
2. Since I do not know the underlying albedo distribution, I tested

the bias by randomly assigning each candidate an albedo Ag, uniformly distributed

between 0 and 0.6. I calculated the depth of an eclipse the assigned albedo would

produce, using Ag∗(Rp/a)
2 and took a weighted average of the depth and of (Rp/a)

2.

The weights for the average are determined as a sum for each object of its weight in

each phase bin times the weight of the phase bin in the overall fit of the model curve

to the binned data. To mimic how I obtain an average albedo from my average

eclipse depth, I divide the weighted average depth by the weighted average (Rp/a)
2.

I then take a weighted average of the assigned albedos. I repeat this process 100,000

times. The mean fractional difference between the calculated average albedo and

the average assigned albedo for the super-Earth group (excluding Kepler-10b) is

less than 1%, and at worst is 27%. This is less than the error bar on my actual

calculated albedo for the group, so it does not significantly affect the result.

Similarly, the average albedo is slightly biased by objects with larger albedo. I

assigned a random albedo to each object in the group, uniformly distributed between

0 and 0.6. I calculated model eclipses for all the data points, including thermal and

reflected light, for the assigned albedos. I then applied my method for determining

the average albedo to the model eclipses. I performed these calculations 100 times

for each group, for each of the 2 values for heat redistribution. I compared the

results to the weighted average of the known albedos. I found that for f = 1/4, the
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determined average varied from the known average by -1+13
−10% for the 1-2 R⊕ group

(excluding Kepler-10b) and by -1+10
−8 % for the 2-4 R⊕ group, where the error bars

define the central 68% of the trials. For f = 2/3, the determined average varied

from the known average by -4+5
−7% for the 1-2 R⊕ group (excluding Kepler-10b) and

by -4+11
−10% for the 2-4 R⊕ group. I conclude that this source of bias is not significant

to my analysis.

3.6.7 Implications of the Low Albedos

The super-Earths in my sample are sufficiently hot that they likely have, at

most, a tenuous atmosphere dominated by vaporized sodium (e.g. Castan & Menou,

2011; Kite et al., 2016; Miguel et al., 2011; Schaefer & Fegley, 2009). I may in some

cases be seeing bare surfaces. While I have determined that super-Earths, on aver-

age, appear to have low albedos, there is a subset of higher-albedo planets (Demory,

2014), including Kepler-10b (Batalha et al., 2011), which appear to be bright. The

low-albedo hot super-Earths likely have no clouds present, and the measured albedo

is of the surface. Three potential scenarios could explain the subset of higher albedos:

embedded higher-albedo particulates in a lava ocean surface, clouds, and thermal

inversions. The lava ocean scenario proposed by Léger et al. (2011) for CoRoT-

7b would have a Bond albedo less than 0.1 if made mostly of pure Al2O3, but

Rouan et al. (2011) propose that solid particles of ThO2 floating in the lava ocean,

depending on particle size, could produce an overall Bond albedo for the lava ocean

of nearly 0.50, which could help to explain the unusual brightness of Kepler-10b.
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Alternatively, under certain conditions, the tenuous sodium atmospheres could sup-

port the formation of silicate clouds (e.g. Castan & Menou, 2011; Miguel et al., 2011;

Schaefer & Fegley, 2009), which would have higher albedos. Cloud properties and

coverage would depend on many factors, including composition, particle size, and

winds, which would explain the existence of the bright and dark populations in

similar temperature regimes. Silicates in the atmosphere could also absorb UV and

visible light and lead to a thermal inversion (Ito et al., 2015), producing emission

lines that would then make the secondary eclipse deeper than expected from just the

combination of reflected light and thermal emission at the equilibrium temperature.

The mini-Neptunes and super-Neptunes should have substantial atmospheres.

Hot Jupiters were expected to show a range of albedos depending on temperature

(Sudarsky et al., 2000), depending on the type of clouds that could form and their

location in the atmosphere. Kepler-7b and Kepler-12b are good examples of the

complex nature of cloud formation and properties. Despite both planets receiving

similar amounts of light from their stars, Kepler-7b is relatively bright, with Ag ≈

0.35 and shows evidence for cloud coverage that varies with longitude; Meanwhile,

Kepler-12b is dark, with Ag = 0.08, and shows no evidence for longitudinal variation

(Heng & Demory, 2013, and references therein).

