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Automatic classification of non-stationary radio frequency (RF) signals is of 

particular interest in persistent surveillance and remote sensing applications. Such 

signals are often acquired in noisy, cluttered environments, and may be characterized 

by complex or unknown analytical models, making feature extraction and 

classification difficult. This thesis proposes an adaptive classification approach for 

poorly characterized targets and backgrounds based on sparse representations in non-

analytical dictionaries learned from data. Conventional analytical orthogonal 

dictionaries, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for 



 

 

classification of non-stationary signals, as they provide a rigid tiling of the time-

frequency space, and are not specifically designed for a particular signal class. They 

generally do not lead to sparse decompositions (i.e., with very few non-zero 

coefficients), and use in classification requires separate feature selection algorithms. 

Pursuit-type decompositions in analytical overcomplete (non-orthogonal) dictionaries 

yield sparse representations, by design, and work well for signals that are similar to 

the dictionary elements. The pursuit search, however, has a high computational cost, 

and the method can perform poorly in the presence of realistic noise and clutter. One 

such overcomplete analytical dictionary method is also analyzed in this thesis for 

comparative purposes. The main thrust of the thesis is learning discriminative RF 

dictionaries directly from data, without relying on analytical constraints or additional 

knowledge about the signal characteristics.  A pursuit search is used over the learned 

dictionaries to generate sparse classification features in order to identify time 

windows that contain a target pulse. Two state-of-the-art dictionary learning methods 

are compared, the K-SVD algorithm and Hebbian learning, in terms of their 

classification performance as a function of dictionary training parameters. 

Additionally, a novel hybrid dictionary algorithm is introduced, demonstrating better 

performance and higher robustness to noise. The issue of dictionary dimensionality is 

explored and this thesis demonstrates that undercomplete learned dictionaries are 

suitable for non-stationary RF classification. Results on simulated data sets with 

varying background clutter and noise levels are presented. Lastly, unsupervised 

classification with undercomplete learned dictionaries is also demonstrated in satellite 

imagery analysis.  
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1. Introduction 

Detection and analysis of transitory electromagnetic (EM) signatures is 

important for persistent surveillance applications and remote sensing applications 

(e.g., lightning research). Current detection and classification systems are mostly 

tailored for stationary signals, and as such are likely to misinterpret transients as 

noise. In contrast, this thesis will focus on automatic classification of signals with 

high pulse-to-pulse variability. Such EM signals can exhibit both discrete and 

continuous dynamical behavior, e.g., trains of intermittent frequency-hopping or 

chirping pulses, combined with continuous time-varying emissions during a single 

pulse. The EM-generating process may persist over a wide range of time scales, and 

usually occurs in the presence of additive white noise and structured clutter, including 

emissions from similar sources. Robust detection and discrimination methods are 

therefore essential. Detection of such nonstationary, poorly characterized target 

signals against a complex, nonstationary background presents challenges for standard 

detection and classification approaches. 

Extracting classification features of a radiofrequency (RF) signal typically 

relies on knowledge of the application domain in order to find feature vectors unique 

to a signal class and robust to background noise. Conventional localized data 

representations using fixed orthonormal dictionaries, such as a short-time Fourier 

basis [1] or a Best Orthonormal Basis [2] selected from a wavelet packet 

decomposition, can be suitable for analyzing some types of signals, but not others. 
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Successful classification of underwater acoustic transients using Daubechies wavelets 

[3] is a good demonstration of the advantage of wavelet analysis in the presence of 

white noise background. In contrast, using an optimized wavelet representation for 

space-based RF transient signal classification in the presence of a more complex 

background [4] has produced unsatisfactory results.  

Fixed orthonormal (or complete) dictionaries do not usually lead to sparse 

decompositions for all types of signals, and require separate feature selection 

algorithms, resulting in additional computational overhead. The feature vector can be 

very sparse for one category of signal (e.g., constant frequency emitter using a 

Fourier basis), but dense for another (e.g., chirped pulse using a Fourier basis). One 

alternative is to employ a carefully chosen, redundant (or overcomplete) dictionary, 

from which we may be able to obtain sparse representations of data using a matching 

pursuit [5]. An example of an overcomplete dictionary with higher representation 

flexibility for RF signals is the chirped Gabor wavelet dictionary [6], which can be 

used in conjunction with the fast-ridge pursuit of [7], and will be further explored in 

Chapter 3. The resulting dictionary elements (also called atoms) can represent both 

pulses and CW signals in very few atoms from the dictionary [8].  

A fixed dictionary of parameterized, closed-form atoms, whether complete or 

overcomplete, requires assumptions about the signal data which are not realistic in 

most applications. Learned or adaptive dictionaries avoid this constraint and lead to 

new methods described later in this work (Chapters 4 and 5). Initially introduced by 

Olshausen and Field [9] for modeling the mammalian visual cortex, the idea of 
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learning a dictionary directly from data has gained momentum in the image 

processing field. Coding theory and biologically inspired algorithms have been 

explored [9-12] to learn dictionaries for sparse representation of image edges and 

textures, panchromatic satellite imagery, and to model the visual cortex [13]. These 

learned dictionaries have led to significant improvements in image representation, 

classification, and image restoration. Recently, Mairal [14] has proposed learning 

overcomplete, non-parametric dictionaries optimized both for representation and 

classification of images.  

In this thesis, the learned dictionary techniques are extended to RF data and 

results are presented demonstrating classification performance on a simulated data 

set. Both undercomplete and overcomplete dictionaries with respect to the dimensions 

of the input vectors are investigated. The goal is to identify the presence and capture 

the dynamic behavior of a chirped pulse target emitter while remaining robust to 

varying levels of background clutter and noise; that is, analysis time windows must be 

classified according to whether they contain a target pulse (ON) or not (OFF). A 

Hebbian learning algorithm is examined and compared to the K-SVD algorithm [10] 

in terms of how their respective learned elements (i.e., RF features) perform in 

classification, as a function of learning iterations and dictionary size. After building 

dictionaries of RF features with the two methods, their classification performance is 

compared using Skretting and Husøy’s minimum residual (MR) classifier, originally 

introduced for texture classification [15]. The research focus is understanding the 

learning process and, more specifically, learning the discriminating RF features. The 
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quality of signal reconstruction is not a priority, although it will indirectly be 

evaluated in the course of the research. Rather, the performance metric of choice is 

classification accuracy. Much of the work in this dissertation has been included in 

[16-18]. Secondly, although the primary dissertation work is focused in the RF 

domain, the findings are used to generalize the undercomplete learned dictionary 

approach and extend it to unsupervised classification in multispectral imagery [19, 

20]. 

1.1 Simulation environment 

The majority of the work in this thesis is evaluated on representative synthetic 

RF data. The set of test conditions for the synthetic data was chosen to match the 

parameters (e.g., sampling rate, time resolution, frequency resolution) and challenges 

(e.g., abundance and magnitude of clutter) of actual measurements. The simulated 

data set consists of a target signal that operates intermittently (alternating ON/OFF 

states), emitting linearly chirped pulses at a base frequency of 220 kHz and pulse 

duration equal to 5 ms. This is a signal in the low range of RF, but methodologies of 

classifying signals are frequency scalable, meaning the mathematical treatment is the 

same (but more samples and computation are required). Given that many real-world 

classification problems will be in the UHF (400MHz) to microwave regions (4 GHz), 

some of the methods proposed in this thesis remain practical in terms of computation 

time for analysis of these real world signals. To aid with computation, high frequency 
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signals can be down-converted to lower frequency by mixing the data signal with a 

local oscillator. 

Three target amplitudes are considered: high, mid, and low, with 

corresponding SNR 3:1, 1:1, and 0.3:1. The background is modeled as a superposition 

of additive white Gaussian noise and clutter, consisting of several continuous wave 

(CW) signals and a competing linear chirp pulse emitter. This competing emitter 

operates at a base frequency close to or within the target spectrum region, and has 

characteristic time scales for pulse duration and pulse spacing similar to the target 

emitter. Three different pulsed emitter cases are considered and labeled below for 

reference throughout the following chapters, each simulating increasingly complex 

data: 

 

• Linear chirp pulse emitter, start frequency far from the end-of-chirp 

target frequency (Far CP) 

• Constant frequency pulse emitter, within the target spectrum (Flat CP) 

• Linear chirp pulse emitter, with the same target frequency and different 

chirp rate (Chirped CP) 

 

Figure 1.1 shows a sample waveform from Chirped CP data. The CW and 

chirped clutter signals have amplitudes equal to or greater than that of the target, and 

they span a frequency range of 30 kHz – 490 kHz, as illustrated in Figure 1.2. The 

phases of each pulse emitter are uncorrelated; the clutter therefore is non-stationary 
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with respect to the target. The spectrograms in Figure 1.2 show the relative 

complexity of the resulting timeseries in each of the three clutter cases, and for each 

SNR scenario. Table 1.1 summarizes the characteristics of the simulated data sets, 

where the amplitude values are in units relative to the noise variance. 

The modeled data recording system operates at a sampling rate of 1 MHz, and 

buffers 0.5 s of data at a time (i.e., output timeseries are 5x105 samples long). The 

data is processed using data analysis windows of length N=512 samples (0.5 ms of 

recording) with overlap of 256 samples, and the goal is to correctly identify the 

operational state of the target in each window. A window is classified as an “ON-

window” if the target pulse is present for the entire window. A window is labeled as 

an “OFF-window” if the target pulse is completely absent. Windows containing target 

signal of partial duration are ignored. This window-level classification can then be 

used in a hierarchical, dynamic process analysis system for large time-scale “target  

mode” classification similar to the one detailed in [8]. 

 

Figure 1.1: Sample signal amplitude (arbitrary units) vs. sample length of an analysis window 
of Chirped CP data with SNR 3:1. Visual inspection of time-domain data is uninformative 
with respect to the signal components; time series appears as noise throughout the analysis 
window. 
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Table 1.1: Simulation environment characteristics 
 

Signal 

component 

Parameters 

Frequency Chirp rate Amplitude 

Target 220 kHz 15.5 MHz/s {3, 1, 0.3}* 

CW clutter 
{30 kHz, 60 kHz, 120 kHz, 210 kHz, 

310 kHz, 370 kHz, 430 kHz, 490 kHz} 
0 

{ 3, 5, 6, 4, 

3, 5, 4, 6} 

Far CP 320 kHz 32 MHz/s 1 

Flat CP 260 kHz 0 3 

Chirped CP 220 kHz 32 MHz/s 3 

Gaussian noise N/A N/A 1 

 

* Only relative target amplitude changes for the SNR 3:1, 1:1, and 0.3:1 data; the 

noise and clutter levels remain identical.  
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SNR 3:1 SNR 1:1 SNR 0.3:1 

 

 
Figure 1.2: Spectrograms illustrating the signal, noise, and clutter characteristics of Far CP (top 
row), Flat CP (middle row), and Chirped CP (bottom row) data, for each noise scenario: SNR 3:1 
(left column), SNR 1:1 (middle column), and SNR 0.3:1 (right column). The target spectrum is 
marked with a black bracket. For each SNR case the target is made “quieter” by decreasing its 
relative strength, making its characteristics increasingly difficult to discern (left to right) in the 
spectrograms. 
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1.2 Summary of methods 

In traditional signal processing, it is common to use orthonormal transforms 

on the input data to facilitate feature extraction or component analysis. These 

transforms, or basis, are by definition orthogonal, complete (i.e., number of elements 

is equal to natural input dimensionality), and have a projection. That is, the 

coefficients can be obtained by direct projection onto the basis, and the input can be 

re-synthesized with perfect reconstruction from these coefficients. In general, the 

vectors of coefficients are not always sparse, where sparse is taken to mean that only 

a small number of coefficients are non-zero. In recent years, the notion of basis has 

been extended to that of dictionaries by relaxing the orthogonality and completeness 

constraints.  Dictionaries no longer provide the option for a direct projection and 

alternative search methods must be employed to obtain the coefficient vector. While 

there can be many non-unique approximations of an input, when the vector of 

coefficients is enforced to be sparse, the decomposition is unique. The reconstruction 

is now in general only approximate, but it is obtained from few coefficients.  

Two main thrust areas have been identified in current literature as potentially 

useful for the RF classification problem at hand. Fundamentally, both rely on the 

notion of dictionary, and will be introduced in greater detail in Chapter 2. The first 

one relies on using adaptive sparse representations in redundant, parametric 

dictionaries (i.e., with elements generated by an analytical or closed-form function). 

The second one relies on using sparse representations in adaptive learned dictionaries 

(i.e., with elements learned directly from data). Both of these approaches will be 
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extended to RF classification and evaluated in terms of their potential for generating 

discriminative features and classifying simulated RF data. The work presented in this 

thesis is the first extension of learned dictionary techniques to RF signal processing, 

to the author’s best knowledge (derived from literature searches and expert 

consultation). Also novel in this thesis is the use of classification accuracy, instead of 

reconstruction accuracy, as the primary performance metric for such learned 

dictionaries. An example of one parametric dictionary case will be shown in which 

good reconstructive ability does not imply good classification potential. For learned 

dictionaries, it will also be shown that good classification can be obtained without 

having perfect reconstruction. In addition to classification accuracy, other factors in 

the evaluation include computational complexity and robustness to noise. 

1.3 Thesis outline 

 The layout of the thesis is as follows: Chapter 2 offers a comprehensive 

literature review on RF classification, sparse representations, and dictionary methods, 

both parametric and learned. Chapter 3 focuses on representations using 

overcomplete parametric dictionaries. Two dictionary learning methods and their 

parameters are explored in Chapter 4 for the Far CP data. A new, unpublished 

approach of learning hybrid dictionaries (i.e., dictionaries that use a hierarchical 

learning method that combines different algorithms) for better performance is 

introduced and detailed toward the end of this chapter. Chapter 5 demonstrates RF 

classification for the more complex Flat CP and Chirped CP datasets, using sparse 
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representations in undercomplete learned dictionaries, which is a key novel 

component of this thesis. In Chapter 6, the methodology and framework of learning 

undercomplete dictionaries for classification is showcased in a very different 

application: multispectral satellite imagery. The specific topic of Chapter 6 is 

unsupervised classification (i.e., classification that cannot be iteratively checked for 

accuracy during the learning process) of land cover in the Arctic.  Chapter 7 

concludes with discussion of results and future directions. The focus of the last two 

chapters is to demonstrate that the methods developed as part of this thesis do indeed 

address real-world problems, and show promise for solving issues in other application 

areas not specifically covered in this work.  
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2. Background and Fundamentals 

The general task of classification or pattern recognition is accomplished 

through several sequential steps, as illustrated in Figure 2.1 [21]. The sensing step 

involves hardware devices (e.g., antenna, analog to digital converter) which convert 

raw RF input into sampled signal data. Given that simulated data is used in this thesis, 

the sensing step is not explicitly addressed. The segmentation consists of separating 

signals from the background or from other signals of interest, and can be a complex 

problem depending on the particular pattern recognition application. For the 

simulated RF data under consideration, segmentation can be either target signal 

versus everything else, or ON versus OFF windows. The former will be the choice in 

Chapter 3, and the latter will be the choice in Chapters 4 and 5.  

The next two steps, feature extraction and classification, are interdependent 

and a conceptual boundary between the two is arbitrary [21]. The task of feature 

extraction consists of finding discriminating features (or feature vectors) that are 

invariant to certain input changes (e.g., instantaneous frequency of chirping target 

pulse in the current analysis window), and robust to changes in overall amplitude of 

target with respect to that of noise and clutter. Following the feature extraction, the 

classifier is the specific algorithm that uses the feature vectors to assign a signal to a 

class or category. In the extreme cases, an ideal feature extractor would only need a 

very simple classifier, and conversely an ideal classifier would not need sophisticated 
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feature extraction. The classifier outputs a decision (i.e., signal class), which in this 

thesis is evaluated based on classification accuracy.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Steps in a general classification process. The sensing encompasses devices 
necessary to convert low level RF input into digital sampled signal data. Segmentation 
separates signal components from each other or from the background. Feature extraction finds 
robust, discriminative features for each signal class of interest; the classifier is an algorithm 
that uses these features to come to a final decision regarding the class of signal. In this thesis, 
the decision is evaluated in terms of classification accuracy. 
 

Automatic classification of (broadband) non-stationary RF signals is of 

particular interest in some applications (e.g., lightning research). Because such signals 

are often acquired in noisy, cluttered environments, and are characterized by complex 

or unknown analytical models, feature extraction and subsequent classification can be 

difficult. Extracting features typically requires good knowledge of the application 

domain in order to find feature vectors unique to a class and robust to background 

noise. One of the main underlying goals of this thesis is robust feature extraction from 
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Feature extraction 

Classifier 
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non-stationary signals, and so the associated classifier is chosen to be relatively 

simple in order to allow performance to be driven primarily by the features.  

Section 2.1 gives a broad overview of the various signal analysis methods that 

have conventionally been used for feature extraction, followed in Section 2.2 by a 

literature survey highlighting the specific use of one of these methods, wavelet 

analysis, in non-stationary signal processing.  Section 2.3 presents published results 

on classification of transient one-dimensional signals, and summarizes the extensive 

literature available on general design of classifier algorithms. Section 2.4 motivates 

and introduces dictionary methods, which have been evolving during the past decade 

and will be the focus of this dissertation.  

2.1 Feature extraction using conventional signal processing 

A rich history, with roots in the classical numerical analysis techniques of the 

17th century [1], has led to the present state-of-the-art methods in signal processing. 

This section summarizes such methods to provide a perspective for present efforts on 

classifying signals with complicated temporal and frequency characteristics, similar 

to the simulated datasets in Figure 1.2. Illustrations of the main approaches to signal 

analysis are shown in Figure 2.2, and each are discussed in turn.  

Time-domain analysis (Figure 2.2, top left) uses the amplitude information of 

the signal in the analysis window. A typical time-domain method for anomaly 

detection and classification is that of matched filters [22, 23], but an underlying 

requirement is some degree of signal stationarity.  Fourier-based methods (Figure 2.2, 
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top right) are ideally suited for the analysis of stationary signals whose durations 

exceed or are at least on the order of the analysis window length [1]. The drawback of 

the Fourier transform is the loss of temporal information, which is especially relevant 

for signals containing non-stationary or transitory characteristics (drifts, trends, 

abrupt changes, and beginnings and ends of events). The Fourier transform is also 

unable to “zoom-in” on temporal regions of interest in the measurements. 

 

Figure 2.2: Pictorial of conventional signal processing approaches. Time domain processing 
(top left) uses signal amplitude information in the analysis window. Frequency domain 
processing (top right) uses Fourier transform information. The short-time Fourier transform 
(STFT) uses time-localized frequency information (bottom left) with fixed analysis window 
lengths. Wavelet methods (bottom right) employ variable analysis window lengths, resulting 
in adjustable scale (frequency) resolution.  
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In an effort to correct this deficiency, and motivated by the uncertainty 

principle in quantum mechanics, Gabor adopted the short-time Fourier transform 

(STFT) in 1946, analyzing only a windowed section of the signal at a time [24] 

(Figure 2.2, bottom left). The signal is mapped into a two-dimensional function of 

time and frequency, but time and frequency resolutions are limited and determined by 

the size of the window. Also, there is no flexibility in selecting different window sizes 

for variable frequency resolution. 

Wavelet analysis generalizes the STFT by using a variable-sized windowing 

technique [25] (Figure 2.2, bottom right). The signal is mapped onto a time and 

frequency plane, where the frequency spread is inversely proportional to the time 

support. The completeness and orthogonally of a wavelet basis is represented by the 

non-overlapping tiles covering the time-frequency plane. The mathematical 

underpinnings of wavelet analysis date back to Joseph Fourier’s theories of frequency 

analysis in the nineteenth century. The first recorded mention of a wavelet is found in 

an appendix to the thesis of Alfred Haar in 1909 [26]. The concept of wavelets in its 

present theoretical form was originally proposed by Jean Morlet and Alex Grossmann 

for application to seismic signal analysis [27]. Stephane Mallat was the first to 

develop an efficient way to implement the discrete wavelet transform algorithm using 

filters in 1988 [28]. Since then, research on wavelets has spread internationally, and is 

particularly active in the United States. Among scientists spearheading the effort are 

Ingrid Daubechies [29], Ronald Coifman [30], and Victor Wickerhauser [31]; Mallat 

presents an in-depth treatise on wavelet signal processing in his book [25]. 
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Wavelet methods are by nature scalable, offer time-localized information, and 

are better for piecewise smooth functions [32]. They can reveal characteristics such as 

trends, discontinuities in higher derivatives, and self-similarity, and so appear to be 

most suitable to non-stationary RF analysis. Another advantage is the large number of 

wavelet families available, with varying individual strengths [25, 29].  Among many 

important wavelet properties, two of them will be used as descriptors later in the 

thesis and are briefly described below. 

A first property is support width. Most wavelets have compact support, 

which simply means the function is defined on a finite interval. Compact support 

guarantees the localization of the wavelets, which is important for processing distinct 

data regions. Energy efficiency describes how well a particular wavelet 

decomposition compacts a given signal. It specifically refers to the number of wavelet 

coefficients necessary to represent the signal, or a percentage of the signal. For 

example, a basis achieves 90% energy efficiency in 5 coefficients if a representation 

using the first 5 coefficients accounts for 90% of the signal energy. Additional 

theoretical details on wavelets are available in Mallat’s treatise on wavelet-based 

signal processing [25], and will not be pursued in depth in this thesis.   

2.2 Non-stationary (transient) wavelet analysis  

Wavelet decomposition generates a different representation of one-

dimensional data than traditional frequency domain techniques. This prompted its use 

in many applications, such as signal de-noising [33] or compression [25, 34, 35]. 
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However, research on automatic detection and classification of transients has been 

limited. The framework of wavelet theory was established by the late 80s [27, 28, 36], 

and some of the early work dealt with problems where classes of transients were well 

characterized by prior parametric models [37]. The detection procedures resembled 

matched filtering in these cases. A second set of methods focused on problems where 

transient classes were not well characterized by prior models [3, 38], and this 

category is still of particular interest.  

Underwater acoustic transient classification has been addressed by Desai and 

Shazeer [38], by using a three-level Daubechies wavelet packet transform to generate 

class-specific features for four training sets. Class-dependent frequency 

characteristics were ignored, and the choice of basis did not influence the feature 

selection process. In fact, much of the work in the area of transient classification is 

based on ad-hoc feature extraction, sometimes leading to more features than the 

original number of samples in the signal. The latter would be unfeasible for high data 

rates applications already suffering from very high dimensionality problems. 

The first systematic wavelet feature extraction technique (for acoustic 

transients) was proposed by Rachel Learned [3, 39]. She reduced the dimensionality 

of the feature vector, while simultaneously accentuating the interclass distinctions. 

Specifically, Learned used singular value decomposition (SVD) on energy matrices 

for each class to detect the singular vectors carrying most of the information. The 

energy matrices were formed by concatenating energy vectors of wavelet 

decomposition coefficients for each given signal. The feature vectors for shrimp and 
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whale click data were tested in two classifiers, the nearest-neighbor and neural 

networks, and classification performance averaging 97% was obtained [39]. 

A disadvantage of wavelets basis methods is that the basis vectors may not 

optimally match a particular input signal structure. One alternative is custom 

designing a basis for the particular input. A specific technique for building a wavelet 

basis is Sweldens’ lifting scheme [40]. The traditional method of defining a set of 

wavelets is to translate and dilate a particular function, the so-called mother wavelet. 

These are referred to as first generation wavelets. Sweldens uses multi-resolution 

analysis to design what have become known as second generation wavelets. His 

lifting scheme allows an infinite number of discrete bi-orthogonal wavelets to be 

generated from one that is fully customized and originally unique. A different 

architecture involving lifting factorizations with polyphase representations is shown 

by Brislawn in [41]. 

A second, more popular, alternative is using non-orthogonal, overcomplete (or 

redundant), wavelet sets, also called dictionaries. Even though orthogonal transforms 

allow for fast signal representation via direct projection, and perfect recovery via 

direct inverse, dictionaries have the potential to lead to better energy efficiency (i.e., 

smaller number of necessary decomposition coefficients), and can be more adaptive 

to the data. Such dictionaries can be used adaptively either by selecting an orthogonal 

subset of the dictionary (i.e., basis) that is most suitable for the input data, or by 

obtaining sparse signal representations in the dictionary. 
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There are a number of published theoretical approaches to selecting a wavelet 

basis that is adapted to a given input signal. Most of these were developed for the 

purpose of optimizing signal approximation (or reconstruction), rather than 

classification [25]. One example is Coifman and Wickerhauser’s best basis search 

method [2], developed mostly for efficient compression properties. It is an entropy-

based algorithm that selects a best basis from a redundant set (i.e., a set with many 

more vectors than those needed to form an orthogonal basis), subject to minimizing 

the Shannon entropy as cost function. Other examples include “tree-based” methods, 

such as those described in [42, 43]. 

2.3 Transient classification  

The study of pattern recognition has matured over the years, and 

comprehensive studies of general classifiers (again, algorithms which evaluate 

features and assign a signal class), including their strengths and underlying problems, 

have been published [21, 44]. Depending on the specific application, there are various 

pattern recognition methods available. Bayesian decision theory is a fundamental 

statistical approach and its origins date back to the mid 1700s [45]. In the 1980s, there 

was a dramatic growth in research and applications of Bayesian methods, and 

currently they are widely accepted and used [46]. However, they rely on knowledge 

of the underlying probability densities of the signal classes, which is rare in practice. 

When little is known about the probability structure, a range of classification 
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techniques emerge.  Disciplines such as machine learning, statistics, and neural 

networks continually expand the foundations of pattern recognition.  

Methods used in conjunction with classification of transients in recent work 

encompass the older, more established classifier techniques [4, 37-39, 47-50]. Some 

examples are Maximum-Likelihood estimation, nearest-neighbor rule, and linear 

discriminant functions. Neural Networks (NN) can be suitable for classification 

problems with significantly overlapping patterns, high background noise and 

dynamically changing environments. Probabilistic neural network (PNN) is also a 

popular technique, and has the advantage of fast training and inherently parallel 

structure [21]. However, PNNs can only yield optimal performance if a sufficiently 

large training set is provided. Variations of the NN or PNN techniques are extensively 

used in the more recent publications on transient classification [3, 4, 38, 47, 50]. 

There are classification software packages available online, implementing established 

methods, such as the Classification Toolbox [51] accompanying [21], LIBSVM [52], 

and Weka [53], and the latter will be briefly used in Chapter 5.  

Several wavelet-based classifiers implemented for real applications of 

transient analysis have demonstrated various success rates, e.g., [4, 47, 48]. Caffrey 

explored the classification of impulsive RF events in the earth’s atmosphere [4].  An 

optimal mother wavelet was computed adaptively via a neural network (NN). The 

feature vectors obtained by decomposition were used as input to a two layer feed 

forward NN. Although the training set was classified without error, the algorithm 

performed extremely poor compared to a FFT-based classifier in a real test scenario. 
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A similar approach was presented by Angrisani [47] for voltage spike classification. 

He chose a modified Morlet wavelet transform and fed the output coefficients to a 

two layer NN. The method successfully enhanced the classification performance by 

using a smaller feature set. Crouse developed a framework for statistical signal 

processing based on wavelet-domain Hidden Markov Models (HMMs) [48]. An 

expectation-maximization algorithm fitted the HMMs to data, but no extension to an 

actual application was made. A more practical approach was proposed by Shin [54] to 

detect a transient signal component of interest from a composite signal waveform, by 

extending conventional time-domain matched filtering to time-frequency domain 

optimal filtering.  

This thesis specifically addresses the classification of non-stationary, pulsed, 

RF signals. This particular application has not been extensively researched, and only 

in the past few years has it become of interest.  C.H. Lee published a review of 

wavelet use in power engineering applications [49]. Most of the work is very basic 

and applies to characterizing power quality disturbances in distribution systems using 

low-level Daubechies wavelets. Perera [50] shows a classification system for fault vs. 

non-fault transients in three-phase power distribution systems using a probabilistic 

neural network technique, on data generated via electromagnetic transient simulation 

software, but it is tailored for a specific system. Some classification work was done 

on the Fast On-orbit Recording of Transient Events (FORTE) satellite data recorded 

by Los Alamos National Laboratory [55, 56], which in many ways is very similar to 

the simulated RF data considered in this thesis. The FORTE work in [56] employed a 
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genetic algorithm named Zeus for extracting features, which were used in a support 

vector machine (SVM) classifier. Although classification accuracy was 100% on 

training data, performance was unsatisfactory on test data. 

2.4 Dictionary methods 

Considering the illustrations in Figure 2.2, the respective signal space (e.g., 

frequency vs. time in the STFT case) is completely covered with non-overlapping 

processing tiles (e.g., 3x3 of them in the STFT case). When orthogonality is no longer 

enforced, tiles will cover the signal space in an overlapping and/or incomplete 

fashion, resulting in what is called a dictionary instead of a basis. Almost any matrix 

could be called a dictionary. A somewhat similar notion to that of a dictionary is the 

notion of frame [5, 57], which in finite dimensions is just a dictionary having linearly 

independent rows. Frame constraints will not be specifically enforced in this thesis.  

Visually, dictionaries that cover the signal space completely with overlapping 

tiles are called overcomplete dictionaries. Dictionaries that do not cover the entire 

space, but are concentrated in the areas where the input of interest lies, with or 

without overlapping tiles, are undercomplete dictionaries. Another way of describing 

completeness of a dictionary is by comparing the number of vectors (i.e., elements) in 

the dictionary to the natural dimensionality of the input vectors for a particular 

application. A larger number of elements than the natural dimensionality means the 

dictionary is overcomplete, and a lower number of elements implies an 

undercomplete dictionary. The degree of dictionary completeness (i.e., dictionary 
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size) has not been explored in depth prior to this thesis and was identified as a 

fundamental issue to be studied and solved in the closing remarks of [58]. While 

overcomplete dictionaries have been the common choice in most of the recent image 

processing publications, this thesis is focused on evaluating undercomplete learned 

dictionaries for classification, which is a novel use of such dictionary methods.  

2.4.1 Dictionary search algorithms 

Since a dictionary is not a basis, decomposition of an input is no longer 

possible via straightforward projection. In fact, a decomposition is no longer unique, 

and it typically does not imply perfect reconstruction. Much of the recent focus has 

been on algorithms to compute adaptive signal representations on these redundant 

dictionaries. These algorithms, usually called pursuit algorithms, search for efficient, 

but non-optimal representations (i.e., signal approximations). Mathematically, the 

goal is find a good enough sparse approximation, a, of some given input, x, using the 

dictionary D, which can be written as: 

 2

2
min ( ),

a
x Da S aλ− +  (2.1) 

where the l2 norm is defined by  

  
1/
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p
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The first term of equation (2.1) controls the mean square reconstruction error, 

and the second is used to enforce some constraint on a (i.e., it is some norm of a). In 

modern day use of dictionaries, the underlying requirement for the approximation 
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vector, a, is sparsity. A sparse vector is defined to be one with few significant 

coefficients; such vector is called L-sparse if it has at most L non-zero entries. The 

quantitative definition of sparsity (i.e., what percent of the total number of 

coefficients should be zero for the vector to be even referred to as sparse) varies; in 

this thesis vectors are considered to be sparse if at most 25% of their entries are non-

zero. The l0 “norm” was first used by Donoho [33] as a direct measure of sparsity, 

since it counts the non-zero vector entries; it is not a true norm in the mathematical 

sense, hence the quotation marks. Given that the dictionary D is overcomplete, the 

decomposition a is not unique, and several methods for finding a good solution for a 

have been proposed. 

One of the first approaches to solving equation (2.1) was the Method of 

Frames (MOF) [59], which uses an Euclidian norm on a. That is, the approximation 

solution a is the one whose coefficients have minimum l2 (Euclidian) norm. It is also 

sometimes called a minimum-length solution. One main problem with MOF is that it 

does not preserve sparsity, i.e., if the underlying input has a sparse representation in 

terms of actual dictionary elements, the vector of coefficients found by MOF is likely 

very much less sparse.  

