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With the advent of the climate change and global warming, there is a need to 

adopt a diversified approach to address climate change; this is especially the case of 

promoting building energy conservation. This dissertation is one of the first studies that 

focuses on the occupant behavior in the building energy conservation, in particular 

three dimensions. First, this study aims to propose a behavior-based model that 

investigates impact of renters’ rebound effect on building retrofit saving amount and to 

design the shared saving scheme among major stakeholders during their decision-

making process. With demonstration of a real retrofitting project in a university 

campus, the rebound effect was identified to significantly extend the payback period of 

retrofit contracts and such the prolonged duration is partially determined by renters’ 



  

risk attitudes towards monetary incentives. Second, the study compares two message 

delivering means, paper-based (e.g. stickers) versus instant messaging tool (e.g. 

WeChat), as a platform for sharing energy-saving information and promoting occupant 

energy conservation in China. It was found that WeChat is the most effective 

intervention in reducing energy consumption, but the effects are short-lived. Using 

stickers, comparatively, produces more sustained results with long-term engagement 

of households. The changes in certain occupant energy behaviors are also correlated 

with individuals’ perception of responsibility and quality of life to explain the 

heterogeneity of individual behaviors. Third, the study examines the interaction effect 

between occupant personality, energy behavior and intervention strategies with 

algorithms that can identify the optimal intervention strategy tailored for each 

household. This is followed by an improved Support Vector Regression (SVR) model 

that is capable of predicting household electricity consumption under optimal 

intervention strategies according to occupant behavior and personality traits. The 

proposed intervention lead to an average reduction of 12.1% in monthly household 

energy consumption compared with conventional behavioral interventions. The 

methods and algorithms developed from this study are pioneer works providing 

implications to measure the influence of occupant behaviors on energy saving amounts, 

to enrich and diversify behavioral intervention strategies, and to design incentives, 

programs and policies that effectively regulate occupant behaviors, collectively 

contributing to the demand-side energy management in buildings.   
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Preface 

 

This dissertation is served as an introduction to the emerging discussion of occupant 

behavior in the building energy management. The purpose of this dissertation is to 

explore, exam, assess and quantify the impact of occupant behaviors in the building 

energy management. Reading this dissertation will provide you an overall 

understanding of occupant behavioral characteristics and their influence on building 

energy consumption and building operations. Several key issues have been discussed 

in the dissertation such as what are means of communication can be used to intervene 

occupant behavior and how to examine the effectiveness of each means in reducing 

household energy consumption. Moreover, how to design a tailored intervention 

strategy based on the personality of each occupant so as to maximize the potential of 

energy saving through the change of behavior with the support from a machine learning 

tool of predication. These questions are well illustrated by examples from real-world 

cases and experiments with the findings that could be interested by academic scholars, 

policy makers and professionals in the energy and building sectors. The study is 

expected to offer novel ideas, methods and techniques in the arena of energy behavior 

and to recognize the great potential of behavioral energy saving in the future. 
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Chapter 1: Introduction 

1.1 Research Objective and Thesis Structure  

Over the past decades, there are more buildings been retrofitted to energy efficiency by 

using energy saving performance contracts (ESPCs). ESPC is an approach of debt finance which 

use the future savings to secure the installment of the upfront investment. This method has been 

widely adopted in the industry because owners can save large amount of upfront investment, 

capture energy savings over the long term, and achieve corporate social responsibility and energy 

efficiency goals. Energy saving companies (ESCOs), who provides this kind of services, also 

benefits much for this contractual arrangement because they can quickly engage with the clients 

by providing an integrated energy service solution, opening new business opportunities, and 

transforming the industry from the role of “technical contractors” into “service providers” in the 

new era of service economic. However, the success of such a business model is subjected to a key 

assumption that the energy savings in the long-term future must to be precisely predictable and 

controlled as scheduled. Because capital lenders require a stringent condition of protection when 

loaning the capital for such a long-term contract with uncertainties. Variations in the energy 

savings create uncertainties of loan payment and further escalate the risk of business default. 

Hence, a robust forecast of energy savings in the future is critical to the success of the execution 

of the ESPCs project.  

In the review of pertinent literature on energy consumption forecast in energy retrofitting 

projects, most projects have large variances of the energy consumption between actual and 

expected energy retrofitting (e.g. lighting efficiency in Schleich et al. (2014)). More and more 

literature concluded that the energy consumption is not only influenced by the technical 
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specifications of the energy retrofitting equipment, appliances and hardware, but is more 

influenced by the occupant behavior and their psychological and social norms (Schultz et al., 2015). 

In some case, the influence of occupant behavior contributes much more significant variances on 

the energy consumption than the technical perspective (Zhao et al., 2017). For instance, due to the 

existence of occupant rebound effect, occupant may use more energy after the retrofit than what 

they used to consume prior to the retrofit. Occupants may turn on light for longer time or use new 

appliances. In another way, occupant behavior changes the baseline demand of the energy 

consumption, making the predication of future energy savings unrealistic. Such significant 

influence of occupant behavior has been gradually recognized and measured by recent studies, yet 

lacking systematic evaluation and examination, especially on such an effect on energy contract 

design and optimization. Hence, the dissertation mainly focuses on the influence of user behavior 

on building energy management in particular three dimensions: energy behavior in energy retrofit, 

intervention of energy behavior, and behavior-based energy use forecasting. Each of the theme is 

described as follows and the dissertation framework is shown in Figure 1.1.  
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Figure 1.1 Dissertation Framework and Key Research Questions 

 

Chapter 2 introduces a novel decision-making model that considers the occupant behavior 

in the design of ESPC contract, and by using the model to assist the contract design and decision-

making process among building stakeholders. Previous decision-making of ESPC only deals with 

the duo-relationship between the owners and the ESCOs and ignores the occupant behavior (e.g. 

rebound effect) and its influence on the long-term energy saving. When occupants show higher 

rebound effect, they use more energy after the retrofit, hence the total energy savings will be 

reduced, subsequently influencing the contract terms and duration. The proposed model 

innovatively incorporate occupant behavior (i.e. rebound effect) as additional variables that 

mediate the relationship between owners and ESCOs. Occupant rebound effect has been examined 

with largely variations to change the actual energy savings and consequentially to increase the 

payback period of ESPCs contract duration for up to 4 years. The study further tested the 
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heterogeneity of occupants regarding their risk attitudes and expected rates of return towards shard 

monetary incentives and explained their differences in determining the energy consumption. The 

results showed a significant distinction among different demographic groups. In the scenario when 

30% of energy savings are shared to occupants, sensitive occupants who care much about split 

monetary savings would quickly behave in a more conservative way (with a lower rebound effect) 

than insensitive occupants who are not motivated by monetary incentives. A result of additional 

9% saving on energy consumption was observed from the former group than the later, 

consequentially shortening the contract period by 1 year. The implications of the findings on the 

forecast of long-term energy consumption and on the practical design of ESPC have also been 

discussed in the end of the Chapter 2, with special contribution to the contract theory by 

incorporating occupant behaviors, monetary incentive design and negotiation strategies into the 

energy contract assessment in energy retrofit projects.  

Followed by understanding the importance of occupant behavior and its influence to 

building energy management, the next key questions are to examine whether these occupant 

behaviors can be changed? And what are the effect strategies that can nudge occupants and 

intervene their behavior to the desired and more energy conservative pattern in buildings. The 

research on user behavior intervention has been studied for decades from perspectives of different 

knowledge domains such as behavior economics, consumer behavior research, psychological 

behavior, and social behaviors. However, the research on intervening occupant behavior, 

especially energy use behavior has not been studied until the last decade. Previous studies have 

focused on the areas such as message framing of energy consumption information (Khashe et al., 

2016), provision of normative feedback on energy consumption (Komatsu and Nishio, 2015), and 

psychological theory of pro-environmental behaviors (Pichert and Katsikopoulos, 2008).  
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Provided the promising results from above studies, it is interesting to note that occupants 

would always response differently with varying resultant behaviors even when intervened by the 

same strategy. For instance, by providing the normative energy consumption information to 

college students via social platform, the variations of users’ energy saving amount could be a few 

times (Delmas and Lessem, 2014). This can be explained by the differences in an individual’s 

personality, perception and understanding of the information, hence an individual would respond 

with his or her own approach and behave differently though received the similar information. The 

effectiveness of behavior intervention is a complex process that is influenced by lots of factors 

such as the means of communication, quality of life, individual’s perception to responsibility and 

pro-environmental attitude. Identifying and quantifying these factors would help to discover the 

underlying mechanism that promotes occupant energy conservation behavior and to further 

provide tailored intervention strategies to individuals for maximum energy savings. Among all 

potential factors, the means of intervention, quality of life and personal traits are to be considered 

as the most important factors that haven’t been fully examined yet. Hence, the means of 

intervention and its effectiveness has been focused on the Chapter 3 and the use of personality 

traits for understanding and forecasting energy behavior is to be examined in Chapter 4.  

In Chapter 3, the objective is to examine different means of information conveying and 

their effectiveness in intervening occupant energy behavior in residential buildings. Two sets of 

intervention strategies, namely paper-based messages and electronic-based instant message, were 

designed to disseminate energy use tips to residences in a few communities in the city of Hangzhou, 

China. In addition to means of delivery, incorporating residents’ demographics, quality of life 

(QoL) standard, and RICCOW factors has also been recorded and evaluated using a questionnaire, 

and tested for its effectiveness to change occupant energy behavior. After analysis of results from 
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a few months of experiment, the WeChat group recorded the most reduction (that is, 225.63 kWh). 

However, it was also observed that the results of WeChat were not as consistent as the Sticker 

group – its effect diminished toward the end of the study and the reductions in several testing 

periods were not significant. In addition, three RICCOW factors that were found to correlate with 

certain energy behaviors. For instance, the action to keep windows and doors closed when the air-

conditioner is switched on was found to be correlated with a willingness (the RICCOW factor of 

“willingness”) to set and achieve specific consumption targets and having an opportunity to 

commit to energy saving. These results show promising effect of employing online platform (e.g. 

WeChat) to engage households energy conservative behavior over large areas, such as mega cities. 

Meanwhile, it also demonstrates the practical implication of optimizing energy savings by 

customizing tailored energy information and delivery to individuals based on the demographics of 

user groups, their life style, and purpose of the intervention.  

By knowing the importance of tailored information delivery and its influence on energy 

savings, it is essential to know who saving more than others and what are the characteristics of this 

group of people. Hence, in Chapter 4, an individual’s personality traits has been carefully 

examined to explore the underlying relationship between one’s personality traits and responsive 

energy behavior after the intervention. The objectives of Chapter 4 are two-folded. The first is to 

find certain personality traits, specifically Big Five Personality Trait, that significantly affect an 

individual’s response to different intervention strategies. The second objective is to incorporate 

these identified personality traits to predict household electricity consumption based on the 

improved machine learning technic, in particular the Support Vector Regression (SVR) model. 

The proposed model is composed of key predictors such as personality traits, energy behaviors, 

occupant demographics, building features, weather indicators, historical monthly consumption, as 
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well as the interaction effect between the energy behavior and all other predictors mentioned 

above. The model was trained and tested by electricity consumption data collected from 166 

households during year 2015-2016. The selected model (R2=0.6428) confirmed 18 key predictors 

in the use of GA-RBF-SVR technique that exhibits the best performance on next-month prediction 

with lowest error (measured by mean absolute percentage error, MAPE= 8.48-9.34%). 

The model was then used to determine the best-fit intervention strategy for each household 

and subsequently to simulate the maximum electricity savings under that intervention strategy.  

Predicted energy consumption of 10,000 households were simulated by using the Monte Carlo 

method with the results illustrated in a 3D surface plot. On average, the optimized intervention 

strategies enable an additional 12.1% reduction in monthly electricity consumption than real 

experimental intervention. Among five intervention strategies, the intervention strategy of WeChat 

with feedback and without feedback achieved the highest (15.97%) and second highest (15.43%) 

electricity savings compared to other strategies. Based on the combinations of two specific 

personality traits (i.e. extraversion and conscientiousness), five types of intervention have also 

been analyzed and featured as occupants respond very distinctively to the optimized interventions. 

In particular, the resident type ELCH with a high rate of conscientiousness while low rate of 

extraversion has a small-to-moderate saving potential, while type ELCL residents who are 

disorganized and introverted showed polarized behaviors to either save a lot when intervened by 

the WeChat with feedback or save little. These findings expand the theory of tailored behavioral 

intervention strategies and are especially essential to be employed for effective design of energy 

feedback system in large-scale engagement of energy efficient buildings. 

In a nut shell, the relationship of chapters in the dissertation is shown in Figure 1.2. Chapter 

2 conceives the importance of occupant behavior in the building energy management by 
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discovering its influence on long term energy consumption and the design of energy retrofitting 

contract. After understanding the importance of occupant behavior, Chapter 3 studies how to 

change and intervene occupant behavior toward a more conservative patter and tested the 

effectiveness of different information conveying means in nudging user energy behavior. From the 

experimental results in which users are observed to behave differently to the same intervention, 

Chapter 4 investigates how an individual’s personality influence one’s change of energy behavior 

and then final energy consumption. Based on the machine learning algorithm and Monte-Carlo 

simulation, the proposed model can tailor the best-fit intervention strategy based on both 

individual’s personalities and other characteristics to achieve the full potential of energy savings 

for residential households. Three parts collectively contribute to the perceiving, intervening, 

modeling and simulating the occupant behavior in the building energy management.  

 



 

 

9 

 

 

 

 

Figure 1.2 Summary of Key Elements in the Dissertation  
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1.2 Research Contribution  

The research contribution of this dissertation is multi-perspective and summarized into 

three aspects. 

First and foremost, the rebound effect was reported to negatively impact on the 

performance of energy retrofit and prolong the contract period, but it has yet to be considered in 

the energy retrofit contract. The approach proposed in Chapter 2, fills the knowledge gap by 

quantifying the level of impact caused by occupant rebound effect on the building expected energy 

saving amount and subsequently determining the optimal contract including contract duration and 

shared incentive scheme between owners and renters. The method of studying the effect of the 

shared saving scheme on mitigating the renters’ rebound effect has also programmed into the 

decision model of ESPC contract assessment that enables a joint energy efficiency and maximum 

savings collectively from both owners and renters. Such the decision-making method is of the first 

in the literature to provide holistic assessment of occupant rebound effect in the design of building 

energy retrofit contract. 

Another key contribution is to be the first in the literature that investigates and compares 

the effectiveness of using instant messaging platform (e.g. WeChat) and stickers for promotion of 

energy saving in households in China. It is also the first study in which a set of occupant lifestyle 

factors, such as Quality of Life (QoL) and RICCOW factors (responsibility, incentive, capacity, 

capability, opportunity and willingness), have been examined to correlate building occupants with 

their self-reported energy behavior and energy consumption. The results unveil that the instant 

message is the most effective in reducing monthly consumption, but effects are short-lived. In 

contrast, using stickers as a mean of engaging households produces more sustained results. These 
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results provided preliminary evidence in the local context that an integrated intervention approach, 

in which different modes of engaging households based on the nature and the purpose of messages, 

is a preferred strategy with a higher chance of success in motivating behavioral change. The 

combination of messaging delivery means and the personality acceptance on the intervention are 

especially important for rolling out energy policies and large-scale energy programs that aims to 

create a sustainable society through the change of use behavior.  

The last but not the least contribution of this study is the development of a predictive tool 

that is able to select the optimal intervention strategy and to predict the maximum of electricity 

savings potential for each household, with identified subsets of all characteristic variables of 

households. This model is the first kind in the literature because it examined and incorporated the 

interaction effect between occupants’ energy use behaviors and other selected variables such as 

households’ demographic factors and personality traits into the energy forecasting. The algorithm 

outperformed conventional methods and shed light on the future design of tailored behavioral 

intervention strategy and on the demand-side energy management for building individuals. 
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Chapter 2: Occupant Behavior in Building Energy Retrofitting1 

 

Abstract 

Energy Saving Performance Contracts (ESPCs) are a business model that aims to promote building 

energy efficiency through retrofitting with minimal or zero upfront costs for owners. Many studies 

show that occupants tend to use more energy than expected after retrofits (referred as rebound 

effect), which results in underestimated retrofitting costs. However, end users’ energy-using 

behaviors and their relationship to the ESPCs decision-making process have seldom been studied. 

This study aims to propose such a behavior-based model to assist the contract decision-making 

among the major stakeholders in a building’s retrofit, including building owners, Energy Service 

Companies (ESCOs), and renters. The proposed model incorporates renters’ rebound effect and 

investigates the impact that major variables have on the rebound effect. To validate and evaluate 

the performance of the proposed model, a real retrofitting project in Maryland, United States, was 

examined. The results show that the rebound effect can significantly increase the payback period 

of ESPCs contracts by up to 4 years and the contract duration is significantly affected by renters’ 

risk attitudes. The proposed model and findings can help ESCOs and building owners predict more 

accurate energy saving amounts and design proper retrofitting contracts.  

2.1 Introduction    

Building energy retrofit has become an emerging strategy in globally promoting 

sustainable development and building energy conservation. It improves building energy efficiency 

                                                 
1 This chapter is revised based on the published article: LU, Y., ZHANG, N. and CHEN, J. "A behavior-based 

decision-making model for energy performance contracting in building retrofit." Energy and Buildings 156 (2017): 

315-326. 
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and reduces energy bills for building owners in the long run, and it also has the environmental 

benefits of reducing greenhouse gas emissions and polluted waste. However, due to high upfront 

capital expenditures (Capex), most building owners are reluctant to invest in energy retrofit 

projects. Energy Saving Performance Contracts (ESPCs) is an alternative financing mechanism 

recommended by Energy Service Companies (ESCOs) to compensate an owner’s initial 

investment with long-term savings from operations and maintenance (O&M) cost and energy bills. 

Increasingly more owners are adopting this model, seeking higher future economic benefits.  

In a typical ESPCs process, ESCOs initiate an energy audit for an existing building and 

assess its energy savings potential. Then, ESCOs negotiate with building owners on the terms of 

the ESPCs contract duration and profit-sharing plans. ESCOs usually invest the initial retrofitting 

Capex, reimburse the investment, and earn profits from the saved energy cost until the contract 

expires. From the perspective of ESCOs, a longer contract is preferred to avoid cash flow 

uncertainty, while building owners prefer a shorter contract for fewer payments. Therefore, the 

duration of a contract reflects both parties’ risk exposure and crucial to the success of the ESPCs 

project (Yik and Lee, 2004). However, in practice, it is difficult for ESCOs and building owners 

to estimate and determine proper the contract duration due to the uncertainties and risks over the 

long contract period. This issue was identified as the major market barrier for the adoption of 

ESPCs (Ghosh et al., 2011). Therefore, both parties are motivated to develop rigorous models to 

assist their decision-making. The tradition method is to select a fixed contract duration based on 

historical projects but such approach apparently not reliable given the uniqueness of each project 

(Hanaoka and Palapus, 2012, Zhang, 2011).  

Many researchers have proposed several theatrical models to determining contract 

duration. For example, Deng et al. (2014) proposed a pioneer model to help ESCOs determine 
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contract duration based on building characteristics, saving potential, and ESPCs contract clauses. 

However, several researchers found that the uncertainty in the occupants’ behavior amplified the 

potential risks and undermined the profitability of retrofit projects. In Hertwich’s study, the 

researchers discovered the “rebound effect”, which suggests some occupants take a behavioral or 

other systematic response that may offset the benefits from the retrofit Hertwich (2005). In the 

same research, Hertwich proposed using an index to quantify the response effect. For example, 

one proposed retrofit intends to save 20% energy by updating LED lightbulbs, but it results in a 

15% consumption reduction. Then, the rebound effect can be measured by the marginal difference 

as 25% (that is, [20%–15%]/20%). The “missing” 5% energy savings can be attributed to the 

changed occupant behaviors. Some occupants may realize LED lights are more energy efficient, 

so they use lights more often or for longer durations than before. Given the “rebound effect”, the 

actual project energy savings are lower than the expectation and affect the breakeven contract 

duration. Thus, this study aims to develop a behavior-based decision-making model that 

incorporates renters’ behavior for the building energy retrofit. The model should be comprehensive 

and objective for all involved parties (owners, renters, and ESCOs), and able to incorporate various 

contract considerations, such as duration, stakeholder benefits, risk allocation and renters’ 

behavior. The contract duration in this model is determined under the condition in which owners 

maximize their energy savings while ECSOs make profits, collectively promoting the success of 

ESPCs.  

The rest of this study is organized as follows: Section 2 reviews the literature on ESPCs 

studies, rebound effect, and energy incentive strategies. Section 3 introduces the structure of the 

proposed model. Section 4 examines a real case study to demonstrate and justify the model. Section 
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5 reports and discusses the results of the sensitivity analysis on major model parameters. Finally, 

Section 6 concludes this study and suggests avenues for future research. 

2.2 Literature Review 

2.2.1 Definition and Classification of ESPCs 

ESPCs or Energy Performance Contracting (EPC) are a market mechanism and financing 

tool (Xu et al., 2011) that encourages building owners to conduct energy retrofits. ESCOs will 

undertake financial and performance risks for building owners; in return, ESCOs get paid with 

future cost savings (Himanen et al., 2007, Marino et al., 2011). Baechler (2011) divided ESPCs 

into four categories based on the risk allocation and financing structure: guaranteed savings, shared 

savings, no guaranteed savings, and chauffauge (also known as utility purchase agreements).  

(1) In guaranteed savings contracts, ESCOs have to assume project performance risk since the 

Capex is paid by building owners. In this type of contract, ESCOs are hired by building 

owners to execute energy retrofits and satisfy the savings targets required by the building 

owners. If the actual savings are lower than the guaranteed amount, ESCOs have to 

compensate the owners’ loss. Conversely, when the cost savings are higher than initially 

set, building owners will pay extra to ECSOs (Dreessen, 2003). Guaranteed savings 

contracts are suitable for those building owners who can finance the initial capital 

investment by themselves, and such contracts can potentially maximize the building 

owners’ revenue.  

(2) In shared savings contracts, ESCOs undertake both financial and performance risks as 

ESCOs not only provide the Capex, but also guarantee the project performance. In return, 

ESCOs take a share from energy savings during the contract period. Xu (2012) suggested 
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that, in shared savings contracts, ESCOs actually undertake all major risks — such as 

performance, investment, technical, and market risks — leaving almost “zero risk” for 

owners.  

(3) No guaranteed savings contracts are a type of contract that is similar to traditional 

retrofitting contracts. ESCOs are paid a fixed fee by building owners for their services, 

such as energy audit, design and construction management, and commissioning. After 

retrofits finished, ESCOs are not involved in sharing the benefits, and there are no 

guarantees on energy cost savings (Baechler, 2011). 

(4) The word “chauffauge” comes from French, meaning “heating,” and it represents another 

type of ESPCs where building owners purchase the services (heating, air-conditioning, 

lighting, etc.) for an agreed-upon rate and period of time from ESCOs. ESCOs are in charge 

of the building facility operation and maintenance (O&M).  

Among the above four categories, guaranteed saving contracts and shared saving contracts 

are most commonly used methods in commercial buildings.  

2.2.2 Market, Challenges, and Decision-making of ESPCs 

In recent years, ESPCs have been wildly studied all over the world regarding their market 

trends and acceptance (Goldman et al., 2002, Marino et al., 2011, Vine, 2005). Bertoldi et al. 

(2006) analyzed the development and current statue of the ESCOs industry in the EU and 

suggested some long-term strategies and legislation measures to promote the application of 

ESPCSs in less developed countries. Goldman et al. (2005) empirically studied the US ESCOs 

market and concluded that policy support is crucial to the adoption of ESPCs. Xu and Chan (2013) 

analyzed successful factors in implementing ESPCs in China’s building energy retrofit market. 
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Meanwhile, researchers also explored the barriers to adopting ESPCs. Bhattacharjee et al. (2010) 

categorized a total of 21 barriers into four types — market barriers, institutional barriers, financial 

barriers, and technological barriers — and identified that the most challenging obstacles to the 

market acceptance of ESPCs were project complexity and long contract periods. Ghosh et al. 

(2011) ranked the importance of those barriers and found that the biggest barrier was building 

owners’ lack of knowledge about ESPCs. To overcome these barriers, Pätäri and Sinkkonen (2014) 

developed an efficient business strategy for the ESCOs industry based on the Hamel business 

model.  

Comparting with other traditional energy retrofit contracts, ESPCs are preferable for their 

advantages in flexible Capex sources, contract integrity, risk sharing, and potential penetration into 

the energy efficiency market (H2PC, 2014, Himanen et al., 2007, MDA, 2014). Coleman et al. 

(2014) concluded that ESPCs yield substantial benefits and higher realization rates compared to 

conventional bid to specification contracts when proper financial structure and fund sources are 

selected. Therefore, the success of ESPCs highly relies on the decision-making related to risks and 

benefits allocation. In addition, ESPCs projects often involve numerous uncertainties, such as 

energy price fluctuations, unknown building energy consumption patterns, and varying O&M cost. 

Therefore, various models have been developed to handle uncertainties in ESPCs projects. For 

example, Pantaleo et al. (2014) established an ESPCs model to simulate the resultant process of 

energy savings for biomass heating and combined heat and power (CHP) generation. Jackson 

(2010) used a risk management decision tool, Value-at-Risk, to quantify the project risks and 

associated financial returns. Deng et al. (2014) proposed a decision-making model that helps 

ESCOs select optimal contract periods and improve their competitiveness and profitability of 

winning an ESPCs tender.  
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2.2.3 Users’ Behaviors, Rebound Effect, and Shared Incentives 

Users’ energy behaviors significantly impact the outcomes of energy retrofits, especially 

in rented buildings where renters pay a lump-sum space rent (Delmas and Lessem, 2014, BCA, 

2014). In such scenarios, renters have no economic incentive to save energy or may use more 

energy after the energy retrofit. Fouquet and Pearson (2011) found that users may overuse lighting 

resources or are less motivated to switch lights off when they know that lighting efficiency has 

been increased. Such energy consumption increases after retrofits are regarded as the rebound 

effect (Berkhout et al., 2000).  