The consistency of the average albedo across the three size groups considered

here, as well as with the hot Jupiters studied in the literature, suggests that most of

these hot planets have minimal or no cloud coverage. The known outliers in albedo,

however, demonstrate the complex and important role of cloud formation.
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3.7 Chapter 3 Summary

I apply the averaging technique used in Sheets & Deming (2014) to long ca-

dence Kepler data, for three radius groups: 1-2 R⊕, 2-4 R⊕, and 4-6 R⊕. I find that

all three groups are similarly dark, with average geometric albedos of 0.11±0.06,

0.05±0.04, and 0.11±0.08, respectively, if heat is completely redistributed. In the

case of instantaneous re-radiation, there is a larger thermal contribution to the

eclipse depths, making the geometric albedo even lower. The albedo results are

summarized in Table 3.3. These average albedos are slightly lower than the average

albedo I found using short cadence data, and are similar to some of the dark hot

Jupiters. As with bright hot Jupiters like Kepler-7b, there are outliers at higher

albedo for super-Earths, too. The simplest solution therefore is that a similar mech-

anism may be at work to create the outliers across the range in radius. Such a

mechanism may be silicate clouds, which are postulated for high temperature at-

mospheres across a wide range of pressures (Helling et al., 2016). Given the low

average albedo, though, these clouds must be somewhat uncommon.
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Table 3.3. Albedo Results

Candidate # of total # of Eclipse Depth Ag Ag

Group Candidates eclipses (ppm) (f = 1/4) (f = 2/3)

Super-Earths
Feb 2015 w/o Kepler-10b 55 79,678 2.44 ± 0.99 0.11 ± 0.06 < 0.17a

Shortened, w/o Kepler-10b 39 50,805 2.63 +1.13
−1.14 0.11 ± 0.06 < 0.17a

Feb 2015 w/ Kepler-10b 56 80,492 3.56 ± 0.65 0.19 ± 0.04 0.04 ± 0.07
Shortened, w/ Kepler-10b 40 51,597 3.56 ± 0.67 0.19 ± 0.04 0.02+0.07

−0.08

Mini-Neptunes
Feb 2015 38 22,677 2.42 ± 0.76 0.07 ± 0.03 < 0.04a

Shortened 28 13,580 1.69 ± 0.85 0.05 ± 0.04 < 0.07a

Super-Neptunes

Feb 2015 16 4,572 2.16+1.37
−1.38 0.12 ± 0.08 0.09 ± 0.08

Shortened 13 3,574 1.99+1.37
−1.38 0.11 ± 0.08 0.09 ± 0.09

a3σ upper limit.
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Chapter 4: Refraction and Future Work

4.1 Background

Refraction of light through a planet’s atmosphere depends on the scale height

of the atmosphere. As with transmission spectroscopy, the refraction effect is

stronger in large-scale-height atmospheres, and thus in low-mean-molecular-weight

atmospheres. The scale height H of the atmosphere is given by

H =
kBT

µg
(4.1)

where kB is the Boltzmann constant, T is the temperature of the planet’s atmo-

sphere, µ is the mean molecular weight of the atmosphere, and g is the planet’s

surface gravity. For any given group of planets, detecting strong refraction suggests

atmospheres which are typically cloud-free and H2-rich, while detecting weak or no

refraction suggests the hazy or high mean molecular weight models. The refraction

effect is most obvious in the light curve just before first contact and just after last

contact, creating shoulders on the transit, above the continuum flux level.

Early work by Hui & Seager (2002) modeled the effect of refraction on the

shape of the transit of extrasolar planets, building on a technique used to probe

the atmospheres of planets in our own solar system as they occult other stars (e.g.
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Elliot & Olkin, 1996, and references therein). The authors concluded that, when the

viewing geometry and atmospheric parameters are right to produce refraction, addi-

tional flux is removed from the light curve during transit, and the effect is strongly

wavelength-dependent due to Rayleigh scattering and atmospheric aborption lines.