A second approach was presented by Mallat and Zhang [6], directly 

addressing the issue of sparsity. The sparsity-inducing norm S(a) in equation (2.1) is 

considered to be the l0 “norm,” which is not differentiable and therefore standard 

minimization techniques cannot be employed. Their method, called matching pursuit, 

is a greedy-type algorithm, which means that it chooses at each iteration a waveform 
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to best approximate the current signal residual (i.e., local optimization). The 

approximations obtained with matching pursuit can be improved using Pati’s 

orthogonalization refinement [60], however, the added computation cost can be high.  

The specific term ‘sparsity’ was first used by Chen, Donoho, and Saunders in 

a 1995 Stanford report [61]. In this work, they made a key contribution to the field by 

demonstrating a convex optimization using an l1 norm in equation (2.1) that led to a 

sparse solution a. Chen and Donoho further developed this theoretical method of 

obtaining signal representations in overcomplete dictionaries using global convex 

optimization, known as atomic decomposition by basis pursuit, and provided several 

updates, with the latest one in 2001 [62]. This algorithm guarantees a sparse 

approximation, yet its computational cost can be high. However, Chen and Donoho’s 

analysis provided the theoretical backbone for much of the research on sparse 

approximations that followed.  

The fast growing field of compressive sensing has its roots in sparse 

approximation research. Although an early paper having compressive sensing 

undertones was published in 1981 by Levy [63], the basic compressive sensing theory 

and terminology emerged in 2006 in the works of Candès  [64, 65] and Donoho [66], 

and provided a turning point for research on sparse approximations. Compressive 

sensing uses the sparsity of natural signals to sidestep the Nyquist sampling rate 

bounds, and still obtain perfect reconstruction from a limited number of linear 

measurements (i.e., compressive sampling). Since then, research on the subject has 

expanded, resulting in an extensive number of publications from many academic 
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groups. Of interest for this thesis is Chartrand’s method [67, 68], of nonconvex 

optimization using a regularized lp norm with p<1. He demonstrated that an lp norm 

can lead to even sparser solutions than l1, and has lower reconstruction error [69]. 

This lp norm is an avenue for future work and will be further discussed in Chapter 7. 

Compressive sensing is not the focus of this thesis, but it is mentioned to provide the 

reader with a deeper appreciation of the impact sparse representations has had on the 

signal processing community. It also helped inspire one of the questions posed in this 

thesis: specifically, do the learned dictionaries really need to be overcomplete for 

signal processing tasks such as classification, or can they be undercomplete?  

Modern signal processing techniques frequently rely on signal representations 

that are adapted to the data. For many applications, e.g., compression and denoising, 

representation sparsity is also desirable [70]. Such sparseness can be achieved either 

by thresholding representation coefficients [33], or by forming approximations in 

overcomplete dictionaries via methods such as l1 “lasso” [71] or l0 matching pursuits 

[6, 60]. 

Sparse representations over redundant dictionaries have led to state-of-the-art 

results in audio processing [7], fundamental image processing tasks, such as 

denoising [72, 73], restoration [74-76], compression [77], reconstruction [78, 79], 

classification [80, 81], as well as video restoration [76], and analysis of hyperspectral 

imagery [82]. These sparse approximations are based on the idea that natural data is 

highly structured, and can therefore be compactly expressed using sparse linear 

combinations of dictionary elements. An in-depth look was taken at obtaining the 



 

28 

 

 

sparse coefficient vector, a, in equation (2.1), but not much has yet been said about 

the dictionary, D, which is a key consideration. Dictionary design efforts in published 

literature are centered on two dictionary types: parametric and learned.   

2.4.2 Parametric dictionaries 

In the case of parametric dictionaries, a mathematical model (i.e., generating 

analytical function) must be formulated first. This leads to dictionaries that are highly 

structured, with degrees of freedom controlled by the generating function. Such 

dictionaries are described implicitly by their underlying model, rather than explicitly 

by the actual matrix of dictionary elements, and can be generated (and re-generated) 

fast using a numerical implementation. There are two ways to create parametric 

overcomplete (non-orthogonal) dictionaries. The first one is to oversample the 

parameter space of the generating function. The second one is by merging 

dictionaries to make bigger, more “expressive” dictionaries (e.g., Heaviside with 

Fourier [62]). Designing parametric dictionaries is an undergoing research effort, and 

dictionary families of interest include chirped Gabors [6, 7], Wavelets [5, 25, 83],  

Curvelets [84, 85], Shearlets [86, 87], Contourlets [88], Ridgelets [89], and Bandelets 

[90], among others. For the specific RF data of interest in this dissertation, the 

chirped Gabor dictionary presents the closest match to the signal properties; its use 

for adaptive feature extraction will be explored in depth in Chapter 3. 
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2.4.3 Learned dictionaries 

Parametric dictionaries with analytical, closed-form elements impose 

assumptions about the underlying structure of the data. On the other hand, learned or 

adaptive dictionaries avoid this constraint, and are explicitly defined by the matrix of 

dictionary elements. Initially introduced by Olshausen and Field [9, 91, 92] for 

modeling the mammalian visual cortex, the idea of learning a dictionary directly from 

data has gained momentum in the image processing field. State-of-the art dictionary 

learning techniques are inspired either by neuroscience [93, 94] or by codebook 

design (vector quantization) approaches [10, 11]. Such learned dictionaries have been 

used for many image-based applications, e.g., texture classification [15], multispectral 

satellite imagery analysis [13], image compression [77, 95], and to model the visual 

cortex [96], among others. Examples of dictionary learning techniques include 

Aharon’s K-SVD [10], Wright’s SRC [97, 98], Mairal’s online learning [99], 

Jenatton’s tree embedded dictionary [100], and Skretting’s RLS-DLA [95].  

All the learned dictionary work summarized above has some mathematical 

formulation for learning dictionary elements directly from the data input. Different 

algorithms, for extracting data-specific features for object recognition in images, are 

based on the image statistics and geometric correspondences, such as the Scale 

Invariant Feature Transform (SIFT) [101], finding the “gist” of a scene [102], spatial 

pyramid match [103, 104], among others (e.g., [105-107]). 

Sparsity-inducing learned dictionary techniques have led to significant 

improvements in image representation, classification, and restoration (e.g., [14, 100, 
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108-110]), while also advancing understanding on sparse approximations [80, 111]. 

Chapters 4 and 5 of this dissertation will focus on extending and adapting learned 

dictionary methods to RF detection/classification, and will introduce novel 

approaches along the way. Chapter 7 will demonstrate a novel application of 

undercomplete learned dictionaries to multispectral satellite imagery classification.   
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3. Sparse Representations in Overcomplete 

Parametric Dictionaries 

 

One approach to RF target detection and classification involves using 

parametric (or analytical) dictionaries that are overcomplete with respect to the 

natural input dimensionality of the data (i.e., the length of the analysis window).  

Using pursuit-type searches in overcomplete dictionaries leads to sparse 

approximations, and this approach can work well for classification of target signals 

that share the same function class (e.g., chirping signals) as the dictionary elements. 

The precursor of the work in this chapter is found in [8], where a different simulated 

data set was used in a hierarchical classification system. Features obtained from a 

parametric overcomplete dictionary were compared to STFT-based ones in a 

classification setting using various Weka classifiers [53]. The results showed that 

features extracted from the overcomplete dictionary had greater classification 

potential, and motivated this subsequent study of parametric dictionaries in an effort 

to improve the quality of the extracted features. For this purpose, Chapter 3 focuses 

on attempting to segment the target signal from the other components, and analyzes 

the effects on features observed during data windowing, changes in noise levels, and 

increase in amount of clutter, among other things.   
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3.1 Feature extraction algorithm 

3.1.1 Dictionary matching pursuit search 

In the case of orthogonal bases (e.g., Fourier Transform), a discrete input 

signal of natural dimensionality N, ,Nx∈ is simply projected to obtain a vector of 

representation coefficients. An overcomplete dictionary, x
1 2[ ] ,N K

KD d d d= ∈ 

either learned or parametric, must instead be searched iteratively in order to find a 

coefficient vector, a, such that the approximation x=Da meets a specified criterion. 

For sparse approximation, the solution vector a will have a large concentration of 

energy in few of its coefficients, and will give small errors relative to noise in the 

signal x. The problem of sparse approximation can be approached in two ways: either 

minimizing the number of coefficients in a such that the reconstruction has a 

maximum error 0ε >  (equation 3.1), or alternatively as minimizing the error of the 

model using a maximum number of atoms m>0 (equation 3.2). In general, these two 

approaches will lead to different solutions for the sparse vector a. 

 2

0 2
min such that ,a x Da ε− ≤  (3.1) 

or 
 2

2 0
min such that .x Da a m− ≤  (3.2) 

  

Here, the “norm” 
0

a is, as mentioned in Chapter 2, a pseudo norm and represents the 

number of non-zero elements in a. To ensure there exist solutions to x = Da, one 

typically uses a dictionary of size K >>N with rank(D) = N, which means that the 

dictionary is overcomplete for the inner product space .N
 The solution, a, is 
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therefore not unique, and the one most favorable with respect to equations (3.1), (3.2), 

or with respect to the signal “descriptiveness” [112]  must be selected.  

Finding a from equations (3.1-3.2) is an NP-hard (i.e., non-deterministic 

polynomial-time hard) problem, and many methods have been proposed and 

extensively studied to find an approximate solution, as briefly mentioned in the 

previous chapter. One approach is to replace the l0 “norm” in (3.1) or (3.2) with 

another one, e.g., an l1 norm [62, 113], an l2 norm [59] or an lp norm [67]. These 

approaches, however, are costly for high-dimensional signals and the large associated 

dictionaries. Greedy iterative descent methods (i.e., methods that iteratively select a 

locally optimal choice with the hope of finding a global optimum), provide another 

approach to solving the sparse problem above for high-dimensional signals and large 

dictionaries. Matching pursuit (MP) [6] is the simplest of these, and can be efficiently 

implemented for large shift invariant dictionaries and high-dimensional data, e.g., [7, 

114]. This is the primary dictionary search method used in this thesis, and will be 

explained in greater detail in Section 3.1.3. Other iterative approaches provide lower 

approximation error, e.g., orthogonal MP (OMP) [60, 115, 116], orthogonal least 

squares (OLS) [117], cyclic matching pursuit (CMP)  [112, 118], but usually incur 

higher computational costs than MP.  

3.1.2 Multi-scale chirped Gabor dictionary 

Research in the field of adaptive audio signal processing [7, 119] has led to 

methods which can represent non-stationary audio signals using a Gaussian multi-
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scale chirped Gabor dictionary. This dictionary D consists of the set of complex 

atoms g given by: 

 2
, , ,

1( ) exp 2 ( ( ) ( ) ) ,
2u s f c

t u cD g t g i f t u t u
ss

π −    = = − + −    
    

 (3.3) 

where the window function, g(t), is unit Gaussian, shifted by u and scaled by s. The 

parameter f is the frequency in natural units with scale dependent frequency 

resolution, and the c parameter controls the linear chirp rate of the atom. 

Theoretically, such atoms can be used to approximate both continuous wave signals 

(atoms with c=0), as well as other types of chirped signals, (e.g., with exponential or 

logarithmic chirp), by using piece-wise fitting with linear chirp atoms. Example 

chirped Gabor dictionary elements with N=512 samples and varying compact support 

are shown in Figure 3.1. This dictionary is selected to provide a feature extraction 

comparison for the RF simulated data introduced in Section 1.1 using parametric 

overcomplete dictionaries. 

 
 
Figure 3.1: Example timeseries of chirped Gabor atoms. Plots show the real magnitude of few 
dictionary atoms as a function of sampled time. While all atoms are timeseries with N=512 
samples each, the support length for each atom is different (e.g., atom 4 has support length of 
only ~250 samples, atom 3 has support of ~150 samples, atom 2 has support on all 512 
samples). 
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a) Dictionary size 

Extending the use of this multi-scale Gabor dictionary to RF applications poses 

computational problems, due to the much higher sampling rates compared to audio 

applications, and by extension the much higher order dimensionality. The necessary 

dictionary size for overcompleteness, K, is large, and a direct search of the 4 

dimensional parameter space (f, u, s, c) would not yield results in real-time. For 

example, given a sampling rate of 1MHz, and an analysis window size of 512 

samples (0.5 ms), an example overcomplete dictionary of non-chirping atoms with 

512-sample length support would have a minimum size of 3350 atoms, and a possible 

maximum size that would depend on the user.  This count does not include the 

possible chirping atoms, since the range of permissible chirp rates for a specific atom 

depends upon its exact base frequency f, scale s (i.e., over how many samples of t is 

the frequency changing), subject to the Nyquist theorem. Given an atom (f0, u0, s0, c), 

its instantaneous frequency is obtained from equation (3.3) as the derivative of the 

complex phase: 

 0 0( ) 2 ( ( )),t f c t uω π= + −  (3.4) 

 

where ](0,2 .ω π∈ The range of possible values for the chirp rate, c, i.e., chirp rates 

not inducing aliasing given the bandwidth B, is limited to 0 0,
/ 2 / 2
f B f

s s
− −  

for 

positive chirp rates, and 0 0,
/ 2 / 2

f B f
s s
− 

  
for negative chirp rates. That is, the range of 
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possible chirp rates for a given atom frequency and scale is bound by a rhomboid in 

the chirp rate vs. frequency phase space plane.  

b) Reduced dimensionality search 

The dictionary, D, can be searched with reduced computational cost by using 

Gribonval’s fast O(NM) ridge-pursuit algorithm [7], where M is the number of atoms 

desired in the decomposition. The ridge-pursuit algorithm is a two-step pursuit, and 

explores the local maxima property of the discrete, non-chirping, Gabor dictionary 

subset { }, , ,0 ( ) .G
u s fD g t=  One of the main findings in [7] is that the ridges of local 

maxima of DG correspond to the ridges of maxima in D. This allows one to first select 

the best matching non-chirping, complex, Gabor atom ( , , )m m mg s u f  from DG. Then, the 

corresponding atom neighborhood in D is searched to select a locally optimal chirped 

atom, ( , , , ).m m m mg s u f c  For real input signals, the optimal complex atom is used to find 

the equivalent real-valued chirped Gabor atom using ‘dual molecules.’ These dual 

molecules (or dual bases) are computed from the complex chirped atom and its 

conjugate atom using the formulation in [7]. Much insight into the workings of 

Gribonval’s algorithm was obtained from the expanded version in [120]. The fast 

ridge pursuit search over the chirped Gabor dictionary can falsely introduce conjugate 

chirp rates as atoms are sequentially subtracted from the signal. To mitigate this 

effect, in this dissertation an additional step was added once the locally optimal real-

valued chirped atom was found. Specifically, the non-chirped atom and the chirped 

atom were compared one last time in terms of their respective inner products with the 
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input vector. The atom yielding the highest inner product was selected as the final 

dictionary atom at the respective matching pursuit iteration. 

3.1.3 Target classification algorithm 

Given the dictionary D with K atoms, and a data window of length N samples, 

where N<<K, M dictionary atoms are iteratively selected that minimize the signal 

residual at each step using a simple greedy MP algorithm, briefly detailed here. At the 

first iteration, the real atom giving the largest inner product with the signal is found 

using the fast-ridge pursuit in 3.1.2. The contribution of this atom is then subtracted 

from the signal, and the process is repeated on the residual. This continues until some 

predetermined stopping point (e.g., number of atoms or size of the residual), as shown 

in equation (3.5) below.  

 ( )
0

,

, , 1

max ,

,

k m m kD

m m k m k m m

R x

d R d

R R d d R +

=

=

= +

 (3.5) 

Thus, unlike an orthogonal basis in which all feature vectors represent the 

same basis elements, identically ordered for every time window, the atoms selected 

by greedy pursuit can differ from time window to time window, and the exact atom 

ordering can also be different. This means a classification scheme based on atomic 

ordering would not be a correct choice. The parameters of the matched atoms are 

therefore selected as classification features, specifically the frequency, f, and the chirp 

rate, c. In anomaly detection applications, the time centers, u, of matched atoms could 

also be used to pinpoint the exact location of the anomaly. The features obtained 
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using matching pursuit over the dictionary, D, can be used to train standard classifiers 

in the Weka collection [53] as previously seen in [8]. 

3.1.4 Match confidences 

Section 3.2 evaluates the effects of windowing, noise, overcompleteness, and 

clutter on the extracted atoms. These effects are quantitatively assessed by binning 

(counting) the atoms returned by MP in confidence regions around the true signal 

components. For example, given the target signal component, concentric confidence 

regions around the target location in the (frequency, chirp rate) plane are considered, 

and the number of matched atoms in each region is counted. The total number of 

matched atoms for a given region is then compared to the total number of possible 

true target observations (i.e., the number of ON analysis windows) and used to 

generate a match confidence. Similarly, match confidences for all the other signal 

components are also calculated. Confidence regions of up to 25 kHz in diameter are 

considered to generate frequency match confidences, and up to 15MHz/s for chirp 

rate confidence. Given that most of the base frequencies present in the data are 

separated by ~60 kHz, a maximum confidence region of 25 kHz around each would 

diminish the possibility that the counted atoms belong to frequencies different from 

the frequency of interest. The resulting confidences are evaluated in two ways.  

First, they are aggregated into curves as a function of the size of the 

confidence region for each signal component, disregarding the order in which the 

atoms were returned by the MP algorithm. Such curves are reminiscent of receiver-
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operating-characteristic (ROC) curves, in that they show how many correct parameter 

matches (i.e., “true positives”) were found as the confidence region grows 

incrementally. These ROC-like curves give a visual assessment of the fidelity of the 

returned atoms (e.g., how close they are to the true frequency).  

Secondly, the maximum match confidence is calculated as a function of the 

atom order of return for each signal component. That is, given only the atoms of order 

n (i.e., the n-th returned atoms for every analysis window), the maximum match 

confidence for every signal component is determined using the largest confidence 

region. The confidence as a function of atom order gives a measure of how good the 

atom match is in terms of the amount of signal component it captures. 

3.2 Effects of windowing, noise, overcompleteness, and 

clutter 

In order to better ascertain which effects dominate the quality of extracted 

atoms, initial studies are performed on reduced complexity simulation test data, 

containing: 

• Target signal at a 220 kHz base frequency with chirp rate 15.5 kHz/s and 

relative amplitude 3. 

• Four CW clutter emitters at 60 kHz, 120 kHz, 310 kHz and 430 kHz, with 

signal-to-clutter amplitude ratios {6, 5, 3, 4} (i.e., the CW clutter is not 

overlapping the target spectrum of 220 kHz – 297.5 kHz).  

• Additive white noise, with signal-to-noise amplitude ratio equal to 1. 
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The Far CP data case will be considered after the reduced complexity case to 

ascertain the changes introduced by having an additional chirping source and more 

CW clutter. In terms of amplitudes of the CW clutter signals, they are chosen to be 

nontrivial even in the reduced complexity case, i.e., higher than the target amplitude.  

 These effects are assessed strictly in terms of the fidelity of the returned 

atoms (i.e., how well the parameters of the atoms match the true signal components), 

and their viability for use as features in a target detection and classification setting. 

Specific ways of assessing fidelity will be detailed in Section 3.2.1. Reconstruction of 

the input timeseries using the chirped Gabor dictionary with the fast ridge pursuit is 

not a metric pursued in this work, as it is explored in detail in [120]. A brief 

discussion of reconstruction with this dictionary will be given instead in Section 3.4. 

3.2.1 Data windowing  

Methods of matching pursuit can introduce artifacts at the edges of the 

analysis window as atoms are sequentially subtracted from the signal. For the RF data 

explored, these edge effects manifest in atoms of similar frequency and chirp rate 

being extracted repeatedly from the analysis data at different locations. The specific 

MP extraction pattern observed consists of the algorithm matching an atom in the 

center of the analysis window, followed by a left side atom match with comparable 

frequency and chirp rate, and then similarly followed by a right side match.  

Classical signal processing relies on windowing techniques prior to the MP 

search to help mitigate such edge effects. Three standard data windowing functions, 
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Gaussian, Hamming, and Hanning are compared based on the quality of the atoms 

returned by the MP for a selected timeseries. In order to distinguish between effects 

of windowing and possible effects of noise and clutter, the test cases considered are 

first the reduced complexity case with SNR 3:1, followed by the Far CP with SNR 

3:1 data set. That is, changes in SNR and the position of the chirped clutter are not 

taken into account at this time. The number of extracted atoms is set to 25 for every 

analysis window.  

Figure 3.2 shows a scatter plot of chirp rate vs. frequency for the first 25 

extracted atoms, colored according to their order of return by the pursuit search and 

aggregated over ON (left panel) and OFF windows (right panel) of reduced 

complexity data. This type of plot is useful because it quickly shows if the returned 

frequency and chirp rate parameters are close to true signal components. The circles 

in Figure 3.2 represent the true signal components, and their diameters are 

proportional to the respective amplitudes. As expected, the order in which the atoms 

are returned (red for first 1-5 atoms, purple for last 20-25), which is a direct result of 

the amplitude of the matched atom, closely matches the sequence of relative 

amplitudes for the signal components. Atoms corresponding to the CW components 

are grouped in bands parallel to the y-axis (e.g., group enclosed by rectangle in Figure 

3.2), with abscissas approximately equal to the CW frequencies. That is, the 

frequency parameter of the atoms appears to be a good feature for discriminating CW 

data. The chirp rate estimation presents significant smearing and appears highly 

unreliable for the CW components, as it introduces false positive and negative chirp 
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rates with variations spanning several decades. Note that some of the first 5 returned 

atoms (shown in red) correctly have zero chirp rate and are positioned within the 

circles marking the respective signal components. 

 

 

Figure 3.2: Scatter plots (chirp rate vs. frequency) for reduced complexity data. Shown are the 
first 25 extracted atoms, aggregated over ON windows (left) and OFF windows (right), and 
colored according to their order of return by the pursuit search.  The circles represent the 
locations of the true signal components in the frequency-chirp rate plane. Rectangle highlights 
group of atoms with frequency around 120 kHz.  
 

For the chirped target pulse, the returned atoms cover the frequency spectrum 

of the target, between 220 kHz and 297.5 kHz, and are aligned along both the true 

chirp rate, as well as the conjugate chirp rate and the zero-chirp axis. The lack of an 

exact frequency match along the true chirp rate area is to be expected, as the length of 

an analysis window does not cover an entire target pulse, but rather portions of it. The 

instantaneous target frequency estimated by the atoms is therefore increasing across 

consecutive analysis windows proportional to the chirp rate.  

Figure 3.2 shows that the fast ridge pursuit over the Gabor dictionary might be 

able to generally match the frequencies in a given analysis window, and could be 
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suitable to piece-wise approximate (i.e., reconstruct) the input signal, as claimed in 

[7]. However, using the features of the returned atoms for a classification problem 

does not appear to be a straightforward procedure, due to the erroneous chirp rate 

estimation. 

When windowing is applied to the reduced complexity case, there is no 

apparent improvement in the frequency match confidence as a function of atom order. 

This is seen in Figure 3.3, which shows how close the frequencies of the returned 

ordered atoms matched the frequencies of signal components in the data set. The CW 

components are arranged in the legend in decreasing order of their amplitudes. For 

every signal component, the confidences exhibit repeated peaks, i.e., the subtracted 

atoms do not fully capture a signal component in one match, especially in the 

windowed cases, and multiple MP iterations are needed. The target component has 

the worst frequency match compared to the CW components, and the highest 

confidence rate is actually achieved in the non-windowed case, followed by the 

Hamming window case. Given that the Gabor atoms do in fact have a Gaussian 

envelope, it was expected that the Gaussian window would at least outperform the 

non-windowed case, if not all the other windowing functions. The performance of the 

Hamming window can be explained by considering Figure 3.4.  
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Figure 3.3: Match confidences for reduced complexity data (parameters given in the text) with 
various pre-windowing functions. The CW components are arranged in the legend in 
decreasing order of their amplitudes. Windowing does not appear to improve the frequency 
match confidence as a function of atom order.  
 

 

 
 

Figure 3.4: Windowing functions used on the timeseries. The Hamming window has the 
highest amplitude in the tail sections, i.e., retains the most signal at the edges of the analysis 
window, while the Hanning window has the most attenuation in the tail sections.   
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Here the amplitudes of the three windowing functions are plotted, and the 

Hamming window (green trace) has the widest of the bell-shaped curves, and the 

largest tail-section amplitude. That is, the Hamming window retains more of the 

signal’s time data, which could perhaps explain the slightly higher quality of the 

extracted atoms.  

For the chirp rate confidence match, Figure 3.5 shows that windowing only 

marginally improves the quality of the chirp rate estimate in the case of the first batch 

of target returned atoms, after which the confidence in the windowed case degrades 

significantly compared to the non-windowed case. The sign of the estimated chirp 

rate in Figure 3.3 is taken into account, i.e., only positive chirp rates are considered, 

matching the target chirp rate sign.  

 
Figure 3.5: Chirp rate confidence for reduced complexity data, with and without windowing.  
 

The three windowing functions are now applied to analysis windows of the 

more complex data set Far CP with SNR 3:1 and the resulting first 25 atoms are used 

to generate match confidences. Recall that windowing is performed in order to 

evaluate whether it would improve the quality of the returned atoms (i.e., the fidelity 

of their parameters). Figure 3.6 again shows the scatter plot of chirp rate vs. 
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frequency for the first 25 extracted atoms, colored according to their order of return 

and aggregated over ON (left panel) and OFF (right panel) windows. As the 

competing chirped pulse emitter and the additional CW clutter are introduced back in 

the data, the frequency match seems to improve somewhat (i.e., there is more 

alignment along the true frequencies compared to Figure 3.2). The chirp rate 

estimation continues to be problematic, however, and the false conjugate chirp rates 

appear for every signal component. 

 

Figure 3.6: Scatter plots (chirp rate vs. frequency) for Far CP data. Shown are the first 25 
extracted atoms, aggregated over ON windows (left) and OFF windows (right), and colored 
according to their order of return by the pursuit search.  The circles represent the locations of 
the true signal components in the frequency-chirp rate plane.  

 

The four panels of Figure 3.7 show the frequency match confidence as a 

function of atom order for the Far CP data in the non-windowed case (top left), as 

well as the Gaussian window case (top right), Hamming case (bottom left), and 

Hanning case (bottom right). This comparison is useful because it allows us to 

immediately see that the highest match confidence among the windowed case is 

observed for the Hamming window, as previously noted for the reduced complexity 

data. 
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Figure 3.7: Match confidences for Far CP data with various pre-windowing functions. The 
CW components are arranged in the legend in decreasing order of their amplitudes.  
 

Windowing the data in this more realistic case impacts first of all the order in 

which the first atoms for each component are returned. Secondly, the match 

confidences for the chirping signal components (i.e., the target pulse and the clutter 

pulse) are higher in the Hamming and Hanning case for the first returned respective 

atoms. Across all atoms, there is a better frequency match for the chirped clutter pulse 

in the windowed cases compared to the non-windowed case, but the best target match 

is still achieved in the non-windowed case. Overall, 5 signal components are matched 

with better than 0.8 confidence in the non-windowed case, compared to 4 in the 

Gaussian case, 3 in the Hamming case, and 4 in the Hanning case. That is, even 

though Hamming windowing achieves the highest target confidence among the 

windowed cases, it does not appear to perform as good for the other signals as the 



 

48 

 

 

Gaussian window. Compared to the non-windowed case, the windowed cases seem to 

perform more poorly in terms of atom features.  

To further strengthen this observation, the fidelity of the returned atoms in the 

Far CP case is now explored in Figure 3.8 for the non-windowed case and the three 

windowed cases. The atoms corresponding to the CW frequencies have good 

frequency fidelity, i.e., less than 2 kHz deviation from the true frequency, in all four 

cases. In the chirped component case, the fidelity is not nearly as good, and remains 

greater than 7 kHz in all cases. Figure 3.8 shows again that, while windowing 

increases the chirped clutter confidence, it decreases the target confidence.   

  

 

Figure 3.8: ROC plots for Far CP data with various pre-windowing functions. The CW 
components are arranged in the legend in decreasing order of their amplitudes.  
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As previously hinted by Figure 3.5, the chirp rate estimation remains overall 

very poor for the Far CP data case. Figure 3.9 shows the ROC curves calculated for 

the signed chirp rate of the returned atoms corresponding to target (solid lines) and 

clutter pulse (dashed lines), with and without windowing. The extent of chirp rate 

smearing (i.e., flat portions of the ROC curve) does not appear to change with 

different windowing functions. In terms of the chirp fidelity of the atoms, for the 

target signal the estimated chirp rate deteriorates with windowing; for the non-

windowed case the best match confidence is still just above 0.6 and is obtained for a 

very large chirp rate confidence region, i.e., 15 kHz/s. The corresponding chirp rate 

for this largest confidence is now 30.5 kHz/s, that is, very close to the clutter pulse 

chirp rate. It is likely that atoms counted in this larger region have chirp rates 

corresponding to the clutter pulse (as seen in Figure 3.5), hence the jump in target 

confidence.  

 

Figure 3.9: Chirp rate confidence for Far CP data with various pre-windowing functions. Both 
target chirp rate confidence (solid lines), and clutter pulse confidence (dashed lines) are poor. 
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Figures 3.3-3.9 show that preprocessing the data by windowing does not 

necessarily lead to higher fidelity of extracted atoms, for the test cases explored and 

for classification purposes. The windowing functions tested perform similarly and, 

depending on the exact input data and the metric used, they each can outperform the 

other by a small margin. Conversely, another conclusion is that the feature quality of 

the extracted atoms does not appear to be sensitive to the use of data windowing in 

the case of SNR 3:1, and remains generally as good or as poor as the non-windowed 

case. Windowing may still be useful for quality of input reconstruction purposes, but 

based on the study outlined above, it does not provide compelling advantages for 

classification.  

3.2.2 Noise effects 

Robustness to noise is highly desired in any data analysis application. For the 

simulated data introduced in Section 1.1, the signal-to-noise and signal-to-clutter 

ratios are relatively challenging, yet representative of a non-ideal, real application.  

The reduced complexity test case of Section 3.2 is now used to evaluate the 

fidelity of returned atoms as the target amplitude progressively worsens, that is, the  

SNRs considered are 3:1, 1:1, and 0.3:1. The CW and pulsed clutter amplitudes 

remain unchanged. Figure 3.10 shows chirp rate versus frequency scatter plots of first 

25 returned atoms, aggregated over ON windows in each SNR case. The OFF 

window case has similar characteristics and is not shown. Visually, it is readily 

apparent that the level of noise relative to the target signal directly impacts the order 
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Figure 3.10: Scatter plots (chirp rate vs. frequency) for reduced complexity data for SNR 3:1 
(top), SNR 1:1 (middle), and SNR 0.3:1 (bottom). Shown are the first 25 extracted atoms, 
aggregated over ON windows, and colored according to their order of return by the pursuit 
search.  The circles represent the locations of the true signal components in the frequency-
chirp rate plane. The target becomes less and less distinguishable as the SNR decreases. 
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of atom return, as expected. Also, the number of target-related atoms decreases 

significantly as the SNR decreases, and for SNR 0.3:1 the target becomes almost 

indistinguishable.  In terms of the smearing effect for the chirp rates, it does not seem 

to be positively or adversely impacted by the level of noise. Since the impact of noise 

is obvious on the reduced complexity data, it is not relevant to further study the 

fidelity of the atoms and the corresponding ROC curves, but rather it is more useful to 

proceed toward analysis of Far CP data. 

The Far CP data is now considered for the 3 SNR regimes, and Figure 3.11 

shows scatter plots of chirp rate vs. frequency for the first 25 extracted atoms, colored 

according to their order of return and aggregated over ON windows for each SNR 

case. The impact of the reduction in SNR is severe, and in the 0.3:1 case there are no 

target-specific atoms returned by the pursuit search. It is possible that if more than 25 

atoms were considered, some target atoms would be encountered. However, every 

additional atom comes with increased computational overhead, and the fidelity of any 

target atoms will very likely be poor. Also noticeable in Figure 3.11 is the lack of 

chirped clutter atoms, as the vertical atoms bins present in the respective area are 

likely due to the CW component at 310 kHz, based on the reduced data scatter plots 

of Figure 3.10. In terms of the degree of chirp rate smearing, no noticeable impact 

due to noise is observed, and the chirp rate estimation remains equally poor for the 

three SNR values considered. In the case of pre-windowing the data with a Gaussian 

window as specified in Section 3.2.1, the noise impact on the chirping pulses is 

mitigated slightly, as can be seen in Figure 3.12. 
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Figure 3.11: Scatter plots (chirp rate vs. frequency) for Far CP data for SNR 3:1 (top), SNR 
1:1 (middle), and SNR 0.3:1 (bottom). Shown are the first 25 extracted atoms, aggregated over 
ON windows, and colored according to their order of return by the pursuit search.  The circles 
represent the locations of the true signal components in the frequency-chirp rate plane. The 
noise impact on target atoms is severe. 
 



