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A 
at shell �nite element is obtained by superposing plate bending and mem-

brane components. Normally, shell elements of this type possess �ve degrees of

freedom (DOF), three displacement DOF, u, v and w, and two in-plane rotation

DOF, �x and �y, at each node. A sixth degree of freedom, �z, is associated with

the shell normal rotation, and is not usually required by the theory. In practice,

however, computational and modeling problems can be caused by a failure to

include this degree of freedom in �nite element models.

This paper presents the formulation and testing of a four node quadrilateral



thin 
at shell �nite element, which has six DOF per node. The sixth DOF is

obtained by combining by a membrane element with a normal rotation �z, the

so-called the drilling degree of freedom, and a discrete Kirchho� plate element.

The 
at shell has a 24 � 24 element sti�ness matrix. Numerical examples are

given for (a) shear-loaded cantilever beam, (b) square plate, (c) cantilever I-

beam and (d) folded plate. Performance of the 
at shell �nite element is also

compared to a four node 
at shell element in ANSYS-5.0 in case studies (a)-(d),

and a quadrilateral 
at shell element from SAP-90 in case study (c).
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CHAPTER

1

Introduction

This thesis describes the formulation and testing of a four node quadrilateral


at shell �nite element that incorporates membrane and bending components of

displacement; each node is modeled with three displacement and three rotation

degrees of freedom. Many engineering structures are composed of 
at surfaces

at least in part, and these can be simply reproduced. Shell structures with

an arbitrary curved shape are modeled as an assembly of small-size 
at shell

elements. As the size of the 
at elements decreases, convergence of the element

behavior occurs. The mathematics of convergence was �rst discussed in 1977

by Ciarlet [8]. Numerical experiments have subsequently shown that excellent

results can be obtained with the 
at shell element (Chapter 3 in [26] and Chapter

13 in [27]).

In small displacement models of 
at shell elements, the e�ects of membrane

and bending strain are not coupled in the energy expression within the elements.

Coupling occurs only on the interelement boundary. Therefore, we consider a


at shell element as combination of a plane stress element and a plate bending

element. In the combined element subject to membrane and bending actions,

the displacements prescribed for `in-plane' forces do not a�ect the bending de-

1



formations, and vice versa.

1.1 Objectives and Scope

The purpose of this chapter is to introduce and describe analytical formulations

for 
at shell �nite elements that combine plane stress element with plate bending

element. Background material is provided for development of the membrane

component of the 
at shell element.

Sections 1.2 and 1.3 describe the classical formulation of 
at shell elements

without a normal rotation �z (i.e. the shell �nite element is modeled with three

nodal displacement parameters, u, v and w, and two rotation parameters, �x and

�y, parallel to the plane of the plate at each node). And then, the membrane

component including the vertex rotation perpendicular to the plane of the plate

is introduced. As the part of plane membrane action, this membrane component

may be used to consist in 
at shell elements by regular method described in

Section 1.2.

Chapters 2 and 3 will describe details of a membrane element formulated

with drilling degree of freedom, and a bending component based upon Kirchho�

assumptions of 
at shell �nite elements. Numerical experiments with the shell

�nite element are presented in Chapter 4.

1.2 Classical Flat Shell Element

In classical formulations of 
at shell element that combine plane stress element

with plate bending element [26, 27], we know that for plane stress actions, the

state of strain is uniquely described in terms of the u and v displacements at

2



each typical node i. These modeling assumptions are shown in Figure 1.1. A

x

yz

x

yz
θ

θ

θ i

i

i

z ,(Mzi)

ui , (Ui)

vi , (Vi)

yi , (Myi)

xi ,(Mxi)

Wi( )w ,i

a).  Plane  Membrane  Actions  and  Deformations

b).  Bending  Actions  and  Deformations

Figure 1.1: A 
at shell element subject to plane membrane and bending action.

right-handed coordinate frame is employed. We use the variables u and v for

in-plane displacements along the x and y axes respectively, the variable w for

displacements perpendicular to the plane of the shell element, and the variables

�x, �y and �z for clockwise rotations about the x, y and z axes.

By minimizing total potential energy, the classical formulation leads to a

sti�ness matrix [Kp], nodal forces ff pg, and element displacement fqpg, where

ff pg = [Kp]fqpg (1.2.1)
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with fqpi g =

8>>><
>>>:

ui

vi

9>>>=
>>>;

and ff pi g =

8>>><
>>>:

Ui

Vi

9>>>=
>>>;
, for i = 1; 2; 3; 4.

Here we use the superscript `p' to denote in-plane deformation of the shell

element. Similarly, when bending action is considered, the state of strain is

given uniquely by the nodal displacements in the z direction, w, and the two

rotations �x and �y. The result is bending sti�ness matrices of the type

ff bg = [Kb]fqbg; (1.2.2)

where fqbig =

8>>>>>>>><
>>>>>>>>:

wi

�xi

�yi

9>>>>>>>>=
>>>>>>>>;

and ff bi g =

8>>>>>>>><
>>>>>>>>:

Wi

Mxi

Myi

9>>>>>>>>=
>>>>>>>>;
, for i = 1; 2; 3; 4.

The superscript `b' is introduced to denote bending deformation of the shell

element. Notice that in the classical formulation, the rotation of the normal

to the surface of the 
at shell, given by �z, is not included in the de�nition

of deformations as a parameter of nodes in membrane mode. Instead, we take

this rotation parameter into account by introducing a �ctitious couple Mz, and

inserting zeros at appropriate positions in the element sti�ness matrices. The

combined nodal displacements are now given by

fqig = fui; vi; wi; �xi; �yi; �zig
T

4



= f< qpi >;< qbi >; �zig
T ; (1.2.3)

and the appropriate general forces as

ffig = fUi; Vi;Wi;Mxi;Myi;Mzig
T

= f< f pi >;< f bi >;Mzig
T ; (1.2.4)

where < qpi >, < qbi >, < f pi > and < f bi > are de�ned as equations (1.2.1) and

(1.2.2). For a 
at shell element we write

ffg = [K]fqg (1.2.5)

with [Kp] = [Kp
rs] and [Kb] = [Kb

rs], where subscripts r represents row

number and s does column number of submatrices.

[Krs] =

2
666666666666666666666664

Kp
rs

0 0 0

0 0 0

0

0

0 0

0 0

0 0

Kb
rs

0

0

0

0 0 0 0 0 0

3
777777777777777777777775

(1.2.6)

Felippa [6] reports that Turner et al. [25] and Taig [21] have used this

approach to modeling to develop membrane components of rectangular and

5



Figure 1.2: Slabs and columns building.

quadrilateral 
at shell elements, respectively. Numerical experiments have been

conducted to assess the performance of these membrane elements { one such

experiment is the computation of in-plane bending behavior for a thin rectangu-

lar shear-loaded cantilever beam. The numerical experiments reveal that these

membrane elements are excessively sti�. Figure 1.2 shows a second application

area where 
oor slabs in a building are supported by columns. In the real build-

ing structure, the columns will be �rmly attached to the 
oor slabs. Hence, if

the 
oor slab rotates due to external loadings, compatibility requires that the

columns rotate about their axis by the same amount. Use of the abovementioned

shell element (i.e. �ve degrees of freedom per node) for this application is inap-

propriate because the �nite element model does not have a rotational degree of

freedom perpendicular to the plane of the 
oor. As such, the column torsional

sti�ness cannot be connected to the shell element sti�ness [10, 11]. Figure 1.3

shows what will happen in the mathematical model. The column will displace

6



in the translational degrees of freedom, but may not rotate by the same amount

as the shell. This problem of incompatible displacements can be overcome with

the formulation of shell �nite elements having six degrees of freedom per node.