The rebound effect was first introduced as a result of Jevons’ paradox when efficiency 

gains were realized to be associated with increasing demand and consumption (Jevons, 1906). 

Theoretically, the rebound effect is defined as the ratio of difference between estimated savings 

and actual savings to estimate savings (Madlener and Alcott, 2009). For instance, a zero rebound 

effect indicates the actual savings are equal to estimated savings; when the rebound effect ratio is 

greater than zero, the actual savings is less than the predicted savings. In other words, the greater 

the value of the rebound effect ratio, the less cost savings that can be realized. The rebound effect 

can be categorized as direct rebound effect, indirect rebound effect, economy-wide rebound effect, 

and transformation effect (Greening et al., 2000). This study mainly focuses on direct rebound 

effect, which is the major consideration in rented properties. The rebound effect has been widely 

observed in a variety of fields and results in significant losses. Bentzen (2004) found that the US 

manufacturing industry suffered a 24% loss from 1949 to 1999 due to the rebound effect. There is 

also an estimated 19% of rebound effect in the US aviation industry, according to a simulation 

experiment of passengers and airline behavior (Evans and Schäfer, 2013). The rebound effect 

shows up in the transportation industry as well; for example, the direct rebound effect was 
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estimated to be 42.1% and 57%–67% for the fuel efficiency improvement in German personal 

transportation (Frondel et al., 2007). 

The rebound effect also exists in building energy efficiency and facility management. 

González (2010) showed that the rebound effect of household energy efficiency in Catalonia 

(Spain) was about 35% in the short term and 49% in the long term. After analyzing the residential 

energy consumption of 48 states during the period from 1995 to 2011, Orea et al. estimated the 

average rebound effect was from 56%–80%, using the energy demand frontier models (Orea et al., 

2015). Schwarz and Taylor explored the impact of increased insulation on wintertime thermostat 

settings and found the rebound effect was around 1%–3% (Schwarz and Taylor, 1995). Another 

study in Austria on space heating also reported a 20%–30% rebound effect based on a time series 

and cross-sectional analysis (Haas and Biermayr, 2000). Dubin et al. estimated the rebound effect 

on space cooling was around 13% during the non-summer months and 1%–2% during peak 

summer months in the US (Dubin et al., 1986). Schleich et al. studied the direct rebound effect of 

replacing lighting with more efficient compact fluorescent lamps (CFLs) and light-emitting diodes 

(LEDs), and observed a rebound effect of 3%–6% (Schleich et al., 2014).  

To mitigate the rebound effect in building retrofit and cultivate residents’ energy 

conservation behaviors, green lease and green lease toolkits have been developed to outline the 

responsibility and proper practices of building owner and renters (Transformation, March 2016). 

These green lease toolkits aim to help both parties develop appropriate and economically feasible 

profit-sharing mechanisms (Toolkit, June 2014). The Building and Construction Authority of 

Singapore, for example, has developed green lease toolkits that are suitable to local geography and 

a humanistic environment. Successful applications of green lease toolkits suggest that the shared 

incentives could prevent renters from inappropriate energy-using behaviors (Delmas and Lessem, 
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2014). Inspired by the green lease, the shared incentives, particularly shared financial incentives, 

can substantially influence discrete behavior at the individual level (Stern, 1999).  

ESPCs projects also yield a considerable rebound effect; however, few studies have been 

conducted. In a typical shared saving contract, the rebound effect could undermine the potential 

energy savings and result in contract changes and renegotiation. Proper ESPCs decision-making 

models that consider the rebound effect help makers assess the risks and develop robust, profitable 

ESPCs contracts and avoid over-optimistic saving estimations. Therefore, this study intends to 

integrate the rebound effect into the existing decision model and propose a quantitative 

optimization model to reconcile the profit-sharing mechanisms among ESCOs, building owners, 

and renters in energy retrofit projects. 

2.3. Model Establishment 

This section illustrates the structure of the proposed ESPCs decision model that 

incorporates rebound effect and shared incentives in order to make the optimal decision for the 

ESPC contract terms and conditions. Figure 2.1 shows the framework of the model and its key 

elements. Component  estimates the project energy-saving potential and required investments, 

such as Capex and O&M cost. Component  analyzes the users’ behaviors and the rebound effect 

that impacts project energy savings and possible profit share among owners. Component  aims 

to maximize the owner’s benefits and determines the contract period based on all parties’ net 

present value (NPV) under the impact of the rebound effect.  
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Figure 2.1 Framework of Behavior-based Decision-Making Model 

 

2.3.1 Project Investment and Savings 

In the proposed ESPCs model, total project investment through the project lifetime (𝑁) consists 

of two parts: Capex (𝐼𝐶) and O&M cost (𝐼𝑂𝑀(𝑡)). Capex is provided by ESCOs at the beginning 

of the project; O&M cost is covered by ESCOs during the contract period (𝑛), thereafter borne by 

building owners till the year of 𝑁. The investment decision (𝐼(𝑡)) in an energy retrofit project can 

be expressed as Equation (2.1):  

 

𝐼(𝑡) = 𝐼𝐸(𝑡) + 𝐼𝑂(𝑡) 

𝐼𝐸(𝑡) = {
𝐼𝐶                      𝑡 = 0           

𝐼𝑂𝑀(𝑡)            𝑡 = 1,… , 𝑛
 

𝐼𝑂(𝑡) = 𝐼𝑂𝑀(𝑡)              𝑡 =  𝑛 + 1, … , 𝑁  

(2.1) 
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Where, 𝐼𝐸(𝑡) represents the investment made by ESCOs, which consists the Capex 𝐼𝐶  at 

the beginning of the project and O&M cost (𝐼𝑂𝑀(𝑡)) generated during the contract duration, 𝐼𝑂(𝑡) 

is the O&M cost (𝐼𝑂𝑀(𝑡)) spent by owners after the contract yet within the project lifetime (N). 

Capex is a one-time decision variable and determined by the project nature, such as the size, age, 

and condition of a building.  

Once determined, Capex will positively affect retrofit efficiency, annual O&M cost, and 

energy saving potential, since a higher Capex (𝐼𝐶) is likely to gain better energy performance by 

using advanced technologies that also demand relatively high cost in maintenance, O&M cost 

( 𝐼𝑂𝑀(𝑡) ).  O&M costs often are modelled as a stochastic variable, which follow uniform 

distribution in public-private-partnership projects (Ng et al., 2007) and normal distribution in 

build-operate-transfer projects (Shen and Wu, 2005).  In building retrofit projects, the O&M cost 

depends on various uncertain factors, such as equipment failures and breakdowns, labor cost for 

qualified professionals, inflated utility costs, and uncertain HVAC operation hours due to climate 

conditions and customer demand. These factors vary in different situations and should be 

dynamically modelled. In several recent studies, O&M costs of retrofit projects in Maryland, 

United States were modeled as a stochastic process (i.e. GBM process) to reflect the randomness 

and statistical nature of uncertainties (Deng et al., 2014, Dufresne, 2001). Thus, stochastic model 

was adopted in this study for it is closer to reality. Specifically, the uncertainties in this study are 

modeled as geometric Brownian motion (GBM). GBM is a well-established stochastic process 

model has been proven effective in cost related processes with uncertainties, such as stock price, 

oil price, and traffic volumes.  

Three major parameters — initial value, drift, and volatility — are used to define the GBM 

process model. Initial value sets the baseline of the process; drift indicates the overall trend of the 
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process; and volatility determines the variance of the process.  In this study, the annual increment 

of O&M costs is measured by 𝛿, and the stochastic uncertainties in the O&M costs are measured 

by the GBM with no drift effect. The O&M cost (𝐼𝑂𝑀(𝑡)) in year t, then can be represented in 

Equation (2.2) and Equation (2.3).   

 

𝐼𝑂𝑀(𝑡) = 𝛿
𝑡−1𝐻(𝑡) (2.2) 

 

𝐻(𝑡) = 𝐼𝐶𝐻0𝑒
−
𝜎𝐻𝑖
2

2
𝑡+𝜎𝐻𝑖𝜖𝐻√𝑡 

(2.3) 

 

Where, 𝛿 describes the change of the O&M cost over project lifetime. When 𝛿 > 1, the 

O&M cost increases annually. 𝐻(𝑡)  is the quantitative form of the GBM process; 𝜎𝐻𝑖  is the 

volatility derived from historical data of annual O&M cost; and 𝜖𝐻 is the random error. Both Capex 

𝐼𝐶 and 𝐻𝑂 determine the initial value of the O&M cost.  

Project energy savings 𝑅̂(𝑡)  equals to energy saving quantity 𝑄(𝑡)  multiplied by the 

energy market price 𝑃𝐸(𝑡) at year 𝑡, shown as Equation (2.4). In the simulation process, I use 𝑅̂(𝑡) 

to estimate the actual energy savings 𝑅(𝑡). 

 

𝑅̂(𝑡) = 𝑄(𝑡)𝑃𝐸(𝑡)                𝑡 = 1, 2, … ,𝑁 (2.4) 

 

Similar to O&M cost, the future energy price also can be modeled as a stochastic process. 

Equation (2.5) represents the GBM model for future energy price (𝑃𝐸(𝑡)) with the annual price 
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drift effect 𝛼𝐸𝑡, the annual price volatility effect 𝜎𝐸𝑡, and the initial energy price 𝑃𝐸𝑂. These values 

are derived from historical energy prices.       

 

𝑃𝐸(𝑡) = 𝑃𝐸𝑂𝑒
(𝛼𝐸𝑡−

𝜎𝐸𝑡
2

2
)𝑡+𝜎𝐸𝑡𝜖𝑃√𝑡

 
(2.5) 

 

Actual energy saving quantity 𝑄(𝑡) depends on a project’s energy saving potential (𝐾(𝑡)), 

equipment deterioration (𝑓(𝑡)), and rebound effect multiplier (𝑅𝑒(𝜃)), as shown in Equation (2.6). 

𝐾(𝑡) is determined by the initial retrofit investment (𝐼𝐶) and the investment coefficient 𝐾0. The 

initial saving amount is 𝐼𝐶𝐾0, and its value subjects to a yearly random variation that is modeled 

by the GBM process with no drift effect, as shown in Equation (2.7). 𝑓(𝑡) decreases from year 1 

afterward, for equipment deteriorates annually. The deterioration of the facilities and/or equipment 

across the project lifetime is a common problem that has been widely discussed in the literature, 

such as degradation in solar photovoltaic panels (Meyer and Van Dyk, 2004) and in HVAC 

equipment (Wang, 2014). It follows a performance degradation pattern described in Equation (2.8) 

(Heo et al., 2012, Carrico and Riemer, 2011). 𝑓(𝑡) is ranged from 1 to 0 during the project 

economic lifetime (𝑁).  

 

𝑄(𝑡) = 𝑓(𝑡)𝑅𝑒(𝜃)𝐾(𝑡)                𝑡 = 1,… ,𝑁 (2.6) 

 

𝐾(𝑡) = 𝐼𝐶𝐾0𝑒
− 
𝜎𝐾𝑡
2

2
𝑡+𝜎𝐾𝑡𝜖𝐾√𝑡 

(2.7) 
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𝑓(𝑡) =
log(𝑁 + 1 − 𝑡)

log (𝑁)
       𝑡 = 1, … , 𝑁 (2.8) 

 

Where, 𝐾0 is a coefficient that represents a project’s potential energy savings per unit of 

initial investment of retrofit. For example, when 𝐾0 > 0, higher investments can save more energy. 

𝜎𝐾𝑡 is a volatility coefficient, and 𝜖𝐾 is the random error.  

 

2.3.2 The Influence of Users’ Behaviors  

The rebound effect results in the actual energy saving amount possibly being less than the 

expected value, particularly the rented properties that only require renters to pay a lump-sum bill. 

The proposed model designed a percentage split (𝜃) of energy savings so that the renters can 

receive some portion of energy saving benefits as incentives for more energy efficient behavior. 𝜃 

is a percentage (ranging from 0.5 to 1) to present the energy saving benefits that building owners 

can keep. When 𝜃 = 1, owners keep all energy savings, and the renters receive no incentive. When 

𝜃 decreases, more benefits are allocated to building residents. When 𝜃 = 0.5, renters and owners 

equally share the savings.  

The rebound effect (𝑅𝑒 ̅̅ ̅̅ (𝜃)) is defined as a function of 𝜃. 𝑅𝑒(𝜃) is the rebound effect 

multiplier and defined as 𝑅𝑒(𝜃) = 1 − 𝑅𝑒 ̅̅ ̅̅ (𝜃). For example, for a given specific 𝜃∗, if the rebound 

effect (𝑅𝑒 ̅̅ ̅̅ (𝜃∗)) is 14%, then the rebound effect multiplier (𝑅𝑒(𝜃∗)) is 86%, indicating 86% of 

estimated energy saving potential can be realized. The calculation of 𝑅𝑒(𝜃) follows the standard 

utility function (𝑈(𝜃)) that has been widely used to quantify human behavior and decisions, as 

shown in Equation (2.9).  
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𝑈(𝜃) = 𝑎 + 𝑏 𝑒𝑥𝑝 (−
𝜃

𝜌
)     𝜌 < 0 (2.9) 

 

Where, 𝜌 is the risk tolerance to determine the curvature in the utility function. 𝜌 can be 

used to differentiate risk attitudes of various renters with individual differences. 𝜌 in this model is 

negative, given the common renters’ attitude to shared savings is risk adverse. The greater the 

value of |𝜌|, the closer a renter is to risk neutral. 𝑎 and 𝑏 are constants to define the boundary 

conditions of 𝑈(𝜃).  

In this study, the maximal rebound effect is defined as max(𝑅𝑒 ̅̅ ̅̅ (𝜃 = 1)) = 𝜙 . When 

building owners share no energy saving benefits with renters, renters’ rebound effect would reach 

the highest 𝜙 , while the multiplier 𝑅𝑒(𝜃 = 1) would have a minimum value of 1 − 𝜙 . After 

normalizing the boundary of x and y axes (x was rescaled from original scope (0, 100) to a new 

scope (0.5, 1); y was rescaled from original scope (0, 1) to (1-𝜙, 1)), 𝑅𝑒(𝜃) can then be defined as 

Equation (2.10). 

 

{
 
 

 
 𝑅𝑒(𝜃) = 𝑎 + 𝑏 exp (−

200 ∗ 𝜃 − 100

𝜌
) 

𝑎 = 1 −
1

1 − 𝑒
−
100
𝜌

𝜙,   𝑏 =
1

1 − 𝑒
−
100
𝜌

𝜙
 (2.10) 

 

2.3.3 Benefits Sharing in ESPCs 

In the model, I assume the success of the ESPCs project depends on an energy saving 

benefits allocation strategy. An ideal allocation strategy would not only establish the trust among 

involved parties, thus promoting the success of the project, but also potentially increase the total 
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energy savings amount. During the contract, the annual energy savings is shared by owners and 

ESCOs based on the (estimated) guaranteed annual energy savings (𝐺) and actual annual energy 

savings (𝑅(𝑡)). In a specific year during the contract, if the actual energy savings 𝑅(𝑡) is less or 

equal to 𝐺 , owners keep 𝛼𝐺  as their savings, where 𝛼  denotes the owner’s revenue-sharing 

percentage. When 𝑅(𝑡) is larger than 𝐺, building owners would obtain the saving of 𝛼𝐺, plus an 

additional shared saving of (𝑅(𝑡) − 𝐺)𝛽, where 𝛽 denotes the owner’s excess revenue beyond the 

savings guarantee. When 𝛽 is much larger than 𝛼, owners obtain more savings when a project 

over-performs (𝑅(𝑡) > 𝐺 ) than underperforms (𝑅(𝑡) < 𝐺 ). This guarantee policy is set to 

encourage ESCOs to provide a precise estimation of the guaranteed savings.  

Meanwhile, renters’ behaviors would also influence the annual energy savings (𝑅(𝑡)) with 

the rebound effect. As mentioned in previous paragraphs, both the rebound effect and the actual 

energy savings (𝑅(𝑡)) are functions of shared percentage 𝜃. If owners are willing to share 1 − 𝜃 

percentage of their annual savings (𝛼𝐺 +max[0, 𝛽(𝑅(𝑡) − 𝐺)]) with renters, the actual energy 

savings (𝑅(𝑡)) could be higher due to the reduced rebound effect. Such sharing contracts can last 

for as long as the entire building’s service life. Revenues for ESCOs, renters, and owners are 

formulated by Equations (2.11), (2.12) and (2.13). 

 

𝑅𝐸(𝑡) = {
0                                                                     𝑡 = 0                                 
𝑅(𝑡) − 𝛼𝐺 −max[0, 𝛽(𝑅(𝑡) − 𝐺)]       𝑡 = 1,2, … , 𝑛                   
0                                                                     𝑡 = 𝑛 + 1, 𝑛 + 2,… , 𝑁 

 (2.11) 

 

𝑅𝑅(𝑡) = {
0                                                                        𝑡 = 0             
(1 − 𝜃)(𝛼𝐺 +max[0, 𝛽(𝑅(𝑡) − 𝐺)])      𝑡 = 1,2, … ,𝑁

 (2.12) 

 



 

 

28 

 

 

𝑅𝑂(𝑡) = {

0                                                             𝑡 = 0                                 
𝜃(𝛼𝐺 +max[0, 𝛽(𝑅(𝑡) − 𝐺)])      𝑡 = 1,2, … , 𝑛                   

𝑅(𝑡) − 𝑅𝑅                                            𝑡 = 𝑛 + 1, 𝑛 + 2,… ,𝑁 
 (2.13) 

 

Monetary benefit of the ESPCs contract is represented as NPV of all parties. 𝑟𝑅, 𝑟𝑂, and 𝑟𝐸 

are the expected rates of return for renters, building owners, and ESCOs, respectively, and 𝑟𝑃 is 

the overall project’s interest rate. Since ESCOs undertake both the financial and performance risks 

of the project, their expected rate of return is often higher than owners (𝑟𝐸 > 𝑟𝑂). NPVs of the 

above objects, with respect to the contract period 𝑛, are calculated in Equations (2.14) to (2.17). 

 

𝑁𝑃𝑉𝑅 =∑
𝑅𝑅(𝑡)

(1 + 𝑟𝑅)𝑡

𝑁

𝑡=1

=∑
(1 − 𝜃)(𝛼𝐺 +max[0, 𝛽(𝑅(𝑡) − 𝐺)]) 

(1 + 𝑟𝑅)𝑡

𝑁

𝑡=1

 (2.14) 

 

𝑁𝑃𝑉𝑂 =∑
𝑅𝑅(𝑡) − 𝐼𝑂𝑀(𝑡)

(1 + 𝑟0)𝑡

𝑁

𝑡=0

= {

0                                                                                                                              , 𝑛 = 0                

∑
𝜃(𝛼𝐺 +max[0, 𝛽(𝑅(𝑡) − 𝐺)]) 

(1 + 𝑟0)𝑡
+ ∑

[𝑅(𝑡) − 𝑅𝑅(𝑡)] − 𝐼𝑂𝑀(𝑡)

(1 + 𝑟0)𝑡

𝑁

𝑡=𝑛+1

𝑛

𝑡=1

 , 𝑛 = 1,2, … , 𝑁 
 

(2.15) 

 

𝑁𝑃𝑉𝐸 =∑
𝑅𝐸(𝑡) − 𝐼𝑂𝑀(𝑡)

(1 + 𝑟𝐸)
𝑡

𝑛

𝑡=0

= {

−𝐼𝐶                                                                            , 𝑛 = 0                

∑
𝑅(𝑡) − 𝛼𝐺 −max[0, 𝛽(𝑅(𝑡) − 𝐺)] − 𝐼𝑡  

(1 + 𝑟𝐸)𝑡

𝑛

𝑡=1

 , 𝑛 = 1,2, … , 𝑁 
 

(2.16) 
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𝑁𝑃𝑉𝑃 =∑
𝑅(𝑡) − 𝐼𝑡
(1 + 𝑟𝑃)𝑡

𝑁

𝑡=0

 (2.17) 

 

Length of contract period (𝑛) serves as the key decision variable in the ESPCs negotiation 

process. Thus, an optimized model was developed to facilitate the decision for main stakeholders 

in a project. The model is expected to find the optimal contract period (𝑛∗) that maximizes owners’ 

𝑁𝑃𝑉 , and the formation subjects to the condition that ESCOs should make a positive profit 

(𝑁𝑃𝑉𝐸 ≥ 0), shown in Equation (2.18). 

 

𝑛∗ = argmax(𝑁𝑃𝑉0) ,    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑁𝑃𝑉𝐸 ≥ 0 (2.18) 

2.4. Case Study 

Data from a real energy retrofit project on the University of Maryland campus was 

collected to validate the proposed ESPCs decision model. The applicability of the same data set 

has already been tested in Deng et al. (2014) work. In the project, each individual school, regardless 

of its energy consumption, pays a standard O&M fee to the university based on factors such as 

available classroom spaces, numbers of registered students, or tuition fees. In the building, 

residents did not receive any monetary incentive to save energy after the energy retrofit. This is a 

typical scenario in rental properties, as noted in the aforementioned discussion, where the tenants 

pay a fixed fee to an owner based on the rented area regardless of the energy consumption. 

Therefore, this building energy retrofit project was examined as a case study with the proposed 

ESPCs model that involves both owners (university) and renters (schools).  
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2.4.1 Data Collection and Calculation of relevant coefficients 

The initial values of the variables in our model are listed in Table 2.1. The first variable 

group (S/N 1-8) includes the parameters of the GBM processes, which were aggregated from the 

real project data, such as energy price and O&M cost. The second variable group (S/N 9-20) 

contains the parameters related to the ESPCs contract terms and conditions that can vary for the 

sensitivity analysis.  

Gillingham et al. (2016) reported that the maximum rebound effect 𝜙  in a household 

electricity retrofit project ranges from 5% to 30% (considering both short- and long-term effect). 

This model adopts Gillingham et al.’s conclusion; the initial value of 𝜙 is set as the median (15%). 

The choice of initial value of risk attitude 𝜌 is based on the averaged policy, given there are four 

candidates in the original utility function (𝜌 = −10,−20, −50,−100) (Kirkwood, 1997). The 

initial value of 𝜃 is temporarily set as 100% to reflect the maximum influence of the rebound effect 

on ESPCs project’s contract period and energy savings. The sensitivity analysis for the range of 

each variable will be discussed in Section 2.5. 

The detailed calculation process is shown as follows. The source of Data is abstracted from 

the internal energy audit report from ESCOs. 

 

Table 2.1 Parameters and Initial Values Used in the EPC Decision Making Model 

S/N Parameters Symbols Values 

1 Volatility of the O&M cost coefficient 
H  0.25 

2 Volatility of the energy saving amount coefficient 
K  0.01 

3 Energy price drift effect 
E  0.0523 

4 Energy price volatility effect 
E  0.0856 
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5 O&M trend index*   1.025 

6 Initial value of the O&M cost coefficient* 
0H  0.0036 

7 Initial value of the energy saving amount coefficient* 
0K  0.0043 

8 Initial value of the energy price* 
0EP  22.82 $/Btu 

9 Economic lifetime of the energy efficiency system N  25 years 

10 Capital cost of the energy efficiency investment Ic  $20,668,991 

11 Annual energy cost savings guarantee G  $3,000,000 

12 Owners’ expected revenue share within the guarantee   5% 

13 Owners’ excess revenue share beyond the guarantee   20% 

14 Owners’ expected rate of return* 
or  3.10% 

15 Renters’ expected rate of return* 
Rr  3.10% 

16 Project interest rate* 
Pr  3.10% 

17 ESCOs’ expected rate of return* 
Er  6% 

18 Owners’ expected revenue share with Renters   100% 

19 Maximum renters’ rebound effect   15% 

20 Risk attitude of renters   -20 

*Note: 1. values of parameters are partially derived from Deng et al. (2014), while those with star 

(*) were adjusted or newly collected based on the project documents or relative background 

information. 

 

(1) Calculation of initial value of O&M cost coefficient (𝐻0) and O&M trend index (𝛿) 

The initial value of O&M cost is calculated by 𝐻0 ∗ IC from the historical data.  O&M cost 

can be retrieved from the project document (shown in Table 2.2) and 𝐼𝐶 is a known, hence: 

𝐻0 ∗ 𝐼𝐶 = 73,894 →  𝐻0 = 0.0036    (2.19) 
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Table 2.2 Expected O&M Cost and Expected Energy Savings of the Selected Case  

Year/ i O&M cost (USD) Saving amount (Btu) 

2009/ 1 73,849 79,750 

2010/ 2 75,914 85,000 

2011/ 3 78,042 87,500 

….. …... …… 

2021/ 13 103,162 82,250 

 

O&M trend index 𝛿 indicates the annual change in O&M cost. 𝛿 is also calculated based 

on the historical project raw data, as follows: 

𝛿𝑖 = 𝐶𝑂&𝑀
𝑖+1  , 𝑖 = 1,… , 12    (2.20) 

𝛿 =
Σ𝛿𝑖

12
= 1.025     (2.21) 

 

(2) Calculation of Initial value of the energy saving amount coefficient (𝐾0) 

The annual energy saving amounts at the first four years show an increasing tendency, the 

project saving potential increase gradually until reach its maximum. This result consistent with the 

projects in practices, since retrofit projects normally take years to finish. In the model, the project 

is assumed to be finished in the first fiscal year. Based on such assumption, energy saving amount 

at the end of the first year reaches the highest value of 89,000Btu. Then the benefits gradually 

decrease along with the facility depreciation. Hence the coefficient of initial value of energy saving 

amount 0K
 can be calculated as  

𝐾0 ∗ 𝐼𝐶 = 8.9 ∗ 10
4  →   𝐾0 = 0.0043   (2.22) 
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(3) Calculation of initial value of the energy price (𝑃𝐸0) 

As the selected project started at 2008, the value of energy price at 2008 was set as initial 

energy price in case study. 𝑃𝐸0 is assumed the mean value of energy prices of residential sector 

and commercial sector at the time being. The energy price in 2008 is 23.14 USD per Btu for 

residential sector and 22.49 for the commercial sector.  

