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Abstract. Relatively few query tools exist for data exploration and pattern identifi-
cation in time series data sets. In previous work we introduced Timeboxes. Time-
boxes are rectangular, direct-manipulation queries for studying time-series datasets.
We demonstrated how Timeboxes can be used to support interactive exploration
via dynamic queries, along with overviews ol query results and drag-and-drop sup-
port for query-by-example. In this paper, we extend our work by introducing Vari-
able Time Timeboxes (VIT). VITs are a natural generalization of Timeboxes,
which permit the specification of queries that allow a degree of uncertainty in the
time axis. We carefully motivate the need for these more expressive queries, and
demonstrate the utility of our approach on several data sets.

1 Introduction

Time scrics data scts arc ubiquitous, appcaring in many domains including finance, metcorol-
ogy, physiology and genctics. To date, most information visualization work on thesc data scts
has focused on display and interactive cxploration, often emphasizing the periodic nature of
somc calendar-bascd data scts [6]. Work in data mining has addressed the nced for additional
tools to identify patterns of trends of intcrest in these data scts. Algorithmic and statistical
mcthods for identifying patterns [1,2,3,5,8,11] have provided substantial functionality in a
wide varicty of situations. In domains such as stock price analysis, familiar patterns have been
namcd and identificd as shorthand approachces to identifying trends of interest [12]. Tools for
specifying dynamic querics over these data scts have recently been developed: QuerySketch
supports query-by-cxample based on a sketch of a desired profile [20], and Spotfirc's Array
Explorcr 3 supports graphical querics for temporal patterns [18].

In previous work we introduced timeboxces: an intcractive mechanism for specifying que-
rics on temporal data scts. Timcboxes arc rectangular regions that arc placed and dircctly
manipulated on a timcline, with the boundarics of the region providing the relevant query
paramcters. In this paper we introduce an cxtension to timeboxces, which allow querics that



have some flexibility in the time axis. Rescarchers in speech processing and other ficlds have
long known the utility of such “timc warped” querics. We call our new approach Variable
Time Timeboxcs (VIT). We carcfully motivate the nced for such querics, and demonstrate the
utility of our approach on scveral data scts.

The rest of this paper is organized as follows, in Scction 2 we provide an cxtensive review
of Timcboxcs, and introducc TimcScarcher, an application that uscs timcboxcs to provide an
intcractive cnvironment for visualizing and querying time scrics. In Scction 3 we motivate,
introducc and test our necw VTT approach. Scetion 4 considers related work. Finally, in Sce-
tion 5 we offer some conclusions and dircctions for future work.

2 Timeboxes: Interactive Temporal Queries

Timcboxes arc rectangular query regions drawn dircctly on a two-dimensional display of
temporal data. The extent of the Timebox on the time (x) axis specifics the time period of
interest, while the cxtent on the value (y) axis specifics a constraint on the range of valucs of
interest in the given time period. More concretely, we define a timebox as follows.

Definition 1: A #imebox, dcfined by two points (xy, y1) and (x», y»), is a constraint on
a time scrics indicating that for the time range x; < x < x,, the dynamic variable must
have a valuc in the range y; € y <y, (assuming y, 2> y)).

Multiple timcboxcs can be drawn to specify conjunctive querics. Data scts must match all
of the constraints implicd by the timeboxces in order to be included in the result sct.

Creation of timcboxcs is straightforward: the uscr simply clicks on the desired starting
point of the timebox and drags the pointer to the desired location of the opposite corner. As
this is identical to the mechanism uscd for creating rectangles in widely used drawing pro-
grams, this opcration should be familiar to most users. Once the timebox is created, it may be
dragged to a new location or resized via appropriate resize handles on the corners, using simi-
larly familiar intcractions.

Qucry processing occurs on mousc-up. When the uscr relcascs the mousc, the current posi-
tion of the timebox is stored, the query is updated, and the new result sct is displayed.

