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ABSTRACT

Title of Thesis: Parametric and Non-Parametric Schemes for Discrete Time
Signal Discrimination

Name of Degree Candidate: Joseph Albert Haimerl
Degree and Year: Master of Science in Electrical Engineering, 1990

Thesis directed by: Evaggelos Geraniotis, Associate Professor, Department of Electrical
Engineering and Systems Research Center

In this thesis parametric and non-parametric schemes for discrete time signal discrimination
are considered. Discrete time signal discrimination is the problem of classifying a random
discrete time signal into one of two classes. The term discrimination arises from the more
specific problem where the two classes are a target of interest and a decoy target.

In this thesis we consider both parametric and non-parametric schemes for discrim-
inating between the two classes. In Chapter 2, we assume that first and second order prob-
ability density functions (pdfs) of the data under each class are known. Using these pdfs
optimal memoryless quantizer discriminators are constructed. In Chapter 3, it is assumed
that the pdfs are not known. Utilizing kernel density estimators and sample data {rom
each class, estimates of the pdfs are formed for each class. Optimal memoryless quan-
tizer discriminators are then constructed using the estimated pdfs and the expressions from
Chapter 2. In Chapter 4, a perceptron neural network is trained with a supervised learning
algorithm using sample data from each class. The perceptron neural network is utilized by
a discriminator which uses memory.

Results for simulated radar data are presented for all schemes. Results show that
the neural network discrimination scheme performs significantly better than the memoryless

quantization schemes.
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Chapter 1

Introduction

In this thesis we consider the problem of discriminating between classes of discrete time
signals. The simplest case of discrete time signal discrimination is the binary discrimination
problem. In this case, a random discrete time signal is observed and must be classified
into one of two categories. Typically the discrimination method is designed to optimize some
measure of performance; this measure of performance is usually related to the probability
of error and/or the number of samples used to make a decision. The binary discrimination
problem is faced often in radar applications, where the receiver must decide whether the
observed signal is from a target of interest or a decoy. Throughout this thesis, we present
results on signal discrimination for arbitrary classes of data without assuming what the data
represent or from what structure/implementation they are obtained. However, we shall often

try to relate our results to the problem of binary discrimination faced by a radar receiver.

We refer to the two classes of signals from which the observed data originate as hy-
potheses H; and Hj. The observed data sequence is denoted as {Z;}?*_;. Under hypothesis

H;, i = 0,1, (ie. hypothesis H; is true,) the observed data sequence has the n-dimensional



probability density function (pdf) fi(21,2,,...,2,). More specifically, we consider

Hy: {Z}2 haspdf fi(z1,22,...,20) = fi(2)
(1.1)
Hy : {Z}iL, has pdf fo(21,22,-..,2n) = fo(2)
where z represents the n-tuple (21, 23, ..., 2, ). Note that we do not constrain the data to be
independent; various assumptions of the correlation between samples will be made later in
this thesis.

If the n-dimensional pdfs under each hypothesis were known by the discriminator

designer, a likelihood ratio test could be implemented. The likelihood ratio test is of the form

dz)={ fozg (1.2)

where 7] is a constant to be determined. Hypothesis H; is chosen by the discriminator when
d(z) = 1, ¢ = 0, 1. Likelihood ratio tests are well known and optimal in the Bayes, Neyman-
Pearson, and minimax senses|1]; the choice of 77 depends upon which criterion the designer
chooses to optimize. However, we assume that the n-dimensional pdfs are not known.

It is further assumed that the data sequence is strictly stationary that is, the statistics

do not vary with time:

filz1, 22, .-, 20) = filZk41, Zh42,- - -y Shgn) @ = 0,1; karbitrary. (1.3)

As mentioned above, we do not constrain the data to represent any specific signal.
However, for the radar problem, some possibilities are samples of the envelope detector
output, matched filter output, or even phase data. Figure 1.1 illustrates a scheme for dis-
criminating between radar targets by using envelope samples.

The radar uses a simple pulse modulated waveform. The pulse modulator block gen-

erates the pulsed waveform. This in turn is fed into the transmitter to be modulated to radio
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Figure 1.1: A Tracking Radar System Employing a Discriminator



frequency (RF). This signal is then input to the duplexer, which isolates the transmitter and
receiver during transmission and reception. During the transmission, the receiver is effec-
tively disconnected from the antenna, while during reception the transmitter is disconnected
from the antenna. The pulsed radio frequency signal is then radiated through the antenna.
If the antenna is pointing at an object, some portion of the signal may be reflected towards
the antenna. By this time, the duplexer has switched the antenna to the receiver circuitry.
The incoming waveform is amplified by a radio frequency amplifier and then mixed to an
intermediate frequency (IF). This signal is then passed through the matched filter of the IF
amplifier to maximize the signal to noise ratio (SNR). The output of this block is then enve-
lope detected. A portion of the envelope signal is routed through the video amplifier and into

a display: either an A-scope or a PPI (plan position indicator.)

The other portions of the envelope signal are routed to the ADT (automatic detection
and tracking) circuitry and to the discriminator circuitry. The ADT determines if targets are
present, initiates track on new targets, and determines how to set the pointing angles of
the antenna. The ADT therefore communicates with the display circuitry and the antenna
control circiutry. The ADT also notifies the discriminator circiutry that a target has been
detected. The discriminator then begins its tests by obtaining samples of the envelope signal
in the time intervals corresponding to the target’s position. When the discriminator makes a
decision, it can instruct the ADT to continue tracking the target (if it is a target of interest) or
to drop the target from track (if it is a decoy or a target of little interest.) Figure 1.2 illustrates

gure is

(=]

a method that a discriminator may possibly utilize in obtaining data samples. The fi
a diagram of five pulse repetition intervals (PRIs.} The rectangular pulses represent the
pulse waveform to be modulated and transmitted. The random signal between the pulses
represents the envelope signal. The data samples Zgy, Z7, Zs, . .. are obtained by sampling

4
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Figure 1.2: Extracting Data Samples from the Radar Return

the envelope signal within the range gate corresponding to the object being discriminated.

In Figure 1.2, only one sample per target per range bin is obtained.

The above implementation is just one example of how a discriminator can be imple-
mented in a practical system. However, structure of the discriminator block was not detailed
in the above example. There are several approaches to designing the discriminator block.
Figure 1.3 illustrates some possible approaches to designing a discriminator. The first ap-
proach is to model the physics generating the data under each hypothesis. Then the pdfs of
the data under each hypothesis may be assumed or derived, thus allowing a discriminator
to be implemented. Another approach is to collect actual data, estimate pdfs of the data
under each hypothesis, and then implement a discriminator. The last method is to collect
data, train a discriminator with a supervised learning algorithm via simulation, and then
implement the discriminator. The first approach may be very difficult and mathematically
intractable. The other two approaches are more easily adaptable to any problem since they

assume no model of the physics which generate the data sequence.

In this thesis, we consider all three of the above approaches to designing a discrim-
inator. In Chapter 2, it is assumed that marginal and bivariate pdfs of the data under
each hypothesis are known to the discriminator designer. Optimal memoryless quantizer
discriminators are designed using the marginal and bivariate pdfs {actually cumulative dis-

5
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Figure 1.3: Possible Approaches to Designing a Discriminator

tribution functions, denoted as cdfs). The discriminators use a test statistic of the form
T, = 5:1 Q(Z;), where Q(z) is a quantization function chosen to maximize a suitable
performance measure. The approach used to design the discriminator corresponds to the
first approach of Figure 1.3 and is parametric since pdfs are assumed unavailable.

In Chapter 3 it is assumed that the pdfs are not known. The approach used to design
a discriminator in this chapter corresponds to the second approach in Figure 1.3. Non-
parametric estimates of the marginal and bivariate pdfs of the data under each hypothesis
are formed and fed into the expressions for the optimal memoryless quantizer discriminators
derived in Chapter 2. The estimates are formed by collecting data prior to the design of the
discriminator; the data are fed into kernel density estimators. The data for estimation are

denoted as

Cfﬁ,j (1.4)

where 1 = 0, 1 denotes hypothesis Hy or H; respectively, where m = 0,1,..., M —1 denotes

6



the sample path number, and where 7 = 0,1,2,..., N —1 denotes the sample number. Thus
under each hypothesis, we have M sample paths (i.e. sequences) which are N data samples
long. It is assumed that the M sample paths are independent of each other. Throughout
this thesis we refer to the these data sequences as the training data.

In Chapter 4, the final approach to designing a discriminator is considered. The
discriminators from Chapters 2 and 3 required only marginal and bivariate pdfs due to
their memoryless property. However, it is suspected that memory improves performance for
correlated data. In Chapter 4, discriminators which have a test statistic of the form 7} =
Zg:[( Y ZK-141, Zk—2+i, - - - » Z; ) are considered. To find the optimal nonlinearity (), pdfs
of higher order than the bivariate pdfs would have to be assumed or estimated; the estimation
of the higher-order pdfs may not be practical and the assumption or derivation of such pdfs
may be mathematically intractable. To avoid the difficulty in obtaining these pdfs, multiple-
layer perceptron neural networks are trained to act as the nonlinearity v(z1,22,...,ZK)
using the back propagation algorithm.

It is likely that once a discriminator is implemented, it will encounter data from pdfs
different from those with which it was dcs;gned. Obviously, the designer wants the discrim-
inator to be robust to these conditions. In Chapter 5, some simulation results are presented
on the mismatch of the pdfs. These results give some indication of the robustness charac-
teristics of the discriminators presented in this thesis.

Note that all discriminator models in this thesis make decisions on the basis of se-
quential tests. These tests, upon obtaining a new data sample, either classify the sequence
or decide to obtain a new data sample. Sequential tests are used in situations requiring fast

and accurate decisions.



Discriminators using similar structures to the ones in this thesis can be implemented to
form decisions on the basis of fixed length blocks of data. However fixed sample size tests

are beyond the scope of this thesis.



Chapter 2

Memoryless Quantizer
Discriminators

In this chapter, we derive optimal memoryless quantizer discriminators for use in our bi-
nary discrimination problem. The data sequence is assumed stationary and m-dependent.
m-dependent means that, under H;, Z; and Z,; are correlatied for |k — | < m; and are
independent for [k — [| > m;. These discriminators operate on the data sequence {Z;}2,
by computing the test statistic T, = Y., Q(Z;). Q(z) is a quantizer function chosen to
maximize a suitable performance measure.

The test may be performed in either a block or sequential fashion. Both tests are
based on the fact that, as n tends towards infinity, 7,, converges to a Gaussian distribution
with mean ny; and variance no?, for i = 0,1, corresponding to hypotheses {I; and H,

respectively. u; is defined by
pi(Q) = £{Q(Z1)}, i=0,1 (2.1)
where E; denotes expectation under hypothesis H;. o is defined by

c¥(@Q) = lim n"IVar,-(Tn), 1=0,1 (2.2)

n—+00



and is given by
Q) = Vard@(Z) + 23 Cov{Q(21),Q(Z521)}. (2.3
j=1

Var; and Cov; denote variance and covariance under hypothesis H;, and m; is the m-
dependence length under hypothesis H;. [2] gives a proof using a central limit theorem
which shows that 7}, is asymptotically Gaussian under hypothesis H; with mean nyu; and
variance no?, provided that o2 > 0.

Optimal quantization has been studied by others (see [3] and [4]) for the related hy-
pothesis testing problem concerning the detection of weak signals in additive noise. These
employed block tests, where 7, was compared to a decision threshold. Quantizer functions
were chosen to maximize the well known asymptotic relative efficiency (ARE.) Given two

detectors, ¢ and ¢y, the ARE of detector ¢ relative to detector ¢, is defined as

ARE(1,2)= lim e(a,f,n), (2.4)

n—00 80
where e(a, §,n) is the relative number of samples ¢, required to achieve the same proba-
bility of detection that (; achieves for sample size n when both ¢, and (9 have false alarm
probability « and signal strength 6. Under certain regularity conditions (see [2],) the ARE

for two quantizer detectors has the form

ARE(Q1,Qs) = Z%g’ (2.5)

where the quantity 7(()) is the efficacy of the detector ¢ using (), and is given by

_yerr .
”Q) = g (2.0

Here, f " is the derivative of the noise marginal probability density function with respect to
signal strength §. The optimal quantizer is the quantizer which optimizes the ARE; this
quantizer also maximizes the efficacy.

10



[4] derived the optimal quantizer for the weak signal detection case with independent
noise, while [2] derived the optimal quantizer for the m-dependent noise case. For the dis-
crimination problem, {5] has derived optimal nonlinearities which maximize signal to noise

type performance measures of the form

2o (p(g) ~ pol(g))?
549 = 026 + (L~ )3 @)’ @7

where v € [0,1]. These detectors operated in a block fashion forming a test statistic 7, =
> 1 9(Z;) which was compared to a decision threshold.

Recently, [6] derived optimal nonlinearities for use in a sequential discrimination
scheme. These sequential discriminators operated by forming a test statistic of the form
T. = 3%, 9(Z;). Another test statistic was formed, either as a linear expression of T):
S, = AT, + Bn, or as a quadratic expression of Ty,: S, = AT? + BT, + Cn + D. S, was
then compared to two decision thresholds; if the upper threshold, b, was exceeded, H; was
declared. If S, dropped below the lower threshold, a, Hy was declared. Otherwise, another
sample Z,, 1 was obtained, 7T}, 41 and 5,1 were computed, and the threshold tests were
repeated. This continued until one of the thresholds was crossed. The nonlinearities were
chosen to minimize the average sample size required to terminate the test. This criterion
is important for the class of problems where a fast decision is needed as well as a reliable
decision (i.e. small error probabilities.) [6] used the well known Wald thresholds [7] of
b=In((1-pB)/e)and a = In(B/(1 - a)). The corresponding optimal values of A and B
were A = 2(py — po)/ (0f + 03) and B =—-2(u1 — o) (10 + pooi) / (of + ag)z.

