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Chapter 1: Introduction

1.1 Motivation for Research

The motivation for researching collective behavior of autonomous underwater ve-

hicles originates from the growing need to estimate rapidly evolving spatio-temporal pro-

cesses using mobile sensor network. For example, a collection of underwater vehicles

performing oceanographic sampling can further the understanding of the effect of ocean

water quality on ocean streams. Similarly, a coordinated collection of vehicles doing un-

derwater pipeline inspection can decrease the risk of problems and pipeline pollution.

For this reason, collective behavior of mobile agents has received significant interest

recently in various fields such as biology, physics, computer science, and control en-

gineering [1], [2], [3]. Research in this area is allowing scientists to better understand

swarming behavior in nature and benefits control engineers in various applications by

mimicking nature’s behavior in engineered mobile systems such as unmanned ground,

air, and underwater vehicles. Various swarming techniques have been studied and applied

such as flocking, formation, and consensus control which happens when the vehicles

reach an agreement on their collective direction, heading, velocity or any other vehicle

state [4], [5], [6]. While these swarming techniques are important for vehicle coordina-

tion during a task, existing consensus and formation control algorithms considered driv-
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ing the vehicles state variables to be non-oscillating, where an oscillating state variable

is an agent state variable that oscillates around a point, which is not always realistic and

sometimes undesired. Therefore, there is a need for a swarming algorithm that consider

driving the agents to formation or consensus control with oscillating state variables to

enable applications requiring more complex coordination.

1.2 Relation to Previous work

Consensus control in Euclidean space, which assumes that the state variables of

the system live on RN , is a well-studied topic [7]. The goal of consensus control is

to steer N agents into identical state variables, where heading an angular velocity of

an agent is an example of a state variable. For example, consensus control is used for

rendezvous [8] and formation control [9], [10]. Consensus is typically studied for single-

integrator dynamics [11], [12], which could contain linear or nonlinear drift vector fields

[13], [14]. Interactions between agents can be static [15], time-varying [11], [12], all-to-

all [15] or limited [16]. These interactions are typically described using the Laplacian

matrix from algebraic graph theory [17] to compute relative state information, such as

relative position.

Euclidean consensus has also been studied for double-integrator dynamics [18]. In

this setting, most prior work uses feedback of relative position and velocity [19], [20],

[21]. Second-order Euclidean consensus is possible for systems with a nonlinear drift

vector field that represents the vehicle dynamics [21]. The presence of a virtual leader

permits vehicles to follow a desired trajectory [20].
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Consensus control on a nonlinear manifold has also been studied previously [22],

[23], [24], [25], [26]. For example, consensus on theN -torus—also called synchronization—

arises in the control of planar formations, where the heading orientation is a phase angle

on the unit circle [27]. Orientation and translation control of agents in the plane utilizes

the special Euclidean group [28]. Many synchronization approaches [29], [30] are based

on principles from the theory of coupled oscillators, such as the celebrated Kuramoto

model [27], and invoke the graph Laplacian for cooperative control of first-order dynam-

ics on the N -torus [31]. Second-order consensus of coupled oscillators with double-

integrator dynamics [32] uses the gradient of a phase potential. However, no previous

work on consensus considers second-order oscillators with nonlinear dynamics.

Similarly, circular formation control for first order dynamics on the N torus has

also been studied in [25]. an extension to [25] was done in [32] where circular formation

was achieved on tangent bundle of the N -torus. Nevertheless, none of the previous work

accounted for vehicle dynamics and motion requirements of each agent.

1.3 Technical Approach

In this thesis, I extend the different consensus, synchronization and circular for-

mation control approaches that were done on different topologies, such as the Euclidean

space RN and the N - torus TN , using first order and second order integrator dynamics.

I extend these control approaches to incorporate the tangent bundle of the N - torus and

the dynamics of a fish robot designed in the Collective Dynamics and Control labora-

tory. The motion of the robotic fish [33] is modeled by the Chaplygin sleigh dynamics.
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These dynamics are simplified using single-perturbation method to facilitate the design

and analysis of a swarm controller that is inspired by the self propelled particle model

in [25].

1.4 Contributions of Thesis

The first contribution of this thesis is a tracking controller for a single Chaplygin

sleigh fish by convergence to a desired limit cycle, where the heading of the fish oscillates

around a desired trajectory while tracking it on average.

A second contribution is thesis second-order consensus control law for multiple

phase oscillators with a nonlinear drift vector field. The proposed controller requires only

relative velocity measurements, rather than relative position and velocity, computed using

the Laplacian matrix of a connected interaction graph. The heading and angular velocity

reach consensus on a periodic orbit, where the value of the heading and angular velocity of

each fish is oscillating. As a sub-contribution, the consensus control is illustrated for the

case of a system of nonlinear oscillators representing the closed-loop swimming dynamics

of a school of robotic fish [33]. The individual fish-robot dynamics are represented by the

Chaplygin sleigh [34], [33], which is a nonholonomic mechanical system, propelled by

an internal rotor.

Another contribution of this thesis is average phase synchronization for multiple

phase oscillators on the N -torus with a nonlinear vector field, which as before, is the

Chaplygin sleigh dynamics of the fish. The control law does not include a virtual leader

or a desired direction of motion to track. Consensus in this case is reached on average for
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the same heading and angular velocity, that varies along a periodic orbit.

The final contribution of this thesis is circular formation control on the tangent bun-

dle of theN -torus for multiple phase oscillators with a nonlinear vector field. The vehicles

are stabilized on the same circle while maintaining an oscillating angular velocity.

