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Abstract

We consider the problem of approzimating a variable bit rate
(VBR) source by a simple process such that the corresponding
buffer-related performance measures are close approzimations of
the true performance measures. Assuming that ¢ VBR source
can be modeled by a discrete-time batch Markovian arrival pro-
cess (D-BMAP), we propose an approach for approzimating it
by o “matched” Markov process of finite memory obtained by
information-theoretic techniques. We confirm analytically that
the approzimating performance measures become increasingly ac-
curate with the memory of the matched Markov process. When the
parameters of the D-BMAP are unknown, we estimate instead the
parameters of a suitable Markov approzimation from samples of
an observed cell stream. We show that the estimated Markov pro-
cess, with a fired memory, comes closer with increasing sample
size to the D-BMAP, as do the corresponding performance mea-
sures, in accordance with the law of iterated logarithm. Numer-
ical ezamples are presented to illustrate the effectiveness of the
approach.

1 Introduction

Since variable bit rate (VBR) sources will be one of the ma-
jor contributors to traffic on an ATM network, it is imperative
that we are able to model the sources and their superpositions,
by accurate yet analytically tractable stochastic models. Many
stochastic models have been proposed for a VBR source in the
literature (see [6]). It has been shown in [3] that the discrete-time
batch Markovian arrival process (D-BMAP) is a good candidate
to represent a VBR source at the cell-level, in view of its analyt-
ical tractability and flexibility in reflecting traffic characteristics.
The performance analysis of an ATM statistical multiplexer fed
by a D-BMAP or its special cases has also been much studied (cf.
[3, 4, 12]). We assume that any VBR source can be accurately
modeled by an appropriate D-BMAP. (D-BMAPs have also been
used in speech recognition, where they are referred to as hidden
Markov sources (HMSs).)

The D-BMAP is governed by an unobservable state process
modeled by a Markov chain. The versatility of the D-BMAP
results from the introduction of this process. The probabilistic
mechanism generating the number of arrivals in any time unit can
then be allowed to depend on the state in which the state process
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resides. On the other hand, the state process also possesses some
undesirable traits. When the D-BMAP is used to represent an
arrival stream at a switching node, owing to the “hidden” nature
of the state process, processing at the node which relies on de-
tailed statistical information concerning the arrival stream can be
difficult. Another practical problem arises when the parameters
of the D-BMAP are not known in advance and need to be es-
timated from real samples of the cell stream. One technique for
estimating the parameters of the D-BMAP consists of fitting some
carefully chosen empirical moments from samples of a cell stream
to corresponding statistical moments of the D-BMAP [3, 4, 7].
Unfortunately, this technique is applicable to simple D-BMAPs
only, and not to general D-BMAPs. There also are existing algo-
rithms, such as the EM algorithm [1], that enable us to estimate
the parameters of the D-BMAP from samples of a cell stream.
However, they are computationally prohibitive due to the hid-
den nature of the state process, and inappropriate for high-speed
networks.

This has motivated us to explore the feasibility of approxi-
mating the D-BMAP by “simpler” processes which do not suffer
from the aforementioned problems, but are “close” approxima-
tions of the D-BMAP in the queueing contezt, i.e., the result-
ing buffer-related performance measures are good approximations
of the performance measures corresponding to the D-BMAP. In
our initial efforts below, we concentrate on two first-order perfor-
mance measures: The probability of cell loss due to buffer over-
flow and the average cell delay in the buffer. We approximate the
D-BMAP by a “matched” Markov process of finite memory which
is the Markov process closest to the D-BMAP in an information-
theoretic context (which employs the notion of Kullback-Leibler
divergence), and assess the validity of this approximation in the
queueing context. We confirm analytically that the approximat-
ing Markov process becomes more accurate as the memory of the
process increases, in both contexts. Another motivation for us-
ing Markov approximations, in addition to the fact that there
are no longer any hidden states, is that the estimation of the pa-
rameters of the approximating Markov process from samples of a
cell stream is much simpler, for instance, by using the maximum
likelihood (ML) estimation method. We show that the estimated
Markov process, with a fixed memory, comes closer with increas-
ing sample size to the D-BMAP, as do the corresponding perfor-
mance measures, in accordance with the law of iterated logarithm
(LIL).

