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Abstract

The problem of embedding a graph in the plane with the minimum number of edge-
crossings arises in some circuit layout problems. It has been known to be NP-hard in general.
Recently, in the area of book embedding, this problem was shown to be NP-hard even when the
vertices are placed on a straight line { and the edges are drawn completely on either side of /.
In this paper, we show that the problem remains NP-hard even if, in addition to these con-

straints, the positions of the vertices on ! are predetermined.






‘1. Introduction

The crossing number problem [4,5] is the problem of determining, for a given integer K,
whether a graph G can be embedded in the plane with K or fewer pair-wise crossings of the
edges (not including the intersections of the edges at their common endpoints). The crossing
minimization problem is that of embedding a graph in the plane with the minimum number of
edge—croséings. This problem arises in the layout of integrated circuits in certain technolo-
gies [13]. Furthermore, a solution to the problem may lead to a small area embedding of the
graph in a VLSI circuit [10,14]. Unfortunately, the crossing number problem was recently pro-
ven to be NP-complete [5]. This implies that the crossing minimization problem is very likely to

be intractable.

Nicholson [12] developed a heuristic algorithm for the crossing minimization problem. His
algorithm finds a special type of emiaedding of a given graph, namely, (i) the vertices are placed
on a horizontal line !, and (ii) the edges are drawn by semicircles (see Fig. 1). Wé call this type
-of embedding a linear embedding. Despite the restrictions, Nicholson’s algorithm finds embed-
dings for small complete graphs and complete bipartite graphs that are nearly optimal for any
style of embedding. However, it does not always produce good results for general graphs. One
way to improve his solution for the general case is to reassign the semicircles to either side of !
after the positions of the vertices on ! are determined. This motivates us to consider the cross-
ing minimization problem with an additional constraint, (iii) the positions of the vertices on /

are predetermined.

The fized linear crossing minimization broblem is such a problem of finding a linear
embedding of a graph with the minimum number of edge-crossings under a specified vertex ord-
ering. We call the problem of finding such an embedding with no vertex ordering specified the

free linear crossing minimization problem. Furthermore, we define the free linear crossing



number problem to be that of determining, for a given integer K, whether there is a linear
embedding of a graph with K or fewer edge-crossings. When a vertex ordering is specified, we

call it the fized linear crossing number problem.

The linear crossing number problems are related to the book embedding problems [1,3]
which have recently attracted considerable attention. A book embedding of a graph is an
embedding in a book with the vertices placed on the spine and the edges on the pages such that
no two edges drawn on the same page cross each other. Similar to the linear crossing number
problems, we call the book embedding problems fized or free depending on whether the vertex
ordering on the spine is specified or not. The fized book thickness of a graph G is the least
integer k such that G can be embedded into k¥ pages under a specified vertex ordering. For
example, the fixed book thickness of the graph of Fig. 1(a) is 4 if the vertices must be placed on

the spine in ascending order of their subscripts (see Fig. 2).

It is clear that a graph G is 2-page free (resp., fixed) embeddable if and only if there exists
a free (resp., fixed) linear embedding of ¢ with no edge-crossings. Since testing the 2-page free
embeddability of graphs is NP-complete [3], the free linear crossing number problem is NP-
complete. Determining the fixed book thickness of graphs is also NP-hard, since it is equivalent
to coloring circle graphs (3], which was proven to be NP-hard in [6]. On the other hand, it is
easy to show that the 2-page fixed embeddability problem, which is equivalent to the fixed
linear crossing number problem with K = 0, is solvable in linear time. The situation is analo-
gous to that for arbitrary embeddings, with graph thickness [4,9] corresponding to fixed book
thickness and crossing number corresponding to fixed linear crossing number. ‘Both of the graph
thickness and crossing number problems are NP-complete for the general case [5,9], and they
have the planarity testing problem, which is solvable in linear time (2,8], as their common sub-

problem. Therefore, it is interesting to investigate the computational complexity of the fixed



linear crossing number problem.