1.5 Outline of Thesis

The remainder of this thesis is organized as follows. Section 2 provides prelimi-

naries on graph theory, defines the consensus problem on the tangent bundle of the N -

torus, and the first and second order self propelled particle models. Section 3 presents the

Chaplygin sleigh fish with control algorithms that achieve single fish straight and circular

motion. Section 4 presents a general formulation of the consensus result for second-order

oscillators with nonlinear dynamics and applies the general result to the Chaplygin sleigh

dynamics. Section 5 develops the phase synchronization and circular formation control

algorithms on the Chaplygin sleigh swarm. Section 6 summarizes the thesis and discusses

ongoing work.
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Chapter 2: Background

2.1 Graph Theory

A graph is used to represent the communication topology of an interacting system

of agents. The communication graph is built upon a set of nodes N = {1, . . . , N} that

represents the agents. An edge denoted by the pair (i, j) exists between agent i ∈ N and

j ∈ N if information flows from j to i. The set of all edges is denotedE ⊆ N 2. Together,

the set of nodesN and the edgesE define a graphG = (N , E) [35]. A sequence of edges

{(i, i1), (i1, i2), · · · , (il, j)}with distinct nodes ik ∈ N , ik 6= i, ik 6= j, for k = 1, 2, · · · , l

is called a path from node i to node j. A graph G is called undirected if (i, j) ∈ E if and

only if (j, i) ∈ E. If there exists a path between any pair of distinct nodes i, j ∈ N , an

undirected graph G is called connected. Edges are expressed using the adjacency matrix

A ∈ RN×N , where the entry on the ith row and jth column is

Aij =


1 if (i, j) ∈ E

0 otherwise

.
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The degree matrix D ∈ RN×N encodes how many unique edges are connected to each

node and has nonzero elements on the diagonal, i.e.,

Dij =


∑N

k=1Aik if i = j

0 otherwise

.

The symmetric and positive semi-definite Laplacian matrix L ∈ RN×N associated with

the undirected graph G is

L = D − A . (2.1)

The Laplacian matrix is used to compute relative state information that is communicated

between agents. The quadratic form xTLx ≥ 0, where x ∈ RN may represent a state of

interest, is equal to zero if and only if xi = xj , ∀ i, j ∈ N .

2.2 Consensus and Synchronization

This thesis considers a fixed undirected network G = (N , E) composed of N

identical agents with the following second-order nonlinear dynamics:

θ̇k = ωk (2.2)

ω̇k = g(ωk) + uk(θ,ω) , (2.3)

where θ = {θ1, · · · , θN} ∈ TN is the set of agent phase angles on the N -torus TN ,

{S1×· · ·×S1}, ω = {ω1, · · · , ωN} ∈ RN is the corresponding set of angular rates, g(ωk)

represents the (nonlinear) dynamics of agent k, and uk(θ,ω) is the state-feedback control
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input to agent k. The tangent bundle on theN -torus is the disjoint union of tangent spaces

TpTN for all points p on the N -torus [36].

Definition 1. The problem of second-order consensus on the tangent bundle of the N -

torus for the system (2.2),(2.3) is to design a control input uk for k ∈ N such that

lim
t→∞
‖θk − θj‖ = 0 (2.4)

lim
t→∞
‖ωk − ωj‖ = 0 , (2.5)

for all pairs k, j ∈ N .

Note that ωk does not necessarily converge to zero. In fact, we are interested in the

case where (θk, ωk) forms a limit cycle for all k ∈ N .

2.3 Self-Propelled Particle Dynamics and Cooperative Control

In our study of swarm behavior, parallel and circular formation of self propelled

particles are used as the basis of more complex motion. Hence, in order to understand

the control laws of the following chapters, the first and second order particle models are

described here. The corresponding control inputs that achieve circular and parallel motion

are also reviewed.

In the self propelled particle model, the position of the kth particle with respect to

the origin of the inertial frame is rk ∈ C where k ∈ N . The velocity of the kth particle is

the time-derivative, with respect to the inertial frame, of the position. That is, ṙk = d
dt
rk.

The velocity of each particle in polar coordinates is expressed as ṙk = ske
iθk , where sk
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is the speed and θk is the direction of motion of particle k. θk ∈ T is called the phase of

particle k where T is the torus. The torus here is the same as the circle S1 , [0, 2π) and

the N -torus TN , S1 × ..× S1 (N times).

(a) Coordinates (b) Reference frame

Figure 2.1: Planar particle dynamics: Each particle is modeled as a self propelled particle
with position rk, speed sk and phase θk.

In [25], a self propelled particle model with first order steering was used to design

collective motion. The particle model assumes that all particles have a unit constant speed

sk = 1 and all-to-all communication between agents.

Let N denote the number of particles. Let rk ∈ C, θk ∈ T and uk ∈ R denote the

position, phase and steering control for particle k ∈ N , where N = [1, ..., N ] respec-

tively. The particle model with first order steering becomes:

ṙk = eiθk

θ̇k = uk

(2.6)

A synchronized motion of theN particles corresponds to the vehicles moving in the

same direction, that is θk = θj for all k, j. A balanced motion of N particles corresponds
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to the agents moving in opposite direction.

In order to measure the synchronization and balancing of the particles, we will use

the centroid of particle phasors below which is called phase order parameter [25]

pθ = p(eiθ) =
1

N

N∑
k=1

eiθk

where θ = [θ1, ..., θN ]. The phase arrangement θ is called synchronized if the

modulus of the phase order parameter equals one, that is |pθ| = 1 and is called balanced

when |pθ| = 0.

By replacing uk = −K
∑N

j=1 sin(θj − θk) in (2.6), the system (2.6) becomes

ṙk = eiθk

θ̇k = −K
N∑
j=1

sin(θj − θk).
(2.7)

The phase arrangement p(θ) in (2.7 goes to zero and parallel formation is achieved for

K > 0. The absolute value of phase arrangement p(θ) stabilizes at 1 and balanced for-

mation is achieved for K < 0.

Circular motion of one particle is achieved when the particle has a constant turning

rate ω0, where θk(t) = ω0t + θk(0), and when its center of motion ck is fixed, that is

ċk = 0. Similarly, circular formation for N particles is achieved when all the particles

have the same turning rate ω0 and ċk = 0 with ck = cj for all k, j ∈ N .

