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Existing decentralized task allocation algorithms perform poorly under very

low communication. Although previous work has considered task allocation algo-

rithms in the presence of imperfect communication, the case of very low communi-

cation has not yet been addressed.

In this thesis, we present two new algorithms: the Spatial Division Playbook

Algorithm and the Travelling Salesman Playbook Algorithm, which cater to the

cases when the instantaneous probability (p) of a successful message between agents

satisfies p� 0.01. These algorithms work by assuming that communications may

not happen, but then derive advantages whenever communications are successful.

We compare these algorithms experimentally with three state-of-the-art al-

gorithms — ACBBA, DHBA and PIA — across multiple communication levels

and multiple numbers of targets, based on three communication models: Bernoulli



model, Gilbert-Elliot model and Rayleigh Fading model. Our results show that the

algorithms perform better than the other algorithms and reduce the time required

to ensure all targets are visited.
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Chapter 1: Introduction

1.1 Autonomous Multi-Agent Systems

Autonomous multi-agent systems have been proposed for use in a variety of

applications, including: search and rescue [1], agriculture [2], surveillance [3] and

firefighting [4]. The agents collaborate with each other to complete the required

mission. Distributive task allocation involves agents communicating with each other

and assigning tasks among themselves. Task allocation algorithms can be broadly

divided into two categories, centralized and decentralized algorithms [5][6]. Central-

ized algorithms require the existence of a central authority that dictates actions to

the agents, while decentralized algorithms require the agents to think and act by

themselves, without any centralized control. Centralized algorithms are vulnerable

to single points of failure, since the central authority has to communicate tasks to

all of the agents. Decentralized algorithms are less susceptible to single points of

failure, but may require duplication of computational effort by multiple agents.

In real world scenarios, communication is not necessarily perfect, and both

centralized and decentralized algorithms can fail due to a lack of communication.

For example: (1) when signal jamming prevents agents from communicating, (2)

when the environment is so large that there is considerable loss in communication
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signal, (3) when the mission requires the agents to operate silently, as a message can

give away the location of an agent to an adversary, or (4) when hardware malfunction

results in agents being unable to send or receive messages. Taking these cases into

account, we attempt to solve the task allocation problem for very low communication

scenarios.

1.2 Solution Approach

The main contribution of this thesis is a set of two novel “Playbook Algo-

rithms” tailored to work better than existing decentralized task allocation algorithms

when communication availability is very low. We also present experimental evidence

showing that the proposed algorithms work better than three existing algorithms

(ACBBA [10][11], DHBA [12] and PIA [21]) in a variety of scenarios.

Assuming n agents and m targets, the Playbook Algorithms leverage the idea

that a deterministic procedure will produce the same result when run independently

by each agent in the team. Therefore, we design two deterministic procedures, one

for each algorithm.

The Spatial Division Playbook Algorithm (SDPbA) divides the environment

into n different regions — one region per agent – such that each region contains

either bm/nc or dm/ne tasks. The i-th agent then starts by doing the tasks in the

i-th region.

The Traveling Salesman Playbook Algorithm (TSPbA) generates a traveling

salesman approximate solution which is the same for each agent and exhaustively
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divides it into n distinct pieces — one piece per agent — such that the variance

of the piece lengths is minimum. In an ideal scenario, the variance would be zero,

implying that each piece has the same length.

In either algorithm, to accommodate for cases when some agents may not

complete their tasks (for example, if they may be destroyed) each agent continues

to move, in order, through the remaining regions/pieces, to ensure that tasks in

all regions are eventually completed. Agents periodically broadcast all tasks they

know to have been completed. Thus, even a single successful communication can

drastically reduce the work of the receiving agent.

We evaluate the Playbook Algorithms on scenarios of decentralized task allo-

cation for target visits. Experiments are performed in simulation to compare the

performance of the Playbook Algorithms to other state of the art methods across a

variety of communication quality levels and target numbers m (while keeping agent

number n constant). Communication is modelled in three different ways: Bernoulli

model, Gilbert-Elliot model and Rayleigh Fading model. We focus on the cases

when the instantaneous probability of a message being successfully delivered from

one agent to another, given by p, satisfies p� 0.01.

Figure 1.1 illustrates the approach used by SDPbA. Here, the autonomous

agents are not able to communicate with each other, but divide tasks (denoted by

Ti) by region in space and allocate regions amongst themselves. Agents A1, A2

and A3 allocate unique regions (R1, R2 and R3) to themselves. In scenarios where

agents may not finish tasks, then after an agent completes its own tasks, it continues

through the other regions to ensure all tasks are completed. This behavior acts as
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Figure 1.1: The approach used by Spatial Division Playbook Algorithm

a redundancy check in scenarios when agents may not be able to complete their

assigned tasks. Successful communications (containing lists of completed tasks)

improve performance, since agents can forgo visits to tasks known to be completed.

Figure 1.2 illustrates the approach used by TSPbA. Here, the autonomous

agents compute an approximate solution to the travelling salesman problem (TSP)

such that each agent has the exact same path. This solution is a Hamiltonian

path through all the targets. The agents (A1, A2 and A3) divide this computed

path through all targets into pieces (P1, P2 and P3) and exhaustively allocate these

pieces to themselves such that each agent is allocated a unique piece. A dotted

gray line indicates that edge of the TSP solution that is not assigned to any agent

because targets that define that edge are assigned to one agent each. A dashed
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Figure 1.2: The approach used by Travelling Salesman Playbook Algorithm

black line indicates the path that an agent has to traverse in order to reach the first

target of its assigned piece from its starting location. This path is not a part of the

TSP solution and may be different for each agent, depending on the agent’s starting

location. Similar to SDPbA, an agent running TSPbA completes its own piece and

then continues to other pieces to ensure all tasks are completed.

1.3 Outline of Thesis

Chapter 2 of this thesis outlines relevant work in this area of research. Chapter

3 defines relevant nomenclature, states the assumptions and formulates the problem

statement that is addressed in this thesis. It then discusses the communication

models used for simulating the experiments.

Chapter 4 proposes and describes the new playbook algorithms and Chapter
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5 outlines the three existing task allocation algorithms (ACBBA, DHBA and PIA)

that are used for comparison with the playbook algorithms.

Chapter 6 explains the experimental setup used to run simulations for com-

paring the five algorithms. This includes an overview of the simulation framework

and a detailed explanation of the design of experiments.