 

54 

 

 

 

 

Figure 3.12: Scatter plots (chirp rate vs. frequency) for Far CP data for SNR 3:1 (top), SNR 
1:1 (middle), and SNR 0.3:1 (bottom) with Gaussian pre-windowing. Gaussian pre-windowing 
slightly mitigates noise effects, and atoms corresponding to the competing chirped emitter 
now appear. Shown are the first 25 extracted atoms, aggregated over ON windows, and 
colored according to their order of return by the pursuit search.  The circles represent the 
locations of the true signal components in the frequency-chirp rate plane.  
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 Compared to Figure 3.11, chirped clutter atoms are now present among those 

returned by MP. Also, the number of returned target atoms increases, a fact that is 

especially obvious in the SNR 1:1 case. In the SNR 0.3:1 case, there are still a 

reduced number of chirping atoms in the target neighborhood. For the CW 

components, however, the impact of windowing on the fidelity of the returned atoms 

is negative. Whereas in Figure 3.11 the first returned atoms (red dots) were usually 

within the visual target perimeter, in Figure 3.12 chirp rate smearing is observed even 

for those first order atoms. One overall slightly positive effect of windowing is on the 

degree of chirp rate smearing, which is now reduced by few decades in all SNR cases.   

Of the three SNR regimes, the most striking impact of windowing is seen for 

SNR 1:1 (compare middle panels of Figures 3.11 and 3.12). A closer look at the 

match confidences and the fidelity of the returned atoms for this noise case is 

afforded by Figure 3.13. The top panel of Figure 3.13 confirms that the first returned 

atoms for the CW components are no longer as closely matched to the true signals, as 

previously shown by the smearing of red dots in Figure 3.12. For the two chirping 

signals, windowing now leads to three dedicated returned atoms (top right panel), 

compared to only two dedicated returned atoms in the non-windowed case (top left 

panel). The fidelity of the atoms corresponding to some of the signal components is 

not as high in the windowed case as the non-windowed case (bottom panel). 
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Figure 3.13: Match confidences (top panel) and ROC plots (lower panel) for Far CP SNR 1:1 
data without windowing (left panels) and with Gaussian pre-windowing (right panels). 
Windowing the data appears to help improve the detection of chirping signals in very poor 
SNRs, but diminishes the detection fidelity for CW signals. 

 

Figures 3.10-3.13 show that using overcomplete parametric dictionaries in 

conjunction with the fast ridge pursuit search is a noise-sensitive approach. It is 

possible that the method would perform much better in nominal SNR conditions of 

10-20db, as indicated by the results in [120]. Windowing the data appears to help 

improve the detection of chirping signals in very poor SNRs, as shown by a 

representative example, but diminishes the detection fidelity for CW signals. These 

limitations will be summarized later in the text and will motivate the next steps of 

thesis work. 
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3.2.3 Dictionary overcompleteness 

The chirped Gabor dictionary can be built with a range of resolutions for each 

of its generating function parameters, that is, its degree of overcompleteness is a user 

specification. In Gribonval’s original formulation, the scale has a dyadic resolution 

(i.e., s=2j), and the frequency resolution at each scale is then simply df ≤ 2π/s. The 

chirp rate resolution in the fast ridge pursuit search is directly correlated to the scale 

and is equal to the frequency resolution, specifically, dc = df. Thus, dictionary 

completeness plays a crucial role and must be looked at in greater detail to determine 

if perhaps by increasing the degree of completeness, higher parametric fidelity can be 

observed in the returned atoms, in particular for the chirp rate parameter. 

The impact of the degree of dictionary overcompleteness is explored only in 

terms of the frequency (and thereby chirp rate) resolution. The scale and time centers 

are kept with the original resolutions specified in [120] (i.e., dyadic and unit step, 

respectively). An overcompleteness factor, of, is introduced for the frequency, f, 

resulting in df=2 π/(s*of)  (and chirp rate resolution dc=df). 

The reduced complexity dataset is considered first, and the quality of returned 

atoms is assessed in terms of dictionary overcompleteness. Figure 3.14 below shows 

the frequency fidelity of the returned atoms for of ={1, 2, 4, 8}. 
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Figure 3.14: ROC plots for reduced complexity data for various degrees of dictionary 
overcompleteness. 
 

The most significant improvement in the fidelity of the atoms for the reduced 

complexity data, both for the CW and the chirped signal components, occurs when 

the frequency oversampling is increased from of =1 to of =2. The improvement 

obtained by increasing the frequency resolution beyond of =2 is not as significant and 

comes at a higher computational cost for the dictionary search. Oversampling the 

frequency space implies a larger number of dictionary atoms is available for matching 

the input signal. This effect is illustrated in Figure 3.14 by the increasingly finer step 

in the confidence match for the target signal.    

The Far CP SNR 3:1 data is now analyzed using dictionaries that are 

overcomplete by a factor of of={1,2}, with and without pre-windowing with a 
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Gaussian function. The fidelity of the returned atoms is shown in Figure 3.15 below. 

The left side plots of Figure 3.15 have been previously seen in Section 3.2.1 in the 

context of windowing effects. The highest atom fidelity for all signal components is 

now reached in the case of non-windowed data with of =2, similar to the reduced 

complexity case shown in Figure 3.14. When pre-windowing is applied in the of =2 

case, the fidelity for some of the components decreases significantly from the non-

windowed case, even though it is slightly higher for the target atoms. It is important 

at this point to also consider the match confidence for the four cases shown above as a 

function of returned atom order (Figure 3.16). 

 

 

 

Figure 3.15: ROC plots for Far CP data for two degrees of dictionary overcompleteness, 
without windowing (top panel), and with Gaussian pre-windowing (bottom panel). Two 
overcompleteness cases are considered: of=1 (left panel), and of=2 (right panel). Higher 
fidelity is observed for the dictionary case with a higher degree of overcomplenetess. 
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Figure 3.16: Match confidences for Far CP data for two degrees of dictionary 
overcompleteness, without windowing (top panel), and with Gaussian pre-windowing (bottom 
panel). Two overcompleteness cases are considered: of=1 (left panel), and of=2 (right panel). 

  

Figure 3.16 strengthens the conclusion that the non-windowed case with a 

more overcomplete dictionary (top right panel) is better suited, among the cases 

tested, to extract higher quality atoms, both for the chirped components (i.e., target 

and clutter pulses), as well as most of the CW components. The frequency match 

confidences for the first 8 returned atoms is much higher in this case compared to the 

non-windowed of =1 case. Windowing in the of =2 case diminishes the positive impact 

of the increased dictionary frequency resolution.  

The degree of dictionary overcompleteness impacts the quality of the returned 

atoms, both in terms of their frequency match confidence, as well as their respective 

order of return. Increasing the resolution of the parameter space, however, comes at 
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an additional computational cost for the dictionary search step, and the author notes it 

does not help improve the chirp rate smearing.  

3.2.4 Clutter impact 

Sensitivity to CW clutter is of practical importance, and is explored starting 

with a slightly modified Far CP timeseries, consisting of the target signal with SNR 

3:1, the chirping clutter pulse, and one out-of-target-band CW emitter at 30 kHz (i.e., 

the first of the eight CW emitters in increasing frequency order). The number of CW 

components is progressively increased up to all eight CW signals in the Far CP data, 

with the remaining seven frequencies {60 kHz, 120 kHz, 210 kHz, 310 kHz, 370 kHz, 

430 kHz, 490 kHz} added in order. Each timeseries is decomposed over the 

dictionary using 25 atoms and the resulting scatter plots of chirp rate vs. frequency 

are shown in Figure 3.17. For the cases with less than 3 CW components, many of the 

higher order atoms appear to be modeling the noise, as expected. As the number of 

individual signals in the timeseries increases, more and more atoms are used to 

capture the actual signals. The number of CW components appears to have no impact 

on the degree of chirp rate smearing. Given all the similar scatter plots observed in 

the previous sections, it would appear that the chirped signals in the timeseries 

perhaps induce matching chirp rates on the CW components, resulting in the 

erroneous atom matches. To test this hypothesis, the same 8 scatter plots are now 

shown in Figure 3.18 for a simple timeseries without any of the chirping components, 

i.e., the target and the chirped clutter pulse. 
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Figure 3.17: Scatter plots (chirp rate vs. frequency) for Far CP data as the number of CW 
components increases from 1 to 8. Shown are the first 25 extracted atoms, colored according 
to their order of return by the pursuit search.  The circles represent the locations of the true 
signal components in the frequency-chirp rate plane.  
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Figure 3.18: Scatter plots (chirp rate vs. frequency) for simple CW only data as the number of 
CW components increases from 1 to 8. Shown are the first 25 extracted atoms, colored 
according to their order of return by the pursuit search.  The circles represent the locations of 
the true signal components in the frequency-chirp rate plane. 
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The same smearing effect is observed, and more importantly, there are still 

erroneous chirp rates greater than +/-5 decades, even though the timeseries contains 

no chirping components. Considering that this chirp rate error behavior was observed 

for all the different windowing, noise, and clutter scenarios explored, a natural 

conclusion is that this is a systematic algorithm error and is in fact due to the fast 

ridge pursuit search of the dictionary. The effect of the pursuit search can be observed 

in Figure 3.19 below. Shown here is the scatter plot of a frame operator for a window 

of the simple timeseries with 8 CW components and no chirping signals. The frame 

operator is simply the inner product of the input with all dictionary elements, without 

any matching pursuit subtraction. Figure 3.19 shows all the inner products for a 

sample window, plotted at coordinates equal to the corresponding atom frequency and 

chirp rate, and colored according to the particular inner product weight (i.e., the 

largest inner products are in red and the smallest in blue). The y-axis range is the 

same as that of Figures 3.17-3.18 for easy comparison. 

 
Figure 3.19: Scatter plots (chirp rate vs. frequency) for simple 8 CW data. Shown are all the 
dictionary atoms without matching pursuit subtraction, colored according to their respective 
inner product weight.  The circles represent the locations of the true CW signal components in 
the frequency-chirp rate plane. 
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There is no chirp rate smearing effect in Figure 3.19 and the returned top 

atoms correctly match the true signal components. What this means is that the fast 

ridge pursuit indeed impacts the parametric fidelity of the returned atoms. One 

possible explanation is the use of ‘dual molecules’ in the fast ridge pursuit of [120], 

which mathematically serve the purpose of converting complex atoms to real ones. 

These dual molecules use conjugate complex atoms and could perhaps explain the 

dual chirp rate behavior in the atoms. Somewhat similar behavior of increasing and 

decreasing instantaneous frequencies was remarked upon in [7, 120], but was 

considered to be a strength of the algorithm in decomposing a vibrato acoustic signal 

with very few chirps. However, the extensive study in this chapter shows the dual 

chirp rate behavior and the chirp rate smearing is more a function of the fast ridge 

pursuit than the particular signal to be decomposed. From a feature extraction 

perspective, if chirp rate is a feature of interest, this is a weakness that renders 

Gribonval’s pursuit method unusable.  

3.3 Dictionary representation fidelity 

A key observation is that poor parametric fidelity of the returned atoms does 

not imply poor reconstruction fidelity of the input signal. In [7, 120], the performance 

metric used was representation fidelity of the input, whereas in this work the metric is 

parametric fidelity (i.e., recognition accuracy). The chirped Gabor dictionary can in 

fact be efficient in representing the simulated data, and Figure 3.20 illustrates this 

property. The semilog plot of Figure 3.20 shows the average normalized residual after 
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every matching pursuit iteration, that is, as more dictionary elements are added to the 

representation. This residual can also be thought of as reconstruction error at that 

particular iteration. The Far CP 3:1 data is considered in this instance, and the average 

is calculated over all the 987 ON windows in a timeseries. Several different 

dictionaries are compared in terms of their sparse representation capability.  

 

Figure 3.20: Residual decay averaged over all ON windows for various analytical dictionaries, 
with and without Gaussian pre-windowing. 
 

First, it is observed that there are eight chirped Gabor dictionaries with several 

degrees of overcompleteness, each with and without Gaussian pre-windowing 

(colored traces). Secondly, a Fourier dictionary is considered, with and without pre-

windowing (black traces). The Fourier dictionary is in fact the N=512-point FFT basis 

used with a matching pursuit decomposition instead of the usual projection. Since it is 

orthonormal and the projection of a given input is unique, the matching pursuit 
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decomposition will in fact replicate the contribution of the FFT coefficients, sorted 

according to their amplitude. Only the first 256 decompositions are considered in 

Figure 3.20 (i.e., one-sided frequency spectrum). 

Good sparse approximations capture most of the signal energy in the first few 

coefficients, which translates into a very steep initial decay of the residual. In this 

sense, the more overcomplete the Gabor dictionary, the more energy compacting it is 

(compare residual decay for red, blue, green, and magenta traces). All the 

overcomplete dictionaries outperform the Fourier dictionary case without pre-

windowing. It is interesting to note that for the first ~12 dictionary elements the 

Fourier dictionary and the standard overcomplete chirped Gabor (of =1) have very 

similar residual behaviors, with or without windowing. This could be due to the fact 

that the smallest frequency resolution in the dictionary at of =1 matches that of the 

Fourier dictionary, and the initial selected atoms correspond to CW components, i.e., 

they have zero chirp rates, and therefore are very similar to the selected Fourier 

elements of the same CW frequencies.  

The efficiency of the dictionaries in Figure 3.20 in capturing the input signal 

energy can also be evaluated by counting how many atoms are needed to represent 

99% of the signal (dashed black line). The overcomplete (of =8) dictionary with 

pre-windowing needs ~25 atoms to reach the 99% threshold, while the Fourier 

dictionary needs ~136 elements to capture the same amount of energy.  

In terms of reconstruction error, the more overcomplete the Gabor dictionary, 

the better (i.e., lower) the reconstruction error, which is a slightly different effect than 
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was observed on the fidelity of the returned atoms. Also, pre-windowing the data in 

general improves reconstruction performance, and the trend for every dictionary 

considered is for the windowed case (cross traces) to yield lower residuals than the 

non-windowed case (flat traces) after the first few extracted atoms. This is also 

different from what was observed for the atom fidelity performance, as windowing 

was observed to hinder feature extraction.  

3.4 Software implementation and algorithm complexity 

The dominant challenge for RF signal processing is the length of the time 

records, the high sample rate, and the equivalent short processing time available for 

real-life applications.  The non-chirped Gabor overcomplete dictionary is pre-

generated using a fast numerical implementation and subsequently used in tabulated 

format. For the modeled data rate of 1 MHz, with an analysis window of 512-sample 

length, the non-chirped dictionary size is 5120 atoms for overcompleteness factor 

of=1. Given a timeseries with 500,000 samples (i.e., 0.5 s at 1 MHz sampling rate), 

the equivalent real-time processing for classification of all the resulting time analysis 

windows is 0.5 s. The original fast ridge pursuit algorithm was implemented in 

Matlab, and even though it was much faster than a brute force search of the entire 

Gabor dictionary based on the comparison in [120], it still resulted in run times few 

orders of magnitude higher than real time. Computational speedups were achieved by 

using parallel processing whenever possible, by vectorizing the dictionary search, and 

by extensive use of logical masks. The decomposition of buffered test data (i.e., 
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matrix of all overlapping analysis windows in a timeseries) over the dictionary using 

the optimized implementation has a computational time within one order of 

magnitude of real time, on a Windows workstation with 8 Intel Xeon X5550 2.67GHz 

quadcore processors. The search for one atom is ~4 s for the entire buffered 

timeseries of 1952 analysis windows, and ~0.44 s for a single analysis window, on 

the specified architecture. Even though the complexity of the fast ridge pursuit search 

is only order O(NM) [7], for the dictionary size employed it is not achieving real-time 

atom extraction, despite the many optimizations.  Additional gains in speed were 

achieved by distributing the calculation of inner products with the dictionary across 

the cores of a graphical processor unit (GPU). Even so, the feature extraction step 

alone takes longer than the real-time cutoff, without including the additional 

classification step, which makes the entire overcomplete, parametric dictionary 

classification approach impractical for real-time implementation. 

3.5 Conclusion on overcomplete parametric dictionaries 

The fast ridge pursuit in a chirped Gabor dictionary is fairly accurate in 

extracting the frequency of the signal components present in the test data. However, 

significant errors in the estimated chirp rate parameter limits the use of chirp rate as a 

feature; within a frequency band, the chirp rates vary by several orders of magnitude.  

Signals in distinct frequency bands can be distinguished from one another, while 

signals in the same frequency band with distinct chirp rates cannot be distinguished 
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from each other. In general, this is a significant problem and precludes the use of this 

method as the basis of a robust classification scheme. 

Another downside is that an increasingly large number of dictionary elements 

are required to capture the target as the signal becomes dominated by clutter sources. 

As described in Section 3.1.1, matching pursuit identifies the dictionary element that 

best captures the signal at the current iteration, i.e., minimized local residual as 

opposed to global residual. Thus earlier elements capture the stronger signals, and 

therefore capture noise and clutter before finding a quiet target. As a result, the 

number of elements chosen to represent the data becomes crucial. If too few elements 

are used (e.g., 5 for Far CP data – red dots in scatter plots), the target never appears in 

the selected elements. If too many are used (e.g., 100), the number of false positives 

incurred becomes debilitating; the more dictionary elements we consider, the more 

likely we are to observe a spurious match to something approximating the target 

characteristics. 

The accuracy and reproducibility of the parameters obtained using the chirped 

Gabor dictionary with the fast ridge/matching pursuit search was found to be sensitive 

to the amount of clutter, SNR, overcompleteness, and the choice of data windowing 

function (e.g., rectangular window vs. Hamming window). This sensitivity is partly 

due to the fast ridge dictionary search and the matching pursuit greedy 

approximation. Raising the degree of dictionary overcompleteness by increasing the 

frequency and chirp rate resolution can lead to better parameter matches, but the 

associated computational overhead is very large. Improvements in feature quality 
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could be made by using the frequency information of the returned atoms, which was 

the most accurate of all estimated parameters. For example, the target chirp rate could 

be estimated by considering all the returned frequencies in the target spectrum and 

fitting an instantaneous frequency line to those observations, whose slope would be 

the chirp rate. This approach presents its own challenges and would only incur 

additional computational time.  

The purpose of this chapter was to rigorously explore the parametric 

overcomplete dictionary approach and focus on the quality of the features extracted. 

The effects on the atoms’ parametric fidelity introduced by windowing, reduction in 

SNR, amount of clutter, and dictionary overcompleteness were evaluated and the 

approach was found to be sensitive to all of them. The conclusion of this section is 

that for the specific RF application modeled, this analytical dictionary approach was 

found to be unreliable for classification, and nearly impossible to implement for real-

time classification. It provided, however, one very important insight into dictionary 

methods in classification: a dictionary with good reconstructive properties may not 

necessarily provide good classification features. This key finding motivates the 

alternative approaches explored and developed in subsequent chapters of this thesis.   
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4. Sparse Representations in Learned Dictionaries 

 

In this chapter it will be shown that dictionaries learned directly from the data 

can eliminate the need for prior knowledge of clutter or target characteristic models, 

lead to sparse representations, and perform well in conjunction with a statistical 

classifier. At this point in the study, the data is split into two disjoint sets, one for 

training, and one for testing, to ensure proper validation of results. Training data and 

test data consist of distinct sets of timeseries for each of the three cases (Far CP, Flat 

CP and Chirped CP), where every individual timeseries is generated with different 

initial conditions (e.g., random noise seeds). In the sections that follow, the 

dictionaries are always learned from the training sets, and the classification accuracy 

is evaluated on the test sets. 

The process is as follows: first, a modified on-line batch Hebbian learning 

algorithm similar to [18, 91, 96] is used to learn dictionaries for RF signal 

classification from training data. The sparse approximations of test data obtained via 

matching pursuit are considered to be “features” and are used in conjunction with a  

minimum residual (MR) classifier (or nearest subspace) [15, 97], to distinguish 

between the time windows when the target signal is ON or OFF. Secondly, the K-

SVD method of Aharon et al. [10] is also implemented to build classification 

dictionaries from the same training data, and similarly used with the MR classifier in 

order to compare the performance of the two dictionary learning methods. The K-
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SVD algorithm is similar to the K-means clustering process, and it works with any 

form of sparse signal representation algorithm. It is an established approach, and is 

more similar to vector quantization, whereas Hebbian learning was developed as a 

neuromimetic learning technique [92, 121]. The work in this thesis is the first attempt 

to extend and adapt dictionary learning methods to RF processing. Additionally, 

detailed comparison of two different learning algorithms helps generalize the results 

of this study to arrive at novel and applicable conclusions. These specific learning 

algorithms are detailed in Section 4.1. 

In order to use learned dictionaries for RF signal classification, an analysis of 

the quality (e.g., specificity or uniqueness) of resulting features must be made from a 

discrimination point of view. Dictionary learning algorithms have a number of 

parameters that need to be optimally chosen under some metric, which in this work is 

classification performance.  Selecting a dictionary size effective for classification is 

the first task, as this choice has significant impact on the computational demands, 

both from the standpoint of building the dictionary as well as extracting classification 

features. A large portion of dictionary design work in image processing has focused 

on very large (i.e., overcomplete) dictionaries for increasingly sparse representations. 

In recently published work [16],  the author showed that, for different RF simulated 

data, dictionaries that were undercomplete by a factor of 20 lead to good 

classification performance in almost real time. It was the undercompleteness of the 

dictionary in particular that made near-real time classification feasible. Although 

intuitively one cannot expect great reconstructive performance from an 
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undercomplete dictionary, this research direction was motivated by the results in 

Chapter 3. There it was shown that excellent reconstruction capability did not lead to 

or correlate with good classification features. Conversely, if perfect reconstruction is 

not needed for perfect classification, there is no compelling reason to learn 

overcomplete dictionaries that can reconstruct well.  

The impact of dictionary size is now explored in greater detail by examining 

performance for a range of dictionaries from undercomplete (by a factor of 32) to 

overcomplete (by a factor of 2). This chapter will show that good classification 

accuracy can be obtained with dictionaries that are undercomplete with respect to the 

length of the input vectors (i.e., natural dimensionality). Additionally, a sensitivity 

analysis on the learning algorithm parameters will be made with respect to 

classification accuracy. 

4.1 Learning algorithms 

An overview of the dictionary learning algorithms is now briefly presented. 

Given a signal set X containing P normalized training vectors xi, each of length N, the 

dictionary learning process begins by initializing the K elements of dictionary Φ with 

l2 normalized rows of random numbers from a uniform distribution. A more detailed 

discussion on the dictionary initialization is deferred to Section 4.1.1. 

Learning Φ takes place over multiple iterations (the number of times the 

dictionary “sees” the entire training data set), C, and generally consists of two stages 

per learning iteration: the sparse coding stage, and the update stage.  
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In the sparse coding stage, which is the same for both Hebbian and K-SVD 

learning, a weight vector ai is found for each training vector xi  using the current 

dictionary iteration Φ(c), such that ai is sparse and ai
TΦ(c) is a sufficiently good 

approximation to the input, 

 { }2( )
02

min such that ,
i

T c
i i ia

x a a L− Φ ≤  (4.1) 

where the sparsity factor, L, controls how many dictionary elements are allowed to 

represent a particular training vector. The sparse approximations that were used 

throughout this thesis were found using an l0 “norm.” As mentioned before, this 

problem is NP-hard, lacking an exact solution, but an approximate solution for ai can 

be found using a simple matching pursuit algorithm [6]. This choice yields an easier, 

faster implementation, as well as a progressive way of increasing the sparsity of a 

particular approximation to study effects on classification performance. 

 Once a sparse approximation vector ai is found, the dictionary learning 

proceeds to the update stage, which will be separately discussed for the two methods 

in sections 4.1.2 and 4.1.3. 

The learning iterations, each with a sparse coding and an update stage, 

continue until some criterion is fulfilled. This criterion can be a measure of dictionary 

learning convergence (i.e., the individual dictionary elements stop changing 

significantly between consecutive updates), a measure of representative or 

discriminative power [14], or an empirically chosen fixed number C of learning 
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iterations. In this work, a range of fixed learning iterations C is considered in order to 

explore the exact behavior of dictionary learning convergence.  

4.1.1 Dictionary initialization 

Several recent publications have explored initialization with random noise 

vectors [10], by imprinting with actual data vectors [111], or by seeding the 

dictionary with a sparsifying transform on the data [73]. While there are many ways 

to initialize a dictionary, in this work all the elements are usually initialized with 

random normalized vectors, using distinct random seeds in each case, for the purpose 

of exploring how the dictionaries learn from the training data. Starting with a random 

dictionary, the first batch of training vectors will each “select” the best L dictionary 

elements for their sparse representations with relatively equal probability. These 

selected elements are updated and their likelihood of getting selected for representing 

the following batch is now increased. As the dictionary receives sequential training 

batches, additional dictionary elements are activated (i.e., become updated) to capture 

the remaining variability in the data.  

4.1.2 Hebbian dictionary update 

In the Hebbian learning case, the training set is viewed one training vector at a 

time (i.e., sequentially), and an update of the entire dictionary is performed in parallel 

for all dictionary elements, ,kϕ for each training vector xi using the learning rule: 

 ( ) ( ) ( 1) ( ) ( )ˆ, .c c c c c
k k k kϕ ϕ ϕ η ϕ+∀ ∈Φ = + ∆  (4.2) 
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Hereη is a parameter controlling the learning rate, and the new estimate ( 1)ˆ c
kϕ
+ is re-

normalized to unit norm ( 1)

2
ˆ( 1).c

kϕ
+ =  That is, in each learning iteration the 

dictionary is updated as many times as there are training vectors xi. The training 

vectors are received in a random order which changes at each learning iteration.  

The dictionary element update, ( ) ,c
kϕ∆ is derived to minimize the energy cost 

function in (4.3) with respect to each dictionary element, for a known sparse 

representation of the input vector [92]: 

 
2( )

02
.c

i i iE x a aλ= −Φ +  (4.3) 

The first term measures how well the dictionary describes the training vector xi, 

according to mean square error, while the second term enforces sparsity in the weight 

vector ai via the sparsity constraint λ. The dictionary update in equation (4.4) is then 

obtained by performing gradient descent on this cost function with respect to the 

dictionary elements, resulting in: 

 ( ) ( )
,2 ( ).c c

k i k i ia x aϕ∆ = − −Φ  (4.4) 

A variation to this serial algorithm is a batch Hebbian learning, which allows 

small groups (i.e., batches) of I training vectors to contribute simultaneously to the 

update in equation (4.4), resulting in the batch update equation:   

 ,
1 2 ( ).k i k i i

i
a x a

I
ϕ∆ = −Φ∑  (4.5) 
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4.1.3 K-SVD dictionary update 

For K-SVD learning, first a sparse matrix of weights, A, is found over the 

current dictionary iteration for all training data. Then, the dictionary update stage 

begins and in the K-SVD case, the training vectors are viewed simultaneously by the 

dictionary as a matrix X, and each dictionary element ( )c
kϕ  is updated sequentially 

based on the group of training vectors it helps represent, similar to [10]. Let  

 { }( )
,* ,and 0 ,T c i rows

k j j k S k i k
j k

R X a R R aϕ ∈
≠

= − = ≠∑  (4.6) 

where the matrix kR is the signal residual after the contribution of all dictionary 

elements different from ( )c
kϕ is subtracted from the signal matrix, X. The residual 

matrix is then restricted to rows k SR ∈ that represent the residuals for the training 

vectors that contain ( )c
kϕ in their sparse representation. Given the singular value 

decomposition 

 ( ) ,T T
k SR U V∈ = Σ  (4.7) 

the dictionary update rule is ( 1)
1u ,c T

kϕ
+ =  where 1u is the largest singular vector.  

4.2 RF classification with learned dictionaries 

In a typical classification setting, a user has to jointly optimize feature 

extraction and train the classifier, as shown in Figure 2.1. In Chapter 3 such a joint 

approach was unsuccessful with the use of a parametric overcomplete dictionary (as 

opposed to the learned dictionary introduced here), that would automatically provide 

the features a domain expert would use to categorize the simulated data in Figure 1.2 
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(e.g., frequency, chirp rate). Learned dictionaries constructed as outlined in Section 

4.1 effectively learn features intrinsic to the data that allow direct classification, 

without necessitating a domain expert’s input (e.g., a human). It is worth noting, 

however, that a domain expert is required to produce or select training data that is 

deemed meaningful for a given application.  

In the context of RF data, one can view learned dictionary elements as a set of 

learned matched filters for the non-stationary training data. There is no longer a need 

for a domain expert to analyze and extract possible features and separately train a 

classifier on those features. The dictionary elements themselves become the features, 

and a match to those features (i.e., high degree of correlation) will tend to indicate the 

correct class. The hypothesis here is that the learned dictionary defines a space that is 

closely matched to that of the input data (i.e., matched space), allowing for good 

classification for a variety of learning parameters. In particular, when the parameter in 

question is dictionary size, the matched space can represent a dimensionality 

reduction for undercomplete dictionaries. 

In order to use learned dictionaries on the simulated RF data of Chapter 1, the 

classification is posed as a two-class problem: discriminating between target ON and 

target OFF in a test data window. Therefore, the dictionaries are learned in pairs: one 

ON dictionary, one OFF dictionary. To classify a test timeseries, it is decomposed 

into length-N data vectors by using a sliding overlapping window. Two sparse 

representations of the signal in each window are then constructed via matching 

pursuit, one using elements from the ON dictionary, one using those from the OFF 
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dictionary. The MR classifier [15, 16] is then used to assign to the window the label 

corresponding to the dictionary yielding the smallest matching pursuit residual 

energy. That is, the MR classifier decides based on the best matched space, or the 

“nearest” space, to the input data.   

Both training and test data sets are processed with data analysis windows of 

length 512 samples (0.5 ms of recording), with overlap of 256 samples, resulting in 

1952 windows per timeseries. A true (ground truth) label is given to each data 

window using prior knowledge of the operational state (i.e., ON or OFF) of the target. 

A window is classified as an “ON-window” if the target pulse is present in 100% of 

the analysis window. A window is labeled as an “OFF-window” if the target pulse is 

completely absent. Windows containing partial target signal are ignored in this work.  

The training set consists of two simulated time-recordings, i.e., a total of 1 s of 

data for training, from which an equal number of ON and OFF windows is selected. 

The resulting ON training data set consists of 1700 fully ON data vectors, and 

similarly the OFF training set includes 1700 fully OFF data vectors.  

The test data consist of timeseries recordings of 0.5 s each, different from the 

training data.  The goal is to classify the operational state of the target as recorded in 

the test data in each of the data windows. Each test time window is given an ON/OFF 

label by the dictionary pair via the MR classifier. These classification labels are 

compared with the true labels to obtain classification accuracy ((True ONs+True 

OFFs) / (Total ONs+OFFs)), which is used as the performance metric throughout this 

thesis. 
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To better evaluate the learning convergence properties of the algorithms, 

dictionaries are learned in sets of ten pairs – one ON dictionary, one OFF dictionary 

per pair – from training data with high amplitude (SNR 3:1) target, as shown in 

Figure 1.2. Each dictionary in the set of 10 pairs is initialized with a different random 

seed to eliminate the possible effects of correlated initialization, and to explore 

variability in learning behavior. Even though Hebbian dictionaries are the primary 

focus of this work, separate dictionary sets were learned with both K-SVD and 

Hebbian methods, with various parameter values for the sparsity factor, L, the 

dictionary size, K, and the number of learning iterations, C. These sets of dictionaries 

will be used to evaluate the classification accuracy convergence for the various 

parameters, and the variance of the performance across each set of 10 dictionaries. 