Another problem which may be related to the fixed linear crossing number problem is the
so-called topological via minimization problem [7,11]. Slightly modifying Marek-Sadowska’s for-
mulation [11], we can 4formula,te the via minimization problem as that of finding a maximum
subgraph having a fixed linear embedding with no edge-crossings under a specified vertex order-
ing.

In this paper, we show that the fixed linear crossing number problem is NP-complete. In
fact, we prove that the problem is NP-complete even if each connected component of a given
graph is a single edge. In the next section, we define some terms and give a formal description
of our problem. In Section 3, we first show a polynomial transformation from the set splitting
problem [4] to our problem when parallel edges are allowed in the graph. We then modify the

graph so as to show the NP-completeness of the problem for the restricted case.

2. Definitions

Let G=(V, E) be an undirected graph with no self-loops. If two edges e and ¢ connect
vertices » and v, we say that ¢ and ¢’ are parallel edges and call each of them a copy of edge
(u, v). If G has no parallel edges, it is called a simple graph; otherwise called a multi-graph. In

this paper, we deal with both types of graphs.

Let f : V = {1,2,..,| V |} be a one-to-one function. We call an embedding G of G in
the plane an f-fired linear embedding, or simply an f-linear embedding, if
(a) Each vertex v€V is placed on the x-axis { with x-coordinate f (v),
(b) The edges in E are drawn by semi-ellipses, with one edée joining any adjacent pair of ver-
tices drawn as a semicircle, and

(c) The semi-ellipses for non-parallel edges intersect in at most one point.



For an f -linear embedding G of @ = (V, E) and two edges ¢ and ¢’ in E, we say that
e and ¢ cross each other in G if they intersect in G but are not incident in G. Such an unor-
dered pair of edges ¢ and ¢ is called an edge-crossing, or simply a crossing, of G. We denote
by v, (G) the least total number of crossings among all f -linear embeddings of G. Our prob-

lem is now formally described as follows.

FIXED LINEAR CROSSING NUMBER
Instance: Graph G=(V, E), integer K > 0 and one-to-one function f: V — {1,2, ...,| V | }.
Question: v, (G) < K 70

The special case of this problem in which K =0 can easily be solved. Suppose
V={vy,vg.,v}and f(n)=1¢ fori=1,2, ..., n. It is obvious that v, (G) =0 if and only
if graph (V, E U {(v, v41)|1=1,2, .., 8 -1} U {(vs, v1)} ) is planar. Thus, one can solve the
problem in linear time by using one of the existing graph planarity testing algorithms [2,8]. In
the next section, we show that FIXED LINEAR CROSSING NUMBER is in general NP-

complete.

3. NP-Completeness of FIXED LINEAR CROSSING NUMBER

It is clear that FIXED LINEAR CROSSING NUMBER belongs to the class NP. In order

to prove its NP-hardness, we use the following problem, which is known to be NP-complete [4].

SET SPLITTING
Instance: Collection $ = {5,, Sy, ..., S, } of subsets of a finite set X = {2, z,, ..., 2,, }-
Question: Is there a set splitting of X with respect to §, that is, a partition of X into two
subsets X; and X, such that no subsét in § is entirely contained in either X, or X, ?

O



It' is known that this plroble'm remains NP-com-plet;e‘even If each subset S; contains either
two or three elements [4]. Suppose that S = {S;, Sz, ..., S, } and X = {z,, 2, ..., 2, } are given
as an instance of this restricted SET SPLITTING, where S has n, 2-element sets and nj 3-
element sets, and nytng=n. For j=1,2,..,n and k=1,2,.., | S; |, let s; , denote the k-
th element of §;. Corresponding to § and X, we construct a multi-graph G = (V*, E*), an
integer K, and a numbering f of V* such that v, (G) < K if and only if X has a set splitting

with respect to S.