Chapter 7 presents the results of the set of experiments run. Chapter 8 presents

a mathematical proof that aids us in the analysis of the results and discusses the

communication bandwidth requirements for all the algorithms. Chapter 9 discusses

the implications of results obtained from the simulations and Chapter 10 derives

conclusions based on these results, and also discusses possible future directions of

work in this area.
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Chapter 2: Related Work

Solutions to the multi-agent task allocation problem have been proposed in

several papers. One commonly used approach is to conduct an auction in which

each member of the team submits a competing bid, and the task is awarded to the

agent with the best bid. The Consensus-Based Auction Algorithm (CBAA) and the

Consensus-Based Bundling Algorithm (CBBA) [9] are widely used algorithms based

on the auction approach. The Asynchronous Consensus-Based Bundling Algorithm

(ACBBA) [10][11], Performance Impact Algorithm (PIA) [21] and the Hybrid Infor-

mation and Plan Consensus algorithm (HIPC) [22] are improved algorithms based

on the CBBA.

Another approach to the task allocation problem involves the use of deter-

ministic or stochastic optimization techniques. The Decentralized Hungarian Based

Algorithm (DHBA) [12] employs deterministic optimization using the Hungarian

method, while the ant-colony optimization algorithm uses stochastic optimization

techniques. Herrmann [25] discusses the use of experimental data about collabora-

tive algorithms to develop a metareasoning policy that changes the algorithm that

an agent is running based on the expected performance in that scenario. Nayak et

al. [8] provide a detailed comparison of five decentralized task allocation algorithms
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for a wide range of communication quality simulated using three different communi-

cation models, namely Bernoulli, Gilbert-Elliot and Rayleigh Fading models. This

thesis builds on the work done by Nayak et al. by focusing on cases of very low

quality of communication using the three aforementioned communication models.

The problem of imperfect communication in multi-agent task allocation has

also been addressed in various papers in the literature. Otte et al. [13] evaluates

three distributed auction-based algorithms in lossy networks and the effect of im-

perfect communication on task allocation in centralized multi-agent systems with a

single auctioneer. Rantanen et al. [19] discuss the effect of a realistic communica-

tion model on the performance of ACBBA using an open-source network simulator.

The results of [19] indicate that even when the communication is near-perfect, the

algorithm becomes very inefficient due to redundant task assignments. Alighanbari

et al. [23] propose a different approach to task allocation that introduces a second

phase in which agents communicate with each other, which improves the algorithm

performance in sparse networks. Sujit et al. [20] propose a team theory to overcome

inefficient performance of greedy algorithms when sensor range is limited.

Previous work has investigated how centralized [13] and decentralized [8] multi-

robot task allocation algorithms degrade as a function of decreasing communication

quality. However, this previous work has taken the approach of starting with an

algorithm designed for perfect communication, and then observing how well that

algorithm performs as communication degrades. In contrast, we design multi-agent

task algorithms that work when there is no communication between agents in the

field, and then study how its performance improves with increasing communication

8



quality.

Each agent in a team has a different perception of the world and, as a result,

possesses unique information regarding the status of tasks. Agents share this infor-

mation with each other to collectively complete the mission more effectively. When

communication availability is very low, i.e. a large majority of the messages get

dropped. The task allocation algorithms studied in previous work, rely on commu-

nication for coordination and may fail if agents are unable to share information. In

contrast, the algorithms that we present in this thesis are designed to work as well

as possible even in the case of no communication. As communication improves, the

performance of the algorithms also improves.
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Chapter 3: Preliminaries

3.1 Nomenclature and Assumptions

The set of autonomous agents, denoted by A, consists of n distinct agents

A = {a1, . . . , an} and the set of tasks, denoted by T , consists of m distinct tasks

T = {t1, . . . , tm}. The sequence of tasks assigned to agent ai is denoted by Si, where

Si ⊆ T . In this thesis, we consider the collaborative visit scenario where the agents

are supposed to visit the set of stationary targets (T ) spread across a map of fixed

dimensions. A target is considered to be visited if an agent comes within a threshold

distance δ of the target. We compare the algorithms based on a metric, the Mission

Completion Time (MCT), defined as the time when all targets have been visited at

least once. This is an absolute measure of the time taken to complete the mission

from an observer’s point of view. It is assumed that the locations of the targets are

not known before the agents are deployed. After the agents start at their respective

locations at time t = 0, they receive details regarding the target locations. This is

assumed to be a one-way message (for example, a satellite that can send a single

message to the agents but they cannot send a message back, or the communication

channel is expected to be jammed after a single message is sent). The multi-agent

system is “decentralized”, implying that there is no central computing element that
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assists the agents and the agents are capable of independent computing.

3.2 Problem Definitions

We now formally define the general multi-agent task allocation problem, as well as

the specific target visit problem that we study.

Problem 1, Multi-Agent Task Allocation:

Given a set of agents A = {a1, . . . , an} and a set of tasks T = {t1, . . . , tm}, find

sequence of tasks Si for agent ai such that ∪ni=1Si = T .

Problem 2, Assured Multi-Agent Target Visit With Very Limited On-The-

Fly Communication:

Given an environment with very limited communication, a set of agents, given by

A = {a1, . . . , an} known a priori and a set of targets T = {t1, . . . , tm} known to all

agents but determined at run-time after agents are already in the field, determine

agent movement in order to minimize the mission completion time (MCT), where

MCT is the duration between mission start and the time when all targets t ∈ T have

been visited at least once.

For the purposes of improving the state of the art, a satisfactory solution to

this problem would yield a MCT that is less than the MCT of solutions generated

by existing task allocation algorithms (ACBBA, DHBA and PIA).
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3.3 Communication Models

Real-world communication can be modelled in a number of ways. In this

thesis, we run simulations using three different communication models, that have

been modelled by Nayak et al. [8]:

3.3.1 Bernoulli Model

The Bernoulli model uses a parameter (the Bernoulli Parameter), p ∈ [0, 1]

which is the probability that a message sent from an agent is received by another

agent. The Bernoulli parameter is assumed to remain constant throughout a single

simulation run. The communication attempts are assumed to be independent and

identically distributed.