𝑃𝐸0 =
23.14+22.49

2
= 22.82    (2.23) 

 

(4) Calculation of expected rates of returns (𝑟𝑅, 𝑟𝑂, 𝑟𝐸)  

The expected rate of return of the Owners is assigned as the 30-year Treasury Yield Curve 

Rates where 𝑟𝑂 = 0.031. The rate of return of renters is assumed the same with owners. The 

expected rate of return for ESCOs is based on the average operating margin that derived from 

financial statement of the energy retrofit companies, as 𝑟𝐸 = 0.06.  

 

2.4.2 Calculation and Results Analysis 

A Monte Carlo simulation was performed with Mathworks Matlab R2016a to simulate 

different project scenarios (each scenario has 25,000 trials). The final results were aggregated by 

averaging the results of all trials. For energy investment (Capex 𝐼𝐶 and O&M cost 𝐼𝑂𝑀(𝑡)) and 

annual energy savings 𝑅̂(𝑡), a sample scenario and the averaged result of the 25,000 scenarios 

were plotted in Figure 2.2 as an illustration.  
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Figure 2.2 Random and Average Results for Cash Flow of Cost Savings and Costs 

 

After obtaining annual energy savings and O&M cost, the project’s revenue (NPV) can be 

calculated and split among stakeholders according to the sharing strategy. Figure 2.3 shows the 

NPVs of four parties (project, owners, ESCOs, and renters) at different contract periods. For 

instance, when the contract period is set as 15 years, the NPVs of each stakeholder are -1.1 million 

USD for ESCOs, 13.7 million USD for owners, 0 for renters, and 17.2 million USD for the project. 

It can be observed that NPVs of both the project and renters remain unchanged in different contract 

periods, because a project’s NPV only relates to its total investment and energy savings, while 
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renters’ NPV is influenced by the shared percentage  with owners, regardless of the contract 

period.  

 

 

Figure 2.3 NPVs of Four Objects at Different Contract Periods 

 

The trends of building owners and ESCOs are monotonically increasing along with the 

contract periods. A longer contract period results in a larger NPV for ESCOs since they have the 

benefit sharing for a longer period and vice versa. The optimal contract period for owners is 

determined as 17 years, when the NPV of ESCOs first breaks even (larger than 0), which results 

in a 5-year (41.7%) longer contract (Deng et al., 2014). In this case, the sharing percentage (𝜃) 

was initially set to 100%, reflecting no energy saving shared by renters, and their rebound effect 
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is up to 15%. As a result, only 85% of estimated energy savings can be achieved so that a longer 

period is needed to recover the loss of the rebound effect.   

2.5. Results and Discussion 

To identify the optimal contract period, this section discusses the sensitivity of key factors 

from three perspectives: first, the dynamic relationship between the shared percentage (𝜃) and 

optimal contract period (𝑛∗); second, an analysis of different risk attitudes (𝜌) of renters; third, an 

examination of the sensitivity of other ESPCs-related variables.    

 

2.5.1 Multilateral Sharing Mechanism    

In order to find the optimal 𝜃 for both ESCOs and owners, 51 independent simulation trials 

traverse 𝜃 from 0.5 to 1 with a step size of 0.01. The overall project energy savings and the NPVs 

of relevant stakeholders were calculated for each 𝜃. The premise of acceptable contract period and 

sharing percentage should have 𝑁𝑃𝑉𝐸 ≥ 0. Figures 2.4 and 2.5, respectively, show the NPVs of 

both ESCOs and owners at different a 𝜃 and the contract periods.  

Figure 2.4 shows the positive NPV of ESCOs at available contract periods from 13 to 17 

years. For each contract period, the NPV of ESCOs will decrease as 𝜃 increases. Taking 14 years 

of contract period, for instance, if the sharing percentage is greater than 0.9 (say 0.91), the NVP of 

ESCOs will drop below zero, and ESCOs are not willing to bid the project due to the predicable 

loss. Alternatively, a longer contract period should guarantee that 𝜃 equals or is greater than 0.91 

to satisfy an ESCO’s requirement. For ESCOs, the highest NPV (1.25 Million USD) can be 

achieved at 𝜃 = 0.58 and 𝑛 = 14. When a contract is 14 years, the 𝜃 can range from 0.58 to 0.9, 

and its corresponding renters’ rebound effect would range from 0.12% to 5.5%. 
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Figure 2.4 NPV of ESCOs at Different Sharing Percentage and Contract Periods When NPV of 

ESCOs is Positive 

 

Figure 2.5 NPV of Building Owners at Different Contract Periods and Sharing Percentages  
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In Figure 2.5, contract period is the dominate variable for owners’ NPV. Among different 

contract periods, the 13-year contract generates the highest NPV. Along with the contract period 

increases, the owners’ NPV decreases since ECSOs will be locked in the sharing contract for a 

long time. For a given contract period, the owners’ NPV follows the concave function of the shared 

percentage (𝜃). When 𝜃 increases from 0.5 to 0.81, owners’ NPV keeps growing since sharing the 

benefits can mitigate the rebound effect to some extent (0-2.2%). The owners’ NPV reaches its 

highest value when 𝜃 equals to 0.81. Thereafter, NPV starts to decrease when 𝜃 is greater than 

0.81. As a result, considerable rebound effect (2.2%–15%) can be observed and sabotages the 

actual energy savings. It is noticeable that NPV generated with shared strategy (𝜃 ∈ [0.5,1)) is 

always greater than that without sharing (𝜃 = 1), indicating that shared incentive is an effective 

tool to promote renters’ energy conservation behaviors.  

For the ESPCs negotiation between ESCOs and owners shown in Figure 2.6, the priority 

is to determine the contract period (𝑛) and then to determine the shared percentage (𝜃) because the 

former is more sensitive for both parties’ NPV. Figure 2.6 shows the negotiation process between 

ESCOs and owners. The acceptable contract period for both parties ranges from 14 to 16 years. A 

13-year contract is feasible due to the zero NPV. Therefore, the minimum accepted contract length 

for ESCOs is 14 years. Comparing to the NPV of a 13-year contract, the owner’s cash flow 

decreases by 10.1% in a 14-year contract, by 19.1% in a 15-year contract, and by 30.3% in a 16-

year contract. Hence, a 14-year contract is the equilibrium for both parties.  
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Figure 2.6 Negotiation Process on Contract Period and Shared Percentage 

 

Agreeing upon a 14-year (𝑛 = 14) contract, ESCOs and owners have the negotiable shared 

percentage (𝜃) from 0.6 to 0.8. To compromise the benefits of both parties, the average 𝜃 of 0.7 

can be assigned. Figure 2.7 shows the results of NVPs of four objects when setting 𝑛 = 14 and 

shared percentage 𝜃 = 0.7.  
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Figure 2.7 NPVs of Four Objects at Different Contract Periods When Sharing Percentage Is 0.7 

 

The truncation on contract length is a win-win result for both parties and will effectively 

promote ESPCs project bidding and proper risk allocation. The overall project NPV is also 

increased by 39.5%, from 17.2 million USD (when 𝜃 = 1) to 24.0 million USD (when 𝜃 = 0.7). 

For owners, even though they share part of saving benefits to renters, their life cycle NPV still 

increased by 58.5% from 10.6 million USD (when 𝑛 = 17 and 𝜃 = 1) to 16.8 million USD (when 

𝑛 = 14, 𝜃 = 0.7). For ESCOs, the new shared percentage not only raises their NPV by 46.8%, 

from 0.79 million USD (when 𝑛 = 17, 𝜃 = 1) to 1.16 million USD (when 𝑛 = 14, 𝜃 = 0.7), but 

also increases their competitiveness through a shorter contract period. Therefore, a sophisticated 

design of contract period and associated shared percentage are crucial to enabling a successful 

ESPCs project.  
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2.5.2 Risk Attitude 

Risk attitude (𝜌) reflects the renters’ energy conservation behavior response to incentives 

and affects their rebound effect (𝑅𝑒 ̅̅ ̅̅ (𝜃)). For example, sensitive renters (i.e., schools with tight 

budgets), presented by the shallow curve (𝜌 = −10) in Figure 2.8, are more easily motivated by 

shared incentives and therefore change their behavior with a lower rebound effect. The other type 

of renters (i.e., schools with abundant budgets) may not be sensitive to shared incentives, and they 

(as “insensitive renters”) can be represented as the steep curve (𝜌 = −100) in Figure 2.8. Their 

rebound effect changes proportionally according to the savings allocated to them.  

 

 

                 Figure 2.8  Curves of Risk Tolerances  

As indicated in Figure 2.8, when the sharing percentage is fixed (i.e., 0.7), renters with 

different attitudes can yield different actual savings and result in different projects’ NPVs and 

contract periods. For example, the sensitive renter (𝜌 = −10) resulted in the 9.06% increment of 

a project’s NPV compared to the insensitive renter (𝜌 = −100) and in a 1-year decrease in contract 

period (from 14 years to 13 years).  

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

theta

re
b
o
u
n
d
 e

ff
e
c
t

 

 

Risk Tolerance is -100

Risk Tolerance is -50

Risk Tolerance is -20

Risk Tolerance is -10

1
-r

e
b

o
u

n
d

 e
ff

e
c
t

Risk attitude
NPV of Project 

(million USD)

Change in 

percentage

Contract 

period

ρ=-10 $24.19 9.06% 13

ρ=-20 $23.85 7.53% 14

ρ=-50 $22.84 2.98% 14

ρ=-100 $22.18 0% 14

Risk Tolerance is -10

Risk Tolerance is -20

Risk Tolerance is -50

Risk Tolerance is -100



 

 

42 

 

 

2.5.3 Other Influencing Factors 

The sensitivity analysis of variables can help decision makers deepen the understanding of 

performance-based contracts and better position themselves in negotiating ESPCs contracts. In 

order to measure and compare the impact of each variable, sensitivity coefficients (𝛽𝑃, 𝛽𝐶) were 

introduced to normalize their respective impacts on project NPV and optimal contract period. 

Sensitivity coefficient (𝛽) is calculated by 𝛽 =
|𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛|/𝑌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛  
. The greater the value of a 

coefficient, the higher impact that a parameter would have on the ESPCs contract value and period. 

Table 2.3 summarizes the result of sensitive analysis for key variables.  

Regarding the project NPV, initial investment (𝐼𝐶) and maximum rebound effect (𝜙) are 

key variables that most significantly impact project NPV. Capex (𝐼𝐶) is linearly correlated with 

energy saving potential, O&M cost, and the project NPV (𝛽𝑃 of Capex=1.00). Compared with 

initial investment, the maximum rebound effect (𝜙) has limited influence on project NPV because 

the NPV is explicitly determined by the actual rebound effect and dependent on both 𝜙 and shared 

percentage (𝜃). For example, when the maximum renters’ rebound effect (𝜙) is set to 5%, due to 

the shared incentive applied on renters (shared percentage = 0.7 ), the actual renters’ rebound 

effect is only 0.22% (retrieved from Equation (2.10)).  

Another significant factor (𝛽𝐶 = 0.5) is the ESCOs’ expected rate of return 𝑟𝐸 , which 

represents a company’s operating income on an investment over a period of time. The choice of 

expected rates of return (𝑟𝐸) should be determined carefully by ESCOs based on their needs. A 

50% increase of 𝑟𝐸  from its original value of 𝑟𝐸 = 0.09 will result in the minimum acceptable 

contract period to be stretched to 18 years. An additional 4 years is vital for a tender decision on a 

new project.   
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Table 2.3 Sensitive Analysis Results for Key Project Parameters 

Parameter Percentage change 

Adjusted value 

NPV of Project Optimal contract 

period (n*) 

Percentage 

change 

Adjusted 

value 

In millions 

USD 

P  In years 
C  

cI  -50% $10,334,496 11.96 1.00 14 / 

-20% $16,535,193 19.09 14 

0 $20,668,991 23.88 14 

+20% $24,802,789 28.62 14 

+50% $31,003,487 35.88 14 

G -83% 500,000 23.89 / 16 0.08 

 -75% 1,000,000 23.87 15 

0 3,000,000 23.88 14 

+75% 5,000,000 23.89 14 

+83% 5,500,000 23.90 14 

  -80% 0.01 23.88 / 13 0.08 

-40% 0.03 23.85 13 

0 0.05 23.87 14 

+40% 0.07 23.89 14 

+80% 0.09 23.79 14 

  -75% 0.05 23.97 / 13 0.05 

-25% 0.15 23.90 14 

0 0.20 23.89 14 

+25% 0.25 23.91 14 

+75% 0.35 23.90 14 

Er  -50% 0.03 23.91 / 11 0.50 

-17% 0.05 23.88 13 

0 0.06 23.89 14 

+17% 0.07 23.87 15 
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+50% 0.09 23.89 18 

  -66% 5% 24.03 0.01 14 / 

-33% 10% 24.00 14 

0 15% 23.92 14 

+33% 20% 23.81 14 

+66% 25% 23.67 14 

 

The guaranteed energy sharing clauses, such as sharing percentages (𝛼, 𝛽) and guaranteed 

savings (𝐺), can cause changes to the optimal contract period. Sharing percentages (𝛼, 𝛽)  indicate 

the distribution of energy saving benefits between ESCOs and building owners. A low sharing 

percentage (𝛼, 𝛽) means ESCOs share less from owners. A better-agreed-upon sharing percentage 

could encourage ESCOs to accept a shorter contract period. For example, ESCOs may offer a 13-

year contract when setting 𝛼 to 0.01 or 𝛽 to 0.05. However, the value of guaranteed savings (𝐺) 

needs to be designed carefully to avoid over- or under-estimation. When 𝐺 is largely lower than 

the actual savings (under-promise scenario), ESCOs would offer a large portion of savings amount 

to owners. When sharing percentage 𝛽 for extra savings (𝑅𝑡 − 𝐺) is large (much higher than 𝛼), 

the ESCOs have to extend the contract for a longer period to recover the initial investment. For 

instance, when 𝐺 decreases to 500,000 USD, the contract period under this case will increase to 

16 years. On the contrary, when 𝐺 is over-estimated, ESCOs must compensate the saving shortage 

(𝐺 − 𝑅𝑡) to owners based on the contract terms, causing an even longer contract period. In some 

extreme cases, such as when 𝐺  is increased by 125%, the corresponding contract period will 

increase up to 15 years.  
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2.6. Conclusion 

This study introduces a behavior-based decision-making model for evaluating and 

designing ESPCs contracts in rented properties. Renters’ rebound effect, a significant but 

frequently ignored phenomenon, is incorporated in this model to better estimate potential energy 

savings. The result shows that renters’ rebound effect would cause up to a 4-year difference of 

acceptable ESPCs contract length in the case study (17-year contract with 15% rebound effect, 13-

year contract without rebound). In order to mitigate and eliminate renters’ rebound effect, a shared 

incentive strategy between owners and renters was proposed. The major associated variables with 

rebound effect were discussed to assess their impacts on the profitability and duration of ESPCs 

projects, such as renters’ risk attitudes (𝜌), expected rates of return (𝑟𝑅, 𝑟𝑂 , 𝑟𝐸), and sharing strategy 

variables (𝐺, 𝛼, 𝛽).  

This proposed research contributes to the body of knowledge in two aspects. First, it 

incorporates renters’ energy rebound effect into ESPCs contract assessment for rented properties. 

The rebound effect was found to dominantly determine the contract period in this result. Second, 

the shared saving scheme proposed in the decision model enables a feasible incentive to mitigate 

the renters’ rebound effect. The results suggest the effectiveness of shared saving strategies in 

jointly achieving energy efficiency from both owners and renters.  

However, the study has two limitations that can be studied in the future. First, the rebound 

effect used in this study was estimated purely based on referred literature rather than direct 

experimental data. The rebound effect varies among various regions, projects, or users. Future 

works could focus on quantifying the magnitude of the rebound effect for different types of 

projects. Second, the stochastic process used in this model makes it difficult to simulate or forecast 

an event with a small probability and macro factors. For example, the energy price is presented by 
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a stochastic process based on historical data, but such a process is unable to forecast a sudden drop, 

such as the global oil price decrease in 2015. Further studies could incorporate discrete events into 

the simulation model.  
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Chapter 3: Means of Intervention for Occupant Energy Behavior 

 

Abstract 

With the advent of the Paris Climate Agreement and China ratifying it recently, there is a need to 

adopt a diversified approach to address climate change; this is especially the case of promoting 

residential energy conservation. This study is one of the first household energy intervention studies 

that focuses on the comparison of two message delivering means, paper-based versus instant 

messaging tool, as a platform for sharing energy-saving tips and engaging households to save 

energy in China. Conducted in several communities in Hangzhou, Zhejiang Province of China, the 

effectiveness of using a widely used application known as WeChat in promoting household energy 

conservation is compared with that of using stickers. It was found that WeChat is the most effective 

is reducing monthly consumption but the effects are short-lived. Comparatively, using stickers as 

a mean of engaging households produces more sustained results in terms of energy savings. This 

study also provides evidence to correlate the changes in energy consumption behavior with 

personal perception of one’s responsibility and quality of life. That is, certain behavior can be 

triggered if residents are willing to impose energy ration in their households, or are given more 

opportunities in the form of local programs that enable them to have more practices in energy 

conservation. 

3.1. Introduction 

China is presently regarded as a country with “transition economy”, whereby this transition 

brings a huge change to people in terms of their shared values, consumer behavior, standards of 

living and other socio-demographic indicators. Over the past decades, the electricity consumption 
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in China has been surging across various sectors, especially for the residential sector which has 

the highest consumption in overall, as compared to Service & Commercial, Agriculture & Forestry 

sector (Davidson, 2014). The National Bureau of Statistics of China (NBSC) found a drastic gain 

of energy use over the last 10 years at annual growth rate of 10.78% on average (NBSC, 2017). 

The World Energy Issues Monitor 2016 (Frei et al., 2017) also showed noted that the average 

electricity consumption of electrified household and electricity consumption for electrical 

appliances and lighting rise by 1% over the last 10 years, leading to a drastic increase of 3.5% of 

carbon dioxide (CO2) emissions in households between 1990 to 2014. This highlights the 

significance of utilization of electrical appliances to household energy consumption. 

With the drastic growing trend in China’s electricity consumption, it is of critical 

importance to study the efficacy of energy conservation initiatives and programs. While a variety 

of legislations and incentive schemes have been introduced to improve energy efficiency and 

conservation, the effectiveness of the programs and efforts has not generated significant impact to 

household energy conservation. The electricity consumption across all sectors, in particular, 

residential sector, is still largely dependent on the residents, regarding their education levels, 

intrinsic motivation and user behavior that lead to difference on the energy conservation (Schroer, 

2008).  

This study was thus conducted to find out how household energy intervention methods can 

be effective in encouraging Chinese households to save electricity consumption. Specifically, the 

key research objectives are: 1) to evaluate and compare the effectiveness of various antecedent 

intervention methods (that is, intervention without feedback), with respect to self-reported energy 

consumption behavior and amount of electricity used; and 2) to find the relationship between 
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various human behavioral and psychological factors, energy consumption behavior and electricity 

consumption.   

3.2 Literature Review 

3.2.1 Intervention Methods, Contents and Conveying Means 

Intervention methods can be divided into two types: antecedent and consequence. 

Antecedent intervention is introduced before the act of using energy so as to engage energy-saving 

behavior through knowledge-strengthening information. Consequence intervention occurs after 

the act of energy use so as to provide resultant information that reinforce the energy behavior (for 

example, providing feedback on historical energy consumption). Intervention to conserve 

household energy exert considerable influence when a combination of tailored information, goal 

setting, and feedback has been employed. The scope of this research is focused on antecedent 

intervention (tailored information) on direct energy.  

The effectiveness of providing feedback to intervene residents’ behaviors is various and 

depended on different factors such as customized information and frequency of delivery. The 

individual intervention, in which the information of a resident’s energy consumption in the current 

period compared to the amount in the previous period, can generate significant energy reductions 

about 5-12% (Dietz et al., 2009, Jain et al. 2012). Studies also found that residents who received 

comparative feedback of their energy use in relation to peers’ consumption tend to show more 

energy-saving manners than those who received only individual feedback (Shen et al. 2016), 

because the comparative feedback generate motivational effect that encourages participants to save 

more energy. Similarly, Delmas and Lessem tested the efficacy of detailed private and public 

information on electricity conservation in an unique field experiment context in university 
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residence halls (Delmas and Lessem, 2014). Private information that contains energy usage 

information was delivered through an online dashboard coupled with weekly emails, while public 

information was presented in the form of posters that publicly rated rooms as above or below 

averages energy users additionally. They concluded their study that while private information 

alone was ineffective, a combination of public and private information motivated a 20% reduction 

in electricity consumption. The competition orientation created by such an intervention strategy 

can lead to continuous savings even after the intervention (Siero et al. 1996, Abrahamse et al. 

2007). For residents living in a well-connected social network so they can effectively communicate 

among their peers, the intervention-induced energy savings are suggested to be higher (Nilsson et 

al. 2015).  

Another often raised debate with the feedback intervention is to determine the impact of 

delivering method of the feedback in reducing energy consumption. A Sweden study that included 

more than 2000 households evaluated the effects of the different ways of presenting feedback used 

for different intervention groups (Vassileva et al., 2012). Emails become popular in many behavior 

intervention studies (Asensio and Delmas, 2015, Carrico and Riemer, 2011, Gulbinas and Taylor, 

2014, Jain et al., 2013). Jain et al. employed weekly eco-feedback emails in their experiments to 

examine the impact that information representation has on energy consumption behavior by 

comparing the effectiveness of direct energy feedback versus feedback represented as 

environmental externality (Jain et al., 2013). They revealed that information representation has a 

statistically significant impact on the energy consumption behavior of uses. However, the 

experiment that provides paper-based manual feedback on energy conservation suggested no 

significant effect on reducing energy use (Katzev et al. 1980), and this result aligns with other 

studies (Kua and Wong 2012). Websites or in-home display that have used by relatively high 
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income families can provide easy and instant access to energy information that reflects residents’ 

energy behavior (Vassileva et al. 2013). Web-based feedback resulted in being the most effective 

compare to direct display and paper-based and achieved approximately 15% electricity savings 

(Vassileva et al., 2012). A recent research stated that counselling is more powerful in residents’ 

energy conservation (He and Kua 2013).  

Given uncertain impact by various delivery methods, it is essential to compare and to 

choose optimal delivery methods as part of the energy intervention for achieving maximum 

conservation. In the non-residential building context, Gulbinas and Taylor developed an eco-

feedback system in a novel 9-week system study and demonstrated that the organizational network 

dynamics can significantly affect energy conservation among commercial building occupants 

(Gulbinas and Taylor, 2014). Weekly emails and stickers were used to remind employers to 

increase the engagement of the energy management systems. Carrico and Riemer also selected to 

use monthly group-level feedback emails and peer education to test different energy conservation 

motivations in the workplace, in addition to the usage of a series of four postcards in the early 

information campaign (Carrico and Riemer, 2011). The results showed that feedback and peer 

education resulted in a 7% and 4% energy reduction, respectively (Carrico and Riemer, 2011). In 

a most recent famous experiment that evidenced environment and health-based information 

strategies outperform monetary savings in driving residential behavior change, informational 

messages were delivered via a specialized, consumer-friendly website and weekly accessible 

emails by personal computer and portable electronic devices (Asensio and Delmas, 2015).  

3.2.2. Behavior Intervention in China 

Most of past energy behavior related studies in China are based on survey, interview and 

qualitative inquires. Diansu et al. (2010) conducted surveys and interviews of 600 households in 
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Liaoning Province; they investigated the relationship between electricity consumption and 

household lifestyle, and evaluated the potential to improving occupants’ behavior in reducing 

electricity consumption through energy saving education. Wang et al. (2011) studied residents’ 

willingness and behavioral characteristics in saving electricity; they found that economic benefits, 

policy and social norms, and past experience positively influenced behavior, but physical 

discomfort negatively influenced such behavior. They concluded that additional and sustainable 

administrative interventions in electricity marker need to be initiated with government support. 

Hori et al. (2013) conducted a survey of energy-saving behavior of residents in five Asian cities, 

including Dalian and Chongqing. They discovered that global warming consciousness, 

environmental behavior, and social interaction significantly improve energy-saving behavior. 

Income and age have weaker but positive effects on energy-saving behavior, while social 

interaction has strongly linkage. They then suggested using community program to modify such 

behavior. 

In their study on Tianjin residents, Xu et al. (2013) found little behavioral change in 

response to the provisions of monetary incentive, billing-method reform, or metering of heating 

energy use in individual apartments. Their findings hinted that innovative energy policies, 

technology upgrades, and education would be needed to promote behavioral changes towards 

additional savings. Yue et al. (2013) studied 638 households across 6 cities in Jiangsu Province; 

using an internet survey to study three types of energy-saving behavior and four dimensions of 

influencing factors – including socio-demographics, energy-saving awareness, behavioral ability, 

and situational factors. In studying commercial building users in Beijing, Zhang et al. (2013) found 

that personal norm positively influences employee electricity-saving behavior. In addition, 
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awareness of consequences, ascription of responsibility, and organizational electricity saving 

programs positively influence personal norm. 