(6] showed that the optimal nonlinearity solved a nonlinear integral equation; this was
the result of a more complex performance measure than (2.7). However [6] also considered

a suboptimal nonlinearity which solved a linear integral equation: this nonlinearity was

11



the result of a performance measure with the form of (2.7). The suboptimal nonlinearity
performed nearly as well as the optimal nonlinearity and was much easier to solve for because
of the linear integral equation. Since [5] and [6] have shown performance measures with
the form of (2.7) which result in good block and sequential discriminators, we only consider
quantizers that maximize a performance measure of the form given in (2.7). Being consistent
with the subscript notation in [5], we state our problem as finding a quantizer that maximizes

the performance measure

: or_  (m(Q) — (@)
S4(Q) = ('VU%(Q) + (1 - I/)O'(%(Q))

(2.8)

Now we define the notation used in this chapter. The quantizer function Q(z) is
defined as ) = (q,t), where q = (q1,¢2,...,qx)7 is the quantization level vector and
t = (to,?1,...,tar) is an ordered breakpoint vector. These define Q(z) by

Q(x):qk when .Z‘E(tk_l,tk], k= ..., M. (29)

With this definition of (2 ), we sometimes also use the notation 9 (@) = S4(q)-

2.1 Derivation the Mean and Variance for a Quantizer Function

To maximize the performance measure 5'4(q), the mean y; and variance af of the quantizer
function must be evaluated under both hypotheses (¢ = 0,1). The mean of the quantizer is

12



given by

+oo M
1 (Q(20)] 2 B [Q(%)] = / S ks () fi(2)d2
k=1

M

+c0
(Ik/ I(tk—htk](z)fi(z)dz

0

=
Il
-

Ms

/ " e h(2)dz

2 ), . (2.10)
M
= Z qxPri{z € (tx—1,tx]}
k=1
M
= qu (Fi(te) = Fi(te-1)]
k=1

= q7(AF;) = (AF;) q.

In the above expressions we used I 4(z), the standard indicator function defined as

lforze A
Ii(z) 2 .
A(z) {O for z ¢ A. (2.11)

(2.10) also used (AF;), which is defined as

Fi(tl) — Fi(to)

s | Filta) = Fi(tr)

(AF,) (2.12)

Fi(tar) — Fi(tar-1)

Fi(z) is the cumulative distribution function under hypothesis H; and Pr;( A) is the prob-
ability of event A occurring under hypothesis H;. Note that, in the above integrals, we have
assumed that f;(z) = 0, for z < 0; this is the result of the envelope detector output of the
radar system being always non-negative. The variance of the quantizer ()(Z) is evaluated

13



as
7 Q)2 Var [Q(4)] + 23 Con[Q(%).Q(Z511)]

= E [Q% %)) - 1 [Q(21)]

M

+2) ElQ(Z1) - 1 (Q(Z0)][Q(Zi41) — 1 [Q(Z0)]]}
j=1
= E: [Q*(Z1)] - ui® [Q(41)] (2.13)

+2) {EQ(20)Q(Zj)] - 1 [Q(Z1)]}
7=1
= B [Q*(2) - (2ms+ 1 [Q(24)
+2 Z E[Q(Z1)Q(Z;11)] -
ij=1
The power E; [Q2(21 )] is evaluated by
+ 00
EfQfm)] = | Q*)fz)dz
+oo M
= [ S e (1)
0 k=1

+oo M
- / Zqi](tk—l,tk](z)fi(z)dz
0 k=1

M +00
= Z/ Qi[(tk—l»tk](z)fi(z)dz
k=10 (2.14)

M ts

=3 [ dhe:
k=17t
M

= > aiPri{z € (te-1, ti]}
k=1

M
= zq;ﬁ [Fi(ik) - Fi(tk——l)]
k=1

= qTf‘iq

14



where the matrix 13‘,' is defined as
oA .
F, = djag{Fi(tl) — F,'(to),Fi(tg) — Fi(tl), .. .,F’i(t]u) - F,'(tM__l)}. (2.15)

The squared term in (2.13) can be rewritten as

2

Z‘Ik i(th) — Fi(tg—1 Z [Fi(ti) — Fi(ti—1)]

MM (2.16)
=2 Y asa[Fity) = Fi(temn)] [Fi(t)) = Fi(ti—y)]
k=1 I=1
—_ L )
=q" (AF;)(AF
Finally, the last term in (2.13) is given by
M M
QZE (Q(Z21)Q(Z41)] = QZE Z‘ka(tk_l,tkl(zl)zqu(t,_l,m](ZjH)}
k=1 =1
mi M M
IQZEi ZZ Weqil(y, 1ytk](Z1 Iy, 1,tl](Zj+1)}
j=1 Lk=1 =1
m, M M
=2 Z Z Zq’“mEi [I(tk—lvtk](Zl)[(tl—lytl](Zj+1)]
7=1 k=1 1=1
m; M M
=23 3 > asaPri{Zi € (teo te] AND Ziy € 4y, 4]}
7=1 k=1 I=1
= q'Piq,
(2.17)
where the matrix P ; is defined by its elements
[ } 22 Z ri{Z1 € (tk-1,t] AND Zjy1 € (tioyg, 1]} (2.18)

So now the variance 07 [()( Z)] can be obtained by combining equations (2.14) through (2.18)

15



to yield
o} [Q(2)] = 4" (AF)q — (2mi + 1)q” (AF;)(AF:) q + qPiq
= q7 [(AF;) - (2m; + 1)(AF)(AF)T + 131-} q (2.19)

=q'[P; + Filq.
The matrix Pi is defined as

2

]_51. I~)i — (Qm,‘ + 1)(AF¢)(AF£)T. (2.20)

2.2 Evaluation of the Performance Measure for a Quantizer Func-

tion

Using the expressions for i; [Q(Z)] and ¢? [Q(Z)] from the previous section the value of the

performance measure for a quantizer function is given by

t
lipr

S4(q)

[ — po)’
voi 4 (1 - v)od
[q7(AF,) — q7(AFy)]?
vqT[P1 + Filq + (1 - v)q7[Po + Folq

[q7[(AF1) - (AF,))]” (2.21)
qT [V[pl + I‘A-‘l] + (1 — I/)[ISO + I?‘O]:!q

2

[(AF1) - (aFo))q
qT [:4131 +F1]+ (1= v)[Po + f“oﬂq'

16



2.3 Evaluation of the Optimal Quantizer Function for Specified
Breakpoints

A necessary condition for the performance measure to be maximized is for the gradient with

respect to the level vector ¢ to be zero. So we need to evaluate the gradient of equation

(2.21). This is given by

\Y% 54(Q) =V [qT[(AFl) — (AFO)”2
’ " et [v[f’l +F1]+ (1= »)[Po + Fol|q

_ 2[q"[(AF1) - (AF)]] [(AF1) - (AFo)] |
qT{u[fn +E ]+ (1 - v)[Po + ﬁO]Jq (2.22)

2 [ [(AF1) — (AF)])” [v[Py + Fi] + (1 - 0)[Po + Fol g

[qT {,,[131 +F1]+ (1 - v)[Po + ﬁ‘o]] q] 2

where V, denotes gradient with respect to the level vector q. Now define q° as the vector

which maximizes S, (@)

q° = arg{ max Sy(@Q)} (2.23)

The necessary condition is

= 0. (2.24)

q=q°
If {u[ﬁl + B+ (1= v)[Po+ Fo]] is positive definite and qZ[(AF;) — (AF,)] > 0 (ie.
H#1 > po), then equation (2.24) reduces to

[(AF;) — (AFy)] — M(q°) [V[Pl +F]+ (1 -v)[Po + ﬁo]}cp =0 (2.25)

where the multiplier A(q) is defined as

Ma) = q'[(AF)) ~ (AFo)] '
qf [V[Pl + P+ (1- v)[Po + Fo]] q

(2.26)
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So we have

[Py + F1] + (1 = v)[Po + Fo] —1[(AF1) - (AFo))
q° = (2.27)
AMq°)

as an expression for the optimal quantization function for fixed breakpoints. 5'4 (@) remains
unchanged by scaling Q (i.e. S4(Q) = 54(aQ), where a is a constant). This implies that
A(q°) does not affect the value of 54(Q). so all solutions to (2.25) are equivalent. One

particular solution is where A(q°) = 1:

q° = [v[f’l F B+ (1 —-v)[Po+ 1?*0]] _1[(AF1) — (AFy)). (2.28)
This is equivalent to

{V[Pl R+ (1= ) [Po + h"‘o]}q" — [(AF1) — (AFo)] = 0. (2.29)
The matrix [vF + (1 - v)Fo| has the form

[vBy + (1= v)Bo| = diag{v [Fi(12) = Fa(to)] + (1= v) [Fo(ta) = Fo(to)],
V[Fi(tz) — Fy(t)] + (1 = v) [Fo(t2) = Fol(t1)],- -,
v{F(tar) = Fi(tar—1)]) + (1 — v) [Fo(tm) — Fo(tar—1)]}- (2.30)

All terms of {I/ﬁ‘l + (1~ 1/)1:"0} are positive, since its terms are probabilities, so its inverse

N . y-1
[I/Fl + (1 - I/)Fo] exists. This allows equation (2.29) to be written as
. RS T R , . ;
[VFl +(1- V)Fo] [I/[Pl + P14 (L= v)[Po + Fo]|q°

N N -1
—[uFl (1 u)FO] [(AF;) — (AFo)] = 0. (2.31)
This can be simplified to

1+ Ky a° - [z/I:"l + (1 - v)Fo] " [(AF1) - (AFo)] = 0 (2.32)
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where I is the (MxM ) identity matrix and where we define

K, 2 [Vﬁl +(1— u)ﬁo} - [ui)l +(1- u)f)o] . (2.33)

The components of K4 are given by

[uPl +(1 - V)Pg] y

& - PIRG) - Ao T A =Bl = ey 23

We can define the vector by as

by [1/}.:“1 +(1- u)ﬁo} _1[(AF1) ~ (AFy)]

_ Fi(t1) = Fi(to) = Fo(ta) + Fo(io) .
v[Fi(t1) — Fi(to)] + (1 = v) [[Fo(t1) — Fo(to)]

Fi(ty) — Fi(t1) — Fo(t2) + Fo(ty) ) (2.35)

= vIFi(tz) = Fi(t1)] + (1 = v) [Fo(t2) — Fo(t1)]

Fi(ty) — Fi(tam-1) - Fo(tam) + Fo(tar-1)
v [ (ta) = Fi(ta-)] + (1= v) [Fo(tar) = Fo(tm-1)]”

So we can rewrite equation (2.29) as [I + K4] q° — by = 0.

2.4 Evaluation of the Optimal Performance Measure

In this section, the optimal performance measure for fixed breakpoints is derived. This value
is the maximum a value a quantizer with the given breakpoint vector t can achieve. We start

with the performance measure

. . T(AF) — (AF)])’
54(Q) = Sa(q(t)) = A[q [(A D)= ‘1)” - (2.36)
e " [I/[Pl + P+ (1 —v)[Po + Fo]] ali=qe
Now the expression for the optimal quantizer levels for fixed breakpoints,
q° = [V[Pl + B4 (1 - v)[Po+ Fo]] _1[(AF1) — (AF9)] (2.37)
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is substituted into the above expression to yield

] {[(Am —(AFo))" [u{By + Bi] 4 (1= )[Po + Fol] (A1) - (AFo)]
54(q°) = - — —
(AFY) ~ (AFo)" [v[By + F1] + (1 - 0)[Po + o] (AFy) — (AF)]

= [(AF1) - (AFo)]” [1/[131 +Fi]+ (1 - v)[Po + 1?*0]] “(AF1) - (AF0).
(2.38)

2.5 Sufficiency of the Solution (2.28)

The solution (2.28) has been showed to be a necessary condition for maximizing the perfor-
mance measure 5'4(q). In this section, the Schwartz inequality is used to show that (2.28)

is also a sufficient condition for maximizing

2 (@) ~ po(e)
Sal@) = voi(q) + (1 - v)oi(q) (2:39)

For simplification purposes define
C é {V[pl + Fl] + (1 d V)[po -+ F()] (240)

and

v £ [(AF,) - (AF))]. (2.41)

By substituting these into the expression for §4(q) we obtain

- %)

54((1)— qTCq
eV [54(q°>r o
- [qTC'q Sa(q°) (242

_ [qTvvTq°] 2
a?Cq[viq°] .
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Now by the Schwartz inequality, which for two vectors x and z implies that (XTZ)2 <

xTxzT z, we obtain

Sl < aZvvTq(q°) T vvTq®

a(q) < TCavlaovlqo
q qv-q-v'q

o)T

_ a"vwwiq(a®)'vwlq°

chquqoquo

_ a"vvTq(q*)Tv
q7Cq(q°)Tv

_ a'vwiq(q®)"v

qTCqoqlv.

Now by substituting the expression

qo = U[f’l + Fl] + (1 - I/)[].SO + Fo] —1[(AF1) - (AF())] =C"ly

into the denominator of the above expression, we obtain

a"vvTq(q?)"v

S <
Sa(a) < qfCC-1vqTv

B ququ(qo)TV

qfvqlv

q’vvTq(q®)'v

qlqvlv

= (a°)'v = 54(q°).

(2.43)

(2.44)

(2.45)

Thus we have now shown that the expression for optimal quantizer satisfies the necessary

and sufficient conditions for optimality.

2.6 Evaluation of Quantizer with Optimal Levels and Breakpoints

Here we derive the quantizer function with optimal levels and breakpoints that maximizes

the performance measure S4(q). Specifically, we are maximizing the function 5,(q°(t)). We
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need to evaluated the gradient of the performance measure with respect to the breakpoint

vector,

0 -
a7, 2@ (t) =

-1

= 5(”2“ [[(AFI) — (AFy)]” [y[i)l + ]+ (1= v)[Po + ﬁo]] [(AF;) — (AFy)]
k

-1

= l:'é?_[(AFl) - (AFO)]T] [1/[131 + F1] +(1- 1/)[150 + 13‘0]] [(AF;) — (AFy)]
k
+[(AF1) - (AF)))" [5% B+ ]+ (1= 0)[Po + Fol| _1} [(AF1) - (AFy)]

+[(AF:) - (AFo)]T[V[Pl +F1]+ (1 - v)[Po + f‘O]] B {%[(AFQ — (AFq)]

(2.46)
We use the fact for invertible matrices that 8’3: = —A-%éA"1 and equation (2.46) to obtain
0 ]
~-[(AFy) - (AF)]"| q
k
onT 9 - - A - °
(@) |5 [Py + Fu] + (1 - 0)[Po + Fol| | @
k
o\T 9
+(q°) a—tk[(AFl) — (AFy)]| - (2.47)

This further reduces to
0
20"V |GlaF) - (AR
o\T 0 ) - NTS - °
-(q°) L?_tk [V[Pl +Fi]+ (1= v)[Po+ Fo]” q

=(q°)" [Q%[(AFI) — (AFo)] ~- [5% [V[pl +Fi]+ (1~ v)[Po+ FO]H qo] .