3.3.2 Gilbert-Elliot Model

This model assumes that the communication channel between two agents is

a Markov chain, which has two possible states, good (messages can be successfully

sent) and bad (messages will be dropped). Figure 3.1 illustrates the Markov chain

and its states. The channel can transition between these two states after every time

step t. This behavior is governed by transition probabilities, defined as follows:

(a) Good-Good Transition Probability (pgg) is the probability that the channel is

in the good state in the next time step, given that it is already in the good state.

The complement of this probability is the Good-Bad Transition Probability

12



Figure 3.1: Communication channel in the Gilbert-Elliot modelled as a Markov
chain

(pgb), which is the probability that the channel is in the bad state in the next

time step, given that it is already in the good state. Thus, pgg = 1− pgb.

(b) The Bad-Bad Transition Probability (pbb) is the probability that the channel is

in the bad state in the next time step, given that it is already in the bad state.

The complement of this probability is the Bad-Good Transition Probability

(pbg), which is the probability that the channel is in the good state in the next

time step, given that it is already in the bad state. Thus, pbb = 1− pbg.

In this research, we use a fixed value of t, which is 0.5 seconds.

3.3.3 Rayleigh Fading Model

This model considers two effects that attenuate the signal strength: fading

and path loss. Fading is the attenuation in signal strength due to interference

from objects in the environment. Signals from the transmitting agent take several

paths to the receiving agent due to these objects, resulting in interference at the

receiver’s end, which may be constructive or destructive in nature. The envelope
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Figure 3.2: Received signal strength using the Rayleigh fading model

of the channel response varies according to the Rayleigh distribution. Nayak et al.

[8] use Inverse Discrete Fourier Transform (IDFT) to generate the Rayleigh random

variate sequence. The power loss due to fading is denoted by PF .

Path loss is the attenuation in the signal as the distance between the trans-

mitting and receiving agents increases. This path loss, given by PPL, is given by the

equation:

PPL = PL0 + 10γlog10(
d

d0
)

where, d is the distance between the transmitting and receiving agents, PL0 is the

path loss at the reference distance d0 and γ is the path loss exponent.

If the transmitted signal power is PT , the total power received is given by

PR = PT −PF −PPL. We define a sensitivity threshold PS so that if PR is less than

PS, the message packet is dropped. This drop in received signal strength due to

path loss and fading is illustrated in Figure 3.2.
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Chapter 4: The Playbook Algorithms

Here we propose two new task allocation algorithms that are tailored to work

well under very low (or no) communication. These algorithms are modeled like a

sports team’s playbook, which contains rules and strategies for each player, so that

each player plays their own part and the team as a whole performs as intended. With

this method, the agents work independently (in the absence of communication) and

yet come up with a strategy that is mutually compatible. Following this “playbook”

policy, we develop two algorithms using two different approaches as follows:

4.1 Spatial Division Playbook Algorithm (SDPbA)

The Spatial Division Playbook Algorithm programs the agents to distribute

tasks amongst themselves such that each agent gets a sequence Si of tasks and

satisfies ∩ni=1Si = φ. These sequences of tasks assigned to agents are mutually

exclusive and collectively exhaustive. As shown in Figure 4.1, for a scenario with

25 targets (blue) and 5 agents, each agent running SDPbA divides the map into 5

regions (red lines mark the region boundaries). Each region contains 5 targets that

are assigned to the agent corresponding to that region.

Each agent running SDPbA (Algorithm 1) takes the target set (T ), number
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Figure 4.1: Map Slicing as done by the Spatial Division Playbook Algorithm.

of agents (na), increment resolution (resolution) and agent ID (ID) as inputs and

slices the map into a number of regions equal to the number of agents (na) such that

each region has an equal number of targets, denoted by TPR (line 5). A region is a

slice of the map defined by its boundaries, which are straight lines from the centre of

the map to the edges. The algorithm starts defining region boundaries at an angle

of −π/2 and sweeps counter-clockwise till the next target is found and adds them

to the region list (line 8). The number of targets per region (TPR) is calculated

as the ceiling of the ratio of remaining targets (targets not assigned to any region

yet) to the number of agents. The initial value of TPR is the length of the target

list T , given by the function call len(T ). The function nextTarg() sorts the targets

according to their angles (polar coordinate θ) and returns (if any) targets that lie in

the slice of the map bounded by boundary and angle. boundary is defined (line 6)

as the angle at which the current region begins. Thus, for region 0, the boundary is

16



Algorithm 1: Spatial Division Playbook Algorithm

1 Function SDPbA(T, na, resolution, ID)
2 region, path←None
3 i←0
4 targsLeft←len(T )
5 TPR←dtargsLeft/nae
6 angle, boundary←− π/2
7 while angle < π/2 do
8 region[i].insert(nextTarg(angle, T ))
9 if len(region[i]) = TPR then

10 i←i+ 1
11 targsLeft←targsLeft− TPR
12 na←na − 1
13 TPR←dtargsLeft/nae
14 boundary←angle
15 angle←angle+ resolution

16 path←TSPPath(region[ID])
17 appendRemainingTasks(path, region, ID)
18 while missionNotComplete do
19 sendCompletedTasksList()
20 removeCompletedTasks(path)

−π/2. This value of boundary is updated every time a new region is being considered

(line 14). TPR is re-calculated each time a new region is being considered (line 13),

using updated values of targets left and agents left for assignment (line 11, 12). The

ceiling function ensures that if the number of agents does not perfectly divide the

number of targets, agents get assigned unequal numbers of targets. For example, if

there are 9 targets and 2 agents, the targets must be assigned unequally. Using the

ceiling function, the value of TPR for the first agent will be 5 and 4 for the second

agent.

The region being considered is changed when TPR targets are assigned to that

region (line 9). Using this approach, each agent computes the exact same region list.

17



In the special case where all targets are in a single line on one side of the origin, the

algorithm will allocate all targets to a single region, making the allocation inefficient.

This special case has not been addressed since the probability it is realised over a

uniform randomized generation of targets is zero. However, if ties are a concern,

then any deterministic tie-breaking algorithm can be used. The algorithm returns

an approximate Travelling Salesman Problem (TSP) solution corresponding to the

region that has the same ID as the agent (line 16), in the function TSPPath().

This approximate solution is computed using Christofides’ algorithm [24], which

guarantees a solution that is no worse than 1.5 times the optimal TSP solution

in O(n3) time. Following this, the TSP-approximate solutions for the remaining

regions are appended to the path (line 17) to ensure that agents move on to complete

other tasks when done with their assigned regions. After assigning pieces among

themselves, the agents periodically broadcast their completed tasks lists to other

agents (line 19). If they receive such a message from other agents, they remove the

tasks that the transmitting agents have completed from their own task list (line 20).