The graph G has an induced subgraph G; = (V;, E;) for each z;€X, and an induced sub-

graph H; = (W;, F;) for each $;€S, and V* = (JV; U |J W;. The numbering f is deter-
2, €X $,€s :

mined to give contiguous assignments to the vertices of each of these subgraphs, in the order
indicated by the vertex names defined below; beyond that the ordering of the subgraphs is

immaterial. Let £ ={ JE; and F = (J Fi- The set of edges E* is E UF U A, where A will
z,€X . SJ €S

be defined to have 2n,+9n, edges connecting the vertices in V;’s and those in W;’s. Let

M = [g]+[n2§8n3]+1 1 we will create the edges in G;’s and H;’s with multiplicity M. As
will be shown later, this value of M exceeds the number of crossings we may have from the

edges in A in a particular f -linear embedding of G.

For i=1,2, ..., m, the graph G; = (V;, E;) has three vertices vV, v;® v® and its edge
set has M copies of (v;(!), v;®)). See Fig. 3. For j=1,2, .., n, H; = (W;, F;) is defined depend-
ing on whether S$; contains two or three elements. If |S; |=2, W, has six vertices

wV, w®, ., w/® and F; consists of M copies each of (w1, w;¥) and (w;®, ). These two

1 [‘b’) denotes the number of combinations of ¢ objects taken b at a time.



subsets of edges are called FV and F,-(é), respectively. See Fig. 4.-If | S, | =3, H; has ‘twenty-
one vertices w;V, w®, .., w) and M copies each of (w,M, w®), (w4, w, ), (w,®, w19),
(w1, wjt), (w9, w,09) and (w;¥, w,®V). We call these subsets of edges F,), F;@ F® F¥

F®), and F;®, respectively. See Fig. 5.

We now define the set of edges A as (J A4;. A; contains two or nine edges depending on

$;€s
whether S; has two or three elements, Specifically, . if | S; | =2,
A ={(%®, wP), (u®, w®)}, where o, =4;, and =z, =455, and if |S;|=3,

AJ’ = {(v'_EZ) 3 wj(z))) (vl'gz) 3 wj(ls))r (0;52) 3 wj(”))) (vif) 2 wj(s))’ (v._£2)’ 'wj(g))r (v,-f) ’ wj(m))y (vi_.(f) 3 'w'(s))}

7
(v,-f), w19), (v,-gz), w{1%)}, where %, = 8,1, %, =8;9 and z; = s;3 Thus, |A |=2n,+9n,

Fori=1,2, .., m, the set of edges in A incident upon v@ is called 4, .

Finally, we set K = M-(2n3+1)-1. It is easy to see that G has 3m +6n,+21n4 vertices

and (m +2n4+6n3)- M +2n4+9n 3 edges. Therefore, we have the following lemma.

Lemma 1. G, f and K can be constructed from § and X in polynomial time with

respect to m and n. [J

To complete the NP-hardness proof, we will show the equivalence of the following state-

ments.
(I) X has a set splitting with respect to 5.

(1) v, (G)< K.

Theorem 1. If Statement (I) holds for $ and X, then Statement (II) holds for G, f and

Proof. Let X, and X, be a set splitting of X with respect to §. We will construct a

natural f -linear embedding of G with at most K crossings.



For i=1,2, ..., m, we draw all edges in E; below (resp., above) the x-axis / and all edges
in 4;' above (resp., below) [ if and only if z;€X, (resp., X;). For each j such that |S; | =2, if
$;1€EX; (resp., X;), then we draw the edges in F,{!) below (resp., above) I and those in F;®
above (resp., below) /. In this way, we can draw the edges in F; in such a way that they do not
cross the edges in A.

For each j such that |S; |= 3, we can draw the edges in F; in such a way that the
number of crossings between the edges in F; and those in A is equal to 2M. For instance, if
8;1, 872€X, and s; 4€X,, by drawing all edges in F,® U F;® U F,® above ! and all edges in
FW Uy F® U F® below I, we can obtain an embedding with the desired number of crossings.

The other cases can be treated in a similar way.