Construction of timeboxcs is aided by drawing all of the items in the data sct dircetly on the
query arca. This “graph cnvclope™ display provides additional insight into the density, distri-
butions, and patterns of change found among items in the data sct, in a display that is reminis-
cent to a parallel coordinates visualization [10] (Figure 1).
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Fig 1: A “graph envelope™ overview, formed by superimposing the time series for all of the items
in the data set



The example data sct shown in Figurc 1 contains weckly stock prices for 1430 stocks and
will be used in a bricf scenario to illustrate the usc of timcboxes. An analyst interested in
finding stocks that rosc and then fell within a four-month period might start by drawing a
timebox specifying stocks that traded between $28 and $64 during the first few wecks. When
this query is executed, the graph envelope is updated to show only those records that match
these constraints. We can quickly sce that this query substantially limits the numbcer of itcms
under consideration, but many still remain (Figure 2.A).

204.2 (A) 204.2 (B)

153.1 1531

¥ 7 11 73

Fig. 2: (A) A single timebox query, for items between $28 and $64 during weeks 1-5. (B) A
refinement of the query in (A) reduces the number of matching time series

To find stocks in this sct that rosc in subscquent weeks, the user draws a sccond box, speci-
fying itcms that traded between $73 and $147 in weeks 10-12 (Figure 2.B).

As timcboxces arc added to the query, the graph cnvelope provides an ongoing display of
the cffects of cach action and an overview of the result sct. Once created, the timeboxes can
be scaled or moved singly or together to modify the query constraints.

The usc of simplc, familiar idioms for crcation and modification of timcboxcs supports in-
teractive usc with minimal cognitive overhead. Rapid automatic query processing (<100 ms)
on mousc-up cvents provides the fast responsc necessary for dynamic querics [16], thus sup-
porting interactive data cxploration. Users can casily and quickly try a wide range of querics,
and modify them to quickly sce the cffects of changes in query paramcters. This ability to
casily cxplorc the data is helpful in identifying specific patterns of interest, as well as in gain-
ing understanding of the data sct as a wholc.

Timcboxcs also differ from traditional dynamic query widgets [16] in their construction
and manipulation dircctly on the data spacc. As timeboxces arc drawn dircctly on a graph spacc
suitablc for plotting a time scrics, the querics arc casily interpreted at a glance.

2.1 TimeSearcher

TimeScarcher [9] uscs timeboxes to posc querics over a sct of entities with onc or more time-
varying attributes. Entitics have onc or more static attributes, and onc or morc time-varying
attributes, with the number of time points and the definition of those points being the same for
cvery entity in a given data sct. If there are multiple time-varying attributes, any onc of them
can be sclected for querying, through a drop-down mcnu that specifics the dynamic attribute
being quericd. All active querics refer to the same attribute.

When a data sct is loaded, cntitics in the data sct arc displayed in a window in the upper
left-hand comer of the application. Each cntity is labcled with its name, and the valucs of the
active dynamic attribute arc plotted in a linc graph. Complete details about the entity (details-
on-demand) can be retricved by simply clicking on the graph for the desired cntity: this will
causc the relevant information to be displayed in the lower right-hand window (Figurc 3).
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Fig. 3. The TimeSearcher application window. Clockwise from upper-left: query space, details-
on-demand, item list, range sliders for query adjustment, and data items

The upper-left corner of the TimeScarcher window is the query input space. This space ini-
tially contains an cmpty grid. To specify a query, users simply draw a timecbox in the desired
location. Query processing begins as soon as uscrs relcasc the mouse, signifying the comple-
tion of the box. Thus, uscrs do not nced to press a button to cxplicitly start a scarch. When
query processing completes, the display in the top half of the application window is updated to
show thosc cntitics that match the query constraints. For all of thesc entitics, the time points
that corrcspond to the querics arc highlighted, in order to simplify interpretation of the dis-
play.

Once the initial query is created, the timeboxes can be moved and resized. The hand and
box icons on the lower toolbar arc uscd to switch between creating timeboxes and mov-
ing/resizing them. As is the casc with initial timebox creation, query processing begins imme-
diately upon completion of the movement/resizing of the timebox.