Sidis & Sari (2010) then modeled the refraction of light through the atmo-

sphere of a transparent planet, during and just outside of transit, without and with

Rayleigh scattering in the atmosphere included. Refraction produces an illuminated

crescent within the atmosphere of the planet outside of transit, which is an image

of the host star. This illuminated crescent adds to the total light in the light curve

near transit. The light curve produced by the Sidis & Sari (2010) model without

scattering, shown in Figure 4.1, looks quite like the light curve produced for opaque

planets with the same parameters, with the overall depth of the transit reaching the

expected (Rp/R∗)
2. There are two slight differences, however. First, the modest

brightening just before and just after transit produced by refraction is apparent in

the light curve as small shoulders just outside first and last contact (X = 1+(Rp/R∗)

and X = −1− (Rp/R∗), where X is the projected distance on the sky of the center

of the planet from the center of the star, in units of stellar radius). Second, the

bottom of the transit is slightly rounded. This rounding mimics the rounding of the

transit seen in opaque planet transits due to limb-darkening of the star, but here it

is due only to refraction. The Sidis & Sari (2010) model does not take into account

limb-darkening.

Refracted light has been seen during the transits of Venus. Pasachoff et al.

(2011) presented images of the 2004 transit taken with NASA’s Transition Region
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Figure 4.1 Figure 4 from Sidis & Sari (2010), which shows the light curve
for a star and a transiting transparent planet, including refraction by
the planet’s atmosphere and excluding stellar limb-darkening. The X
coordinate is the distance between the planet center and star center,
projected on the sky, in units of stellar radius. The parameters for
the system here are somewhat non-realistic, to exaggerate the refraction
effect to make it visible.
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And Coronal Explorer, or TRACE, satellite, and Tanga et al. (2012) developed the

first framework to analyze and measure the refraction effect in these images as well

as in ground-based imaging. Tanga et al. (2012) also developed a model of the

refraction to determine how the cloud-top altitude and scale height of the atmo-

sphere vary with latitude. Garćıa Muñoz & Mills (2012) also included refraction

in their modeling of the interaction of sunlight with the atmosphere of Venus in

preparation for observations of the 2012 Venus transit. While the images and anal-

ysis of Pasachoff et al. (2011) and Tanga et al. (2012) focused on ingress and egress,

Garćıa Muñoz & Mills (2012) developed the model further to include out-of-transit

and in-transit predictions as well.

Refraction also limits the altitude to which a super-Earth atmosphere can be

probed during transit by transmission spectroscopy. Garćıa Muñoz et al. (2012) fur-

ther investigated the effects of refraction on transmission spectra by modeling lunar

eclipse spectra, since the illumination of the Moon during umbral eclipse is due to

sunlight that has refracted through Earth’s atmosphere. The authors found that the

Earth’s radius, if measured in transit from outside the solar system, varies by about

12 km over the course of the transit due to refraction effects, and that the lowest 12

to 14 km of the Earth’s atmosphere cannot be probed by transmission spectroscopy

at mid-transit due to refraction. Misra et al. (2014) and Bétrémieux & Kaltenegger

(2014) also modeled the effects of refraction on transmission spectra and pointed out

that in general, Earth-like planets in the habitable zone around Sun-like stars can

only be probed to very low pressures, around 0.3 bar, at mid-transit, because rays

from the star passing lower in the atmosphere are bent out of the line of sight to the
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observer (see Figure 4.2). Both studies also concluded that Earth-like planets in the

habitable zones of the coolest stars could be probed to much higher pressures, nearly

1 bar. The refraction effect just outside of transit, however, can probe these higher

pressures for the habitable zones around Sun-like stars (Misra et al., 2014). Thus,

looking for refracted light in spectra when the planet is just outside of transit may

be the only way to properly determine the compositions of these types of planets.