ElevationPlan

Displaced Structure

Incompatible
Rotation

Figure 1.3: Finite element model of simple table using shell element having only
�ve degree of freedom per node.

Programming di�culties (i.e. zero sti�ness in the �zi direction; equations of

the 
at shell elements do not include rotational parameter) with this class of

elements occur when elements meeting at a node are coplanar or nearly coplanar.

Two applications are modeling of 
at or folded shell segments, and modeling

of straight boundaries of cylindrical shaped shells [26, 27, 10]. When the local

coordinate directions of these elements happens to coincide with the global ones,

the equilibrium equations reduce to 0 = 0, a true but useless component of

modeling information. If, on the other hand, the local and global coordinate

directions di�er, and a transformation is accomplished, then the global sti�ness

matrix is singular. Detection of this singularity is di�cult. There are two simple

7



procedures for solving this problem:

(a) Assembling the sti�ness matrices of elements at points where the elements

are coplanar in local coordinates and deleting the equation 0 = 0.

(b) Inserting an arbitrary coe�cient K 0

�z at points where the elements are

coplanar only.

The second procedure leads to the replacement of equation 0 = 0 by an

equation K 0

�z�zi = 0 in the local coordinates. A perfectly well-behaved global

sti�ness matrix is achieved after a local-to-global coordinate transformation, and

all displacements, now including �zi, can be calculated. Since �zi does not a�ect

the stresses, and indeed, is uncoupled from all others equilibrium equations, any

non-zero value of K 0

�z can be inserted as an external sti�ness without a�ecting

the results. Both of these approaches lead to implementation di�culties because

a decision on the coplanar nature of the shell elements is necessary.

The aforementioned modeling and programming di�culties can be avoided

by using higher-order displacement nodes linked with corner rotations normal

to the plane of the element. These are the so-called drilling degree of freedom

[6].

1.3 Compatible Membrane Element Including Vertex Rotations

The di�culties described in Section 1.1 vanish when nodal rotational parameters

normal to the element plane are added. Progress in this direction was �rst made

by Allman [1], who introduced the concept of the `vertex rotation', !, and

Cook [9] who gave a geometrical interpolation of the vertex rotation, w, in

8



relation to the mid-side node transverse displacement of quadratic elements.

Consider a element side of length l, as shown in Figure 1.4. The edge-tangent

1

2

u

u

u
un

n

t t

1

1

2

2

∆un12

1
2

--( )ω ω
ω ω

1

1
2

2-

-( 2- ) θ

t

n

= -(
8 1

- l ω ω- 2)

1

l

Figure 1.4: Displacement of an element side "1", "2".

displacement ut is interpolated linearly in the edge-tangent coordinate s, as

ut = (1�
s

l
)ut1 +

s

l
ut2 (1.3.1)

and the edge-normal displacement un is interpolated quadratically, as

un = (1�
s

l
)un1 +

s

l
un2 + 4

s

l
(1�

s

l
)�un12 (1.3.2)

where �un12 is hierarchical displacement (relative to the 4-node interpolation

values). From Figure 1.4 we observe that � = (un2 � un1)=l. Di�erentiating

9



equations (1.3.2) gives

@un
@s

= �
un1
l

+
un2
l

+
4

l
(1�

2s

l
)�un12

= � +
4

l
(1�

2s

l
)�un12 (1.3.3)

According to Allman [1, 10], the de�nition of the vertex rotation, !, is

�!2 + !1 =
@un
@s

jl �
@un
@s

j0 (1.3.4)

where !1 and !2 are the vertex rotations at nodes 1 and 2, respectively. Since

@un
@s

j0 = � +
4

l
�un12

@un
@s

jl = � �
4

l
�un12 (1.3.5)

therefore

!1 � !2 = �
8

l
�un12 : (1.3.6)

Also, we get

�un12 = �
l

8
(!1 � !2) (1.3.7)

@un
@s

j0 � � = �
1

2
(!1 � !2) (1.3.8)

10



@un
@s

jl � � =
1

2
(!1 � !2) (1.3.9)

where !1 and !2 are the so-called vertex rotation parameters at nodes 1 and 2,

respectively. Now we can rewrite the interpolation of un as

un = (1�
s

l
)un1 +

s

l
un2 �

s

2
(1�

s

l
)(!1 � !2) (1.3.10)

Expressions for displacements at the element boundary, u and v, in terms of

the nodal parameters along the edge of the element (i.e. two nodal translation

quantities, ui and vi, and one vertex rotation quantity, !i) are obtained through

ut (i.e. equation (1.3.1)) and coordinate transformations of directions between

the systems x-y and n-t. A schematic of the required coordinate transformation

is shown in Figure 1.5. The transformation matrices are

8>>><
>>>:

un

ut

9>>>=
>>>;
=

2
6664

C S

�S C

3
7775
8>>><
>>>:

u

v

9>>>=
>>>;
; (1.3.11)

and

8>>><
>>>:

u

v

9>>>=
>>>; =

2
6664
C �S

S C

3
7775
8>>><
>>>:

un

ut

9>>>=
>>>; ; (1.3.12)

where C = cos(
) and S = sin(
). 
 is the angle between the outward normal

direction to the element side and the x-axis. We can use a similar technique to

11



y

x

n
t

γ

u

v

u
u

n
t

Figure 1.5: Coordinate transformation of directions between systems x-y and
n-t.

obtain boundary displacements u and v in terms of the nodal parameters ui, vi

and !i, along other all edges of elements at the boundary,

u = u(ui; vi; !i)

v = v(ui; vi; !i)

(1.3.13)

where u and v are the Cartesian components of boundary displacements and ui,

vi and !i, the Cartesian components of nodal parameters.

With the coordinate transformation in plane, we can now write the quadratic

displacement interpolation �elds inside the entire element, u and v, in terms of

nodal and mid-side displacement parameters. They are:

u =
8X

i=1

Ni(�; �)ui (1.3.14)

12



and

v =
8X

i=1

Ni(�; �)vi (1.3.15)

In equations (1.3.14) and (1.3.15), � and � are parametric coordinates [27], and

Ni(�; �) are shape functions of the 8-node Serendipity element [26]. The shape

functions are

Ni =
1

2
(1� �2)(1 + �i�); i = 5; 7

Ni =
1

2
(1� �2)(1 + �i�); i = 6; 8

Ni =
1

4
(1 + �i�)(1 + �i�)�

1

2
Nm �

1

2
Nn

i = 1; 2; 3; 4; m; n = 8; 5; 5; 6; 6; 7; 7; 8; (1.3.16)

ui and vi as i = 1; 2; 3; 4 are nodal displacement parameters, and ui and vi

as i = 5; 6; 7; 8 are mid-side displacement parameters. Finally, the quadratic

displacement interpolation �elds u and v within the entire element may be de-

scribed in terms of all nodal parameters, ui, vi and !i (i = 1; 2; 3; 4) by substitut-

ing the expressions for u and v interpolations in the boundaries, (i.e. equations

(1.3.13)), which are the expressions of mid-side displacement parameters, ui and

vi (i = 5; 6; 7; 8) in terms of the nodal parameters, ui, vi and !i (i = 1; 2; 3; 4)

into the quadratic interpolation �elds of the entire element with mid-side dis-

placement values, equation (1.3.14) and (1.3.15).