When multiple timeboxes arc present, they can be modified individually or simultancously
in groups of two or morc. This functionality is particularly uscful for scarches for complex
patterns (Figure 3). In these cascs, uscrs can sclect some or all of the timeboxces (using stan-
dard lasso and shift-click intcractions) and simultancously apply thc same translation and/or
scalc along cither or both axcs to all sclected timeboxes. This is uscful for scarching for in-
stanccs of a pattern that vary slightly in scalc or magnitudcs, or for modifying qucrics bascd
on cxamplc items.

TimeScarcher uscs “Graph Envelope” displays to provide overviews of the entire data sct
[9], and a simplc drag-and-drop “qucry-by-cxample™ mechanism supports the similarity que-
rics often discussed in rescarch in the mining of time scrics data [1,3,5,8,11].

TimecScarcher is implemented in Java, using the Swing toolkit for uscr-interface compo-
nents. Drawing and scenegraph control in the data and query displays is provided by Jazz, a
zooming toolkit writtcn in Java [4].

3 An Augmented Query Mechanism

Timceboxces offer a very flexible query language, but it is not complete. To sce why, consider
the following motivating cxample. Onc of the classic symptoms of Hodgkin’s discasc is the
appcarance of two dramatic clevations of the patient’s temperature in a 24-hour period. Figure
4 shows two cxamples.
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Fig. 4. Two peaks in a patients temperature over a single day is a classic symptom of Hodg-
kin’s disease, however the peaks may be an arbitrary distance apart as shown in (A). Our cur-
rent definition of TimeBoxes cannot detect peaks at arbitrary locations. Although we could
create queries to find certain examples of double peak patterns (i.e B or C), we cannot use
TimeBoxes to create a single query to which will discover all double peak patterns

Onc notablc fecature of such patterns is that the two pcaks may be closc together (almost to
the point of merging) or as far apart as 18 hours. This uncertainly in the time axis is impossi-
blc to represent with Timeboxces. If we place two Timcboxces six hours apart (the mean valuc
reported in the literature), we run the risk of missing positive cxamples which where the peaks
arc further apart or closcr togcther.

Two overcome this limitation we can cxpand the definition of Timcbox, to allow con-
straints of the following form. The time scrics of interest must be within a specified range for
some specified duration anytime within a specified time window. We call such constraints, a
Variablc Time Timcboxes (VTT). We can dcfine VT Ts more concretely as follows.

Definition 2: A Variable Time Timebox (VIT), dcfined by two points (x|, ;) and (x,
y,) and a singlc intcger R, is a constraint on a time scrics indicating that for the time
rangc x;-R < x < xp+R, the dynamic variable must have a valuc in the range y; <y <y,
for at lcast (x>- x1) consccutive time units, (assuming y, > y; and x5 = x)).



Figurce § illustrates the difference between Timeboxes and VTTs. Note that Timeboxes can
be considered a special casc of VITs, where the paramcter R is sct to zero. As such we can
claim that VTTs arc morc flexible and cxpressive than Timcboxcs.
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Fig. 5. A Timebox may be visualized as a shaded rectangle through which a qualifying se-
quence must pass. In contrast, an Variable Time Timeboxes (VTT) requires a qualifying se-
quence to have its value within the shaded region, allowing the shaded region to move any-
where within the larger constraining rectangle (A). Unlike Timeboxes (B), VITS are able to
detect patterns with a degree of uncertainty in the time axis

VTTs can be placed on the GUI the same way Timcboxcs arc. By dcfault the R-valuc is sct
to zcro, thus, on mousc-up they act as classic Timcboxes. However the user can left click the
cdges of the VTT to (symmctrically) resize the rectangle representing the R-value.