These actions are repeated till the mission is complete, which is checked by the flag

missionNotComplete (line 18).

4.2 Travelling Salesman Playbook Algorithm (TSPbA)

The Travelling Salesman Playbook Algorithm programs the agents to compute

identical approximate solutions to the Travelling Salesman Problem (TSP) where

each target in the map is a node of the TSP. Each of the n agents computes an
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Figure 4.2: Division of TSP solution as done by the Travelling Salesman Playbook
Algorithm.

approximately optimal path P through all targets using Christofides’ algorithm and

then divides that path into n pieces (p1, . . . , pn), each piece having length li, such

that each piece pi satisfies pi ⊆ P . The pieces assigned to all agents are sequences

of targets and these sequences are mutually exclusive and collectively exhaustive.

To help equalize the load distribution among the agents, we divide the path into

pieces such that the maximum of the elements of L is minimized, where L is the set

{l1, . . . , ln}.

An example is illustrated in Figure 4.2, where the algorithm computes a TSP-

approximate path through 25 targets (blue). Assuming 5 agents, this path is divided

into 5 pieces (green). Black dashed lines indicate edges of the path that are part of

the TSP solution but are not assigned to any agent, since the vertices that define

the edge are both assigned to one agent each. The number of targets per piece of

TSP path is optimized such that each agent gets a near-equal amount of load in
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terms of length of the piece assigned to it.

Algorithm 2 details the working of TSPbA. The algorithm accepts the target

set T , number of agents na and the agent ID, denoted by ID. The algorithm starts

by solving the TSP using Christofides’ algorithm (line 3), which returns the path

and edges. Edges is a list containing lengths of all the edges of the TSP path.

Partitions is list of indices that separate two pieces of the path, to be assigned to

two different agents. In line 4, the function getNaiveParts() generates a näıve list

of partitions that divide the path into pieces such that each piece has approximately

the same number of targets. This näıve partitions list is iteratively changed (lines

5 and 6) such that the variance of the set L is minimized. This is done by the

function minMax() by looping through each partition index and making increments

and decrements to it in order to minimize the maximum length in L. This process is

iterated iter times. In each iteration, the algorithm considers each piece in order and

adds or removes edges from that piece till the maximum element of L is minimized.

The end product of this loop is a partitions list that divides the path among

agents in the most equal manner. The function dividePath() (line 9) is responsible

for assigning the piece corresponding to the agent ID to the agent. The rest of the

path is also appended to pieces by this function to ensure that after completing its

own part, each agent moves on to complete the rest of the path, in the case when

other agents are unable to complete their assigned tasks. After assigning pieces

among themselves, the agents periodically broadcast their completed tasks lists to

other agents (line 11). If they receive such a message from other agents, they remove

the tasks that the transmitting agents have completed from their own task list (line
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Algorithm 2: Travelling Salesman Playbook Algorithm

1 Function TSPbA(T, na, ID, iter)
2 pieces, partitions, edges, path←None
3 path, edges←TSPPath(T )
4 partitions←getNaiveParts(edges, na)
5 while iter do
6 for i in partitions do
7 partitions←minMax(partitions, i)

8 iter = iter − 1

9 pieces←dividePath(path, partitions, ID)
10 while missionNotComplete do
11 sendCompletedTasksList()
12 removeCompletedTasks(path)

12). These actions are repeated till the mission is complete, which is checked by the

flag missionNotComplete (line 10).

4.3 Caveats of the Playbook Approach

The general idea of the playbook approach used in the two proposed algorithms

is to make all the agents come up with identical solutions and divide the solution

between all agents such that there is no overlap. To keep the solutions identical, the

starting positions of agents do not play a part in either coming up with a solution

or in dividing the solution into parts. As the starting location of agents is random,

an agent has to travel from its starting location to the first target assigned to it.

We term this travel as the ‘first haul’ and the distance travelled in the first haul

as the ‘startup cost’ of that agent, since no targets are visited till this distance is

traversed by the agent. As a result of this first haul, the MCT is affected with a

magnitude that is proportional to the startup cost of agents, which may be small or
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large, depending on the starting locations of agents.
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Chapter 5: Existing Collaborative Task Allocation Algorithms

The following three algorithms are used for comparison with the Playbook

Algorithms:

5.1 Asynchronous Consensus-Based Bundling Algorithm (ACBBA)

This algorithm (Algorithm 3) is an improved version of CBBA. The input

arguments are distance travelled (di), winning bids list (Wi), task list (T ), iteration

count (I) and bundle size upper bound (B). It operates in two phases, assignment

and consensus. In the assignment phase each agent greedily determines an ordered

task set, called a bundle (bi) and updates its winning bid list with the bids of the

task list. In the consensus phase, the agents broadcast messages that contain their

bids list. If agents receive messages from other agents that have better bids, they

update their own winning bids lists, thus achieving consensus. Both the phases are

repeated by each agent I times.

5.2 Performance Impact Algorithm (PIA)

The input arguments to this algorithm (Algorithm 4) are distance travelled

(di), significance list (Si), task list (T ), iteration count (I) and bundle size upper
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Algorithm 3: ACBBA

1 Function ACBBA(di,Wi, T, I, B)
2 bi←None
3 for k←1 to I do
4 (bi,Wi)←Assignment(bi, di,Wi, T, B)
5 SendBids(Wi)
6 (bi,Wi)←Consensus(bi,Wi, B)

7 return bi

bound (B). PIA modifies CBBA by having two phases, namely the task inclusion

phase and the consensus and task removal phase. In the task inclusion phase, each

agent calculates the ‘significance’ of tasks not included in its bundle (bi) and updates

the task bundle and significance list. The significance of a task is the impact that the

task has on the cost of the bundle. In the consensus and task removal phase, agents

exchange their significance lists and achieve consensus by updating their bundles for

tasks that have been outbid by other agents. Both the phases of this algorithm are

repeated I times.