In an interesting study on the effect of metering, Ling et al. (2014) quantitatively analyzed 

the arousal effect of electricity metering policy on occupancy energy-saving behavior. They found 

that energy-saving rate in the heating season increased significantly from 4.11% in 2008–2009 to 

10.27% in 2011–2012, as a result of the metering policy. Chen (2016) conducted one of the few 

studies on Taiwan; the author argued that extended Theory of Planned Behavior model offers 

better prediction of one's intention to engage in energy conservation. The findings imply that one's 

intention to engage in energy savings and carbon reduction is mostly influenced by one's own 

moral obligation, instead of one's perceived behavioral control. Ma et al. (2016) assessed the 

impact of culture (6 factors) on the effectiveness of eco-feedback technologies in shaping 

occupants’ energy consumption behavior within the dormitory of Tongji University. They 

suggested that eco-feedback technologies should be tailored to specific cultural context to improve 

their effectiveness in building energy conservation.  Finally, Ding et al. (2017) investigated 187 

individuals in Jiangsu Province and found whether there is any urban-rural and regional differences 

in the energy-saving behavior of residents. They found evidence that urban residents tend to 

engage in more energy-saving activities. The most important influencing factor is different and 

dependent on where these residents live.  

Only a few of these studies adopted empirical interventions and that included energy-

saving education (Ouyang and Hokao, 2009), changes to energy pricing (Ling et al., 2014) and 

eco-feedback (Ma et al., 2014). Ouyang and Hokao (2009) examined the effectiveness of education 

on changing residents’ behavior by comparing the energy bill for one month (July) between two 

consecutive years. Ma et al. (2016) studied the effectiveness of eco-feedback for users from 
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different cultural background but within a campus environment, whereas Ling et al. (2014) 

conducted a natural experiment in which the regional government reformed the heart-metering 

price, and resulting in a significant change of occupancy behavior changes in associated areas.  

Central to all intervention related studies are the nature of the information and the ways by 

which it is conveyed to households. Although stickers and leaflets were implemented in several 

studies (including Thondhlana and Kua, 2015), such intervention method has not been applied to 

China yet. With the advent of various social media and instant communication platforms, it 

becomes imperative for us to examine their effectiveness in promoting energy-saving behavior.  

WeChat is an instant messaging service in China that was first released in 2011. It is one 

of the largest messaging applications by more than a billion created accounts and 700 million 

active users in 2016. WeChat is available on most of current smartphone systems, such as iPhone 

and Android, as well as a web-based client. It comprises of a variety of functions including text, 

voice and video messaging, broadcast (one-to-many) messaging, sharing of photographs and 

videos (known as “Moments”), and also social networking services that are similar to those 

provided by Facebook and Instagram. Based on a recent national survey (Penguin Intelligence, 

2016), WeChat is the most popular smartphone application for Chinese citizens and its users show 

very high customer loyalty – that is, 94% of WeChat users utilize the application daily, with about 

55% of these users spending over 1 hour daily using its services. Such a critical mass of daily users 

and stable user habit provides an opportunity to study its effectiveness in engaging and promoting 

energy-saving behavior in households.  

3.2.3 Other influencing factors 

It is important for household intervention studies to carefully consider how residents’ 

quality of life and views towards their lifestyle determine their energy consumption behavior. This 
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understanding will inform the design of intervention methods that can be implemented to change 

residents’ energy consumption behavior, without compromising their demands for their expected 

lifestyle. Examples of interpretation and correlation of changes in energy behavior and 

consumption according to personal values and worldviews include studies by Chelleri et al. (2016), 

He and Kua (2013), Kua and Wong (2012), and Thondhlana and Kua (2015). Although some of 

these studies were carried for predominantly Chinese community in Singapore, such correlation 

studies carried out on China has not been done before. Most of these studies utilizes the quality of 

life (QOL) variables proposed by Poortinga et al. (2004). QOL is closely link with users behavior 

in determining natural resources consumption, however one of the key weaknesses of these QOL 

variables is that to conduct survey of these 22 variables is not always easy. To complement these 

variables, Kua (2016) proposed the 6-factor system known as RICCOW, which stands 

Responsibility, Incentive, Capacity, Capability, Opportunity and Willingness. In the context of 

this study, understanding one’s RICCOW means  

(a) Knowing one’s sense of responsibility to save energy; 

(b) Knowing the types of incentive that will encourage him/her to be more willing to 

save energy; 

(c) Knowing how to increase his/her capability and capacity to save energy; and 

(d) Providing appropriate opportunities for him/her to save energy.  

The relationships between these RICCOW factors and the Theory of Planned Behavior is 

shown in Figure 3.1, in which the shaded boxes are the main stages in determining pro-

environmental behavior according to conventional Theory of Planned Behavior. Posited between 

“intention” and “pro-environmental behavior” are so-called “context provision factors” that 

provide the context for “intention transformation factors” – willingness and capacity to save energy 
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– to take effect, either positively or negatively (Kua, 2016). In short, for intention to lead to pro-

environmental behavior, households must be provided with “opportunities” to practice these pro-

environmental behaviors. When opportunities are present, they must also be “willing” and have 

the “capacity” to practice this behavior. Willingness can be enhanced by having adequate and 

appropriate “capabilities” and “incentives”. The more households feel responsible toward, the 

more likely that they will be willing to practice it. 

 

 

Figure 3.1 The RICCOW Model Proposed by Kua (2016) 
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3.3. Research Methodology 

This study focused on households in two residential communities (Changmu and Qinfeng 

communities) in Jianggan District of Hangzhou, Zhejiang Province, China. Hangzhou is one of 

the low-carbon pilot cities selected by China’s administration. With prospective social and political 

environment, the result of this study in Hangzhou would significantly impacts on policy-making 

of local government, and even on energy behavior conservation policies in China. During the 

sampling process, a population of 120 households were chosen from these two communities and 

they were divided into three categories – the Sticker, “WeChat” and Control groups, with 40 

samples per group. It is worth to note that two residential communities (Changmu and Qinfeng) 

were both ordinary residential communities in the same district where residents share similar 

demographic statistics and living habits without significant difference. Table 3.1 provides the 

details for each of these three group. A sample of energy saving tips is shown in Figure 3.2. 

The overall sequence of the intervention process is shown in Figure 3.3. In summary, only 

direct energy consumption of electricity was studied. The study began in January 2016 and ended 

in June 2016. Participants were notified for the commencement of the energy-savings campaign 

on 15th January 2016. Although the actual intervention starts in April, the consumption data for 

the earlier months were collected to exam possible existence of the Hawthorne effect. As electricity 

consumption is likely influenced by varying weather conditions, the daily forecasted weather 

information from the year of 2015 to July 2016 were also retrieved from Hangzhou Meteorological 

Bureau. They were used during data analysis to uncover possible anomalies in energy consumption 

data due to changes in weather conditions. 
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Table 3.1 Details of Treatment and Location of the Three Experimental Groups 

Types of 

Intervention 

Community Sample 

Sizes 

Description of intervention methods 

Stickers Changmu 

community (Linli, 

Dong Yuan, Xi 

Yuan residential 

complexes) 

40 

 

A list of energy-saving tips is shown in the 

stickers, and it was distributed to the targeted 

households once every month. Households 

were encouraged to paste the stickers on the 

fridge as a form of reminder and for creating 

awareness regularly. The Chinese and English 

versions of the sticker designs are shown in 

Figures 3.2. 

WeChat 

(instant 

messaging 

platform) 

Qinfeng 

community 

(Mingzhu 

residential 

complexes) 

40 WeChat is the most common social chatting 

platform that is widely used in China. Upon 

selected to be part of this intervention group, 

households were asked for the WeChat IDs of 

as many of the household members as possible. 

WeChat messages that contain energy-savings 

tips and reminders (the same information as 

printed in stickers) were sent to the targeted 

households twice a month. 

Control 

(without 

intervention) 

Changmu 

community (Dong 

Yuan, Xi Yuan 

residential 

complexes) 

40 The control group was not given any 

intervention. 
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Figure 3.2 Energy-Saving Tips (in Chinese) and Translation in English 

 

 

 

Figure 3.3 Sequence of the Interventions Over the 6-Month Experiment Period  

 

Participants were then approached in February to answer a questionnaire (that is, survey 

A, shown in Appendix A) that recorded any changes in self-reported energy consumption behavior. 

Save energy. Make your effort. 

 

 

 

 

 

 

 

 

 

January 2016 
• Notification of 

residents of the 

study (on 15
th

 

January). 

• Collection of 

electricity bills. 

February and 

March 2016 
• Conducting of 

survey A and B. 

• Collection of 

electricity bills. 

April, May and June 

2016 
• Conducting of survey B. 

• In June, survey A was 

also conducted for the 

second time in this study. 

• Implementation of 

intervention, if applicable. 

• Collection of electricity 

bills. 

5 energy saving tips: 

1. Use a fan instead of an air-conditioner to 

keep cool 

2. Choose energy efficient light bulbs 

3. Switch off main power (when not in use) 

4. Set AC cooling temperature 26⁰C or above  

5. Select energy efficiency labelled appliance 

More tips: 

1. Use more natural light 

2. Shut the contains or blinds 

3. Boil water before necessary use 

4. Turn on air-conditioner one hour before 

sleep 

5. Use a fan instead of an air-conditioner 

before sleep 

6. Keep the refrigerator away from heat 

sources 

7. Do not overfill the refrigerator 

8. Turn off the set-top box when you are not 

watching TV 
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The survey questionnaire was adapted from He and Kua (2013), in which they conducted an 

experiment of energy saving behavior intervention in Singapore. Aside from questions on the 

possession of the appliances (e.g. number of air-condition, fridges and washers), the behavior 

survey is grouped by sets of operation behaviors on the air-conditioner, refrigerator, lighting and 

home electronics. More precisely, the respondents are asked questions relating to the use of the 

appliance, in terms of the frequency and/or the way they use it. Demographic, QOL and RICCOW 

factors were recorded and evaluated using a second questionnaire (survey B, shown in Appendix 

B); any correlations among these various factors and the self-reported behavioral changes (taken 

from responses to Appendix A) were evaluated. Demographic profiles of households were 

recorded; this include household members’ age, households’ size, income, education level, 

housing type and so on; all these are the basic yet essential factors which might influence the 

results of the study. Such information allowed us to evaluate any correlation between them and 

any reduction in electricity consumption. The second questionnaire (Appendix B, Part 2 and 3) 

was designed based on the QOL factors proposed by Poortinga et al., (2004) and RICCOW factors 

proposed by Kua (2016). Subsequently, all interventions were given from April to June 2016.  

Six kinds of quantitative/qualitative analyses were performed on the data collected. They 

are   

i. Correlation between demographic factors and energy consumption/energy behavioral 

scores, 

ii. Differences in energy behavioral scores between treatment and control groups; that is, 

differences between Sticker group’s average score and control group’s average score 

were found. The statistical significance of such differences were evaluated. 
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iii. Differences in monthly energy consumption between treatment and control groups; 

that is, differences between Sticker group’s average consumption and control group’s 

average consumption were found. The statistical significance of such differences were 

evaluated. 

iv. Correlation between energy behavioral scores and QOL/RICCOW factors, 

v. Correlation between energy consumption and QOL/RICCOW factors, and 

vi. Correlation between energy behavioral scores and energy consumptions.  

The Shapiro-Wilk’s test was used to determine whether the obtained data set is normally 

distributed. If the condition of normality is not met, non-parametric statistical methods were 

employed for the aforementioned six types of tests. 

3.4. Results 

A total of 116 out of the intended 120 households completed the entire study. As shown in 

Table 3.2, 56 of them lives in economically affordable housing, with majority of the households 

having 3 to 4 family members each. The household sample distribution shows that over 22% of 

household occupants belong either to Generation Z (those born in the range from mid-1990s to 

early 2000s), Generation Y (those born in the 1980s and early 1990s) or baby boomers (those born 

between 1946 and 1964). Above 50% of the households receive education level up to university 

degree. Majority of the households has also indicated a total monthly income between 5,000¥ 

(Chinese Yuan) and 15,000¥. This distribution may potentially influence households’ self-reported 

energy behavioral scores and electricity consumption monthly.  
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Table 3.2 Characteristics of Households Involved in This Study 

Demographics Range Numbers  Percent (%) 

 

 

Housing Type  

Commercial 38 32.76 

Economically affordable housing 56 48.27 

Low-rent housing None None 

Resettlement housing 22 18.97 

 

 

Age groups 

< 27 years old 81 22.63 

27 - 34 years old 71 19.83 

35 - 45 years old 43 12.01 

46 - 59 years old 83 23.18 

> 59 years old 80 22.35 

 

Number of 

members per 

household 

1 – 2 members 30 26.09 

3 – 4 members 59 51.30 

5 – 6 members 22 19.13 

7 – 8 members 4 3.48 

 

 

 

Education 

Level 

Below Primary School 2 1.74 

Primary School None None 

Junior School 9 7.83 

Senior High School (Technical 

Secondary, Vocational, and Technical 

School) 

26 22.61 

Diploma (Higher Vocational School) 14 12.17 

Degree 59 51.30 

Postgraduate and above 5 4.35 

 

 

Income Level 

Below 5,000¥ 28 24.56 

Between 5,000¥ and 10,000¥ 43 37.72 

Between 10,000¥ to 15,000¥ 24 21.05 

Between 15,000¥ to 20,000¥ 11 9.65 

Between 20,000¥ to 25,000¥ 4 3.51 

More than 25,000¥ 4 3.51 
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3.4.1 Changes in Energy Behavior 

Using Shapiro-Wilk’s test, it was found that the energy behavior scores were not normally 

distributed. Therefore, the non-parametric Kruskal-Wallis test was used to determine whether there 

was any significant difference in energy behavior scores amongst the three groups for the months 

of April, May and June. The results are shown in Table 3.3.   

 

Table 3.3 Different Energy Behaviors Between the Treatment and Control Groups  

Energy Behavior Types Between Groups Significance Level 

1. Refrigerator that is not overloaded. Stickers and Control 0.038 

2. Use automatic time-off switch when possible, 

for example, after going to bed at night. 

WeChat and Control 0.047 

3. Regularly check the air-conditioners and 

clean air filter timely. 

WeChat and Control 0.015 

4. Frequency of using the washer in a week WeChat and Control 0.020 

5. Switch off the top boxes (of all home 

electronic devices) when they are not in use？ 

Stickers and Control 0.011 

WeChat and Control 0.001 

6. Turn on the electric water warmer only when 

necessary. Turn it off and unplug it when it is 

not in use. 

Stickers and Control 0.000 

WeChat and Control 0.000 

Note: These results are based on Kruskal-Wallis tests performed on the scores recorded by 

households in the different treatment and control groups in the energy behavioral survey 

(Appendices A and B). 

 

Table 3.3 shows that Kruskal-Wallis test found significant difference between the 

treatment and control groups for only six out of the 29 recommended energy behaviors. Overall, 
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WeChat was found to be more effective than stickers in modifying behavior, because the WeChat 

group recorded improvements in more types of energy behavior than the Sticker group. 

Specifically, households in the WeChat group reduced the weekly frequency of using washers, 

increased the use of automatic timer switch, and more regularly checked and cleaned their air-

conditioners. On the other hand, stickers were found to be more effective in reminding residents 

not to overload their refrigerator and turn off their electric warmers.  

3.4.2 Changes in Energy Consumptions 

The Shapiro-Wilk’s test was applied to determine whether the energy consumption data 

collected was normally distributed. It was found that the data distribution was skewed and kurtosed 

(outside ±2.58), and hence it was concluded that the distribution was not normal. Overall, no 

significant correlation was found between the demographical factors and energy consumption.  

The key results between the intervention and energy consumption are shown in Table 3.4. 

As mentioned earlier, this study was introduced to all households on 15th January 2016. Although 

the treatments were only administered in the middle of April, there were significant changes 

between February and January in all groups. This seems to imply that Hawthorne effect was 

present; that is, there is an improvement in energy saving purely from an awareness of being 

observed. However, the annual Chinese New Year was celebrated in the month of February, and 

the fact that majority of the household members were not at home most of the time could be the 

key reason that there were significant reductions in electricity consumption from January to 

February.  
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Table 3.4 Reductions in Electricity Consumption of Treatment and Control Groups  

Groups  Difference in energy consumption between two months (in kWh) 

February 

and 

January 

March 

and 

February 

April 

and 

March 

May 

and 

April 

June 

and 

May 

June and 

January 

Sticker Mean 85.51 42.69 46.28 12.28 -28.46 158.30 

Significance 

(2-tailed) 

0.00 0.00 0.00 0.02 0.01 0.00 

WeChat Mean 228.39 11.71 35.42 1.92 -51.81 225.63 

Significance 

(2-tailed) 

0.00 0.31 0.00 0.57 0.00 0.00 

Control Mean 114.97 36.28 43.82 0.90 -17.79 178.17 

Significance 

(2-tailed) 

0.00 0.00 0.00 0.83 0.00 0.00 

Note: Positive values refer to reductions in consumption from the previous month. 

 

The significant reduction between March and April for the Sticker and Control groups may 

also indicate the presence of Hawthorne effect; however, changes in the weather in Hangzhou 

between these two months might be the likely reason. Specifically, the total heating degree day in 

March was 172.9, whereas that in April was only 14.7. That is, the significant change in weather 

condition across two months might have contributed to the reduction in electricity consumption 

(for heating), other than (or instead of) the Hawthorne effect. Similarly, the hot weather exerted 

influence in June and caused a universal energy increase for all groups between May and June by 

using more cooling devices. As shown in Table 3.4, consumption reductions were present and 

significant for all months in the Sticker group, which was the most consistent of all groups. 
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However, across the six-month study, Sticker group recorded the least reduction (that is, 158.30 

kWh).  

Over the entire study, the WeChat group recorded the most reduction (that is, 225.63 kWh), 

compared to Sticker and Control group (158.3 kWh and 178.17 kWh respectively). WeChat 

messages were sent out to the residents twice every month, and so residents experienced a higher 

frequency of reminder about energy-saving tips than the sticker group. Hence, it is reasonable to 

expect that residents might be more likely to act by reducing their electricity consumption in a 

timely reinforced feedback. However, it was also observed that the results of WeChat were not as 

consistent as the Sticker group – its effect diminished toward the end of the study and the reduction 

in the period June-and-May decayed in a great amount (-51.81 kWh). Possible reasons for these 

findings are presented in Section 3.5. 

3.4.3 Correlating Energy Behavior and Consumption with Quality-of-Life and RICCOW Factors 

The non-parametric Spearman’s rho correlation coefficient test was used to determine 

whether there is significant correlation between human values/psychological factors and changes 

in energy behavior. Table 3.5 shows the several variables that are significantly correlated to the 

energy behavior traits. Out of the 32 QOL and RICCOW variables, only 11 variables were found 

to significantly correlate with the self-reported energy behavior change. Specifically, most number 

of households in the Sticker group showed significant changes in the following behavioral traits:  

• Covering up container lids before storing liquid in refrigerator, and this was found to 

correlate with QOL factors of “importance of comfort in daily life”, “good environmental 

quality”, “having sufficient self-esteem and personal identity”, “having sufficient personal 

time”, “feel safe” and “live with spirituality”.   
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• Keeping the doors and windows closed when air-conditioner is switched on, and this was 

found to correlate with RICCOW factors of “having strict electricity consumption plan to 

control budget and conserve energy”. 

One can conclude from Table 3.5 that RICCOW factors complement the QOL factors 

reasonably well, because there are three RICCOW factors that were found to correlate with 

behavioral traits that do not correlate with any of the 22 QOL factors. However, no significant 

correlation was found between any QOL or RICCOW factor with the monthly electricity 

consumption. 

3.4.4 Correlation between Behavioral Change and Consumption 

The last type of analysis done was identifying any significant correlation between the 

electricity consumption data and self-reported energy behavior scores. The finding revealed that 

only one behavior trait has statistically significant correlation with electricity consumption (p= 

0.031, two-tailed) – the behavior trait of drying clothes under sunlight. In other words, those who 

practiced drying clothes under natural sunlight, instead of doing so with clothes dryer whenever 

possible, were also likely found to reduce more electricity consumption. 
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Table 3.5 Variables That are Significantly Correlated to the Energy Behavior Traits 

Treatment 

group 

Behaviors with significant 

difference between a treatment 

and control groups 

Human values or psychological factors that 

are significant to the behavioral trait 

Significance 

(2-tailed) 

Sticker 

group  

o Store liquids in the 

refrigerator after covering it 

up 

 Comfort Level: Having a comfortable and easy daily life 0.002 

 Environment Quality: Having access to clean air, water and soil. 

Having and maintaining a good environmental quality. 

0.007 

 Self-esteem/ Personal Identity: Having sufficient self-respect and 

being able to develop one's own identity 

0.003 

 Leisure Time: Having enough time after work and household work 

and being able to spend this time satisfactorily.   

0.002 

 Safety: Being safe at home and in the streets. Being able to avoid 

accidents and being protected against criminality. 

0.006 

 Spiritual/Religion freedom: Being able to live a life with an 

emphasis on spirituality and/or with your own religious 

persuasion. 

0.008 

o Keep windows and doors 

closed when the air-

conditioner is switched on. 

 Strict electricity consumption plan (family plans a cut-off point for 

electricity consumption, which cannot be exceeded every month) 

help to conserve energy. 

0.008 

 Having such energy-saving activity as an opportunity. 0.004 

o Turn lights off when nobody 

is in the room. 

 Health: Being in good health, access to adequate health care. 0.009 
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o Use task lighting for 

activities requiring small 

amount of focus light (for 

example, only turn reading 

lamps on and turn the other 

lights off). 

 The higher the education level of family members, the stronger the 

intention to conserve energy. 

0.006 

o Turn off home appliances 

(for example, television) not 

in use instead of leaving on 

standby. 

 Social Recognition: Being appreciated and respected by others. 0.009 

o Unplug chargers or off the 

switch when appliances not 

in use. 

 Freedom:  Freedom and control over the course of one's life, to be 

able to decide for yourself, what you do, when and how. 

0.01 

 Living Condition: Having nice possessions in and around the 

house. 

0.004 

 Income:  Having enough money to buy and to do the thing 

necessary and pleasing. 

0.001 

 

 

 

 

 

o Set the thermostat below 

20oC (or turn off air-

conditioner) during winter; 

Set the thermostat above 

26oC during summer 

 Environment Quality: Having access to clean air, water and soil. 

Having and maintaining a good environmental quality. 

0.008 
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WeChat 

group 

o Keep windows and doors 

closed when the air-

conditioner is switched on. 

 Having such energy-saving activity as an opportunity. 0.004 

o Allow some space all around 

the fridge. 

 Safety: Being safe at home and in the streets. Being able to avoid 

accidents and being protected against criminality. 

0.007 

 

o Store liquids in the 

refrigerator after covering it 

up. 

 Comfort Level: Having a comfortable and easy daily life. 0.001 

 Environment quality: Having access to clean air, water and soil. 

Having and maintaining a good environmental quality. 

0.002 

 Self-esteem/ Personal Identity: Having sufficient self-respect and 

being able to develop one's own identity.   

0.003 

 Safety: Being safe at home and in the streets. Being able to avoid 

accidents and being protected against criminality. 

0.006 

o Turn lights off when nobody 

is in the room. 

 Health: Being in good health, access to adequate health care. 0.003 

 Environment quality: Having access to clean air, water and soil. 

Having and maintaining a good environmental quality. 

0.004 

o Unplug chargers or off the 

switch when appliances not 

in use. 

 Income:  Having enough money to buy and to do the thing 

necessary and pleasing. 

0.000 
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3.5. Discussion of Findings 

Described in Section 3.4.1, WeChat was the most effective in triggering significant 

behavioral changes than using stickers. Although the WeChat group recorded the most energy 

savings between June and January (that is, 225.63 kWh), the amount of saving decreased through 

the months – from 228.39 kWh (between February and January) to 35.42 kWh (between April and 

March). The messages that were sent to residents via WeChat were not varied throughout the study; 

therefore, the fact that respondents might have gotten used to receiving similar (albeit more 

regular) messages to the extent that they might not pay as much attention to these messages over 

a longer period of time. In other words, the effectiveness in using instant messaging platform, such 

as WeChat, was short-lived.  

It was observed that even the control group recorded significant reductions as well. 

Although this group was informed about the energy saving study, they were neither informed that 

they were the control nor the nature of the other treatment groups; therefore, it is likely that they 

had considered themselves as being “treated” and the information given to them about the study 

was the treatment itself. The decreased sharply – from 114.97 kWh (between February and 

January) to 43.82 kWh (between April and March). This decrease is expected because without 

additional treatment, the effect of merely receiving information about this study itself is unlikely 

to sustain.  

Although the 22 QOL factors proposed by Poortinga et al. (2004) were widely used for 

correlating energy behavior and consumption with personal values or worldviews, results of the 

present study clearly indicated that the 22 QOL factors are insufficient to describe all the 

observations. Three RICCOW factors correlate with several behavioral traits that QOL factors are 
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unable to correlate with. Specifically, the action to keep windows and doors closed when the air-

conditioner is switched on was found to be correlated with a willingness (the RICCOW factor of 

“willingness”) to set and achieve specific consumption targets and having an opportunity to 

commit to energy saving. People who believe that higher education (leads to the RICCOW factor 

of “capacity”) to save energy also commit more to using task lighting. However, it is worth noting 

that although the notion that higher educational level of family members leads to stronger intention 

to save energy has a significant influence on the increased use of task lighting, statistical analyses 

proved that educational level is not correlated with any improvement in behavioral traits.  

Finally, although data on energy consumption and behavior congruently show the 

advantage of using the WeChat treatment, the correlation of these variables with QOL or RICCOW 

showed very different results. Firstly, these results reflect the complexity and difficulty involved 

in linking psychological or social factors to behavior and, even more so, actual reductions in 

electricity consumptions. Secondly, while changing energy behavior has been an aspiring target 

for many similar studies in the past and ongoing energy policies around the world, it is worth 

pointing out that not all pro-environmental behavior will lead to eventual energy reduction (even 

without considering the infamous rebound effect). One of the reasons is that existing physical 

problems in buildings may negate effects of energy-saving behavior. A good example is electrical 

appliances that are not energy efficient. Even though improvement in energy behavior may not 

lead to actual savings, they should still be promoted by using different policies because if the right 

sets of conditions were presented or provided in the future – for example, more energy efficient 

appliances are made available or better wall insulations are installed – these actions will likely lead 

to actual energy savings.  
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3.6. Conclusion  

 This study is likely to be the first in the literature that investigates and compares the 

effectiveness of using instant messaging platform and stickers for promotion of energy saving in 

households in China. It is also the first study in which a set of RICCOW factors was used to 

correlate participants with their self-reported energy behavior and energy consumption. It was 

found that WeChat is the most effective is reducing monthly consumption, but effects are short-

lived. In contrast, using stickers as a mean of engaging households produces more sustained 

results. This study also provides evidence that not all changes in energy consumption behavior can 

be readily correlated with personal perception of quality of life. Additionally, certain behavior can 

be triggered if residents are willing to impose energy ration in their households, or are given more 

opportunities that enable them to have more practices in energy conservation. 