The element is compatible because of the quadratic interpolation with ver-

13



tex rotations parameters !1 and !2 in the boundary. In general, however, the

element based on the ! connector will have a defect. The new nodal connector

is not equal to the true rotations at nodes, even though it can be related to it.

For this reason, it is concluded that a better way is to use the true rotations,

so-called the drilling degree of freedom at nodes, as nodal rotational parameters

[10, 16].

14



CHAPTER

2

Membrane Part of Flat Shell Element

In this chapter we derive a 
at shell �nite element model that contains nodal

drilling degree of freedom. We demonstrate that this approach to modeling leads

to a class of �nite elements that performs better than those element mentioned

in Section 1.2. For a summary of the literature on drilling degree of freedom

approximations, see references [2, 3, 26, 27, 10, 20] and [16].

Unlike the de�nition of the vertex rotation ! given in equation (1.3.4), the

drilling degree of freedom is de�ned as

� =
1

2
(
@v

@x
�
@u

@y
): (2.0.1)

The drilling degree of freedom may be physically interpreted as a true rotation

of the vertex bisecting the angle between adjacent edges of the �nite element.

A schematic of the angle bisector and associated partial derivatives in element

displacements is shown in Figure 2.1.

This chapter discusses two approaches for producing the so-called drilling de-

gree of freedom. The �rst approach was �rst reported by Sabir in 1985 [20]. He

used strain-assumptions to develop a class of non-conforming elements, which

15
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Figure 2.1: Physical interpretation of the drilling degree of freedom.

unfortunately su�er from geometrical restrictions and zero energy modes [10].

In fact, numerical experiments indicate that only rectangular elements are well

behaved, and provide accurate results [10]. The second approach, as presented

by Ibrahimbegovic et al. in 1990 [14], adopts a variational formulation, ini-

tially suggested by Hughes and Brezzi [11, 12]. The latter approach employs

an independent rotation �eld to achieve quadrilateral 
at shell elements that

incorporate bending with a high order of accuracy. Details of theoretical for-

mulation are presented in Chapter 3. In Chapter 4 we will conduct numerical

experiments, and show that these elements exhibit excellent accuracy.

16



2.1 Sabir's rectangular membrane element with drilling degree of

freedom based on the strain approach

Based on the strain analysis, Sabir derived [20] a rectangular membrane element

with drilling degree of freedom, as de�ned in equation (2.0.1). A brief description

follows. From the strain-displacement relationship in-plane elasticity, I can write

8>>>>>>>><
>>>>>>>>:

"x = @u=@x

"y = @v=@y

"xy = @u=@y + @v=@x

(2.1.1)

If "x = "y = "xy = 0, then the equations above can be integrated to obtain

8>>><
>>>:

u = a1 � a3y

v = a2 + a3x

(2.1.2)

Notice that equations (2.1.2) are described in terms of three components; a1 and

a2 are the translational components, and a3 the inplane rotation. Together a1,

a2 and a3 represent rigid body displacements.

Now let's consider the shape functions needed model displacements in a four

node quadrilateral �nite elements. If each node has three degrees of freedom

| two translational degrees of freedom and one rotational degree of freedom |

then the shape functions should contain twelve independent constants. Having

used three of these in the representation of the rigid body movements, we are

left with nine constants to represent strain deformation in the element. These

17



nine constants are to be distributed among the three components of strain "x,

"y and "xy. As a �rst-cut, we could assume that the three strain components

satisfy:

8>>>>>>>><
>>>>>>>>:

"x = a4 + a5x + a6y

"y = a7 + a8x + a9y

"xy = a10 + a11x+ a12y

(2.1.3)

We observe that, if the terms of equation (2.1.3) are di�erentiated, they satisfy

the general compatibility equation for strain, namely:

@2"x
@y2

+
@2"y
@x2

=
@2"xy
@x@y

(2.1.4)

Unfortunately, this approach leads to a singular transformation matrix. In an

attempt to mitigate the problem, Sabir suggested interpolations for the strain

as

8>>>>>>>><
>>>>>>>>:

"x = a4 + a5y + (a11y
2 + 2a12xy

3)

"y = a6 + a7x + (�a11x
2 � 2a12x

3y)

"xy = a8 + a9x+ a10y + (a5x + a7y):

(2.1.5)

In equations (2.1.5), coe�cients a4, a6 and a8 are the terms corresponding to

constant strain states. These state ensure convergence as the �nite element grid

is re�ned. The terms containing the constants a5, a7 and a9 allow for linear

strain behavior. The higher order bracketed terms are added in such a way that
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the compatibility equations (2.1.4) will be satis�ed. Displacement expressions

for u and v are obtained by integrating equations (2.1.5), and then adding the

rigid body displacements equations (2.1.2). The result is

8>>><
>>>:

u = a1 � a3y + a4x + a8y=2 + asxy + a10y
2=2 + a11xy

2 + a12x
2y3

v = a2 + a3y + a6y + a8x=2 + a7xy + a9x
2=2� a11x

2y � a12x
3y2

(2.1.6)

In matrix form, equation (2.1.6) may be written as

fug = [x]fAg (2.1.7)

where displacements fug =< u; v >T , fAg is the parameter matrix <

a1; a2; : : : ; a12 >
T , and [x] is the function matrix.

[x] =

2
6664
1 0 �y x xy 0 0 y=2 0 y2=2 xy2 x2y3

0 1 x 0 0 y xy x=2 x2=2 0 �x2y �x3y2

3
7775

The drilling degree of freedom, �, formula is obtained by substituting equations

(2.1.6) (i.e. expressions for u and v) into equation (2.0.1),

� = a3 �
a5
2
x +

a7
2
y +

a9
2
x�

a10
2
y � 2a11xy � 3a12x

2y2 (2.1.8)

Substituting the values of u, v and � at each nodes, i.e, ui = u(xi; yi), vi =

v(xi; yi) and �i = �(xi; yi) with i = 1; 2; 3; 4, into equation (2.1.6) and (2.1.8)
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gives,

fqg(12�1) = [�x](12�12)fAg(12�1)

where fqg =< u1; v1;�1; u2; v2;�2; u3; v3;�3; u4; v4;�4 >
T is nodal parameter

vector, and

[�x] = [[�x1]
T ; [�x2]

T ; [�x3]
T ; [�x4]

T ]T (2.1.9)

is a (12� 12) matrix de�ned by submatrices [ �xi] with expressions given by

[ �xi] =

2
666666664

1 0 �yi xi xiyi 0 0 yi=2 0 y2i =2 xiy
2
i x2i y

3
i

0 1 xi 0 0 yi xiyi xi=2 x2i =2 0 �x2i yi �x3i y
2
i

0 0 1 0 �xi=2 0 yi=2 0 xi=2 �yi=2 �2xiyi �3x2i y
2
i

3
777777775

Unlike the naive approximation for displacements, the resulting matrix [�x] is not

singular, and its inverse [�x]�1 can be calculated. So,

[A] = [�x]�1fqg (2.1.10)

Substituting equation (2.1.10) into equation (2.1.7) gives

u = [x][A] = [x][�x]�1fqg = [N ]fqg (2.1.11)

where

[N ] = [x][�x]�1
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is the matrix of shape functions. Observe that all formulations of �nite elements

of this kind can be derived by the regular progress of development of �nite

element formulations, if a inverse of parameter matrix [�x] exists when the form of

the interpolations of displacements, equation (2.1.7), is given by the assumption

of the strain �eld within the entire element.