(2.48)

So a necessary condition for the vector t to maximize the performance measure is

0= (a")" [2 [ 5-lam) - (AR
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_ [a% [v[Pr+ B3] + (1 - v)[Po + ﬁo]]] qo] Cfork=1,23,... . M~1. (249)

This can be expanded into more detail:

I 0
0
- t
0:(q°)T{2 fl(tk) fO( k)
—fi(te) + fo(tx)
0
0
0
0
0
B (1 —v)fo(te) + vfi(te) q°
—(L=w)folty) —vf = 1(tk)
0
0
- [_8—?— [uf’1 +(1- I/)IA)OH qO} fork=1,2,3,...,M -1 (2.50)
k
( 0 =
0
qkv f1(te) + qe(1 — v) fo(tx)
0=2 1) — t >+ q2 - o
[fi(te) = fo(te)] [ap + € yq] et () geas (1 — ) fo(t) q
0
0
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81 - )
~(@®)7 [5& [uPl +(1- z/)POH q° for k=1,2,3,..., M~ 1 (2.51)

2.7 Numerical Results

In this section, we evaluate the performance of the memoryless quantizer discriminators
via computer simulation. Although the optimal quantization functions may be computed
for any m-dependent processes for which the marginal and bivariate distributions of the
data are known under both hypotheses, we consider only the case typical to radar sys-
tems: p-mixing data from observations of the radar return envelope. p-mixing implies that
Cov{Zy,Zkyn} < pn, where p, — 0 as n — o0o0. We shall assume that the data are
samples of the radar return envelope, which is either from a target (hypothesis I/} or a
decoy (hypothesis Hj;.) Note that the radar has already detected the object (i.e. the target
or decoy), but now must decide whether the return is from a target or decoy. Note that in
our problems we neglect the possibility of detecting clutter or other objects. We define the
probability of false alarm as the probability that the discriminator declares a decoy to be the
target. The probability of miss is the probability that a target is declared a decoy. Thus the
probability of detection is the probability that the discriminator declares a target a target.
We consider two discrimination cases (refer to Table 2.1). Under Case 1, the target’s
envelope samples have marginal pdfs which are lognormal, while the decoy’s marginal pdfs
are Rayleigh. The observations under each hypothesis have matched means and powers.
For Case 2, both hypotheses have Rayleigh marginal pdfs. However, under Case 2, a 3dB
(Hy vs Hy) difference in power exists between the two hypotheses. The observations are
assumed stationary and p-mixing. Appendix C is a summary of the necessary marginal and
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Case 1 Lognormal 0 0 0.130290,

vs Rayleigh 0.013029
Case 2 Rayleigh 3 —_— 0.130290,
vs Rayleigh 0.013029

Table 2.1: Discrimination Cases

bivariate pdfs for the lognormal and Rayleigh processes.
The Rayleigh processes are generated by underlying Gaussian processes (i.e. the
inphase and quadrature components.) We denote the envelope observations as {Z;}2,.

The Rayleigh envelope process is generated by

Zi=\/X?+Y? i=1,23,... (2.52)

where {X;}72, and {Y;}?2, are mutually independent Gaussian stationary p-mixing pro-
cesses. This implies that {7;}° is also stationary and p-mixing. The underlying Gaussians
are generated by

Xi=pXio1 +/1-p2V;

Yi=pYi 1+ 1—-p*W,;, fore =223, ... (2.53)
with
Xl = 0'1/1
Y1 = O’I/Vl (254)

where {V;}:2, and {W;}{2,, are mutually independent sequences of i.i.d. (independent
and identically distributed) zero mean/unit variance Gaussian random variables. ¢ is the
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standard deviation of the underlying Gaussians, while p is the correlation coefficient for
adjacent samples. Thus the underlying Gaussians are stationary p-mixing processes with
correlation coefficient p for adjacent samples.

The correlation coefficient p is related to the decorrelation time 7 (see Table 2.1) in the
following manner: 7 is defined to be the time it takes for the correlation coefficient between
the first sample and another sample to decrease by a factor of e~!. In our simulations, we
assume that they are uncorrelated, when the correlation coefficient between the first and
7-th radar sample drops below 0.1. Since the underlying processes are Gaussian, they will
also be independent. Thus we can assume m-dependence and define mg and m; as the
number of samples under H; and Hg respectively it takes the correlation to drop to below
0.1, respectively.

For very large targets, the radar return envelope samples are often approximated by
a lognormal process. Our lognormal process is simulated by exponentiating an underlying
Gaussian process:

Zi =exp(X; +p), 1=1,2,3,... (2.55)

where X; is generated in the same manner as equations (2.53) and (2.54). Unlike the
Rayleigh processes which have underlying Gaussians with zero mean, the underlying Gaus-
sians for the lognormal process may have a mean p.

To generate the quantizer functions, the marginal cdfs for each hypothesis are re-
quired. To compute the matricies 151 and 130, the sum of bivariate cdfs over the m-dependence

interval must be computed for each hypothesis. Specifically, the sums Z;'n:ll F i(l’j +1)( z,Y)

must be computed for : = 0, 1 corresponding to H; and H, where F i(l’j +) (z,y) is the joint
cdf for samples Z; and Z;,, and m; is the m-dependence length for hypothesis H;. The
decorrelation times listed in Table 2.1 imply that the m-dependence lengths are 300 and
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30 for H; and Hy, respectively. The Rayleigh and lognormal marginal and sum of bivariate
pdfs for both Case 1 and Case 2 are evaluated at a discrete grid of evenly spaced points.
These points are chosen to lie in the support of the marginal density — that is the maximum
and minimum sample values are computed so that the probability that a sample exceeds the
maximum value of the support or falls below the minimum value of the support is 0.00005.
301 grid points are used over the support.

For each case, three classes of quantization functions are generated. All quantization
functions are chosen to maximize the performance measure
S3(Q) = [u1 — po)?/[0} + 02]. The first class of quantizers have uniform breakpoints and
optimal levels. The second class of quantizers have optimal breakpoints and optimal levels.
Finally, the third class of quantizers were obtained by quantizing a continuous nonlinearity.

The continuous nonlinearity is quantized by

g(to), ifz S to
Q) 2 { [g(t) + g(tip1)])/2, ift: <z <tip1,i=0,1,..., M —1 (2.56)
g(tj\/[), ifz > iy

where {; are the breakpoints and where ¢(z ) is the continuous nonlinearity which maximizes
the performance measure 53(Q) (see [6]). The quantizer functions with uniform breakpoints
and optimal levels are computed via equation (2.28). The quantizer functions with optimal
levels and optimal breakpoints are computed using equation (2.28) and a gradient search
technique over varying breakpoints. Appendix A supplies the some of the required deriva-
tives needed to compute the derivative of the performance measure for a gradient technique.
However, in the actual computations, our simulations used a finite difference gradient tech-
nique.

Quantization functions from the various classes are computed for various number
of levels. Tables 2.2 and 2.3 summarizes the quantization functions computed. For each
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2 0.0000716237 {0.0000761859 [0.0000814555
4 0.0000435368 {0.0026132100 [0.0003927096
8 0.0000047076 |0.0004527053 [0.0102431728
16 0.0008984112 [0.0019421706 {0.0110042309
32 0.0071742339 |0.0092516430 [0.0111641670
64 0.0101809436 |0.0109332995

128 0.0112417946 |0.0113493744

Table 2.2: Values of 5'3 for Case 1 Quantizers

quantization function listed in Tables 2.2 and 2.3, the corresponding performance measure

is also listed.

Figure 2.1 is a graph of the performance measure versus the number of quantization
levels for each quantization class. As expected, as the number of levels increases the per-
formance measure also increases. Also, the performance measure saturates as the number
of quantization levels becomes very large. The results in Figure 2.1 are intuitively pleasing:
for a fixed number of quantization levels the quantizer with optimal breakpoints and optimal
levels has a greater performance measure than the quantizer with uniform breakpoint and
optimal levels, which has a performance measure greater than the quantized continuous
nonlinearity. This result is expected, since the quantized continuous nonlinearity with M-
levels and uniform breakpoints is a subclass of the M-level quantizer functions with uniform
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2 0.0009132413 [0.0009184310 [0.0029278097
4 0.0028830939 [0.0029171822 |0.0029428345
8 0.0029869056 (0.0029905122 [0.0029954810
16 0.0029979991 [0.0029982538 |0.0029988189
32 0.0029994955 (0.0029995113 [0.0029996180
64 0.0029998175 |0.0029998184
128 0.0029998948 ]0.0029998948

Table 2.3: Values of S 3 for Case 2 Quantizers

breakpoints and quantizers with M-levels and uniform breakpoints are subclass of quantiz-
ers with M-levels.

Typical quantization functions are shown in Figures 2.3 to 2.10. Figure 2.3 is the 128-
level uniform quantizer for Case 1. The 8-level uniform quantizer and the 8-level quantized
continuous nonlinearity do not have the abrupt changes for small and large z values that the
128-level quantizer has. But the optimal 8-level quantizer comes close to the shape of the
128-level quantizer. The differences for the quantizers for Case 2 are also similar. Note that
the general shape of the quantized nonlinearity in Figure 2.10 seems to be different from the
other quantizers for Case 2. But note the the general shape of the quantizer is the same -
it differs only by a scalar constant. (Note a quantizer may be scaled without changing the

performance.)
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The discriminator structure is depicted in Figure 2.11. A maximum number of sam-
ples per test criterion was added to the sequential test for practicality. For Case 1 discrim-
inators, the maximum number of samples permitted was 2000. For Case 2, the maximum
number of samples permitted was 4000. Each discriminator was tested using random data
sequences. Also, each case was evaluated with the desired error probabilities o = 3 = 1072
and @ = 3 = 10™3. When the discriminators were evaluated with o = 3 = 10~2 as the
desired error probabilities, 1000 random sample paths from each hypothesis were utilized.
For the discriminators designed for & = 8 = 10~3, 10000 random sample paths from each

hypothesis were utilized.

Figures 2.12 through 2.15 are examples of simulated paths from each hypothesis.
Tables 2.4 through 2.7 summarize the results from the simulations for the quantizer dis-
criminators. Listed for each discriminator is the probability of miss, probability of detection,
expected number of samples to make a decision, and the performance measure. Examining
the results one can see that generally, as the number of quantization levels increase, the

performance of the discriminator improves.

Examining the results from Case 1 we see that the minimum number of quantization
levels for a uniform quantization function to result in good performance was 32. The quanti-
zation function with 32 levels designed for Py = P,, = 1072 had P;=0.003, P;=0.991, and
an average sample number of 516. The quantization functions with less levels had Py=1.
The quantizer function with optimal breakpoints and levels required only 8 quantization
levels to result in reasonable performance, the quantized continuous nonlinearity required
32 levels to yield reasonable performance. For the Case 1 quantizer discriminators with
desired Py = P, = 1073, error probabilities were slightly less than those of the quantizer
discriminators with P; = P, = 10~2, but the average sample numbers increased; this is
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expected since the decision thresholds move farther apart for smaller desired error proba-
bilities. For Case 2, the minimum number of quantization levels for good performance is 4

for both optimal and uniform quantization functions.
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Figure 2.11: Memoryless Quantizer Discriminator Structure




E[n]

i
2 1.0 1.0 1997 0.0000761859
4 1.0 1.0 1998 0.0002613210
8 1.0 0.996 1986 0.0004527053
16 1.0 0.976 1573 0.0019421706
32 0.003 0.991 516 0.0092516428
64 0.0 0.985 527 0.0109332995
128 0.0 0.988 537 0.0113493742
. Optimal
Quantizer
2 0.0000814555
4 1 0.998 1983 0.0003927096
8 0 0.995 665 0.0102431725
16 0 0.984 541 0.0110042309
32 0 0.987 535 0.0111641665

0 0.007 1595 0.0000716237
4 0 0 2000  |0.0000435368
8 0 0.191 2000 0.0000047076
16 1 0.965 1928 0.0008984112
32 0.025 0.972 617 0.0071742339
64 0 0.977 473 0.0101809439
128 0 0.983 488 0.0112417950

Table 2.4: Results for Case 1 Quantizers for desired P; = P, = 10™2
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E[n]

1.0 1.0 1999 0.0000761859

4 1.0 1.0 1997 0.0002613210
8 1.0 0.9999 1997 0.0004527053
16 1.0 0.9873 1790 0.0019421706
32 0.0143 0.9875 754 0.0092516428
64 0.0 0.9881 779 0.0109332995
128 0.0 0.9896 782 0.0113493742

2 1 1 1999 0.0000814555
4 1 1 1998 0.0003927096
8 0 0.9946 963 0.0102431725
16 0.0001 0.9858 794 0.0110042309
32 0.0001 0.9895 783 0.0111641665

0 0.0003 1586 0.0000716237

4 0 0 2000 0.0000435368

8 0 0.1900 2000 0.0000047076

16 1 0.9902 1999 0.0008984112
32 0.0838 0.9773 884 0.0071742339
64 0.0016 0.9816 694 0.0101809439
128 0.0001 0.9862 719 0.0112417950

Table 2.5: Results for Case 1 Quantizers for desired P; = P, = 1073
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1 3314 0.0009184310

4 0.001 0.999 2387 0.0029171822

8 0.003 0.998 2344 0.0029905121

16 0.002 0.994 2332 0.0029982539
32 0.003 0.996 2332 0.0029995114
64 0.001 0.997 2330 0.0029998184
128 0 0.997 2399 0.0029998949

2 0.738 0.999 1958 0.0029278097
4 0.015 0.996 2313 0.0029428344
8 0.003 0.997 2333 0.0029954809
16 0.002 0.997 2321 0.0029988189
32 0.001 0.995 2336 0.0029996179

0 0.762 3142 0.0009132413

4 0.001 0.999 2420 0.0028830940

8 0.002 0.999 2375 0.0029869056

16 0.003 0.991 2336 0.0029979990
32 0.001 0.996 2331 0.0029994954
64 0.002 0.998 2338 0.0029998174
128 0.003 0.994 2323 0.0029998948

Table 2.6: Results for Case 2 Quantizers for desired P; = P, = 1072
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W

0.0009184310

4 0 0.9920 2685 0.0029171822
8 0 0.9921 2658 0.0029905121
16 0 0.9922 2668 0.0029982539
32 0.0001 0.9929 2663 0.0029995114
64 0 0.9917 2662 0.0029998184
128 0 0.9919 2660 0.0029998949

2 0.9625 0.9996 2404 0.0029278097
4 0.0179 0.9980 2680 0.0029428344
8 0.0001 0.9916 2659 0.0029954809
16 0.0001 0.9908 2665 0.0029988189
32 0 0.9926 2665 0.0029996179

2 0 0.4924 3333 0.0009132413
4 0 0.9912 2692 0.0028830940
8 0 0.9923 2670 0.0029869056
16 0 0.9924 2659 0.0029979990
32 0 0.9938 2662 0.0029994954
64 0 0.9930 2666 0.0029998174
128 0 0.9924 2664 0.0029998948

Table 2.7: Results for Case 2 Quantizers for desired Py = P, = 1073
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Chapter 3

Estimation and
Discrimination

In the previous chapter we developed quantization functions which optimized the perfor-
mance measure 5’4 defined in equation (2.7). As mentioned in that chapter, the marginal
cdfs of the data under each hypothesis were required to solve for the quantization functions.
Also required were the sums Z;?__'] Fl.(l’jﬂ)(x, y), where Fi(l’jH)(x, y) was the joint cdf of
the data for samples Z; and Z;; under hypothesis ¢, and m; was the m-dependence length
under H;. For the continuous nonlinearities of [5][6], pdfs rather than cdfs were required.
The results presented in the previous chapter were obtained by using the actual cdfs
of the various discrimination cases. However, in this chapter, it is assumed that the cdfs
of the data are mot known. This is a more realistic problem, since in many engineering
problems the distributions of the data are not available. Therefore, in this chapter the pdfs
of the data will be estimated from the training data introduced in Chapter 1, and via nu-
merical integration techniques the cdfs will be obtained. Then quantization functions will be
computed and implemented in simulated discriminators for evaluation. Thus the feasibility

of estimation and discrimination techniques with memoryless quantizer discriminators is

44



addressed for the discrimination cases of the previous chapter.