As the Paris Climate Agreement enters into effect and China ratifying it ahead of the G20 

Summit in September 2016, climate change mitigation efforts worldwide should more widely 

embrace the use of creative household intervention methods for a more diversified approach to 

address climate change. Therefore, more studies are needed to fully understand the acceptability 

and effectiveness of various intervention methods to the highly diversified populace of China. 

Another future study is to consider residents’ interconnected social network and its effect in 

influencing the people’s energy behavior, because people are social oriented and they are likely to 

be changed after interacting with a close relative or friend. Meanwhile, long term investigation 

about the decay effect and rebound effect of intervention is also imperative and can bring 

significant value to the field. It is hoped that the results will spur more future studies that target on 

the use of pervasive social media platforms as a mean of engaging a country that will continue to 
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play a very crucial role in deciding the eventual success of climate change strategies in meeting 

our common global mitigation goal. 
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Chapter 4:  Occupant Personality, Behavior and Energy Use Forecasting1 
 

Abstract 

Household electricity consumption influenced by various behavioral intervention strategies is 

difficult to predict due to the uncertainty arises from involved human behaviors and their responses 

to intervention. Based on an energy conservation experiment conducted in Hangzhou, China, the 

study aims to develop an improved Support Vector Regression (SVR) model that is capable of 

predicting household electricity consumption under multiple intervention strategies. The proposed 

model incorporates personality traits into the consumption prediction. This study firstly proposes 

a variable selection approach to determine the best subset of consumption predictors using Akaike 

Information Criterion (AIC). 18 of the 48 initial variables have been considered as the critical 

predictors, including energy behaviors, personality traits, demographic/building features, weather 

indicators and the historical monthly consumption in this research. Furthermore, this research also 

introduces the interaction effect between the energy behavior and all other predictors mentioned 

above to the SVR prediction model which applies Gaussian radial basis function (RBF) optimized 

by genetic algorithm (GA) as the kernel function. The results show that the proposed model 

achieves high accuracy and robust performance on the next-month prediction and time-series 

forecasting. More importantly, the improved SVR model is able to select the optimal intervention 

strategy and to predict the maximum electricity savings for each household. The proposed 

optimized intervention strategies enable the households to achieve an average reduction of 12.1% 

in monthly electricity consumption compared with the conventional behavioral intervention. 

                                                 
1 The abridged vision of this Chapter was previously presented in the 9th International Conference on Applied 

Energy, ICAE2017, 21-24 August 2017, Cardiff, UK.  



 

 

76 

 

 

Moreover, through performing Monte Carlo simulation to explore the relationship between 

personality traits, the best-fit intervention strategies and the maximum electricity savings, the study 

also identifies five types of households with different combinations of extraversion and 

conscientiousness that respond differently to the optimized interventions. The findings of this 

study contribute to the residential demand-side energy management by enriching and diversifying 

personalized behavioral intervention strategies. 

4.1 Introduction 

The residential sector is considered as the key sector for energy saving potentials in China. 

In 2015, residential buildings contributed to 13.1% of the electricity use (NEAC, 2016), and this 

amount of consumption continued to quickly expand by 10.8% in 2016 (NEAC, 2017). Recent 

research reveals that other than innovative energy-efficient technology, occupant behavior driven 

energy reductions could also be a promising strategy to tackle this problem (Khosrowpour et al., 

2016b). Since household energy-related behavior itself can significantly bear on energy use 

(Schakib-Ekbatan et al., 2015), there is plenty of room in energy conservation in buildings through 

introducing multiple behavioral intervention strategies to change occupant behaviors (Stern, 

2011). 

 As existing studies seldom considered and quantified the impacts of occupant behaviors 

and other personal characteristics on household electricity consumption, the effectiveness of 

behavioral interventions may not be assessed and predicted accurately (Steg, 2008, Martinaitis et 

al., 2015). In particular, for residents with heterogeneous characteristics, there is a growing need 

to identify key energy behaviors, in order to predict the household energy consumption accurately 

through different intervention strategies (Huebner et al., 2013, Huebner et al., 2016). However, the 



 

 

77 

 

 

energy-related behaviors cannot be easily measured, due to the influence from a wide range of 

factors such as personalities and situated contexts (Gatersleben et al., 2002). Moreover, although 

the majority of behavioral intervention studies have focused on conducting statistical analysis of a 

field and/or on laboratory experiment (Chen et al., 2017a, Pichert and Katsikopoulos, 2008) or 

carrying out a system simulation experiment (Anderson and Lee, 2016), the impacts of different 

delivering method of electricity usage feedback are still unclear. In addition, previous research on 

the linkage between personal characteristics (such as openness to suggestion) and the intervention 

effects rarely explained why a uniform intervention may have different impacts on occupants with 

different personality traits (Shen and Cui, 2015, Shen et al., 2015). That is, personality being a 

fundamental construct of our attitudes, values and beliefs, may be a significant predictor of the 

energy behavior and energy consumption (Milfont and Sibley, 2012). With this in mind, the study 

starts with the following questions: What is the impact of the interaction between occupant 

behaviors, and personality traits as well as interventions on household electricity consumption? 

How to predict household energy consumption by considering occupant behaviors and their 

personality traits under multiple behavioral intervention strategies? Can the intervention strategies 

be better designed to achieve the maximal household electricity savings? 

Therefore, this study aims to 1) propose an optimal Support Vector Regression (SVR) 

model for accurately predicting household consumption under multiple intervention strategies, 2) 

choose the best-fit intervention strategy that can generate the maximum electricity savings for 

every single household, and 3) clarify the relationship between residents’ responses to intervention 

strategies and their personality traits. To achieve it, a variable selection approach was adopted to 

determine the optimal set of household electricity consumption predictors that include energy-

related behaviors, personality traits, demographic variables, building features and weather data. 
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Then, the interaction effect between behaviors and other variables has also been introduced to 

predict households’ electricity consumption. The data supporting SVR model development are 

collected from an energy conservation experiment conducted to infer the effects of feedback via 

different delivered methods including paper, mobile application and face-to-face interactions on 

household monthly electricity consumption in Hangzhou, China. Last but not least, Monte Carlo 

method is employed to simulate the profiles of households to examine the effects of personality 

traits on concerted intervention strategies. 

The structure of this chapter is as follows. Section 4.2 describes the recent literature 

pertinent to behavioral interventions in terms of energy conservation and the variables used in 

predicting energy consumption by the machine learning. Section 4.3 presents the experiment 

design and data collection. Section 4.4 explains the methodology adopted in this study and the 

SVR modelling process. Section 4.5 describes the results of electricity savings prediction from the 

proposed SVR model. Section 4.6 designs the optimal intervention strategy for maximum 

electricity saving based on different personality traits of extraversion and conscientiousness. 

Section 4.7 concludes this research with both practical and policy implications. 

4.2 Literature review 

4.2.1 Behavioral Intervention Strategies for Energy Conservation 

Intervention strategies in energy conservation domain have been divided into two 

categories, respectively informational strategies (e.g. information, feedback, education) and 

structural strategies (e.g. services, price policies) (Steg, 2008). Several studies (Bowles, 2008, 

Wolak, 2011) proved that structural strategies which mainly focused on changing contextual 

factors, such as providing incentives or disincentives, are not able to lead the residents’ pro-
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environmental behaviors to a favorable movement due to “crowding out” intrinsic motivation to 

save energy (Frederiks et al., 2015). With regard to the information-based strategies, traditional 

education programs and media campaigns which simply distribute pro-environmental information 

to the public do not necessarily trigger durable behavior change due to the attitude-action gap 

(Frederiks et al., 2015, Asensio and Delmas, 2015). Moreover, the energy-saving tips are one of 

the powerful and commonly used strategies which often coupled with other types of intervention 

strategies. The provision of information tips could significantly enhance the effectiveness of 

intervention when delivered with other information, such as energy audits (Corradi et al., 2013), 

while others (Delmas et al., 2013) argued it only offered marginal effect in persuading residents to 

change behaviors. Focusing on energy-use feedback intervention which contributes to the change 

of residents’ behaviors, its effectiveness has been tested in a multitude of field experiment studies 

(Schultz et al., 2015, Nilsson et al., 2014, Lynham et al., 2016). By delivering residents the 

messages including the amount of energy consumption and comparison to the previous period, the 

feedback approach can generate moderate and robust reductions at range of 5-12% in energy usage 

(Dietz et al., 2009, Jain et al., 2012). Compared with participants in individual feedback group, 

those who received comparative feedback tend to show more energy-saving manners (Shen et al., 

2016). This is due to the fact that the motivational effect of comparative feedback was 

straightforward and encouraged participants to save more energy. The competition orientation 

created by this strategy led to continuous savings even after the intervention (Siero et al., 1996, 

Abrahamse et al., 2007). Besides, the interconnected social network among groups and participants 

could promote the communication between them, leading to energy savings higher than the ones 

receiving comparative feedback (Nilsson et al., 2015).  
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An often-raised debate with the feedback intervention is that whether the combination of 

descriptive and injunctive norm messages may help to reduce the boomerang effect. Schultz et al. 

(2007) confirmed the effect of the combined normative messages in eliminating the boomerang 

effect, Anderson et al. (2017) did not support this idea since they found no significant energy 

savings generated from the messages. The reason behind is that the personally designed 

handwritten message caused a stronger sense of social pressure and concern. However, there is a 

scarcity of research on the impact of delivering method of the feedback in reducing energy 

consumption. The experiment conducted by Katzev et al. (1980), revealed the negligible impact 

of paper-based manual feedback (given every three days) on energy conservation. This was in line 

with other studies that also indicated no significant effect of feedback in reducing energy 

consumption (Kua and Wong, 2012). A recent research explored the effectiveness of counselling 

in behavioral intervention and found that counselling is more powerful in energy conservation 

when employed with pamphlets and stickers (He and Kua, 2013). Besides, websites or in-home 

display that were usually used by households with higher income provided convenient and 

simultaneous access to instant information reflecting their energy behavior (Vassileva et al., 2013). 

Provided the uncertain impact of various message delivery methods, it is essential to recommend 

appropriate interventions as part of the energy policy for achieving maximum conservation. Thus 

in this study, the effectiveness of the following behavioral intervention strategies have been 

examined: home energy reports containing only feedback, and the reports containing feedback and 

energy-saving tips. The ways of disseminating reports to the households, including through paper, 

mobile application and face-to-face consultation have also been investigated in the study 

respectively. 
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4.2.2 Machine Learning Techniques for Energy Consumption Prediction 

Literature is rich in adopting traditional machine learning techniques to model and forecast 

energy consumption. A series of approaches including Multiple Linear Regression (MLR) (Bianco 

et al., 2009), Decision Tree (DT) (Tso and Yau, 2007), Artificial Neural Network (ANN) 

(González and Zamarreno, 2005), SVR (Jung et al., 2015) and others (Robinson et al., 2017) have 

been proposed by incorporating varied variables for accurate energy consumption prediction. MLR 

is a commonly used linear technique and served as a benchmark of prediction performance. Among 

the machine learning models, it has the merits of being easy to interpret and computationally 

efficient (Fumo and Biswas, 2015). However, the poor accuracy of prediction precludes it from 

dealing with modeling nonlinearity (Wang and Srinivasan, 2017). DT is one of the most popular 

intelligence algorithms in last decades (Yu et al., 2010). However, it suffers from severe 

probability influence, which leads to poor reproducibility in prediction accuracy (Østergård et al., 

2018). With regard to ANN, several studies adopted this intelligence technique to predict energy 

consumption in buildings (Kalogirou and Bojic, 2000, Neto and Fiorelli, 2008, Wong et al., 2010) 

since it can capture nonlinearity and consider a three-layer neural network to obtain relatively high 

prediction accuracy of a continuous function described by Kromogol’s theorem (Wang et al., 

2012). Nevertheless, there are many problems with ANN models, such as the difficulty of 

controlling multiple variables, the high probability of overfitting and the uncertain solutions (Chou 

and Ngo, 2016). 

With the predominant generalization, SVR is especially capable of dealing with complex 

and nonlinear relationships and has reliable predictive ability for limited sample size (Chia et al., 

2015). Therefore, it has been widely proved to be a more accurate energy consumption prediction 

tool compared with the methods above (Massana et al., 2015, Chou and Bui, 2014). Zhu et al. (Zhu 
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et al., 2015) proposed an SVR approach with the false neighbor’s filtered-SVR local predictor that 

took the specific individual behaviors of different days into account. By removing the false 

neighbors, the new algorithm was able to optimize the original local predictors for the natural gas 

demand forecasting. In a study of nuclear energy consumption forecasting (Tang et al., 2012), least 

squares support vector regression (LSSVR) and ensemble empirical mode decomposition (EEMD) 

have been employed to decompose the original data into several intrinsic model functions (IMFs) 

and then to predict each of those generated functions separately. The research however did not 

consider various factors that might have influence on nuclear energy consumption as it only 

performed a univariate time series analysis. It is worth to note that a dominant step of SVR model 

is to choose the suitable kernel function since different kernel types may result in different 

predictive performance. To achieve better prediction accuracy, the optimal individual kernel-based 

SVR model (Chen et al., 2017b) and hybrid kernel-based SVR model (Che and Wang, 2014) have 

both been discussed in energy consumption prediction. In addition, another challenge for SVR 

modelling in energy consumption prediction is the selection of SVR parameters. It is worth 

mentioning that several methods including differential evolution (DE) algorithm (Wang et al., 

2012), particle swarm optimization (PSO) (Yang et al., 2016) and other hybrid algorithms (Jung 

et al., 2015) were utilized to select parameters of SVR model in different research contexts. 

Recently, Cao and Wu (2016) carried out the fruit fly optimization algorithm (FOA) to select the 

parameters of SVR model, and further optimized the performance of the model by incorporating 

the seasonal index adjustment. Their results demonstrated that the proposed hybrid SVR model 

performed better than seasonal ARIMA (SARIMA), back-propagation neural networks (BPNN) 

and other conventional SVR models in predictive accuracy. Since the majority of research have 

admitted that SVR is a robust and effective approach to predict energy consumption, it is adopted 
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as the algorithm to predict household electricity consumption under multiple behavioral 

intervention strategies in this research. 

4.2.3 Energy Consumption Predictors in Machine Learning Techniques 

4.2.3.1 Variables of Occupant Behavior  

Owning to complex and intertwined occupant behaviors, current predictive approaches in 

residential buildings yield unsatisfactory accuracy when compared with commercial buildings. 

Burger and Moura (2015) discussed an ensemble learning method that potentially forecast the 

electricity demand across building use-types. The results revealed that the forecasts for residential 

buildings yielded a mediocre result with a mean absolute percent error of only 55.8%, much lower 

than the forecasts for commercial buildings with a mean absolute percent error of 7.5%. Thereby, 

an increasing number of researchers have begun to probe into the human behavior-based electricity 

prediction in residential buildings. However, such studies on the development of energy 

forecasting models considered the impact of human behaviors are still in the beginning stages. 

Wang et al. (2016b) proposed artificial intelligence (AI) models to predict the hourly electricity 

use in residential space heating. Comparing with the prediction performance of BPNN, radial basis 

function neural network (RBFNN) and general regression neural network (GRNN), their study 

demonstrated that the SVR was better than the rest of the models. More importantly, they also 

evaluated the effect of dynamic occupant behaviors on the prediction ability of the AI models. 

Based on the American time use data (ATUD), Diao et al. (2017) identified and classified the 

residents’ behaviors to propose a more accurate energy demand and consumption prediction model 

that integrates k-modes clustering and demographic-based probability neural networks. As a result, 

10 behavior patterns had been recognized according to their demographic profiles including their 

ages, genders, occupations and lifestyles. However, most of these studies assumed static behavior 
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patterns, but ignored the dynamic change of behavior due to interventions. Virote and Neves-Silva 

(2012) developed a Markov stochastic model based on the measured building performance data 

which was able to simulate the occupant behavioral patterns and to predict the energy consumption 

in different buildings. Focused on the lighting system of the buildings, their results illustrated that 

the occupant behaviors should be considered as vital variables in the patterns analysis of energy 

consumption within a building. Similarly, Wang and Ding (2015) also proposed an occupant-based 

energy consumption prediction model by adopting stochastic methods including Polynomial and 

Markov chain–Monte Carlo methods. Given the case studies of three different types if office 

buildings, the model analyzed the relationship between building energy consumption and occupant 

behaviors. The error rate of the prediction was below 5%, but the estimates of overtime work rate 

and the consumption of the lighting system were not particularly accurate. Taking occupant actions 

and presence into account, Wang et al. (2016a) showed their approach of generating stochastic 

occupancy profiles that can accurately predict the energy usage. Their research also elaborated the 

impacts of occupancy variables on energy consumption under different scenarios. In addition to 

the electricity consumption prediction, Zhu et al. (2015) came up with a customer behavior based 

SVR model that could achieve higher accuracy in the natural gas demand prediction, suggesting 

that behaviors have a significant influence on the forecasting performance. 

4.2.3.2 Building features, household characteristics and other variables 

 Besides the impact of occupant behavior, the electricity consumption of buildings has also 

been influenced by other vital input parameters. It is noted that comparing with using all available 

data, only a subset of data that achieve a higher accuracy to predict energy consumption in 

buildings (Paudel et al., 2017). Some researches especially paid more attention on exploring the 

effect of those variables on the predictive performance of machine learning approach. They found 
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that, for residential building electricity consumption, historical energy consumption data was rated 

as the most important variable that should be employed in general (Chou and Ngo, 2016). The 

building features including the building orientation, building use, size and morphology (Tsanas 

and Xifara, 2012, Kontokosta and Tull, 2017), have emerged as the vital predictors. What’s more, 

the weather variables including the outdoor temperature, solar radiation and solar gain on wall 

have also been identified as powerful variables to predict electricity consumption with fair 

accuracy (Biswas et al., 2016, Paudel et al., 2017). Nevertheless, even without regard to the 

outdoor temperature, the machine learning approaches focusing on the electricity usage forecasting 

of households could still offer accurate and reliable results (Paudel et al., 2017). Furthermore, 

Candanedo et al. (2017) underscored the importance of involving the data from the kitchen, living 

room and laundry to predict household energy consumption. When considering the home appliance 

consumption, numbers of occupants and house size as the input variables, the error rate of the 

predicting average and maximum consumption are 4.2% and 18.1% respectively, while the error 

rate of the hourly forecasting energy demand could be amongst 10% to 23.5% (Rodrigues et al., 

2014).  

Meanwhile, there are evidences showing that the demographic factors are capable of 

improving the prediction efficiency of energy consumption. For example, Bianco et al. (2009) 

investigated the annual electricity consumption in residential and non-residential building in Italy 

during the year of 1970-2007, and developed single and multiple regression models for electricity 

usage prediction. The results showed that the economic and demographic factors including gross 

domestic product (GDP) and population could be effectively used to predict the electricity 

consumption. Likewise, using regression model and ANN, the energy consumption in Turkey has 

been modelled and predicted based on economic and demographic variables (such as GDP, 
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population and employment) (Kankal et al., 2011). Yet this type of investigation was often based 

on the idea of aggregating the data at national level rather than individual level due to personal 

privacy preservation (Mathew et al., 2015). As the building features and climate data are mainly 

accessible to the public, they have been heavily discussed when developing robust prediction 

model of energy consumption, while household energy behavior and individual characteristics are 

rarely explored (Williams and Gomez, 2016). Khosrowpour et al. suggested that the prediction 

model could be much improved by adding more information related to demographic information, 

occupant behavior data and appliance energy-use disaggregation (Khosrowpour et al., 2016a). 

Existing knowledge have discussed the effects of demographic characteristics on personal 

preference of energy efficient technology. For instance, Yue et al. (2013) pointed out that the 

middle-aged residents tend to invest in energy efficient products instead of engaging in energy 

saving programs. Urban and Ščasný (2012) found out that households with higher income are less 

likely to care about the environment issues, but tend to invest in green products. On the other hand, 

there remains a lack of discussion on energy consumption prediction under different interventions 

by incorporating the interaction between occupant behavior and other variables, although the 

interaction has been proved to have significant effects on energy conservation. Thus, for accurate 

electricity prediction, the occupant energy behavior, demographic profile, building features, 

weather condition, the interaction between behavior and other variables are introduced to the 

model in this study. 

4.2.3.3 Personality traits and energy conservation 

Personality traits, as the most fundamental aspect of the heterogeneity of people can lead 

to different pro-environmental behaviors (Stern et al., 2016). However, to the best of existing 

knowledge, the electricity consumption prediction has been scarcely investigated from occupants’ 
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personality perspective. Some researchers began to examine the relationship between personality 

and pro-environmental behaviors based on the dominant theory of personality, the Big Five 

Personality Traits (McCrae and Costa Jr, 1997, Khashe et al., 2016, Schweiker et al., 2016, Hirsh, 

2010, Milfont and Sibley, 2012). The theory classified the personality into five basic traits, namely 

extraversion, neuroticism, openness, agreeableness and conscientiousness. In terms of the light 

setting system in office building, neuroticism has been identified as the only personality trait that 

has an impact on the participants lighting adjustments (Heydarian et al., 2016). They revealed that 

the high neurotic person tends to keep the initial setting if the setting has maximum simulated 

daylight available. Similarly, Komatsu and Nishio (2015) studied the effects of normative 

messages on motivation for change in electricity conservation and found that the personality is one 

of the triggers. But the results demonstrated that the normative messages provision was especially 

effective for people with high extraversion and agreeableness. Openness appears to be the driver 

to improve the energy saving performance when integrated in the intervention strategy design for 

energy conservation in the residential sector (Shen et al., 2015). Interestingly, other research 

showed that conscientiousness and agreeableness were the only two traits that could impact on the 

electricity conservation behaviors (Milfont and Sibley, 2012). Given such various results, the 

underlying mechanism of how personality traits have influenced on the resident’s energy 

conservation behaviors and their consequently electricity consumption have been inconclusive, 

thus more attention should be devoted to this research area. 
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4.3 Data Collection and Processing 

4.3.1 Experimental Design 

To facilitate the understanding the intertwined relationship among occupant personality, 

energy intervention, and energy saving potentials, the electricity conservation experiment was 

conducted in Hangzhou, a capital of Zhejiang Province in east China, to collect real data and true 

effect for the analysis. The city was as one of the low-carbon pilot cities by China’s government 

demonstration programs and has also been picked up as the host for 2016’s Group of Twenty (G20) 

summit. With prospective social and political environment, the study in Hangzhou would have 

significant impacts on policy-making of local government and communities, with great potential 

of influencing energy behavior conservation policies in China. It is worth to note that the 

experiment location, two residential communities (Changmu and Qinfeng) in Jianggan District 

were both ordinary residential communities where residents share similar demographic statistics 

and living habits as in Hangzhou city. 

The home energy report with feedback and energy saving tips was adopted as the main 

intervention strategy in this study. Three types of energy report delivery, including through paper, 

mobile application and face-to-face interactions, were also tested in the experiment. These 

elements were integrated in the design process and come up with five treatment groups and one 

control group. Before any types of intervention could be delivered, all of the households in the 

selected communities had been randomly assigned to the six groups (see Table 4.1).  
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Table 4.1 Experiment Group Design 

Group Intervention 

Sticker (Paper) WeChat (Mobile App) Consultation (Face-to-Face) 

Feedback Energy 

saving tips 

Feedback Energy 

saving tips 

Feedback Energy 

saving tips 

1 ✓ ✓     

2  ✓     

3   ✓ ✓   

4    ✓   

5     ✓ ✓ 

6(control)       

 

More specifically, both treatment group 1 and group 2 received paper energy saving tips 

such as leaflet/sticker, while only group 1 received monthly feedback in paper format. Treatment 

group 3 and 4 received online energy saving tips through WeChat which is a leading social 

platform in China, whereas only group 3 received online feedback through WeChat on a monthly 

basis. Treatment group 5 received both the paper stickers and the feedback via monthly face-to-

face consultation. The provision of feedback and energy saving tips were not separated in group 5 

because during face-to-face interactions, interviewers frequently had to answer enquiries from 

respondents and the answers provided some degree of feedback to these respondents. Group 6, the 

control group, did not receive any interventions or feedback. With the exception of receiving the 

home energy reports, treatment households were not intervened differently than control 

households. All interventions were carried out monthly from April to June 2016. This process 

produced, therefore, three months of consumption data (May, June, July 2016) that can be used to 

train the prediction model. This is because, for example, the April energy consumption data 
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produced the May home energy reports, and the impact of those reports was reflected in the May 

consumption data. In addition, to retrieve households’ information, the questionnaires consisting 

energy saving behaviors, big five personality traits, demographic profile and building features, 

were given to all of the participants from February to June 2016 (see Appendix C all 

questionnaires).  