3.1 Efficiently Supporting VI Ts

Although VTTS arc morc cxpressive than classic TimeBoxes, they also require morc cffort to
support cfficiently. As cxplained in previous work, Timebox querics can be processed via a
modificd orthogonal rangc trce query algorithm [7]. We can support VITs cfficiently by
leveraging off previous work on indexing inverse time serics querics [13]. An inverse query
computes all time points at which a sequence contains values equal to the query valuce. A time
scrics can be indexed by grouping scctions with little variability in the Y-axis, and bounding
the scctions with a Minimum Bounding Rectangle (MBR). Figure 6 illustrates the idca.
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Fig. 6. A time series divided into 9 MBRs. Although the MBRs are actually one dimensional,
they are shown as two dimensional for clarity



The MBRs arc indexed using a R-Tree [8], a data structurc that can cfficiently support a
varicty of querics.

For a VIT query that asks for all time points that correspond to a time scrics that takes on a
valuc cqual to y’, where y, € y” < y,, we perform a range query with the R-Tree to retricve all
the leaf quecucs that cnclose valuc y’. The rcturned time scrics arc guaranteed to contain the
full answer sct to the query, plus possibly some “falsc alarms”, i.c. subscquences that on the
valuc y?, but for lcss than (x>~ x;) consccutive time units. Thesc falsc alarms arc removed by a
post-processing step. This technique is similar in spirit to the indexing technique introduced in
[8]. Here the authors prove that any lower bounding technique can be used to index data, such
that all qualifying scquences arc retricved. The only issuc is the tightness of the lower bound.
If the lower bound is very weak, many additional non-qualifying scquences will be retricved
(the so-called “falsc alarms™), although these can be removed in a post processing stage, this
would causc the system to be degrade greatly in terms of speed. The other extreme, an arbi-
trarily tight lower bound, would allow a constant time access method. In general, this method
works very well for most time scrics, since most real world time serics have strong autocorre-
lation, and arc therefore well approximated in by the low dimensionality MBRs, giving rcla-
tively tight bounds.

3.2 An Experiment to Demonstrate the Utility of VITS

Our subjcctive cvaluation of VTTs suggests that it is a uscful tool for cxploring large time
scrics databascs; in this scction we provide an objective cxperimental evaluation of their util-
ity. In particular, wc will support our claim that VITs allow morc cxpressive querics, by
showing cxperiments where our proposcd approach outperforms previous work in the task of
scparating two different classcs of time scrics.

In order to allow replication of our results, and to permit comparison to cxisting work, we
havc uscd the two most referenced times scrics datascts in the litcraturc.

¢ Cylinder-Bell-Funnel: This synthctic datasct has been in the literature for 8 years, and
has been cited at Icast a dozen times [21]. The datasct consists of 3 different basic shapces,
which arc produccd by a function that has a stochastic clement. For our cxperiments we
consider only the “Funncl” and “Bell” classes.

e Control-Chart: This synthctic datasct has been frecly available for the UCT Data Ar-
chive since Junc 1998 [21]. There arc 6 different classes of time scrics. For our experi-
ments we consider only the “Increasing Trend” and “Upward Shift” classcs.

Our cxperiment consists of first showing the subject labeled examples of cach class. We
show the uscr as many as they wish to scc, until they can identify unlabeled cxamples with
100% precision. The user is then shown a graph envelope view containing 10 cxamples of
cach of the two classcs. The uscrs task is to crcate a single query that can scparate the two
classcs. The uscr attempts this with both Timcboxcs and VITS (with their choicc of order).
The experiment is repeated 10 times for cach subject, and for cach of the two datascts. Figurc
7 shows an cxamplc of an cxperiment with the Control Chart datasct.
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Fig. 7. The basic experiment setup on the Control Chart dataset. The user is shown a graph enve-
lope containing 20 sequences, 10 each of “Increasing Trend” and “Upward Shift”. The user is
asked to create a single query to separate the two classes, using timeboxes and VVTs. The two
queries may be placed at different locations, however for comparison purposes they are placed in
exactly the same locations above. Note that for both cases VITs are able to do a better job of
separating the classes