Even though this membrane component with drilling degree of freedom based

on the assumption of the strain states is non-conforming, Sabir [20] and Frey

[10] report good numerical performance with quadrilateral elements that are

`close' to being rectangular. Unfortunately, Frey also reports [10] that numerical

accuracy of these �nite elements is not satisfactory signi�cantly when the same

problem are modeled with non-rectangular �nite element meshes [20, 10].

2.2 Independent Rotation Interpolation

Flat shell �nite elements may be formulated through the use of a variational

formulation that includes an independent rotation �eld for the drilling degree of

freedom. The variational formulation is due to Hughes and Brezzi [11, 12]. It

employs the skew-symmetric part of the stress tensor as a Lagrange multiplier

to enforce the equality of independent rotations with the skew-symmetric part

of the displacement gradient. Taylor subsequently combined the variational

formulation with an Allman-type interpolation for the displacement �eld with

an independent interpolation �eld of rotation [14].
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2.2.1 Outline of the Variational Formulation

Consider the elastic boundary value problem for a body described by region 
.

The basic equations are:

div � + f = 0 (2.2.1)

skew � = 0 (2.2.2)

� = skew (r u) (2.2.3)

symm � = C � symm (r u) (2.2.4)

In this family of equations, (2.2.1) represents equilibrium, (2.2.2) the symmetry

conditions for stress, (2.2.3) the de�nition of rotation in terms of displacement

gradient, and equation (2.2.4), the constitutive equation. Also, we have

� = symm � + skew � (2.2.5)

symm � =
1

2
(� + �T ) (2.2.6)

skew � =
1

2
(� � �T ) (2.2.7)

The variational formulation suggested by Hughes and Brezzi [11, 14], can be

described as

��(�u; ��) =
1

2

Z


symm(r �u) � C � symm(r �u)d


+
1

2
�
Z


jskew(r �u)� ��j2d
�

Z


�u � fd
 (2.2.8)
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where �u and �� are trial displacements and rotations on the region 
, f is

the external general forces, and � is a penalty. The corresponding variational

formulation is

0 = D��(u;�)(�u; ��)

=
Z


symm(r �u) � C � symm(r u)d


+ �
Z


[skew(r �u)� ��]T [skew(r u)� �]d


�
Z


�u � fd
 (2.2.9)

2.2.2 Membrane element with drilling degree of freedom

The shell �nite element with drilling degree of freedom is derived by combining

the Allman-type interpolation for displacement �eld and the standard bilinear

independent rotation �eld over the entire element [14]. Consider a 4-node

quadrilateral element with drilling degree of freedom, as shown in Figure 2.2,

where n34 is a outward normal direction to the element side 3 � 4. The inde-

pendent drilling rotation �eld is interpolated as a standard bilinear �eld, i.e,

� =
4X

i=1

Ni(�; �)�i (2.2.10)

Ni(�; �) =
1

4
(1 + �i�)(1 + �i�); i = 1; 2; 3; 4
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Figure 2.2: A quadrilateral element with drilling degree of freedom.

The Allman-type interpolation for in-plane displacement [4, 1] is

[u] =

8>>><
>>>:

u

v

9>>>=
>>>;

=
4X

i=1

Ni(�; �)

8>>><
>>>:

ui

vi

9>>>=
>>>;+

8X
k=5

Nk(�; �)
lij
8
(�j � �i)

8>>><
>>>:

Cij

Sij

9>>>=
>>>; (2.2.11)

where,

xij = xj � xi (2.2.12)

yij = yj � yi (2.2.13)

lij = (x2ij + y2ij)
1

2 (2.2.14)

Cij = cos 
ij =
yij
lij

(2.2.15)

Sij = sin 
ij = �
xij
lij

(2.2.16)
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k = 5; 6; 7; 8 i; j = 1; 2; 2; 3; 3; 4; 4; 1 (2.2.17)

Nk(�; �) =
1

2
(1� �2)(1 + �k�) k = 5; 7

Nk(�; �) =
1

2
(1 + �k�)(1� �2) k = 6; 8

We further de�ne the matrix notation

symm(r u) =

8>>>>>>>><
>>>>>>>>:

@u=@x

@v=@y

@u=@y + @v=@x

9>>>>>>>>=
>>>>>>>>;

=
4X

i=1

([Bi][ui] + [Gi]�i) (2.2.18)

where [ui] =

8>>><
>>>:

ui

vi

9>>>=
>>>;
is the nodal translation parameters, and �i is the nodal

drilling degree parameter.

[Bi] =

8>>>>>>>><
>>>>>>>>:

@Ni=@x 0

0 @Ni=@y

@Ni=@y @Ni=@x

9>>>>>>>>=
>>>>>>>>;

(2.2.19)
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[Gi] =
1

8

8>>>>>>>><
>>>>>>>>:

lijCij@Nl=@x � likCik@Nm=@x

lijSij@Nl=@y � likSik@Nm=@y

(lijCij@Nl=@y � likCik@Nm=@y) + (lijSij@Nl=@x� likSik@Nm=@x)

9>>>>>>>>=
>>>>>>>>;

(2.2.20)

When parameter i takes the values 1; 2; 3; 4, m = 5; 6; 7; 8, l = 8; 5; 6; 7,

k = 2; 3; 4; 1 and j = 4; 1; 2; 3. Furthermore, we denote

skew(r u)� � =
4X

i=1

([bi][ui] + gi�i) (2.2.21)

where,

[bi] =

(
�
1

2

@Ni

@y
;

1

2

@Ni

@x

)
(2.2.22)

gi = �
1

16

 
lijCij

@Nl

@y
� likCik

@Nm

@y

!

+
1

16

 
lijSij

@Nl

@x
� likSik

@Nm

@x

!
�Ni (2.2.23)

If we de�ne nodal parameter vector [q] as

[q] = f[q1]; [q2]; [q3]; [q4]g
T

[qi] = fui; vi;�ig
T (2.2.24)
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The �rst term in the variational equations (2.2.9) produces the element sti�ness

matrix,

[K] =
Z


[ �B]T [C][ �B]d
 (2.2.25)

where [C] is the constitutive matrix and

[ �B] = f[ �B1]; [ �B2]; [ �B3]; [ �B4]g

[ �Bi] = f[Bi]; [Gi]g

[Bi] and [Gi] are as de�ned in equations (2.2.19) and (2.2.20).

The penalty parameter � appearing in the second term of equation (2.2.9) is

problem dependent [11]. For instance, suppose that the second term in equa-

tions (2.2.9) is set to zero | this asserts that the skew-symmetric stresses are

zero. It follows that the �rst term in the equations (2.2.9) expresses equilib-

rium and the sti�ness matrix in equation (2.2.25) is the regular element sti�ness

matrix without the modi�cation term. In the discrete case, however, skew-

symmetric stresses will not be identically zero in general, and thus will play a

role in the equilibrium condition [11]. The latter is controlled by the penalty

`�'. For isotropic elasticity, it is suggested that � may be taken as the shear

modulus value [12]. Numerical studies performed by Taylor have shown that

the formulation is insensitive to the value of � used (at least for several orders

of magnitude which bound the shear modulus) [14]. So, we can take the second

term in the variational equations (2.2.9) including penalty � as the modi�ca-
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tion of the regular element sti�ness matrix K for the drilling degree of freedom

utilizing independent rotation interpolation �eld within the element.