The center of of rotation ck for the particle model described in Cartesian coordinates

with ck = rk + iω−10 eiθk and ċk = eiθk − ω−10 uke
iθk . for uk = ω0, ċk = 0 and the particle

10



(a) Phase synchronization (b) Synchronized particles

(c) Phase balancing (d) Balanced particles

Figure 2.2: Phase synchronization and balancing for N = 2. (a,b) two synchronized
particles move in parallel; (c,d) two particles with balanced phases move in opposite
direction

moves around a fixed circle where |ω−10 | is the circle’s radius. If ω0 > 0 the particle moves

counterclockwise and it moves clockwise if ω0 < 0.

Similarly, using the center of rotation described above, the following control law

stabilizes the particles around the same circle [25]:

uk = ω0(1 +K0〈eiθk , Lkc〉)

with K0 > 0 and where 〈, 〉 is the inner product operator. By replacing uk in (2.6), the
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(a) K < 0 (b) K > 0

Figure 2.3: Simulation of closed loop particle model with all to all phase control (2.7)
with N = 12. The arrows on each particle represent the phase of each one of them.

system (2.6) becomes:

ṙk = eiθk

θ̇k = ω0(1 +K0〈eiθk , Lkc〉).
(2.8)

Now consider the case when the velocity of the particles is constant but non-unitary.

The particle model becomes:

ṙk = ske
iθk

θ̇k = uk,

where rk ∈ C, θk ∈ T, uk ∈ R and sk ∈ R denote the position, phase, steering control

and velocity for particle k ∈ N , respectively.

In order to move a single particle on a circle of radius |ω−10 |, where ck = rk +

iω−10 eiθk ,the position of the center of this circle has to be stabilized on a fixed point. Thus

12



Figure 2.4: Simulation of closed loop particle model with all to all phase control (2.8)
with N = 12. the arrows on each particle represent the phase of each one of them. all of
the particle move around the same circle or radius ω−10 = 2

we need ċk = 0 where

ċk = ske
iθk − ω−10 uke

iθk

By choosing uk = ω0sk, the particle moves on a fixed circle of radius |ω−10 | [37].
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Chapter 3: Modeling Swimming Dynamics Using the Chaplygin Sleigh

3.1 Straight Motion

As an example second-order oscillator system with nonlinear dynamics, consider

the dynamics and state-feedback control of a single fish robot modeled as a Chaplygin

sleigh [33]. The Chaplygin sleigh is a nonholonomic mechanical system that moves in

the horizontal plane and is propelled by an internal rotor [34], [33].The nonholonomic

constraint is at the trailing edge and is due to the Kutta condition [38], where this con-

straint permits no velocity in the perpendicular direction of the fish. A rotating reaction

wheel at the center of mass of the fish is used to generate translational forward motion [39]

Let v ∈ R denote the swimming velocity, θ ∈ S1 the heading angle, and ω ∈ R the

angular rate of the fish. The dynamics in state space form are [33]

v̇ = lω2 − dv

θ̇ = ω

ω̇ = −mlv
b
ω − u

b
,

(3.1)

where d ≥ 0 is the drag coefficient, and m > 0, l > 0, and b > 0 are the mass, length,
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and moment of inertia, respectively. Choosing the closed-loop control [33]

u = b(−K1ω −K2 sin(θd − θ)) ,

where θd is the desired heading angle and K1, K2 > 0 are feedback gains, yields the

closed-loop system [33]

v̇ = lω2 − dv

θ̇ = ω

ω̇ = −ml
b
vω +K1ω +K2 sin(θd − θ)

(3.2)

The system (3.2) can be divided into a slow and fast subsystems [33]. The fast v subsys-

tem can be written as

v̇ = d

(
l

d
ω2 − v

)
. (3.3)

For d sufficiently large, this subsystem converges to v = l
d
ω2. Let a = ml2

bd
> 0. With the

substitution v = l
d
ω2, the slow (θ, ω) subsystem becomes [33]

θ̇ = ω

ω̇ = −aω3 +K1ω +K2 sin(θd − θ)
(3.4)

Observe that (3.4) gives the equations of motion of a pendulum with nonlinear

damping and natural frequency
√
K2 [33]. The system (3.4) has two equilibrium points

(θ, ω) = (θd, 0) and (θ, ω) = (±π − θd, 0) (with sign depending on θd). Both equilibria

are unstable and the system exhibits a stable limit cycle centered on (θd, 0) in the (θ, ω)

15



Parameter Symbol Value

Mass m 1.4 kg
Length l 0.31 m
Drag coefficient d 0.5
Moment of inertia b 0.1395 kg·m2

Desired heading θd 0.78 rad
Control gains (K1, K2) (0.5, 2)

Table 3.1: Parameters used to simulate the closed-loop fish-robot system (3.2)

plane [33]. The corresponding limit cycle of the full system (3.2) lies in the (v, ω) plane.

is centered on (K1b/(ml), 0) [33]. The limit cycle propels the fish robot in the desired

direction by flapping the tail. Simulation of the closed loop control using the parameters

provided in Table (3.1), where these parameters originate from the original fish design

[33], are shown in Figure (3.1)below.

3.1.1 Bifurcation Analysis of Closed-loop System

The closed-loop system exhibits bifurcation behavior in which the desired limit

cycle corresponding to forward swimming behavior is achieved only for certain values of

the control gains K1 and K2 [33]. The average swimming velocity is proportional to K1,

but if K1 is too large, the angular rate in the resulting limit cycle does not switch signs

and the model fish spins in a circle [33]. We now establish the existence of the desired

limit cycle and determine the allowable range of gains.