The paper is composed as follows. Section 2 briefly reviews
the description of the queueing system, and discusses the matched
Markov process obtained from the D-BMAP. Our analytical re-
sults which show the accuracy of the Markov approximations are
presented in section 3. Their proofs are omitted due to limited



space and can be found in [9, 10]. Section 4 provides numerical
examples to substantiate the validity of the approximation tech-
nique. Further discussion is contained in section 5.

2 Preliminaries
2.1 The queueing system

The queueing system used here is a slight modification of that
presented in [12]. A discrete-time single-server queue with a fi-
nite first-in-first-out (FIFO) buffer represents a statistical multi-
plexer. The basic time unit, called a slot, is equal to the con-
stant service time of a cell. The arrival process at the multi-
plexer {X;}{2; is assumed to be a D-BMAP where X; denotes
the number of arriving cells in the ¢-th slot (in steady state),
taking values in X = {0,1,...,N — 1}. The D-BMAP is gov-
erned by a time-homogeneous Markov chain {S:}{2,, where S;
denotes the state of the D-BMAP in the ¢-th slot, taking values
in§ = {1,...,M}. The Markov chain {S:}§2, is generated by
an irreductble and aperiodic M x M-transition probability matrix
(t.pm.) A= {aw}, auww = Pr(S: =v|Si—1 = u), u,v € S, with
the initial distribution being the corresponding unique invariant
distribution 7 = (m1,...,ma), where 7, = lifn Pr(S;=1), 1€ 8.

(This choice of 7 being the initial distribution is necessary for
subsequent information-theoretic comparisons.) We assume that
{X:}:2,1 is generated by {S;}¢2, according to a time-homogeneous
transition mechanism specified by a M x N-stochastic matrix
B = {b.}, with

be & Pr(X. =15 =1,87, Xt
= P’I‘(Xt=l|Sg=’i) i€S,leX,
for t > 1. (Throughout this paper, sy, (resp. Sj,) refers to

the subsequence (sn,...,8m) (resp. (Sa,...,Sm)) of S-valued
symbols (resp. random varlables) 0<m < n) We then write
for zT € A",

Pr(X{ =g7) = Z( Z Hbswtah 186)Tsg5 (1)

80€ES sTES™ t=1

for n > 1. It is easy to see (as also shown in [8]) that {X;}§2; thus
defined is stationary and ergodic. Let X*° be the set of all infinite
sequence of symbols from X, and B> denote a suitable o-field on
X, Let P denote the (stationary ergodic) probability measure
on (X°°, B*) which generates {X;}{2; in accordance with eq. (1).
Before proceeding further, we introduce some additional notation.
Let e;, I, and 0;; denote respectively the row-vector of 1’s of size
j, the j x j identity matrix and the i x j zero matrix. Also let
A be a matrix, AT is then the transpose of A. (Hereafter, we
shall suppress the subscripts if dimensions are apparent from the
context.)

We next introduce the set of M x M-matrices C;
{e:;; (D}, 0 <1 < N -1, where ¢;;(l) = Pr(X¢+1 = 1, St+1
Jl St = i) = Pr(Xey1 = UYSe41 = j) - Pr(Ser = j | Se
i) = byay;, | € X, 4,j € S. Note that Y| ' C
A. The average ) number of arriving cells is denoted as p
Yol E] L i ey ).

Let the size of the FIFO buffer be K cells (including the cell in
service). We assume that N — 1 < K. The service provided to a
cell (assuming there is at least one cell in the system) commences
at the beginning and completes at the end of the slot, at which

time the cell departs from the system. Let Y; denote the number
of cells in the system immediately after the end of the ¢-th slot
(before the state changes). (See Fig.1.) Therefore, Y; is governed
by the following dynamic equation: For ¢ > 0,

Yiy1 = Y — 1)+ + min{X¢11, K — Y3} (2)

assuming Yo = 0, where (z)* denotes max{0,z}. The process
{(Ys, St)}20 is then a bivariate stationary Markov chain with
state space {O 1,. —1} x 8. Let D, denote the M x M
matrix E, — Lo, 1<t<N—1 The KM x KM t.pm. T for
the bivariate Markov chain {(V3, S¢)}i2, can be written in terms
of the C- and D- matrices (cf. [10]).