Lastly, as Misra & Meadows (2014) point out, using a broad bandpass mea-

surement of refracted light just outside of transit offers a relatively fast way of

determining whether an individual candidate is a good target for transmission spec-

troscopy. While Kepler candidates are for the most part orbiting stars too faint for

spectroscopic follow-up, upcoming missions such as TESS (Ricker et al., 2015) and

PLATO (Rauer et al., 2014) will find candidates around brighter stars. A broad

bandpass measurement of refraction outside of transit can be acquired with much

less telescope time than required for a transmission spectrum, thus preventing a

significant investment only to determine that the transmission spectrum cannot be

measured due to clouds or haze.

Refracted light is therefore a useful tool to develop for the study of exoplanet

atmospheres. Sidis & Sari (2010) provide analytic approximations to their numerical

models for two regimes: near transit and far from transit. They also provide ex-

pressions to modify the refraction effect for basic Rayleigh scattering in the planet’s

atmosphere. The predicted effect of the refraction for Super-Earths is a peak bright-

ening of 10 to 140 ppm just outside transit, assuming a predominantly molecular

hydrogen composition and a density comparable to that of GJ 1214b. Tanga et al.
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Figure 4.2 Adapted from Misra et al. (2014). This diagram shows where
star light for this Earth-Sun analog is transmitted through the planet’s
atmosphere to the observer. Outside of transit, light is refracted through
the atmosphere to the observer through the colored portion. During
transit, light is refracted away from the observer, which is shown as the
white region, while light passing through the colored region reaches the
observer. Thus outside of transit, refraction increases the overall light
from the system and probes only the lower layers of the atmosphere,
and, during transit, refraction limits how deeply into the atmosphere
transmission spectroscopy can probe.
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(2012), on the other hand, include a variable opaque layer when modeling the obser-

vations of the transit of Venus. Assuming no clouds, their model for Venus predicts

an effect of roughly 1.6 ppm at maximum brightness, compared to the Sidis & Sari

(2010) prediction of 1.9 ppm. The Tanga et al. (2012) model, however, makes fre-

quent use of the distance between Earth and Venus, which becomes infinity when

considered for an exoplanet transit, so it is not entirely applicable to my purpose.

4.2 Averaging the Data

The Sidis & Sari (2010) refraction model predicts a brightening of, at most,

roughly 100 ppm. The maximum brightness is achieved just before 1st contact and

just after last contact, and the maximum lasts for a very short time. The short

duration requires that I use short cadence data (58.85 s cycle) from Kepler, and the

small signal makes it difficult to detect by averaging transits from individual planet

candidates. Considering only individual candidates also introduces the possibility of

being mislead by false positives. Thus I add together transits from multiple planet

candidates with similar physical characteristics to improve the signal to noise as well

as statistically characterize the group of candidates.

Since I expect the brightest signal to be at shoulder just outside of first and

last contact, I want to add together the shoulder for each planet in such a way that

the shoulders stack on top of each other. I do this by first changing the time of

the observation to orbital phase for the data point for the candidate, and then I

transform from phase to the projected distance X on the sky between the planet
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center and the star center, in units of the host star radius. First and last contact

occur at X = −1 − (Rp/R∗) and X = 1 + (Rp/R∗). I then pick as a reference

the candidate with the largest value of Rp/R∗, and I linearly transform X for each

observation to that reference, stretching the light curve in X so that first and last

contact occur at the same value of the transformed X for each candidate. Figure

4.3 shows an example of this process, where the black points are plotted for the

original X of the candidate, and the red points are plotted for X transformed to the

reference candidate. The solid, vertical lines are the position of X = 1 + (Rp/R∗)

for the original X (black) and the transformed X (red).

To further prepare the transits for stacking, I normalize the individual transits

of each candidate in a chosen group first by dividing by the average, out-of-transit

flux of the star in each data file, and then I fit a line across a small region around the

transit, excluding the transit, and divide by the line. Thus the transits all have a

continuum of 1. I eliminate candidates that have 1−b− (Rp/R∗) < 0, where b is the

impact parameter of the transit, because Batalha et al. (2013) note that such cases

are more likely to be false positives. I also automatically eliminate transits which

suffer from systematic effects from the Kepler instrument, as well as poor linear fits

due to short-time-scale variations of the host star. I also check each candidate by

eye to ensure there are no anomalies that make it past the automatic screening.