Classification convergence that is independent of dictionary initialization (i.e., 

exhibits little variation across the 10 pair set), is indicative of a useful learned 

dictionary for the type of signal represented in the training and test data sets. This 

variance is introduced by the random initialization of each dictionary prior to the 

learning process, and the goal is to see the dictionaries converge to similar 

performance regardless of the random seed (i.e., see the variance across the set 

decrease).  

4.3 Dimensionality of training data space 

While the amount of training data available varies from one application to 

another, it is always limited by practical constraints. On one hand the goal is to 
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minimize computational overhead in feature extraction and training a classifier, on 

the other hand the aim is to obtain good features for high performance classification. 

One factor that impacts this dual optimization problem is the size of the training set. 

Determining the minimum amount of training data required to obtain good 

classification is an ongoing research question in the field. While this work does not 

explicitly explore performance with respect to training set size, it is implicitly 

explored in the study of learning iterations, C. The value of C is a direct measure of 

how much training a dictionary goes through, and this chapter will demonstrate that 

by increasing the value of C, classification performance can be much improved, even 

for  a training set as small as that considered here (i.e., only 1 s of data). 

At this point, it is useful to explicitly introduce the concept of ‘data space’ in 

order to accurately describe training data used in this project. For a specific class of 

RF signals (e.g., those from arcs for example), there are likely many unique time 

domain measurements which each differ one from the other, but share similarities 

which distinguish them from other types of signals (e.g., pulsed CW waveforms, for 

example). Conceptually speaking, the set of all possible measurement outcomes of a 

given signal type constitutes what is termed ‘data space.’ In this sense, training data 

are all sampled from the same data space, i.e., from the same data distribution. It is 

this very data space the proposed dictionary learning methods are aiming to learn 

from the training data. The training set therefore must include sufficient information 

(i.e., entropy) to adequately describe the entire data space. The algorithms studied 
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here also rely on multiple learning iterations, that is, they are allowed to view the 

training data multiple times to improve their approximation of the data space. 

One way to visually explore the data space is to perform principal component 

anaylsis (PCA), and look at the principal components (eigenvectors) of the matrix 

formed with all the training vectors. Figure 4.1 shows spectrograms of the first 20 

principal components (i.e., those with the largest 20 associated eigenvalues), for the 

ON (top panel) and OFF (lower panel) windows in the training set corresponding to 

Far CP data with SNR 3:1. Principal components for the training set appear to have 

some degree of structured self-similarity in their spectral content, i.e., two or more 

components have similar subset of spectral components from the training data. 

Comparing the sequence of CW components present in the first 12 principal 

components with the parameters in Table 1.1, it follows that the CW components 

appear in the PCA decomposition grouped loosely in the order of their amplitudes, as 

expected. Components 13 through at least 20 seem dedicated to target signal, which is 

present in the ON case and absent in the OFF case. 

The corresponding cumulative sums of the ON and OFF eigenvalues are 

shown in Figure 4.2. The eigenvalues represent the “energy” distribution of the 

respective training sets among each of the corresponding eigenvectors, where the 

eigenvectors form a basis for the data. The cumulative energy content for the mth 

eigenvector is the sum of the energy content across all of the eigenvalues from 1 

through m. This plot gives a visual measure of the variability present in the ON and 

OFF training sets, where variability is indicated by how many eigenvalues (i.e., 



 

84 

 

 

corresponding eigenvectors) are necessary to account for some amount of the input 

energy. For example, the first 23 components (ON case), and the first 10 (OFF case) 

are required to account for 95% of the variance in the respective ON and OFF 

training sets.  

 

Training set ON windows 

 
Training set OFF windows 

 
 
Figure 4.1: Principal components of the training set, arranged in order of decreasing 
component variance and shown using an identical color map. Shown here are spectrograms 
(individual vertical strips) of the first largest 20 principal components for the ON (top) and the 
OFF (bottom) windows in the training set. Every principal component is of length 512 
samples. Each spectrogram is constructed with short-time Fourier transform using windows of 
length 128 with 50% overlap. The corresponding target spectrum is marked with a black 
brace. Components 13 through at least 20 seem dedicated to target signal, which is present in 
the ON set and absent in the OFF case. 
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Figure 4.2: Cumulative sum of eigenvalues for the training set (i.e., contribution of each 
eigenvalue, arranged in decreasing order of magnitude, to the total sum of eigenvalues). Red 
trace represents ON windows and green trace represents OFF windows.   
 

4.3.1 The data space dimensionality 

The completeness of a redundant dictionary is defined as the ratio between the 

number of dictionary elements and the natural input dimensionality of the data 

analysis window, 512 samples in this case. A dictionary is complete if this ratio is 1:1, 

undercomplete if the ratio is less than 1, and overcomplete otherwise.  

Choosing a dictionary size that has some degree of overcompleteness with 

respect to the natural dimensionality, N, has shown to be a good choice for learning 

dictionaries in published work, in particular for reconstruction applications. The 

performance of such overcomplete dictionaries might, however, be due to the fact that 

their size was much larger than some notion of “intrinsic” dimensionality of the 

underlying data space. Intuitively, the dictionary needs to be overcomplete with 

respect to the dimensionality of the data space as defined earlier, not simply with 
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respect to the user specified natural dimensionality. In reality, exactly measuring the 

intrinsic data dimensionality is a very ambiguous problem and a topic of ongoing 

investigation.  

In this thesis, the degree of dictionary overcompleteness is explored from a 

classification perspective. The fundamental question becomes: does a learned 

dictionary need to give perfect reconstruction in order to give an accurate 

classification decision? This thesis demonstrates that undercomplete learned 

dictionaries can work for classification, and that they have a number of 

computational and implementation advantages. This represents one of the novel 

outcomes of this thesis project and it will be referenced in subsequent discussion. 

4.3.2 Dictionary data space representation fidelity 

A learning convergence is now defined to quantify the changes of a dictionary 

in the iterative learning process. Given multiple learning iterations for a particular 

dictionary, an individual dictionary element, jϕ  is said to converge if it stops 

changing significantly from one update, c, to the next, as given by: 

 21

2
, ,c c

j j jϕ ϕ ε ϕ−− < ∈Φ  (4.8) 

where ε is arbitrarily small. While individual dictionary elements may converge at 

different rates, the entire dictionary Φ of some size, K, can also reach some degree of  

asymptotic performance after a certain number of learning iterations, where 

performance is defined from a discriminative point of view. That is, the maximum 

change across all elements will be bound after some number of learning iterations, C, 
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and the associated classification performance will not vary much. This is further 

referred to as dictionary learning convergence, and can be mathematically expressed:  

 21

2
max .

j

c c
j jϕ

ϕ ϕ β−

∈Φ
− <  (4.9) 

Measuring learning convergence is straightforward, as it involves direct measurement 

of Euclidian distances between updates for a given dictionary element, and has been 

observed in some of the author’s publications [16-18]. 

The measure of convergence in equation (4.9) is appropriate for comparing 

dictionaries of similar size. The goal in this part of the thesis is to also compare 

dictionaries of different sizes, so learning convergence as defined above is no longer 

an appropriate metric. The notion of data space representation fidelity is more 

applicable. Given a set of n different dictionaries (e.g., different sizes or different 

random initializations prior to the learning phase), space representation fidelity is best 

when the equivalent learned space for all n dictionaries closely matches the data 

space. The hypothesis is that a learned dictionary will define a dictionary space that is 

closely matched to that of the input data, allowing for good representation and/or 

classification. That is, the dictionary elements become increasingly more accurate at 

providing a sparse representation for the data set. The implication is that the learned 

dictionary space will approximate well the training data space with sufficient training. 

For a dataset 1{ } ,N
px let its corresponding residual over some dictionary Φ be given 

by: 

 2

2

1( ,{ }) ,p p p
p

r x a x
P

Φ = Φ −∑  (4.10) 
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where { }pa are the optimal sparse solution coefficients for eq. (4.1), and P is the 

training set size. If the dictionary learning algorithm converges in the data space 

sense, then: 

 1( ,{ }) ( ,{ }).c c
p pr x r x+Φ ≤ Φ  (4.11) 

In this work, data space representation fidelity is the underlying decision 

criterion for the MR classifier, but it is not pursued in the sense of achieving perfect 

reconstruction. What will be shown is that space representation fidelity is a strong 

indicator of classification accuracy.  

4.4 The learned dictionary space 

Recent publications have explored various aspects of dictionary learning, such 

as sparsity in learning and in reconstruction [80, 111], and the choice of learning 

algorithms [14, 18, 95, 99, 109, 111]. Less work has been published exploring the 

choice of learned dictionary size, and it has been relatively common to simply choose 

a “sufficiently” overcomplete dictionary size with respect to the natural input 

dimensionality (i.e., the length of data analysis window). In fact, in the closing 

section of his book [58], Elad includes “setting the proper dictionary redundancy” as 

a fundamental issue remaining to be studied. This thesis attacks this research problem 

by hypothesizing a much lower bound for dictionary size and uses experimental 

results to support it.  



 

89 

 

 

Recall that a learned dictionary is not directly generated by an analytical 

function, but it is rather the result of implicit minimizations on cost or energy 

functions that are specific to each learning method. A dictionary can be considered a 

collection of learned matched filters for the training data, but finding quantitative 

ways to describe and compare dictionaries learned with different methods is not 

straightforward given the lack of a generating function. The waveforms (or 

timeseries) of dictionary elements do not visually present any degree of regularity, as 

shown by inspection in Figure 4.3. 

 
 
Figure 4.3: Example timeseries of learned elements with N=512 samples from a Hebbian 
dictionary (left panel) and a K-SVD dictionary (right panel), both with K=256 elements.  

 

One way to visually compare dictionaries learned with the two techniques, 

Hebbian and K-SVD, is to look at their principal components. Spectrograms of the 

first 20 principal components for a sample Hebbian ON/OFF dictionary pair (Figure 

4.4) and a sample K-SVD ON/OFF dictionary pair (Figure 4.5), each with K=256 

elements, are shown below. These spectrograms give a qualitative view of the learned 

dictionaries, graphically depicting the “knowledge” present in each of them. For both 
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Hebbian and K-SVD dictionary types, the first 12-13 principal components are 

primarily dedicated to the clutter space, after which both Hebbian and K-SVD ON 

dictionaries exhibit principal components dedicated to the chirped target. In contrast, 

the principal components for the OFF dictionaries transition from the clutter space 

directly to the noise space (compare components 14-20 in each case). A classifier 

based on the ON/OFF dictionary pair is therefore able to determine the presence or 

the absence of the target signal in a test window.  

Comparing these PCA spectrograms to those of the training data in Figure 4.1, 

neither Hebbian nor K-SVD match exactly in terms of spectral content in their 

respective principal components. However, grouping of only a few CW components 

at a time is present in the Hebbian case, which is somewhat similar to the training set 

case. Principal components for the K-SVD case appear more self-similar in their 

spectral content, while for the Hebbian dictionary they appear less self-similar, and a 

closer look at the eigenvalues of the dictionary is warranted.  

Cumulative sums of the corresponding eigenvalues are shown in Figure 4.6 in 

order of decreasing magnitude, for each method and each dictionary pair. For the 

chosen Hebbian pair, the first 104 components (ON case), and the first 85 (OFF case) 

are required to account for 95% of the variance. In contrast, for the K-SVD pair the 

first 11 components (ON case), and the first 10 components (OFF case) are needed to 

capture 95% of the respective dictionary variance.  
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Hebbian ON dictionary 

 
 

Hebbian OFF dictionary 

 
 
Figure 4.4: Principal components for an example Hebbian ON/OFF dictionary pair with 
K=256 elements, arranged in order of decreasing component variance and shown using an 
identical color map. Shown here are spectrograms (individual vertical strips) of the first largest 
20 principal components for each of the selected dictionaries. Every principal component is of 
length 512 samples. Each spectrogram is constructed with short-time Fourier transform using 
windows of length 128 with 50% overlap. The corresponding target spectrum in the ON 
dictionary is marked with a black brace. 
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K-SVD ON dictionary 

 
 

K-SVD OFF dictionary 

 
 
Figure 4.5: Principal components for an example K-SVD ON/OFF dictionary pair with K=256 
elements, arranged in order of decreasing component variance and shown using an identical 
color map. Shown here are spectrograms (individual vertical strips) of the first largest 20 
principal components for each of the selected dictionaries. Every principal component is of 
length 512 samples. Each spectrogram is constructed with short-time Fourier transform using 
windows of length 128 with 50% overlap. The corresponding target spectrum in the ON 
dictionary is marked with a black brace. 
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Figure 4.6: Cumulative sum of eigenvalues for ON learned dictionaries (top), and OFF learned 
dictionaries (bottom) with K=256 elements. Green trace represents Hebbian dictionaries, and 
blue trace represents K-SVD dictionaries.   
 

The principal component study demonstrates that, for the chosen training data 

set, there is a higher amount of variability present in a dictionary learned with the 

Hebbian method compared to one learned using K-SVD. This higher variability could 

allow for sparser decompositions over the Hebbian dictionary compared to the K-
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SVD one for an equivalent approximation fit. It indicates that a Hebbian dictionary 

might perform better on test data, and subsequent sections confirm this finding.  

4.5 Hebbian learning parameters 

A number of parameters must be chosen to ensure good performance of the 

dictionary learning algorithm. For this initial study of the learning parameters, the Far 

CP data case is again considered first, similar to the parametric dictionary case. The 

training set size is initially fixed at 1700 ON and 1700 OFF windows, which is a 

small number and would represent an extreme case of few training data. The question 

is how much can be learned from such limited data.  

The impact of completeness can now be explored for the RF case in greater 

detail by examining classification performance of dictionaries ranging from 

undercomplete by a factor of 32 (i.e., 16 elements), to up to twice overcomplete (i.e., 

1024 elements), with respect to a natural dimensionality of N=512.  Directly related 

to the choice of dictionary size is another learning parameter: the number of learning 

iterations C (i.e., how much training does the dictionary need). Lastly, the sparsity 

factor of the approximation, L, (see definition in Section 4.1) can also impact the 

quality of the learning and of the classification, as it directly controls how much 

“information” or detail is extracted from the data.  

These three parameters are discussed below using classification accuracy as 

performance metric. In reporting accuracy, false positives and false negatives are 

equally weighted. For applications in which false positives and false negatives are not 
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assigned equal weight, the data from which the dictionary is learned could be chosen 

to minimize either false positive rate or false negative rate.  

4.5.1 Number of learning iterations, C 

It is generally accepted that K-SVD learning converges relatively fast in terms 

of representation accuracy [10, 95], and usually in fewer than 30 iterations [10]. 

Similar convergence behavior was observed by the author when using K-SVD 

dictionaries to classify other RF simulated data [16]. To similarly study the learning 

convergence in classification for Hebbian dictionaries, the dictionary size and 

learning sparsity factor are fixed and a wide range of learning iterations is considered 

(Figure 4.7).   

Two sizes are initially set at an undercomplete value of K=256 (top panel) and 

a complete value of K=512 (bottom panel), and the learning sparsity factor (i.e., the 

sparsity factor used during the learning process) in both cases is Llearn=45. This value 

for Llearn was chosen based on the results in [16] as a sparsity factor value that is large 

enough to not impact accuracy performance, thus allowing a more straightforward 

study of the effect of learning iterations. Values of C between 25 (i.e., around the 

number of iterations needed for K-SVD to converge) and up to 600 are used in each 

case, and 10 ON/OFF dictionary pairs with different random seeds are learned for 

each value of C. The boxplots in Figure 4.7 summarize the accuracy of these 

dictionaries for classification when tested against unseen Far CP SNR 3:1 test data, 

where the variance and median accuracy at every value of C are calculated over the 
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respective 10 dictionary pairs. In the top panel, for K=256, the accuracy improvement 

levels off once the number of learning iterations C is roughly the same as the number 

of dictionary elements K to be learned (marked by the vertical line). The maximum 

reached classification accuracy is ~0.998 and first occurs at learning iteration 250. 

The overall accuracy variance (i.e., height of the boxplot) decreases between 75 and 

350 learning iterations, and begins increasing again past 400 iteration, which would 

be a sign of overfitting (i.e., overlearning) the training data.  

In the bottom panel, for K=512, the accuracy improves more slowly and to a 

slightly smaller maximum value, and the variance is larger up to C=500 learning 

iterations, as one would expect with the greater degrees of freedom associated with a 

larger dictionary. Clearly, for both dictionary sizes, Hebbian learning requires much 

more than ~30 iterations to converge (compared to K-SVD learning) for this fixed 

training set size.  In the K=512 case, it is also apparent that the performance worsens 

as the learning iterations increase by a larger extent than in the K=256 case, an 

indication that more training data is needed for the larger dictionary. Therefore, even 

from limited training data one can learn a relatively good small dictionary using many 

learning iterations (e.g., C=250 for K=256), but as K increases it may no longer be 

possible to do so.    
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Figure 4.7: Classification accuracy for Hebbian dictionaries of size K=256 elements (top) and 
K=512 elements (bottom) for different numbers of learning iterations C, where each iteration 
considers all P=3400 ON and OFF training vectors. The 10 ON/OFF dictionary pairs in each 
boxplot are learned on high amplitude target training data with sparsity factor L=45 and used 
to classify unseen high amplitude test data. 
 

4.5.2 Dictionary size, K 

Now the performance of the two methods is compared as the dictionary size K 

changes. For the K-SVD case, 10 ON/OFF dictionary pairs with sizes of K between 

16 and 1024 elements are learned from Far CP SNR 3:1 training data, with C=25 

learning iterations. Figure 4.8 shows the accuracy of the resulting dictionaries in 

classifying unseen high target amplitude (SNR 3:1) test data. The learning behavior is 
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as follows: classification accuracy improves gradually as the size of the dictionary 

increases (near K=128) and then remains relatively similar for a wide range of K. An 

important observation is that a K-SVD learned dictionary that is undercomplete with 

respect to the input dimensionality (e.g., dictionary size of K=192 vs. input 

dimensionality of 512) can achieve accuracy comparable to complete or overcomplete 

K-SVD dictionaries trained on the same amount of training data.   

 

 

Figure 4.8: Classification accuracy for different dictionary sizes K. The boxplots summarize 
10 ON/OFF dictionary pairs learned with the K-SVD method using a constant number of 
learning iterations C=25. The training and test data contained a high amplitude target and the 
sparsity factor was L=45.  

 

For the Hebbian case, the required amount of dictionary training (i.e., minimal 

number of learning iterations) increases proportional with the number of dictionary 

elements, K, for a fixed training set size (based on Figure 4.7). An illustration of the 

impact of insufficient training on the dictionary is shown in Figure 4.9. The 

dictionary pairs shown here were all learned with the Hebbian method using a 

constant number of learning iterations C=250 and a sparsity factor of Ltrain=45. 
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Median performance degrades considerably as the dictionary size increases past 

K=256, and the variance across the 10 pair set also becomes larger. 

 

Figure 4.9: Classification accuracy for different dictionary sizes K. The boxplots each 
summarize 10 ON/OFF dictionary pairs learned with the Hebbian method using a constant 
number of learning iterations C=250. In both plots the training and test data contained a high 
amplitude target and the sparsity factor was L=45.  

 

Figure 4.9 suggests that an undercomplete Hebbian learned dictionary may 

perform as well as a complete or overcomplete Hebbian dictionary, given an optimal 

amount of training, since the improvement in classification peaks for values of K>64 

(for C=250). However, the classification performance obtained so far with 

sufficiently trained undercomplete dictionaries is a compelling reason to focus on 

undercomplete (K<512) and complete (K=512) Hebbian dictionaries.  

Figure 4.10 now shows the classification accuracy for these dictionaries on 

Far CP SNR 3:1 test data, where each set of 10 dictionary pairs is computed with 

values of C appropriate for the respective dictionary size. For a range of dictionary 

sizes K≤512 and given sufficient training, Hebbian dictionaries out-perform K-SVD 

dictionaries on this data set. Additionally, the asymptotic classification performance 
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for the Hebbian case is reached more rapidly than in the K-SVD case, i.e., for a 

smaller dictionary. These Hebbian undercomplete dictionaries also exhibit a better 

learning convergence variance across the 10 dictionary pairs compared to the K-SVD 

case, e.g., K={64, 128}.  

 
Figure 4.10: Classification accuracy for different dictionary sizes K. The boxplots each 
summarize 10 ON/OFF dictionary pairs learned with the Hebbian method (green boxplots) 
using C=250 for K=16:256 and C=500 for K=512; and with the K-SVD method (blue 
boxplots). Training and testing is done using Far CP SNR 3:1 data, with sparsity factor L=45.  
 

For both dictionary learning approaches, these results suggest that 

classification based on a learned dictionary may succeed with dictionaries that are 

undercomplete with respect to the natural dimensionality of the training vectors. 

4.5.3 Learning sparsity factor, Ltrain  

The ability of the adaptive, data-learned dictionaries in capturing the signal 

with sparse, efficient features is illustrated in Figure 4.11. Equal numbers of ON and 
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OFF windows were selected from among SNR 3:1 Far CP test data, and matching 

pursuit was used to construct two 50-element representations of each window: one 

with an ON 256-element dictionary (C=250 learning iterations), the other with the 

respective OFF dictionary. Figure 4.11 shows semilog plots of residual energy at each 

matching pursuit iteration (i.e., the residual energy as dictionary elements are added 

to the representation), averaged over all the ON windows (left panel) and over all the 

OFF windows (right panel).  For comparison purposes, also shown is the residual 

energy for the ON and OFF cases using matching pursuit in an overcomplete chirped 

Gabor dictionary.  

 

 

Figure 4.11: Residual decay in decomposition over a Hebbian dictionary pair learned from 
SNR 3:1 Far CP data versus an overcomplete Gabor dictionary for ON window (left), and 
OFF window (right).  
 
 

For the case of ON data windows, the residual from the ON dictionary 

decomposition (red line), is consistently smaller than the residual over the OFF 

dictionary (green line) after the first few iterations. Both learned dictionary residuals 
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decay more rapidly that the equivalent residuals over the Gabor dictionary (blue line), 

but do not achieve reconstruction errors that are as good. This is evidenced by the fact 

that residual energy associated with the Gabor dictionary drops beneath that of the 

learned dictionaries as the number of elements approach 50. The poorer 

reconstruction performance is intuitive given that the particular Gabor dictionary has 

more than 10 times the number of elements compared to the 256-element learned 

dictionaries. The right-hand plot shows the same set of averaged residuals, this time 

calculated for OFF data windows. The minimum residual classifier can correctly 

choose the window label in each case without ambiguity after the first few matching 

pursuit iterations, as the corresponding dictionary residual is always lowest.  

One observation in Figure 4.11 is that the sparsity factor (number of features) 

used in signal classification, Lclass, can be quite different than the sparsity factor used 

to learn the dictionary, Ltrain, and in particular it can be smaller, to obtain a good 

classification. This will be discussed again in subsequent sections. Furthermore, a 

study was done [16] assessing the impact of Ltrain on the classification performance 

for K-SVD dictionaries and found that the classification performance of the 

dictionary is insensitive to the value of Ltrain once the sparsity factor is greater than 

some lower bound. The learning sparsity factor for the Hebbian case is similarly 

explored in Figure 4.12, which shows classification performance for a selected 

dictionary size as the value of Ltrain is increased from 2-sparse (i.e., very coarse 

approximations) to 60-sparse approximations (i.e., finer approximations).  
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Figure 4.12: Classification accuracy of size K=256 Hebbian dictionary as the learning sparsity 
factor, Ltrain, increases from 2 to 60. The dictionaries are learned on SNR 3:1 Far CP training 
data and used to classify SNR 3:1 Far CP data using Lclass equal to the respective Ltrain. 
 
 

In Figure 4.12, sets of 10 dictionary pairs were learned with increasing 

sparsity factors Ltrain while keeping the number of elements fixed at K=256 and the 

amount of training at C=250 learning iterations.  Every dictionary set is applied to test 

data with a classification sparsity factor Lclass equal to the respective Ltrain. Each 

boxplot represents accuracy statistics across a set of 10 dictionary pairs. The red line 

connects the median accuracy values for each set. 

The plot suggests that the performance of the dictionary has a region of 

insensitivity to the value of Ltrain once the learning sparsity factor is greater than some 

lower bound. This is important when the data is unfamiliar and we wish to make 

optimal choices for dictionary learning parameters. Similar to the K-SVD case [16], 

in Figure 4.12, once Ltrain is greater than ~8 the accuracy remains within the same 

interval until Ltrain ~40, with its median values hovering around 0.99. In other words, 

the same classification performance is obtained with coarser approximations (i.e., 

smaller Ltrain) as with finer approximations, but without the added computational cost. 
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This supports the hypothesis that perfect reconstruction is not necessary for perfect 

classification.  

Section 4.5 focused on studying the impact the various learning parameters 

has on the classification accuracy, for both Hebbian and K-SVD methods. This study 

has revealed what appears to be an opportunity to leverage the respective strengths of 

the different types of dictionaries by forming a so-called hybrid dictionary. 

4.6 Hybrid learned dictionaries 

Figure 4.10, comparing classification performance for the undercomplete and 

complete K-SVD and Hebbian dictionaries, showed that the optimally trained 

Hebbian dictionaries outperformed the corresponding K-SVD ones, but do so at an 

increased computational cost due to the high number of learning iterations required. 

K-SVD dictionaries learned with C=25 iterations and sizes K=256 and K=512 have a 

median classification accuracy of 0.94, but consistently exhibit a wide variation 

across the 10 differently seeded pairs of dictionaries (Figure 4.8). For similarly sized 

Hebbian dictionaries learned with the same number of C=25 iterations (Figure 4.9), 

the classification accuracy is only slightly better than chance.  

A hybrid dictionary method is now proposed in an attempt to combine the 

strengths of the two methods and compensate for their respective weaknesses. Both 

methods require some prior initialization of the dictionary, usually random dictionary 

elements or imprinting of training data vectors. The goal of the hybrid method is to 

improve the prior knowledge for a Hebbian dictionary in order to accelerate the 
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learning convergence of the algorithm. The specific novel solution proposed in this 

section is to use an intermediate K-SVD learned dictionary that has not fully 

converged to seed the Hebbian dictionary. Two intermediate K-SVD stages are 

considered, one after 1 learning iteration (1 K-SVD seed), and one after 3 learning 

iterations (3 K-SVD seeds). These values are chosen to rapidly determine whether the 

hybrid dictionary would be useful. The main intuitive advantage of a hybrid 

dictionary is that Hebbian leaning must only fine-tune dictionary elements obtained 

via K-SVD, instead of learning the entire dictionary from a random initialization.  

Figure 4.13 augments the results in Figure 4.7 with the accuracy performance 

obtained by hybrid dictionaries on the Far CP data as a function of the number of 

learning iterations. The top two panels of Figure 4.13 show accuracy for the K=256 

case with 1 and 3 K-SVD seeds, and the lower two panels similarly show accuracy 

for the K=512 case with 1 and 3 K-SVD seeds. For ease of visualization, the green 

trace represents the median accuracy obtained across the 10 simple Hebbian 

dictionaries of Figure 4.7 at the same number of learning iterations.  

First off, the variance across the 10 pair sets is reduced compared to the 

equivalent Figure 4.7 panels, in particular at lower number of learning iterations. The 

asymptotic behavior is reached much faster (i.e., by 50-75 learning iterations, 

compared to 250), and in the K=256 case appears more stable compared to the K=512 

case. The median accuracy performance at C=25 learning iterations jumped from 

~0.58 in the simple Hebbian case to ~0.97 in the hybrid Hebbian case seeded with a 

3-iteration K-SVD dictionary.  
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Figure 4.13: Boxplots each summarize accuracy performance for 10 ON/OFF hybrid pairs. 
Green traces represent median accuracy from Figure 4.7 for simple Hebbian dictionaries. The 
hybrid dictionaries reach asymptotic classification behavior much faster, as anticipated.  
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An interesting question is whether these hybrid dictionaries are more K-SVD-

like or more Hebbian-like in terms of their structure. Spectrograms of the first 20 

principal components for hybrid ON dictionaries with K=256 elements are shown in 

Figures 4.14-4.15 on a fixed color scale. Figure 4.14 shows the ON dictionary with 1 

K-SVD seed at 25 learning iterations (top) and at 250 learning iterations (bottom). 

Similarly, Figure 4.15 shows the ON dictionary with 3 K-SVD seeds at 25 learning 

iterations (top) and at 250 learning iterations (bottom). All spectrograms use the same 

fixed color scale as the spectrograms of Figures 4.4-4.5 for easy comparison.  

At C=25 iterations, there is more K-SVD-like structure in the hybrid 

dictionary with 3 seeds, as expected (Figure 4.15 top panel) compared to the hybrid 

one with 1 seed (Figure 4.14 top panel). The hybrid dictionaries morph more into 

Hebbian dictionaries as the number of learning iterations increases (bottom panels of 

Figures 4.14-4.15). The cumulative sum of the ordered eigenvalues for the hybrid 

dictionaries (Figure 4.16) also exhibits similar variability to that shown in Figure 4.6. 

That is, the number of principal components needed to capture 95% of the variability 

in the dictionary is higher, especially in the ON case, and similar to the simple 

Hebbian case. Recall that for K-SVD dictionaries only ~11 principal components are 

needed to capture 95% of the dictionary variance.  
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Hybrid ON dictionary: 1 K-SVD seed; C=25 

 
 

Hybrid ON dictionary: 1 K-SVD seed; C=250 

 
 
Figure 4.14: Principal components for example hybrid ON dictionary with K=256 elements 
and 1 K-SVD seed at 25 learning iterations (top) and at 250 learning iterations (bottom). 
Spectrograms (individual vertical strips) are comprised of the first largest 20 principal 
components for each of the selected dictionaries. Every principal component is of length 512 
samples. Each spectrogram is constructed with short-time Fourier transform using windows of 
length 128 with 50% overlap. Target spectrum is marked with black brace. 
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Hybrid ON dictionary: 3 K-SVD seeds; C=25 

 
 

Hybrid ON dictionary: 3 K-SVD seeds; C=250 

 
 
Figure 4.15: Principal components for example hybrid ON dictionary with K=256 elements 
and 3 K-SVD seeds at 25 learning iterations (top) and at 250 learning iterations (bottom). 
Spectrograms (individual vertical strips) are comprised of the first largest 20 principal 
components for each of the selected dictionaries. Every principal component is of length 512 
samples. Each spectrogram is constructed with short-time Fourier transform using windows of 
length 128 with 50% overlap. Target spectrum is marked with black brace. 
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Figure 4.16: Cumulative sum of eigenvalues for ON hybrid dictionaries with K=256 elements 
with 1 (red and green traces) or 3 (blue and magenta traces) K-SVD seeds, after 25 Hebbian 
learning iterations (red and blue traces), and after 250 Hebbian learning iterations (green and 
magenta traces).  

 

The hybrid dictionaries are more Hebbian in nature than K-SVD, retain the 

same high variability that enables higher performance for the Hebbian case, and 

require a much lower number of minimum learning iterations to reach asymptotic 

classification performance. They also appear to be more stable for a wider range of 

learning iterations (i.e., exhibit flat accuracy), which is a result that will prove useful 

in classification of noisier data in Chapter 5.   

4.7 Minimum Residual Classifier (MRC) 

Learned dictionaries can be used in a straightforward fashion for classification 

with a minimum residual classifier (MRC) [15, 16]. This section takes a closer look at 

the classifier and its robustness with respect to feature selection and SNR conditions. 

The MRC is a simple, linear classifier, and the classification features it uses are 
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embedded in the learned dictionary. In this thesis, the training data contains only two 

classes, leading to a pair of dictionaries: one ON dictionary, one OFF dictionary, but 

extensions could be made to multiple classes. The MRC assigns to each test input the 

label corresponding to the dictionary yielding the smallest matching pursuit residual 

energy. Following the learning process and its different parameters to be optimized, 

the next question to consider is the fidelity of the classification decision with the 

specific classification scheme chosen (i.e., the MRC). The performance of the 

classifier is evaluated now in terms of its response to the number of features selected 

in testing (i.e., Lclass), its confidence (i.e., how “sure” is the decision), and its 

robustness to variation in discrimination threshold (i.e., “receiver operating 

characteristic”). All three are evaluated in turn. 