4.3.2 Description of the Interventions 

The experiment involved delivering monthly feedback on household energy consumption 

and evaluated performance to households in the treatment groups 1, 3 and 5, while delivering 

energy-saving tips to all five treatment groups on a monthly basis. In the energy feedback reports, 

household electricity consumption between two consecutive months in both peak and non-peak 

hours are compared in both numbers and figures (see Figure 4.1). The consumed electricity in the 

latter month was calculated in dollars and compared with that in the previous month. The electricity 

consumption presented in the reports are in kilowatt-hour (kWh), and the electricity cost are in 

Chinese currency Yuan (¥). The reports also include the normative feedback and compare the 

previous month’s electricity consumption of a household to the consumption of super-efficient 

nearby households and the average district electricity consumption in the neighborhood. In 

addition, the reports show electricity cost of all households as well as indicate the minimum and 

maximum amount of monthly kWh consumption in the neighborhood. Households could thus 

know their comparative ranks in terms of energy consumption and monetary savings in the 

neighborhoods. The reports also provided comments on the household's performance in past 

month. 
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Figure 4.1 A Sample of Feedback Report



 

 

92 

 

 

The energy-savings tips illustrated five common approaches to reduce electricity 

consumption with pictures (see Figure 4.2). They mainly covered the use of major appliances, e.g., 

air-conditioning, fridge, lighting and TV top box. The pictures were used to help households 

understand and absorb information in a quick and straightforward way. For the continuity that kept 

those tips as reminder, households were more likely to replace new stickers/leaflets when old ones 

were tore out or lost. 

 

          

Figure 4.2 Energy-Saving Tips (in Chinese) and Translation in English 

 

4.3.3 Data Collection and Processing 

In this study, 240 households were initially targeted at 40 samples per group. As an 

anticipated attrition in participated households, there were 235 households remaining in the end of 

the experiment. However, not all of them could be used in this research. For example, 46 

Save energy. Make your effort. 

 

 

 

 

 

 

 

 

 

5 energy saving tips: 

1. Use a fan instead of an air-conditioner to 

keep cool 

2. Choose energy efficient light bulbs 

3. Switch off main power (when not in use) 

4. Set AC cooling temperature 26⁰C or above  

5. Select energy efficiency labelled appliance 

More tips: 

1. Use more natural light 

2. Shut the contains or blinds 

3. Boil water before necessary use 

4. Turn on air-conditioner one hour before 

sleep 

5. Use a fan instead of an air-conditioner 

before sleep 

6. Keep the refrigerator away from heat 

sources 

7. Do not overfill the refrigerator 

8. Turn off the set-top box when you are not 

watching TV 
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households gave incomplete answers of the demographic survey. 10 households provided no 

personality data. As a result, 179 households remained as eligible for further analysis. 

With regard to the survey of household energy saving behaviors, 19 questions were drafted 

and sent to the households monthly from February to June, 2016. The survey questionnaire was 

adapted from He and Kua (2013), in which they conducted an experiment of energy saving 

behavior intervention in Singapore. Aside from questions on the possession of the appliances (e.g. 

number of air-condition, fridges and washers), the behavior survey is grouped by the switch or 

setting operation behaviors on the air-conditioner, refrigerator, lighting and home electronics. 

More precisely, the respondents are asked questions relating to the use of the appliance, in terms 

of the frequency and/or the way they use it. Note that during the collection of the behaviors survey 

data, small pieces of information were found missing because the households forgot to answer 

some questions in a certain month. Therefore, in order to pre-process the missing values, the data 

interpolation method was adopted to fill in the data. For instance, when there is a missing number 

of operation behaviors in a particular month, the average value of the responses in the previous 

month and the next month is employed to fill the missing value. 

As for the demographic variables, several data trimming steps were performed prior to 

analysis. Since both the age and gender of all family members were collected, the age of the 

household is calculated as the average of age for each family member, and the gender is 

represented by the ratio of males to the household. Besides, the retrofit year is calculated as the 

difference between 2016 and the year the house was retrofit. As shown in Appendix C, regarding 

the big five personality traits inventory (Gosling et al., 2003), 10 questions were used to assess the 

personality of the subject households with each of the trait (that is, extraversion, agreeableness, 

conscientiousness, neuroticism and openness to experience) calculated as the average value of two 
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items. Among them, items 1, 3, 4, 5 and 7 are reverse-scored and calculated by subtracting 6 from 

each reverse-scored item and taking the absolute value.  

Considering the influence of varying weather conditions on electricity consumption, the 

daily weather information from the year of 2015 to July 2016 was retrieved from Hangzhou 

Meteorological Bureau. For this research, the Heating Degree Days (HDD) (below 18℃) and 

Cooling Degree Days (CDD) (above 26℃) calculations were made on a monthly basis. 

Monthly electricity consumption data in kWh of the subject households during the year of 

2015 and 2016 were collected from a local utility company, or through the electricity bill sent by 

the residents from February to August 2016. Some households with the electricity usage data 

contained blanks or zero were filtered out in the study. In addition, households with the monthly 

electricity consumption less than 20 kWh were also considered unrealistic and were filtered out 

subsequently. The selected predictors from February to June 2016 are used for SVR model 

training. Eventually, the electricity consumption data collected from 166 households which also 

provided valid questionnaire responses are qualified for training the prediction model since other 

variables are also collected in this period. To validate the model, the monthly electricity 

consumption from February to April 2015 is used are as the testing dataset for evaluating the 

performance of prediction. 

4.4 Development of the Prediction Model 

According to the discussion in literature review, SVR model is considered as an effective 

approach to predict energy consumption in the residential sector, so that it has been adopted in this 

research. The following is the proposed SVR modelling process in three steps (see Figure 4.3). 
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Figure 4.3 Flow Chart in Developing an Optimal SVR Prediction Model 
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4.4.1 Step 1: Variable Selection Using Akaike Information Criterion (AIC)   

As not all identified variables are necessary for building an accurate predictive model, 

screening the most adequate subset of the variables should be conducted as the first step. We begin 

with a basic linear regression Model 1 that directly uses the consumption data of the previous 

month and the weather data in the current month to predict the electricity consumption. However, 

as such few factors that potentially being insufficient for the accurate prediction, all variables 

collected from the Hangzhou experiment (i.e. energy behaviors, personality traits, types of 

interventions, demographic factors, building features and weather indicators) were added to form 

Model 2. Model 1 and Model 2 are formulated as follows, 

 

Model 1: 

1,1 ( 1) 2,1 3,1* * *ij i j i i ijE E HDD CDD        
                            (4.1) 

 

Model 2:  

1,2 2,2 3,2 4,2 5,2 6,2 ( 1)

7,2 8,2

* * * * * *

* *

ij i j

i i ij

E EB BU DE PE IN E

HDD CDD

      

  

      

  
        (4.2) 

 

where ijE
 denotes the electricity consumption of the j

th

 household in the i
th
 month, ,a b

 is 

the 
tha  vector coefficient of the 

thb  model, EB , BU , DE , PE , IN , ( 1)i jE  , iHDD
 and iCDD

 are 

the vectors of independent variables including energy behaviors, building feature, demographic 

factors, personality traits, intervention variables, the consumption in the last month and weather 

respectively,   denotes the intercept, and ij  is the error term. The types of variables are listed in 
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Appendix A and all ordinal variables involved are coded as continuous in the models. Thus, Model 

2 initially comprises of 48 predictors to forecast the electricity usage in the 
thi  month. It is well 

known that when adding more variables to the model, the increase in goodness-of-fit of the model 

(measured by adjusted R-squared) is considered as the evidence that the model has been improved 

by adding new input variables rather than by chance (Jovanović et al., 2015). That is, if the added 

predictors in Model 2 does not significantly increase the adjusted R-squared, the existing variables 

should not remain in the model. The process will return to the starting point by collecting more 

meaningful candidates of predictors. It is repeated until Model 2 has more predictive power than 

Model 1 based on the adjusted R-squared value assessing, the feature selection process is then 

executed to extract a critical set of predictors to avoid overfitting. The commonly used feature 

selection criterions (that is, AIC, LASSO1, Elastic Net and BIC) are applied to eliminate the 

variables with the poor capability to represent the majority of the predictors. Coupled with feature 

selection techniques, the adjusted R-squared is extensively used to guide the selection of 

alternative models (Liu et al., 2011). Here the adjusted R-squared is a measure of whether a model 

has been much improved by removing useless variables. Both AIC and BIC can effectively trade-

off between the accuracy of prediction and the parsimoniousness of the model (Ardakani and 

Ardehali, 2014), while AIC has its own merits in the domain of energy consumption forecasting 

(Sari and Soytas, 2004, Sagaert et al., 2018). LASSO performs better especially for large datasets 

(Kuha, 2004), while Elastic Net has a great advantage in fast calculation and good regression 

performance by combining the ridge and LASSO penalties (Tibshirani, 2011). However, among 

                                                 
1 LASSO stands for least absolute shrinkage and selection operator; BIC stands for Bayesian 

information criterion. 
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the above techniques, opinions are divided over to which the best techniques should be used (Zou 

and Hastie, 2005). Therefore, four of them have been adopted in the study. 

In the later stage of the study (Section 4.4.1), AIC has been identified as the most proper 

method due to its relatively higher adjusted R-squared value compared with the ones performed 

by other methods. AIC can be defined mathematically as follows: 

  2 ln( )AIC k L                                                      (4.3) 

where  denotes the number of parameters to be estimated, and  is the likelihood 

function. AIC is capable to measure the quality of fit data with the purpose of avoiding overfitting 

through removing the least significant predictors. In the AIC method, it assumes that the error of 

the model obeys a normal distribution and the most ideal model is featured by the lowest AIC 

value (Yang et al., 2017). The variables survived the AIC procedure are the key predictors that can 

be used to construct Model 3. If the goodness-of-fit of Model 3 (measured by adjusted R-squared 

value) is larger than that of Model 2, the next move can be proceeded. In addition to the selected 

variables, as the interaction between household energy behaviors and other variables may have 

significant influence on household monthly electricity consumption, the interactions between 

selected behavior variables and other variables that have been previously identified in Model 3, 

along with those variables selected above, need to go through AIC again. When re-running the 

AIC, the updated combinations of predictors and interactions are considered to establish the Model 

4. Therefore, if the adjusted R-squared value has been much improved, Model 4 that contains the 

updated predictors as well as the interactions between behaviors and other predictors, can be 

considered as the proper model that improves the overall predictive performance.       

k L
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4.4.2 Step 2: SVR Model Development 

In step 2, a SVR model is built using the predictors identified in the above step. SVR, being 

one of the most commonly used machine learning algorithms, is effective in capturing nonlinearity. 

Developed by Vapnik in 1995, it has been adapted from support vector machine (SVM) algorithm 

to solve a regression problem. Given a regression problem with a training data set,  

 ( , ),..., ( , ) ,i i k k i iS x y x y x R y R  
                                      (4.4) 

SVR aims to find an optimal function that has the minimal required precision from the 

actual target for all of the training data and at the same time holds the highest possible flatness, as 

expressed in Equation (4.5): 

( ) , ( )f x w x b 
                                                       (4.5) 

where ,   indicates the dot product,  w  denotes a parameter vector, b  is the constant 

term, and ( )x  denotes the nonlinear kernel functions. After using the Lagrange multipliers to 

nonlinearly map data into a higher dimensional feature space, Equation (4.5) can then be updated 

as follows: 

       
1

   0 ,

i i i

i

i i

f x x x b

subject to C



   

 







   

 



                                (4.6) 

where i  and i


 denote the Lagrange multipliers, C  is the cost hyperparameter that 

controls the trade-off between penalizing the slack variables and maintaining the flatness of the 

vector of w , the vector inner product ( ) ( )ix x   represents mapping data from the input space to 

the feature space. To simplify the mapping process (Tang et al., 2012), it can be replaced by the 

genetic kernel function ( , )iK x x , hence the Equation (4.6) is adapted as follows: 
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     *

1

,i i i

i

f x K x x b


 


  
                                         (4.7) 

where the parameters are estimated by satisfying the following conditions: 

 

, 1 1 1

1

1
min( ( )( ) ( , ) ( ) ( ))

2

( ) 0

l

i i j j i j i i i i i

i j i i

i i

i

K x x y
 



        

 

   

  






     



  


  


         (4.8) 

Equation (4.7) is a general function of SVR kernel that can be calculated by different forms. 

With respect to SVR kernels, a series of alternative SVR kernels including linear, radial, 

polynomial and Gaussian radial basis function (RBF) kernels are widely used in the domain of 

energy consumption forecasting. For instance, Kavaklioglu (2011) adopted radial kernel function 

to handle the electricity consumption prediction of Turkey until 2026 using the data from 1975 to 

2006. Radial basis function has been used to forecast northeast electricity demand of China (Wang 

et al., 2009). Besides, linear, Gaussian and polynomial kernels are proven to have comparable 

accuracy for short-term wind speed forecasting (Zhou et al., 2011). In this study, these four types 

of nonlinear kernel functions including linear, radial, polynomial and RBF have been adopted as 

candidates for the kernel functions. 

In this case, after selecting the critical predictors in step 1, the extracted data from updated 

database is split into a training set with the consumption data in the 
thi  month this year (e.g. 

February 2016), and a testing set with the data in corresponding period last year (e.g. February 

2015). It is worth noting that in this study, only those families with similar consumption in 2015 

were selected for model testing since they are assumed to follow the behavior patterns in the same 

time period in 2016. By computing the percentage of differences between the consumption of 2015 
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and 2016 expressed as Equation (4.9), the households with a difference smaller than 10% has been 

chosen as the testing set 

2015 2016

2015

100%
ij ij

ij

E E
Difference

E


 

                                           (4.9) 

where 2015ijE
 denotes the electricity consumption of the 

thj
 household in the 

thi  month 

2015, and 2016ijE
 is the electricity consumption of the 

thj
 household in the 

thi  month 2016. Note 

that a difference smaller than 10% is considered as the criterion of data selection because it 

represents the behaviors of households did not change too much in a particular month between 

year 2015 and 2016. Thus, in this way, such two sets of data can be compared. To further optimize 

the prediction outcomes, the SVR hyperparameters (i.e., the cost C ) is tuned. Moreover, among 

the results calculated by different kernel types above, the most proper type is determined by the 

mean absolute percentage error (MAPE). The MAPE equation presents as follows: 

    

1

1
100%

d ij ij

d
ij

E E
MAPE

d E


 

                                       (4.10) 

where ijE 
 represents the predicted value, ijE

 represents the actual value, and d  

represents the number of data samples. The performances of different kernel types are also 

assessed by MAPE in a time-series consumption forecasting. Assessing the performance of time-

series forecasting shows advantages in many aspects. On one hand, it allows us to manifest the 

prediction power and capability of the proposed model in the following months instead of just in 

the next month. On the other hand, it provides a summary of the constant efficiency and accuracy 

of the proposed model over other models. In particular, the aforementioned procedure has been 

repeated 30 times, and the results of MAPE are averaged. As this validation technique has been 
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widely used in maintaining the reliability of the proposed model (Forrest, 1993), it is employed in 

both training and testing processes in this study. 

Besides, with respect to choose the proper hyperparameter of SVR model, it would be too 

difficult for us to manually test all possibilities of parameter values. Hence in this case, the genetic 

algorithm (GA) has been adopted as the parameter optimization method. Inspired by natural 

selection and biological evolution, GA has been often used to solve optimization problems 

(Forrest, 1993). Specifically, the algorithm uses a set of solutions selected from the initial 

candidates to generate the next generation solutions following the steps of crossover and mutation. 

That is, the candidates whose performance are closed to the optimal cases are combined with each 

other and then mutate to generate the optimal solutions, otherwise they will be eliminated. 

In this study, the hyperparameter of the cost C  in Equation (4.6) has been set to a wide 

range of values. Subjected to minimize the MAPE of the SVR model, GA can select the proper 

value of the cost C  automatically. This procedure is able to save calculation efforts and achieve 

the optimal performance of SVR in a short time. 

Followed by these processes, the Model 5 can be generated as the most suitable SVR model 

for the prediction of household electricity consumption. Eventually, Model 5 has been developed 

as the most suitable and accurate SVR model for household electricity consumption prediction.  

4.4.3 Step 3: Electricity Savings Prediction  

     In stage 3, the output data in stage 2 (i.e. predictive results of ) were taken as 

inputs to calculate the maximum electricity savings for each household respectively during the 

treatment months. For every household, the maximum electricity savings are the differences 

between the minimum predictive consumption under a certain intervention and the consumption 

under the control condition. It is worth mentioning that the electricity savings are identified by 

1 6IN IN
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comparing with the consumption from no treatment. Thus, for the family who cannot save any 

electricity under interventions (use more than they did under the control condition), the electricity 

savings is viewed as zero. By doing this, the process is able to customize the optimal intervention 

strategy for every single household. Thus,  

( ' ')

' max

q

mij zij

i p

j

E E
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                                              (4.11) 

where 
'jS
 represents the maximum average electricity savings through the optimal 

intervention for the 
thj

 household of T  month, T  is the period of the intervention from the p
th

 

month (the starting time of the intervention) to the 
thq

 month (the ending time of the intervention), 

'mijE
 denotes the predictive consumption value of the 

thj
 household in the 

thi  month (

 , 1,...,i p p q 
) through the control condition m, 

'zijE
 is the predictive consumption value of 

the 
thj

 household in the 
thi  month through the 

thz  intervention, 
 ,z n m

, n=1,2,…5. Notably, if  
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 for a subject household, then the control condition (i.e. no treatment) is 

more suitable for the subject as the electricity consumption is higher in all interventions (from 1IN
 

to 5IN
) than in control condition m , and 

' 0jS 
. Given Equation (4.11), each household is 

suggested with an optimal intervention strategy. Thus the new population setting of the 
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intervention groups is able to achieve substantial electricity savings over the Hangzhou experiment 

setting. 

Furthermore, the model is also able to suggest the predictive proportion of households 

grouped into each of the optimal intervention strategies. According to Equation (4.11), each 

household is provided with the new optimal intervention strategy. Equation (4.12) calculates the 

predictive proportion of households grouped into each of the optimal intervention strategies as 

follows, 

z
z

R
Percentage

R


                                                    (4.12) 

where Rz  denotes the population of households that suggested with IN z , IN z  is the 

optimal intervention strategy for which Equation (4.11) holds, and R  is the total numbers of 

households. 

4.5 Results 

The results generated from the previous three steps of SVR prediction model development 

are demonstrated as follows. All data processing and analysis is performed in RStudio 1.0.143. 

4.5.1 Variable Selection 

To select the most appropriate independent variables for the household electricity 

consumption prediction, four models considering different variables have been built and tested. 

Table 4.3 lists all the critical predictors identified by the process of variable selection process. In 

the basic model, Model 1, the monthly electricity consumption is predicted by the weather factors 

comprise HDD, CDD, and the electricity consumption in the previous month. Model 2 includes 

the direct effects of all 48 independent variables on electricity consumption. Meanwhile the MAPE 
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value is decreased to 27.27% from 28.66% of Model 1. Through the variable selection process, 

Model 3 and Model 4 are then built as follows, 

 

Model 3:  

1,3 2,3 3,3 4,3 5,3 6,3 ( 1)

7,3 8,3

* * * * * *

* *

ij i j

i i ij

E EB BU DE PE IN E

HDD CDD

      

  

      

  
              (4.13) 

 

Model 4:  

1,4 2,4 3,4 4,4 5,4

( 1) 6,4 ( 1) 7,4 8,4

* * * * * *(

) * * *

ij

i j i i i j i i ij

E BU DE PE IN EB BU PE

IN E HDD CDD E HDD CDD

     

    

      

       
    (4.14) 

 

In Model 3, the irrelevant variables have been eliminated, so the AIC method achieved a 

higher R-square value (0.6507) compared with other feature selection techniques (see Table 4.2). 

As a result, 18 independent variables were considered as appropriate to build Model 3. It contains 

five energy behavior variables, five building feature variables, two demographic variables, two 

personality variables, the intervention variables, along with the weather factors and the 

consumption in the last month. The interactions between the energy behaviors and the rest of the 

variables were added, then re-run the process of AIC to build Model 4 that includes 18 independent 

variables and 30 interaction variables. Among the 18 independent variables, the five behavior 

variables that were previously identified in Model 3 are no longer exist as individual variables, in 

which only their interactions with the rest of the variables are considered. R-square value is 

obtained as high as 0.6857 for Model 4. 
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Thus, 18 critical predictors (listed in Table 4.3) have been identified by the variable 

selection process. Specifically, this process identified five critical energy behaviors related to the 

air-conditioner, fridge and lighting; two personality traits of extraversion (PE1) and 

conscientiousness (PE3); two demographic factors including the number of family members and 

average age; five building features including house size, house age, the frequency of cooking, the 

number of air-conditioners and fridges. Besides, six types of strategies (including 5 interventions 

and 1 control condition), weather indicators and the last month electricity consumption have been 

selected as the significant predictors of household electricity consumption. It is to be noted that 

the interaction effects between the selected behaviors and other predictors are also extracted as the 

key predictors since they contribute to optimizing the performance of the prediction. 

 

Table 4.2 The Goodness-of-fit of the Models 

 Model 2 Model 3 Model 4 

  AIC BIC LASSO Elastic Net  

R-square 0.6428 0.6507 0.6135 0.6236 0.6133 0.6857 

 

Table 4.3 The Selected Predictors for the Models 

Attribute Predictor Model 

1 

Model 

2 

Model 

3 

Model 

4 

Energy 

behaviours 

 

EB_ac_temp  (EB1)  ✓
a   

EB_ac_power (EB2)  ✓   

EB_ac_clean (EB3)  ✓   

EB_ac_close (EB4)   ✓ ✓ ✓*b 
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EB_ac_occu (EB5)  ✓   

EB_fridge_outside (EB6)  ✓   

EB_fridge_inside (EB7)  ✓   

EB_fridge_food (EB8)  ✓ ✓ ✓* 

EB_fridge_liquid (EB9)  ✓ ✓ ✓* 

EB_light_day (EB10)  ✓   

EB_light_occu (EB11)  ✓ ✓ ✓* 

EB_light_focus (EB12)  ✓ ✓ ✓* 

EB_app_off (EB13)  ✓   

EB_app_nouse1 (EB14)  ✓   

EB_comp_save (EB15)  ✓   

EB_app_unplug (EB16)  ✓   

Personality traits 

 

Extraversion (PE1)  ✓ ✓ ✓ 

Agreeableness (PE2)  ✓   

Conscientiousness (PE3)  ✓ ✓ ✓* 

Neuroticism (PE4)  ✓   

Openness (PE5)  ✓   

Demographic 

factors 

 

DEMO_residents (DE1)  ✓ ✓ ✓ 

DEMO_age (DE2)  ✓ ✓ ✓* 

DEMO_resident_gen (DE3)  ✓   

DEMO_income (DE4)  ✓   

DEMO_owner_edulvl (DE5)  ✓   

DEMO_residen_tedulvl (DE6)  ✓   

DEMO_highest_edulvl_no (DE7)  ✓   

DEMO_religion (DE8)  ✓   

DEMO_occup(DE9)  ✓   

Building features 

 

Demo_floor (BU1)  ✓   

Demo_direction (BU2)  ✓   

BU_house_age (BU3)  ✓ ✓ ✓* 

Demo_retrofit_date (BU4)  ✓   
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Demo_rent (BU5)  ✓   

BU_Cooking (BU6)  ✓ ✓ ✓* 

Demo_living_rom (BU7)  ✓   

Demo_bedroom (BU8)  ✓   

Demo_study_room (BU9)  ✓   

BU_area (BU10)  ✓ ✓ ✓* 

Demo_home_type (BU11)  ✓   

BU_ac_num (BU12)  ✓ ✓ ✓ 

BU_fridge_num (BU13)  ✓ ✓ ✓ 

EB_washer_num (BU14)  ✓   

Intervention IN1, IN2, IN3, IN4, IN5, IN6  ✓ ✓ ✓ 

Weather 

 

HDD ✓ ✓ ✓ ✓ 

CDD ✓ ✓ ✓ ✓ 

Last month 

consumption 

Ei-1,j ✓ ✓ ✓ ✓ 

Interaction 

between 

behaviors and 

others 

EB4* BU6, EB4* DE1, EB4* PE3, 

EB4* IN3, EB4* IN4, EB4* Ei-1,j, 

EB8* BU10, EB8* BU3, EB8* DE1, 

EB8* PE1, EB8* IN2, EB8* IN4, 

EB8* Ei-1,j, EB8* HDD, EB9* 

BU10, EB9* BU3, EB9* DE1, EB9* 

CDD, EB11* BU3, EB11*DE2, 

EB11* PE1, EB11* IN3, EB11* Ei-

1,j, EB11* HDD, EB11* CDD, 

EB12* BU6, EB12* PE1, EB12* 

PE3, EB12* HDD, EB12* CDD 

   ✓ 

Note: a) “✓” represents the variables included in the model individually; b) “*” represents the 

variables only included in the model when they have the interactive effects with other variables. 
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4.5.2 SVR Model Performance 

For developing an improved SVR model to predict household electricity consumption more 

accurately, Table 4.4 presents the accuracy percentage assessed using MAPEs of different SVR 

kernels with the 18 variables and 30 interaction variables corresponding to Model 4. All of the 

MAPE values in Table 4.4 are obtained from 30 times experiments. It can be seen from Table 4.6 

that among four types of SVR kernel (i.e. linear, Radial, polynomial and RBF kernels), the 

predictive performance of linear regression model measured in training data with the highest 

MAPE value of 28.11%, whereas Radial SVR model with the lowest of 7.25%. However, in terms 

of the predictive performance measured in both training data and testing data, Radial SVR has 

significantly increased MAPE value from 7.25% (for training data) to 25.13% (for testing data), 

while RBF kernel has marginally increased the value from 9.56% (for training data) to 10.47% 

(for testing data). The results indicate that Radial SVR model is not able to prevent over-fitting in 

training data for this case, which eventually leads to the significant high MAPE value in testing 

data. Thus, RBF SVR is the best performing SVR kernel overall, due to the significantly lower 

value of MAPE than the rest of the kernels.  