I combine all the individual transits of all the candidates in the group by bin-

ning in transformed X with bin sizes of 0.1, weighting the data by their uncertainties.

Figure 4.4 shows the result of combining 318 transits from 10 planet candidates with

equilibrium temperatures (assuming an albedo of 0.3, as in the Kepler candidate ta-
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Figure 4.3 This figure shows the transform from X of an individual can-
didate (black points) to the reference value of 1 + (Rp/R∗) (red points),
so that the shoulders of the transits stack up at the same value of X. The
vertical, solid lines mark the value of X = 1 + (Rp/R∗) for the actual
candidate (black), in this case Jupiter-sized KIC 10748390, and for the
reference candidate (red).
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Figure 4.4 This figure shows the weighted average light curve of 318
transits for 10 planet candidates with radii between 0.8 and 3 R⊕ and
equilibrium temperatures between 300 and 400 K. The expected refrac-
tion signal, in green, has a peak value of 76 ppm, while the error bars on
the points are 25 ppm near the transit. The error bars on the points are
the propagated photometric uncertainties. The blue line is the transit
model with no refraction (and no stellar limb darkening), while the red
line indicates the continuum flux level.

ble) between 300 and 400 K. These 10 candidates have radii between 0.8 and 3 R⊕.

The error bars on the points are the propagated errors from the uncertainties on the

photometry. The error bars nearest the transit are ±12.5 ppm, while the expected

signal, calculated from the Sidis & Sari (2010) model including Rayleigh scattering,

shown in green, peaks at 76 ppm.
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4.3 Modeling Refraction

The result thus far suggests that these 10 planets do not have the expected re-

fraction effect from Sidis & Sari (2010), which could be due to clouds or a high mean

molecular weight atmosphere. The planets studied at secondary eclipse in Chapter

2 and Chapter 3 were close-in and very hot, with minimum equilibrium tempera-

tures generally above 700K, and likely to be much hotter than the minimum, given

the low average albedos. The planets I consider here are cooler, between 300K and

400K (see Figure 4.4). At high temperatures, fewer materials can condense to form

clouds. Wakeford & Sing (2015) tabulated the condensation temperatures of ex-

pected condensates for hot Jupiters as well as solar system planets and considered

the effects of those condensates on transmission spectra. Above 700 K, condensates

are typically high molecular weight compounds containing heavy elements like mag-

nesium, silicon, and iron. At lower temperatures, clouds can form from water and

other hydrogen compounds like methane (CH4) and ammonia (NH3). Given the

larger pool of potential cloud particles at cooler temperatures, it is plausible that,

while hot sub-Saturns appear on average to be clear, their cooler counterparts may

show the opposite behavior and commonly support cloud formation.

The lack of the expected refraction, however, could also mean that the Sidis & Sari

(2010) model is just too simplistic. Thus I began developing a light curve model

with the aim of accounting for refraction in the case of realistic opacities, for varying

atmospheric compositions, and possible opaque cloud layers.

My model thus far starts from the stellar occultation model of Baum & Code
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(1953), shown in Figure 4.5. I assume that the rays detected by the observer are

those that emerge from the atmosphere of the planet parallel to the line of sight.

I start with a grid of rays, spaced by 0.1 km, and I count how many rays would

intercept the star (nN ), if there were no refraction through the atmosphere. I then

determine the refraction angle of a ray emerging from the atmosphere of the planet

at each location of the grid, and the refracted rays are traced back to the plane of

the star. The refraction angle is given by Equation 6 of Baum & Code (1953):

θ ≃ (2πr0a)
1/2(n0 − 1)e−a(r1−r0), (4.2)

where a = 1/H , n0 is the refractive index at radius r0, and r1 is the radius of

closest approach to the planet center for the ray. Rays that hit the star are counted

(nR), and the brightening due to refraction is then nR/nN - 1. The model currently

treats the planet and star as one-dimensional lines, rather than as spheres. Figure

4.6 shows the side view of the planet-star system. The size of the planet has been

exaggerated for this plot, in order to better show the planet’s position. The purple

dashed lines represent the span of rays that pass above the planet and trace back to

the surface of the star, after being refracted in the planet’s atmosphere. These rays

add light to the light curve, because they would not intersect the star in the case of

no refraction.