Algorithm 4: PIA

1 Function PIA(di, Si, T, I, B)
2 bi←None
3 for k←1 to I do
4 (bi, Si)←Assignment(bi, di, Si, T, B)
5 SendSignificanceList(Si)
6 (bi, Si)←ConsensusAndRemoval(bi, Si, B)

7 return bi
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5.3 Decentralized Hungarian-Based Algorithm (DHBA)

In DHBA, as shown in 5, the input arguments are distance travelled (di),

task list (T ) and iteration count (I). Each agent first initializes a cost matrix (Ci)

corresponding to the cost to complete all unfinished tasks and then proceeds to

two phases, the assignment phase and the update phase. In the assignment phase,

each agent runs the Hungarian Assignment algorithm to get an unfinished task (ti)

and broadcasts its cost matrix to all other agents. In the update phase, each agent

receives the matrix from other agents and updates its own cost matrix. Similar to

the other algorithms, this process is repeated by each agent I times.

Algorithm 5: DHBA

1 Function DHBA(di, T, I)
2 ti←None
3 Ci←None
4 for k←1 to I do
5 ti←Assignment(Ci)
6 SendCostMatrix(Ci)
7 Ci←Update(Ci)

8 return Ci
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Chapter 6: Experimental Setup

6.1 Simulation Framework

Experiments were carried out using a simulator developed in ROS [16][18]

with Python and C++ as programming languages in a Linux environment. The

simulation framework consists of two module types: the agent module and the

central environment simulator module.

Each agent module is an independent processing unit in the CPU and simu-

lates a unique autonomous agent that runs the task allocation algorithm. Agents

exchange messages with each other based on the three communication models: the

Bernoulli model, Gilbert-Elliot model and Rayleigh fading model. The decisions

made by agents, total number of messages sent and received by the agents, time

taken and distance traveled to visit targets are all recorded in log files when running

the simulation.

6.2 Design of Experiments

An experiment instance is defined by the number of targets, the random target

locations, the agent starting locations, target cluster locations and a communication
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level. In this thesis we use a constant value of 5 agents, and other parameters are

generated within constraints as given in Table 6.1. Since this set of experiments is

aimed at testing the performance of task allocation algorithms in conditions with

very low communication availability, the scenarios are generated for five levels of

very low communication as shown in Tables 6.2, 6.3 and 6.4. Level C0 corresponds

to the least communication and this increases till level C5. For each communication

model, the rationale behind defining parameters for each of the communication levels

is as follows: the lowest communication level (C0) corresponds to no communication

at all. At this level, the playbook algorithms perform better in terms of mean value

of MCT as compared to the existing task allocation algorithms. We increase the

communication availability till we observe the point where the existing algorithms

start performing better than at least one of the playbook algorithms.

When using the Gilbert Elliot model, algorithms exhibit a variation in per-

formance across a wider range of transition probabilities. Hence, as an exception,

this model has six communication levels. Of these six levels, C0 corresponds to zero

communication, and hence is identical to level C0 of the Bernoulli model. Thus,

results with communication level C0 for the Gilbert-Elliot model have not been

included in this study.

The map for the simulation is of dimensions M×M where M is 100 units and

the origin is defined to be the bottom left corner of the map. For the purpose of

generating scenarios, it is assumed that targets exist in clusters. The targets are

modeled in clusters because this represents real-world scenarios in which targets

need not be concentrated in a single region. A target cluster is defined as a circular
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Table 6.1: Parameters for Design of Experiments

Parameter Value

Number of Targets m 10, 20, 30, 40, 50, 60
Communication Levels C0, C1, C2, C3, C4
Number of Target Clusters Random Integer in [1, 4]
Radius of Target Clusters Random Floating Point Value in [5, 50]
x, y Coordinates of Clus-
ters, Agents and Targets

Random Floating Point Value in [1,100]

Table 6.2: Definition of Communication Levels: Bernoulli Model

Communication Level Bernoulli Parameter

C0 0.0
C1 0.00005
C2 0.0001
C3 0.0002
C4 0.0005

region of radius given by cluster radius, centered at the cluster centre. A number

of target clusters is chosen, followed by the cluster centre locations and the cluster

radii, all chosen randomly with the constraints provided in Table 6.1. Using these

parameters, targets are then placed within the clusters based on a uniform distri-

bution. Figure 6.1 illustrates an instance of random scenario generation, where 80

targets are generated in 3 clusters of radii 10 units each.

Lastly, the agents are placed at random locations on the map using a uniform

distribution. A target is said to be “visited” if an agent moves within a threshold

distance (δ) of 0.25 units of the target. The agents in the simulation are assumed

to have on-board computers. At the start of the experiment, the dimensions of the

map and the locations of all the targets are assumed to be known to the agent.
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Table 6.3: Definition of Communication Levels: Gilbert-Elliot Model. *C0 is not
included in the results due to similarity with C0 of Bernoulli model.

Communication
Level

Good-Good Tran-
sition Probability
(pgg)

Bad-Bad Transi-
tion Probability
(pbb)

C0* 0.0 1.0
C1 0.0001 0.9999
C2 0.002 0.998
C3 0.005 0.995
C4 0.01 0.99
C5 0.02 0.98

Table 6.4: Definition of Communication Levels: Rayleigh Fading Model

Communication Level
Sensitivity Threshold
(dB)

C0 30
C1 25
C2 20
C3 10
C4 0

Also, it is assumed that the agent knows its own location at all times, but has no

information about other agents except for the total number of agents.

For a single task allocation algorithm, there are 90 possible combinations of

communication model, communication level and number of targets. For each combi-

nation, 40 random scenarios are generated by varying the number of target clusters,

radius of clusters and agent and target locations, making a total of 3,600 scenarios

for each algorithm. Since five task allocation algorithms are being compared, a total

of 18,000 experiments were conducted for this analysis.
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Figure 6.1: Illustration of random target generation in clusters
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Chapter 7: Experimental Results

We visualize the experiment results using boxplots and line plots. A single box

represents the mission completion time (in seconds) for an algorithm for 40 distinct

experiments corresponding to a single combination of the parameters shown in Table

6.1. The line plots show how the mean performance of an algorithm varies as the

number of targets (represented as the x-axis) and the Communication Level (varies

across plots) are varied.

In the boxplots in Figures 7.1, 7.2 and 7.3, each box represents the results

obtained from 40 experiments run on a single algorithm for a given communication

level and number of targets. It can be observed that for all three communication

models, the standard deviation in MCT of the solutions generated by all the ex-

isting task allocation algorithms increases as the number of targets increases and

decreases as the communication level increases. Standard deviations of the MCT of

the solutions generated by SDPbA and TSPbA are smaller as compared to those of

the solutions generated by the other three algorithms. This suggests that for any

given combination of simulation parameters within the scope of these experiments,

SDPbA and TSPbA exhibit the least amount of variation in performance.