Without loss of generality, let the reference angle be θd = 0. Substituting θd in

(3.4), the system (3.4) becomes:
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Figure 3.1: Simulation of a single fish showing the robot tracking a constant heading

θ̇ = ω

ω̇ = −aω3 +K1ω −K2 sin θ, (3.5)
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The Jacobian of (3.5) with respect to z = (θ, ω) is

∂f

∂z
=

 0 1

−K2 cos θ −3aω2 +K1

 .

which implies the origin (0, 0) is an unstable node or focus and the point (±π, 0) is a

saddle. To facilitate analysis of the limit cycle in (3.5), let K1 = a, which yields

θ̇ = ω (3.6)

ω̇ = a(−ω3 + ω)−K2 sin θ. (3.7)

The linearization of (3.6)–(3.7) at (θ, ω) = (0, 0) becomes

∂f

∂z

∣∣∣∣
(0,0)

=

 0 1

−K2 a

 ,

which has eigenvalues λ1,2 = a
2
± 1

2

√
a2 − 4K2. Therefore, the eigenvalues are complex

if |a| < 2
√
K2. Consider a as a bifurcation parameter. For −2

√
K2 < a < 0, the origin

is a stable focus and, for 0 < a < 2
√
K2, the origin is an unstable focus. Therefore, as

a passes through zero, There is a Hopf bifurcation giving rise to a stable limit cycle for

0 < a < 2
√
K2 (and an unstable limit cycle for −2

√
K2 < a < 0).
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3.2 Circular Motion

In the case of straight motion, the desired heading angle θd was constant, and the

fish was propelled forward in the direction of the desired angle while keeping the flapping

motion of the tail due to the angular velocity switching sign back and forth in the limit

cycle. Now in order to drive a single around a circle, I let the fish track a time varying

heading angle of the form θd = ωdt + θk(0) and replace θd = 0 by θd = ωdt + θk(0) in

(3.4).

Consider the system (3.4) and let γ = θ − θd and γ̇ = ω − ωd. By changing the

coordinates from (ω, θ) to (ω, γ) the system (3.4) becomes:

γ̇ = ω − ωd

ω̇ = −aω3 +K1ω −K2 sin(γ)

(3.8)

Proposition 2. The closed loop form (3.8) moves the Chaplygin sleigh on a circle on

average.

Proof. I choose the Lyapunov candidate:

V =
1

2
ω2 +K2[1− cos (γ)].
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By taking the derivative of V along the system (3.8)

V̇ = ω̇ω + (ω − ωd) sin (γ)

= −aω4 +K1ω
2 −K2ω sin (γ) +K2ω sin (γ)−K2ωd sin (γ)

= −aω4 +K1ω
2 −K2ωd sin (γ)

≤ −aω4 +K1ω
2 +K2|ωd|.

(3.9)

From this Lyapunov analysis, I can conclude the the solutions are trapped in an invariant

set. This set can be found by the following polynomial:

−aω4 +K1ω
2 +K2|ωd| = 0. (3.10)

using change of variables, x = ω2 to obtain

ax2 −K1x−K2|ωd| = 0. (3.11)

The solutions polynomial (3.11) are x1 and x2 where

x1,2 =
K1 ±

√
K2

1 + 4a|ωd|
2a

.

Since x > 0 =⇒ x = ω2 =
K1+
√
K2

1+4a|ωd|
2a

is the only valid solution to (3.11).

Therefore, ω = ±
√

K1+
√
K2

1+4a|ωd|
2a

is the only solution to (3.10) and when ‖ω‖ >√
K1+
√
K2

1+4a|ωd|
2a

, the time derivative V̇ ≤ 0. Also, for ‖ω‖ =

√
K1+
√
K2

1+4a|ωd|
2a

,(3.9)
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gives V̇ = 0, therefore the set Ω = {|ω| <
√

K1+
√
K2

1+4a|ωd|
2a

} is positively invariant and

solutions of (3.8) are trapped in Ω.

Next, equilibrium points of (3.8) are derived, where (γ̇, ω̇) = (0, 0). Setting γ̇ = 0

in (3.8), it is clear that ω = ωd at the equilibrium. Furthermore, ω̇ = 0 requires γ =

arcsin (
−aω3

d+K1ωd

K2
)

Thus, (γ, ω) = (arcsin (
−aω3

d+K1ωd

K2
), ωd) is an equilibrium point of (3.8). In order

for this equilibrium point to exist, the following inequality must be satisfied:

−1 ≤ aω3
d −K1ωd
K2

) ≤ 1

Linearizing (3.8) around the equilibrium point z = (γ, ω) = (arcsin
(
−aω3

d+K1ωd

K2

)
, ωd)

yields the following linearized matrix

∂f

∂z
=

 0 1

−K2 cos γ −3aω2 +K1



∂f

∂z
=

 0 1

−K2 cos
[
arcsin

(
−aω3

d+K1ωd

K2

)]
−3aω2

d +K1


This system has the two following eigenvalues

λ12 = −3aω2
d +K1 ±

√
(−3aω2

d +K1)2 − 4K2 cos

[
arcsin

(
−aω3

d +K1ωd
K2

)]
.

The desired behavior that we want for the fish is a closed limit cycle around ωd. In
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order to achieve that, the equilibrium point where ω = ωd must exist first of all, and the

eigenvalues of the equilibrium point must have positive real parts and a complex part so

the equilibrium would be an unstable focus. These conditions are met when:

−1 ≤ aω3
d −K1ωd
K2

≤ 1, (3.12)

K1 ≥ 3aω2
d, (3.13)

and

−3aω2
d +K1 ≤ 2

√
K2 cos

[
arcsin

(
−aω3

d +K1ωd
K2

)]
. (3.14)

When these conditions are met, the equilibrium point is an unstable focus and we have a

periodic orbit around ωd. and the fish moves around a circle on average which completes

the proof.

Nevertheless, the angular velocity ω should not always have the same sign, it should

go from positive and negative periodically. To achieve this, while satisfying the above

requirement, ωd is chosen to be small enough so that ω oscillates from negative to positive

and vice versa.

In order to illustrate proposition 2, and since(3.8) is an approximate system only,
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Parameter Symbol Value

Mass m 1.4 kg
Length l 0.31 m
Drag coefficient d 0.5
Moment of inertia b 0.1395 kg·m2

Desired heading θd ωdt+ 0.78 rad
Desired angular velocity ωd 0.2 rad/s
Control gains (K1, K2) (0.5, 2)

Table 3.2: Parameters used to simulate the closed-loop fish-robot system (3.2) while meet-
ing all requirements

the fish is simulated using the closed loop form below:

v̇ = lω2 − dv

γ̇ = ω − ωd

ω̇ = −ml
b
vω +K1ω −K2 sin(γ)

(3.15)

where the simulation parameters are listed in (3.2)

By choosing K1 = 0.5, K2 = 2 and ωd = 0.2rad/s conditions (3.12),(3.13) and

(3.14) are met. Simulation results of system (3.15) are represented in figure (3.2-a)

In (3.2-a) and (3.2-b), the limit cycle orbits ωd and the values of ω oscillate around

ωd from positive to negative periodically. Therefore we can see the fish tail flapping

back and forth which is clear from the trajectory path in (c). Also, as is seen in (d), the

trajectory tracks θd perfectly.