From equations (2.2.9) and (2.2.21), the second term in equation (2.2.9)

produces modi�cational term

[P ] = �
Z


[�b]T � [�b]d
 (2.2.26)

where, � is the penalty, [�b] = f[�b1]; [�b2]; [�b3]; [�b4]g, and [�bi] = f[bi]; gig, with

[bi] and gi de�ned as in equations (2.2.22) and (2.2.23). Hence, the matrix

counterpart of variational equation (2.2.9) for one element is

[Km][q] = [f ]

where [f ] is general external forces, [q] is nodal parameter vector, (de�ned as

(2.2.24)), and [Km] is �nal element membrane sti�ness matrix with the drilling

degree of freedom. The latter is expressed as

[Km] = [K] + [P ]

where [K] and [P ] are given in equations (2.2.25) and (2.2.26).
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CHAPTER

3

Plate-Bending Part of Flat Shell Element

The plate bending component of the shell element corresponds to the 12 DOF

discrete Kirchho� quadrilateral (DKQ) plate element, and is derived in detail

using the discrete Kirchho� technique. The DKQ element formulation is based

on the discretization of the strain energy. The model neglects the transverse

shear strain energy (thin plate). In other words:

U =
nX
e

U e
b

with

U e
b =

1

2

Z
Ae
[�]T [Db][�]dA

e (3.0.1)

Here, U e
b is the element strain energy due to bending. Ae is the element area.
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For a homogeneous isotropic plate [Db] is given by

[Db] =
Eh3

12(1� �2)

2
666666664

1 � 0

� 1 0

0 0 1
2
(1� �)

3
777777775

(3.0.2)

where E, � and h are the Young's modulus, Poisson's ratio and thickness, re-

spectively. The curvature is given by

[�] =

8>>>>>>>><
>>>>>>>>:

�@2w=@x2

�@2w=@y2

�2@2w=@x@y

9>>>>>>>>=
>>>>>>>>;

(3.0.3)

where w is transverse displacement.

3.1 Independent Rotation Interpolation

To avoid the di�culty of interpolation of required C1 continuity, we �rst assume

an interpolation for the independent nodal rotation �elds #x and #y that de-

scribes the rotations of the normal to the undeformed middle surface in the x -

y and y -z planes. By de�nition, �x and �y are given by

�x =
@w

@y
= #y (3.1.1)

�y = �
@w

@x
= �#x (3.1.2)
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At the middle point of element side, the rotation components along the element

sides are eliminated by averaging the corresponding corner nodes values. Rota-

tion components perpendicular to the element sides are assumed to be consistent

with a cubic displacement interpolation along the element sides, shown in Figure

3.1. In this derivation, variables i and j are de�ned as i; j = 1; 2; 2; 3; 3; 4; 4; 1;

5

6

8

7

(x ,
θ
θ

x

y

node2

(x

,

, y )

w
θ
θ

x

y

node3

y

(x , y )

w

θ
θ1

3 3

2 y2 )

1

node1

x

y
γ 23

n23

s
4(x

w
θ
θy

x

4

1

3

2

4

node4
),

w
x

y

Figure 3.1: 8-node plate bending element.

when k = 5; 6; 7; 8, respectively. Therefore, for @w=@njk, @w=@n at mid-side of

each side, we can write:

@w

@n
jk =

1

2

 
@w

@n
ji +

@w

@n
jj

!
=

1

2
(#;ni + #;nj) (3.1.3)

for @w=@sjk, @w=@s at mid-side of each side, we can assume

w = a1 + a2s+ a3s
2 + a4s

3 (3.1.4)
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So,

@w

@s
= a2 + 2a3s+ 3a4s

2 (3.1.5)

Substituting the nodal values into equations (3.1.4) and (3.1.5)

wi = a1 + a2si + a3s
2
i + a4s

3
i

@w

@s
ji = a2 + 2a3si + 3a4s

2
i

wj = a1 + a2sj + a3s
2
j + a4s

3
j

@w

@s
jj = a2 + 2a3sj + 3a4s

2
j

Generally, we assign

si = 0;

sj = lij = [(xj � xi)
2 + (yj � yi)

2]1=2

So, we can determine

a2 =
@w

@s
ji

a3 =
1

lij

 
�2

@w

@s
ji �

@w

@s
jj + 3

wj � wi

lij

!

a4 =
1

l2ij

 
@w

@s
ji +

@w

@s
jj � 2

wj � wi

lij

!
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and from equations (3.1.5), I can write

@w

@s
=

@w

@s
ji +

2s

lij

 
�2

@w

@s
ji �

@w

@s
jj + 3

wj � wi

lij

!

+
3s2

l2ij

 
@w

@s
ji +

@w

@s
jj � 2

wj � wi

lij

!
: (3.1.6)

At the midpoint of the sides, sk = lij=2, the @w=@s expression can be obtained

@w

@s
jk = �

1

4

 
@w

@s
ji +

@w

@s
jj

!
+
3

2

 
wj � wi

lij

!

= �
1

4
(#;si + #;sj) +

3

2

 
wj � wi

lij

!
(3.1.7)

Obviously, from equations (3.1.1) and (3.1.2), we can have

[�] =

8>>>>>>>><
>>>>>>>>:

�@#x=@x

�@#y=@y

�@#x=@y � @#y=@x

9>>>>>>>>=
>>>>>>>>;

(3.1.8)

and de�ne interpolation �elds of rotations as incomplete cubic polynomial ex-

pression

#x =
8X

i=1

Ni#xi (3.1.9)

#y =
8X

i=1

Ni#yi (3.1.10)
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The shape function Ni(�; �), where � and � are parametric coordinates [27],

are those of the 8-node Serendipity element [26].

Ni =
1

2
(1� �2)(1 + �i�); i = 5; 7

Ni =
1

2
(1� �2)(1 + �i�); i = 6; 8

Ni =
1

4
(1 + �i�)(1 + �i�)�

1

2
Nm �

1

2
Nn

i = 1; 2; 3; 4; m; n = 8; 5; 5; 6; 6; 7; 7; 8;

#xi and #yi are transitory nodal variables a�ected at the corner and middle-nodes

of the quadrilateral element (with straight sides); again, see Figure 3.1.

3.2 Shape Function

The following Kirchho� assumptions are introduced;

[1] At the corner nodes:

�xi =
@w

@y
ji = #yi (3.2.1)

�yi = �
@w

@x
ji = �#xi (3.2.2)

i = 1; 2; 3; 4

[2] At the middle nodes:

@w

@s
jk = #sk (3.2.3)
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@w

@n
jk = #nk (3.2.4)

k = 5; 6; 7; 8

We note that

[1] w varies independently along the element sides. At the four corner nodes, the

nodal variables w appears through the cubic displacement interpolation for

the rotation components perpendicular to the element sides (i.e. equation

(3.1.7)). w is not de�ned in the interior of the element.