From the line plots in Figures 7.4, 7.5 and 7.6, we infer that for a fixed com-
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Figure 7.1: Box plots of mean Mission Completion Time (MCT) when using the
Bernoulli model across all values of Bernoulli parameter (BP). A lower MCT indi-
cates better performance.

munication level, as the number of targets increases from 10 to 60, the performance

of SDPbA and TSPbA improves relative to ACBBA, DHBA and PIA. This perfor-

mance refers to the mean MCT across all experiments as seen in the line plots. We

observe that for a lower number of targets (typically less than 30), ACBBA performs
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Figure 7.2: Box plots of mean Mission Completion Time (MCT) when using the
Gilbert-Elliot model across all values of Good-Good Transition Probability. A lower
MCT indicates better performance.

the best, and for a higher number of targets, the playbook algorithms outperform

the existing algorithms, with TSPbA performing the best.

As the communication availability increases, the existing algorithms (ACBBA,

DHBA and PIA) are able to communicate more often and as a result are able to
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Figure 7.3: Box plots of mean Mission Completion Time (MCT) when using the
Rayleigh fading model across all values of Sensitivity Threshold. A lower MCT
indicates better performance.

share information with each other that improves the overall task allocation. We see

from the line plots for the all models that as the communication level increases, the

margin by which the playbook algorithms are better than the other three algorithms

decreases. In the plots for the Bernoulli model, when the p is 0.0005, the playbook
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Figure 7.4: Line plots of mean Mission Completion Time (MCT) when using the
Bernoulli model across all values of Bernoulli parameter (BP). A lower MCT indi-
cates better performance.

algorithms are not the best performers. Similarly, for the Gilbert-Elliot model, we

observe that the playbook algorithms cease to be the best performers when the pgg

increases to 0.02, and when the sensitivity threshold becomes 10 dB for the Rayleigh

model.
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Figure 7.5: Line plots of mean Mission Completion Time (MCT) when using the
Gilbert-Elliot model across all values of the Good-Good Transition Probability. A
lower MCT indicates better performance.
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Figure 7.6: Line plots of mean Mission Completion Time (MCT) when using the
Rayleigh fading model across all values of Sensitivity Threshold. A lower MCT
indicates better performance.
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Chapter 8: Analysis

8.1 Startup Cost of Playbook Agents

As discussed in chapter 4, the startup cost of agents results in a variability in

the performance of the playbook algorithms, which depends on the starting locations

of agents and the division of targets that the agents come up with. As the number

of targets increases, the startup cost gets smaller in comparison to the time required

to visit targets assigned to that agent. This result can be mathematically proven

for TSPbA as follows:

Definition 8.1. Event Space

The event space for n agents and m targets (denoted by Xn,m) is the space containing

all possible starting locations of agents and targets within the given workspace.

We consider the full event space (as described above) as the Cartesian product of the

event spaces for the target and the event space for the agents, denoted respectively

as Xm and Xn, such that:

Xn = W1 × . . .×Wn = Wn
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Xm = W1 × . . .×Wm = Wm

where, Wi = W for all i. Thus, Xn,m= Xn ×Xm.

Definition 8.2. Event

An event for n agents and m targets (denoted by xn,m) is an element of the event

space Xn,m, which represents a single instance of n randomly located agents and m

randomly located targets in the given workspace.

Note: An event xn,m is a multi-variate random variable.

Also note that, similar to the event space, an event satisfies xn,m = xn ⊕ xm.

Definition 8.3. TSP Distance Function

The TSP distance function, F : Xn,m→ R, is defined as the distance (cost) of the

optimal TSP solution to the problem defined by event xn,m.

[26] states that the length of the optimal TSP solution as the number of cities

in the TSP becomes very large is asymptotically proportional to the square root of

the number of cities. This can be formally stated as:

Proposition 8.1. Assuming that a target sequence of length m is drawn from a

uniform distribution such that all targets are bounded by a closed region of area v,

then for a constant c ∈ (0,∞), the length of the optimal solution (L) to the TSP

corresponding to the target sequence almost surely satisfies: limm→∞
L√
mv

= c.

Lemma 8.1. In a square map of dimensions M × M , the length of the optimal

solution to the travelling salesman problem, L, satisfies: limm→∞
L

M
√
m

= c, for
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some c ∈ (0,∞).

Proof: We divide this proof in two parts: (1) the optimal solution to the TSP

satisfies limm→∞
L

M
√
m

= c, and (2) such a scenario where the solution to the TSP

satisfies the condition given in (1) exists almost surely.

Part 1: As a consequence of proposition 8.1, we can say that there exists a

finite and positive c such that: limm→∞
L

M
√
m

= c.

Part 2: The event space for a 2-dimensional workspace with n agents and

m targets is of the dimensions 2(n + m). Event xn,m∈ Xn,m can be represented

as [t1, . . . , tm, a1, . . . , an], where ai is the ith agent location, and tj is the jth target

location; note that all ais and tjs are random variables in W, where W is the 2-

dimensional workspace. From the experimental setup, we know that the probability

distribution for targets and agents is non-zero at every point in the workspace.

Given this and the results of [26], it follows that, almost surely:

lim
m→∞

F (xn,m)√
mv

= c

for some c ∈ [0,∞).

In the scenarios under consideration, the map is a square with area M2. Hence,

lim
m→∞

F (xn,m)

M
√
m

= c

Lemma 8.2. The maximum possible startup cost, LSmax is given by LSmax = M
√

2
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Proof: The startup cost (denoted by LS) for an agent is the distance from its

starting location to the first target assigned to the agent. The worst-case startup

cost corresponds to the maximum possible distance between any two points on the

map, which is the diagonal length of the square map. Thus, the maximum possible

startup cost, LSmax is given by: LSmax = M
√

2

Theorem 8.3. The fraction of time spent by a TSPbA agent (f) in the first haul

satisfies limm→∞ f = 0.