In figure (3.2), the fish moves over an average radius |ω−10 | and that the average

value of the center of motion is fixed. the average value of the centre of motion of the fish
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Figure 3.2: Simulation of a single fish showing the robot tracking the desired circular
trajectory while maintaining tail flapping

is analyzed next, which is its value at the equilibrium point (γ, ω) = (arcsin
(
−aω3

d+K1ωd

K2

)
, ωd).

ck = rk + iω−10 eiθk

ck = rk + iω−10 eiθd

ċk = ske
iθd − ω−10 ωde

iθd

(3.16)

the average value of the centre of motion is fixed when:
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ċk = 0

ċk = 0 =⇒ sk = ω−10 ωd

(3.17)

Since the average value of sk is sk = bk1
ml

[33], then

ωd =
sk

ω−10

=
bk1
ml

ω−10

. (3.18)

moves the fish around a stable circle of radius

|ω−10 | = |
bk1
ml

ωd
|. (3.19)

Now in the other case when we chose K1 = 1, K2 = 1 and ωd = 5 , the condition

(3.12) is not met. In this case, the equilibrium point does not exist. To verify this, the

system (3.15) is simulated using parameters provided in Table (3.2) with ωd = 5rad/s

and K2 = 1. Simulation results are represented in Figure (3.2).

The angular rate ω orbits the boundary of the set Ω = {‖ω‖ <
√

K1+
√
K2

1+4a|ωd|
2a

}

as shown in Fig.3.2b but does not oscillate from positive to negative periodically. Hence,

the tail of the fish does not flap as shown in Fig.3.2c, therefore there is no propulsion

force and the fish does not swim.The trajectory shown in Fig.3.2c could be achieved

only if there is propulsion force, which is not the case here since the tail does not flap

because the reaction wheel does not oscillate from positive to negative periodically.In this

case, the fish spins on a circle centered around the fish’s centre of mass. In addition, the

heading angle does not track the desired heading angle θd, as shown in Fig.3.2d, since the
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equilibrium point does not exist.
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Figure 3.3: Simulation of a single fish when no equilibrium point exists showing the robot
not able to track the desired trajectory.
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Chapter 4: Synchronized Swimming Via Angular Velocity Consensus

4.1 Synchronization of Second-order Oscillators

Consider a collection of N identical oscillating agents whose orientations live on

TN with dynamics given by (2.2) and (2.3). Furthermore, without loss of generality,

suppose the control uk(θ,ω) = ūk(θk, ωk) + νk(ω), where

ūk = K1g(ωk)−K2 sin(θk − θd) (4.1)

νk = −K3Lkω, (4.2)

K1, K2 and K3 > 0, and Lk is the kth row of the Laplacian matrix (2.1) of a connected

undirected graph G representing the interaction topology of the agents. The term Lkω =∑
j 6=k(ωk − ωj) is the sum of the angular rate of the kth agent relative to the angular rate

of all connected agents. Substituting the control uk(θ,ω) = ūk(θk, ωk) + νk(ω) with

(4.1) and (4.2) into (2.2) and (2.3) gives

θ̇k = ωk (4.3)

ω̇k = f(ωk)−K2 sin(θk − θd)−K3Lkω , (4.4)
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Proposition 3. The second-order oscillator system (4.3), (4.4) with network topology

given by the Laplacian matrix L of a connected interaction graph G = (N , E), reaches

consensus (2.4), (2.5) on the tangent bundle of the N -torus if (i) K3 � K1, K2 and (ii) if

f(ωk) = f(ωj) for all k, j ∈ N

Proof. (4.4) is of the following form:

ω̇k = f(ωk)−K2 sin(θk − θd)−K3Lkω,

by dividing (4.4) by K3 I get:

1

K3

ω̇k =
1

K3

f(ωk)−
K2

K3

sin(θk − θd)− Lkω,

Let z = Lω, for K3 � K1, K2 I have:

εω̇k = −εf(ωk)− ε sin(θk − θd)− zk.

where ε = 1
K3
≈ K2

K3
.

Consider the updated state space form

θ̇ = ω

ω̇ = g(ω)−K2 sin(θ− θd)−K3z

ż = Lω̇ = L[f(ω, θ)−K2 sin(θ− θd)−K3z],

(4.5)

for K3 � 1, I have εż = εLω̇.
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εż =



ε(N − 1)ω̇1 − εω̇2 · · · − εω̇n

ε(N − 1)ω̇2 − εω̇1 · · · − εω̇n
...

ε(N − 1)ω̇n − εω̇1 · · · − ε ˙ωn−1



εż =


εΦ1(ω, θ)− 1

N
z1

...

εΦn(ω, θ)− 1
N
zn


where Φ(ω, θ) is a nonlinear term. Therefore system (4.5) becomes:

θ̇ = ω

ω̇ = f(ω)−K2 sin(θ− θd)−K3z

εż = εΦ(ω, θ)− 1

N
z.

(4.6)

For ε = 0 I have z = h(x) = 0 and I write ż = g(t, z, ε).By taking y = z − h(x) = z

and ∂y
∂τ

= εż = g(t, z, 0) where τ = t
ε
. The problem is then reduced to a boundary layer

problem [40] where:

ẏ = − 1

N
y.

By replacing z = 0 into the system (4.6) becomes:

θ̇ = ω

ω̇ = f(ω)−K2 sin(θ − θd).
(4.7)
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where (4.7) is the slow subsystem.

ẏ = − 1

N
y. (4.8)

and (4.8) is the fast subsystem.

Equation(4.8) is clearly asymptotically stable, hence the angular velocities reach

consensus.