4.7.1 Classification sparsity factor, Lclass 

The sparsity factor (maximum number of features) used in signal 

classification, Lclass, can be different than the Ltrain used to learn the dictionary, as 

previously noted in Section 4.5.3. In the case shown in Figure 4.11, the 256-element 

dictionaries were learned with fixed sparsity factor Ltrain =45. It is clear from Figure 

4.11, however, that a correct classification decision can be produced with Lclass values 

as low as ~12. Thus, building a dictionary with significantly more elements than what 

is needed for accurate classification can be wasteful.   

  Figure 4.17 is a quantitative view of the classification process for SNR 3:1 Far 

CP test windows. Shown here are the residual differences seen by the minimum 
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residual classifier for a sample pair of ON/OFF dictionaries for both Hebbian (left 

side) and K-SVD (right side) dictionary methods, as a function of the sparsity factor 

used in classification. The ON-minus-OFF difference of residual energy is calculated 

every time a dictionary element is added to the sparse representation of the test data 

(i.e., classification sparsity factor, Lclass, increases). This residual energy difference 

therefore provides the classification decision at every greedy matching pursuit 

iteration, or as the value of Lclass increases. The minimum residual classifier assigns 

the correct label when the ON-minus-OFF residual energy difference is negative for 

ON windows, and positive for OFF windows. For ON windows (top panel) this 

residual difference stays well below zero after just a few matching pursuit iterations 

for both dictionary learning methods. For OFF windows (lower panel), the magnitude 

of the residual difference is smaller and, for the K-SVD case, not always positive. 

The classification accuracy corresponding to the dictionaries shown in Figure 4.17 

using residuals at Lclass=45 is 0.96 for the K-SVD dictionary and 0.99 for the Hebbian 

dictionary. 

 The idea that the classification sparsity factor can be different and, in 

particular, smaller than the learning sparsity factor is supported by Figure 4.17, 

especially for the Hebbian case (left panels). This dictionary pair was learned using 

Ltrain =45, but if classification is made using, for example, a classification sparsity 

factor Lclass =25, the performance (accuracy=0.998, false positive rate=0.003, false 

negative rate=0) is equivalent to that of Lclass =45 (accuracy=0.993, false positive 

rate=0.01, false negative rate=0.01), and without the added computational cost. 
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Figure 4.17: Test timeseries residual differences between ON and OFF dictionaries with 
K=256 elements seen by the MR classifier at each matching pursuit iteration (i.e., as the value 
of Lclass increases on the x-axis). An example ON/OFF dictionary pair is selected to illustrate 
each learning method, and shown are residuals for fully ON (top panel) and fully OFF (bottom 
panel) test windows. For every additional dictionary element included in the sparse 
decomposition, the median residual difference over the test windows (red cross line) is 
estimated, including the 25th–75th percentiles (blue area) and the 5th–95th percentiles (yellow 
area).  The left panels show residual differences for the selected Hebbian dictionary pair, while 
the right panels show the residual differences for the selected K-SVD dictionary pair. The 
Hebbian ON/OFF dictionary pair is learned with C=250 learning iterations, sparsity factor 
Ltrain =45, and trained and tested on Far CP data with SNR=3:1. The K-SVD ON/OFF 
dictionary pair is learned with C=25 learning iterations, sparsity factor Ltrain =45, trained and 
tested on Far CP data with SNR=3:1. The region above the dashed line at y=0 corresponds to 
assigning a label of OFF, the region below to assigning a label of ON. 
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4.7.2 Residual decision maps 

Classifier performance under changing noise conditions can be visualized in 

the manner of Figure 4.18.  Residual decision maps plot the residual energy of one 

dictionary (OFF on the y-axis) against the other (ON on the x-axis), giving a graphical 

illustration of the classification process (i.e., choosing the dictionary yielding higher 

data representation fidelity, which results in the smaller residual). The decision 

boundary is marked by the diagonal dashed line (i.e., where both ON and OFF 

residuals are equal, meaning both dictionaries are reaching similar data representation 

fidelity).  Shown here are minimum residual classifier decision maps for SNR 3:1 Far 

CP test data (top left), SNR 1:1 test data (top right),  and SNR 0.3:1 test data 

(bottom), aggregated over all test data windows. A single Hebbian dictionary pair 

with K=256 elements is used in Figure 4.18, and is specifically selected among the 10 

pairs as giving maximum accuracy on SNR 0.3:1 test data. For each window, the 

classifier decision is plotted at coordinates given by the pair of residual energies with 

respect to the ON and OFF dictionaries, and color coded according to its correctness. 

This results in two true class clusters: one for ON windows (green), and one for the 

OFF windows (blue). Misclassified windows are marked in red (False ONs) and 

magenta (False OFFs). Ideally, a classifier would provide good, clear separation of 

the clusters, with little or no possibility of misclassification.  
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Figure 4.18: Classification maps in the (ON, OFF) residual plane for a selected Hebbian 
dictionary of size K=256 applied to data windows of SNR 3:1 data (top left), SNR 1:1 data 
(top right), and SNR 0.3:1 data (bottom). Decision boundary rests along the 45o diagonal.  
 

The decision maps in Figure 4.18 show the minimum residual classifier 

provides class separation with a good margin of confidence (i.e., wide separation in 

the residual plane between the clusters of ON and OFF windows) in the SNR 3:1 

case, and less confidence in the SNR 1:1 and 0.3: 1 cases. The specific classification 

accuracy of the dictionary pair used in Figure 4.18 was 0.9903 for SNR 3:1 data, 

0.9447 for SNR 1:1 data, and 0.5707 for SNR 0.3:1 data. In the SNR 3:1 case, there is 

strong decision confidence, resulting in high accuracy and no false OFFs (i.e., no 

misses) for the selected dictionary. For SNR 1:1 test data, even though the accuracy is 
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still high, the clusters are actually touching, and both ON and OFF clusters rest 

against the diagonal decision boundary. In the SNR 0.3:1 case the accuracy is only 

slightly better than chance and the cluster separation is quite poor. 

4.7.3 ROC curves 

A formal way of assessing the classifier’s performance is to look at its 

equivalent receiver operating characteristic (ROC) curve (Figure 4.19). The ROC 

curve is a graphical plot of the true positive rate (i.e., sensitivity), vs. false positive 

rate for a binary classifier as its discrimination threshold is varied. Evaluation is made 

with respect to the main diagonal dividing the ROC plane. Points above the diagonal 

represent good classification results (better than random), points below the line poor 

results (worse than random). The more each curve tends toward the left and top edges 

of the plot, the better the classification. Perfect classification is achieved in the top 

left corner of the ROC plane. 

The classification decision of the MRC can be mathematically expressed as 

the Heaviside step function of the ON/OFF residuals ( ), whereOFF ONH res res θ− +   

 ( ) ( ) .
x

H x t dtδ
−∞

= ∫  (4.12) 

Given that the maximum values for either residual is 1, the discrimination 

thresholdθ  is varied between ±1 with a moderate resolution step between [-1, -0.2) 

and (0.2,1], and a fine resolution step of 0.005 in the [-0.2, 0.2] interval. Figure 4.19 

shows the plot of true positive rate vs. false positive rate (1 − true negative rate) for 
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the MRC, as θ changes, for a Hebbian dictionary (top left) and a K-SVD dictionary 

(top right). Both example dictionaries are of size K=256, and a range of classification 

sparsity factors, Lclass={25,30,35,40,45}, is considered for each dictionary to classify 

Far CP SNR 3:1 test data. A zoom of the Hebbian ROC curve is also shown (bottom 

left) to capture the variability around the top right corner, and similarly for the K-

SVD case (bottom right). 

 

 

 

 
Figure 4.19: MR classifier ROC curves for a Hebbian dictionary with K=256 and C=250 (top 
left) and a K-SVD dictionary K=256 (top right). Zooms of respective ROC plots are shown in 
the bottom panel. Both dictionaries are learned with Ltrain =45. Classification sparsity factors 
of Lclass={25,30,35,40,45} and considered for each dictionary.  
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The plots in Figures 4.17-4.19 show that the MR classifier appears to perform 

adequately well for the Far CP simulated data in the SNR 3:1 and 1:1 cases. The 

performance on SNR 0.3:1 data was not satisfactory and the next section takes a 

closer look at the noise sensitivity for both Hebbian and K-SVD dictionaries. 

4.8 Noise sensitivity of learning methods 

The dictionary size is again fixed for both methods at K=256 (i.e., 

undercomplete dictionaries) and performance on Far CP test data sets with the three 

target signal to noise ratios (3:1, 1:1, and 0.3:1) is evaluated. Using SNR 3:1 training 

data, 10 K-SVD and 10 Hebbian ON/OFF dictionary pairs are learned and then tested 

against unseen SNR 3:1, 1:1, and 0.3:1 test data. The accuracy achieved is 

summarized in Figure 4.20. Likewise, Figure 4.21 summarizes the accuracy obtained 

using dictionaries learned from Far CP SNR 1:1 training data. As expected, 

performance degrades in both cases as the signal to noise ratio of the test data 

decreases (top, middle, and bottom rows of Figures 4.20-4.21). Figures 4.20-4.21 also 

show that dictionaries learned with the Hebbian method consistently outperform their 

K-SVD counterparts for both types of training data and for all three test data sets, 

both in terms of median accuracy, as well as learning convergence (i.e., variance 

across the 10 pair set).  
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Dictionaries learned from Far CP SNR 3:1 training data 

 

Figure 4.20: Classification accuracy rate (y-axis) for K-SVD and Hebbian dictionaries with 
K=256 elements, learned with C=25 and C=250, respectively. Dictionaries were learned on 
Far CP SNR 3:1 training data with sparsity factor L=45 and tested on SNR 3:1, 1:1, and 0.3:1 
test data (top, middle, and bottom panels, respectively). 
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Dictionaries learned from Far CP SNR 1:1 training data 

 

Figure 4.21: Classification accuracy rate (y-axis) for K-SVD and Hebbian dictionaries with 
K=256 elements, learned with C=25 and C=250, respectively. Dictionaries were learned on 
Far CP SNR 1:1 training data with sparsity factor L=45 and tested on SNR 3:1, 1:1, and 0.3:1 
test data (top, middle, and bottom panels, respectively). 
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The top panel of Figure 4.20 shows that both dictionaries learned from SNR 

3:1 training data perform well when tested on high amplitude test data. The Hebbian 

dictionary also performed well when tested on SNR 1:1 test data. Both approaches 

suffer however when applied to SNR 0.3:1 test data (bottom panel of Figure 4.20). In 

contrast, the panels of Figure 4.21 show that dictionaries learned from SNR 1:1 

training data perform less well on high and mid amplitude test data, but they do a 

better job with SNR 0.3:1 amplitude test data (compare bottom panels of Figures 

4.20-4.21). The sub-optimal performance of dictionaries learned from SNR 1:1 data 

(when applied to test data with mid and high target amplitude) may be a function of 

the sparsity factor or the amount of training data used in learning.  

What is noteworthy in Figures 4.20-4.21 is that the classification performance 

is directly dependent on how “loud” the target signal is, regardless of the learning 

method. In other words, even when the dictionary is learned from SNR 1:1 training 

data, its performance improves on test data that has SNR 3:1. This is a potentially 

useful property of Hebbian learned dictionaries, and will be revisited in Chapter 5.  

4.9 Software implementation and algorithm complexity 

Recall that practical challenges for RF signal processing are the length of the 

time records and the short real-time processing constraints. For learned dictionary 

applications, the two separate algorithm components that need to be optimized are the 

learning component and the classification component.  
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Regarding the first component, learning a dictionary of size K can be 

computationally very expensive, to the point of impracticality. Since this project uses 

supervised learning and dictionaries are not updated with every new test set, this 

becomes upfront overhead and can be reduced by use of parallel computing hardware. 

Results show that undercomplete Hebbian dictionaries consistently outperform K-

SVD dictionaries with the same size K for training data chosen as specified; however, 

this improvement in performance comes at an increase in computational cost. For 

Hebbian learning, the minimum number of learning iterations, C, for the amount of 

training data allotted here, needs to be roughly the same as the number of dictionary 

elements in order to learn a highly discriminant Hebbian dictionary. This large 

number of required learning iterations carries a computational burden that can be 

much higher than for the K-SVD method.  

At a particular sequential update iteration, the K inner products between data 

and dictionary elements can be scattered across multiple cores, resulting in a 

computational complexity of order O(LNP), where L is the sparsity factor, N is the 

length of a dictionary element, and P is the number of training data windows. In 

addition, parallel processing is used to learn the set of 10 pairs at the same time across 

different clusters. The SVD decomposition in the dictionary update step is the 

computational bottleneck of the K-SVD method. For example, using a parallel 

implementation on a Windows workstation with 8 Intel Xeon X5550 2.67GHz 

quadcore processors (32 cores total), it can take up to 6s per dictionary element 

update at every learning iteration, depending on how many training vectors are used 
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in the particular SVD update. Furthermore, the computational time for learning a set 

of 10 ON/OFF K-SVD dictionary pairs with K=256 elements and C=25 learning 

iterations is on average 49 minutes on the same architecture. To achieve similar 

accuracy using Hebbian learning on the same training data for the same dictionary 

size, approximately C=250 iterations are required, which takes 161 minutes per 10-

pair set on the same parallel architecture.  

The second algorithm component, that is, the classification of test data, can be 

done in almost real time using a parallel, vectorized implementation. Unlike 

overcomplete dictionaries, whose number of elements can be larger by an order of 

magnitude compared to the length of the data, N, the learned dictionaries introduced 

in this chapter can be undercomplete, i.e., K<< N, which leads to an increase in 

classification speed. At each matching pursuit iteration the calculation of the K inner 

products between the data windows of size N and the dictionary elements can be 

scattered across multiple cores, reducing the complexity to O(LT/N), where T is the 

sample length of a timeseries. If the test data is buffered (i.e., data is passed to the 

classifier in vectorized format of M windows on length N samples), the 

communication time is lowered, and further improvement is achieved from the 

algorithmic parallelism. Additional optimization can be achieved by distributing the 

calculation across the cores of a graphical processor unit (GPU), and further 

acceleration is possible on a GPU-accelerated cluster. 

While such methodologies are not the focal point of this thesis, it is worth 

noting that identifying and leveraging the advantages of parallel processing is both a 
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novel and necessary step toward practical utilization of the classification schemes 

introduced over the course of this project.  

4.10 Conclusion on learning dictionaries for RF classification 

With learned dictionaries, the choice of the number of elements to represent a 

data set is still important, but the performance degrades more gradually away from 

the optimal number of elements. This means the learned dictionary approach is more 

robust to poor choices of the number of elements, and can therefore make fewer a 

priori assumptions about the data characteristics. 

Two dictionary learning methods are compared in Chapter 4 for a fixed, 

small-size training data set. The results show that optimally-learned Hebbian 

dictionaries can have higher discriminative power than K-SVD dictionaries, and be 

more robust to small changes in SNR. For the K-SVD learning method, 

undercomplete dictionaries performed as well as complete or overcomplete 

dictionaries in classification.  Also, it was shown that Hebbian undercomplete 

dictionaries outperform K-SVD learned dictionaries of any level of completeness. 

Furthermore, a hybrid learned dictionary was introduced, with faster learning 

convergence and more asymptotically stable behavior than a Hebbian dictionary of 

same size. Chapter 5 will demonstrate that a hybrid dictionary has better noise 

robustness as well. The question now is to address how undercomplete Hebbian 

dictionaries, both simple (i.e., strictly hebbian), and hybrid, will perform on the two 

more complex datasets, Flat CP and Chirped CP.  
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5. RF Classification with Undercomplete Learned 

Dictionaries  

 

In Chapter 4 the focus was on the learning algorithms and their parameters, 

which were explored in terms of classification performance on the Far CP dataset, 

containing a less complex target background (i.e., a non-overlapping chirping clutter 

pulse). The findings of Chapter 4 are now used in Chapter 5 to optimally learn 

dictionaries for the more difficult cases of target detection in Flat CP and Chirped CP 

data, which contain competing chirped clutter within the spectral band of the target 

(the reader is referred to Section 1.1 for a review of these datasets and their 

composition). The focus of this chapter is exploring discrimination between ON and 

OFF target windows for these two cases using the MR classifier, under changing 

noise conditions. This simple classifier, introduced in Chapter 4, is selected so that 

the effect of the sparse representations and the learned dictionaries on classification 

accuracy can be readily observed; a more complicated classifier could likely improve 

accuracy, but it would introduce additional variables that are beyond the scope of this 

thesis. The flow of this chapter is as follows: a number of carefully chosen tests are 

performed and graphically examined to reveal characteristics (i.e., trends in 

performance as a function of one or more parameters) of the chosen classification 

scheme. These comparisons are necessarily tedious and will be summarized concisely 

at the end of the chapter.  
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A conclusion from Chapter 4 is that classification accuracy depends strongly 

on the number of learning iterations, C (i.e., amount of training). Consequently, the 

training set size is increased 10-fold in this chapter to 17000 ON and 17000 OFF data 

windows, while the test set is kept the same size.  Also, only undercomplete Hebbian 

dictionaries are considered in this chapter, both simple and hybrid, given their 

superior performance over K-SVD in the previous section. Learning in both Flat CP 

and Chirped CP cases is done from SNR 3:1 respective training data, and the same 

MR classifier is used to discriminate between unseen test windows. As before, 

classification accuracy is the chosen performance metric for the work in this chapter. 

The behavior of classification performance with respect to learning parameters is 

found to be similar to the Far CP dataset, i.e., some generalization can be made. The 

impact of noise on classification accuracy is explored in greater detail in this chapter, 

and is compared to noise sensitivity of a different classifier using STFT-features.  

5.1 Study of method parameters 

Given that the training set has increased in size by an order of magnitude, 

classification accuracy is again evaluated as a function of parameters K, C, Ltrain, and 

Lclass over a wide range of values. In this sensitivity analysis, sets of 10 simple 

Hebbian dictionary pairs for every combination of (K, C, Ltrain ) are learned from 

SNR 3:1 training data using different random dictionary seeds, for both Flat CP and 

Chirped CP data (hybrid dictionaries are not yet considered). All sets of 10 ON/OFF 

dictionaries are used to classify previously unseen test data with varying Lclass. A total 
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of four undercomplete dictionary sizes are considered, K={256, 128, 64, 32}. That is, 

the dictionaries are undercomplete by a factor of {0.5, 0.25, 0.125, and 0.0625}.  

5.1.1 Learning iterations, C 

First, a range of values for C is considered to explore dictionary properties as 

a function of learning iterations using 10 sets of Hebbian ON/OFF dictionary pairs 

learned from SNR 3:1 training data. Based on the results in Chapter 4 and given the 

increased amount of training data, the expectation is that asymptotic accuracy 

performance as a function of learning iterations would be reached sooner than the C 

values observed in Chapter 4 (e.g., ~250 iterations for K=256).  

The error-bar plot in Figure 5.1 shows resulting classification accuracy for 

Flat CP dictionaries of the four specified sizes for SNR 3:1 test data (top plot) and 

SNR 1:1 test data (lower plot). The other parameters are kept equal and constant for 

each K, specifically Ltrain=Lclass={45, 36, 15, 8} for K={256, 128, 64, 32}. Similarly, 

Figure 5.2 shows the equivalent SNR 3:1 and SNR 1:1 cases for the Chirped CP test 

data case. The error-bar plots show median classification accuracy (solid traces) 

obtained over the respective set of 10 pairs, and its standard deviation (vertical bars). 

Good accuracy performance would be indicated not only by high median accuracy, 

but also by very small respective standard deviation (i.e., similar data space 

representation fidelity across the 10-pair set).  
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Figure 5.1: Error-bar plots of classification accuracies over the 10 pair dictionary set for a 
range of learning iterations, C, in the Flat CP SNR 3:1 test data case (top) and SNR 1:1 case 
(bottom). Dictionaries are learned from SNR 3:1 training data. Here Ltrain=Lclass={45, 36, 15, 
8} for K={256, 128, 64, 32}. 
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Figure 5.2: Error-bar plots of classification accuracies over the 10 pair dictionary set for a 
range of learning iterations, C, in the Chirped CP SNR 3:1 test data case (top) and SNR 1:1 
case (bottom). Dictionaries are learned from SNR 3:1 training data. Here Ltrain=Lclass={45, 36, 
15, 8} for K={256, 128, 64, 32}. 
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In Figure 5.1, for Flat CP SNR 3:1 test data (top panel), very good 

classification (median accuracy ~0.97, peak accuracy ~0.995) can be obtained with 

undercomplete dictionaries of size K≥64 with sufficient learning iterations, i.e., 

sufficient training. All K≥64 dictionaries reach their peak median accuracy around 

C~20-25 learning iterations. If the dictionary size is too small (e.g., K=32), the 

classification accuracy is poor, exhibits high variation, and does not reach 

convergence. For K=64 and 128, the median accuracy first exhibits a sharp increase, 

followed by a small region of peak performance, and then by a slight decay down to a 

relative asymptotic performance. For K=256, after the peak performance region, 

median accuracy continues to decay and does not appear to stabilize for the number 

of learning iterations explored. This decay in performance for large number of 

learning iterations could be due to overfitting the training data in the learning stage; 

this hypothesis is supported by the increasingly larger variance across the 10 pair set.  

In the Flat CP SNR 1:1 test data case (bottom panel of Figure 5.1), it would 

appear that the K=64 dictionary is now also “too small” and behaves similarly to the 

K=32 case. The best median performance of ~0.935 is reached by K=128 dictionaries, 

which also have smaller variance across the 10 pair set. The best individual peak 

performance of ~0.985 accuracy is reached by a K=256 dictionary with C=42 

iterations. 

For Chirped CP data (Figure 5.2), the overall classification performance is 

slightly worse, as expected for this case. The behavior of dictionaries with size K≥64 

is very similar in the SNR 3:1 test data case for both Flat CP and Chirped CP data. 
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Figure 5.2 shows again asymptotic classification behavior for K=64, i.e., after ~25 

learning iterations the median performance flattens out and there is very little 

variance across the 10 pair set, while for K=256 the same pattern of median 

performance worsening is observed. Similar to the top panel of Figure 5.1, for SNR 

3:1 Chirped CP data, the K≥64 dictionaries reach their peak median accuracy (~0.92) 

between C~20-25 learning iterations. 

For SNR 1:1 Chirped CP test data (Figure 5.2, lower panel), median accuracy 

patterns resemble those observed in the SNR 1:1 Flat CP case (Figure 5.1, lower 

panel). The K={128, 256} dictionaries show more constant and smaller variability as 

C increases, and reach their peak performance sooner (32-35 iterations) than 

dictionaries with K={32, 64} (40-45 iterations).  

In the top panels of Figures 5.1 and 5.2, peak performance is reached with a 

lower number of learning iterations for SNR 3:1 test data (C=15-20), but that amount 

of learning is nowhere near sufficient for SNR 1:1 test data (lower panels of Figures 

5.1 and 5.2). The amount of learning necessary for peak performance with a particular 

dictionary size for SNR 1:1 test data (e.g., C~42 for Flat CP data and K=256) is not 

necessarily in the optimal learning region for SNR 3:1 test data with the same 

dictionary size. This presents a problem, as the goal is to learn dictionaries that are 

robust to changes in noise conditions. In Section 5.2, a solution will be given using 

the concept of novel hybrid dictionaries introduced in Chapter 4. 
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5.1.2 Learning sparsity factor, Ltrain 

In Chapter 4, the effects of the sparsity factor in learning (see Section 4.5.3), 

Ltrain, and in classification, Lclass, were separately explored for Flat CP data. It was 

shown that Lclass could have smaller values than Ltrain without loss of classification 

performance compared to Lclass=Ltrain, for high enough Ltrain values (Figure 4.17).  

A central hypothesis in this dissertation is that perfect reconstruction is not 

necessary for classification with learned dictionaries, i.e., for learning good 

discriminative features. This results in many advantages, as discussed in this chapter 

and those that follow. The accuracy performance as a function of Lclass and Ltrain 

observed in Chapter 4 was a significant step towards supporting that hypothesis, as 

these sparsity factors directly impact the reconstruction error, i.e., they control how 

well the data is approximated by the sparse combination of dictionary elements. Also, 

in Figure 4.12, the classification performance became relatively stable as early as 

Ltrain>8 (with Lclass=Ltrain), which was considerably lower than the relatively high 

value of Ltrain=45 that was predominantly used in Chapter 4. In other words, the 

classification performance obtained with coarser approximations (i.e., smaller Ltrain), 

was the same as that obtained with finer approximations, but without the added 

computational cost.  

The focus of this section is to explore in greater detail these effects for 

undercomplete dictionaries, in particular how coarse the approximations can be 

during the learning process for the dictionary to still learn good discriminative 

features. A range of learning sparsity factors, Ltrain, is considered for a fixed number 
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of learning iterations, C=33, and two fixed classification sparsity factors Lclass. 

Dictionaries learned with C=33 are selected based on Figures 5.1 and 5.2 for being 

out of the transitional region (i.e., for small C) of accuracy performance, leading to 

relatively high accuracy for all four dictionary sizes, and, more importantly, for 

exhibiting consistent standard deviation in their neighborhood of learning iterations. 

Sets of 10 simple Hebbian ON/OFF dictionary pairs are learned with Ltrain ={4:4:32} 

from SNR 3:1 training data. Using the MR classifier, unseen SNR 3:1 test data is 

classified using first Lclass=32, and secondly Lclass=8. For this discussion, the focus is 

on Chirped CP data, which is the more challenging case to classify as the target and 

clutter pulses are more similar. The author notes that the classification accuracy 

behavior was extremely similar in the Flat CP case, and higher peak accuracy was 

observed, as expected. Figure 5.3 shows error bar plots of median accuracy as a 

function of Ltrain for fixed Lclass=32 for all four dictionary sizes, and Figure 5.4 

similarly shows accuracy for fixed Lclass=8.  

In Figure 5.3, for the values considered, dictionaries with K≥64 appear 

insensitive to the learning sparsity factor once a minimum Ltrain=8 is reached. For 

K=32, accuracy peaks in the Ltrain=(8:12)  region,  followed by slow degradation. The 

highest median (~0.92) and individual peak (~0.96) accuracy is in this case reached 

for K=32 dictionaries around Ltrain~8. Since classification is made with Lclass=32, that 

is, Lclass>Ltrain, these results represent classification using a finer approximation than 

the approximation used in training.  It can be seen from Figure 5.3 that by using a 

finer approximation in classification (larger Lclass), the degree of coarseness in 



 

134 

 

 

learning (smaller Ltrain) has a negligible impact on final accuracy for K≥64 and 

Ltrain≥8.   

 

Figure 5.3: Error-bar plots of median accuracies over the 10 pair dictionary set for various 
learning sparsity factors, Ltrain, for the Chirped CP SNR 3:1 test data case. Dictionaries are 
learned from SNR 3:1 training data. Here C=33, and Lclass=32.  
 
 
An interesting question is raised by the performance at Ltrain=8 in Figure 5.3 

for all four dictionary sizes. At such learning sparsity factor, the approximation is 

quite coarse and the residual decay for this dataset is generally in its roll-off region 

(similar to Figure 4.11). To explore this further, the classification sparsity factor is 

selected to be Lclass=8 and Ltrain is again varied in the {4, 32} interval. Figure 5.4 

shows the accuracy plots corresponding to MR classification made with a coarser 

approximation (i.e., fewer dictionary elements in the sparse representation during 

classification). Here the trends are similar to Figure 5.3, but the classification exhibits 

more variability (i.e., larger deviations).  
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Figure 5.4: Error-bar plots of median accuracies over the 10 pair dictionary set for various 
learning sparsity factors, Ltrain, for the Chirped CP SNR 3:1 test data case. Dictionaries are 
learned from SNR 3:1 training data. Here C=33, and Lclass=8. 

 

Higher median peak performances are reached by all dictionaries with K≥64 

using coarser approximations in classification (Figure 5.4), but that higher 

performance does not appear quite as stable (i.e., as flat) as it did in the Lclass=32 case 

(Figure 5.3), except for K=64 in the Ltrain={12:28} region. However, even with the 

slight variations, the median performance for dictionaries with K≥64 in the 

Ltrain={12:28} is consistently higher than the median ~0.9 performance observed in 

Figure 5.3. The improvement in accuracy performance from Ltrain=4 to Ltrain=8 is 

much more abrupt, and in the K=32 case the performance decay after the peak has a 

much steeper rate. Similarly, the minute performance decay for K=64 in Figure 5.3 

after Ltrain=28 becomes more pronounced in Figure 5.4.  

Recall that the goal of this section is to evaluate classification performance 

using coarse approximations. Figure 5.4 indicates that better classification 



 

136 

 

 

performance can be obtained by selecting a coarse approximation in the learning 

stage (e.g., Ltrain=12) and using a similarly coarse or coarser approximation in 

classification (e.g., Lclass=8).  This result is consistent with that of Figure 4.12, which 

showed that the accuracy dependence of Ltrain for the simpler Far CP data enters an 

asymptotic region for Ltrain>12 (and in that case Lclass= Ltrain =12).  Using coarser 

approximations has effectively improved median peak accuracy by 0.05 (compare 

Figures 5.3 and 5.4). It is also useful to reduce computational overhead in the learning 

and classification stage, since it implies computing a coarser approximation (i.e., 

smaller number of dictionary inner products and matching pursuit searches).    

5.1.3 Classification sparsity factor, Lclass 

Lastly, the changes in accuracy introduced by varying the classification 

sparsity factor, Lclass, are explored for Chirped CP dictionaries learned from SNR 3:1 

data. The number of learning iterations is again kept constant at C=33, and two 

learning sparsity factors are considered: first Ltrain=32, and secondly Ltrain=12. 

Performance is evaluated both for SNR 3:1 test data, as well SNR 1:1 test data. Recall 

that the previous section showed learning the dictionary from coarse approximations 

is actually beneficial in classification, but only hinted that a coarse approximation in 

classification might also be useful. The goal of this section is to now fully explore 

whether using coarse approximations in the classification stage is a viable option for 

good classification. Figure 5.5 shows error bar plots of median accuracy on SNR 3:1 
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test data, as a function of Lclass, where all four dictionaries were learned with 

Ltrain=32.  

 

Figure 5.5: Error-bar plots of median accuracies over the 10 pair dictionary set for various 
classification sparsity factors, Lclass, for the Chirped CP SNR 3:1 test data case. Dictionaries 
are learned from SNR 3:1 training data. Here C=33, and Ltrain=32.  
 

For dictionaries with K≥64 accuracy peaks by Lclass=10. For values of Lclass > 

20, accuracy stays relatively constant for K=64 and slowly degrades for K={256, 

128} as Lclass increases up to 128. For values of Lclass<128, dictionaries with K=32 

continually improve in accuracy as Lclass grows, but their median accuracy remains 

lower than the accuracy obtained with larger dictionaries. Using an Lclass>K value is 

made possible by the matching pursuit approach employed, which searches the 

dictionary with replacement, i.e., the same dictionary element can be selected as the 

best match multiple times. Comparing Figure 5.5 with Figure 5.3, the median 

accuracies with  Ltrain=32 of ~0.9 can be again recognized here at Lclass=32, and 



 

138 

 

 

similarly for Figure 5.4 and Lclass=8, median accuracies with Ltrain=32  are ~0.93. The 

best performance is again obtained by dictionaries with K≥64, and, consistent with 

the conclusion of the previous section, for coarser approximations in classification 

(Lclass<10).   

Figure 5.6 similarly shows error bar plots of median accuracy obtained when 

classifying SNR 1:1 Chirped CP data, as a function of Lclass, for all four dictionary 

sizes learned with Ltrain=32.  

 

Figure 5.6: Error-bar plots of median accuracies over the 10 pair dictionary set for various 
classification sparsity factors, Lclass, for the Chirped CP SNR 1:1 test data case. Dictionaries 
are learned from SNR 3:1 training data. Here C=33, and Ltrain=32.  

 

Consistent with the classification performance pattern in Figure 5.2 (bottom 

plot), in the SNR 1:1 test data case dictionaries with K=64 drop in performance and 

resemble more K=32 dictionaries in behavior. That is, for values of Lclass<128, 

dictionaries with K={32, 64} continually improve in accuracy, but their median 
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accuracy remains lower than the accuracy obtained with K={128, 256} dictionaries. 