The Markov chain {(Y%,S5:)}f2, is stationary and ergodic
hence a unique steady state distribution exists. Let v =
(yo,71,-..,vKx—1) denote the steady state distribution vector of
{(Y1, St)}20, where ~; is a 1 x M-vector whose j-th element -y;; is
given by «;; = lim Pr(Y; =1,5: = j). We can obtain 'y by solving

a set of linear equatlons v = 4T together with Z -0 'yle =1
A number of algorithms to calculate « numerically have been
presented [12, 4, 11). Having solved for v by using one of these
algorithms, we proceed to compute the probability of cell loss due
to buffer overflow and the average cell delay in the buffer. The
probability of cell loss due to buffer overflow, Pj,ss, is defined in
[12] as the ratio of the average number of discarded cells to the
average number of arriving cells in a slot, and is given by

P (1 - ’YOeT) (3)
B —

Next, let ¥ be the average number of cells in the system, given
by Y = E; —o ivieT. By Little’s law, the average cell delay in
the buffer, Dy, is simply

Pioss =

Y
Dy = — -1 4
b P(l - -Plos.s) ( )
As explained in the previous section, there are certain circum-
stances that D-BMAP creates some difficulties. We then propose
an approach to approximate the D-BMAP by appropriate Markov
processes, as explained next.

2.2 Markov approximations

In this subsection, we identify the stationary ergodic Markov
measure of memory k, k > 1, which is the “best” approxima-
tion of the measure P (generating the D-BMAP) from among
all stationary ergodic Markov measures, by usmg an information-
theoretic technique. Given k > 1, let the set {rw ise xXF ue
A} define a N* x N t.p.m R®. Let w® be the set of all
such t.p.m’s which are irreducible and aperiodic, and for each
R® ¢ ¥ let #(F) be the corresponding unique invariant dis-
tribution on X*. Let Q¥ be a measure on (X, B®) generated
from R™® and 7* as follows. For n > k,

Q"W (}) = 7" (at) H ri (5)

ohq1

We hereafter refer to Q*) as a stationary ergodic Markov measure
of memory k, and let M®) be the set of stationary ergodic Markov
measures corresponding to W), For each k > 1, we define the
stationary ergodic Markov measure P{*) in M® which is the best
approximation to P as

def
Pk & D(P|IQ™), (6)

arg inf
QUk) e p (k)




where the Kullback-Leibler divergence or information divergence
D(P||Q®) is defined as

- P(Xnt1|XT)
D(P||Q™) = lim Ep |log =nttL) | 7
(PIQ) = lim Ep|log Q® (Xn41|X7) @
where Ep denotes expectation with respect to the measure P. We
show in [9, 10} that min D(P||Q"™) exists and for z} € A™,
QR e m(k)

P(z7) n<k
(k);, n\ _ 1/ = My
P, (2T) = { P(:l:lf) Ht bt P($t|l‘t L, n>k, (8)

and
lim D(P||PP) =o0.

The prev1ous equality asserts that the best Markov approxima-
tion P{¥ approa,ches Pin the limit. Let the irreducible and ape-
riodic N* x N t. pm of P* be expressed as V® = (0.5 €
X*, u € X}, where o = p(Xx, = u| X!~} = s). We then adopt
the Markov process generated by P¥*)_the “matched” Markov
process—to be the Markov approximation (of memory k) of the
D-BMAP generated by the measure P.