Therefore, ωk ≡ ωj , which implies ω̇k = ω̇j and fk = fj . Therefore, (4.7) implies

sin(θk − θd) = sin(θj − θd), which is true if θk = θj or π − θj . The second solution is a

contradiction, because θ̇k 6= −θ̇j .Therefore the heading angle is synchronized for all the

vehicles.

4.2 Synchronized Swimming: Straight Motion

Consider a collection of N robotic fish, indexed by k = 1, · · · , N , with Chaplygin-

sleigh dynamics (3.1). The closed-loop system (3.4) is augmented with consensus control

to become

θ̇k = ωk

ω̇k = −aω3
k +K1ωk +K2 sin(θd − θk)−K3Lkω

(4.9)

The following Corollary applies Proposition 3 to the robotic fish system (4.9).

Corollary 4. The system (4.9) reaches consensus (2.4), (2.5) on the tangent bundle of the
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N -torus.

Proof. Let g(ωk) = −aω3
k and fk = g(ωk) +K1ωk = −aω3

k +K1ωk so that (4.5) is in the

form of (4.3) and (4.4). Note that fk = fj for all k, j ∈ N .Then by letting K3� K2, K1

Proposition 3 is satisfied, which completes the proof.

Remark 5. Since the system (4.9) reduces to (4.7) which is the same as (3.4), hence each

fish maintains the same behavior as in (3.4), and each fish have an identical unstable

equilibrium point which is (ω, θ) = (0, θd). Therefore, the consensus control in Corol-

lary 4 drives the heading of the agents to oscillate around the desired heading angle θd

too.

Corollary 4 is illustrated by simulating the closed-loop Chaplygin sleigh fish robot

system with the parameters listed in Table 3.1,with K1 = 0.5, K2 = 2, K3 = 6 and

with N = 8 fish initialized with random headings in the range [0, π] and zero velocity and

angular rate. Although Corollary 4 applies to the approximate Chaplygin sleigh dynamics

(3.4), we simulate the full dynamics (3.1) with the consensus control law (4.1), (4.2).

Fig. 4.2 shows allN fish converge to the same limit cycle in the (v, ω) plane. Similarly, the

fish school converges to a limit cycle in the (θ, ω) plane that is centered around the desired

heading angle θd = 0.78 rad Fig. 4.2b. (The symbols o and x in Figs. 4.2a and 4.2b

indicate the initial and final states of the system at the beginning and end, respectively,

of the simulation.) The overlapping x markers in Figs. 4.2a and 4.2b indicate that the

heading, angular rate, and velocity of the fish reach consensus. The initial positions of the

fish were initialized randomly near the origin and the resulting motion of the robot fish
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Figure 4.1: Simulation ofN = 8 Chaplygin sleigh fish robots reaching consensus. (c)The
black o and x markers in Figs.(a),(b) and indicates the initial and final simulation states,
respectively, of the multi-agent system.)

center of mass in the (x, y) plane shows that they swim with synchronized heading and

flapping (angular rate) with an average heading of 45 degrees 4.2c. Fig. 4.2d illustrates

the heading synchronization over time about the desired heading angle indicated by a

solid horizontal line.
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4.3 Synchronized Swimming: Circular Motion

Now in order to drive all of the fish around different circles while synchronizing tail

flapping, I let each fish track a time varying heading angle of the form θd = ωdt + θk(0).

Therefore the value of θd in (4.5) is updated to the the new value that drives a single fish

in circle, as in section 3.2

Simulation results are represented in Fig.(4.3) using the parameters presented in

Table (3.2) with ωd = 0.2rad/s,K1 = 0.5, K2 = 2 and K3 = 6. same consensus is

reached is an Fig.(4.2) with the only difference that the fish move in circle while also

keeping their flapping characteristics.
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Figure 4.2: Simulation of N = 8 Chaplygin sleigh fish robots reaching consensus while
moving in circles.
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Chapter 5: Formation Control With Phase Angle Coupling

As mentioned before, parallel and circular formation have been achieved before on

first and second order self propelled particles. These models are very primitive and don’t

take into account vehicle dynamics and motion requirements. In this section the previous

model of self propelled particles is extended to the Chaplygin sleigh fish. I therefore

achieve parallel and circular motion of multiple fish while maintaining fish tail flapping.

knowledge of relative orientation is assumed in parallel formation in addition to relative

position of the centre of motion later in circular formation.

5.1 Parallel Formation Control

Consider a collective of N Chaplygin sleighs, each sleigh is labeled with an index

k or j from the set N , {1, . . . , N}. by choosing

uk = −bK1ωk − bK2

N∑
j=1

sin(θj − θk)
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the system (3.1) becomes:

v̇k = lω2
k − dvk

θ̇k = ωk

ω̇k = −mlvk
b

ωk +K1ωk +K2

N∑
j=1

sin(θj − θk)

(5.1)

The system (5.1) can be divided into a slow and fast subsystems. The v subsystem can be

written as

v̇k = d

(
l

d
ω2
k − vk

)

For d sufficiently large, the subsystem (2) converges to vk = l
d
ω2
k. Using a = ml2

bd
> 0, I

get:

θ̇k = ωk

ω̇k = −aω3
k +K1ωk +K2

N∑
j=1

sin(θj − θk)
(5.2)

Proposition 6. Under the closed loop control form (5.2), the fishes move in parallel for

arbitrary number N of fish.

Proof. :

Let:

U(θ) =
1

2N
|

N∑
j=1

eiθj |2 .

Then

∂U

∂θk
=

1

N

N∑
j=1

sin(θj − θk).
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And

U̇ =
N∑
k=1

∂U

∂θk

∂θk
∂t

U̇ =
1

N

N∑
k=1

ωk

N∑
j=1

sin (θj − θk).