To test this model, I compared the result for Venus’s parameters (ignoring the

clouds) to the expected values of Sidis & Sari (2010) and Tanga et al. (2012). I have

assumed, for the refraction angle of Baum & Code (1953) for the Venus case, that

the mean molecular weight is that of CO2, 44.01 amu, and an index of refraction
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Figure 4.5 Shown is Figure 3 from Baum & Code (1953). For a stellar
occultation by Jupiter, the rays from the star come from infinity (left),
so they are parallel until being refracted through Jupiter’s atmosphere.
The rays then diverge before reaching the observer at Earth (right).
For the exoplanet case, I assume that the rays leave the star (right),
and some rays are refracted through the atmosphere of the planet. The
rays detected by the observer (left) are those that leave the planet’s
atmosphere parallel to the line of sight.
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Figure 4.6 Shown is the side-view of the star-planet system in my one-
dimensional refraction model. The planet is represented by the blue
vertical line, while the star is the red vertical line. The distance between
the star and planet in this plot is not to scale. The planet is 7 times
the radius of Venus, making the planet easily visible in the plot, and the
mass is 16 times that of Venus, giving the planet a bulk density of about
1 g cm−3. This radius is much larger than the expected cutoff for rocky
planets, and the bulk density too low, but I choose it here for illustration
purposes. The center of the planet is at y = 0, while the center of the
star is at y = −1.061, where the y-axis is in units of the stellar radius.
This puts the lower solid limb of the planet at y = −0.0609 and the
upper limb of the star at y = −0.0610, with a ray spacing of less than
2×10−7. The blue dotted lines represent the span of rays that would be
blocked by the solid planet. In this particular arrangement, these rays
would not intersect the star if the planet were not there, so there is no
loss of light due to the solid planet. The blue dashed lines represent the
uppermost and lowest, in the y direction, rays that intersect the star.
The purple dashed lines represent the span of rays that pass through the
planet’s atmosphere, above the solid planet, and are refracted downward
to intersect the star. These rays add light to the light curve, since they
would not otherwise intersect with the star.
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of 1.00044, for CO2 at 0◦ C and 1 atm (e.g. Misra & Meadows, 2014). Sidis & Sari

(2010) and Tanga et al. (2012) predict a peak effect of approximately 2 ppm, whereas

my model predicts 20 ppm. The resulting light curve is shown in Figure 4.7. My

model predicts a higher value because of its one-dimensional nature. Since the 20

ppm effect is calculated by dividing the number of rays that intersect the star with

refraction (nR) by the number of rays that hit the star without refraction (nN), if

one increases nN without significantly increasing nR, the effect will be diminished.

For spherical planets, the refraction effect produces the most light along the equator,

where the one-dimensional model is essentially counting rays, and toward the poles

the effect is weaker to non-existent. This can be seen in Figure 4.2, where the

colored portion of the planet’s atmosphere when outside of transit is the region

refracting light to the observer. Therefore, if I were including the spherical star and

the spherical planet, there would be many more rays counted for nN , but a much

smaller increase in nR.

4.4 Future Work

The next steps in the search for refracted light in exoplanet atmospheres are

to continue improving the model and to improve the averaged data by adding can-

didates and by applying the more sophisticated screening procedures developed in

Chapter 2 and Chapter 3 to the sample. I need to define how strong the sig-

nal should be for different atmosphere compositions, such as those suggested by

Howe & Burrows (2012), as well as how different types of clouds can influence
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Figure 4.7 Shown is the light curve from my one-dimensional refraction
model for a cloud-free Venus. The x-axis is the position of the center of
the star relative to the center of the planet, in units of the stellar radius.
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the signal. Collaborators Amit Misra and Victoria Meadows have developed a