In the example shown timeboxes scparated out 3 of the 10 cxamples of “increasing trend”,
whercas VVTs were able to scparatc out § of the cxamples. For the sccond cxperiment we
attempted to scparate out just the “upward shift” scquences. Here timeboxcs separated out 4
of the 10 cxamples of whercas VVTs were able to scparate out 7 of the cxamples. Figurc 8
depicts an cxample of an cxperiment with the Cylinder-Bell-Funnel datasct, where similar
results can be obscrved.
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Fig. 8. The basic experiment setup on the Cylinder-Bell-Funnel dataset. The user is shown a
graph envelope containing 20 sequences, 10 each of “Funnel” and “Bell”. The user is asked to
create a single query to separate the two classes, using timeboxes and VVTs. The two queries
may be placed at different locations, however for comparison purposes they are placed in exactly
the same locations above. Note that for both cases VITs are able to do a better job of separating
the classes

Our cxperimental subjects were 10 undergraduate students at the University of California
Riverside. They were given a five-minute introduction to both timcboxes and VTTS, and
allowed to “play” with both for ten minutes before the experiment began. We measured the
quality of the scparation @, achicved by both tools as:

Q =2 * (Correctly Separated — False Positives)/ Size of Dataset



Because our datascts has cqual numbers of cach of the two classes 10, this measurc is in
the range [-1, 1], with 1 indicating perfect scparation of the classcs. Table 1 summarizes the
results of our cxperiments.

Table 1. The quality of the separation (Q) the two query mechanisms under consid-
eration, on the Cylinder-Bell-Funnel and Control Chart datasets

Timceboxes Variable Time Timcboxes
Cylinder-Bell-Funnel 0.27 0.82
Control Chart 0.38 0.78

It is clcar from thesc results that VI Ts arc a more powerful and intuitive tool for querying
time scrics databascs.

4 Related Work

Time scrics data accounts for an increasingly large fraction of the world’s supply of data. A
random sample of 4,000 graphics from 15 of the world’s newspapers published from 1974 to
1989 found that morc than 75% of all graphics were time scrics [19]. Visualizations of time-
scrics data attcmpt to improve the utility of these common graphs, through the usc of tech-
niqucs such as incrcascd data density or polar-coordinate displays that cmphasize the scrial
periodic nature of the data set [7], or by distorting the time axis to rcalize denser information
displays [14]. A rccent survey of lincar temporal visualizations is found in [17]. Generally,
these tools focus on visualization and navigation, with rclatively little cmphasis on querying
data scts.

A few tools have been developed for querying time-serics data. MIMSY [15] provided an
carly cxamplc of scarches for temporal patterns in stock market data, using text cntry ficlds,
pull-down mecnus, and other traditional widgets to specify temporal constraints. QuerySketch
is an innovative query-by-cxample tool that uses an casily drawn skctch of a time-serics pro-
filc to retricve similar profilcs, with similarity dcfined by Euclidcan distance [20]. Although
the simplicity of the skctch interface is appealing, the use of Euclidcan distance as a metric
can lcad to non-intuitive results [11].

Spotfire's Array Explorer [18] supports graphically cditable querics of temporal patterns,
but the result sct is gencrated by complex metrics in a multidimensional spacc. This potent
approach produccs uscful results, but uscrs may wish to constrain result scts morc preciscly.

Support for progressive refining of querics was addressed by Keogh and Pazzani, who sug-
gested the use of relevance feedback for results of querics over time scrics data [11].

5 Conclusions

The additional cxpressive power provided by VTTs presents some additional challenges that
merit further study. As VTTs require specification of an additional paramcter, crecation and
manipulation will likely be more difficult than is the case with simple timcboxces. Identifica-
tion of appropriatc mechanisms for these tasks, perhaps including cvaluation of alternative
designs, will be needed to identify a preferred strategy. VT Ts also raisc questions of scman-
tics: for cxample, what is the interpretation of overlapping VTTs? The interpretation of over-
lapping timcboxcs is straightforward, but overlapping VITs might confusc uscrs.  Other
analogous cxtensions to the timebox model might also be possible. For example, variable



valuc timeboxes (VVTs) might support variations in values similar to the valuations in time
supported by VTTs. These querics would present further challenges in creation, interpretation,
and cfficient processing.
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