3.1 Kernel Density Estimators

For the estimation of our pdfs we utilize kernel density estimators. The idea behind these
estimators is that each observation X is replaced by a function of X;. Then the func-
tions are summed to yield the estimate of the density f (z). The kernel function produces a
smoothing effect and, if the kernel satisfies certain constraints, the estimate will also have
desirable properties. For our application, the main advantage of the kernel density estimator
over a histogram method is the smoothing characteristic. The kernel density estimators are
introduced in the following paragraph.

Given the data observations, X1, X3,..., X}, it is desired to estimate the marginal
pdf of the data f(z). It is assumed that the process {X}{2, is stationary. The kernel
density estimate, denoted f (z;n), where n represents the number of observations used by

the estimator, is defined as

n

YD SN ¢ .
flzn) = Y I;Ix (——————h ) . (3.1)

The function A'(-) is called the kernel function and h,, is usually referred to as the window
width or bandwidth parameter.

Under certain conditions the kernel estimate has been shown to be asymptotically
unbiased and strongly consistent. Asymptotically unbiased means that

lim E [f(x;n)} = f(2) (3.2)

n—oQ
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and strongly consistent means that
lim f(z;n)= f(z). (3.3)
n—00

These two characteristics are desireable for an estimator since they imply that more obser-
vations improves the estimator's accuracy.
[8] shows that, if z1,%,,...,2, are independent and identically distributed, and if

( 1) K(-) is a density, that is ffooo K(z)dz = 1and K(z) > 0, Vz.

(2)lim, o |z|K(2) =0

( 3)sup, K(z) < o

(4)limn,— oo in =0

{5 lim,_ oo nh, = 0

(6) 3 o7, exp(—anhy,) < oo, Ya > 0
then

im F

n—o0 [

faim)] = f()
and
lim f(zin) = f(z). (3.4)
For various conditions, the kernel density estimators have also been shown to be

asymptotically unbiased and consistent in the quadratic mean sense for asymptotically in-

dependent/uncorrelated data {see [9]). Quadratic mean consistent means that
R 2
lim E (f(:z:; n) - f(z)) =0. (3.5)
T —+00

One case of asymptotic independence used in [9] that is of interest to our problem is

strong-mixing. Strong-mixing is now defined. Consider a continuous time random process
X(t). Let F = o(X(t), ¢ < t < b) denote the o-algebra of events in F generated by the
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random variables {X (), a <t < b}, —00 < a < b < oo. The stationary process X (t) is
strong-mixing, if for 7 > 0,

sup |P[AB] — P[A]P[B]| = a(r)
AEF? _, BEFx

where

lim a(r) =0. (3.6)

T—00
a(T) characterizes the mixing rate and is referred to as the mixing coefficient. The above
definition basically states that two non-intersecting events A and B, which are asymptoti-
cally separated, are asymptotically independent. We assume that the data X;, X5,..., X,
are observations of the process X (?) obtained by uniform sampling.
[9] shows that, if

( 1) K(-) is a density, that is ffooo K(z)dz = land K(z) > 0, Vz

(2)limgz 0 K(z)=0

( 3) sup, K(z) <

(4 limpoohp =0

( 5) limy oo nhy = 00

(8 [ la(r)]9dr < oo, for0< g< 1

then
lim E[f(zn)] = ()
and
lim E (f(zin) - f(m))2 =0. (3.7)

This result is useful to our problem in Chapter 2, where we assumed that our process was
m-dependent (i.e. X and X; have known correlation for |k — | < m, while X} and X,
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are independent for |k — [| > m.) Since an m-dependent process satisfies (3.6), it is also a
strong-mixing process. Therefore the results of [9] are useful for our problem.
For the bivariate kernel density estimators, vector observations of the form X =
(X D ¢ )T are required. Given the observations, x1,X2, ..., Xy, the kernel density estimate
of the bivariate pdf f(x) is obtained by
fxin) = — zn: K (x_—X“> : (3.8)
nh? prt hy,
For independent identically distributed vectors, the estimator of (3.8) is also unbiased
and strongly consistent [8]. That is, if
{ 1) K(-) is a density on R?
( 2) lim|jxjj—co ||X|*K(x) = 0
( 3) sup,ere A(x) < 00
(4 1limpoobn =0
{ 5) lim, _, o, nh, = oo

(6) 307 | exp(—anh,) < oo, Ya >0
lim B f(xin)] = fix)

and

nh—{%o fx;n) = f(x). (3.9)

3.2 Implementation of Kernel Density Estimators

To estimate our pdfs, we utilize the training data. Denote the estimates of the marginals
as fl(a:;n) and fo(m;n), for 1 and H,, respectively. Also denote the estimates of the
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bivariate pdfs for samples X; and X;;; by fl A(l,j+1)(

z,y;n) and f; x,y;n), for Hy
and Hy, respectively. The kernel density estimates of the marginals are obtained from the

training data by

M-1N-1 Clk
fi(z; N = NMh ZZK< )

=0 k=0

and

M-1N-1 C
olei¥) = 37 2 zz< ) 310)

0

The bivariates are obtained by

F(1,5+1) 1 = =l V= Clep
fi 7T @y N —§) = - § 0 = AR
(N = J)Mhin_ ; kgo hn-i) " Pv-3)
M—-1N-j-1 0 0
21,5 . 1 (=G y_Cl(k+~)
f§H T @,y N—g) = SNV K, =, 23 )L (3.11)
(N = 5)MA{y_ ,; ,;_0 hiv-jy " Pw-j)

We choose the kernel functions to be Gaussian:

1 1.2
K, (z) = e 2% 3.12
(z) Ton (3.12)
and
Ky(z,y) = —1—- —3(+y?), (3.13)
27r

The window width is set as

hn,=n7° ce€(0,1). (3.14)

Note that, in equations (3.10) and (3.11), we average over the M independent sample
paths of the training data. For the bivariates, we utilize pairs of observations, ¢ ; x and ¢ 1’ ket
which are j samples apart, to estimate f;-(l’j +1)( z,y;n) under hypothesis H;.

Since the estimators cannot practically be implemented to estimate continuous func-
tions, we implement them to estimate the pdfs at a discrete set of gridpoints. Denote these
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gridpoints as g, 1,...,ZG-1, Where ( is the total number of points. So, using (3.10) and

(3.11) we form the set of estimates

fi(zis N, fo(zis N), fori=0,1,...,G 1 (3.15)

and

f{l’Hl)(xi,xl;N -7), fél’j+1)(xi,x1;N -7), for 2,1 =0,1,....G - 1. (3.16)

Using equations (3.15) and (3.16) the estimators can easily be implemented in a
digital computer simulation. Some computers are now available with vector processing ca-
pabilities, which greatly decreases processing time. Equations (3.15) and (3.16) can be

easily vectorized as

fi(l‘o;N)
fi(z1; V) 1 M-l ; . .
: = V3N Mhy ZO ([#0+ 92+ 4 9y
]:

fi(z(g-1); N)

+ [1910 +95 +---+19§,(N_1)} +...

+ [19E-M—1),0 + ﬂ%M“l)yl + ...+ 02M“1)7(N‘1):I> (317)
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and

r

1

FLi+)

FE (5o, 015 N — §)
ftn)

(.Z‘(),(L‘z;N ""])

ffl'jH)(ﬂ?o,z(G—n;N -7)
fAi(l'JH)(xl,iBl;N ~7)

FEI (g1 20 N = §)
fz-(l’jH)(xhx(G-l);N -7)

fi(l’jﬂ)(x(c-n,m;N -7)

@61y, @05 N = )

M-1

V2r(N —j)Mh?N_j) =

>

(z(g-1)sT(G-1); N —7)

{X(i),o + X6 T F XoN—je1)

+ [Xi,o + X1 Xi.(N—j—l)J Fee

+ [XfM—l),o + X(m-1)1 T F XfM—l),(N~j-1)D

where we have defined

i

m,l =

(3.18)

(3.19)




and

oo (o) (o) )}

oo (o) + (- o))

exp _ﬂh(i__j) ((zo - Cfn,z>2 + (x(G -1) — m(1+])>2)}

N2
exp {—5751;_—,) ((-Tl - C:‘n,l) + (1’0 m,(1+5) )
2 2
1 [
{_Zh?lv—j) (<z1 - Cm’l) * (3:1 o (H-J) )

S ] (G DR CER 2)

Xin,l _ (3.20)

)
exp {—Wl——— (<$(G~1) - C:n,l) + (a:o (l+J)

(N=1)

exp {—ﬂal—— ((iE(G—l) - C;,l) + (xl Sm (1+J)

(N—3j)

1 '. 2
o i (- + -}

3.3 Numerical Results

In this section, the performance of memoryless quantizer discriminators based upon esti-
mated pdfs was evaluated via computer simulation. Equations (3.17) through (3.20) were
implemented in a Convex 210 mini-super computer capable of vector processing. The train-
ing data introduced in Chapter 1 was fed into the simulations to obtain estimates of the
necessary pdfs. These pdfs were then integrated via a Simpson’s integration to result in the
cdfs required to derive the quantization functions. Next we consider the consistency of the

estimators.
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Figure 3.1: Mean Squared Error for an Estimated Marginal Density Function

Using the estimator simulations, the consistency of the marginal estimators were
checked for a Rayleigh density. Equations (2.52) through (2.54) were utilized to generate
correlated data sequences with a Rayleigh marginal density. These data were then fed into
estimators. The densities were evaluated at 65 gridpoints over the interval (0.02,12). The
lower limit, 0.02, was placed just below the minimum observed sample, and the upper limit,
12, was set just above the maximum observed sample. The constant ¢ in equation (3.14)
was set to 0.1. Figure 3.1 shows the mean squared error as a function of the number of
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Figure 3.2: Nominal and Estimated Marginal Probability Density Functions

samples used by the estimator. Notice that, as the number of samples increases, the mean
squared error decreases (apparently exponentially towards zero). This result supports the
notion of quadratic mean consistency of the marginal density estimator for correlated data.
Due to computer processing limitations, the consistency of bivariate pdf estimates could not
be checked. Figure 3.2 depicts the nominal density, the estimated density for 1,000 samples,
and the estimated density for 100,000 samples. Clearly the estimate for 100,000 samples is
closer to the nominal density than the estimate for 1,000 samples.

54



With some confidence that the estimators produce reasonable estimates of the pdfs,
we now consider our discrimination cases. Using the training data introduced in Chapter 1
and the estimator simulations, estimates of the marginal and bivariate pfds for each hypoth-
esis of Case 1 and Case 2 were formed. These were computed over the interval (0.02,12) at
33 gridpoints for each case. The interval was chosen in the same manner as described in the
preceding paragraph. Figures 3.3 and 3.4 depict the nominal and estimated marginal pdfs
for each hypothesis for Case 1 and Case 2, respectively. For both the marginal and bivariate
estimators, the constant ¢ in (3.14) was set to 0.1. The bivariate pdfs in equation (3.18)
were computed for 7 = 1,2,...,30. for Hy, and § = 1,2,...,150, for H;. The choices of
the maximum j were due to computation restrictions. A better method of choosing j would
have been to estimate the decorrelation time under each hypothesis and use those values

for the maximum choice of j.

After the marginal pdf estimates were obtained, cdfs were computed via Simpson’s
integration. These bivariate pdfs were summed over j for each hypothesis and then inte-
grated in two dimensions (also using a Simpson’s integration) to yield the necessary sums

of joint cdfs required for the optimum quantization function.