more sophisticated treatment of refraction, detailed in Misra & Meadows (2014)

and Misra et al. (2014). Their code not only treats the planet and star as spheres,

but also follows the path of a light ray through the atmosphere for a range of tangent

altitudes. Rather than the estimated angle of refraction from Baum & Code (1953),

the total refraction angle is calculated by integrating a set of differential equations

at each point along the ray’s path, from entry into the atmosphere to exit. The

Misra & Meadows (2014) code allows the setting of an arbitrary cutoff altitude (as

a maximum atmospheric pressure that can be probed) to simulate clouds or hazes,

with the value of that altitude (i.e. pressure) to be set depending on the type of

cloud or haze being simulated. The atmosphere can be modeled layer by layer,

instead of the isothermal, constant-scale-height assumption I used in my initial at-

tempts. Furthermore, my collaborators have a line-by-line radiative transfer code

which models transmission spectra through atmospheres of various compositions

and planet types which has been updated to include refraction (Misra et al., 2014).

I can use this code to create a spectrum with realistic opacities due to spectral

features, and integrate over the Kepler bandpass to check the Misra & Meadows

(2014) models, which do not incorporate spectral line information. I would like

to validate the use of refracted light using Kepler to show whether, on average,

cooler super-Earths and mini-Neptunes are clear-sky, hydrogen-dominated atmo-

spheres amenable to transmission spectroscopy, or are cloudy, hazy, or dominated

by high-mean-molecular-weight species.

In addition to improving the model for the predicted refraction signal, I can
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also improve our averaged light curves. Since the first attempts, the Kepler catalog

has not only added more planet candidates, but also improved the parameters for

those candidates and their host stars. I can also improve the averaged light curves

by incorporating more of the noise tests and normalization techniques developed in

Chapters 2 and 3.

With a solid model and a larger, cleaner sample, my postdoctoral research

will either detect refracted light in Kepler data for the first time, or my work will

confirm the preliminary result that cooler planets typically are more cloudy than

their hotter counterparts.
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Chapter 5: Summary of the Thesis

In this thesis, I use the wealth of sub-Saturn (less than 6 R⊕) planet candidates

in the Kepler Mission catalog and data archive to determine the average secondary

eclipse depth for groups of small, close-in candidates, by averaging many candidates

with similar size and orbital characteristics. The average albedo is determined from

the average secondary eclipse, giving insight into the atmospheres of the planets.

My results are the best constraint to date on the reflectivity of these small, hot

planets. My averaging technique provides the necessary signal-to-noise to detect

the small signal of the secondary eclipse. The method also prevents biasing of the

result by false positives and outliers by not allowing them to dominate the result.

I detected a secondary eclipse depth of 3.83+1.10
−1.11 ppm for a group of 31 sub-

Saturn ( < 6 R⊕) planet candidates in short cadence with the greatest potential for

a reflected light signature ((Rp/a)
2 > 10 ppm). Including Kepler-10b in this group

increased the depth to 5.08+0.71
−0.72 ppm. Kepler-10b is a special case, due to its host

star being several magnitudes brighter than the hosts of the other candidates in the

sample. I also find, for a control group with (Rp/a)
2 < 1 ppm, a depth of 0.36 ± 0.37

ppm, consistent with no detection. The control group demonstrates that my method

is not introducing spurious eclipse signals. I also analyze the light curve of Kepler-
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10b and find an eclipse depth of 7.08 ± 1.06 ppm. If the eclipses are due solely to

reflected light, this corresponds to a geometric albedo of 0.22 ± 0.06 for the group

of close-in sub-Saturns, 0.37 ± 0.05 if including Kepler-10b in the group, and 0.60 ±

0.09 for Kepler-10b alone. Including a thermal emission model does not change the

geometric albedo appreciably, adopting AB = (3/2)∗Ag. The result for Kepler-10b is

consistent with previous works by other authors (e.g. Batalha et al., 2011; Demory,

2014; Fogtmann-Schulz et al., 2014; Rouan et al., 2011). The result for close-in sub-

Saturns shows that Kepler-10b is unusually reflective, but the analysis is consistent

with, if a little lower than, the results of Demory (2014) for super-Earths. The

results also indicate that hot Neptunes may typically be more reflective than hot

Jupiters.