In terms of the time-series forecasting, RBF kernel also provides more accurate results than 

other models. Here the electricity consumption in January 2016 and all of the selected predictors 

in February were considered as the inputs to conduct the SVR forecasting for the experiment 

period. The criteria to select the best performing model is the lowest MAPE values for the first 

month and the lowest range of MAPE value during the whole testing period. Although the radial 

kernel has the minimum MAPE value (6.87%) in February, it shows poor performance from March 

to June (MAPE range from 45.79% to 68.30%). The result demonstrates that radial SVR does not 

hold the stability of prediction in a time-series forecasting. Instead, as RBF SVR yield a relatively 
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lower MAPE value (11.54%) in the first month and a robust performance in a time-series 

forecasting (MAPE range from 26.67% to 36.60%) from March to June, it was then employed to 

perform the hyperparameter optimization using GA. The result demonstrates that GA-RBF-SVR 

model exhibits the best performance on next-month prediction with MAPE of 8.48% and 9.34% 

using training data and testing data respectively, along with the minimum MAPE value (range 

from 6.95% to 36.14%) during the testing period. Therefore, the GA-RBF-SVR model is selected 

for household electricity consumption prediction. 

 

Table 4.4 Performance of SVR on the Household Energy Consumption Forecasting Measured by 

Mean Absolute Percentage Error (MAPE; %) 

Model Next-month prediction Time-series forecasting 

Training data Testing data February March April May June 

OLS Regression 28.11 22.75 36.22 35.28 44.54 40.88 38.41 

Linear SVR 26.13 18.85 38.77 34.86 42.37 35.58 34.68 

Radial SVR 7.25 25.13 6.87 52.15 68.30 59.68 45.79 

Polynomial SVR  14.57 13.68 16.83 31.32 46.04 41.68 54.37 

RBF SVR 9.56 10.47 11.54 26.67 36.60 33.47 35.56 

GA RBF SVR 8.48 9.34 6.95 25.47 36.14 27.85 29.97 

 

4.5.3 Electricity Savings Prediction 

According to Equation (4.11), the training dataset is used to compute the predictive 

electricity savings under each intervention strategy for each household during the experiment 

period (from February to June 2016). In order to set the baseline for comparing with the results of 
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the prediction model, the effects of each intervention strategy was also calculated in the field 

experiment in Hangzhou. Specifically, as can be seen from Figure 4.4, the left one demonstrates 

the calculated results of the field experiment, and the right pie chart in Figure 4.4 illustrates the 

optimized prediction results using the proposed model. The thickness of the inner ring of both pie 

charts shows the variation of the electricity saving percentage (%) with maximum electricity 

savings (kWh) presented in brackets. In addition, the length of the outer ring represents the 

household proportion (%) under each intervention strategy from IN1 to IN6).  

In Hangzhou field experiment, the effect of each intervention is evaluated by comparing 

with the control group. Notably, since the calculation serves as a benchmark for comparison with 

the optimized prediction results using the proposed method, there is no additional control variables. 

As shown in the left pie chart in Figure 4.4, it reveals that the strategy of sticker without feedback 

(IN2) has the highest electricity savings (5.55%) during the period. The rest of the experiment 

groups actually increase in the electricity consumption by 2% (4.32kWh), 7.52% (15.93kWh), 

10.1% (24.17kWh) and 8.10% (17.15kWh) for sticker with feedback (IN1), WeChat with feedback 

(IN3), WeChat without feedback (IN4) and consultation (IN5) respectively. However, for the 

optimized prediction results based on the proposed model, in the right pie chart in Figure 4.4, the 

WeChat intervention strategies (IN3 and IN4) show the highest savings during the experiment 

period with the savings of 15.97% (33.81 kWh) for IN3 (with feedback), and the second highest 

savings of 15.43% (32.68 kWh) for IN4 (non-feedback). The consultation strategy (IN5) is the third 

highest savings with an average monthly reduction of 14.9% (31.55 kWh). Comparatively, the 

sticker strategies (IN1 and IN2) present the lowest values in electricity savings during the period 

with 10.87% (23.02 kWh) and 10.74% (22.75 kWh) respectively. It is important to note that the 

feedback strategy leads no more additional reduction than non-feedback intervention in electricity 
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consumption, indicating that feedback may only generate marginal impact in electricity 

conservation when occupants already received optimal interventions. 

With regard to the household proportion under each interventions, as shown in the outer 

ring of the right pie chart in Figure 4.4, the WeChat feedback strategy achieves the largest share 

(40.5%) of the households according to Equation (4.12). In other words, 40.5% of the households 

can reduce more electricity consumption when choosing the WeChat feedback strategy than any 

other strategies. The consultant intervention achieves a relatively lower percentage of 14.5% in 

households. IN1, IN2 and IN4 present even smaller shares of 6.4%, 6.9% and 4.6% respectively. 

There are 27.1% of the households that belong to the control condition, indicating they are 

insensitive to any intervention strategies. Thus, the new population setting of the optimal 

intervention groups based on the prediction model is supposed to save massive energy comparing 

with the original experiment setting shown in the left pie chart in Figure 4.4.  

4.6 Discussion 

In this section I first discuss the results of electricity savings prediction with optimal 

intervention strategies, followed by investigating the relationship between personality traits and 

each intervention strategy. As can be seen from Figure 4.4, the results of prediction model and 

field experiment are different in all aspects, i.e. the electricity savings and the households 

proportion under each intervention strategy (from IN1 to IN6).



 

 

113 

 

 

 

Figure 4.4 A comparison of Electricity Savings Between Field Experiment (Left) and the Optimal Strategies (Right) 

Note: P stands for household proportion (%) illustrated as the length of the outer ring. S is the electricity saving percentage (%) 

illustrated as the thickness of the inner ring. The saving percentage is relative to the control condition. IN1 to IN6 represent each 

intervention strategy.
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In the Hangzhou field experiment (left in Figure 4.4), households were equally assigned 

into intervention groups without considering their own characteristics and backgrounds, resulting 

in the assigned intervention strategy might not be the optimal choice for them. In the optimized 

strategy (right in Figure 4.4), the percentage of households in WeChat with feedback has 

significantly increased from 19.76% to 40.5%, while the shares of other ineffective intervention 

strategies have dramatically decreased, such as sticker with/without feedback (decreasing from 

19.16% to 6.4%, and from 16.10% to 6.9% respectively) and WeChat without feedback and 

consultation (decreasing from 19.76% to 4.6%. In addition, the results of optimized model 

illustrate the households in all treatment groups and control group can reach the maximum average 

electricity savings of 12.10% with the most appropriate treatment strategy for each of them, 

comparing to the maximum of 5.55% in the original experiment. Interestingly, the optimization 

results suggest that WeChat feedback intervention indicates the highest reduction in electricity 

consumption along with the largest percentage in households. This conclusion illustrates that the 

optimization results provided by the proposed model have much improved the effect on the 

households as a whole.  

Yet it is still difficult to observe and understand all of variability in the prediction results, 

especially the influence by different types of personalities, since the GA RBF SVR model is a 

black box containing both apparent independent variables and hidden rules. Thus, in order to 

obtain an overview of the relationships among the maximum electricity savings (S), the personality 

traits of extraversion (PE1) and conscientiousness (PE3), and optimal intervention strategies, the 

Monte Carlo simulation of 10,000 households was run according to their distribution of each 

variable. As a result, a comprehensive three-dimensional plot is illustrated in Figure 4.5, in which 

each surface stands for the effectiveness of the feedback intervention to different personalities. 
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The surface graph is plotted using the calculated maximum electricity savings (S≥0) as 

vertical axis, and the rate of the personality traits of extraversion (1≤PE1≤5) and conscientiousness 

(1≤PE3≤5). As can be seen in Figure 4.5, the five surfaces which signify the optimal choice of 

intervention strategy for a household with different personality traits, are IN3, IN4, IN5, IN1, IN2 

from the top to the bottom respectively. This corresponds with the results observed in the previous 

analyses. For example, the predicated electricity savings in the group of WeChat with feedback 

(i.e., IN3) are more than the savings by other intervention strategies for all kinds of people. More 

detailed explanations for each of the surfaces (intervention methods) are provided in the following 

section.  

From the observation presented in Figure 4.5, the simulated households can be grouped 

into two types owing to different combinations of their personality traits of extraversion (PE1) and 

conscientiousness (PE3), with the optimal intervention strategies (IN1-IN5) presented in five 

surfaces respectively. The details for each surface are subsequently shown in the following Figures 

4.6-4.10. Specifically, for the households with PE1<1.38 and PE3>4.88 (ELCH residents; low score 

in extraversion while high score in conscientiousness), the electricity savings range is from 

42.82kWh to 57.79kWh. This represents the smallest range of electricity savings in the Figure 4.5, 

indicating that people who feel a strong sense of moral obligation (high conscientiousness) while 

introverted (low extraversion) can save energy, though with a small-to-moderate amount, 

regardless intervention strategies.     
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Figure 4.5 The Relationship Between the Maximum Electricity Savings, the Personality Traits, 

and the Optimal Intervention Strategies 

Note: Personality traits include extraversion (PE1) and conscientiousness (PE3); Strategies (IN1-

IN5) are presented in five surfaces respectively. 

 

For the households with PE1<1.62 and PE3<1.24 (ELCL residents; low score in both 

extraversion and conscientiousness), the electricity savings range from 0 to 171.4kWh, and this 

represents the largest potential savings. Such phenomenon illustrates that those who are 

disorganized (low conscientiousness) and quite introverted (low extraversion) can show wide 

○ Sticker w/ Feedback (IN1)        -. Sticker w/o Feedback (IN2)     × WeChat w/ Feedback (IN3) 

· WeChat w/o Feedback (IN4)     □ Consultation (IN5) 
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differences in savings – some may show significant energy saving, while others show little. This 

result suggests that although these residents may rarely care about the environment, they show 

varying receptivity when intervened by WeChat feedback. For these types of residents, provision 

of online information is effective to help them improve their energy saving behaviors.  

4.6.1 Surface 1: WeChat with Feedback Intervention (IN3) 

Figure 4.6 shows the maximum predicted electricity savings (S) when the optimal 

intervention strategy for households is WeChat with feedback (IN3), which depends on the two of 

personality traits (PE1 and PE3). It can be noticed from Figure 4.6b that the savings range from 

41.59 kWh to 171.4 kWh if the WeChat with feedback intervention is selected as the best choice 

for these households. Specifically, the electricity savings reach a maximum of 171.4 kWh when 

PE1=1 and PE3=1, while the predictive savings reach a minimum of 41.59 kWh when PE1=5 and 

PE3=1. As shown in Figure 4.6b, the surface is mainly symmetric around the diagonal line 

PE1=PE3. The maximum predicted electricity savings decreases when either extraversion or 

conscientiousness grows, suggesting that people scoring low in extraversion and conscientiousness 

respond more actively to the intervention strategy IN3 (that is, WeChat with feedback) by reducing 

more energy. In other words, households who tend to be introverted and unconscientious can save 

most electricity through the use of WeChat with feedback. This can be explained that introverted 

people may preferred to be communicated via personal platform (e.g. WeChat) which provides a 

private and intimate environment to deliver the message rather than a shared or public 

announcement. Regarding unconscientious occupants, providing feedback is suggested as an 

effective approach to develop their awareness towards energy conservation and further to facilitate 

the change of energy behavior. 
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Figure 4.6 Extraversion (PE1) and Conscientiousness (PE3) Map with the Optimal Intervention 

Strategy (WeChat with Feedback) a) 3-D Surface Plot; b) Top View of the Surface 

 

4.6.2 Surface 2: WeChat without Feedback Intervention (IN4) 

Figure 4.7 shows the surface plot with the maximum predicted electricity savings (S) when 

the optimal intervention strategy for households is WeChat without feedback (IN4), which depends 

on the two of personality traits (PE1 and PE3). The maximum electricity savings is achieved 

(S=96.03 kWh) when PE1=5 (extremely high extraversion) and PE3=3.84 (high conscientiousness) 

– that is, EHCH residents – for which the surface descends toward the periphery. The results 

illustrate that extraverts and responsible households, for whom intervention with WeChat without 

feedback is suitable, have a potential to save more electricity than other types of residents; this 

suggests that they can be strongly influenced even by the saving tips alone offered via WeChat as 

they are always being mindful of the environment around them. However, households with 

PE1>4.72 and PE3<1.5 can barely save electricity (S=0) even when intervened by WeChat without 

feedback as the best choice, let alone other intervention strategies. 

 

(a) (b) 
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Figure 4.7 Extraversion (PE1) and conscientiousness (PE3) Map with The Optimal Intervention 

Strategies (WeChat without Feedback) a) 3-D Surface Plot; b) Top View of the Surface 

 

4.6.3 Surface 3: Consultation Intervention (IN5) 

As can be seen from Figure 4.8, when the consultation (IN5) is selected as the optimal 

intervention strategy for households, the maximum predicted electricity savings (S) depend on two 

personality traits (PE1 and PE3). The range of the electricity savings is from 54.3 kWh (PE1=3.2 

and PE3=1) to 0 (PE1<1.62 and PE3<1.24). There are two types of households –  EMCL and ELCM 

(PE1=3.2 and PE3=1, PE1=1 and PE3=2.24 respectively) – who are capable of saving significantly 

more energy, suggesting that consultation is probably the ideal intervention strategy for those who 

are ambiversion but unconscientious, or are introversion and relatively unconscientious. However, 

people who are less outgoing and extremely unconscientious tend to disregard all types of feedback 

and energy saving tips even in the face-to-face intervention, because they focus more on 

themselves instead of the environment around them. 
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Figure 4.8 Extraversion (PE1) and Conscientiousness (PE3) Map with the Optimal Intervention 

Strategies (Consultation). a) 3-D Surface Plot; b) Top View of the Surface. 

 

4.6.4 Surface 4 and 5: Sticker with Feedback Intervention (IN1) and Sticker without Feedback 

Intervention (IN2) 

Figure 4.9 and Figure 4.10 indicate surface plots with the maximum predicted electricity 

savings (S) for personality traits (PE1 and PE3) when the optimal intervention strategy for 

households is sticker with feedback intervention (IN1) and sticker without feedback intervention 

(IN2) respectively. The amount of maximum predicted savings through the intervention of sticker 

with feedback (9.83 kWh - 53.04 kWh) is slightly larger than the amount of savings by the 

intervention of sticker without feedback (7.17kWh - 43.62kWh). 

With respect to sticker with feedback intervention, as shown in Figure 4.9b, the surface is 

almost vertically symmetric around the line PE3=3.5 with the two peak values of savings at 53.04 

kWh (PE1=5 and PE3=3.16) and 52.85 kWh (PE1=1 and PE3=3.72). In terms of the sticker without 

feedback intervention in Figure 4.10b, the further the value of PE3 is away from PE3=3.7, the 

smaller of electricity potential savings are achieved by the households. That is, people with 

moderate level of conscientiousness can achieve more electricity savings than other types of people 

(a) (b) 

S 



 

 

121 

 

 

when the sticker without feedback intervention is employed, regardless of their level of 

extraversion. 

 

 

Figure 4.9 Extraversion (PE1) and Conscientiousness (PE3) Map with the Optimal Intervention 

Strategies (IN1). a) 3-D Surface Plot; b) Top View of the Surface. 

 

 

       

Figure 4.10 Extraversion (PE1) and Conscientiousness (PE3) Map with the Optimal Intervention 

Strategies (IN2). a) 3-D Surface Plot; b) Top View of the Surface. 
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4.7 Conclusion 

Occupant personality and behavior greatly influence the selection of optimal energy 

intervention strategy and result in large variances of household energy forecasting. Therefore, it is 

critical to understand interweaved relationship among occupant behaviors, their personality traits, 

and suitable behavioral intervention strategies, so as to accurately predict energy consumption 

under the best-fit intervention strategy.  

Based on an experiment conducted in Hangzhou, China, this study has proposed a variable 

selection approach that determines the optimal set of variables in predicting household electricity 

consumption. Among the initial 48 variables, 18 of them have been considered as the critical 

predictors including energy behaviors, personality trait, demographic information, building 

features and weather indicators in this research. Moreover, the prediction was further improved by 

introducing the interaction effect between the selected five behavior predictors and other variables 

in a GA RBF SVR model that incorporates occupant personality, behaviors, and intervention 

strategies to predict household electricity consumption. The result shows that the proposed model 

exhibits the best and robust performance in both next-month prediction and time-series forecasting. 

Therefore, the proposed model is able to act as a decision-making tool to choose the most 

appropriate intervention strategy for an individual household and to accurately predict the 

electricity savings under the selected intervention strategy. It is also of high practical value, since 

the heterogeneous effects of intervention strategies on individuals are the thorny problems for 

policymakers and behavioral researchers. The proposed model can also be adopted to forecast the 

energy consumption related to occupant behaviors in residential buildings and potentially in 

commercial buildings. By considering the individual profiles and their own characteristics, 
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especially occupant behaviors and personalities, it is possible to tailor the interventions to achieve 

the full potential of energy savings. 

According to the proposed approach, the best-fit strategy for each of the households was 

calculated in all experiment groups. This personality-based customized strategy generated from 

the improved SVR model can overall lead to an additional 12.1% reduction in household energy 

consumption than the real experiment setting. Specifically, the result demonstrated that the 

intervention strategy of WeChat with feedback and without feedback achieved the highest 

(15.97%) and second highest (15.43%) electricity savings compared to other strategies, followed 

by the consultation strategy (14.9%). The sticker strategies showed the smallest reduction in 

electricity consumption during the experiment period. Importantly, all of the feedback 

interventions (IN1, IN3 and IN5) presented a slightly more electricity savings comparing to non-

feedback interventions (IN2 and IN4).  

Besides, two personality traits− extraversion and conscientiousness−out of Big Five 

personality test, have been identified with significant influence in responding energy intervention. 

To examine their effects on the maximum predictive electricity savings, 10,000 households was 

simulated by using the Monte Carlo method and illustrated the results in a 3D surface plot, in 

which the predicted maximum energy savings in WeChat with feedback condition was much more 

than any other intervention strategies, reinforcing the previous predictive results. 

Further, five types of people (that is, ELCH, ELCL, EHCH, EMCL and ELCM) were identified 

based on their combination of extraversion and conscientiousness that response very distinctively 

to the optimized intervention strategy. The plot presented that the resident type ELCH with a high 

rate of conscientiousness while low rate of extraversion has a small-to-moderate saving potential. 

Nevertheless, type ELCL residents who are disorganized and introverted showed polarized 
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behaviors that they could either save massive electricity consumption when intervened by the 

WeChat with feedback or save little. 

The first contribution of this study is the development of a predictive tool that is able to 

select the optimal intervention strategy and to predict the maximum of electricity savings potential 

for each household, with identified subsets of all characteristic variables of households. 

Furthermore, the interaction effect between occupants’ energy use behaviors and other selected 

variables such as households’ demographic factors and personality traits are examined and 

incorporated in the household energy prediction model. Last but not least, the results shed light on 

the design of personality-based behavioral intervention strategy with considerable energy savings 

in the residential community, enlightening a customized approach for demand-side energy 

management. 

Given the contributions above, this study has three limitations that require for the future 

study. First, this study is a crucially preliminary step in the domain of electricity savings 

forecasting under multiple intervention strategies by considering energy behaviors, personality 

traits and the interaction effects between variables. Although the results are valid in the proposed 

approach, whether a household can persist in behaving in an energy-efficient lifestyle over a longer 

period of time is still under debate. Further study is thus suggested to focus on examining whether 

the energy behaviors of residents with different characteristics (e.g., personality traits, age) decay 

or relapse when intervention is terminated, and tailoring intervention strategies based on 

psychological methods to tackle this issue. Second, the current work was conducted in one city of 

China, however, residents’ behaviors and living habits may be different in other cities or countries. 

To generalize the prediction model, it needs to be applied to and tuned by different places with 

various scales and culture. Last but not least, the prediction model is developed by monthly 
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household consumption in this research. To further improve the accuracy of the proposed model, 

future work should use high resolution data (i.e. minute-based energy data) to calibrate the model 

and to reduce the estimate error. 
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Chapter 5:  Conclusion 
 

5.1 Major Findings and Novelty 

This dissertation evaluates the occupant behavior and its influence on the building energy 

management in three effects: 1) influencing of occupant behavior on the performance of energy 

retrofit, 2) change of occupant energy behavior via messaging intervention, and 3) incorporation 

of occupant personality characteristics in behavior intervention and energy forecast models.  The 

main findings are summarized as follows.  

In Chapter 2, this study introduces an occupant behavior-based decision-making model for 

evaluating and designing ESPCs contracts in building energy retrofit. Renters’ rebound effect, a 

significant but frequently ignored phenomenon, is incorporated in this model to better estimate 

potential energy savings. The result shows that renters’ rebound effect is a significant variable that 

would cause up to a 4-year difference of acceptable ESPCs contract length in the case study of 

University of Maryland campus (17-year contract with 15% rebound effect, 13-year contract 

without rebound). In order to mitigate and eliminate renters’ rebound effect, a shared incentive 

strategy between owners and renters was proposed. It is noticeable that NPV generated with shared 

strategy (𝜃 ∈ [0.5,1)) is always greater than that without sharing (𝜃 = 1), indicating that shared 

incentive is an effective tool to promote renters’ energy conservation behaviors. Key associated 

variables with rebound effect were also discussed to assess their impacts on the profitability and 

duration of ESPCs projects, such as renters’ risk attitudes (𝜌), expected rates of return (𝑟𝑅 , 𝑟𝑂 , 𝑟𝐸), 

and sharing strategy variables (𝐺, 𝛼, 𝛽). The results suggested that the sensitive renters (𝜌 = −10) 

whose behavior can be motivated by monetary incentives are likely to save more energy during 

sharing split program and resulted in the 9.06% increment of a project’s NPV compared to the 
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insensitive renter (𝜌 = −100) and in a 1-year decrease in contract period (from 14 years to 13 

years). The ESCO’s choice of expected rates of return (𝑟𝐸) must be determined with discretion as 

an increase of 𝑟𝐸 (i.e. a 50% increase from original value of 9%) will substantially stretch the 

acceptable contract period from 14 years to 18 years and lose bidding advantage in a highly 

competitive energy efficiency market.   

The determination of sharing strategy variables (𝐺, 𝛼, 𝛽)  is even more complicated 

considering the intertwined relationship and responsive behaviors among owners, ESCOs and 

occupants. The value of guaranteed savings (𝐺) needs to be designed within a dedicated zone to 

avoid over- or under-estimation. When 𝐺 is largely lower than the actual savings (𝑅𝑡)  (under-

estimated scenario), the extra savings amount  (𝑅𝑡 − 𝐺) is high. Because an owner’s sharing 

percentage beyond the guarantee (𝛽 = 20%) is much higher than an owners’ sharing percentage 

within the guarantee (𝛼 = 5%), the ESCOs have to split a large portion of extra savings (𝛽 ∗ (𝑅𝑡 −

𝐺)) to owners and hence recover less from the extra savings. Consequently, ESCOs have to extend 

the contract for a longer period to recover the initial investment. For instance, when 𝐺 decreases 

to 500,000 USD, the contract period under this case will increase to 16 years. On the contrary, 

when 𝐺 is over-estimated and higher than actual savings, ESCOs must compensate the saving 

shortage (𝐺 − 𝑅𝑡) to owners based on the contract terms, causing an even longer contract period. 

In a case when 𝐺 is increased by 125%, the corresponding contract period will increase up to 15 

years. The contract negotiation between ESCOs and owners has also been discussion with 

interactive process and key determining variables including the contract period (𝑛) and the shared 

percentage (𝜃). 
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These results provide convincing evidences to quantify and evaluate the influence of 

occupant behavior, i.e. the renters’ energy rebound effect, as a key specification on determining 

the contract assessment of ESPCs. To effectively mitigate the renters’ rebound effect, the optimal 

design of shared saving scheme needs to be carefully considered to create joint energy savings 

from both owners and renters. Such sharing strategies offer theoretical implications for contractual 

design that improve building energy efficiency in various applications, such as ESPC, green lease 

and smart grid implementation in the future.  

In Chapter 3, both paper-based leaflet messages and electronic-based instant messages (i.e. 

WeChat) were comparatively studied with different sets of intervention strategies in residential 

communities. The results show that the effectiveness of intervention strategies depends on both 

the way the messages are delivered and the frequency of delivery. WeChat was the most effective 

in triggering significant behavioral changes than using stickers. Although the WeChat group 

recorded the most energy savings between June and January (that is, 225.63 kWh), the amount of 

saving decreased through the months afterwards. In other words, the effectiveness in using instant 

messaging platform, such as WeChat, was short-lived. Comparatively, paper-based delivering 

method (e.g. sticker) is not as effective as WeChat but suitable to promote persistence of 

intervention effect in the long-term effect. Among the 22 quality of life (QoL) and RICCOW 

factors, the action to keep windows and doors closed when the air-conditioner is switched on was 

found to be correlated with a willingness (the RICCOW factor of “willingness”) to set and achieve 

specific consumption targets and having an opportunity to commit to energy saving. People who 

believe that higher education (leads to the RICCOW factor of “capacity”) to save energy also 

commit more to using task lighting. Overall, although data on energy consumption and behavior 

congruently show the advantage of using the WeChat treatment, the correlation of these variables 
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with QOL or RICCOW showed very different results, reflecting the complexity and difficulty 

involved in linking psychological or social factors to self-report energy behaviors. 

This chapter expands previous efforts of occupant behavior intervention by differentiating 

interventions accordingly to occupant life styles and psychological perceptions. The results 

showed that the effectiveness of occupant intervention strategies depends on both the information 

messages contained and the means the messages are delivered. When the feedback is tailored to 

individuals and communicated in a suitable means, it provides additional value and persuasive 

power in changing occupant behavior. The findings also enhance the message framing theory in 

their applications in the energy efficiency communication by considering different message 

delivering means and the nature of message recipients. 