3 Performance measures via Markov ap-
proximations

In subsection 3.1, we study how close the approximating per-
formance measures of the statistical multlplexer—computed by
assuming the arrival process to be generated by P¥)_are to the
true performance measures using the D-BMAP generated by a
known P. Next, in subsection 3.2, we consider the situation where
the parameters of the D-BMAP are unknown. We estimate the
parameters of the approximating Markov process from samples of
an observed cell stream, and then use the performance measures of
the statistical multiplexer corresponding to the estimated Markov
process as approximations of the true performance measures.

3.1 Computed Markov approximations

When the D-BMAP is fully specified, i.e., the matrices 4, B
are known, the considered performance measures resulting from
an arrival process modeled by a D-BMAP, are compared with the
same set of performance measures computed on the basis of an
arrival process modeled by its Markov approximation of memory
k. For the approximating system, the probability of cell loss due
to buffer overﬁow and the average cell delay in the buffer are de-
noted by P, and D respectlvely The following results show
that the approx1mat10ns of the performance measures improve
steadily with the memory of the approximations.

Let y = (y1,...,yn) be a 1 X n-vector with real entries. The

I; norm of y, denoted by ||y|l1, is defined as Z lyi|. Also, for a

m x n-matrix B = {b,, }, the ly norm is || B def ma.x(z [b:;1).)

Theorem 1: For k > 1, we have

1
[Pioss — P | < oI5 (Guyr A X | XETY, (9)

and N
I2 (Sk+1 A X1|X;+1)

1-pP®)

loss

Dy, -D®| < 2cK
b

(10)

where ¢ = n%_)zlﬂ’ Zr & (I =T +eT-4)7! is the fundamental

matriz of T, 71(Zr) ¥ sup

llully=1,u-eT=0
efficient of ergodicity of Zr [5], and I(- A -|-) denotes conditional
mutual information. Furthermore,

lluZr|ly < oo is the l1 co-

11m p®

loss — -Plo.ss and

lim p® =p, O

Theorem 1 and the limiting result of divergence in the previous
section together imply that the matched Markov process becomes
more accurate in both the information-theoretic and queueing
contexts, as its memory increases.

3.2 Estimated Markov approximations

We next turn to the situation where we have partial informa-
tion that the arrival process is a D-BMAP; however, the matrices
A and B are not known. Instead, given to us are samples of a cell
stream z7, n > 1, comprising the first n elements of an w € X'*
generated by the (unknown) measure P. We then consider the
Markov approximation of memory k of the unknown D-BMAP
and use the ML estimation method to obtain the corresponding
t.p.m. on the basis of 7. The ML estimate of the t.p.m. on the
basis of 7, n > 1, denoted by V* (w,n) = {vsu (w,n)}, is given
in terms of emplrlcal counts by (cf. [2]),

(k
=2 yeX, se Xk (11)
where I (w, n) and I (w, n) are defined as follows:

18 (w, n) e Zl(w (T =u, L) = 8)

t=1

1M (w,n) = 18 (w,n),

where 1(-) denotes indicator function and we use the convention
2% 41 =2 44y ineq. (3.2). Foreachu € X, s € X%, ﬁgﬁ)(n) e
051‘)( n) is a random variable on (X, B>).

Our choice of the ML estlmate is motivated by the particularly
simple form of the estimate 5% (n) in eq. (11), as also the fact that
the estimate possesses desirable strong consistency properties (cf.

[2]), namely, for u € X, s € X*,

and

lim ¥ (n) = vl®  P-as.

Moreover, we also show in [9, 10] that the ML estimate also sat-
isfies the Law of Iterated Logarithm (LIL), one of the sharpest
known strong limit theorems, as follows. For u € X, s € X* such
that 0 < v{%) < 1, it holds that

|a§’;>(n) — o |

lim sup =1 P-as.,
n V2b  [loglogn
P(s) n

where 0 < b < 0o. (The case vS%) = 0 or 1 are trivial.)