Proof: Since the agents move at a constant speed, the time taken (MCT) is pro-

portional to the total distance travelled (Ltotal). The total distance is the sum of

the startup cost and the cost of the solution to the TSP. Thus, Ltotal = L + LS ≤

L+ LSmax. Hence,

Ltotal ≤ L+M
√

2

The fraction of time spent in the first haul (f) is given by f = LS

Ltotal
. From Lemma

8.2 we know that as the number of targets (m) becomes very large, the denominator

Ltotal becomes asymptotically proportional to M
√
m, while the numerator LS has

an upper bound LSmax. Thus,

lim
m→∞

f = 0

This result is proven for TSPbA, but can be extended to SDPbA as well.

Corollary 8.3.1. The fraction of time spent by a SDPbA agent in the first haul (f)

satisfies f → 0 as m→∞.
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Proof: In SDPbA, agents do not compute a mutually consistent TSP solution, but

divide the map into regions and then compute TSP solutions independently. In this

case as well, the targets assigned to an agent are bounded by a region that has an

area λM2, where λ ∈ (0, 1]. Lemma 8.1 implies that limm→∞
L

M
√
m

=
√
λc for some

c ∈ [0,∞) , and the worst-case startup cost given by lemma 8.2 still holds true,

making LSmax = M
√

2. Thus, it follows from theorem 8.3 that limm→∞ f = 0.

8.2 Bandwidth Requirements

Owing to their unique mechanisms, different task allocation algorithms have

different bandwidth requirements in terms of message size and the frequency of

sending messages to work effectively.

In ACBBA, each of the n agents creates a bundle containing B targets. The

agent creates a winning bids list, winning agents list and a timestamp record list

in a single iteration and sends these lists as a message to other agents. The agent

also receives messages from other agents and updates its lists based on the messages

received. This process is iterated I (iteration count) times. These I iterations

are carried out in one time step and the number of time steps depends on the

total duration of the simulation, which in turn depends on multiple factors such as

locations of targets, communication level and starting locations of agents. Assuming

perfect communication, the total number of computations involved in one time step

for one agent is O(mnI + mB2I). I and B are values that are chosen by the user

but are constant throughout all the experiments. Hence, for a given set of (B, I),
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the complexity for a single agent is O(mn). The agents send messages that contain

three lists, the winning bids list, winning agents list and the timestamp record list,

which are of lengths m,m and n respectively. Hence, the message size is of the order

O(m+ n).

PIA works similar to ACBBA and hence it also has O(mn) complexity for a

single agent, and a message size of order O(m+ n).

In DHBA, each agent maintains a cost matrix (m × n) and exchanges this

matrix with other agents to achieve consensus. Hence, a single agent in a single

time step running DHBA has complexity O(mn). Since this matrix is sent as a

message as well, the message size is also of the order O(mn).

The playbook algorithms have smaller requirements in terms of bandwidth,

as the agents running SDPbA or TSPbA only communicate completed tasks with

each other. Also, the computation required to calculate paths to targets is done by

agents at the beginning of the mission, after which they only visit targets and send

out task completion messages to each other. The only computation involved when

completing tasks is when agents receive messages from other agents and remove

completed tasks from their own paths. Hence, the computational complexity as the

agents are moving is O(mn) and the message size is O(m).

All these observations are shown in table 8.1 below:
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Table 8.1: Bandwidth Requirements for Algorithms

Algorithm
Computational
Complexity

Message Size
Complexity

ACBBA O(mn) O(m+ n)
PIA O(mn) O(m+ n)
DHBA O(mn) O(mn)
SDPbA O(mn) O(m)
TSPbA O(mn) O(m)
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Chapter 9: Discussion and Results

9.1 Overall Performance of the Playbook Algorithms

The proposed playbook algorithms perform better than existing task allocation

algorithms in scenarios when the communication is very low. In terms of mean MCT,

the SDPbA performs better than the three existing algorithms for communication

levels C0 through C3 of the Bernoulli model, C0 through C3 of the Gilbert Elliot

model, and C0 through C2 for the Rayleigh fading model. The TSPbA performs

better than the SDPbA in most of the cases; it performs better than the three

algorithms for communication levels C0 through C3 of the Bernoulli model, C0

through C4 of the Gilbert-Elliot model, and C0 through C4 of the Rayleigh fading

model.

9.2 Smaller Standard Deviation in MCT for Playbook Algorithms

In chapter 7, we observe from the box plots in figures 7.1, 7.2 and 7.3 that the

standard deviation in MCT for the playbook algorithms is smaller than the standard

deviation in MCT for existing task allocation algorithms.

This behavior can be attributed to different mechanisms used by the collab-
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orative algorithms. The performance of ACBBA, DHBA or PIA depends on the

messages received from other agents. From the logs of our experiments, we observe

that in any scenario, agents running these three algorithms send out an average of

approximately 66, 19 and 48 (respectively for ACBBA, DHBA and PIA) messages

per second. Depending on the communication level, these messages may or may not

be delivered.

Although the communication model parameter for a scenario may seem very

small, its effect is observable for simulations as shown in the following example: If in

a Bernoulli model experiment, the Bernoulli Parameter p is 0.0001, the probability

that at least one message is delivered to exactly one agent successfully over an

ACBBA simulation that lasts t seconds is given by the expression (1 − (1 − p)mt),

where m is the number of messages attempted per second (m = 66 for ACBBA).

For a simulation duration of 30 seconds, this probability is approximately 0.18.

Similarly, for a Gilbert-Elliot model experiment that has a duration of 30 seconds,

the channel state changes 60 times (since the time step is 0.5 seconds). In each

state, an agent sends m/2 messages. If the state is good, all the m/2 messages

will be delivered successfully, and the probability that the channel state is good for

at least one time step is given by the expression 1 − p2tbb, where t is the simulation

duration. This probability for a 30 second ACBBA simulation with pbb = 0.995 is

0.26. For the Rayleigh model, the probability of a message getting dropped is highly

scenario-dependent as the model considers path loss due to distance between agents,

which changes with the scenario geometry.

The successful messages can change the output of the simulation, depending
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on several randomized factors, such as the locations of the communicating agents.

For example, if agents A and B start close to each other in the map, they will have

similar costs to all targets. In this case a successfully delivered message from A to B

will not be of great value because B does not receive any new information regarding

costs to targets. On the contrary, if one of the agents starts away from the other

agent, they will have different costs to targets. In which case, a successfully delivered

message from A to B will provide new information to B and it will re-evaluate its

own path and give lower priority to targets that are away from itself but closer to

A.