Now let

V =
1

2
ωtω −K2NU(θ)

By taking the lyapunov derivative with respect to (5.2) I get the following equality:

V̇ = ω̇Tω −K2NU̇

=
N∑
k=1

(
−aω4

k +K1ω
2
k +K2ωk

N∑
j=1

sin (θj − θk)

)
−K2NU̇

=
N∑
k=1

(
−aω4

k +K1ω
2
k +K2ωk

N∑
j=1

sin (θj − θk)

)
−K2

N∑
k=1

ωk

N∑
j=1

sin (θj − θk)

=
N∑
k=1

(
−aω4

k +K1ω
2
k

)
+K2

N∑
k=1

ωk

N∑
j=1

sin (θj − θk)−K2

N∑
k=1

ωk

N∑
j=1

sin (θj − θk)

=
N∑
k=1

(−aω4
k +K1ω

2
k)

(5.3)

Since V̇ < 0 for ωk /∈ Ω and V̇ > 0 for ωk ∈ Ω where Ω = {‖ωk‖ ≤
√

K1

a
} then the set

Ω is positively invariant and all of the solutions are trapped in Ω

In order to complete the proof, I consider the case ofN = 2 vehicles then generalize

for arbitrary N .
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The equilibrium points of (5.2) for N = 2 are:

z1 = (ω1, ω2, θ1, θ2) = (0, 0, θ0, θ0)

z2 = (ω1, ω2, θ1, θ2) = (0, 0, θ0, θ0 + π)

z3 = (ω1, ω2, θ1, θ2) = (0, 0, θ0 + π, θ0)

The equilibrium point z1 corresponds to the parallel formation. now in order to

make the system (5.1) oscillate around this equilibrium point, it needs to be an unsta-

ble focus. To establish this we analyze The jacobian A of the system (4.7) around the

equilibrium point z1 is:

A =
∂f

∂z
=



0 0 1 0

0 0 0 1

−K2 cos(θ2 − θ1) K2 cos(θ2 − θ1) −3aω2
1 +K1 0

K2 cos(θ2 − θ1) −K2 cos(θ2 − θ1) 0 −3aω2
1 +K1



A(z1) =
∂f

∂z
=



0 0 1 0

0 0 0 1

−K2 K2 K1 0

K2 −K2 0 K1


The eigenvalues of A are calculated and given below:
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λ1 = 0

λ2 = K1

λ3 =
K1

2
−
√

(K2
1 − 8K2)

2

λ4 =
K1

2
+

√
(K2

1 − 8K2)

2

For z1 to be an unstable focus, K1 > 0 and K2
1 − 8K2 < 0 which is achieved when

K2 >
K2

1

8
, should be satisfied.

For K1 > 0 and K2 >
K2

1

8
then z2 and z3 are saddle points and since z1 ∈ Ω then by

poincare bendixon criterion there is a periodic orbit around z1. Since equilibrium point

z1 corresponds to the synchronized formation by having θ1 = θ2, a periodic orbit around

z1 corresponds to having the fish moving in the same direction while not having the same

heading at each time t. Therefore, fish move in parallel.

Now consider the case of arbitrary N vehicles. in order for the vehicles to move

in parallel, the equilibrium point corresponding to θi = θj for all i, j ∈ N should be an

unstable focus and all other equilibrium points should be saddle. In order to achieve this,

I have to find the eigenvalues of the jacobian of system (5.1) around the equilibrium point

corresponding to θi = θj for all i, j ∈ N . Let’s call that point z′1.

Using matlab symbolic toolbox, the eigenvalues of the jacobian around z′1 are given

below:

λ1 = 0
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λ2 = K1

λ3 =
K1

2
−
√

(K2
1 − 4NK2)

2

λ4 =
K1

2
+

√
(K2

1 − 4NK2)

2

...

λN∗N−1 =
K1

2
−
√

(K2
1 − 4NK2)

2

λN∗N =
K1

2
+

√
(K2

1 − 4NK2)

2

A clear observation is that all of the eigenvalues are identical to λ3 and λ4 except

λ1 and λ2.

Hence to achieve parallel formation,K1 > 0 andK2
1−4NK2 < 0 which is achieved

when K2 >
K2

1

4N
,should be satisfied. Similarly , all of the other equilibrium points are sad-

dle under the previous conditions. Since equilibrium point z′1 corresponds to the synchro-

nized formation by having θ1 = θ2 = · · · = θN , a periodic orbit around z′1 corresponds to

having the fish moving in the same direction while not having the same heading at each

time t. Therefore, fish move in parallel for arbitrary N and proof is completed.

The previous analysis is illustrated by simulating the closed loop Chaplygin sleigh

fish robot system with the parameters listed in table (5.1). For N = 8 fish initialized

with random heading in the range of [0 π] and zero velocity and angular rate. Since the
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previous analysis applies to the approximate Chaplygin sleigh dynamics, I simulate the

full dynamics with the closed loop form of the system (5.1) The Fig.(5.1-b) shows all N

fish converging to the same limit cycle in the (v, ω) and (v, ω) planes. As a result, all of

the fish robots move in the same direction in parallel as shown in Fig.(5.1-c)

5.2 Circular Formation Control

In section (3.2), I was able to achieve circular motion for a single fish. I was also

able to estimate the approximate radius of the circle on which the fish moves (3.19).

In this section, I extend the approach used in (3.2) to incorporate circular formation of

multiple identical fish.

Consider a collective of N Chaplygin sleighs, with each sleigh labeled with an

index k or j from the set N , {1, . . . , N}. by choosing

uk = b(−K1ωk −K2 sin(θd − θk)−K3
l

d
ω0(ωk − ω−10 )〈Lkc, eiθk〉 ,

Where c = [c1, ..., cn], ck = rk + iω−10 eiθk and ω−10 =
bk1
ml

ωd
given by (3.19). Hence the

Parameter Symbol Value

Mass m 1.4 kg
Length l 0.31 m
Drag coefficient d 0.5
Moment of inertia b 0.1395 kg·m2

Control gains (K1, K2) (0.5, 2)

Table 5.1: Parameters used to simulate the closed-loop fish-robot system (5.1)
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Figure 5.1: Simulation of the closed loop system (5.2) with N = 8 identical fish

system (3.1) becomes:

v̇k = lω2 − dvk

θ̇k = ωk

ω̇k = −ml
b
vkωk +K1ωk +K2 sin(θd − θ)−K3

l

d
(ωk − ω−10 )〈Lkc, eiθk〉

(5.4)