In the resultant f -linear embedding, there are no crossings involving any edges in E, or .
between any two edges in F'. Furthermore, from the above argument, the number of crossings
between the edges in F and those in A is 2M ‘n,. Finally, consider the crossings among the
edges in A. Recall that | A | = 2n,+9n; Because the sets are split, the edges in A are parti-

tioned with at least » and at most n,+8n3 edges on each side of . Even if every pair of these

. . 8 .
edges on the same side form a crossing, we have at most [3]4-["2_; ns] = M -1 crossings
among them. Therefore, the total number of crossings in the embedding is less than or equal to
M-(2ng+1)-1=K.[O

Theorem 2. If Statement (II) holds for G, f and K, then Statement (I) holds for S and

Proof. Let G be an f -linear embedding of G with K or fewer crossings. Suppose that
two copies ¢ and e  of an edge are drawn on opposite sides of I and e crosses at least as many

! . . .
edges as e . Since copies of any edge drawn on the same side cross the same number of edges,



we can switch every such copy ¢ of the same edge to the other side of ! without increasing the
number of crossings. Thus, we may assume that all copies of any edge are drawn on the same
side of { in G. This enables us to partition X into two disjoint subsets Y, and Y, such that

7; €Y (resp., Y,) if and only if the edges in E; are drawn below (resp., above) {.

Let j be an integer such that |S; | =2. Let %, = s;, and %;, = 8;2. Assume that S; is
entirely contained in either Y, or Y,. If the edges in F,-(l) and F;@ lie on the same side of /, we
immediately have M? crossings. Even if these sets are placed on opposite sides of /, there are M
or more crossings among the edges in F; U A; U E; U E;,. For example, suppose that S; C Y,
and the edges in F;{!) and F; are drawn above and below I, respectively. See Fig. 6. Since Vip
Vi, and W; are separated in the ordering f, the edge (0;52) , w/) crosses the edges in F/{!) or

those in E; . The other cases are similarly treated.

Next, let j be an integer such that | $; | = 3. Since either Y, or Y, contains at least two
elements of §;, using the above argument twice proves that there are at least 2M crossings

among the edges in F; UA; U E;. Furthermore, if S; is entirely contained in either Y, or
z, €5

L)

Yy, by applying the same argument three times, we can show that G has 3M or more crossings

among those edges.

Even if all $;’s are split into Y, and Y,, G has 2M-n, crossings. Moreover, if some S; is
entirely contained in either Y, or Y, we have additional M crossi_ngs. Since K < M-(2n+1),
we know that ¥, and Y, form a set splitting of X with respect to S. O

As mentioned earlier, SET SPLITTING with sets of size at most three is NP-complete, and

FIXED LINEAR CROSSING NUMBER belongs to the class NP. Therefore, from Lemma 1,

Theorems 1 and 2, we have the following theorem.



Theorem 3. FIXED LINEAR CROSSING NUMBER is NP-complete. [

We now consider the FIXED LINEAR CROSSING NUMBER problem for the restricted
case of simple graphs. The graph G constructed above can easily be converted to a simple
- graph by splitting each vertex v into d(v) vertices corresponding to the incident edges, where
d(v) denotes the degree of v in G. The newly created vertices each will be connected to
exactly one vertex which was adjacent to v, and they will be placed on ! in such an order that
their incident edges do not cross each ;ther in any linear embedding. We can repeat this opera-
tion until the resultant graph is composed of isolated edges. It is easy to see that embeddings of
G and embeddings of the new graph are in an obvious one-to-one correspondence that preserves

crossings. Thus, we have the following theorem.

Theorem 4. FIXED LINEAR CROSSING NUMBER remains NP-complete even if a

given graph is simple and each of its connected components is a single edge. [
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Fig. 1. (a) A simple graph G.
() A linear embedding of G.

Fig. 2. A 4-page embedding of the graph shown in Fig. 1(a).
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Fig. 3. A subgraph G;.

Fig. 4. A subgraph H; such that IS; |=2.

Fj(ﬁ)
w4 wid wf" wf'5) wi® w7 { w(19) §
S Q-G " o=~ Y SR " Y "SR S "SR S |
wil W@ W , w2 . w2 @

Fj(Z) F@

Fig. 6. An illustration for the proof of Theorem 2.
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