For these latter larger dictionaries, in this SNR test regime, Lclass needs to be higher 

than in the SNR 3:1 case, and is in fact higher than Ltrain=32. Peak median accuracy 

of ~0.88 is obtained with K=128 around Lclass~47. In other words, noisier data needs 

finer approximations for asymptotic classification performance. 

 When reducing the learning sparsity factor to Ltrain=12 (i.e., coarser 

approximations are used in learning), significant performance improvements are 

noticeable, in particular for the very undercomplete dictionaries. Figure 5.7 shows 

error bar plots of median accuracy as a function of Lclass for all four dictionaries 

learned with Ltrain=12.  The most noticeable difference is observed for the K=32 case, 

which is remarkable given its degree of undercompleteness. For the values of Lclass 

tested, dictionaries with K=32 still show gradual improvement in accuracy as Lclass 

grows, but their median accuracy is now higher than the accuracy obtained with 

larger dictionaries, different from the results in Figure 5.5. They also exhibit the same 

sharp rise in performance for very small values of Lclass. Compared to Figure 5.5, 

accuracy still peaks by Lclass=10 for dictionaries with K≥64 in Figure 5.7. For values 

of Lclass > 20, accuracy stays relatively constant for K=64 and gradually degrades for 

K={256, 128} as Lclass increases up to 128, at a rate similar to that of Figure 5.5. The 

best performance for dictionaries with K≥64 is again obtained using coarser 

approximations in classification, i.e., Lclass<10.  Peak median accuracy of ~0.945 is 

obtained with K≥256 dictionaries at Lclass~8, similar to the results in Figure 5.4.  
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For all values of K tested, using a coarse learning sparsity factor leads to 

smaller variance across the 10 pair dictionary set in the SNR 3:1 test data case, i.e., 

better learning convergence. 

Figure 5.8 shows error bar plots of median accuracy obtained when 

classifying SNR 1:1 data, as a function of Lclass, where the four dictionaries are now 

learned with Ltrain=12. Unlike Figure 5.6, dictionaries with K≥64 now exhibit similar 

behavior to K={128, 256} dictionaries, and reach similar accuracy levels (~0.86 

median accuracy).  Dictionaries with K=32 continually improve in accuracy for 

Lclass<128, but their median accuracy remains lower than the accuracy obtained with 

K={64, 128, 256} dictionaries. It is notable that with the coarser learning 

approximations (Figure 5.8), K=32 dictionaries improve up to median accuracies of 

0.7, whereas in the finer learning approximation case (Figure 5.6), the best median 

accuracy was 0.63 for K=32. Peak median accuracy of ~0.875 is obtained with K=128 

around Lclass=60. Similar to Figure 5.6, for the larger dictionaries in the SNR 1:1 test 

regime, Lclass again needs to be higher than for the SNR 3:1 case (e.g., 40-60), or in 

other words, noisier data requires finer approximations in classification. As 

previously noted in Figure 5.7, coarser learning approximations lead to smaller 

variances across the 10 pair dictionary set, which is important from a standpoint of 

learning convergence, or algorithm stability.    



 

141 

 

 

 
Figure 5.7: Error-bar plots of median accuracies over the 10 pair dictionary set for various 
classification sparsity factors, Lclass, for the Chirped CP SNR 3:1 test data case. Dictionaries 
are learned from SNR 3:1 training data. Here C=33, and Ltrain=12.  

 

 
Figure 5.8: Error-bar plots of median accuracies over the 10 pair dictionary set for various 
classification sparsity factors, Lclass, for the Chirped CP SNR 1:1 test data case. Dictionaries 
are learned from SNR 3:1 training data. Here C=33, and Ltrain=12.  
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Figures 5.1-5.8 show that lower bounds exist for some parameter values in 

order to reach good classification accuracy for the RF simulated data. These lower 

bounds can be generalized and lead to methodologies for refining a specific 

classification scheme. If the dictionary size K is too undercomplete (i.e., see cyan 

curves for K = 32), classification accuracy suffers greatly. Similarly, all the 

parameters show some minimum level below which classification accuracy is 

unacceptable. For example, Ltrain < 8, Lclass < 12, and C < 15 are regions that indicate 

minimum values for reasonable performance on the specified datasets. Furthermore, 

once that minimum parameter setting is reached, the panels demonstrate that 

performance remains approximately constant (or shows slow degradation) as the 

parameter settings increase for some optimal interval. Contrary to a reconstruction-

driven application, in this classification scenario lower value parameters in the 

optimal interval are preferable, i.e., “just enough” learning iterations, and “just 

enough” approximation coarseness. As for dictionary size, the detailed study of 

Section 5.1 showed that, for some given training set, a wide range of undercomplete 

dictionaries (e.g., with as low as 0.125 degree of undercompleteness) can be 

optimally trained to yield high classification performance over a relatively broad 

interval of algorithm parameters . 

Since learned dictionaries require many a priori decisions regarding 

parameter settings, it is encouraging to know that, even with the number of training 

examples used in the current sensitivity analysis, satisfactory results were achieved 

across a range of parameter settings. This suggests that a practitioner applying a 
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learned dictionary approach could identify the minimum parameter settings that 

optimize performance on the training data (using an approach similar to the one 

followed above) and achieve reasonably robust results on unseen test data. The 

importance of this conclusion should be emphasized, as it confirms immediate 

feasibility in realistic applications (discussed in the next chapter). 

5.2 Hybrid dictionaries performance 

Hybrid dictionaries were introduced in Chapter 4 as a novel solution to a.) 

speeding up convergence for Hebbian dictionaries in terms of required number of 

learning iterations for a fixed size training set, and b.) providing a more stable 

classification performance (i.e., relatively constant accuracy performance over a 

wider range of parameters). Hybrid dictionaries are now learned with just 1 K-SVD 

seed in sets of 10 pairs from Flat CP and Chirped CP SNR 3:1 training data, using the 

larger training set size of 17000 ON and 17000 OFF windows. Only three dictionary 

sizes are considered here, K={256, 128, 64}, based on classification performance 

observed in Section 5.1, each with fixed sparsity factors of Ltrain=Lclass={45, 36, 15}, 

respectively. The values for the sparsity factors were chosen to be the same as those 

in Figures 5.1-5.2 to allow accuracy dependence on number of learning iterations to 

be directly compared. The SNR 3:1 test data case is considered first for both data 

types. The median accuracy plots in the top panels of Figures 5.1 and 5.2 are now 

replicated again (without the standard deviation bars), this time to include the 

equivalent Hybrid performances (Figures 5.9 and 5.10).  
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Figure 5.9: Classification accuracy using Hebbian learned dictionaries of sizes K={256, 128, 
64} for Flat CP SNR 3:1 test data. A range of C=1 to C=50 learning iterations was used to 
learn sets of 10 ON/OFF dictionary pairs. Both Hebbian dictionaries initialized with random 
uniform seed, as well as Hebbian dictionaries initialized with 1 K-SVD seed were used. 
Median performance is shown across the set of 10 pairs as a function of the number of 
learning iterations.  

 
Figure 5.10: Classification accuracy using Hebbian learned dictionaries of sizes K={256, 128, 
64} for Chirped CP SNR 3:1 test data. A range of C=1 to C=50 learning iterations was used to 
learn sets of 10 ON/OFF dictionary pairs. Both Hebbian dictionaries initialized with random 
uniform seed, as well as Hebbian dictionaries initialized with 1 K-SVD seed were used. 
Median performance is shown across the set of 10 pairs as a function of the number of 
learning iterations.  
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Accuracy reaches asymptotic behaviour by C~15 iterations for the hybrid 

dictionaries, and remains relatively stable until  C~50 iterations, for both Flat CP and 

Chirped CP data. As previously seen, the accuracy reaches higher levels in the Flat 

CP case compared to the Chirped CP case. Comparing hybrid dictionaries with 

simple Hebbian dictionaries of various sizes, Figures 5.9 and 5.10 show that simple 

dictionaries are more prone to overfit the training data as the number of learning 

iterations increases, leading to decay in performance for higher values of C. For the 

individual dictionary sizes, the comparsion between hybrid and simple dictionaries is 

distinct for K={128, 256} and K=64 cases. In Figures 5.9 and 5.10, the median 

accuracy for simple dictionaries with K={128, 256} (green and blue traces) rises 

sharply until C=15 and peaks around C~20-25 iterations, followed by a gradual decay 

which is more pronounced in the K=256 case (blue trace). Hybrid dictionaries with 

the same sizes (magenta and cyan traces) exhibit a much higher accuracy from the 

first few iterations, and retain a more flat performance across a wider range of 

learning iterations (i.e., are more stable). This performance stability will prove very 

useful in the case of SNR 1:1 test data, as will be seen shortly. For the K=256 case, 

hybrid dictionaries (cyan trace) perform better than their simple counterparts (blue 

trace) in terms of classification  accuracy, for both Flat CP and Chirped CP data. For 

dictionaries with K=64 elements, the improvement in accuracy for the hybrid case 

(yellow trace) is still faster than the simple case (red trace) for the first few learning 

iterations, but now the peak accuracy is no longer obtained by the hybrid dictionaries. 

Among the simple dictionaries, K=64 was the only case demonstrating asymptoptic 
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accuracy performance in both Figure 5.9 and 5.10, and this accuracy is not surpassed 

by its hybrid counterpart. One observation is that the accuracy for the K=64 hybrid 

dictionary continues to improve for higher values of C, and becomes close to the 

asymptotic performance of the simple K=64 dictionary case. It appears that the larger 

the undercomplete dictionary (e.g., K=256,128), the more prone it is to “overlearn” 

(overfit) training data as the number of learning iterations increases, resulting in 

decrease of classification performance when applied to test data. In contrast, smaller 

undercomplete dictionaries (e.g., K=64) show stable performance or improvement 

over the range of learning iterations, likely due to the fact that their smaller number of 

elements preclude detailed learning of all the variability present in the training data.       

The hybrid dictionaries learned from SNR 3:1 data are now applied to SNR 

1:1 test data for both Flat CP and Chirped CP cases. Figures 5.11 and 5.12 replicate 

the bottom panels of Figures 5.1 and 5.2, enhanced with the equivalent hybrid 

performances, and excluding standard deviation bars. As previously noted, the initial 

accuracy for the hybrid dictionaries is higher, and the progression to best accuracy as 

a function of learning iterations is more gradual compared to the simple counterparts. 

Among the three different dictionary sizes explored, both simple and hybrid, peak 

performance is obtained for the hybrid case with K=256 (cyan traces) for both Flat CP 

and Chirped CP cases. In the Flat CP case, the peak median accuracy of 0.946 is 

obtained at C=44 learning iterations. In the Chirped CP case, the peak median 

accuracy of 0.876 is obtained for C=49 iterations, with a close second of 0.874 

obtained with K=128 (simple case – green trace) at C=33 learning iterations.  
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Figure 5.11: Classification accuracy using Hebbian learned dictionaries of sizes K={256, 128, 
64} for Flat CP SNR 1:1 test data. A range of C=1 to C=50 learning iterations was used to 
learn sets of 10 ON/OFF dictionary pairs. Both Hebbian dictionaries initialized with random 
uniform seed, as well as Hebbian dictionaries initialized with one K-SVD seed were used. 
Median performance is shown across the set of 10 pairs as a function of the number of 
learning iterations.  
 

 
Figure 5.12: Classification accuracy using Hebbian learned dictionaries of sizes K={256, 128, 
64} for Chirped CP SNR 1:1 test data. A range of C=1 to C=50 learning iterations was used to 
learn sets of 10 ON/OFF dictionary pairs. Both Hebbian dictionaries initialized with random 
uniform seed, as well as Hebbian dictionaries initialized with one K-SVD seed were used. 
Median performance is shown across the set of 10 pairs as a function of the number of 
learning iterations. 
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For K={128,64} peak median accuracy performance in the SNR 1:1 test data 

case is worse in the hybrid case than the simple case. For both data cases, accuracy 

for the respective hybrid K=256 dictionary is showing similar flat performance on 

SNR 1:1 test data in the range of C~40-50 learning iterations. In Figures 5.9 and 5.10, 

the same dictionary exhibits a relatively asymptotic, high accuracy performance, for 

SNR 3:1 test data in the same range of C~40-50 learning iterations (with very minor 

degradation in the Flat CP case). This is an encouraging result, as the performance in 

both noise scenarios is made optimal for the same dictionary parameters, thus 

addressing the concerns at the end of Section 5.1.1.  

Using hybrid dictionaries can be useful in applications where an extensive 

sensitivity analysis on the learning parameters (similar to the one carried out at the 

start of this chapter) may not be possible due to practical constraints. In this thesis, 

the K-SVD algorithm was used to provide the seed for learning the Hebbian 

dictionary, but other sparsifying transforms on the data could be also employed to 

provide the dictionary seed. For undercomplete dictionaries, the hybrid algorithm 

provides faster learning convergence and more stable asymptotic behavior with 

respect to classification accuracy. Recall that on a different training set size, and even 

for a complete dictionary (i.e., K=512), the same pattern for accuracy with hybrid 

dictionaries was observed in Chapter 4. Given the mathematical formulation of both 

learning algorithms, such initial faster accuracy improvement can be expected in 

general of hybrid dictionaries, as it is a direct effect of initialization with a “first-

glance” at the data via the K-SVD seed. After some region of relatively flat hybrid 
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performance, as learning iterations increase it is conceivable that the hybrid 

dictionary would also start overfitting the training data at some point, as is the case 

with learning in general.  

Even though reconstruction performance is not directly assessed in this work, 

it is indirectly evaluated given the use of an MR classifier. However, the only 

conclusion on reconstruction performance that can be inferred from the classification 

performance is that the mean square errors over the ON and OFF dictionaries retain 

similar relative values; nothing can be said regarding their absolute values.  

5.3 Robustness to changes in SNR 

This section explores the changes in classification accuracy when the 

amplitude of the target in the training set differs from the amplitude of the target in 

the test set. This is an important consideration because real world applications cannot 

in general guarantee that these amplitudes are equal. One obvious competitor to 

learned dictionaries, the short-time Fourier transform (STFT), is appealing because it 

does not require so many a priori parameter settings; only the window size need be 

chosen ahead of time and training the classifier incurs little up-front cost. As 

demonstrated below, when the training and test data are drawn from the same 

population (i.e., have the same background characteristics), classification results 

based on STFT features are better or equivalent to those based on learned dictionary 

features.  
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Thus, it would seem clear that the STFT wins because it is simple and fast to 

implement and performs well during classification. However, the goal of this work is 

to develop algorithms that perform well when applied to poorly characterized targets 

and backgrounds. A key aspect is that the relative strengths of the target and 

background are unlikely to be known a priori. Therefore, the performance of the 

feature extraction technique must be assessed when the amplitude of the target in the 

test data differs from the amplitude of the target in the training data.  

Classification performance of learned dictionaries is now compared with 

STFT-based classification of Flat CP and Chirped CP data in the three SNR regimes 

described in Section 1.1. Learned dictionaries are used with the MR classifier, and the 

STFT is used with a decision tree classifier from the Weka collection [53], which was 

selected for its superior accuracy performance on the STFT features. Decision trees 

are a classic method of organizing classification schemes, and offer a fast and 

powerful way to express structures in data. The particular algorithm used by Weka to 

find a decision tree is known as J48, and is a version of the earlier C4.5 algorithm 

developed by J. Ross Quinlan [122]. Here a decision tree is trained to map 

observations about an analysis window timeseries to conclusions about the window’s 

label (ON or OFF) value. The results in Section 5.3 were published in [17]. 

5.3.1 SNR 3:1 training data 

Learning parameters are now selected to optimize performance in the SNR 

0.3:1 regime for this comparative study, so the performance in the SNR 3:1 case will 
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not be as high as the best performance previously seen in Sections 5.1 and 5.2. In the 

case of SNR 3:1 training data, for both Flat CP and Chirped CP cases, the best 

accuracy in classifying SNR 0.3:1 test data was obtained by simple learned 

dictionaries with K=256 elements, at C=50 learning iterations (Ltrain=Lclass=45). For 

each of the two data cases, a decision tree classifier is trained using the STFT 

coefficients of respective SNR 3:1 training data, as previously detailed in [17]. Five 

longer test timeseries (each 10 million samples long, resulting in 35102 labeled data 

windows), with different white noise random seeds, are classified for every SNR 

regime and both types of data.  

Figure 5.13 shows resulting accuracy boxplots for learned dictionaries with 

K=256 elements, as well as resulting median accuracy over the five test data for the 

STFT classifier (green stars). The left side of Figure 5.13 shows results for Flat CP 

data case, and the right side for Chirped CP data case. In both cases, classification is 

made on test data from all three SNR regimes (3:1, 1:1, and 0.3:1). The 10 pairs of 

ON/OFF learned dictionaries are used on the 5 test timeseries, resulting in 50 

classification accuracy estimates. The boxplots show therefore a more representative 

range of accuracies, but account for both variation in the noise seed for the test data, 

as well as variation in the noise used to seed the set of learned dictionaries. Figure 

5.13 shows that learned dictionaries trained on high SNR data are more robust to 

changes in the SNR of the test data than the STFT. It appears that accuracy 

performance for the STFT-classifier is very high for SNR 3:1 test data (as noted by 

the green stars), but degrades severely as the SNR worsens (again compare the low 
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value as denoted by the green stars in the 1:1 and 0.3:1 cases). In contrast, the learned 

dictionaries of the size and learning parameters selected here do not reach as high an 

accuracy performance on the SNR 3:1 test data, as expected, since the choice was to 

optimize for SNR 0.3:1. However, they degrade in performance more gracefully as 

the SNR worsens compared to the STFT-classifier, and lead to higher median 

performance on SNR 1:1 and SNR 0.3:1 data. A better interpretation of the results in 

Figure 5.13 can be made after the behavior is similarly explored in different training 

conditions, that is, at the end of Section 5.3.2.  

 

 

Figure 5.13: Classification accuracy boxplots for the two clutter scenarios, left side Flat CP 
data case, and the right side Chirped CP data case, using MR classifier with learned 
dictionaries of K=256 (boxplots), and decision tree classifier with STFT (green stars). SNR 
3:1 training data used in all cases. 
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5.3.2 SNR 1:1 training data 

In this case, SNR 1:1 training data is used to similarly learn dictionaries, and 

train a STFT-based decision tree classifier. As in Section 5.3.1, one dictionary size is 

selected for this study such that performance is optimal in the SNR 0.3:1 test case for 

both data types. This choice reflects the ongoing priority to make classification 

practical in noisy environments. When using SNR 1:1 training data, the best 

classification performance is obtained with simple K=64 dictionaries (Ltrain=Lclass=15) 

at C=31 learning iterations for the Flat CP case, and C=23 for the Chirped CP case.  

Figure 5.14 shows the corresponding accuracy when classifying 5 test timeseries in 

each SNR regime with learned dictionaries (boxplots), as well as the median accuracy 

obtained  with the STFT classifier (green stars). The left side of Figure 5.14 shows 

results for Flat CP data case, and the right side for Chirped CP data case. 

 
Figure 5.14: Classification accuracy boxplots for the two clutter scenarios, left side Flat CP 
data case, and the right side Chirped CP data case, using MR classifier with learned 
dictionaries (boxplots), and decision tree classifier with STFT (green stars). SNR 1:1 training 
data used in all cases. 
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  Figures 5.13 and 5.14 illustrate how learned dictionary-based classification 

responds differently to changes in SNR compared to STFT-based classification, and 

this is where the defining difference in behavior between the two methods is 

observed. For the learned dictionaries, effective training requires high SNR data. 

When the training data come from the SNR 3:1 set (boxplots in Figure 5.13), the 

classification accuracy is better in all cases than when the training data come from the 

SNR 1:1 set (boxplots in Figure 5.14). In both cases, the results are better for the data 

containing a simpler (i.e., flat) clutter pulse, and in both cases the accuracy follows 

the changes in test data SNR (e.g., it decreases as the SNR of the test data decreases). 

That is, in all cases, the performance is dominated by how easy or difficult it is to 

distinguish the target from the background, rather than by how well the 

characteristics of the test data match the characteristics of the training data. This is 

particularly noticeable in Figure 5.14, where the training data has an SNR of 1:1. 

Here the learned dictionaries perform better on the test data with SNR 3:1, in which 

the target is more distinguishable from the background, than they do on the test data 

drawn from the same distribution as the training data (SNR of 1:1).  

In contrast, the green stars of Figures 5.13 and 5.14 show that the STFT-based 

classifier performs better than the MR with learned dictionaries when the test data 

come from the same distribution as the training data. As with the learned dictionaries, 

the STFT results are better for the data containing a simpler (i.e., flat) clutter pulse. 

However, the accuracy does not always degrade as the SNR of the test data decreases. 

Rather, the accuracy degrades as a function of the difference between the test data 
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and the training data. Again, this is most noticeable Figure 5.14, where the training 

data has an SNR of 1:1. The STFT performs better on the test data with an SNR of 

1:1 than on the “higher quality" test data with an SNR of 3:1.  

To summarize, across the different SNR regimes, the learned dictionaries 

perform best in cases where the training and test data have different background 

characteristics (i.e., 3:1 training with 1:1 or 0.3:1 test in Figure 5.13). In contrast, 

when the training and test data have similar characteristics (3:1 training with 3:1 test 

and 1:1 training with 1:1 test), the STFT shows better performance. A possible 

explanation for this behavior is that the STFT-classifier only captures coefficient 

amplitudes, and so classification decisions are made on the basis of amplitude alone. 

Learned dictionaries, on the other hand, can capture amplitudes as well as other 

characteristics of the data when the training data have a strong target signal, and so 

this richer representation of the features can allow for more robust classification when 

assumptions about the distribution of amplitudes fail or cannot be ascertained. 

In conclusion, learned dictionaries are more robust to changes in the SNR of 

the test data than the STFT, and their performance depends upon how easy or difficult 

it is to distinguish the target from the background. Learned dictionary accuracy is 

strongly impacted by changes in the SNR of the training data. Indeed, the dependence 

is so strong that better accuracy is obtained by training on high SNR data, even if the 

test data have low SNR. In contrast, the STFT performance depends upon how well 

the characteristics of the test data match those of the training data. This dependence is 

so strong that better accuracy is obtained when test data SNR matches the training 
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data SNR than when the SNR of the test data increases. Learned dictionaries could 

therefore be more useful for cases where training and test data belong to different 

(unknown) SNR regimes, while STFT should be employed when the same SNR regime 

is expected. For both methods the results are better for the data containing the simpler 

(flat) clutter pulse, as expected.  

Even though only a particular combination of dictionary parameters is used 

here, previous sections showed a range of parameter values which result in 

dictionaries with similar relative behavior in classification, for some different 

dictionary sizes (from 0.125 to 0.5 times undercomplete). Based on those results, one 

can extrapolate that classification response to changes in SNR as described in this 

section follows the same pattern (i.e., higher accuracy for louder target, lower 

accuracy for quieter target), for a range of undercomplete dictionary sizes and a range 

of learning parameters. Also, the particular dictionary selection for this section was 

made for peak performance in the SNR 0.3:1 regime. Previous sections demonstrated 

better accuracy can be obtained on SNR 3:1 and 1:1 test data with different dictionary 

choices, and that performance is much closer to the STFT performance for the higher 

SNR regimes. The following section will present a new ensemble classification 

method that can lead to more stable (i.e., with less variation) accuracy performance, 

and would permit simultaneous optimization of classification across different SNR 

regimes.  
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5.4 Stochastic classification: Minimum Residual Ensemble 

Classifier (MREC) 

Even though a final, learned dictionary and its performance are deterministic, 

the dictionary learning process is stochastic, and leads to the variations we have seen 

in all previous boxplots. A novel learned dictionary voting system is now introduced, 

called a Minimum Residual Ensemble Classifier (MREC). This ensemble classifier 

was developed by the author to address specific needs (outlined below), and its 

benefits are demonstrated in this section. Similar performance on a different dataset 

was separately shown by the author in [16]. 

Accuracy improvements can be achieved by polling multiple minimum 

residual classifiers using distinct pairs of ON/OFF dictionaries, where each pair is 

learned from a different random initialization. Given multiple votes (one from each 

dictionary pair), a window is labeled “ON” if the majority of dictionary pairs return 

an “ON” vote (i.e., if it receives an ensemble “ON” vote).  

The performance on the Chirped CP data set can be improved using this 

ensemble classifier. For example, consider the case of a very undercomplete 

dictionary with K=64 elements and Ltrain=8, Lclass=8, and C=33 learning iterations 

(Figure 5.4). Here the median accuracy on SNR 3:1 test data is only 0.875 and it 

exhibits wide variations (±0.75). On the other hand, in Section 5.3, the K=64 

dictionary (used with slightly different learning parameters) gave the best 

performance on SNR 0.3:1 data. To make classification practical in noisy 
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environments, a good classification scheme with learned dictionaries would have 

optimal accuracy not just for a single SNR regime, but for a wider range of SNR 

regimes. The MREC directly addresses this practical need, and its effectiveness is 

demonstrated below. 

One hundred dictionary pairs with K=64 and fixed learning parameters were 

learned from SNR 3:1 Chirped CP training data. The MREC is evaluated by gradually 

increasing the number of voting dictionary pairs and looking at the variance across a 

random subset of all possible combinations. Since in the 1 voter case there are only 

100 combinations, the subset size considered is 100 voting groups. The cases of 1 

through 9 voters in a group are specifically considered, where a voter is a particular 

ON/OFF dictionary pair, randomly selected from the full set of 100 possible voters 

without replacement. For each number of voters V, 100 groups with random 

combinations of the 100 dictionary pairs taken V at a time are selected. A group of V 

voters casts an ensemble vote in the manner described above, and the overall 

classification accuracy variance is captured in the boxplots of Figure 5.15. In every 

test scenario the ensemble classification performance increases with the number of 

voters, as expected. This improvement is characterized both by the increase in median 

accuracy (red lines), as well as the decrease in variation (i.e., height of boxplot) 

across a voting set of 100-choose-V. In fact, median classification accuracy improves 

by up to ~0.15 as the number of voters increases, and its variance decreases by a 

significant 92%. As the voting group size increases past V=7, the MREC accuracy 

appears to remain relatively similar in terms of variance and median value over the 
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random sets of 100 pairs. The best median accuracy for dictionaries with K=64 is now 

~0.94±0.014, which is a much improved result compared to the simple MRC case. 

 
Figure 5.15: Ensemble classification accuracy (y-axis) as a factor of number of allowed voters 
(x-axis) for each test data set. A boxplot represents 100 selected combinations of V voters 
(100-choose-V, with V=1, 3, 5, 7, 9) out of the 100 learned dictionary pairs for dictionary size 
K=64 and Ltrain=8.  Median classification accuracy (red lines) improves by 0.15 between 1 and 
9 voters, and its variance (i.e. height of boxplot) decreases by a factor of ~12.5 (i.e., by 92%)! 
 

In an actual implementation with, e.g., 9 voting dictionaries, the MREC is 

implemented in a parallel process, where each of the 9 dictionary pairs classifies input 

data simultaneously on different cores, with little added computational overhead due 

to communication time. The MREC allows for good classification with smaller 

dictionaries, which helps reduce computational overhead associated with learning a 

larger dictionary. In this parallel implementation, it is feasible to have the voters be 

multiple dictionaries of different sizes and/or optimized for different noise conditions, 
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leading to a multiscale learned dictionary analysis tool that can provide additional 

reliability and decision confidence.  

5.5 Conclusion on classification with undercomplete learned 

dictionaries  

One of the main hypotheses in this thesis is that perfect reconstruction is not 

necessary for high classification performance. This chapter supports this hypothesis 

in two ways. First, it shows that dictionaries with varying degrees of 

undercompleteness can give high classification performance for a range of parameter 

values, depending on the SNR case. That is, overcomplete dictionaries that might be 

necessary for high reconstruction performance are not necessary for high 

classification performance.  

Secondly, this chapter demonstrates that a finer approximation (i.e., larger 

sparsity factor, L), which is synonymous with “better reconstruction,” is at best not 

improving classification, or is at worst hindering classification, compared to a coarser 

approximation (i.e., smaller sparsity factor, L).  

The up-front expense of using learned dictionaries can be quite large; for 

instance, the sensitivity analysis presented in this chapter took approximately 57 

hours of run time on 8 Intel Xeon processors run in parallel at 2.67GHz. The learning 

cost for a single Hebbian dictionary is however very small, of the order of few 

minutes depending on the value of K, C, and the amount of training data.  The 

advantage is that learned dictionaries for classification can be undercomplete, and the 



 

161 

 

 

classifier has a very simple implementation, leading to low computational overhead in 

the classification stage. Given the better robustness to SNR changes compared to a 

STFT-classifier, the learned dictionaries offer a decided advantage, and may be worth 

the up-front expense in return for more robust performance at test time. 

Thirdly, it was shown that hybrid learned dictionaries can provide added 

robustness in classification across different SNR regimes, and they can be useful in 

applications where an extensive sensitivity analysis on the learning parameters may 

not be feasible. For undercomplete Hebbian dictionaries, the hybrid algorithm 

provides faster learning convergence and more stable asymptotic behavior with 

respect to classification accuracy. 

Lastly, a new minimum residual ensemble classifier (MREC) was introduced 

and shown to significantly improve median accuracy and accuracy stability compared 

to the MRC. The MREC takes advantage of parallel computing to reduce 

computational time by querying dictionary pairs simultaneously, and can be 

implemented as a multiscale tool by using voting dictionaries of different sizes to 

enhance robustness to noise. 
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6.  Classification with Undercomplete Dictionaries in 

Satellite Imagery using CoSA 

 

Land cover classification in satellite imagery presents a different type of 

signal processing challenge. The classification technique employed for the synthetic 

RF target cannot be directly extended to this new problem for several reasons. Chief 

among these is the lack of verified correlation between image data and real features 

on the ground (so-called ‘ground truth’), which precludes any direct supervised 

classification. Remote sensing techniques can analyze multispectral satellite data and 

perform coarse land cover classification, e.g., based on coefficient binning in the 

Normalized Difference Vegetative Index (NDVI) image. Another approach would be 

applying genetic algorithms, such as Genie [123], to extract a particular class of 

interest in a supervised manner. Such methods rely heavily on domain expertise and 

usually require human input. 

   Techniques for automated feature extraction and classification are of current 

interest in the areas of climate change and Land Use/Land Cover classification using 

satellite image data [123-128]. This chapter builds on the knowledge gained in 

Chapters 4 and 5 to present a technical solution for automatic classification of land 

cover in multispectral satellite imagery of the Arctic using sparse representations in 

undercomplete Hebbian learned dictionaries: clustering on sparse approximations 

(CoSA). The method is demonstrated using DigitalGlobe Worldview-2 visible/near 
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infrared high spatial resolution imagery. The Hebbian learning rule detailed in 

Chapter 4 is used to build dictionaries that are adapted to the data. Sparse image 

representations of pixel patches over the learned dictionaries are used to perform 

unsupervised k-means clustering into land-cover categories. This approach combines 

spectral and spatial textural characteristics to detect geologic, vegetative, and 

hydrologic features. Performance is evaluated mostly qualitatively and the purpose of 

this chapter is to demonstrate how the methods introduced in Chapters 4 and 5 can be 

adapted to an entirely different application. An in-depth analysis is ongoing and will 

be presented in forthcoming publications. Results suggest that neuroscience-based 

models are a promising approach to practical pattern recognition problems in remote 

sensing, even for datasets using spectral bands not found in natural visual systems. 

Using undercomplete dictionaries provides dimensionality reduction, which is 

desirable in high data rate applications. The following sections expand upon each of 

the specific steps, beginning with a summary of climate observations that frame the 

problem. 