[2] The Kirchho� assumptions are satis�ed along the entire boundary of the

element because @w=@s and #s (linear combination of #x and #y) are both

quadratic expression along the element sides.

[3] Convergence towards the thin plates theory will be obtained for any element

length to thickness ratio since the transverse shear energy is neglected. In

other words, the DKQ technique is appropriate for thin plates only.

[4] The 12 degree of freedom DKQ elements are such that w, @w=@s, #x, #y

and @w=@n are compatible along the element sides.

From geometry we have

xij = xj � xi; yij = yj � yi;

lij = (x2ij + y2ij)
1=2;


ij = (x; nij);

Ck = cos
ij = yij=lij; Sk = sin
ij = �xij=lij
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and

8>>><
>>>:

#n

#s

9>>>=
>>>;
=

2
6664

C S

�S C

3
7775
8>>><
>>>:

#x

#y

9>>>=
>>>;

(3.2.5)

8>>><
>>>:

#x

#y

9>>>=
>>>; =

2
6664
C �S

S C

3
7775
8>>><
>>>:

#n

#s

9>>>=
>>>; (3.2.6)

We now derive an expression that connects the rotational variables at the

mid-nodes, #xk and #yk (k = 5; 6; 7; 8), to terms of the corner nodal variables,

wi, #xi and #yi (i = 1; 2; 3; 4). It follows from equations (3.2.4) and (3.1.3),

and transformation (3.2.5) that

#nk =
@w

@n
jk

=
1

2

 
@w

@n
ji +

@w

@n
jj

!

=
1

2
(#ni + #nj )

=
1

2
(Ck#xi + Sk#yi + Ck#xj + Sk#yj ) (3.2.7)

Similarly, from equations (3.2.3) and (3.1.7), and transformation (3.2.5), we can

write

#sk =
@w

@s
jk

= �
1

4

 
@w

@s
ji +

@w

@s
jj

!
+
3

2

wj � wi

lij
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= �
1

4
(#si + #sj) +

3

2

wj � wi

lij

= �
1

4
(�Sk#xi + Ck#yi � Sk#xj + Ck#yj ) +

3

2

wj � wi

lij
(3.2.8)

k = 5; 6; 7; 8; i; j = 1; 2; 2; 3; 3; 4; 4; 1;

From above equations (3.2.7) and (3.2.8), and transformation (3.2.6), as well I

can write

#xk = Ck#nk � Sk#sk

= (
1

2
C2
k �

1

4
S2
k)#xi +

3

4
CkSk#yi + (

1

2
C2
k �

1

4
S2
k)#xj

+
3

4
CkSk#yj �

3

2
Sk

wj � wi

lij
(3.2.9)

and

#yk = Sk#nk + Ck#sk

=
3

4
CkSk#xi + (

1

2
S2
k �

1

4
C2
k)#yi +

3

4
CkSk#yj

+(
1

2
S2
k �

1

4
C2
k)#yj +

3

2
Ck

wj � wi

lij
(3.2.10)

Using (3.2.1) and (3.2.2), by de�ning

ak =
3

4
CkSk = �

3

4

xijyij
l2ij

bk =
1

2
C2
k �

1

4
S2
k = (

1

2
y2ij �

1

4
x2ij)=l

2
ij

ck =
Sk

lij
= �

xij
lij

2

(3.2.11)
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dk =
1

2
S2
k �

1

4
C2
k = (

1

2
x2ij �

1

4
y2ij)=l

2
ij

ek = �
Ck

lij
= �

yij
lij

2

Now we can rewrite (3.2.9) and (3.2.10), as

#xk =
3

4
CkSk�xi � (

1

2
C2
k �

1

4
S2
k)�yi

+
3

4
CkSk�xj � (

1

2
C2
k �

1

4
S2
k)�yj �

3

2
Sk
wj � wi

lij

= ak�xi � bk�yi + ak�xj � bk�yj �
3

2
ck(wj � wi) (3.2.12)

#yk = (
1

2
S2
k �

1

4
C2
k)�xi �

3

4
CkSk�yi

+(
1

2
S2
k �

1

4
C2
k)�xj �

3

4
CkSk�yj +

3

2
Ck

wj � wi

lij

= dk�xi � ak�yi + dk�xj � ak�yj �
3

2
ek(wj � wi) (3.2.13)

Explicit expressions of the rotations #x and #y of a general quadrilateral in terms

of the �nal nodal variables,

fqg = hw1; �x1 ; �y1; w2; �x2 ; �y2 ; w3; �x3; �y3 ; w4; �x4; �y4i
T (3.2.14)

are obtained by substituting (3.2.12) and (3.2.13) (k = 5; 6; 7; 8 i; j = 1; 2; 2; 3; 3; 4; 4; 1)

into (3.1.9) and (3.1.10). This gives

#x =
8X

i=1

Ni#xi
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=
4X

i=1

(�Ni)�yi +
8X

k=5

Nk#xk

= �
4X

i=1

Ni�yi +
8X

k=5

Nk[ak�xi � bk�yi + ak�xj � bk�yj �
3

2
ck(wj � wi)]

= hHx(�; �)i fqg (3.2.15)

and

#y =
8X

i=1

Ni#yi

=
4X

i=1

Ni�xi +
8X

k=5

Nk#yk

=
4X

i=1

Ni�xi +
8X

k=5

Nk[dk�xi � ak�yi + dk�xj � ak�yj �
3

2
ek(wj � wi)]

= hHy(�; �)i fqg (3.2.16)

where hHx(�; �)i and hHy(�; �)i are the shape functions. In component form,

the shape functions are

hHx(�; �)i = hHx
1 ; H

x
2 ; : : : ; H

x
12i ; (3.2.17)

and

hHy(�; �)i = hHy
1 ; H

y
2 ; : : : ; H

y
12i ; (3.2.18)
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with

Hx
1 = 3

2
(c5N5 � c8N8); Hy

1 =
3
2
(e5N5 � e8N8)

Hx
2 = a5N5 + a8N8; Hy

2 = N1 + d5N5 + d8N8

Hx
3 = �N1 � b5N5 � b8N8; Hy

3 = �a5N5 � a8N8 = �Hx
2

Hx
4 = 3

2
(c6N6 � c5N5); Hy

4 =
3
2
(e6N6 � e5N5)

Hx
5 = a6N6 + a5N5; Hy

5 = N2 + d6N6 + d5N5

Hx
6 = �N2 � b6N6 � b5N5; Hy

6 = �a6N6 � a5N5 = �Hx
5

Hx
7 = 3

2
(c7N7 � c6N6); Hy

7 =
3
2
(e7N7 � e6N6)

Hx
8 = a7N7 + a6N6; Hy

8 = N3 + d7N7 + d6N6

Hx
9 = �N3 � b7N7 � b6N6; Hy

9 = �a7N7 � a6N6 = �Hx
8

Hx
10 =

3
2
(c8N8 � c7N7); Hy

10 =
3
2
(e8N8 � e7N7)

Hx
11 = a8N8 + a7N7; Hy

11 = N4 + d8N8 + d7N7

Hx
12 = �N4 � b8N8 � b7N7; Hy

12 = �a8N8 � a7N7 = �Hx
11

(3.2.19)
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CHAPTER

4

Numerical Examples

Performance of the 
at shell �nite elements is evaluated by working through

four numerical examples. They are:

(a) Shear-loaded cantilever beam,

(b) Square plate simply supported on four edges,

(c) Cantilever I-shape cross section beam, and

(d) Folded plate simply supported on two opposite sides.