Figures 3.5 and 3.6 show the quantization functions computed for Case 1 and Case 2,
respectively using the expressions given in Chapter 2. Comparing these to the 128-level
uniform quantizers from Chapter 2 {see Figures 2.3 and 2.7), some similarities can be noted.
For the quantizer of Case 1 derived from estimated pdfs, note that the drop for small values
of x is still present. The sharp incline for large values of x is still present for values of x
between 10.5 and 11.5. The function is relatively flat for values of x between 1 and 10.5.
However, note the drop for values of x for the last two quantization levels. This drop may be
attributed to the inaccuracies of the estimates of the pdfs in the tails of the densities. The
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Figure 3.3: Nominal and Estimated Marginal Probability Density Functions for Case 1

Case 2 quantizer also has inaccuracies out at its tails. Table 3.1 lists the performance of
the memoryless quantizer discriminators using the functions of Figures 3.5 and 3.6. The
thresholds a and b were set for desired probabilities of error of 1073, Despite having low
probabilities of error, these discriminators performed poorly when the average sample size
was considered. The Case 1 discriminator required an average of 3400 samples to make

56



0.45 | - I -

Oo34 —— L ol

Nominal HI pdf
— — —~Nominal HO pdf
—o—Estimated H1 pdf
—a— Estimated HO pdf

0.22 4

0.11 4

Probability Density Function f{(x)

0.00

10 12

(@]
[
NS
(2}
0 4=

Figure 3.4: Nominal and Estimated Marginal Probability Density Functions for Case 2

a decision, while the discriminator for Case 2 required an average of 4270 samples for a
decision. The quantizers from Chapter 2, which were derived from nominal pdfs, required
an average number of samples of 782 and 2660 for Case 1 and Case 2, respectively, for

comparable probabilities of error.
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Case 1

3400

Case 2

4270

Table 3.1: Results for Case 1 and Case 2 Quantizers for Desired P; = P, = 1073
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Chapter 4

Neural Network
Discriminators

The memoryless discriminators derived in the preceding sections can be easily implemented
in practice because they only require estimating first and second order probability density
functions of the observed process under [/ and Hj. These memoryless discriminators use
nonlinear functions of one variable, with the form ()(z), which are chosen to maximize
a performance measure and are derived from first and second order probability density

functions. The nonlinearities are used in the test statistic of the discriminators as follows:
n
To =Y Q(Z). (4.1)
j=1
Similar nonlinear functions, which have memory and have the form
v(z1,22,...,TK),
could be derived to optimize the same performance measures. Test statistics of the form

7
Tn = Z’Y(Zli——l’f‘j)ZI\’—z'i'j?”'7Zj) (‘*1.2)
j=1
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could be computed using nonlinear functions of K variables. These functions, however,
would require higher-order probability density functions to be estimated(see [10]). In prac-
tice, only first and second order probability density functions can be easily obtained with
reasonable accuracy for a small amount of training data.

In this section, we restrict the class of nonlinearities, (1, Z2,...,ZK), to have a
maximum absolute value - not an unreal limitation in a real system. Then we use a per-
ceptron neural network to form our nonlinearity and the back-propagation to minimize our

performance measure.

4.1 Perceptron Neural Networks

Perceptron neural networks are interconnected layers of simple processing units called per-
ceptrons. A perceptron is illustrated in Figure 4.1. The perceptron takes an input vector
X = (%0, Z1,--. ,z;(ﬂl)T and a weighting vector w = (wo, w1, ..., wK_l)T and forms a dot

product
K-—1
Z Tw; = xwl. (4.3)
1=0

From the dot product, an offset value 6 is subtracted to get the result y = xw? — §; y is

then passed through a sigmoidal nonlinearity of the form

1

fly) = T (4.4)

The sigmoidal function is shown in Figure 4.2. Note that, throughout this thesis, we use the
term perceptron and node interchangeably. We also refer to the offset value § as the node
offset value.
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| nonlinearity
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Figure 4.1: A Perceptron

To gain an understanding of what a perceptron does, consider a perceptron with two
inputs, z¢ and 2. This implies that the perceptron has two weights, wy and w;. To simplify
the analysis, replace the sigmoidal curve with a hard quantizer

1, ifz >0

()= { (45)

0, otherwise.
So the output of the perceptron is either a O or 1. Figure 4.3 shows the zy,z; plane. The

perceptron with a hard quantizer actually forms two decision regions separated by the line:

(zo,%1) pairs on one side of the line result in a perceptron output of 1, while pairs on
the other side of the line resuit in an output of 0. If the perceptron had K inputs, the
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Figure 4.2: A Sigmoid Nonlinearity

decision region would become a hyperplane in R Note that the location of the hyperplane

separating the decision regions is determined only by the weights w and the offset value 6.

If the hard limiter above is replaced by the sigmoidal nonlinearity, then the decision

regions become soft. That is, input vectors near the hyperplane have outputs that are near

(ST

. Input vectors taken farther away from the hyperplane have outputs that approach O or

1, depending on which side of the hyperplane they lie.

More complex decision regions can be formed by utilizing multiple hyperplanes. De-
cision regions can be formed by using a perceptron to form each hyperplane of a complex
region. The output of each perceptron can then be fed into an AND gate — or, better yet, an-

other perceptron with weights and an offset appropriately set to simulate an AND function.

This leads to the concept of multi-layer perceptron neural networks.
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Figure 4.3: Decision Space for a Perceptron

Multiple-layer perceptron neural networks take the outputs of the perceptrons on a layer
and use them as inputs to the next higher level of perceptrons (see Figure 4.4.) Networks
of this type are usually called feed-forward neural networks. As demonstrated in the above
discussion, a single perceptron can only divide the decision space with a hyperplane. But it
has been shown that a two-layer perceptron neural network can form any convex decision
region [11]. A convex region is a region from which any two points can be connected by a
line which lies entirely within the region. A third layer of nodes can allow the network to
form any arbitrary decision region [11] (assuming enough nodes are allocated to the correct
layers.)

To form a desired decision region, the weights and node offset values for each node in
each layer of a neural network must be specified. This would be a difficult task even if the de-

cision region were known. But, for many problems, the decision region is not known because

64



outputs

Figure 4.4: A Multiple-Layer Perceptron

the statistical models of the data are not known. Training algorithms to form appropriate
decision regions exist for perceptron neural networks. These algorithms typically present the
training data to the network along with a desired response and the network weight values
and node offset values are adjusted to force the actual network response towards the desired
response. One such algorithm is the back-propagation algorithm. The back-propagation al-
gorithm is a gradient search method (searching over w and §), which minimizes the square
error of the neural network outputs [12]. Note that the back-propagation algorithm requires
the nodes to have sigmoidal nonlinearities. (See Appendix B for a description of the back-

propagation algorithm.)
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4.2 The Neural Network Sequential Discriminator

As mentioned in the introduction to this chapter, optimal nonlinearities
¥(%1,%2,...,2K) could be derived for use in a discriminator using the test statistic
T, = Z;.;K Y(ZK-14j: ZK ~24j,--+,Zj). [10] derived one step memory nonlinearities for
use in a block discrimination scheme to form the test statistic 7, = Z?:z 9(Zi_1,2;).
However, in general these nonlinearities require knowledge (or estimation) of the pdfs of the
data of degrees higher than two. Nonlinearities in [10] require pdfs of the data of the fourth
degree under each hypothesis.

We now consider a suboptimal approach that utilizes perceptron neural networks and
yields excellent performance. We start by defining the structure of our sequential discrimi-

nator. Our discriminator utilizes a test statistic of the form

n

Tn = Z 7(Z1{_1+]‘,Z](._2+j,. ..,Zj).
=K

A two threshold test is implemented, using the constants @ and b. So, upon obtaining a new
data sample, 7, the discriminator computes the test statistic T;,. If T}, reaches b, then the
discriminator chooses H; and terminates the test. If T,, drops to a, then the test terminates
and the discriminator chooses Hy. If T,, lies between @ and b, then another sample 2,4,
is obtained, 7),41 is computed, and the entire test is repeated. This process continues until
either a decision is made, or the N -th sample is reached. Upon obtaining the /N-th sample,
T is computed and a one-threshold test is performed. Obviously T _; is initialized to a
value in the interval (@, I~))

We now restrict the class of nonlinearities of the form y(21,2;,...,Zx ) to have a
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range with maximum absolute value of r. That is, we require

|7(x1,z2,...,2K)| < r for all possible values of

the K — tuple (z1,22,...,2K)- (4.7)

This restriction leads to a suboptimal discriminator, but allows us to obtain a solution.

 Now assuming that r, @, and b are all specified constants, the structure of our test
allows us to scale 7, & and b to get a test with a nonlinearity with a maximum absolute
value of 1. The newly scaled thresholds shall be denoted as « and b. This rescaling of 7 to 1
allows us to utilize a perceptron neural network with a sigmoid nonlinearity on its nodes in
the following paragraphs.

To find the optimal nonlinearity within our class, we first consider the optimal paths
that the test statistic T}, can take under each hypothesis. By optimal path we mean the path
that 7, should take to minimize the number of samples needed to cross the correct threshold
under the appropriate hypothesis. Obviously the quickest path to reach a threshold is when
the discriminator takes a step of magnitude 1 in the appropriate direction upon obtaining
each new data sample. That is, for each new data sample, the test statistic under H;
is incremented by 4 1. while the test statistic under Hj is incremented by —1. If the data
sequence {Z }72, is obtained by sampling some continuous process with a uniform sampling
period T, then the optimal path for T, would lie on a straight line with slope +% for Hy
and slope ——% for Hy. Figure 4.5 depicts these paths. Thus, for an ideal discriminator, (that
is a discriminator which never makes mistakes and always uses the minimum number of

samples possible), the statistics of the nonlinearity should be

El['y(ZIMZZV . '7ZI()] =1
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Z—2— Optimal Path for H,

—2—A Non-Optimal Path for H,

H —2—

Optimal Path for b

Figure 4.5: Optimal Paths for 7, under Constraint of Maximum Slope

Eo[v(Zy,2Za,...,2K)] = —1

Var1[7(Z1,Z2,. ..,ZK)] =0

Varo[v(Z1,24,...,ZK)] =0

(4.8)

We cannot expect a real discriminator to achieve the statistics of the above equations.

However, we can choose the nonlinearity to minimize some performance measure, such
as a mean squared error criterion of v about its desired values. We show that the back-

propagation algorithm can be used to minimize a related mean squared error criterion.

We form a nonlinearity by constructing a perceptron neural network with A  inputs
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Z1,Z2,...,2x and two outputs which are functions of the inputs {and the weights/offsets

for each perceptron in the network), o!(z1,23,...,2x) and o(zy,z3,...,2x ). To simplify



the notation we denote the output nodes as 0! and 0°. During training (see Section 4.3), the
desired values of the output nodes are (10) for inputs from Hy and (01) for inputs from ;.
Our notation (z y) implies that 0° = z and o! = y. The nonlinearity, Y(z1,22,...,2x), is
formed by

7($1,$2,...,.’E1{) = 01(.’131,.732,...,1[{) - 00(:1:1,1'2,...,2)1{),

or with simplified notation,

vy =o' - o°. (4.9)

We wish the nonlinearity to be such that 7 is close to values of 1 for inputs from
H; and -1 for inputs from Hy. We choose a performance measure which involves the mean

squared error of 0! and 0? about their desired values for each hypothesis:
Ss = Eo [(1 =0 + (0= 0] + E1 [(0~0°)? + (1 - 0")*]. (4.10)

We would like the weight and node offset values of each perceptron in our neural network
to have values which minimize equation (4.10).

We now try to relate this performance measure via an intuitive argument to perfor-
mance measures from the previous chapters. Comparing (4.10) to our performance measure

S3 from Chapter 2, we notice that they are similar. Recall that

. [/h - N0]2
[of + 03]

(4.11)
Effectively, by maximizing equation (4.11), the expected values of the nonlinearity are sep-
arated, while the variances about the expected values are minimized. Minimizing our per-
formance measure S 5 fixes the difference of the desired values, and minimizes a second
order moment. Both performance measures try to keep the expected values separated while

minimizing a second order moment about (or near) the expected value.
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Recall that the back-propagation algorithm [12] is a gradient descent algorithm which

minimizes the performance measure
~ 1 . .
E=3 > (- o) (4.12)
P

where ti is the desired output for node j associated with input pattern p, and og is the actual
value of the output node j associated with input pattern p. Suppose we have P K -tuples
from each hypothesis available for training the neural network. We also have 7 = 0,1 for

the two output nodes o' and 0°, respectively. We can rewrite (4.12) as

2Pl

P—
Z {(1 = 0%)? + (0= o")? Z{ - 0°)? +(1-0")} (4.13)

l\.'slr—a

where the first sum is over the Hj training patterns and the second sum is over the H;
training patterns. The problem of minimizing Eis equivalent to minimizing E scaled by a

constant. Thus minimizing (4.13) is equivalent to minimizing

2 P- Lo 12P—1 - .

7L F; {(1-0" (0—0)}+-];p;3{(0—0) +(1—=0")?}. (4.14)
Now as P — 0o we have

%E — B [(1=0°) + (0~ 0")*] + E; [(0-0°)* + (1~ 0")?] = s, (4.15)

which is our desired performance measure. Consequently, the back-propagation algorithm

is a reasonable algorithm to be utilized for our perceptron neural network nonlinearity.
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Figure 4.6: Sequential Neural Network Discriminator
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Using this nonlinearity we can form the test statistic

Tn = Z7(ZI(—1+]"ZK—2+J',---’Zj)- (416)
j=1

Figure 4.6 shows the implementation of our test. The incoming data samples are passed
through a tapped delay line. The K taps are the inputs to the perceptron neural network.
The difference of the outputs of the neural network is formed and added to the test statistic
T’;. The notation subscripts j correspond to the values associated with the jth data sample.
The sample number j is compared to N. If j reaches N, then a one threshold test is
performed (in this figure the threshold is 0.) If j is less than /V, then a two threshold test is

performed.

4.3 Neural Network Training Phase

The neural network used in our sequential discrimination scheme operates on K -tuples
(ZK-14jsZK—-24js---,Zj), which are formed from the incoming data sequence {Zj}]-oil on
which the discriminator must make a decision of H; or Hy. The neural network may have
two or three layers of nodes, but it will always have two output nodes on the output layer.
Figures 4.7 and 4.8 depict the two possible forms of the neural network considered in this

thesis.

The neural network is trained using the back-propagation algorithm and the training
data set. The training data set consists of M sample paths of length N from each hypothesis.
These training data are defined as C,’n ;j» where ¢ = 0,1 denotes the hypothesis ({1 or Ho),
m =10,1,..., M - 1 denotes the sample path number, and 7 = 0,1,..., N — 1 denotes the
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2 nodes on output layer

N, nodes on layer 0

Figure 4.7: A Two Layer Perceptron Neural Network

outputs

Figure 4.8: A Three Layer Perceptron Neural Network
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sample number. The desired responses for the neural network are (1 0) for Hy and (0 1)

for Hy. Our notation (a b) implies that the output node O outputs a and the output node 1

outputs b.