6.1 Introduction 

Recent work in the area of climate change monitoring has indicated that air 

temperatures have been rising in both Alaska [129, 130], and the western Canadian 

Arctic [129, 131-133] over the last few decades. Global climate models suggest that 

the Arctic will continue to warm more rapidly than more southerly locations [129], 

therefore significant attention has been given to this region by climatologists. The 
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Arctic biome (both terrestrial and aquatic) is responding to this warming, and the 

effects are multiple and interconnected. In the terrestrial biome, the thawing of the 

permafrost (soil at or below the freezing point of water 0°C (32°F) for two or more 

years) is directly correlated to the vegetative cover. Specifically, warming alters 

transitional regions between upright and dwarf shrub tundra [134], and there has been 

evidence of increasing shrub cover on air photos [135], and of changes to vegetation 

indices derived from satellites [136-139]. Colonizing shrubs affect snowpack depth, 

although it is yet unclear at what magnitude and in what direction [133]. Along arctic 

coastlines and riverbanks, recent studies have attributed dramatic increases in the 

rates of shoreline erosion to global climate change and near-surface permafrost 

degradation [140, 141]. Across much of the arctic, the number of lakes and their sizes 

have also been changing as a result of permafrost degradation, altering surface water 

dynamics and causing possible release of soil organic carbon (SOC) [142, 143].  

Currently, climate change experts primarily use various indices derived from 

the spectral bands, such as the Normalized Difference Vegetative Index (NDVI - a 

normalized pixel-level combination of two spectral bands), which is here calculated 

as the (NIR-RED)/(RED+NIR) bands. Other land cover classification approaches 

involve the use of state-of-the-art genetic algorithms, such as Genie [123, 125].  The 

NDVI is one of the most successful methods to simply and quickly identify vegetated 

areas and their "condition," and it remains the most well-known and used index to 

detect live green plant canopies in multispectral remote sensing data [144]. The 

rationale behind NDVI comes from a.) the chlorophyll in plant leaves strongly 
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absorbs visible light (from 0.4 to 0.7 µm) for use in photosynthesis, and b.) the cell 

structure of the leaves strongly reflects near-infrared light (from 0.7 to 

1.1 µm). Therefore the NDVI is directly related to the photosynthetic capacity and 

energy absorption of plant canopies, and areas containing dense vegetation will tend 

to positive NDVI values (~0.3 to 0.8). By contrast, features such as clouds and snow 

tend to be rather bright in the red (as well as other visible wavelengths) and quite dark 

in the near-infrared, leading to negative NDVI values. Other targets, such as water 

bodies or soils, will both generate small positive NDVI values, or in the former case, 

sometime slightly negative NDVI values, and thus they are not distinguishable with 

confidence using NDVI. The downside is that domain expert input (e.g., a human 

worker) is required to properly decide the binning of NDVI coefficients, and the 

NDVI index is sensitive to several factors and not a strictly robust approach.  

Genie is a feature extraction tool developed at Los Alamos National 

Laboratory for multispectral, hyperspectral, panchromatic, and multi-instrument fused 

imagery, but it too requires supervision in training. One of the main limitations is the 

difficulty in providing clean training data, i.e., only pixels that truly belong to the 

class of interest. This is easier to do when the classes are well separated spatially from 

other classes, such as water bodies from land, or golf courses from buildings [145], 

but much more difficult to do when the classes are intermingled.  

Such approaches perform well on certain types of problems, such as 

distinguishing between water and land features (i.e., automatic lake detection), or 

specific vegetative analysis, but typically are not robust for multiple classes that come 
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from different categories. It is therefore of great importance to develop satellite 

imagery analysis techniques that would allow automatic classification of many land 

cover categories and be feasible for high resolution change detection in land cover. 

These techniques would provide the climate change community with more exact 

ways of monitoring changes and quantifying various effects. The work in this chapter 

motivates a classification approach based on undercomplete learned dictionaries that 

would address this need for multiclass detection.  

6.2 MacKenzie watershed satellite data 

DigitalGlobe’s Worldview-2 satellite imagery [146], used in this thesis, is the 

highest resolution commercially available multispectral data at 1.84m spatial 

resolution. The WorldView-2 sensor provides eight multispectral bands: four standard 

wavelengths (red, green, blue, and near-infrared 1) and four new bands. Ordered from 

shorter to longer wavelength the list of bands is: coastal, blue, green, yellow, red, red-

edge, near-infrared 1, and near-infrared 2.   

The specific problem chosen to illustrate application of learned dictionaries is 

automatic land cover detection in the Trail Valley Creek region of the Mackenzie 

River watershed (Figure 6.1). Shown here is a 3-band image formed with the 

traditional red, green, and blue (RGB) bands. The true spatial extent of the region is 

approximately 6 km x 10 km. There are many features of interest present, primarily 

vegetative and geomorphic, but also aquatic; an ideal classification scheme would be 

able to simultaneously identify them all.  
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Figure 6.1: Trail Valley Creek watershed, east of the Mackenzie River, NW Canada 
(Worldview-2 satellite data). Full basin RGB image (approximately 6 km x 10 km spatial 
extent). There are many features of interest present, primarily vegetative and geomorphic, but 
also aquatic. The area delineated by the yellow rectangle is the control image used in the 
remainder of the chapter. The area delineated by the cyan rectangle is a validation image used 
for cluster analysis in Section 6.4. 
 
 

A high-level classification of land cover in this region is given by Marsh [133] 

(Figure 6.2), who focused on using vegetation height for snowpack analysis. He 

performed a simple low-resolution classification using LiDAR data, and identified 

only four categories: tundra, low shrub, tall shrub, and trees. The approximate region 

shown in Figure 6.1 is marked with a red rectangle in Figure 6.2.  
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Figure 6.2: Trail Valley Creek watershed (with basin boundary shown by black line, and basin 
outlet to the east). Only four vegetation height classes were derived from LiDAR, with tundra 
defined as areas with vegetation <0.50m, low shrub defined as vegetation >0.50m and 
<1.25m, tall shrubs >1.25m and <3.0m, and trees >3.0m in height (Marsh et al. [133]).  
 

 
It is obvious that for the level of detail present in Figure 6.1, more than four 

land cover classification labels are needed. For ease of visualization, the remainder of 

the chapter will show results on a control image (area delineated by yellow rectangle 

in Figure 6.1). A zoom of the control image is shown in Figure 6.3 in color infrared 

(i.e., bands 8, 6, 4: near-infrared 2, red-edge, yellow). This control region was 

selected because it includes the features of interest present in the entire image of 

Figure 6.1, such as polygonal ground (blue pixels in red rectangle), water (black 

pixels), lake drainage (green rectangle), various vegetation types (yellow pixels), bare 

soil (cyan pixels). Among the features mentioned, polygonal ground is specifically 

encountered in permafrost regions. Such frozen soil can be dry, or it can contain ice, 

which is usually found in large wedges forming a honeycomb of ice walls beneath the 
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soil surface. The top soil buckles and cracks above the ice wedges, causing 

polygons to form at the surface that can be anywhere from ~70 feet (~20 m) across to 

~10 feet (~3 m) across. 

 

 

Figure 6.3: Control image zoom, shown in color infrared (i.e., bands 8, 6, 4: near-infrared 2, 
red-edge, yellow). Spatial extent is approximately 3km x 2.5km. 
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6.3 Multispectral undercomplete learned dictionaries  

The CoSA technique presented in this chapter and in [19, 20] builds on the 

learned dictionary method explored in Chapters 4 and 5. A detailed sensitivity 

analysis on the parameters is not performed in this chapter, but rather the knowledge 

previously gained in classification of RF data is now extended to this new data type.  

In terms of input dimensionality, the 1D time window used in the RF analysis 

of previous chapters is now replaced by a patch of p x p x 8 pixels, that is, the satellite 

imagery is processed using square multispectral pixel patches. A pixel patch is 

reshaped as a 1D vector of overall length N, where N is the natural input 

dimensionality. Even though N might be large for satellite imagery, intuitively the 

“intrinsic” satellite data dimensionality may in fact be small, as it presents less 

category specific variability compared to, say, image data (e.g., there are few details 

visible from space for a patch of trees). The dictionary size, K, should depend upon 

this “intrinsic” data dimensionality, and this makes undercomplete learned 

dictionaries a prime candidate for this application. Satellite imagery is dominated by 

spatial and spectral texture (e.g., vegetation blend in a region), as opposed to 

individual features of a particular object class (e.g., leaf shape and bark color of a 

birch tree) in camera-images resulting in many very distinct pixel patches per object 

class. This is also true of urban satellite imagery, with added features from human-

made structures. Most of the dimensionality in the satellite data is therefore primarily 

due to the number of categories present (i.e., all the different land cover classes), and 

not so much the fine details of each category. In the context of learned dictionaries, it 
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follows that lower values of K could in fact work very well for classification of 

satellite imagery.  

Three different spatial resolutions of 7x7, 9x9, and 11x11 pixel patches are 

used to illustrate performance of undercomplete learned dictionaries. (Given the 1.84 

m pixel resolution of the imagery, the chosen patch sizes map to physical square areas 

of length 12.8 m, 16.5 m, and 20.2 m, respectively.) These spatial resolutions result in 

natural dimensionalities of N=392, 648, and 968, and for each resolution a separate 

dictionary is learned. Each of the three dictionaries of different spatial resolutions is 

chosen to have a constant size of K=300 elements, making all three dictionaries 

undercomplete by a factor of 0.8, 0.5, and 0.3, respectively. This also means that all 

the sparse decomposition vectors are 300-coefficient long, regardless of the spatial 

resolution. The dictionaries are now initialized by imprinting (i.e., seeding the 

elements with random image vectors), to help speed up learning convergence. The 

rest of the learning parameters for the dictionaries are chosen following similar 

rationale to that previously described. The decomposition sparsity factor, Ltrain, is 

chosen to be 20 for all three resolutions, resulting in 20/300= 0.067 sparsity indices 

(defined as the fraction of the sparse approximation coefficients which are not zero). 

This value was determined based on a parametric sensitivity analysis (similar to that 

of Chapters 4 and 5) that is not included here due to space limitations. The learning 

iterations in this case stop whenever learning convergence is achieved (i.e., when the 

dictionary elements stop changing). 
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Millions of overlapping 8-band pixel patches are randomly extracted from the 

control region and used to learn spatial-textural undercomplete dictionaries with an 

on-line batch Hebbian algorithm with multiple learning iterations, as detailed in 

Chapter 4. Here the number of training vectors is larger by four orders of magnitude 

compared to the dictionary size, and faster learning convergence was observed, as 

expected. Recall that a batch algorithm means a single learning update for dictionary 

element kϕ is calculated not from a single input vector, but rather from a small batch 

of input vectors (in this case 10) as shown in equation (4.5). 

Figure 6.4 shows quilts of the three 300-element dictionaries shown in RGB, 

where a dictionary quilt is a visualization method explained below. Each of the three 

dictionaries has different spatial resolution, which results in a different element length 

N. Every dictionary element of length N is in fact also a multispectral pixel patch and, 

when reshaped in the p x p x 8 format, it is possible to show an image of the element 

using only the corresponding RGB bands. Dictionary quilts are obtained by stacking 

the RGB images of all the elements in matrix form (those shown in Figure 6.4 are 

30x10 elements). Each of the small squares in a quilt represents a dictionary element.  

The quilts are a qualitative view of the dictionaries and provide insight into 

what specific land features are learned by each element. Upon visual inspection, 

almost all the elements exhibit texture (i.e., variability in pixel intensity), and many 

contain oriented edges similar to those in [13]. The author notes that some of the 

elements that appear more uniform in RGB exhibit more texture in other spectral 

bands; that is, some dictionary elements better capture the variability in other spectral 
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bands rather than in RGB. It also would appear that the dictionary with 11x11 spatial 

resolution has more “green” elements compared to the other two cases, a 

characteristic which is discussed qualitatively in Section 6.5.  

 
Figure 6.4: Quilts of dictionary elements (showing RGB channels of the 8-band element) for 
pixel patches of spatial extent 7x7 (left), 9x9 (center),  and 11x11 (right). Each of the small 
squares in a quilt represents a dictionary element. All dictionaries have K=300 elements and 
are learned from the same training set. Visual inspection reveals dictionary elements have 
similar types of features across the three spatial resolutions explored.  

6.4 Clustering of Sparse Approximations (CoSA)  

To automatically classify land cover categories in an unsupervised fashion, the 

MRC of previous chapters can no longer be employed, as it requires labeled training 

data (i.e., ground truth). Instead, a k-means clustering algorithm [21, 44] is used on 

the sparse representations of the image patches, which in turn were found using the 

learned dictionaries of Figure 6.4.  
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The k-means algorithm is a well established data mining technique and aims 

to partition a set of unlabeled inputs (i.e., the sparse approximation vectors) into 

k clusters, where each input belongs to the cluster with the nearest center (in a 

Euclidian sense), and the value of k is user defined. The problem is NP-hard, but there 

are efficient heuristic algorithms that are commonly employed and converge fast to a 

local optimum. The k-means clustering seeks to find clusters in such a way that the 

total within-cluster variance (i.e., variance of distances to the cluster center) is 

minimized. Given an initial set of k centers (usually a random selection of k inputs), 

every algorithm iteration alternates between two steps: 

• Assign each input to the closest cluster center (in this work the 

distance is considered to be Euclidian), i.e., form the clusters; 

• For each cluster, calculate the new cluster center as the mean 

(centroid) of the observations in that cluster, i.e., center the clusters. 

The algorithm is deemed to have converged when the assignment of inputs to 

clusters no longer changes. There are several methods to dynamically adjust the 

number of clusters, k, to fit the training data better [21, 44], such as splitting (i.e., 

dividing larger clusters into partitions), or pruning (i.e., eliminating empty clusters). 

In this demonstration the number of cluster centers is kept fixed.  

For the particular problem in this chapter, the amount of data available is too 

large to be used in its entirety in finding the clusters centers. The solution is to use a 

subset of the data for determining (i.e., training) the clusters, and a separate validation 
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data subset to verify (i.e., test) the clusters. The control image is used as the training 

set, and the validation set is the region delineated by the cyan rectangle in Figure 6.1. 

6.4.1 Cluster training 

The clusters are trained from the sparse representations of pixel patches. For 

each of the three spatial resolutions, at every clustering iteration, overlapping pixel 

patches are randomly extracted from the control image in batches of fifteen thousand 

patches, reshaped as 1D vectors, and then decomposed over the respective learned 

dictionary using matching pursuit. The classification sparsity factor is selected to be 

equal to the learning sparsity factor, that is, Lclass=20. The resulting sparse coefficient 

vectors are used to iteratively find cluster centers using the k-means algorithm.  

One important question is determining the number of clusters necessary for 

good classification, from a domain expert point of view. A range of 4 up to 30 

clusters is considered for each of the three spatial resolutions. Also, the k-means 

clustering algorithm is sensitive to initial conditions, and so the clustering should be 

checked for convergence across multiple initializations of the k centers. In this work, 

15 different cluster initializations are considered for each number of centers. Figure 

6.5 shows boxplots of median distances from the training vectors (i.e., sparse 

approximations of pixel patches in the control image) to their assigned cluster centers. 
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Figure 6.5: Training median clustering distance for 7x7 (top), 9x9 (middle), and 11x11 
(bottom) spatial resolutions. Cluster distance and variance decrease as the number of clusters 
increases. 
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The boxplots summarize median distances across the 15 different sets of 

cluster centers for the training image, as a function of the total number of clusters, for 

the 7x7 case (top), 9x9 (middle), and 11x11 (bottom). As expected, median cluster 

distance for in-sample (i.e., training) data decreases as the number of clusters 

increases, and also the variance (width of the boxplots) of the median distance across 

the 15 different initializations decreases. In a direct comparison between the three 

spatial resolutions, the median cluster distance in training also decreases as the spatial 

resolution increases (Figure 6.6). Figures 6.5 and 6.6 show that, for training data, the 

performance remains relatively similar as the number of clusters increases past 15, 

especially for the 9x9 and 11x11 cases. This could be an indication that for this 

particular data set 15 is a good minimum value for the number of clusters.   

 

 

Figure 6.6: Mean training cluster distance for all 3 spatial resolutions. The mean cluster 
distance in training decreases as the spatial resolution increases. 
 



 

178 

 

 

6.4.2 Cluster testing 

The validation image is now used to test how well the clusters obtained in 

Section 6.4.1 perform on a different, unseen data set. One way to test is to look at 

mean distances to cluster centers for each of the test patches and evaluate whether the 

clustering is still keeping these distances similarly small. At each spatial resolution, 

the validation image is processed using overlapping pixel patches (with 1-pixel step 

size), each reshaped as a 1D vector, and then decomposed over the respective 

dictionary using matching pursuit with Lclass sparsity factor. For each of the resulting 

sparse coefficient vectors, the closest cluster center is found and the respective 

Euclidian distance is recorded. Figure 6.7 shows resulting distances from the test 

vectors to their assigned cluster centers. The boxplots summarize median distances 

across the 15 different set of cluster centers, as a function of the total number of 

clusters, for the 7x7 case (top), 9x9 (middle), and 11x11 (bottom). Note that the y-

axis scale is only a half of the scale used in Figure 6.5 for the training median 

distances. The clustering of observations in the test data appears to be working well 

and the within-cluster distances are remaining reasonably small.   

The results in Section 6.4 show that a minimum of 15 clusters is necessary for 

good partitioning of the sparse representations for the data considered here. An upper 

bound for the number of clusters could be identified if the distances to the cluster 

centers begin increasing as the number of centers increases, but there is no clear 

indication of divergent behavior within the number of clusters investigated (i.e., 

within 30 cluster centers). 
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Figure 6.7: Testing mean clustering distance for 7x7 (top), 9x9 (middle), and 11x11 (bottom) 
spatial resolutions. Mean cluster distance and variance decrease as the number of clusters 
increases. 
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6.5 Land cover categories 

Lack of pixel-level, verified, ground truth in satellite imagery prevents use of 

established quantitative classification performance metrics.  Other approaches to 

estimating ground truth labels involve manipulations of spectral bands into index 

images, e.g., NDVI index, and supervised assignment of values to image categories. 

The NDVI index image using bands 7 (NIR) and 5 (red) for the control image in 

Figure 6.3 is shown in Figure 6.8. Purple and blues indicate low vegetation areas, reds 

represent high vegetative indices. The tundra exhibits a wide variation in greenness, 

depending on its aspect (i.e., north versus south facing slopes). Given that this 

particular image was taken in June, which is the Arctic spring and therefore early in 

the growth season, the south-facing slopes have more vegetation (red). Trees mapped 

along the stream corridors standout as red in the NDVI map. As previously 

mentioned, the NDVI does not easily discern between moisture rich features such as 

bare soil and water, and the area delineated by the black rectangle show this 

limitation (the purple areas there are in fact bare soils, not water).  

The performance of the CoSA technique can now be qualitatively evaluated. 

Referring back to the four categories of land cover in Figure 6.2 (tundra, low and tall 

shrubs, and trees), the hope is that at least those categories could be reliably identified 

using CoSA. Compared to the NDVI index in Figure 6.8, the expectation is that 

CoSA would segment the control image in similar categories, would preserve the 

texture, especially in areas of transitional vegetation (e.g., where greens and yellows 

intermingle), and would resolve confusion between categories (e.g., soils and water).  
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Figure 6.8: NDVI index map. Purple and blues indicate low vegetation areas, reds represent 
high vegetative indices. The tundra exhibits a wide variation in greenness, depending on its 
aspect (i.e., north versus south facing slopes). Trees mapped along the stream corridors stand 
out as being red in the NDVI map.  
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As in Section 6.4, all the overlapping pixel patches in the control image are 

sparsely represented using the learned dictionary, and the resulting sparse 

approximation vectors are assigned the labels of the nearest cluster centers. Example 

classification labels for each resolution for a single number of cluster centers are 

shown in Figures 6.9-6.11. Here each color in the image represents a particular cluster 

label. A quantitative way to select the optimal number of clusters at each resolution is 

by using the mean cluster distance analysis in Section 6.4. Those results showed that 

a minimum of 15 clusters was necessary for good partitioning of the data, but there 

was no clear maximum number of clusters identified. The final selection of the 

number of clusters is based on analysis of CoSA results with more than 15 clusters by 

a domain expert, Dr. Joel Rowland (LANL). He considered whether the clustering 

gives meaningful separations, and whether it is better than NDVI binning.  

At 7x7 spatial resolution (12.8 m), the best CoSA result is obtained with 20 

clusters (Figure 6.9). CoSA is clearly behaving more similarly to the NDVI analysis, 

in that it detects a wide variation in greenness of the tundra and presents meaningful 

texture. The water and the bare soil (the dark red areas delineated by the black 

rectangle) are still lumped together as in Figure 6.8, which makes sense if CoSA uses 

the spectral information similar to NDVI (i.e., both water and soil have very low 

vegetation related signals).  However, another aspect stands out, not as easily 

explained: water bodies and tree-dense regions along the stream channels are also 

lumped together in Figure 6.9 (dark red label), whereas in the NDVI they are on 

opposite ends of the spectrum.  
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Figure 6.9: Category labels for 7x7 pixel patch. Analysis with 20 clusters detects a mix of 
vegetations types. Large water bodies and the tree dense regions along the stream channel are 
being clustered together, whereas in the NDVI these areas are on the opposite end of the 
spectrum. The clustering of the water with the bare soil (the white areas in the SW) is 
consistent with both having very low vegetative related signals (rectangular markup).    
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At 9x9 spatial resolution (16.5m), the most interesting CoSA result is obtained 

with 30 clusters (Figure 6.10). The water bodies (blue label) are now in a separate 

cluster from the soils (cyan class), and they are also in a different class from the dense 

tree regions along river streams (darker blue label). In Figure 6.9 the clustering is 

predominantly corresponding to vegetation distributions, but in Figure 6.10 the non-

vegetation aspects of the landscape emerge. There is still abundant texture in the 

vegetation labels (bright reds and yellows), but there is also a lot of apparent texture 

due to geomorphic features. The area delineated by the black rectangle east and south 

east of the big lake is a good example of these geomorphic clusters. In the eastern 

portion (the yellow with the red and orange), CoSA could be detecting the round 

polygonal ground, and in the aqua/cyan region further west of there with the maroon 

linear clusters, CoSA might be picking up rills (i.e., poorly developed channels) that 

cause somewhat regular variations in the surface topography. 

When the spatial resolution increases to 11x11 (20.2 m), at 30 clusters (Figure 

6.11) CoSA is showing a lot more coherence in the cluster blocks compared to Figure 

6.10. Water bodies, soils, and trees along stream channels are each in different 

clusters, but the non-vegetative features are not detected as well in this case as they 

were in the 9x9 case. There is good clustering of the lake shoreline vegetation 

(compare to Figures 6.9-6.10). The vegetative clusters in Figure 6.11 also appear to 

retain transitional vegetation information in the shrub and grass areas (e.g., light 

yellow transitioning into lime green), which, if proven valid, could be useful for 

detection of colonizing shrubs. 
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Figure 6.10: Category labels for 9x9 pixel patch. Analysis using 30 clusters allows the non-
vegetation aspects of the landscape emerge. Looking east and south east of the big lake 
(rectangular markup) abundant texture is observed indicating round polygonal ground and rills 
(poorly developed channels) that cause somewhat regular variations in the surface topography.  
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Figure 6.11: Category labels for 11x11 pixel patch. Analysis with 30 clusters with the larger 
spatial resolution leads to more coherent blocks of vegetation types. The non-vegetative 
textures are not detected as well in this case.  
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6.6 Conclusions on CoSA in satellite imagery 

This chapter presented an example application of undercomplete learned 

dictionaries in an unsupervised fashion. These qualitative results use clustering of 

sparse approximations (CoSA) over learned dictionaries in satellite imagery 

processing, for the purpose of unsupervised land cover classification. The clustering 

process behaves as a classifier in detecting real variability, but some of the 

associations it makes could be lumped together or are not important for one type of 

classification versus another (e.g., vegetation analysis versus variability in the 

topography). Also, this chapter demonstrates that different spatial resolutions of the 

learned dictionary might be necessary depending on what specific features are desired 

in the analysis, i.e., aquatic, vegetative, or geomorphic. A multiscale approach could 

be successful in developing a classification scheme that shows vegetation at one 

scale, and topographic features at a different scale.  

The challenge, therefore, to making the CoSA method successful for 

environmental studies will be to pre-condition the training set and the learning 

algorithm toward the features of interest, e.g., vegetation, by using indices such as 

NDVI and screening out spectral bands heavily influenced by moisture content, or by 

using LiDAR information to remove topographic features. The potential advantages 

are evident for the case where multiple classes are desired, e.g., transitional 

vegetation classes (areas that are not all shrub or all trees), where this method could 

be more efficient than trying to classify one class at a time using a subjective, 

supervised method.  
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7. Conclusion and Discussion 

This thesis addresses several questions related to detection and classification 

of non-stationary RF signals in high noise environments using sparse techniques and 

dictionary methods, borrowing tools from several communities, including machine 

learning, applied mathematics, signal and image processing, computer vision, and 

computer science.  

The research in this dissertation contributes to the extension of dictionary 

methods to RF classification in several ways. Most importantly, it demonstrates 

classification with undercomplete learned dictionaries, which reduces 

dimensionality and helps make the goal of real-time processing feasible. Two 

algorithms for dictionary learning, Hebbian and K-SVD, are implemented and 

compared using a comprehensive parameter sensitivity analysis. A novel hybrid 

dictionary learning method is introduced and is shown to improve classification 

performance robustness to changes in SNR. The thesis also generalizes the use of 

undercomplete learned dictionaries by demonstrating unsupervised classification of 

land cover in multispectral satellite imagery. This chapter concludes the dissertation 

by summarizing the research of previous chapters and outlining future directions for 

this work in the near and long-term. 

7.1 Precursor studies 

An in-depth study of signal processing techniques used in transient and pulsed 

RF analysis was pursued prior to beginning work on an adaptive dictionary learning 
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software platform. This phase enabled a thorough analysis of the features obtained 

from an overcomplete parametric dictionary using an established algorithm and 

provided insight that motivated and shaped the learned dictionary work that followed. 

Specifically, the fast ridge pursuit algorithm published by Gribonval was 

implemented and optimized in Matlab. Despite its appeal of low computational 

complexity, the quality of features that could be directly extracted was found to be 

mediocre and this approach was eventually abandoned in favor of learned dictionary 

methods. It was, however, the seed thought that suggested perhaps a good dictionary 

for reconstruction is not necessarily a good dictionary for classification. This insight 

became central to the dissertation work and motivated the use of classification 

performance as quality metric in subsequent learned dictionary work. It was also the 

reason behind exploring undercomplete dictionaries for classification.  

7.2 Study of learned dictionary methods 

 Dictionary learning has been a fast growing research field in the past two 

decades, and most of that growth has been in computer vision and image processing 

applications. Two learning algorithms were implemented, Aharon’s K-SVD method 

[10] and a Hebbian learning method that was developed in this thesis and is similar to 

[15, 92, 96]. The classification task was cast as a two class problem (i.e., target signal 

ON or OFF) and the learned dictionaries were used in conjunction with a minimum 

residual classifier algorithm. Their classification performance on simulated RF data 

was compared and its dependence (and sensitivity) on the various learning parameters 
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(i.e., number of learning iterations, dictionary size, approximation sparsity) was 

evaluated. The study showed that for the representative RF signals chosen, optimally-

learned Hebbian dictionaries can have higher discriminative power than K-SVD 

dictionaries and be more robust to small changes in SNR.  

A practical challenge in RF signal processing is that the size of sampled data 

grows proportionally with the baseband frequency, shortening the processing time 

available for real applications. Dimensionality of data and of the analysis becomes a 

very important issue to consider and is the main reason why some signal processing 

approaches are impractical at high sample rates. From this perspective, the study on 

learned dictionary size yielded very encouraging results, in that it showed high 

performance with an undercomplete dictionary, and additionally with very coarse 

approximations (i.e., reduced dimensionality search). 

For the K-SVD learning method, undercomplete dictionaries performed as 

well as complete or overcomplete dictionaries in classification.  Also, it was shown 

that Hebbian undercomplete dictionaries outperform K-SVD learned dictionaries of 

any level of completeness. A novel method of learning hybrid Hebbian dictionaries 

was introduced and was shown to converge more rapidly to high classification 

accuracy, and improve classification performance stability across a wider range of 

learning iterations compared to the simple Hebbian dictionaries. A range of 

undercomplete Hebbian dictionaries, both simple and hybrid, was evaluated on two 

more complex simulated datasets, and the classification performance followed the 

same general patterns of parametric dependence previously observed. Noise 
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robustness was also evaluated by progressively reducing the amplitude of the target 

signals, and classification performance was compared to a STFT-based classifier.  

The learned dictionaries were found to give better robustness to SNR changes 

compared to a STFT-classifier, and this advantage may be worth the up-front learning 

computational expense.   

An example of generalizing the use of undercomplete Hebbian dictionaries to 

different data was shown in Chapter 6 on unsupervised land cover classification in 

multispectral satellite imagery. The clustering of sparse approximations (CoSA) 

method showed very promising results and provided insights into developing a 

multiscale analysis tool for selective classification of landscape features.  

The RF classification with learned dictionaries approach presented in this 

thesis demonstrated that high classification performance can not only be obtained 

with undercomplete dictionaries, but also by using coarser sparse approximations 

(smaller sparsity factor). The novelty of this signal processing approach is confirmed 

both by demonstrated functionality on realistic datasets, and also by the absence of 

similar concepts in the literature. 

7.3 Future studies 

The success of extending and adapting learned dictionary methods to RF 

signal processing motivates continued research in several important directions. This 

final section of the dissertation suggests additional studies that can make the use of 

undercomplete dictionaries more effective in other applications.  
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7.3.1 Modeling and estimating intrinsic data dimensionality 

Most publications on dictionary learning assume it is necessary for the 

dictionary to be overcomplete with respect to the natural input signal dimensionality, 

i.e., the length of the training vectors. While that may be true, a more intuitive 

hypothesis presented in this thesis is that the learned dictionary size needs to be 

overcomplete with respect to some notion of intrinsic input dimensionality (i.e., the 

dimensionality of the underlying data space from which the inputs are sampled). 

Indeed, since a learned dictionary is seeking to approximate the underlying data 

manifold from which the training data are sampled, one would intuitively expect that 

the learned dictionary size depends on the amount of training data available and the 

intrinsic dimensionality of the data. Practically, it has been relatively common to 

simply choose a “sufficiently” overcomplete dictionary size with respect to the 

natural dimensionality (i.e., the length of input vectors). Empirically choosing the 

dictionary size has proven to be adequate for a variety of applications; however, a 

lower dimensionality bound has not been quantitatively explored. This intrinsic 

dimensionality is practically hard to evaluate, and setting a dictionary size few times 

larger than the natural dimensionality has yielded good results in recent work. A 

model is currently being developed to help estimate the intrinsic dimensionality of 

training data and inform the selection of learned dictionary size. 
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7.3.2 Exploring other sparsifying norms   

 The sparse approximations that were used throughout this thesis were found 

using an l0 “norm.” This allows an easier, faster implementation, as well as a 

progressive way of increasing the sparsity of a particular approximation to study 

effects on classification performance. One of the findings in this thesis was that 

sparser approximations (i.e., using a smaller number of coefficients) had a positive 

impact on classification. A potential extension of the work would incorporate the use 

of regularized fractional lp norm [147] that has been shown to provide even sparser 

approximations with smaller reconstruction error compared to the other sparsifying 

norms, in particular the much used l1 norm. While this method admittedly introduces 

additional complexity, it could allow faster dictionary learning by using better sparse 

approximations of the training data, and may lead to better classification performance 

using undercomplete dictionaries. 

7.3.3 Change detection in satellite imagery using CoSA 

The application of undercomplete Hebbian dictionaries to multispectral 

satellite image analysis has opened a number of possible immediate avenues for 

research in the area of change detection in images (in this case, of the Arctic 

environment). Both seasonal (e.g., vegetation growth in the summer) and longer term 

(e.g., extent of shrub cover in July 2009 vs. July 2012) changes could be detected 

using the CoSA (clustering of sparse approximations) method and would provide 

environmental experts with quantitative data for climate change models. Also, two 
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other locations in the Arctic are currently exhibiting significant hydrologic changes, 

and automatic high resolution classification of landscape features is becoming a 

necessity. A way to make the CoSA method more successful for environmental 

studies is to pre-condition the learning toward the features of interest, e.g., vegetation, 

by using indices such as NDVI to screen out bands heavily influenced by moisture 

content. Additionally, data fusion dictionaries could be learned using multispectral 

data enhanced with LiDAR information to provide topographic features.  