Applications (a) and (c) have been selected because they are simple enough

for analytical solutions to exist, and because they produce displacements in the

drilling degree of freedom. Application (b) is a standard problem from plate

analysis.

In case studies (a)-(d), performance of the 
at shell �nite element is com-

pared to a four node 
at shell element in ANSYS-5.0, which has six degrees

of freedom per node, and includes a drilling degree of freedom based on an

approach suggested by Kanok-Nukulchai [18]. Unlike the 
at shell element pre-

sented in this thesis, Kanok-Nukulchai uses a degeneration concept, in which

the displacements and rotations of the shell mid-surface are independent vari-

ables. Bilinear functions are employed in conjunction with a reduced integration
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for the transverse shear energy. The result is a so-called bilinear degenerated

shell element. Application (c) is also computed using a quadrilateral 
at shell

element (six degrees of freedom per node) from SAP-90.

4.1 Shear-loaded cantilever beam

A shear-loaded cantilever beam, as shown in Figure 4.1, has been used as a test

l

hx

P
E = 30000

µ = 0.25

P = 40

l = 48

h = 12

12 12 12 12

16 4 8 20

Regular mesh

Irregular mesh

4 × 1

z

4 × 1

Irregular mesh

6 6 6 6 6 6 6 6

6

6

7 7 4 4 5 5 8 8

8 8 2 2 4 4 10 10

8 × 2

Figure 4.1: Meshes of a short cantilever beam.
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problem by many authors [2, 14, 20]. In this study �nite element solutions are

computed for a mesh of four square elements, �ner meshes constructed by bisec-

tion, and also for a irregular meshes of four and sixteen quadrilateral elements.

From elasticity [13, 23], the analytical solution for the tip displacement is

w =
P l3

3EI
+
(4 + 5�)P l

2Eh
: (4.1.1)

Substituting the material and section properties selected in Figure 4.1 into equa-

tion (4.1.1) gives w = 0:3553. The numerical results for this shell �nite element

are compared against the theoretical solution, and numerical results reported in

the literature for the performance of other elements. Table 4.1 contains a sum-

mary of numerical results, with the asterisk (*) denoting the irregular mesh.

The Sabir element is a rectangular element with the drilling degree of freedom,

the Allman element is a rectangular element with the vertex rotation and the

bilinear element is a rectangular constant strain element without any nodal ro-

tational degree of freedom.

The numerical results from this test problem indicate that, with the same

regular meshes, the shell �nite element described in this thesis gives more ac-

curate results than other shell �nite elements in the literature. For the same

irregularly shaped meshes, the present shell element provides much greater accu-

racy than ANSYS-5.0. The numerical results also suggest that the shell element

described herein gives reasonably accurate and rapidly convergent results with

distorted meshes.
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Meshes 4� 1 8� 2 16� 4 4� 1� 8� 2�

Present element 0:3445 0:3504 0:3543 0:3066 0:3455

Error to theoretical solution 3:039% 1:379% 0:282% 13:707% 2:758%

ANSYS{5.0 0:2424 0:3162 0:3449 0:2126 0:2996

Sabir [20] 0:3281 0:3454 0:3527 |{ |{

Allman [2] 0:3026 0:3394 0:3512 |{ |{

Bilinear element 0:2424 0:3162 0:3447 |{ |{

Table 4.1: Comparison in some results of the tip displacement, w, for the short
cantilever beam.

4.2 Square Plate Simply Supported on Four Edges

Consider the square plate simply supported on four edges, as shown in Figure

4.2. Two load cases are considered; (a) a uniform loading over the entire plate,

and (b) a concentrated point load at the center of the plate. For each load case,

computed displacements are compared to analytical displacements.

4.2.1 Uniform Loading over the Entire Plate

Consider a square plate simply supported on all four edges subjected to a uni-

forming loading, shown in Figure 4.2. The exact transverse displacement at the

center, w�

c , from the plate theory [7, 24] can be expressed as

w�

c = 0:00406
q0a

4

D
(4.2.1)
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Figure 4.2: Meshes of square plate simply supported on 4 edges.

where q0 is the uniforming loading, a is the length of edge of the square plate

and

D =
Eh3

12(1� �2)
(4.2.2)

Substituting the values of E, �, h, q0 and a of this example into equations (4.2.1)

and (4.2.2) gives

D = 1:1446886� 105

and

w�

c = 1:064045� 10�1(in):

Because the plate geometry is symmetric about x-axis and y-axis, only one

quarter of the plate is taken for numerical computation. Regular meshes on the
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plate quarter with N = 2 and 4 (See Figure 4.2) are considered. Numerical

results are evaluated by comparing the transverse displacements of the plate

center, wc, to the exact theoretical solution. A summary of results is provided

in Table 4.2. Once again, the present element generates displacements that

are closer to the theoretical solution than predicted by the shell element from

ANSYS-5.0.

Meshes N 2 4

Displacements wc (�10
�1) 1:06027 1:06405

Error to theoretical solution 0:355% 0:000489%

ANSYS{5.0 wc (�10
�1) 1:0044 1:0492

Table 4.2: The transverse displacements at the center of the square plate simply
supported on 4 edges under uniform load over the entire plate with di�erent
meshes and the comparations with the exact theoretical solution.

4.2.2 Concentrated Loading at the Center

Similarly, consider the square plate subjected to a concentrated loading, P =

30000bl at the center. The theoretical exact transverse displacement at the

center, w�

c , from the plate theory [7, 24], can be expressed as

w�

c = 0:0115999
Pa2

D
(4.2.3)

where P is the concentrated loading at the center, a is the length of edge of the

square plate, and D is as described in equation (4.2.2). Substituting the values
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of D, P , and a into equation (4.2.3) gives

w�

c = 3:0401019� 10�1(in) (4.2.4)

Once again, numerical displacements are computed for only a quarter of the

plate. With regular meshes N = 2, 4 and 8 (See Figure 4.2), the transverse

displacements at the center wc computed by the elements described in this thesis

are compared with the exact theoretical solution in Table 4.3.

Meshes N 2 4 8

Displacements wc (�10
�1) 3:32666 3:12850 3:06664

Error to theoretical solution 9:426% 2:908% 0:873%

ANSYS{5.0 wc (�10
�1) 3:1574 3:0777 3:0518

Table 4.3: The transverse displacements at the center of the square plate simply
supported on 4 edges under concentrated point load at the center with di�erent
meshes and the comparations with the exact theoretical solution.

4.3 Cantilever I-shape Cross Section Beam

In the third example, displacements are computed for a cantilever beam having

an I-shape cross section. Three load cases are considered. The �rst is displace-

ments due to a concentrated load at the center of the free end, as shown in Figure

4.3. Second, displacements are computed for a uniform load on the center line of

the top face, as shown in Figure 4.4. The third is under two level concentrated

loads at the 
anges of the free end in opposite directions along y, as shown in
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Figure 4.5. The numerical solutions of these three cases for all meshes are also

computed using commercial �nite element tools, ANSYS-5.0 and SAP-90, and

contained in the corresponding tables.

4.3.1 Concentrated Load at the Center of the Free End

Displacements are computed for a cantilever beam with I-shape cross section

loaded with point load P at the center of the free end shown in Figure 4.3.