The training process proceeds as follows: The first K -tuple from the first sample
path from Hy, ((8,0, ngl ooy Cg, K _1)» 1s presented to the neural network inputs. The back-
propagation algorithm is performed using (1 0) as the desired output. Then the first I -
tuple from the first sample path from H;, (C(},o, C(},l sy C&K_l ), is presented to the neural
network inputs. Back-propagation is performed with the desired response of (0 1). Then
the second K -tuple from the first Hy sample path, (C&l , (812, e Cgv K ) is presented to the
network for back-propagation. Then the second K -tuple from the first H, sémple path,
(C&il,C&’Z, e ,g“(}’ k). is presented to the network for back-propagation. When all the A’-
tuples (of ordered adjacent samples) from the first sample path for H and H; have been
exhausted, the process is repeated for the remaining until they have all been exhausted.
Then the entire process is repeated until all sample paths have been presented to the network

L times.

4.4 Determination of Thresholds « and »

The discriminators in Section 4.3 are trained to minimize the squared error of the desired
outputs, o' and 0", under each hypothesis. In effect, the average slope of the path of the test
statistic is forced towards +1 for H; and —1 for Hp. In this section we suggest a scheme
for determining practical values of the thresholds a and b. Intuitively, as the thresholds are

moved farther away from zero, the probabilities of error decrease, while the average sample
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size increases. Therefore, by constraining
b=—a>0 (4.17)

to correspond to the largest of the desired a and 3 probably will not affect the performance
of the discriminator; this assumes that the desired values of « and [ are small. We also

impose the following constraint on the maximum value of b:
b< B. (4.18)

We force our test to begin with T __; = 0. By utilizing the training data C'jn, j and the neural

network discriminator, we generate the output data sequences
T, (4.19)

where ¢ = (}, 1 denotes the hypothesis, m = 0,1,..., M —1 denotes the sample path number,
and where j = K, K + 1,..., N — 1 denotes the test statistic number. Define a new set of

functions ein(b) by

0, if discriminator with thresholds —b and b chooses II; for path ’I’fn

el (b) = { (4.20)

1, otherwise.

Now using the functions e} (b), e1(b),...,els_,(b) and €](b),ed(b), ..., e4;_(b) define

1 M-1
21 (b) = i € (b)
1 M-1
&by = i > em(b). (4.21)

Thus é'(b) is the average number of errors for thresholds —b and b under hypothesis H;.
So, as M — oo we have

50

é’(b) — a(b)
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&l (5) — Bb) (4.22)
where a(b) and (3(b) are the probabilities of false alarm and miss respectively. Notice that
they are functions of the threshold b.

Since it is not possible to generate a continuous function on the computer, we can
simulate equations (4.20) and (4.21) with discrete bins or intervals. In this manner, reason-
able values of b (and —b) can be chosen to get desirable values of & and . Using equation

(4.21), we choose the value of b that satisfies the constraints
B <él(z)forallz > b

a < &(z)forallz > b. 4.23
{

4.5 A Scheme for Multiple Hypothesis Discrimination

Generalizing the binary hypothesis neural network discriminator to a multiple hypothesis
discriminator can be achieved without much effort. Instead of two neural network out-
puts 0¥ and o!, the neural network shall have R outputs, o, 0l ..., 0f"1, correspond-
ing to the R hypotheses Hg, Hy,...,Hpr_1. The test statistic is now the vector T, =
(T°,TL, ..., TE-1)T, where

T, = Z T(Zk-1+jy ZK—-24j-+-+2))
=K

(4.24)
=>_Tj.
i=0
The nonlinearity I'; = (7?, 7}, . ,'yJB“l)T is formed by setting
'yézog., fors = 0,1,...,R — 1. (4.25)

76



Thus, each component of I'; has a maximum value of 1. Instead of a two-threshold
test, the multiple hypothesis sequential test utilizes R thresholds a?,a!, ..., a1, The test
proceeds as follows: Obtain a new data sample Z,. Form the new test statistic T',,. If
T! exceeds the other components of T, by a margin of a, then stop the test and declare
H;. If no decisions are made for the sample Z,,, the next sample, Z,, 4 is obtained, T, is
computed, and the test is repeated. Once again, after the maximum number of samples, NV,
has been reached, a block test is performed. The block test is performed by choosing the
hypothesis which satisfies

argosgréig_l ot — Ty — Z TJ{, . (4.26)

0<j<R~1
s#)

Figure 4.9 depicts the structure of the multiple hypothesis sequential test.
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Figure 4.9: Sequential Neural Network Discriminator for Multiple Hypotheses
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Case 1 Lognormal 0 0 0.130290,
vs

yleigh 0.013029

Case 2 Rayleigh 3 0.130290,
vs Rayleigh 0.013029

Case 3 Rayleigh 0 —_ 0.130290,
vs Rayleigh 0.013029

Table 4.1: Discrimination Cases

4.6 Numerical Results

In this section, the performance characteristics of the neural network discriminators are
evaluated. As in Section 2.7, the data used for evaluation of the neural network discrimi-
nators is simulated radar data. Table 4.1 summarizes the three data cases considered in
this section. Case 1 and Case 2 are identical to Case 1 and Case 2 from Section 2.7. A
new case, Case 3, is also considered. Case 3 has Rayleigh pdfs under both H; and f with
matched means and powers of the marginals. The decorrelation time constants are identical
to those of Case 1 and Case 2. Radar envelope samples {Z;}{2, are generated via computer

simulation by equations (2.52) through (2.55), just as in Section 2.7.

Tables 4.2 through 4.4 summarize the neural networks simulated and trained to
operate in the discriminator structure of Figure 4.6. The first column contains the designated
net name. The second column lists the number of inputs (i.e, A7}, while columns three and
four list Ny and N; respectively. Recall from Figures 4.7 and 4.8 that Ny and V;, are the
number of nodes on layers 0 and 1. All of the neural networks listed in Tables 4.2 through
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4.4 have two outputs. The final column in Tables 4.2 through 4.4 contains the performance

measure, 55, which was estimated using the training data after completion of the training

phase.

All neural networks were trained using the back propagation algorithm and the train-
ing data with the method detailed in Section 4.3. The training data were also generated by
simulation using equations (2.52) through (2.55). The sample paths generated so that the
number of samples in each path, N, was 1000. The number of sample paths from each hy-
pothesis, M, was set to 50. The constants for the back propagation algorithm were chosen
by experimentation to get acceptable convergence rates. The gain was set to 0.001, while
the momentum was set to 0. Each sample path of the training data was presented to the
network 100 times, (that is, using the notation of Section 4.3, L=100.) Since nets 4, 8, and
12 have three layers of nodes, we set L = 200 to allow for the expected slower convergence

rates associated with the additional layer.

Tables 4.5 through 4.7 summarize the results of the neural network discriminators.
The first column of each table contains the name of the neural network. The next two
columns contain the probability of false alarm and the probability of detection, respectively.
The next column contains the expected number of samples needed to make a decision. Each
discriminator was evaluated by simulating 10,000 sample paths from each hypothesis. The
probabilities of false alarm and detection were computed by dividing the number of false
alarms and correct detections, respectively, by 10,000. The expected number of samples, or
average sample number, was computed by averaging the number of samples needed to make
a decision for our test sample paths. The thresholds a and b were chosen by experimentation,
not by the method of Section 4.4. Our second choice of the thresholds, ¢ = —20 and b = 20,
were used in the simulations presented in this section.
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net 1 2 8 — 1.014 E-06
net 2 4 16 —_ 3.259 E-06
net 3 8 32 S 2.721 E-07
net 4 4 16 64 7.566 E-08

Table 4.2: Case 1 Neural Networks

net 5 2 8 — 8.652 E-06
net 6 4 16 N 4.075 E-06
net 7 8 32 — 3.982 E-07
net 8 4 16 64 3.020 E-06

Table 4.3: Case 2 Neural Networks

net 9 2 8 — 1.993 E-05
net 10 4 16 —_— 4.012 E-O6
net 11 8 32 - 3.752 E-07
net 12 4 16 64 1.893 E-05

Table 4.4: Case 3 Neural Networks
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Sample Number

Figure 4.10: Sample Paths from H; and H,

Examining the results for Case 1, (see Table 4.5), we see that the discriminators
performe well. All discriminators correctly classify all 20,000 sample paths. As the perfor-
mance measure 5 decreases from 1.014E-05 to 7.566E-08, the average sample number
decreases from 49 to 28. Figures 4.10 depicts a typical sample path under hypotheses Hy
and Hy, respectively. Figure 4.11 is the corresponding test statistic for the neural network
discriminator. Recall from Section 2.8 that the 128 level uniform quantizer designed using
the nominal (Le. known, not estimated) cdfs had a measured probability of false alarm of 0, a
probability of detection of 0.9896, and an average sample number of 782. Clearly, the neural

network scheme works significantly better than the memoryless discriminator schemes.
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Figure 4.11: Test Statistics from H; and H,

Case 2 results are tabulated in Table 4.6. Most of the discriminators for this case also
performed well. The discriminator using net 5 as its nonlinearity, however, had a probability
of false alarm as high as 0.0997. One can see that the performance measure S for net 5 was
slightly higher than the performance measure for the other case 2 nets. The Case 2 data also
implies that smaller values of the performance measure 5'5 results in better performance
(in probabilities of error and/or average sample number.) Recall from Table 2.7 that the
performance for the optimal 128 level uniform quantizer discriminator had a probability of
false alarm of 0, a probability of detection of 0.9919, and an average sample number of 2660.
Comparing this with the average sample number of 43, and the perfect classification of the
net 7 discriminator, we can conclude that the neural network discriminators outperformed
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El[n]

net 1 0 1 49 1.014 E-06
net 2 0 1 32 3.259 E-06
net 3 0 1 32 2.721 E-07
net 4 0 1 28 7.568 E-08

Table 4.5: Performance of Case 1 Neural Network Discriminators

ff’ Eln] §5
net 5 0.0997 0.9999 132 8.652 E-06
net 6 0 1 55 4.075 E-06
net 7 0 1 43 3.982 E-07
net 8 0.0001 1 59 3.020 E-06

Table 4.6: Performance of Case 2 Neural Network Discriminators

55
net 9 1.993 E-05
net 10 0 1 41 4.012 E-06
net 11 0 1 36 3.752 E-07
net 12 0.4619 0.9986 59 1.893 E-05

Table 4.7: Performance of Case 3 Neural Network Discriminators
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the quantizer discriminators for Case 2.

Case 3 results are given in Table 4.7. Recall that Case 3 was Rayleigh vs Rayleigh case
with matched means and powers. Note that only the decorrelation times differed. Also note
that the quantizer discriminators from Chapter 2 could not be generated for this case because
the performance measure Sy is always zero. The discriminator with two inputs, net 9,
performed very poorly with its large probability of false alarm of 0.9904 and its large average
sample number of 1,000. However, we observe that this network had a large performance
measure, 5'4 =1.993 E-05. On the other hand, the discriminators using nets 10 and 11,
with their perfect classifications and relatively small average sample numbers of 41 and 36,
respectively, performed very well. The discriminator using net 12 did not perform well, since
its performance measure of 1.893 E-05 was too large. Net 12 probably required more time

to converge during its training phase.

A neural network was also trained for the multi-hypothesis discrimination scheme.
The number of hypotheses, R, for this experiment was four. Table 4.8 summarizes the
four hypotheses. Hypothesis Hy had a Rayleigh pdf with decorrelation time of 0.013029
seconds. H; was lognormal with decorrelation time 0.13029 seconds. f{; had a 0dB mean
ratio and a OdB power ratio (H; vs Hy). H, was Rayleigh with the same decorrelation time
as Hi, and had a 0dB power ratio (H, vs Hy). H; is Rician with the same decorreation time
as Hy, a mean ratio of 0dB and a 6dB power ratio ({3 vs Hp). Training data was again
generated using equations (2.52) through (2.55) in a computer simulation. The Rician data
was created in a manner identical to Rayleigh data, except that the underlying Gaussian
processes had a nonzero mean. The number of sample paths, M, was set to 50 for this
experiment, while the maximum number of samples, N, was 2000. Training was performed
with the gain constant set to 0.001 and the momentum constant set to 0. The nurber of
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presentations, L, was 300.

The multiple hypothesis discriminator was also evaluated via computer simulation.
Table 4.9 summarizes the performance of the multi-hypothesis experiment. Each row lists
the results for the 10,000 simulated sample paths from each hypothesis. The first column
lists the hypothesis number, the second column the number of decisions in favor of Hy, the
third the number of choices for H;, the fourth the number of choices for Hj, the fifth the
number of choices for H3, and the sixth column gives the average sample number for the
hypothesis listed in column one. The discriminator acheived over 94 percent correct deci-
sions under each hypothesis and an average sample number (averaged over all hypotheses)

of 266.

We have seen networks with various numbers of inputs, layers, and nodes perform
very well for our discrimination cases. We now consider the performance of a network with
fixed number of inputs and varying nodes. This will help to quantify our intuitive belief that
more nodes in a neural network will allow a finer tuning of its decision regions. Table 4.10
lists each neural network and the associated number of nodes on each level. Figure 4.12is a
graph of the performance measure S s for each neural network in Table 4.10. Each network
was trained with the Case 1 training data. For the back propagation algorithm, the gain
was 0.001 while the momentum was 0. Each sample path was presented during training
100 times (i.e., I, =100.) The results shown in Figure 4.12 are intuitively pleasing since, as
the number of nodes increases (or number of levels for net f), we see that the performance
measure 5 5 decreases. This result is expected, as more nodes and levels will allow more
hyperplanes to be constructed in the decision space.

To see how the number of presentations, L, affects the performance measure S 5, an
experiment was performed with a two layer network with N set to 16. The network had two
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inputs, and was trained to operate on discrimination Case 1. The gain term in the back-
propagation algorithm was set to 0.001, while the momentum term was 0. Figure 4.13 shows
the performance measure 5' 5 as a function of L, the training cycle number. One can see that
the curve is approximately a decaying exponential. At first there is poor performance (large
values of S 5.) As L increases, the performance improves until it reaches a steady-state
minimum. This is expected since, as the number training cycles increases, the decision
region should converge to the optimal decision region (optimal in the mean squared error

sense.)
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Rayleigh

...............................