Applying the averaging method to long cadence data, I detect an average sec-

ondary eclipse depth of 2.44 ± 0.99 ppm for a group of 55 close-in, 1 to 2 R⊕ can-

didates, and a depth of 2.63 +1.13
−1.14 ppm for a subset of 39 of these candidates. These

depths both correspond to a geometric albedo Ag = 0.11 ± 0.06 in the case of com-

plete redistribution of heat. I set an upper, 3σ limit of Ag < 0.17 in the case of

instantaneous re-radiation, since the measured depths correspond to an unphysical,

negative value for albedo. The original group of 55 candidates contains objects that

are now known to be, or suspected to be, false positives, while the subset of 39 is

the outcome of removing these suspect candidates. I include the results from the

original group as well as the “cleaned” subset to demonstrate that the determined

albedo is robust to the unintentional inclusion of a few false positives. For a group

of 38 close-in, 2 to 4 R⊕ candidates, I detect an average secondary eclipse depth of
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2.42 ± 0.76 ppm, which corresponds to Ag = 0.07 ± 0.03 for full heat redistribution.

Again, only an upper limit can be set for the case of instantaneous re-radiation, but

it is much lower than the super-Earths: Ag < 0.04. A subset of 28 candidates, with

suspected false positives removed, gives an average secondary eclipse depth of 1.69

± 0.85 ppm, which corresponds to Ag = 0.05 ± 0.04 for full heat redistribution,

again demonstrating that the results are robust against inclusion of a few potential

false positives. For a group of 16 close-in, 4 to 6 R⊕ candidates, I find an average

secondary eclipse depth of 2.16+1.37
−1.38 ppm, meaning a geometric albedo Ag = 0.12 ±

0.08 for full heat redistribution and Ag = 0.09 ± 0.08 for instantaneous re-radiation.

Removing suspected false positives gives a group of 13 candidates with an average

secondary eclipse depth of 1.99+1.37
−1.38 ppm, which corresponds to Ag = 0.11 ± 0.08

for full redistribution of heat and Ag = 0.09 ± 0.09 for instantaneous re-radiation.

The albedos I find in long cadence are slightly lower but consistent with the albedo

I find in the short cadence data. I find an average albedo for super-Earths that are

lower than the study of Demory (2014), which may be due to differences in sample

selection. There are bright outliers such as Kepler-10b in the super-Earth category,

but also for larger, close-in planets in the literature. The low average albedo across

the radius bins, which is also consistent with the albedo of the population of dark,

hot Jupiters, suggests that on average, hot, close-in planets are cloud-free, and that

a common mechanism, such as silicate clouds, is at work to provide the subset of

these planets found to have higher albedo. For the smallest planets, less than 2 R⊕,

the two populations of dark and bright planets could also be indicative of conditions

on the surface, possibly a lava ocean with embedded particulates that could boost
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the reflectivity of the lava (see references in Sections 2.6 and 3.3.7).

Lastly, I apply the averaging method to the transits of a group of 10 Kepler

candidates between 0.8 and 3 R⊕, and equilibrium temperatures between 300 and

400 K, to look for the refraction signal just before and just after transit. The simple

model of Sidis & Sari (2010) suggests a refraction signal with peak strength of 76

ppm, which is not seen in the Kepler data. I discuss the initial development of a

more detailed model for the refraction effect, allowing for different atmosphere com-

positions and the presence of clouds and hazes. I lay out plans for further developing

the model with collaborators (Misra & Meadows, 2014) as part of my postdoctoral

research, as well as testing it against the SMART line-by-line radiative transfer code

for transmission spectra, including refraction, developed by Misra et al. (2014). I

also plan to increase the number of candidates included in the groups in the Kepler

data analysis, due to improvements in the catalog since the original group average

was created. I further plan to improve the average of the data by adapting and

applying the refined noise tests from the secondary eclipse studies.
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