The solution of the transverse displacement at the free end, w�, from the beam

z
y

x

N = 2

h

L

bt

P

E = 107psi

µ = 0.3
t = 0.25"

L = 40"
b = 10"

h = 5"

P = 400 blf

1

Figure 4.3: Cantilever I-beam under a concentrated load at the end.

bending theory with shear e�ect is expressed as

w� =
PL3

3EI
+

PL

AwG
(4.3.1)

48



where the second term represents shear e�ect. P is the load, and L is the length

of the beam. I = 33:8802 is modulus of the area and Aw = 1:1875 is area of the

web. Suppose that the shear modulus is as E=G = 2:5. Substitute values of I,

Aw, E, G, P and L into equation (4.3.1), so that

w� = 2:85552� 10�2(in)

The transverse displacements w at point 1 (see Figure 4.3) are computed by

using the elements described in this thesis. Results are tabulated in Table 4.4.

Speed of convergence for numerical results is de�ne. The convergent rate �

�Ni
=

wNi
� wNi�1

wNi

;

with N1 = 1, N2 = 2, N3 = 4, N4 = 8 and N5 = 16 describes the rate

of convergence for numerical results. These results are tabulated in the same

table. We can observe that the displacement computed with N = 8 is already

very closed to the result from the beam bending theory.

4.3.2 Uniform Load along Center Line of Top Face

Also, I look at a cantilever beam with I-shape cross section under a uniformly

distributed line load q0 along the center line of the top face, as shown in Figure

4.4. The solution of the transverse displacement at the free end, w�, from the
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Meshes N 2 4 8 16

Displacement w (�10�2) �2:65646 �2:80859 �2:85107 �2:85482

ANSYS{5.0 w (�10�2) �1:9158 �2:5457 �2:7789 �2:8424

SAP{90 w (�10�2) �2:2862 �2:6772 �2:8150 �2:8486

Table 4.4: The transverse displacements at the free end of the I-shape section
cantilever beam under concentrated point load at the center of the free end with
di�erent meshes and their convergent rates.

beam bending theory with shear e�ect is expressed as

w� =
q0L

4

8EI
+

q0L
2

2AwG
(4.3.2)

where similarly the second term represents shear e�ect. q0 is the unique load, and

L is the length of the beam. Substituting q0 = 20bl=in, L = 40", I = 33:8802,

Aw = 1:1875 and E=G = 2:5 into equation (4.3.2) produces

w� = 2:22585� 10�2

The transverse displacements w at point 1 (see Figure 4.4) computed by

using the elements described in this thesis; convergent rates are tabulated in

Table 4.5.

From the two cases of the I-beam above, we can see that the displacements

from beam bending theory and computed by elements in this thesis are in very

close agreement.
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Figure 4.4: Cantilever I-beam under a uniformly distributed line load along the
center line of the top face.

4.3.3 Two Level Concentrated Loads at the Flanges of the Free

End in Opposite Directions Along y

Displacements are computed for a cantilever beam having I-shape cross section,

subject to two concentrated load P at the 
anges of the free end in opposite

directions along y, as shown in Figure 4.5. The transverse displacements w at

point 1 (see Figure 4.5) are computed by using the elements described in this

thesis and their convergent rates are tabulated in Table 4.6.

The horizontal displacements along y, v, at point 1 (see Figure 4.5) computed

by using the elements described in this thesis and their convergent rates are

tabulated in Table 4.7.
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Meshes N 2 4 8 16

Displacement w (�10�2) �2:19184 �2:22248 �2:23926 �2:24607

ANSYS{5.0 w (�10�2) �1:6003 �2:0237 �2:1862 �2:2339

SAP{90 w (�10�2) �2:0861 �2:1831 �2:2228 �2:2413

Table 4.5: The transverse displacements at the free end of the I-shape section
cantilever beam under uniform load along center line of the top face with di�er-
ent meshes and their convergent rates.

Meshes N 2 4 8 16

Displacement w (�10�1) 2:45142 2:50528 2:51482 2:52135

ANSYS{5.0 w (�10�1) 1:1280 1:8943 2:3378 2:5135

SAP{90 w (�10�1) 2:0218 2:3010 2:4562 2:5195

Table 4.6: The transverse displacements at point 1 of the I-shape section can-
tilever beam under two lever concentrated loads at the 
anges of the free end in
opposite directions along y with di�erent meshes and their convergent rates.

4.4 Folded Plate Simply supported on two opposite sides

As the third example, I consider a folded plate, as shown in Figure 4.6. The

meshes with N = 1, 2 and 4 are used and the results, the transverse displace-

ments w at points 1 and 2, and their convergent rates � are tabulated in Table

4.8 and Table 4.9, respectively.

From the examples of the I-beam and the folded plate, it can be observed

that the solutions rapidly converge, and are stable.
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Figure 4.5: Cantilever I-beam under two level concentrated loads at the 
anges
of the free end in opposite directions along y.

Meshes N 2 4 8 16

Displacement v (�10�1) 1:38753 1:46572 1:48824 1:49583

ANSYS{5.0 v (�10�1) 0:6299 1:1112 1:3743 1:4601

SAP{90 v (�10�1) 1:0434 1:3116 1:4407 1:4833

Table 4.7: The horizontal displacements at point 1 of the I-shape section can-
tilever beam under two lever concentrated loads at the 
anges of the free end in
opposite directions along y with di�erent meshes and their convergent rates.
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Figure 4.6: A folded plate simply supported on two opposite sides.

Meshes N 1 2 4

Displacement w (�10�1) �1:38009 �1:41003 �1:42237

ANSYS{5.0 w (�10�1) �1:3654 �1:4068 �1:4209

Table 4.8: The transverse displacements at point 1 of the folded plate simply
supported on two opposite sides under uniform load along the center line with
di�erent meshes and their convergent rates.

Meshes N 1 2 4

Displacement w (�10�1) �1:35207 �1:36062

ANSYS{5.0 w (�10�1) �1:3514 �1:3604

Table 4.9: The transverse displacements at point 2 of the folded plate simply
supported on two opposite sides under uniform load along the center line with
di�erent meshes and their convergent rates.
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CHAPTER

5

Conclusions and Future Work

This thesis has presented the formulation of a four-node thin 
at shell �nite

element. The shell �nite element is the combination of a membrane element,

with the drilling degrees of freedom, and a discrete Kirchho� plate �nite element.

As mentioned in Chapter 2, the drilling degree of freedommay be introduced into

the membrane element in more than one way. In this project we have introduced

the drilling degree of freedom via a variational formulation. The variational

formulation employs enforcement of equality of the independent rotation �eld

and skew-symmetric part of the displacement gradient.

Numerical experiments have been conducted to assess the accuracy and relia-

bility of the shell element, compared to theoretical results (when available), and

other shell �nite elements. The 
at shell elements shows excellent performance

for both regular and distorted meshes.

Future work will include the formulation of a mass matrix for the 
at shell

�nite element. The mass matrix is needed for dynamic analyses; it can be

computed in at least two ways. The easiest approach is to simply form the

lumped mass matrix. A second method is to form the consistent mass matrix by

integrating the shape functions. One advantage of the second approach is mass
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matrices that are nonsingular, and hence dynamic analyses involving eigenvalue

computations may be done without the additional steps of sub-structuring.
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