- —_— 0.013029
Lognormal 0 0.130290
Rayleigh S 0.130290
Riclan 0 0.130290

Table 4.8: Hypotheses for a Multiple Hypothesis Discrimination Problem

HI choices H2 choices
H true 10000 0 0 0 107
H, true Y 9435 0 565 374
H, true 1 0 9436 563 370
H; true 1 0 316 9683 213

Table 4.9 Results for Multiple Hypothesis Discrimination Problem
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Performance Measure

neta 2 2
netb 2 4
net c 2 8
net d 2 16
nete 2 32
net f 2 4 16

Table 4.10: Node Distribution of Networks

5.0 10 1 § 1 = :

4.010°

3.010°

2010

1.010°®

0.0 109

net a netb netc net d nete net f

Figure 4.12: Performance Measure S5 for Varying Node Distribution
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Performance Measure
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Figure 4.13: Performance Measure as a Function of Number of Training Cycles
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Chapter 5

Mismatch Performance
Results

The discriminators in the previous chapter were constructed with a priori information in-
volving either known (or assumed) pdfs or training data. If training data were available, the
pdfs were either estimated to construct memoryless quantizer discriminators, or the training
data was used by a neural network and the back-propagation training algorithm. In many
real situations the discriminators are presented with data whose statistics are different from
those on which the discriminator was designed to operate. This could be the result of making
invalid assumptions about the statistics or of obtaining a non-representative set of training
data which results in less accurate estimates of the pdfs. Therefore, the discriminator which
is chosen by the designer should be robust, that is, the discriminator should not be overly
sensitive to changes of the statistics of the data.

In this chapter the performance of our discriminators are evaluated under mismatch
conditions (mismatch meaning that the data have different statistics from the data for which
the discriminators were originally designed). Since there is an infinite number of possibili-
ties for the statistics of the testing data, we can only present some representative mismatch
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testl.a ‘II‘SO%:;I]E;; o 0 (())Cl’ }3%3%% 4
testlh | e 0 0 0130090 4
estle | gk 0 0 0.012020 4
testl.d ‘I;:%“a‘;rlgi‘glh 0 0 %8%%%% 4

Figure 5.1: Tests for Mismatch of Decorrelation Times

conditions. This mismatch study is certainly not a comprehensive study; the cases con-
sidered, however, show some interesting characteristics of the performance of our different

discriminators under mismatch conditions.

5.1 Mismatch of Decorrelation Times

In this section we consider the performance of the discriminators under mismatch of the
decorrelation times 79 and 7. Since T3 and 7y correspond to the correlation coefficients
po and p1, this is effectively a mismatch of the higher order pdfs. The marginal pdfs for
these tests remain unchanged. Table 5.1 lists the discrimination tests for mismatch of
the decorrelation times Tp and 7. The mismatch data for all four tests, (testl.a, testl.b,
testl.c and testl.d), are lognormal versus Rayleigh with matched means and powers. The
underlying Gaussians for H( have variance equal to 4. The fourth column of Table 5.1 lists

the decorrelation times.
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The discriminators considered for these tests are the 128 level uniform quantizer
listed in Table 2.5, the 32 level uniform quantizer listed in Table 3.1, and the neural network
discriminator referred to as net 2 in Table 4.2. All of these discriminators were designed for
lognormal versus Rayleigh with match means and powers and (7, 7o )= (0.13029,0.013029).

We see that testl.a just reverses the decorrelation times for which the discriminators
were designed. In testl.b, both decorrelation times are set to 0.13029. Both decorrelation
times for testl.c were 0.013029, while for testl.d both decorrelation times were 0.06.

100 sample paths from each hypothesis were generated according to the appropriate
distributions listed in Table 5.1 and presented to the discriminators. The sample paths
were generated in the same fashion as in previous chapters. Table 5.2 lists the computer
simulation results for testl.a, testl.b, testl.c and testl.d for the various discriminators.
Columns labeled Py contain the measure probability of false alarm and columns labelled
P the probability of detection. Columns labelled with £[n] contain the average number of

samples required to make a decision.

The results for the quantizer discriminator from Chapter 2 (the memoryless quantizer
discriminator from known pdfs), performed well for all four tests. For all tests, the measured
probability of false alarm was less than 2 percent, while the probability of detection was
greater than 99 percent. The average sample size varied between 802 and 953. This is still
reasonable compared to the results from Chapter 2, namely average sample sizes of about
780 and similar probabilities of error.

The quantizer discriminator derived from the estimated pdfs did not perform well
for testl.a and testl.b; the probability of false alarm for testl.a and testl.b were 0.40. The
quantizer discriminator from estimated pdfs had low error probabilities for test1.c, but a large

average sample number of 3437. For testl.d, the quantizer discriminator from estimated
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Memoryless Quantizer | Memoryless Quantizer Neural Network

Discriminator from Discriminator from Discriminator
Known pdfs Estimated pdfs

testl.a 0.021 0.99 953 0.40 1 1527 | 0.94 o 167
testl.b 0.02 1 930 0.40 1 1304 | 0.92 1 98
testl.c 0 1 802 0.01 1 3437 0 0 32
testl.d 0 0.99 864 0.29 1 2347 § 0.23 1 85

Table 5.2: Results for Mismatch of Decorrelation Times

pdfs had a probability of false alarm of 0.29, a probability of detection of 1, and a average

sample number of 2347.

The neural network discriminator worked marginally well for testl.d, but it performed
poorly for the other tests. For testl.a, its probability of false alarm (i.e., the error probability
under Hg) was 0.94; this corresponded with 7y being mismatched. For testl.b, 75 was also
very different from its nominal value, and the discriminator had a very high probability of
false alarm. For testl.c, 7, was very different from its nominal value, and for this test the
probability of detection was O (i.e., the probability of error under H; was 1.) For testl.d, the
decorrelation times 7 and 71 were both at values midway between their nominal values; the
discriminator performed only marginally well with a low error probability under /; and a
probability of false alarm of 0.29.
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The results in this section imply that the memoryless quantizer discriminators derived
from known pdfs tend to discriminate using the marginal pdfs more heavily than the bivariate
pdfs. This discriminator worked well for all four tests. The lognormal vs Rayleigh marginal
pfds of Case 1 produce the sharp increase in the quantizer function for large values of the
observed data sample (see Figure 2.3); this corresponds to the tails of the lognormal density
being larger than the tails of the Rayleigh density. For small values of the observed data
samples, the Rayleigh density values are much larger than the lognormal density value; this
produces a sharp drop in the quantization function for small values of the observed data
samples.

Apparently the memoryless quantizer discriminator derived from estimated pfds is
more dependent upon the bivariate pdfs than the memoryless quantizer discriminator de-
rived from known pdfs. This could be attributed to poor estimation accuracy of the marginal
and bivariates.

The neural network discriminator, however, performed pooi‘ for most of the tests.
This implies that the neural network discriminator places more emphasis on the higher
order pdfs than the memoryless quantizer discriminators. Since the memoryless quantizer
discriminators use only one observed data sample at a time when forming their test statistic
and since the data from these tests are correlated, one could expect the neural network

scheme with memory to perform better than the memoryless quantizer discriminators.
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Table 5.3: Tests for Mismatch of Marginal pdfs

5.2 Mismatch of Marginal pdfs

In this section, the values of 79 and 7 remain unchanged, but the marginal pdfs are var-
ied. This implies that the bivariate pdfs are changed in shape, but the correlation between
samples is unchanged. The same discriminators used in Section 5.1 are used for the results
presented in this section.

Table 5.3 lists the six tests used in this section. Figures 5.1 through 5.2 illustrate the
nominal and mismatch marginal pdfs used for each test. Table 5.4 contains the correspond-
ing discrimination results, which were obtained by simulating 100 sample paths under each
hypothesis and were generated in the same manner as previously.

The experiment test2.a used data from Case 2 to evaluate our discriminators (which
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Memoryless Quantizer | Memoryless Quantizer Neural Network
Discriminator from Discriminator from Discriminator
Known pdfs Estimated pdfs

test2.a 0] 0.29 866 0.04 0.91 | 4263 0 0.66 67
test2.b 0 0.01 1076 | 0.06 | 0.43 | 4049 0 0.94 55
test2.c 0 1 484 0 0.82 1505 0 0.70 67
test2.d 0 0.05 458 0O 0.17 658 0 1 50
test2.e 0 1 411 0.01 | 0.28 | 3224 0 1 38
test2.f 0.35 0.46 1878 0 0.93 | 2084 , 0 0.67 67

Table 5.4: Results for Mismatch of Marginal pdfs

were designed for Case 1). Examining Figure 5.1, we see that the actual pdf for fj was
unchanged from the nominal one, but that the pdf for A, had larger variance and a peak
moved to larger values of z. The results (see Table 5.4) show that the memoryless quantizer
discriminator derived from the known pdfs performed very poorly. The memoryless quantizer
discriminator designed from estimates of the Case 1 pdfs had reasonable error probabilities
(Pf = 0.04 and P, = 0.09) but a very large average sample number of 4263. The neural

network discriminator had a probability of false alarm of 0, a probability of miss of 0.34, and

an average sample number of 67.
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Figure 5.1: Probability Density Functions for test2.a

Experiment test2.b used data from Case 3 (see Chapter 4). Here the actual data from
both hypotheses had marginal pdfs matched to the nominal H; marginal pdf. Both memory-

less quantizer discriminators performed very poorly, while the neural network discriminator

had small probabilities of error and a small average sample number.

Experiment test2.c was Rayleigh vs Rayleigh with a power ratio of 9.0309dB (f
versus ) and an underlying Gaussian variance for Hg of 1. The marginal pdf for H;
effectively was changed so that its peak occurred at a larger value of z than the nominal H,

marginal pdf. The marginal pdf for Hj had its peak at smaller values of z than the nominal
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Figure 5.2: Probability Density Functions for test2.b

marginal pdf for Hy. For this experiment, the memoryless quantizer discriminator derived
from known pdfs classified all sample paths correctly. The average sample number was 484.
We attribute this performance to the probability under each hypothesis being shifted towards
the large jumps in the quantization function (see Figure 2.3), where discrimination power

exists. For this experiment, the memoryless quantizer discriminator derived from estimated

pdfs and the neural network discriminator performed marginally well.
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Figure 5.3: Probability Density Functions for test2.c

For test2.d the Hy marginal pdf was the same as test2.c. However, the H; marginal
pdf was matched to the Hy marginal pdf. In this experiment, the neural network discrimi-
nator performed very well with perfect classifications and an average sample number of 50.
However, the quantizer discriminators performed poorly; note that their error probabilities
under H; were very large. The large H; error probabilities can be attributed to the shift in
probability to the negative jump in quantization function (see Figure 2.3); this changes the

test statistic T, in favor of Hj.
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Figure 5.4: Probability Density Functions for test2.d

For test2.e, the Hy marginal pdf was matched to the nominal Hjy marginal pdf. The
H, marginal pdf was lognormal with a 10.4391dB mean and power ratio over Hy. With the
shift in mass to much greater values of z, the memoryless quantizer discriminators derived
from known pdfs performed very well. However, the quantizer discriminators derived from
estimated pdfs performed poorly. Note the drop-off in the quantizer function of Figure 3.5,
which was attributed to inaccuracies of the pdf estimates at the tails. The shift of the H; pdf
in this mismatch condition probably caused many of the i, data samples to be mapped into
negative values and to appear to be from Hy. The neural network discriminator classified
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Figure 5.5: Probability Density Functions for test2.e

all sample paths correcly and had an average sample number of 38.

The final experiment, test2.f, was Rayleigh vs Rayleigh with a power difference of 0dB
and a variance of the underlying Gaussians for Hj of 10. Figure 5.6 shows that the peaks
occur at larger values of z than both nominal H; and Hy marginal pdfs. Here, however, the
Rayleigh process tails were not heavy enough to cause the processes to be classified con-
sistently as H; for the quantizer discriminators. The quantizer from known pdfs performed
poorly with large probabilities of error. The quantizer from estimated pdfs classified all sam-
ple paths from H; correctly and 93 percent of the H; sample paths correctly. The neural
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Figure 5.6: Probability Density Functions for test2.f

network discriminator classified all Hy sample paths correctly and classified 67 percent of
the H; sample paths correctly.

Although the neural network discriminator did not perform better than the quantizer
discriminators in all cases, it showed itself to be less sensitive to changes in the marginal
pdfs. The quantizer discriminators worked very well for some these experiments but per-
formed very poorly for others. These resuits indicate that memoryless quantizer discrimi-
nators rely more heavily on marginal pdfs, while the neural network discriminators, which

have memory, rely on higher order pdfs - or correlation. These results are to be expected.
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Chapter 6

Conclusion

In the previous chapters various schemes for discrimination were considered. Quantization
functions were derived that maximize performance measures shown to be useful in both
block and sequential discrimination schemes. In Chapter 2, by assuming the probability
densities of the data under each hypothesis, quantization functions were constructed for
use in discriminators; we consider this a parametric scheme, since pdfs were assumed.
In Chapter 3, non-parametric estimates of the marginal and bivariate pdfs were obtained
from the training data by use of kernel density estimators. These pdfs were input to the
expressions for the optimal quantization functions in Chapter 2. The resulting quantiza-
tion functions were implemented in discriminators; we refer to these memoryless quantizer
discriminators as non-parametric. In Chapter 4, another non-parametric scheme was con-
sidered. Multilayer perceptron neural networks were utilized to form the nonlinearities used
in the test statistic of discriminators. This scheme allowed for the design of discriminators
with memory without the requirements of knowledge or estimation of high order pdfs. The
neural network scheme utilized training data and the back-propagation training algorithm
to form a mean squared optimal non-parametric nonlinearity.

104



The memoryless quantizer discriminators in Chapter 2 performed reasonably well.
Their error probabilities were small {for enough quantization levels,) but their average sam-
ple numbers were high. These results indicate that more quantization levels give better
performance. Quantization functions with optimal breakpoints produced the same discrim-
ination performance as quantization functions with more quantization levels but uniform

breakpoints.

The kernel density estimators in Chapter 3 supported the consistency theory; results
of experiments that estimated marginal densities showed that larger sets of data resulted in
more accurate estimates. Since no theory was available for consistency of higher order pdf
estimates for correlated observations, the consistency of bivariates was not checked. The
bivariate consistency was also not checked due to processing limitations. Estimation of the
sums of the bivariates described in Section 3.3 required as much as 3 days of cpu time on
a Convex-210 mini-super computer. If the grid that the estimates were computed over were
made denser to result in more accurate quantization functions, muéh more processing time
would be required. Memoryless quantizer discriminators designed using the estimated pdfs

had reasonably low error probabilities but extremely high average sample numbers.