Chapter 4 examined the occupant personality traits (e.g. Big Five Personality Traits) in 

determining the best intervention strategies that can change their energy use behavior. Based on 

these selected personality traits and other critical predictors, an improved Support Vector 

Regression (SVR) model has been developed to predict household electricity consumption under 

multiple intervention strategies. The model includes 18 critical predictors such as personality trait, 

energy behaviors, demographic information, building features and weather conditions, and the 

interaction effect among themselves. Out of five candidate SVR models, the GA-RBF-SVR model 

was selected the optimal model for household electricity consumption prediction as it exhibits the 

best performance on next-month prediction with MAPE of 8.48% and 9.34% using training data 

and testing data respectively, along with the minimum MAPE value during the testing period. 

According to the proposed approach, the best-fit strategy for each of the households was 

recommended and such a personality-based customized strategy generated from the improved 
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SVR model can overall lead to an additional 12.1% reduction in household energy consumption 

than the real experiment setting.  

Specifically, the result demonstrated that the intervention strategy of WeChat with 

feedback and without feedback achieved the highest (15.97%) and second highest (15.43%) 

electricity savings compared to other strategies, more than any other intervention strategies. 

Importantly, all of the feedback intervention groups (e.g. IN1, IN3 and IN5) presented a slightly 

more electricity savings comparing to non-feedback intervention groups (e.g. IN2 and IN4). It is 

worth noting that this result is similar but slightly different from the result in Chapter 3 in which 

the WeChat intervention (without eco-feedback) achieved the highest saving. This is because in 

Chapter 3, only two interventions, WeChat (without eco-feedback) and sticker (without eco-

feedback) were compared. Another reason is that the method used in Chapter 4 is the hypothetical 

optimal saving amount provided that the personality traits of the household occupants are known 

and they are also provided with best-fit intervention strategies. In other words, the optimal saving 

amount from Chapter 4 (hypothetical value) are much higher than the actual results in Chapter 3. 

Such differences reinforce the key point that is there is a huge potential to improve the energy 

saving amount by properly tailoring and designing the customized intervention strategies based on 

occupant preferences and characteristics. 

Additionally, two personality traits− extraversion (E) and conscientiousness (C)−out of Big 

Five personality test, have been identified with significant influence in responding energy 

intervention. Based on the combination of these two traits in either high or low level, five types of 

people (that is, ELCH, ELCL, EHCH, EMCL and ELCM) and their response to multiple intervention 

strategies were simulated by using the Monte Carlo method with the results plotted in 3D surface 

diagram. The plot presented that the resident type ELCH with a high rate of conscientiousness (C) 
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while low rate of extraversion (E) has a small-to-moderate saving potential. Nevertheless, type 

ELCL residents who are disorganized and introverted showed polarized behaviors that they could 

either save massive electricity consumption when intervened by the WeChat with feedback or save 

little.  

The predictive model developed from this chapter is able to select the optimal intervention 

strategy and to predict the maximum of electricity savings potential for each household, with 

identified subsets of all personality traits of household occupants. This model expanded the 

existing theory on household energy prediction by highlighting the interaction effect between 

occupants’ energy use behaviors and other selected variables such as personality traits and 

households’ demographic factors. The results shed light on the design of personality-based 

behavioral intervention strategy with considerable energy savings in the residential community, 

enlightening a customized approach for demand-side energy management.  

5.2 Managerial and Policy Implications 

Behavior-based studies conducted in this dissertation provide new perspectives for the 

demand-side energy management and also offer innovative principles to regulate and govern user 

energy behaviors in the building sector. These results shed light on the design of tailored behavioral 

intervention strategy with considerable energy savings in the residential community, enlightening 

a customized approach for demand-side energy management. These key results also provided 

preliminary evidence that an integrated intervention approach, in which different modes of 

engaging households based on the nature and the purpose of messages, is a preferred strategy with 

a higher chance of success in motivating behavioral change. Policymakers may consider the use 

of social messaging platforms such as WeChat as a social information sharing platform that 
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quickly engage households to an energy conservation program. After a short period of time (about 

two months, as indicated by this present study), more sustaining methods, such as stickers, can be 

introduced to maintain the initial “momentum” of energy-saving behavior initiated by the WeChat 

method.  

As indicated by the results, households in general welcome more such opportunities to 

attempt to save energy; the fact that WeChat is a very widely used platform makes it very suitable 

to be employed for such a study. Also, using widely popular social platform is a way of providing 

more opportunities for households to engage in energy saving programs. The challenge in such 

programs may lie in two areas: 1) knowing how to keep the messages (conveyed through the social 

media platform) engaging and interesting, so that they can have more lasting effects on behavior; 

and 2) knowing when to introduce a more sustaining and long-lasting form of sharing information 

and engaging households (that is, by using methods such as stickers). In other words, an effective 

household engagement program or policy depends on not just the effectiveness of each phase (in 

which different method is employed) but also on the transition from one phase to another. 

The fact that WeChat is a very widely used platform makes it very suitable to be employed 

over large areas, such as mega cities. Although some households indicated that having a strict 

energy ration in their households help them to save energy, formalizing this across all families is 

impossible in the near future. Unless in times of serious energy shortage, energy rationing is never 

a preferred policy strategy. In spite of this, energy rationing may be implemented as either an 

educational activity in schools or as an encouraged activity for the public. An example of the latter 

is the World Wildlife Fund’s Earth Hour, which is a global celebration where people switch off 

their lights for one hour as a way to save energy in a concerted effort to mitigate climate change. 

This activity has created a strong following around the world and many companies and 
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organizations are supporting this activity annually. Similarly, an annual energy rationing challenge 

may be started in conjunction with the annual Earth Day to engage firms and households to embark 

on actions that consciously cut back on unnecessary usage.  

Finally, before formally incorporating the results of these studies into local energy policies 

or programs, it is essential for policymakers to fully understand how providing users with feedback 

while using the methods in this study can cause any changes to the results, in both short- and long-

term. As any intervention may lead to ripple effect, meaning not only the direct response (first-

tiered) expected by the intervention, but also generating additional second-tiered effects, such as 

rebound effect, decay effect and spillover effect. These second-tiered effects may improve (e.g. 

spill-over effect) or deteriorate (e.g. rebound effect) the overall efficacy of the energy policies in 

different phases. For instance, when comparing two kinds of intervention between monetary 

feedback venue environmental feedback to promote energy conservation, the immediate effect 

may evolve and change when the rebound effect or spillover effect kicks in, and subsequently it 

will change the overall effective of the intervention. Conducting a pilot study to fully aware of all 

responsive behaviors to a target policy and studying phase-in behavior changes with multi-faceted 

implications are key to the long-term success in engaging energy end users and will be undertook 

by the author in the future studies. 
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Appendix A: Survey Questionnaire of Household Energy-Saving Behavior  

Each family is approached to answer the following questionnaire to report energy saving behavior in each month during the experiment. 

The measurement of scale is noted in the end of the table.  

Air-Conditioner 

A．Possession a 

1. Set the thermostat below 20 oC (or turn off air-conditioner ) during winter; Set the thermostat above 26 C during summer b 

2. Use automatic time-off switch when possible, e.g. after going to bed at night. b 

3. Regularly check the air-conditioners and clean air filter timely. c 

4. Keep windows and doors closed when the air-conditioner is switched on. b 

5. Turn off air-conditioners when nobody at home.  b 

Refrigerator 

B. Possession a 

6. Allow some space all around the fridge. d 

7. Refrigerator that is not overloaded. e 

8. Cool down hot food before storing in fridge. b 

9. Store liquids in the refrigerator after covering it up. b 

Water Heater 

C. Possession a 

10. Heat enough water without too much unused. f 
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11. For an instantaneous type of heater, switch it on before shower and turn off after use. For a storage type of heater, switch 

it on about 45 minutes before shower, and turn it off after use. b 

Bathroom Master 

D. Possession a 

12. Switch it on before shower and turn off after use. b 

Lighting 

13.Turn lights on during daytime. b 

14. Turn lights off when nobody is in the room. b 

15. Use task lighting for activities requiring small amount of focus light. (e.g. only turn reading lamps on and turn the other 

lights off). b 

Home Electronics(E.g. Computers, TVs, etc.) 

16. Turn off home appliances (e.g. TV) not in use instead of leaving on standby. b 

17. Switch top boxes and routers off when not in use. (e.g. overnight) b 

18. Allow computer to be on energy-saving mode ( e.g. hibernation mode after 10- 15 min and  completely off after 30 

minutes. b 

19. Unplug chargers or off the switch when appliances not in use. b 

Electric Water Warmer 

E. Possession a 

20. Turn it on only when necessary. Turn it off and unplug when it is not in use. b 

Clothes Dyer (Not Washing Machine) 

F. Possession a 
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21. Dry laundry under natural sunlight instead using clothes dryer whenever possible. b 

Heating Appliances (During Winter) 

Electric Heating Blanket 

A. Possession a 

1. Turn the blanket on only before going to bed and turn it off after the bed gets warm. b 

Heating Appliances (E.g. electric heater, electric fan, oil filled radiator, etc.) 

B. Possession a 

2. Turn the heating appliances off when the room is warm instead of leaving them on. b 

3. Average duration of using heating appliances every day. 

Floor Heating 

C. Possession a 

4. Set the heating temperature between 18 to 20℃ 

5.Close the windows and doors when the floor heating is in use. 

6. Lower down the heating temperature instead turning it off when no one is at home for a short period of time (e.g. out for 

grocery) 

7. Turn the floor heating off when no one is at home for long period of time. 

8. Regularly check, clean and maintain the floor heating equipment. 

       Note: 

a. Yes/No. If yes, how many?      

b. Five-scale measurement: never, rarely (1-2 days/month), sometimes (1-2 days/week), usually (3-4 days/week), always 

(everyday). 



 

 

138 

 

 

c. Five-scale measurement: never, once/7-10 years, once/4-6 years, Once/2-3 years, Once within 2 years. 

d. Five-scale measurement: no space (0-2cm), a little space(2-5cm), relative small space (5-7cm), small space (7-8cm), enough 

space (> 10cm). 

e. Five-scale measurement: no space; full of storage, almost full of storage(2/3), plenty food but not full of storage(1/2), little 

storage(1/3), almost no storage. 

f. Five-scale measurement: everyday too much unused hot water, many days too much unused hot water, sometimes too much 

unused hot water, usually not too much unused hot water, everyday not too much unused hot water. 

g. Five-scale measurement: plenty (>10 hours), many (5-10 hours), average (3-5 hours), several (2-3 hours), very few (< 1hour). 
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Appendix B: Survey Questionnaire of Household Information  

Part 1. Households Demographics 

Housing Information 

1) Floor level  _____ 

2) Orientation: North-south/East-west 

3) Age of your house (since built until now): _______ years 

4) The latest renovation completed in year ______ month_____  

5) Usage: A. Rent    B. Self-owned  

6) Cook at home using kitchen appliances (e.g. induction cooker)    

A. Never   B. Occasionally   C. Usually   D. Always 

7) Your house includes ______ living rooms, _____ bedrooms, ____ study rooms 

8) Usable floor area: ___ _meter square 

9) House type:  A. Commercial B. Economically affordable housing C. Low-rent 

housing    D. Resettlement housing 

Household Information 

10) The number of family members (including yourself): ________, and their ages 

and gender.  

11) Total monthly income (After tax): (  ) 

A. below 5000 RMB  B. 5000-10000 RMB   C. 10000-15000 RMB   D. 15000-

20000 RMB 

E. 20000-25000 RMB   F. Above 25000 RMB 

12) Education level of the house owner:(  ) 

A. Never been to primary school   B. Primary School   C. Junior School   D. Senior 

High School (Technical Secondary school, vocational school, technical school, 

etc.)  E. Diploma (Higher vocational school)   F. Degree   G. Postgraduate and 

above 

13) The highest level of education of family member who stays most of the time at 

home: (  ) 
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A. Never been to primary school   B. Primary School   C. Junior School   D. Senior 

High School (Technical Secondary school, vocational school, technical school, 

etc.)  E. Diploma (Higher vocational school)   F. Degree   G. Postgraduate and 

above 

14) The highest education level among the family members: (  ) 

A. Never been to primary school   B. Primary School   C. Junior School   D. Senior 

High School (Technical Secondary school, vocational school, technical school, 

etc.)  E. Diploma (Higher vocational school)   F. Degree   G. Postgraduate and 

above 

15) Nationality: (  ) 

A. Chinese    B. Minority, please specify: ______ 

16) Occupation: (  ) 

A．Government Organizations   B．Enterprise   C．Institutions  D．Social 

group, district/village community n  E. Self-employed   F. Army   G. Others, please 

specify:__________ 
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Part 2. Household Quality of Life (QOL) 

Rate the importance of the following aspects to your family based on the most 

appropriate answer. (Measured by five scales: 1 = Unimportant; 2 = Slightly important; 

3 =Important; 4 =Very important; 5 =Critical.) 

1) Aesthetic: Being able to enjoy the beauty of nature and culture. 

2) Challenge: Having challenges and experiencing pleasant and exciting things in 

life.  

3) Life Experience: Having a varied life, experiencing many things as possible.  

4) Comfort Level: Having a comfortable and easy daily life. 

5) Education: Having the chance to get a good education and to gain general 

knowledge. 

6) Environment Quality: Having access to clean air, water and soil. Having and 

maintaining a good environmental quality. 

7) Freedom: Freedom and control over the course of one's life, to be able to decide 

for yourself, what you do, when and how. 

8) Health: Being in good health, access to adequate health care.  

9) Self-esteem/ Personal Identity: Having sufficient self-respect and being able to 

develop one's own identity.   

10) Leisure Time: Having enough time after work and household work and being 

able to spend this time satisfactorily.   

11) Living Condition: Having nice possessions in and around the house. 

12) Income: Having enough money to buy and to do the thing necessary and 

pleasing. 

13) Biodiversity: To enjoy natural landscapes, parks and forests. Assurance of the 

continued existence of plants and animals and maintaining biodiversity. 

14) Friend and family: Having an intimate relation, a stable family life and good 

family relationships.   

15) Privacy: Having opportunities to be yourself, do your own things, a place of 

your own  
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16) Safety: Being safe at home and in the streets. Being able to avoid accidents and 

being protected against criminality. 

17) Care and love: Feeling attended to and cared for by others.    

18) Social Justice: Feeling attended to and cared for by others. 

19) Social connection: Having good relationships with friends, colleagues, 

neighbors.  

20) Spiritual/Religion freedom: Being able to live a life with an emphasis on 

spirituality and/or with your own religious persuasion. 

21)  Social Recognition: Being appreciated and respected by others. 

22) Work: Having or being able to find a job and being able to fulfill it as 

pleasantly as possible. 
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Part 3. Individual Energy-saving Responsibility (RICCOW) 

Please read the following item carefully and select the most appropriate answer. 

(measured by five scales: the measurement scale ranges from: completely not, 

occasionally/somewhat, depends, most of the time, always.) 

1) You should be responsible for the energy savings  

2) Material Incentives (E.g. monetary incentive, prizes and other material rewards) 

help to develop the energy-saving habit. 

3) The current material incentives are adequate.  

4) Non-material incentives (recognize and commend the model energy-saving 

family in the whole district) help to develop the energy-saving habit.  

5) The current non-material incentives are adequate. 

6) Mastering some energy-saving knowledge and skills help to conserve energy.  

7) Strict electricity consumption plan (family plans a cut-off point for electricity 

consumption, which cannot be exceeded every month) help to conserve energy.  

8) The higher the education level of family members, the stronger the intention to 

conserve energy.  

9) Willing to participate in the energy-saving activities within community, 

company and organizations.  

10) Having such energy-saving activity. 
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Appendix C: Description of the Attributes and Variables Used in the Experiment and the Simulation 

 

Survey 

Name 

Attribute Numb

ers of 

Items 

Variable Name Variable type Item Collect

ion 

Period 

Frequ

ency 

Demograph

ics Survey 

Demogra

phic 

Profile 

9 DEMO_residents (DE1) Continuous Number of family members. Februa

ry, 

2016 

Once 

DEMO_age  (DE2) Continuous Average age of all family members. 

Demo_resident_gen (DE3) Continuous Ratio of males to the household. 

Demo_income (DE4) Ordinary Total monthly income (After tax). a 

 

Demo_owner_edulvl (DE5) Ordinary Education level of the house owner. b   

 

Demo_residen_tedulvl (DE6) Ordinary The highest level of education of family 

member who stays most of the time at home. b 

Demo_highest_edulvl_no (DE7) Ordinary The highest education level among the family 

members. b 

Demo_religion (DE8) Categorical Nationality: 0. Others(DE8a) 1. Han(DE8b) 

Demo_occup(DE9) Categorical Occupation: 

1. Government organizations(DE9a) 2. 

Enterprise(DE9b) 3. Institutions(DE9c) 4. Social 

group(DE9d) 5. Self-employed(DE9e) 6. 

Army(DE9f) 7. Others(DE9g) 
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Building 

features 

11 Demo_floor (BU1) Continuous Floor level. 

Demo_direction (BU2) Categorical Orientation: North-south (BU2a)/East-

west(BU2b) 

Demo_house_age (BU3) Continuous Age of your house (since built until now) 

Demo_retrofit_date (BU4) Ordinary The latest renovation completed in year ______ 

month_____. 

Demo_rent (BU5) Categorical Usage: 1. Rent(BU5a)   2. Self-owned(BU5b) 

Demo_cooking (BU6) Ordinary Cook at home using kitchen appliances (e.g. 

induction cooker).  c 

Demo_living_rom (BU7) Continuous Your house includes _____living rooms 

Demo_bedroom (BU8) Continuous Your house includes ____bedroom 

Demo_study_room (BU9) Continuous Your house includes _____study rooms 

Demo_area (BU10) Continuous Usable floor area: ______meter square 

Demo_home_type (BU11) Categorical House type: 1. Commercial (BU11a )2. 

Economically affordable housing(BU11b ) 3. 

Low-rent housing(BU11c ) 4. Resettlement 

housing(BU11d ) 

Energy 

Behaviour 

Survey 

(adapted 

from He & 

Kua [19] 

Building 

feature 

3 EB_ac_num (BU12) Continuous The number of air conditions. Februa

ry to 

June, 

2016 

Mont

hly EB_fridge_num (BU13) Continuous The number of fridges. 

EB_washer_num (BU14) Continuous The number of washers. 

Energy 

Behavio

ur 

16 EB_ac_temp  (EB1) Ordinary Set the thermostat below 20C (or turn off air-

conditioner) during winter; Set the thermostat 

above 26C during summer.  c 
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and Kua 

and Wong 

[18]) 

EB_ac_power (EB2) Ordinary Use automatic time-off switch when possible. 

e.g. after going to bed at night.  c 

EB_ac_clean (EB3) Ordinary Regularly check the air-conditioners and clean 

air filter timely.  c 

EB_ac_close (EB4) Ordinary Keep windows and doors closed when the air-

conditioner is switched on.  c 

EB_ac_occu (EB5) Ordinary Turn off air-conditioners when nobody at 

home.  c 

EB_fridge_outside (EB6) Ordinary Allow some space all around the fridge.  c 

EB_fridge_inside (EB7) Ordinary Refrigerator that is not overloaded.  c 

EB_fridge_food (EB8) Ordinary Cool down hot food before storing in fridge. c 

EB_fridge_liquid (EB9) Ordinary Store liquids in the refrigerator after covering it 

up.  c 

EB_light_day (EB10) Ordinary Turn lights on during daytime. c 

EB_light_occu (EB11) Ordinary Turn lights off when nobody is the room.  c 

EB_light_focus (EB12) Ordinary Use task lighting for activities requiting small 

amount of focus light. (e.g. only turn reading 

lamps on and turn the other lights off).  c 

EB_app_off (EB13) Ordinary Turn off home application (e.g. TV) not in use 

instead of leaving on standby. c 

EB_app_nouse1 (EB14) Ordinary Switch top boxes and routers off when not in 

use. (e.g. overnight). c 
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EB_comp_save (EB15) Ordinary Allow computer to be on energy-saving mode 

(e.g. hibernation mode after 10-15 min and 

completely off after 30 minutes. c 

EB_app_unplug (EB16) Ordinary Unplug chargers or off the switch when 

appliances not in use.  c 

Big Five 

Personality 

Traits 

Inventory 

(BFI-10) 

[51] 

Personali

ty 

10 Extraversion (PE1) Ordinary Extraversion is measured by two survey items 

as follows: 

1. I see myself as someone who is reserved. h 

6. I see myself as someone who is outgoing and 

sociable.  h 

July, 

2016 

 

Once 

Agreeableness (PE2) Ordinary Agreeableness is measured by two survey items 

as follows: 

2. I see myself as someone who is generally 

trusting.  h 

7. I see myself as someone who tends to find 

fault with others.  h 

Conscientiousness (PE3) Ordinary Conscientiousness is measured by two survey 

items as follows: 

3. I see myself as someone who tends to be 

lazy.  h 

8. I see myself as someone who does a 

thorough job.  h 
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Neuroticism (PE4) Ordinary Neuroticism is measured by two survey items 

as follows: 

4. I see myself as someone who is relaxed, 

handless stress well.  h 

9. I see myself as someone who gets nervous 

easily.  h 

Openness (PE5) Ordinary Openness is measured by two survey items as 

follows: 

5. I see myself as someone who has few artistic 

interests.  h 

10. I see myself as someone who has an active 

imagination.  h 

 Intervent

ion 

 IN1 Categorical Leaflet/Stickers with feedback group   

IN2 Leaflet/Stickers without feedback group 

IN3 WeChat with feedback group 

IN4 WeChat without feedback group 

IN5 Consultation group 

IN6 Control group 

 Last 

month 

consump

tion 

 Last_month ( Ei-1,j) Continuous Electricity consumption of the subject 

household in the last month (kWh). 

  

 Weather  HDD Continuous Heating Degree Days (°C∙d). 
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Note: 

a. Below 5000RMB, 5000-10000RMB,10000-15000RMB, 15000-20000RMB, 20000-25000RMB, Above 25000RMB. 

b. Never been to primary school, Primary school, Junior school, Senior school, Diploma, Degree, Postgraduate and above. 

c. Never, Rarely, Sometimes, Usually, Always. 

d. Never, Once/7-10 years, Once/4-6 years, Once/2-3 years, Once within 2 years. 

e. Everyday too much unused hot water, Many days too much unused hot water, Sometimes too much unused hot water, Usually not too much unused hot 

water, Everyday not too much unused hot water. 

f. Plenty>10 hours, Many (5-10 hours),  Average (3-5 hours),  Several (2-3 hours ),  Very few (< 1hour). 

g. Full load, 2/3 load, 1/2 load, 1/3 load, Minimal load. 

h. Disagree strongly, Disagree a little, Neither agree nor disagree, Agree a little, Agree strongly. 

 

CDD Continuous Cooling Degree Days (°C∙d).   
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Glossary 

A. Parameters and initial values used in the EPC decision making model (Chapter 2). 

S/N Parameters Symbols Current 

Values 

1 Volatility of the O&M cost coefficient 
H  0.25 

2 Volatility of the energy saving amount coefficient 
K  0.01 

3 Energy price drift effect 
E  0.0523 

4 Energy price volatility effect 
E  0.0856 

5 O&M trend index*   1.025 

6 Initial value of the O&M cost coefficient* 
0H  0.0036 

7 Initial value of the energy saving amount coefficient* 
0K  0.0043 

8 Initial value of the energy price* 
0EP  22.82 $/Btu 

9 Economic lifetime of the energy efficiency system N  25 years 

10 Capital cost of the energy efficiency investment Ic  $20,668,991 

11 Annual energy cost savings guarantee G  $3,000,000 

12 Owners’ expected revenue share within the guarantee   5% 

13 Owners’ excess revenue share beyond the guarantee   20% 

14 Owners’ expected rate of return* 
or  3.10% 

15 Renters’ expected rate of return* 
Rr  

3.10% 

16 Project interest rate* 
Pr  

3.10% 

17 ESCOs’ expected rate of return* 
Er  6% 

18 Owners’ expected revenue share with Renters   100% 

19 Maximum renters’ rebound effect   15% 

20 Risk attitude of renters   -20 
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*Note: 1. values of parameters are partially derived from Deng et al. (2014), while 

those with star (*) were adjusted or newly collected based on the project documents or 

relative background information. 
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B. Parameters and the explanation used in the energy forecasting model (Chapter 4). 

 

S/N Parameters Symbols 

1 Electricity consumption (kwh) of the j th  household in 

the i th  month 

ijE  

2 Predicted value of ijE  
ijE   

3 The tha  vector coefficient of the thb  model 
a,b  

4 Vector of energy behaviors EB  

5 Vector of building features BU  

6 Vector of demographic factors DE  

7 Vector of personality traits PE  

8 Vector of intervention variables IN  

9 Vector of heating degree days 
iHDD  

10 Vector of cooling degree days 
iCDD  

11 Intercept   

12 Error term 
ij  

13 Number of parameters to be estimated k  

14 Likelihood function L  

15 Parameter vector w  

16 Constant term b  

17 Nonlinear kernel functions ( )x  

18 Lagrange multiplier 
i  

19 Cost hyperparameter C  

20 Number of data samples d  

21 Starting time of the intervention p  

22 Ending time of the intervention q  

23 Period of the intervention from the p th month to the 
thq  

month 

T  
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24 Maximum average electricity savings through the 

optimal intervention for the 

thj  household of T  month 

 

'jS  

25 No treatment condition m  

26 Population of households that suggested with optimal 

intervention 

R
z
 

27 Total number of households R  

28 Personality trait of extraversion 
1PE  

29 Personality trait of agreeableness 
2PE  

30 Personality trait of conscientiousness 
3PE  

31 Personality trait of neuroticism 
4PE  

32 Personality trait of openness 
5PE  

33 Intervention strategy of leaflet/stickers with feedback 
1IN  

34 Intervention strategy of leaflet/stickers without feedback 
2IN  

35 Intervention strategy of WeChat with feedback 
3IN  

36 Intervention strategy of WeChat without feedback 
4IN  

37 Intervention strategy of Consultation with feedback 
5IN  

38 No intervention 
6IN  
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