In addition to the number of messages received by each agent, the overall

geometry of the scenario also has a noticeable effect on the performance of all four

algorithms. The geometry includes the locations of targets in clusters as well as

starting locations of agents. If the targets are oriented in clusters in such a way

that there are a few outlying targets, and if no agent has a starting location that is

close to the outlying targets, then the outlying targets tend to end up at the bottom

of the priority lists of the agents when they run ACBBA, DHBA and PIA. As a

result, the agents visit all other targets first and then move to visit the outlying

targets, resulting in a poor overall performance (a high MCT). SDPbA and TSPbA

avoid this problem because their target assignment logic guarantees that one agent

is assigned the outlying target(s).

Another case where the starting locations of agents plays an important role

is when they all start close to each other. In this case, if the communication level

is on the lower side of the range included in the experiments, the agents exhibit a
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leader-follower behavior when running ACBBA, DHBA and PIA, because the lack

of communication results in several (or in some cases, all) agents following one agent

in completing several tasks. This occurs because all the agents have similar costs

to targets and their inability to communicate and reach consensus results in them

exhibiting this behavior. Due to this, the team of agents produces results that are

no better than results produced by a single agent by itself. In this case, the playbook

algorithms perform much better because the agents diverge to different sets of tasks.

9.3 Effect of Number of Targets

From the line plots in figures 7.4, 7.5 and 7.6 in chapter 7, we observed that

for a fixed communication level, as the number of targets increases from 10 to 60,

the performance of SDPbA and TSPbA improves relative to ACBBA, DHBA and

PIA.

We hypothesize that this behavior is the result of the characteristic behavior

of the playbook algorithms. When agents run either SDPbA or TSPbA, they assign

distinct regions of the map to themselves. Because the agents start at random

locations in the map, it is likely that the region assigned to an agent is away from

its starting location, as shown in Figure 9.1. This results in a long first haul, which

acts as a startup cost for the agent, subsequently increasing the MCT. The long

haul is depicted by a dotted black line in Figure 9.1. This behavior is observed

particularly when the number of targets is small, as the time required for an agent

running SDPbA or TSPbA to complete the first haul is often much larger than
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Figure 9.1: An instance of agents completing long first hauls to enter their respective
regions.

the time required to visit all targets in its region. In such cases, the other three

algorithms perform better than either of the playbook algorithms.

As a result of theorem 8.3 and corollary 8.3.1, as the number of targets in-

creases, SDPbA and TSPbA become favorable algorithms in comparison to the three

existing task allocation algorithms.

9.4 Effect of Communication Level and Communication Model

In chapter 7, we observe the range of communication levels and number of

targets in which the playbook algorithms perform better than existing task alloca-
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tion algorithms. The playbook algorithms perform worse than other task allocation

algorithms as the communication level increases.

Thus, one downside of the playbook algorithms vs. existing methods is that, in

cases where communication availability is high, the team is unable to use the extra

communication to generate a new strategy tailored to the specific starting locations

of the agents. For this reason, SDPbA and TSPbA are particularly relevant to cases

where communication quality is lower than that required by existing algorithms.

In the Bernoulli model and the Gilbert-Elliot model, the success of an at-

tempted message between agents depends only on the global probability (p) and

the communication channel state respectively. On the other hand, in the Rayleigh

fading model, the geometry of the scenario also plays an important role in the per-

formance of algorithms, because this model also takes into account the change in

communication quality due to path loss. Thus, if a randomly generated scenario has

several targets closely packed in a cluster, the agents will be in close proximity to

each other during the task completion, resulting in a smaller path loss, subsequently

resulting in better MCT.

In contrast, if targets are spaced out in the scenario, the path loss will be

higher, resulting in agents not being able to communicate as efficiently as in the

previously mentioned case. This will result in a worse MCT. This high dependency

on the geometry of the scenario results in a high variation in the performance of

algorithms when using the Rayleigh fading model. We hypothesize that this is the

reason behind the standard deviations for all communication levels and all algo-

rithms being higher for the Rayleigh fading model as compared to the other two
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models, as seen in Figures 7.1, 7.2 and 7.3.
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Chapter 10: Conclusions

In this paper, we propose two novel algorithms — the Spatial Division Play-

book algorithm (SDPbA), and the Travelling Salesman Playbook Algorithm (TSPbA)

— that are designed to perform better than existing decentralized task allocation al-

gorithms in scenarios with very low communication availability. In our experiments,

we use three communication models, and vary communication quality by defining

five communication levels. We also vary the number of targets and compare the

performance of the proposed algorithm against three task allocation algorithms,

ACBBA, DHBA and PIA on the basis of the time taken to visit all targets (MCT).

The experimental results show that SDPbA and TSPbA perform better on

an average than ACBBA, DHBA and PIA at lower communication levels and at

number of targets greater than 30. Among the two playbook algorithms, TSPbA

performs better than SDPbA in all cases except for when the number of targets

are 10. This trend reverses and SDPbA performs worse than the other three algo-

rithms for all values of the number of targets when the Bernoulli parameter is 0.0005

(Bernoulli model) and when the G-G transition probability is 0.01 (Gilbert-Elliot

model). Also, SDPbA and TSPbA consistently exhibit the least standard deviation

in MCT of all five algorithms, for all communication levels in all communication
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models, and all values of the number of targets except for when the Bernoulli pa-

rameter is 0.0002 and 0.0005 when the number of targets is 10. Within SDPbA and

TSPbA, no algorithm has a clear advantage in terms of standard deviation. This

implies that the performance of both SDPbA and TSPbA for the communication

levels under consideration is much more predictable as compared to the other three

algorithms. All these inferences imply that the playbook algorithms are better op-

tions than existing algorithms when the number of targets is greater than 30 and

when communication signal is very weak or when the mission requires agents to re-

frain from communicating. TSPbA exhibits the best performance in terms of MCT

in the aforementioned cases.

The communication model being chosen also has an impact on the performance

of all algorithms. The Rayleigh fading model takes into account path loss, which

results in more variation in the MCT for all algorithms across all communication

levels.

Future work in this direction may include variations on the proposed Play-

book algorithm or a detailed study on the behavior of agents running the playbook

algorithms as other simulation parameters are varied. Another direction of study is

the extension of the playbook idea to other multi-agent problems. A possible use

of the playbook approach is to have the agents compute paths using the playbook

approach, and use these paths as a contingency plan if and when communication

fails.
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