The discriminators with memory constructed using multi-layer perceptron neural
networks and the back-propagation algorithm performed very well. With training times on
the order of a few hours these neural network discriminators, for most experiments, had
probabilities of error which could not be measured (with 10,000 simulated sample paths)
and average sample numbers at least an order of magnitude smaller than the memoryless
quantizer discriminators. Experiments with the number of training cycles using the back-
propagation algorithm pleased our intuition; more training decreased the mean squared error
of the neural network outputs. Experiments with the number of nodes and layers were also
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pleasing intuitively; more nodes on a layer decreased the mean squared error of the neural
network outputs. The addition of a third layer on the neural network further allowed the
back-propagation algorithm to fine tune the nonlinearity - thus reducing the mean squared
error.

The nonlinearity constructed by the neural network was generalized to operate in a
multiple hypothesis classification scheme. Simulation showed that the scheme could classify
four hypotheses with error probabilities less than 6 percent and an average sample number
of 266.

The use of neural networks as nonlinearities used in forming a test statistic certainly
merits further study. Topics that were not addressed in this thesis but might be explored
are how to set the training constants and how allocate the number of nodes and layers of the
perceptron network. Comparisons could be made between the neural network nonlinearities
and the optimal nonlinearities formed with knowledge of the high-order pdfs.

The mismatch results indicate that the memoryless quantizer discriminators are sen-
sitive to changes in the marginal pdfs. The neural network schemes were less sensitive to
changes in the marginal pdfs but more sensitive to changes in the higher order pdfs and cor-
relation. The addition of memory to the discriminator apparently explains this phenomena.

The robustness of neural network discriminators clearly deserves further study.
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Appendix A

Gradient Evaluation

The evaluation of the matrix % is necessary for a gradient search technique to maximize
the performance measure with respect to the breakpoints, unless a finite difference gradient
computation is used. If more accuracy than that of a finite difference gradient method
is desired, such as when it is expected that the P does not change slowly with varying
breakpoints t, then the gradient must be explicitly calculated. This appendix contains the

necessary equations for computation of the —‘3% matrix.

To compute ‘;—Z‘- we employ Leibnitz's rule. For a joint cumulative distribution f{unc-

tion Fxy(a,b) we have

a b
Fxy{a,b) =/ fxy(z,y)dzdy (A.1)

o0 — 00

where fyy(z,y) is the probability density function associated with Fyy(a,b). For our
problem of finding optimal breakpoints and levels, we need to evaluate derivatives of the
form %E\s{y(d,b), 6%ny(a,b), and -%ny(c,c).
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Using Leibnitz's rule [13] on %ny(a, b) we get

Ipvan2 [ dad
2 Xy(a,)_aa/_oo/_mfxm,y)xy

a a
= %-/Oog(b,x)da:

Y ba 9(-0)
*/ g0, )5 + g(b,0) 5 — (b, —00) =

-0

b
— g(b,a) = / fv(a,y)dy

where ¢(b,z) is defined as
. b
s, = [ fertamdy
— O

In a similar manner it can be shown that

J a
= Fxy(a,b) = /_oo Fxy(s,b)dz

and

a C (o4

%FXY(C»C) = / fxy(z,c)dz +/ fxy(e,y)dy.

Now consider the nth column and /th row of the matrix P.
(P,-)n’g — 2211% (X) € (tnrsin] AND X,y € (toorsts ]}
]:
— (2m; + 1) [Fi(tn) — Fu(tn-1)][Fi(te) = Fi(te=1)].

We know that

PT{{‘X',‘ - ( th-1,tn ] AND ‘X'j_+_1 € ( te_1,t¢ ] }

— FinvXjH (tn,te) +FI‘XVIYX'I+1

(tﬂ—17 té——])
— Byt
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This yields

2 X 'X] 1541
(P>n,£ = QZl{Fi 1, X541 (tn’t“ + FiX X+ (tn—l,te_l)
]:

o | (A.8)
_ Fi"ﬁlyXJ-H (tn_l,tg) _ EX11X1+1 (tn,tf—l) }

= (2mi + 1) [Fi(tn) = Fi(tn-1)] [Filte) — Fi(te-1)].

So, applying equations ( A.2) through (A.5) to the above expression for <P) for the vari-

n,l

ous values of n and [, we get the following expressions:

Case 1: n,{ #kand n,{ £ k+ 1

dP;

Case2: n=kL#kLAk+1

dP; J [ ¢ X,.X
— = — 2 ARt A AN TN T
(atk>u i)tk[ E {Fz (tyte) + F (te—1,te~1)

7=

{‘X1,X;+1 X1, X, 4

- F; (tkyte—1) — L] (tk_l,tz)}
= (2m; — 1) [Fi(tr) — Fi(ti—1)] [Fi(te) - Fi(te_1)]]

M, te R . te—1 - -
:‘ZZ{/ f;’“""“(tkly)dero—/ f{“’)"“(tk,y)dy—()}
j=1 0 0

— (2m; + 1) [Fi(te) — Fi(te—1)] Fi(tk)

(A.10)

=2 [ R gy = (2mt 1) Bt = Ften)] fo(t)
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Case 3:n=Fk+1,0#kl#£k+1

2]5,- _a - A, X +
e = y 1+l ] 1 t
<atk) oty [ZZ{F (L1, Le) + F (tkote—1)
k+1,¢ 1=1

— I,‘i)‘ly 1+1 (tk lytf 1) FXI X.v+1 (tk,tl)}

— @m D) [F(tn) = Fi(t)] [Fi(te) — Fi(tz_ln]

*22{0*“/ fir ’“(tk,y)dy—()—/ F iy, y)dy}

= (2mi + 1) [Fi(te) — Fo(te—1)] = filts))]

(Fi(te) = Fi(te—1)] fults)
(A.11)

Cased:n#kn£k+1,0=k

P, 0 i X X1,X X1,X
—_ =—12 FXofian tn FoUo g 1t R N P
(atk> k (9tk[ Z{Z (tn,tk) + F; (tn-1sth—1) + F (tnslro1)

i=1

+ Fi‘YIY‘Y]-*-l(tn—lv tk)}

= (2mi + ) [Filtn) = Fi(ta1)][Fi(ts) - Fi(tk—l)]:l
o XX, el xx

:2 ilr T+1 ‘,t d +0_0_/ ,Z 12341 ,l~d‘
;{/tf (2, t)de A CHA

_(2m1+l [F(t L( n— 1)]fz(tlc

_zz TR e — (2mi + 1) [Fy(tn) = Filtn-1)] filts)
tn_1

(A.12)

110



Case 5:n#kn#tk+1,0=Fk+1

(9132' 8 o Yl 141 Jl
()., -BEE s

3 W

)& X
F ]+1( natk) ]+1( ’n—lvtk-i—-l)}

= (@my+ ) [Fi(tn) = Fi(tnos)] [Fi(tern) - F (tkn}

ton
—2Z{o+/ FiS g, tk)dz—/ ;e tk)dx—tD}
il
= (2mq + 1) [Fi(tn) = Fi(tn_1)] [ fi(t)]
m. tn o
= "22/ ST @t ds 4 (2mg + 1) [Fi(t) = Fi(taon)] filte)
; ey
(A.13)

Case6:n=Fk{=kF

81% 9 . X1, X X1.,X
a. = —12 1A+l A13X 541
<at’“ ) ep Ot [ Z;{F’ (B, i) + B (tk—1,tk-1)

=

X1,X, Y ,
— P e tey) = FOV H(tk—l,tlc)}

= (2m; + 1) [Fi(ty) — Fi(tg-1)] [Fi(tx) Fi(tk—l,)]J

_ZZ{/ f\l ]+1 :E tk)dfl,'-{—/ fxl J+1 ’y dy (fllx})

tr—1 . ti_
—/ FERESARY ,y)dy——/ (z,tx)de }
0 0

—2(2m; + 1) fulte) [Fi(te) — Fi(tx—1)]

—22{

= 2(2m; + 1) fi(ts) [Fi(tr) = Fi(tr-1)]

173

o 23 -
fr‘l”‘f+1(X,tk)da:+/ f{x“‘x’“(tkvy)dy}
0

[T
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Case :n=k+1,{=k+1

OP; 0 - X)X, X1, X
__l _— 2 Ff 192541 t ,t F 1,23 41 t ,t
<8tk> 3tk[ E { i (tkt1,trt1) + F; (teytx)
k+1,k+1

X1,X X1,X;
__Finv J+l(tk+1,tk)—Fi 1 ’+l(tk,tk+1)}

= @mi+ 1) [Fi(tins) - Fi(t)] [Fi(tes) — Fi(tm]

__QZ{/ le, )+1 :t tk)d$+/ f’(l» J+1(t ,y)dy (A15)

lkt1 te—1
—/ ffl'xf“(X,tk)da;—/O (w,tk)dz}
0

+2(2mq + 1) filte) [Fi(tes1) — Fi(te)]

s Lk 41 tet1 )
=-2) Fnxngde + [ 5 1, y)dy
~ " 7 s " 1

+2(2ms + 1) fiti) [Filtesr) = Fi(te)]
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Case 8:n=k{=k+1

aP; 0 o X, X; X1,X;

- g — 2 - 1,45+1 - 1y A5 +1

<0tk> ain [ E {Fl (trytist) + F; (tk-1,tk)
kk+1 Jj=1

X1,X X3,X
— FPV N (b, ) — B ’“(tk-l,tkﬂ)}

— (mi 4 1) R(te) — At [Flins) = Bt
mi Tkt th_1
—_ leXJ-I-l d .Xl’Xf+1 d
2123:1{[) f7' (tkvy) y+[) fz ($7tk) T

g 173 X
__/ fi(tkyy)dy_/ fzj\ly‘ j+l(4Y,t]c)dl'}
0 0

—(2m; + 1){fi(tk)[Fi(tk+l) — Fi(te)] — filts) [Fi(te) — Fi(tk——l)]}

173

ld tr 41 o
= 22{ / G ydy = [ T mdz}
j=1

tg k-1

— (2mq + D [2F: () + Fi(trpr) + Fi(ti-)]
(A.16)
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Case 9:n=k+1,L =k
aP, 0 — X + X
—_— = — 1 X t t F; SAT te, bi_
<0tk> atk [2Z{F (k+17 k)+ ( kylk 1)
k+1,k j=1

X;,X Xy, X
—F ! ’+l(tk+1,tk_1)—Fi ! ’“(tk,tk)}

= mit D[Rten) = RO - )]

te—1

i bkt .
:22{/ ley ]+1(.’L‘ tk)d$+/ fiAX1,X;+1(tk’y)dy (A17)
j:l 0 .

t Lk
XX X1, X
- L ’+l($7tk)dx—/ fi ’+l(tk7y)d3/}
0

0

= (2mi + 1) fi(te) [2Fi(te) + Fi(tesr) + Fi(tr-1))]

tk—1 . tk .
~2Z{/ F @ ) - Fl-*l"“f+1(tk,y>dy}

tek—1

= (2m; + 1) fe(tr) 2Fi(te) + Fi(tigr) + Fi(te_1)]
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Appendix B

Back-Propagation
Algorithm

The back-propagation is a training algorithm designed to minimize the mean square error
between the output of the perceptron neural network and the desired output of the network
for a given input vector. This is achieved via a gradient descent algorithm. One requirement
is that the nonlinearity is continuously differentiable. One commonly used continuously
differentiable nonlinearity is the sigmoid f(y) =

-1-+—l—_-;. The back-propogation algorithm

given below assumes a sigmoidal nonlinearity.
Step 1:

The weights and node offset values for all perceptrons in the network are initialized

to small random values.
Step 2:

The input vector from the training data, z = (29, 21,...,2K -1 )T. is presented as an
input to the perceptron neural network. The desired output of the neural network,
d = (d°d,...,dM )T, is also specified at this stage.
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Step 3:

Step 4:

Step 5:

The actual output of the network, o = (00,0 , is computed by the

network in a feed forward manner.

Now the weights are adjusted. Starting at the output nodes and working down

towards the the first layer of nodes, the weights are adjusted by
wij(t + 1) = wi;(t) + né;z* + a(wij(t) — wij(t - 1)).

w;;() is the weight at time ¢ from node ¢ (or input 7) to node j. z! is the output of
node 1 (or is input ¢.) 7 is a gain term such that n € (0,1). « is a momentum term

such that o € (0,1). And, §; is an error term for node j. For an output node j,
0; =0 (1 -0 )(d? — o).

For an internal node j,

6, =z'(1—z') Z drw;
%

where k is over all nodes in the layers above node j. The node offset values are
adapted in a similar manner by assuming they are weights from constant valued

inputs.

Return to Step 2 and repeat the process for another training vector.
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Appendix C

Probability Density
Functions

The numerical results of Chapter 2 required knowledge of the marginal and bivariate cdfs
under each hypothesis. This appendix lists the expressions for the Rayleigh and lognormal
marginal pdfs and cdfs. The bivariate pdfs are listed, but the bivariate cdfs are not. Bivariate
cdfs were obtained via a Simpson’s integration of the bivariate pdfs.

The Rayleigh marginal pdf is given by

flz) = ::—2exp <—§%) . (C.1)

The constant o2 is the variance of the underlying Gaussian process. The Rayleigh marginal

cdf is obtained by integrating (C.1) and is given by

F(z)=1-exp <-22;2> . (C.2)

The Rayleigh bivariate pdf has the form

. zw 22 4 w? pRw
Jew = o <_‘2(1 —p2)02> o {(1 —p?)o? } ' )
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In (C.3), p is the correlation coefficient between z and w, and Iy(-) is the modified Bessel
function of the first kind. The Rayleigh bivariate cdf is obtained by a Simpson’s integration
of the bivariate pdf.

The lognormal marginal pdf is given by

f(2) = ——— exp <—-(—135i”—ﬂ)—>. (C.4)

2rozx 202

Here again, o is the variance of the underlying Gaussian process and p is the mean of
underlying Gaussian process. By integration, the expression for the lognormal marginal cdf

is obtained as

F(z)=® (1—‘3&1&> , (C.5)

g

where @¢(+) is the normal distribution function defined as

d(z) = \/——15—; /_; exp (‘;2) dt. (C.6)

The expression for the lognormal bivariate pdf is given as

[0,z 1 exp (_ ((1ogw — 1) + (logz = p)?

2= 214/1 — p?olwz 2(1 - p?*)o?

 2p(log w — 1)(log = - u)))
2(1 — p?)o? '

(C.7)

Once again, p denotes the correlation coefficient between w and z. The lognormal bivariate

cdfs are obtained via Simpson'’s integration of the bivariate pdfs.
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