The system (5.4) can be divided into a slow and fast subsystems [33]. The fast v
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subsystem can be written as

v̇ = d

(
l

d
ω2 − v

)
. (5.5)

For d sufficiently large, this subsystem converges to v = l
d
ω2. Let a = ml2

bd
> 0. With the

substitution v = l
d
ω2, the slow (θ, ω) subsystem becomes:

θ̇k = ωk

ω̇k = −aω3
k +K1ωk +K2 sin(θd − θ)−K3

l

d
(ωk − ω−10 )〈Lkc, eiθk〉,

(5.6)

By changing the coordinates of the system (5.6) from (ω, θ) to (ω, γ), (5.6) be-

comes:

γ̇k = ωk − ωd

ω̇k = −aω3
k +K1ωk −K2 sin(γ)−K3

l

d
(ωk − ω−10 )〈Lkc, eiγk+θd〉

(5.7)

Proposition 7. solutions of the the closed loop control (5.7) are trapped in the set Ω =

{‖ωk‖ <
√

K1+
√
K2

1+4a|ωd|
2a

}

Proof. let

V =
1

2
ωTω +

N∑
k=1

K2[1− cos γ] +
K3

2
cTLc

by taking the derivative of V along the system (5.7) I get:
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V̇ =
N∑
k=1

[ω̇kωk + (ωk − ωd) sin (γk)]

=
N∑
k=1

[−aω4
k +K1ω

2
k −K2ωk sin (γk) +K2ωk sin (γ)−K2ωd sin (γk)]

−
N∑
k=1

[
l

d
ωkK3(ωk − ω−10 )〈Lkc, ei(γk+θd)〉] +

N∑
k=1

[K3〈Lkc, ċk〉]

=
N∑
k=1

[−aω4
k +K1ω

2
k −K2ωd sin (γk)]

−
N∑
k=1

l

d
ωkK3(ωk − ω−10 )〈Lkc, ei(γk+θd)〉+

N∑
k=1

K3〈Lkc, vkei(γk+θd) − ω−10 ωke
i(γk+θd)〉

=
N∑
k=1

[−aω4
k +K1ω

2
k −K2ωd sin (γk)]−

N∑
k=1

l

d
ωkK3(ωk − ω−10 )〈Lkc, e(iγk+θd)〉

+
N∑
k=1

K3〈Lkc,
l

d
ω2
ke

(iγk+θd) − ω−10 ωke
(iγk+θd)〉

=
N∑
k=1

−aω4
k +K1ω

2
k −K2ωd sin (γk)−

N∑
k=1

l

d
ωkK3(ωk − ω−10 )〈Lkc, ei(γk+θd)〉

+
N∑
k=1

K3
l

d
ωk(ωk − ω−10 )〈Lkc, ei(γk+θd)〉

=
N∑
k=1

[−aω4
k +K1ω

2
k −K2ωd sin (γk)]

≤
N∑
k=1

[−aω4
k +K1ω

2
k +K2|ωd|]

(5.8)

Following the same analysis of section 3.2, when ‖ωk‖ >
√

K1+
√
K2

1+4a|ωd|
2a

, V̇ ≤ 0

Also, for ‖ωk‖ =

√
K1+
√
K2

1+4a|ωd|
2a

, the time derivative of V is V̇ ≤ 0, therefore

the set Ω = {‖ωk‖ <
√

K1+
√
K2

1+4a|ωd|
2a

} is positively invariant and solutions of (5.7) are

trapped in Ω which completes the proof.
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Remark 8. In order to prove that the fish move around the same circle, the equilibrium

points of (5.7) that correspond the ck = cj ,ωk = ωd and γk = 0 for all k, j ∈ N must be

an unstable focus.

Simulation of the closed loop system (5.4) using the parameters provided in Table

(3.2) with ωd = 0.2rad/s,K1 = 0.5, K2 = 2, K3 = 0.1 and for N = 8 fish is provided

in Fig (5.2). The mean of each centre of motion of the N = 8 fish is plotted too in (c). it

is clear that all of the fish robots move around the same centre on average.

By changing θd to θd = ωdt + θk(0) in system (5.4) where the spacing between

θk(0) is set to be symmetric, a swarm of fish moving around the same circle is obtained.

These fish have the same radius and exhibit a symmetric formation.

Symmetric formation is provided in Fig (5.2) where each arrow on each agent points

the phase orientation of each fish.
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Figure 5.2: simulation of the closed loop system (5.4) with N = 8 identical fish
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Figure 5.3: Simulation of closed loop system (5.4) with N=8 and with symmetric desired
heading. the arrows on each particle represent the phase of each one of them.
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Chapter 6: Conclusion

6.1 Summary of Contributions

This thesis presents a novel cooperative control law that achieves second-order con-

sensus, parallel and circular formations with nonlinear dynamics of N identical vehicles

on the tangent bundle of TN . The proposed feedback control relies either on velocity

measurement between agents or heading of each agent where communication does not

have to be all-to-all. It does not include feedback linearization of the agents’ dynamics.

Furthermore, the consensus and formation control law are achieve while maintaining the

flapping of the N fish which was not considered from previous consensus and formation

algorithms. We examine our control law on a simulated school of N robotic fish. The

control laws synchronize the motion of the fish in the desired direction, achieve parallel

formation control without using any desired heading and also circular formation.

6.2 Suggestions for Ongoing and Future Work

In ongoing work, I seek to drive the N vehicles in a circular motion while synchro-

nizing their phases. Also, I would like to explore circular formation with symmetric phase

arrangements so all of the fish would move on the same circle while having symmetric
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phases.

In addition, since this thesis assumes identical vehicles, it is crucial in future work

to consider different fish dynamics, or same dynamics but with modeling error in order to

incorporate the reality that all of the fish cannot be identical. Similarly, signal noise and

communication delay between the fish should be incorporated because this paper does not

consider that the measured states have noise nor communication delays.

Finally, experimental validation of these simulation should be done for at least N=2

fish.
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