7.3.4 Lightning research 

An extension of thesis work to a real problem is applying machine learning 

techniques to lightning classification. This research focuses on modeling and analysis 

of signals for orbital remote classification of lightning data under LANL’s space 

research program. For over two decades the program has included an active research 

effort utilizing satellite observations of terrestrial lightning to learn more about the 

Earth’s RF background. Arguably the richest satellite lightning database ever 

recorded is that from the Fast On-orbit Recording of Transient Events (FORTE) 

satellite, which was launched in 1997 and returned at least five years of data from its 

two payloads. The LANL FORTE RF database remains relevant for the application of 

modern event classification techniques to further lightning research in the scientific 

community. Some classification work has been done previously using on-orbit 

databases, but the focus has been primarily on developing physical models and 

understanding the effect of the ionosphere on orbital recordings. The field is ripe for 
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scientific discovery, and application of the methods developed in this thesis would 

significantly impact the community.  

7.4 Closing remarks 

Dictionary methods are regarded as an enabling approach to processing 

signals that are not easily characterized by analytical models. They provide adaptive 

representations that can be very sparse, but due to their lack of orthogonality and need 

of specific search algorithms, can incur high computational costs. This dissertation 

focused primarily on extending and adapting learned dictionary techniques to RF 

classification, and demonstrated practical, high performance dictionary 

implementations that are undercomplete. It has the potential to introduce the RF 

community to machine learning techniques and enable wider use in a host of practical 

applications. 

 
  



 

196 

 

 

Bibliography 

[1] A. V. Oppenheim, "Digital-Time Signal Processing," in Signal Processing, 
2nd ed: Prentice Hall, 1999. 

[2] R. R. Coifman and M. V. Wickerhauser, "Entropy-based algorithms for best 
basis selection," IEEE Transactions on Information Theory, vol. 38, pp. 713-
718, 1992. 

[3] R. E. Learned, et al., "Wavelet packet based transient signal classification," in 
Proceedings of the IEEE-SP International Symposium on Time-Frequency 
and Time-Scale Analysis, 1992, pp. 109-112. 

[4] M. P. Caffrey and S. D. Briles, "Space-based RF signal classification using 
adaptive wavelet features," in Proceedings of SPIE Conference on Signal 
Processing, Sensor Fusion, and Target Recognition IV, 1995, pp. 433-442. 

[5] S. G. Mallat, A Wavelet Tour of Signal Processing. The sparse way, 3rd ed.: 
Academic Press, 2009. 

[6] S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency 
dictionaries," IEEE Transactions on Signal Processing, vol. 41, pp. 3397-
3415, 1993. 

[7] R. Gribonval, "Fast matching pursuit with a multiscale dictionary of Gaussian 
chirps," IEEE Transactions on Signal Processing, vol. 49, pp. 994-1001, 
2001. 

[8] S. P. Brumby, et al., "Capturing dynamics on multiple time scales: a 
multilevel fusion approach for cluttered electromagnetic data," in Proc SPIE 
Multisensor, Multisource Information Fusion: Architectures, Algorithms, and 
Applications, 2010. 

[9] B. A. Olshausen and D. J. Field, "Natural image statistics and efficient 
coding," Network-Computation in Neural Systems, vol. 7, pp. 333-339, 1996. 

[10] M. Aharon, et al., "K-SVD: An algorithm for designing overcomplete 
dictionaries for sparse representation," IEEE Transactions on Signal 
Processing, vol. 54, pp. 4311-4322, 2006. 

[11] K. Engan, et al., "Method of optimal directions for frame design," in IEEE 
International Conference on Acoustics, Speech, and Signal Processing, 
Proceedings Vols I-VI, 1999, pp. 2443-2446. 

[12] B. Mailhé, et al., "Shift-invariant dictionary learning for sparse 
representations: extending K-SVD," in EUSIPCO, 2008. 

[13] S. P. Brumby, "Image fusion for remote sensing using fast, large-scale 
neuroscience models," in Proceedings of SPIE, Orlando, FL, 2011. 

[14] J. Mairal, et al., "Discriminative learned dictionaries for local image analysis," 
in IEEE Conference on Computer Vision and Pattern Recognition, Vols 1-12, 
2008, pp. 2415-2422. 

[15] K. Skretting and J. H. Husøy, "Texture classification using sparse frame-based 
representations," Eurasip Journal on Applied Signal Processing, 2006. 



 

197 

 

 

[16] D. I. Moody, et al., "Classification of transient signals using sparse 
representations over adaptive dictionaries," in Proceedings of SPIE 
Conference on Independent Component Analyses, Wavelets, Neural Networks, 
Biosystems, and Nanoengineering IX, 2011. 

[17] D. I. Moody, et al., "Sparse classification of RF transients using chirplets and 
learned dictionaries," in IEEE Asilomar Conference on Signals, Systems, and 
Computers, 2011, pp. 1888-1892. 

[18] D. I. Moody, et al., "Radio frequency (RF) transient classification using 
sparse representations over learned dictionaries," in Proceedings of SPIE 
Conference on Wavelets and Sparsity XIV, 2011. 

[19] D. I. Moody, et al., "Learning sparse discriminative representations for land 
cover classification in the Arctic," in (to appear in) SPIE Satellite Data 
Compression, Communications, and Processing VIII, San Diego, CA, 2012. 

[20] D. I. Moody, et al., "Arctic land cover classification using multispectral 
imagery with adaptive sparse representations," presented at the Conference on 
Data Analysis, Santa Fe, 2012. 

[21] R. O. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed.: John Wiley & 
Sons, Inc., 2001. 

[22] G. L. Turin, "An introduction to matched-filters," IRE Transactions on 
Information Theory, vol. 6, pp. 311-329, 1960. 

[23] G. L. Turin, "Introduction to digital matched-filters," Proceedings of the 
IEEE, vol. 64, pp. 1092-1112, 1976. 

[24] D. Gabor, "Theory of communication," J. Inst. Elec. Eng., vol. 93, pp. 429-
457, 1946. 

[25] S. G. Mallat, A Wavelet Tour of Signal Processing, 2nd ed.: Academic Press, 
1999. 

[26] A. Graps, "An introduction to wavelets," IEEE Computational Sciences and 
Engineering, vol. 2, pp. 50-61, 1995. 

[27] A. Grossman and J. Morlet, "Decompositions of Hardy functions into square 
integrable wavelets of constant shape," SIAM J. Math, vol. 15, pp. 723-736, 
1984. 

[28] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet 
representation," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 11, pp. 674-693, 1989. 

[29] I. Daubechies, "Ten lectures on wavelets," in Number 61 in CBMS-NSF Series 
in Applied Mathematics. Philadelphia: SIAM Publications, 1992. 

[30] R. Coifman, et al., "Adapted wave form analysis, wavelet-packets and 
applications," in ICIAM 91, Washington, DC, 1991, pp. 41-50. 

[31] M. V. Wickerhauser, Adapted Wavelet Analysis: From Theory to Software: A 
K Peters/CRC Press, 1996. 

[32] G. Strang and T. Nguyen, "Wavelets and Filter Banks," 2nd ed: Wellesley 
College, 1996. 



 

198 

 

 

[33] D. L. Donoho, "De-noising by soft-thresholding," IEEE Transactions on 
Information Theory, vol. 41, pp. 613-627, 1995. 

[34] D. Taubman and M. Marcellin, JPEG2000: Image Compression 
Fundamentals, Standards and Practice (The International Series in 
Engineering and Computer Science). Norwell, MA: Kluwer: Springer, 2002. 

[35] J. Bradley, et al., "The FBI wavelet/scalar quantization standard for gray-scale 
fingerprint image compression," in Tech. Report LA-UR-93-1659. Los 
Alamos, NM, 1993. 

[36] I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. 
Pure Appl. Math., vol. 41, pp. 906-966, 1988. 

[37] M. Frisch and H. Messer, "Transient signal detection using prior information 
in the likelihood ratio test," IEEE Transactions on Signal Processing, vol. 41, 
1993. 

[38] M. Desai and D. J. Shazeer, "Acoustic transient analysis using wavelet 
decomposition," in IEEE Conference on Neural Networks for Ocean 
Engineering, 1991, pp. 29-40. 

[39] R. E. Learned and A. S. Willsky, "A wavelet packet approach to transient 
signal classification," Applied and Computational Harmonic Analysis, vol. 2, 
pp. 265-278, 1995. 

[40] W. Sweldens, "The lifting scheme: a construction of second generation 
wavelets," SIAM J. MATH. ANAL., vol. 29, pp. 511-546, 1998. 

[41] C. M. Brislawn and B. Wohlberg, "Gain normalization of lifted filter banks," 
Signal Processing, vol. 87, pp. 1281-1287, 2007. 

[42] I. W. Selesnick, et al., "The dual-tree complex wavelet transform," IEEE 
Signal Processing Magazine, vol. 22, pp. 123-151, 2005. 

[43] R. Baraniuk, "Optimal tree approximation with wavelets," in Wavelet 
Applications in Signal and Image Processing VII, 1999, pp. 196-207. 

[44] T. Hastie, et al., The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction, 2nd ed.: Springer, 2009. 

[45] S. M. Stigler, The history of statistics, Chapter 3: Harvard University press, 
1986. 

[46] R. L. Wolpert, "A conversation with James O. Berger," Statistical Science, 
vol. 19, pp. 205-218, 2004. 

[47] L. Angrisani, et al., "Wavelet-network-based detection and classification of 
transients," IEEE Transactions on Instrumentation and Measurement, vol. 50, 
pp. 1425-1435, 2001. 

[48] M. S. Crouse, et al., "Wavelet-based statistical signal processing," IEEE 
Transactions on Signal Processing, vol. 46, pp. 886-902, 1998. 

[49] C. H. Lee, et al., "A literature survey of wavelets in power engineering 
applications," Proc. Natl. Sci. Counc. ROC(A), vol. 24, pp. 249-253, 2000. 

[50] N. Perera, et al., "Development of an on-line transient classification system," 
in International Conference on Power Systems Transients, Kyoto, Japan, 
2009. 



 

199 

 

 

[51] D. G. Stork and E. Yom-Tov, Computer manual in MATLAB to accompany 
Pattern Classification, 2nd Ed.: Wiley, 2004. 

[52] C. Chang and C. Lin, "LIBSVM : a library for support vector machines," 
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 1-27, 
2011. 

[53] M. Hall, et al., "The WEKA data mining software: an update," SIGKDD 
Explorations, vol. 11, 2009. 

[54] Y. Shin, et al., "Design of a time-frequency domain matched filter for 
detection of non-stationary signals," in 2001 IEEE International Conference 
on Acoustics, Speech, and Signal Processing, Vols I-Vi, Proceedings, 2001, 
pp. 3585-3588. 

[55] S. Briles, et al., "Innovative use of DSP technology in space: FORTE event 
classifier," in Proceedings of the International Workshop on Artifcial 
Intelligence in Solar-Terrestrial Physics, 1993. 

[56] D. Eads, et al., "Genetic algorithms and support vector machines for time 
series classification," Applications and Science of Neural Networks, Fuzzy 
Systems, and Evolutionary Computation V, vol. 4787, pp. 74-85, 2002. 

[57] J. J. Benedetto and S. D. Li, "The theory of multiresolution analysis frames 
and applications to filter banks," Applied and Computational Harmonic 
Analysis, vol. 5, pp. 389-427, 1998. 

[58] M. Elad, Sparse and Redundant Representations: From Theory to 
Applications in Signal and Image Processing, 1st ed.: Springer, 2010. 

[59] I. Daubechies, "Time frequency localization operators - a geometric phase-
space approach," IEEE Transactions on Information Theory, vol. 34, pp. 605-
612, 1988. 

[60] Y. C. Pati, et al., "Orthogonal matching pursuit - recursive function 
approximation with applications to wavelet decomposition," in IEEE Asilomar 
Conference on Signals, Systems & Computers, Vols 1 and 2, 1993, pp. 40-44. 

[61] S. S. B. Chen, et al., "Atomic decomposition by basis pursuit," Stanford 
University, 1995. 

[62] S. S. B. Chen, et al., "Atomic decomposition by basis pursuit," SIAM Review, 
vol. 43, pp. 129-159, 2001. 

[63] S. Levy and P. K. Fullagar, "Reconstruction of a sparse spike train from a 
portion of its spectrum and application to high-resolution deconvolution," 
Geophysics, vol. 46, pp. 1235-1243, 1981. 

[64] E. J. Candes, et al., "Robust uncertainty principles: Exact signal 
reconstruction from highly incomplete frequency information," IEEE 
Transactions on Information Theory, vol. 52, pp. 489-509, 2006. 

[65] E. J. Candes and T. Tao, "Near-optimal signal recovery from random 
projections: Universal encoding strategies?," IEEE Transactions on 
Information Theory, vol. 52, pp. 5406-5425, 2006. 

[66] D. L. Donoho, "Compressed sensing," IEEE Transactions on Information 
Theory, vol. 52, pp. 1289-1306, 2006. 



 

200 

 

 

[67] R. Chartrand, "Nonconvex regularization for shape preservation," in 2007 
IEEE International Conference on Image Processing, Vols 1-7, 2007, pp. 293-
296. 

[68] R. Chartrand, "Nonconvex compressed sensing and error correction," in 2007 
IEEE International Conference on Acoustics, Speech, and Signal Processing, 
Vol III, 2007, pp. 889-892. 

[69] R. Chartrand, "Fast algorithms for nonconvex compressive sensing: MRI 
reconstruction from very few data," in 2009 IEEE International Symposium 
on Biomedical Imaging: From Nano to Macro, Vols 1 and 2, 2009, pp. 262-
265. 

[70] M. Elad, et al., "On the role of sparse and redundant representations in image 
processing," IEEE Proceedings - Special Issue on Applications of Sparse 
Representation & Compressive Sensing, vol. 98, pp. 972-982, 2010. 

[71] R. Tibshirani, "Regression shrinkage and selection via the Lasso," Journal of 
the Royal Statistical Society Series B-Methodological, vol. 58, pp. 267-288, 
1996. 

[72] M. Elad and M. Aharon, "Image denoising via sparse and redundant 
representations over learned dictionaries," IEEE Transactions on Image 
Processing, vol. 15, pp. 3736-3745, 2006. 

[73] R. Rubinstein, et al., "Double sparsity: learning sparse dictionaries for sparse 
signal approximation," IEEE Transactions on Signal Processing, vol. 58, pp. 
1553-1564, 2010. 

[74] J. Mairal, et al., "Non-local sparse models for image restoration," in 2009 
IEEE 12th International Conference on Computer Vision (ICCV), 2009, pp. 
2272-2279. 

[75] J. Mairal, et al., "Sparse representation for color image restoration," IEEE 
Transactions on Image Processing, vol. 17, pp. 53-69, 2008. 

[76] J. Mairal, et al., "Learning multiscale sparse representations for image and 
video restoration," Multiscale Modeling & Simulation, vol. 7, pp. 214-241, 
2008. 

[77] J. Zepeda, et al., "Image compression using sparse representations and the 
iteration-tuned and aligned dictionary," IEEE Journal of Selected Topics in 
Signal Processing, vol. 5, pp. 1061-1073, 2011. 

[78] I. Tosic, et al., "Ultrasound tomography with learned dictionaries," in 2010 
IEEE International Conference on Acoustics, Speech, and Signal Processing, 
2010, pp. 5502-5505. 

[79] S. Ravishankar and Y. Bresler, "MR image reconstruction from highly 
undersampled K-space data by dictionary learning," IEEE Transactions on 
Medical Imaging, vol. 30, pp. 1028-1041, 2011. 

[80] R. Rigamonti, et al., "Are sparse representations really relevant for image 
classification?," in IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2011, pp. 1545-1552. 



 

201 

 

 

[81] J. Mairal, et al., "Discriminative sparse image models for class-specific edge 
detection and image interpretation," in Computer Vision - ECCV 2008, Pt III, 
Proceedings, 2008, pp. 43-56. 

[82] A. S. Charles, et al., "Learning sparse codes for hyperspectral imagery," IEEE 
Journal of Selected Topics in Signal Processing, vol. 5, pp. 963-978, 2011. 

[83] I. Daubechies, "From the original framer to present-day time-frequency and 
time-scale frames," Journal of Fourier Analysis and Applications, vol. 3, pp. 
485-486, 1997. 

[84] J. L. Starck, et al., "The curvelet transform for image denoising," IEEE 
Transactions on Image Processing, vol. 11, pp. 670-684, 2002. 

[85] E. J. Candes and D. L. Donoho, "Curvelets and reconstruction of images from 
noisy Radon data," in Wavelet Applications in Signal and Image Processing 
VIII, 2000, pp. 108-117. 

[86] K. H. Guo and D. Labate, "Sparse shearlet representation of Fourier integral 
operators," Electronic Research Announcements in Mathematical Sciences, 
vol. 14, pp. 7-19, 2007. 

[87] D. Labate and K. H. Guo, "Optimally sparse shearlet approximations of 3D 
data," in Independent Component Analyses, Wavelets, Neural Networks, 
Biosystems, and Nanoengineering IX, 2011. 

[88] M. N. Do and M. Vetterli, "The contourlet transform: An efficient directional 
multiresolution image representation," IEEE Transactions on Image 
Processing, vol. 14, pp. 2091-2106, 2005. 

[89] E. J. Candes and D. L. Donoho, "Ridgelets: a key to higher-dimensional 
intermittency?," Philosophical Transactions of the Royal Society of London 
Series a-Mathematical Physical and Engineering Sciences, vol. 357, pp. 
2495-2509, 1999. 

[90] E. Le Pennec and S. Mallat, "Sparse geometric image representations with 
bandelets," IEEE Transactions on Image Processing, vol. 14, pp. 423-438, 
2005. 

[91] B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field 
properties by learning a sparse code for natural images," Nature, vol. 381, pp. 
607-609, 1996. 

[92] B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis 
set: A strategy employed by V1?," Vision Research, vol. 37, pp. 3311-3325, 
1997. 

[93] H. Lee, et al., "Unsupervised learning of hierarchical representations with 
convolutional deep belief networks," Communications of the ACM, vol. 54, 
pp. 95-103, 2011. 

[94] B. A. Olshausen, "Learning sparse, overcomplete representations of time-
varying natural images," in 2003 International Conference on Image 
Processing, Vol 1, Proceedings, 2003, pp. 41-44. 



 

202 

 

 

[95] K. Skretting and K. Engan, "Image compression using learned dictionaries by 
RLS-DLA and compared with K-SVD," in IEEE International Conference on 
Acoustics, Speech, and Signal Processing, 2011, pp. 1517-1520. 

[96] S. P. Brumby, et al., "Large-scale functional models of visual cortex for 
remote sensing," in 38th IEEE Applied Imagery Pattern Recognition, Vision: 
Humans, Animals, and Machines, Cosmos Club, Washington DC 2009. 

[97] J. Wright, et al., "Robust face recognition via sparse representation," IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, pp. 210-
227, 2009. 

[98] J. Wright, et al., "Sparse representation for computer vision and pattern 
recognition," Proceedings of the IEEE, vol. 98, pp. 1031-1044, 2010. 

[99] J. Mairal, et al., "Online learning for matrix factorization and sparse coding," 
Journal of Machine Learning Research, vol. 11, pp. 19-60, 2010. 

[100] R. Jenatton, et al., "Proximal methods for hierarchical sparse coding," Journal 
of Machine Learning Research, vol. 12, pp. 2297-2334, 2011. 

[101] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," 
International Journal of Computer Vision, vol. 60, pp. 91-110, 2004. 

[102] A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic 
representation of the spatial envelope," International Journal of Computer 
Vision, vol. 42, pp. 145-175, 2001. 

[103] S. Lazebnik, et al., "Beyond bags of features: spatial pyramid matching for 
recognizing natural scene categories," in IEEE Conference on Computer 
Vision and Pattern Recognition, 2006. 

[104] J. C. Yang, et al., "Linear spatial pyramid matching using sparse coding for 
image classification," in IEEE Conference on Computer Vision and Pattern 
Recognition, Vols 1-4, 2009, pp. 1794-1801. 

[105] L. Fei-Fei and P. Perona, "A Bayesian hierarchical model for learning natural 
scene categories," in 2005 IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, Vol 2, Proceedings, 2005, pp. 524-531. 

[106] H. Zhang, et al., "SVM-KNN: Discriminative nearest neighbor classification 
for visual category recognition," in CVPR, 2006. 

[107] J. Deng, et al., "What does classifying more than 10,000 image categories tell 
us?," in Computer Vision-ECCV 2010, Pt V, 2010, pp. 71-84. 

[108] J. Mairal, "Sparse coding for machine learning, image processing and 
computer vision," PhD, Mathématiques Appliquées, L’École Normale 
Supérieure de Chacan, Paris, 2010. 

[109] J. Mairal, et al., "Learning hierarchical and topographic dictionaries with 
structured sparsity," in Wavelets and Sparsity XIV, 2011. 

[110] J. Mairal, et al., "Multiscale sparse image representation with learned 
dictionaries," in 2007 IEEE International Conference on Image Processing, 
Vols 1-7, 2007, pp. 1233-1236. 



 

203 

 

 

[111] A. Coates and A. Y. Ng, "The importance of encoding versus training with 
sparse coding and vector quantization," in International Conference on 
Machine Learning, 2011, pp. 921-928. 

[112] B. L. Sturm and M. G. Christensen, "Cyclic matching pursuits with multiscale 
time-frequency dictionaries," in IEEE Asilomar Conference on Signals, 
Systems, and Computers, Pacific Grove, CA, 2011. 

[113] E. J. Candes, et al., "Enhancing sparsity by reweighted l(1) minimization," 
Journal of Fourier Analysis and Applications, vol. 14, pp. 877-905, 2008. 

[114] S. Krstulovic and R. Gribonval, "MPTK: Matching pursuit made tractable," in 
2006 IEEE International Conference on Acoustics, Speech and Signal 
Processing, Vols 1-13, 2006, pp. 2947-2950. 

[115] T. Blumensath and M. E. Davies, "Gradient pursuits," IEEE Transactions on 
Signal Processing, vol. 56, pp. 2370-2382, 2008. 

[116] B. Mailhe, et al., "A low complexity orthogonal matching pursuit for sparse 
signal approximation with shift-invariant dictionaries," in 2009 IEEE 
International Conference on Acoustics, Speech, and Signal Processing, Vols 
1- 8, Proceedings, 2009, pp. 3445-3448. 

[117] L. Rebollo-Neira and D. Lowe, "Optimized orthogonal matching pursuit 
approach," IEEE Signal Processing Letters, vol. 9, pp. 137-140, 2002. 

[118] M. G. Christensen and S. H. Jensen, "The cyclic matching pursuit and its 
application to audio modeling and coding," in IEEE Asilomar Conference on 
Signals, Systems, and Computers, Pacific Grove, CA, 2007. 

[119] R. G. Baraniuk and D. L. Jones, "Shear madness - new orthonormal bases and 
frames using chirp functions," IEEE Transactions on Signal Processing, vol. 
41, pp. 3543-3549, 1993. 

[120] R. Gribonval, "Approximations non-linéaires pour l'analyse des signaux 
sonores," PhD, Mathématiques Appliquées, L'Université de Paris IX 
Dauphne, 1999. 

[121] D. O. Hebb, et al., "The organization of behavior - a neuropsychological 
theory," Contemporary Psychology, vol. 39, pp. 1018-1020, 1994. 

[122] R. Quinlan, C4.5: Programs for machine learning. San Mateo, CA: Morgan 
Kaufmann Publishers, 1993. 

[123] N. R. Harvey, et al., "Comparison of GENIE and conventional supervised 
classifiers for multispectral image feature extraction," IEEE Transactions on 
Geoscience and Remote Sensing, vol. 40, pp. 393-404, 2002. 

[124] S. P. Brumby, et al., "Evolving feature extraction algorithms for hyperspectral 
and fused imagery," in Proceedings of the Fifth International Conference on 
Information Fusion, Vol II, 2002, pp. 986-993. 

[125] N. R. Harvey, et al., "Automated simultaneous multiple feature classification 
of MTI data," in Algorithms and Technologies for Multispectral, 
Hyperspectral, and Ultraspectral Imagery VIII, 2002, pp. 346-356. 

[126] N. R. Harvey, et al., "Parallel evolution of image processing tools for 
multispectral imagery," in Imaging Spectrometry VI, 2000, pp. 72-82. 



 

204 

 

 

[127] J. Theiler and D. M. Cai, "Resampling approach for anomaly detection in 
multispectral images," in Algorithms and Technologies for Multispectral, 
Hyperspectral and Ultraspectral Imagery IX, 2003, pp. 230-240. 

[128] J. Theiler and G. Gisler, "A contiguity-enhanced k-means clustering algorithm 
for unsupervised multispectral image segmentation," in Algorithms, Devices, 
and Systems for Optical Information Processing, 1997, pp. 108-118. 

[129] "ACIA, 2005.Arctic climate impact assessment. Cambridge University Press, 
1046p." 

[130] M. Sturm, et al., "Snow-shrub interactions in Arctic tundra: A hypothesis with 
climatic implications," Journal of Climate, vol. 14, pp. 336-344, 2001. 

[131] C. R. Burn and S. V. Kokelj, "The environment and permafrost of the 
Mackenzie delta area," Permafrost and Periglacial Processes, vol. 20, pp. 83-
105, 2009. 

[132] T. C. Lantz and S. V. Kokelj, "Increasing rates of retrogressive thaw slump 
activity in the Mackenzie Delta region, NWT, Canada," Geophysical 
Research Letters, vol. 35, 2008. 

[133] P. Marsh, et al., "Snowmelt energetics at a shrub tundra site in the western 
Canadian Arctic," Hydrological Processes, vol. 24, pp. 3603-3620, 2010. 

[134] H. E. Epstein, et al., "Detecting changes in arctic tundra plant communities in 
response to warming over decadal time scales," Global Change Biology, vol. 
10, pp. 1325-1334, 2004. 

[135] D. A. Stow, et al., "Remote sensing of vegetation and land-cover change in 
Arctic tundra ecosystems," Remote Sensing of Environment, vol. 89, pp. 281-
308, 2004. 

[136] T. C. Lantz, et al., "Response of green alder (Alnus viridis subsp fruticosa) 
patch dynamics and plant community composition to fire and regional 
temperature in north-western Canada," Journal of Biogeography, vol. 37, pp. 
1597-1610, 2010. 

[137] T. C. Lantz, et al., "Spatial heterogeneity in the shrub tundra ecotone in the 
Mackenzie delta region, Northwest territories: implications for Arctic 
environmental change," Ecosystems, vol. 13, pp. 194-204, 2010. 

[138] I. Olthof, et al., "Recent (1986-2006) vegetation-specific NDVI trends in 
northern Canada from satellite data," Arctic, vol. 61, pp. 381-394, 2008. 

[139] M. D. Walker, et al., "Plant community responses to experimental warming 
across the tundra biome," Proceedings of the National Academy of Sciences of 
the United States of America, vol. 103, pp. 1342-1346, 2006. 

[140] T. N. Nguyen, et al., "Estimating the extent of near-surface permafrost using 
remote sensing, Mackenzie delta, Northwest territories," Permafrost and 
Periglacial Processes, vol. 20, pp. 141-153, 2009. 

[141] A. G. Lewkowicz and C. Harris, "Frequency and magnitude of active-layer 
detachment failures in discontinuous and continuous permafrost, northern 
Canada," Permafrost and Periglacial Processes, vol. 16, pp. 115-130, 2005. 



 

205 

 

 

[142] K. M. Hinkel, et al., "Spatial extent, age, and carbon stocks in drained thaw 
lake basins on the Barrow Peninsula, Alaska," Arctic Antarctic and Alpine 
Research, vol. 35, pp. 291-300, 2003. 

[143] G. Hugelius, et al., "High-resolution mapping of ecosystem carbon storage 
and potential effects of permafrost thaw in periglacial terrain, European 
Russian Arctic," Journal of Geophysical Research-Biogeosciences, vol. 116, 
2011. 

[144] R. B. Myneni, et al., "The interpretation of spectral vegetation indexes," IEEE 
Transactions on Geoscience and Remote Sensing, vol. 33, pp. 481-486, 1995. 

[145] N. R. Harvey, et al., "Finding golf courses: The ultra high tech approach," 
Real-World Applications of Evolutionary Computing, Proceedings, vol. 1803, 
pp. 54-64, 2000. 

[146] DigitalGlobe®. (2010). The benefits of the 8 spectral bands of WorldView-. 
Available online: http://worldview2.digitalglobe.com/about/.  

[147] R. Chartrand, "Exact reconstruction of sparse signals via nonconvex 
minimization," IEEE Signal Processing Letters, vol. 14, pp. 707-710, 2007. 

 
 

http://worldview2.digitalglobe.com/about/�

	Daniela I. Moody, Doctor of Philosophy, 2012
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1 Simulation environment
	1.2 Summary of methods
	1.3 Thesis outline

	2. Background and Fundamentals
	2.1 Feature extraction using conventional signal processing
	2.2 Non-stationary (transient) wavelet analysis 
	2.3 Transient classification 
	2.4 Dictionary methods
	2.4.1 Dictionary search algorithms
	2.4.2 Parametric dictionaries
	2.4.3 Learned dictionaries


	3. Sparse Representations in Overcomplete Parametric Dictionaries
	3.1 Feature extraction algorithm
	3.1.1 Dictionary matching pursuit search
	3.1.2 Multi-scale chirped Gabor dictionary
	3.1.3 Target classification algorithm
	3.1.4 Match confidences

	3.2 Effects of windowing, noise, overcompleteness, and clutter
	3.2.1 Data windowing 
	3.2.2 Noise effects
	3.2.3 Dictionary overcompleteness
	3.2.4 Clutter impact

	3.3 Dictionary representation fidelity
	3.4 Software implementation and algorithm complexity
	3.5 Conclusion on overcomplete parametric dictionaries

	4. Sparse Representations in Learned Dictionaries
	4.1 Learning algorithms
	4.1.1 Dictionary initialization
	4.1.2 Hebbian dictionary update
	4.1.3 K-SVD dictionary update

	4.2 RF classification with learned dictionaries
	4.3 Dimensionality of training data space
	4.3.1 The data space dimensionality
	4.3.2 Dictionary data space representation fidelity

	4.4 The learned dictionary space
	4.5 Hebbian learning parameters
	4.5.1 Number of learning iterations, C
	4.5.2 Dictionary size, K
	4.5.3 Learning sparsity factor, Ltrain 

	4.6 Hybrid learned dictionaries
	4.7 Minimum Residual Classifier (MRC)
	4.7.1 Classification sparsity factor, Lclass
	4.7.2 Residual decision maps
	4.7.3 ROC curves

	4.8 Noise sensitivity of learning methods
	4.9 Software implementation and algorithm complexity
	4.10 Conclusion on learning dictionaries for RF classification

	5. RF Classification with Undercomplete Learned Dictionaries 
	5.1 Study of method parameters
	5.1.1 Learning iterations, C
	5.1.2 Learning sparsity factor, Ltrain
	5.1.3 Classification sparsity factor, Lclass

	5.2 Hybrid dictionaries performance
	5.3 Robustness to changes in SNR
	5.3.1 SNR 3:1 training data
	5.3.2 SNR 1:1 training data

	5.4 Stochastic classification: Minimum Residual Ensemble Classifier (MREC)
	5.5 Conclusion on classification with undercomplete learned dictionaries 

	6.  Classification with Undercomplete Dictionaries in Satellite Imagery using CoSA
	6.1 Introduction
	6.2 MacKenzie watershed satellite data
	6.3 Multispectral undercomplete learned dictionaries 
	6.4 Clustering of Sparse Approximations (CoSA) 
	6.4.1 Cluster training
	6.4.2 Cluster testing

	6.5 Land cover categories
	6.6 Conclusions on CoSA in satellite imagery

	7. Conclusion and Discussion
	7.1 Precursor studies
	7.2 Study of learned dictionary methods
	7.3 Future studies
	7.3.1 Modeling and estimating intrinsic data dimensionality
	7.3.2 Exploring other sparsifying norms  
	7.3.3 Change detection in satellite imagery using CoSA
	7.3.4 Lightning research

	7.4 Closing remarks

	Bibliography