We claim without proof (the complete proof is in [0, 10]) that,
based on the LIL result above, it is true for w belonging to a set of
P-measure one that the t.p.m. V* (w, n) will become irreducible
and aperiodic, for n “sufficiently” large. We subsequently com-
pute the probability of cell loss due to buffer overflow, denoted by




,(o’;)s (w,n), and the average cell delay in the buffer, denoted by

D(k)(w, n}, by using a Markov process of memory k with a t.p.m.
V") (w,n) as the arrival process to the multiplexer. We then
define respectively P,mm (n) and D(k)(n) as random variables on
(X, B*) according to P,(oa)s( ,n) and D(k)( ,m). To this end,
let us introduce a definition of eventually P-a.s. as follows: Let
{Z:}32, be a sequence of IR-valued random variables governed by
a measure P, and {a:}i2; a sequence of real numbers. We say
that Z; = O(o:) eventually P-a.s. if there exists a positive ran-
dom variable NV which is finite P-a.s. and a (finite) constant C
such that |Z,| < Cay, for n > N.

Theorem 2: For k > 1, it holds that

- loglogn
Ploss = BELmI < eI} (Sep A XalXEH) + 04 BT,
eventually P-a.s.,

and
i k+1
4 X11X;
Dy~ D)) < 2ok DB ATINT) o, [loglogn,

(1-P%),)

loss
eventually P-as.,

where c is as defined in Theorem 1. Furthermore,

lim lim P¥) (n) = Poss  P-as.,
and R
lilxcn lim Dék)(n) =D, P-as.O
n

4 Numerical examples

The first example is of a D-BMAP with the matrices A and B
specified arbitrarily by

0.60 0.30
0.20 0.30
0.17 0.23 039 0.21
0.15 020 0.35 0.30

0.380 0.290 0.030
0.320 0.072 0.005
0.250 0.464 0.265 0.020 0.001
0.503 0.365 0.125 0.005 0.002

The steady state average number of arriving cells per slot (p) is
equal to 0.812. We choose the buffer size (K) to be 40. Figs. 2

and 3 compare P¥) and D¥) k= 0,...,3}, with Py, and D,

088
respectively. (For k = 0, we approx1mate P by P —the inde-
pendent and identically distributed (i.i.d.) measure closest to P
according to Section 2. We remark here that all of our previous
analysis holds also for the case k = 0, but specific mention is in-
tentionally omitted.) In this case, the approximating performance
measures are very close to the true performance measures, even
when k equal to one.

We next present a D-BMAP which is a modification of the one
studied by Takine et al. [12]. We assume that the D-BMAP is
governed by an underlying 2-state Markov chain with transition
probabilities given by @11 = a22 =aand a1z =a21 =1-4a, 0<
a <1, and a N x N-matrix B with N =9 described by

D) (@) (-

l
8\ ((-cy!
) (5578) @

0.05 0.05

A= 0.10 040

0.298
0.600

0.002

B= 0.003

8—!
by = (1'20)0)

(12)

0<1<8,

- 8—1
bﬂ = __ﬁl ;09) )

where p is as previously defined and ¢ is a parameter such that
0 < ¢ < min{1, % —1}. In our experiment, we choose p so that
Pross < 10_8, and let a and ¢ vary. The choice of ¢ and c influ-
ences two important characteristics of the D-BMAP (which is the
main reason we consider this particular D-BMAP). The first is
the squared coefficient of variation of the number of arriving cells
per slot [12], C2, which, in this case, is given by

o2 df VAR(X:) 7c? -1
v B2 (X,) p 8

Note that C2 > 0, and increases with ¢. The other important
characteristic is the first-order correlation coefficient, C,(1), which
can be expressed as

def COV (X4, Xeq1) _ c*(2a—1)
VAR(X:) ¢

Hence, for fixed ¢ and p, C.(1) is dictated by a. (C.(1) is a mea-
sure of dependency between number of cell arrivals in consecutive
time slots.) Let K = 80. Figs. 4 and 5 show the effect of ¢
on our approximations of the true performance measures when
p and a are fixed. Here, we choose p = 0.9 and ¢ = 0.3. In

C.(1) =

Fig. 4, we plot |log —‘-““%Z—; as a function of ¢, for k¥ < 2, and

similarly, we show in Fig. 5 the dependencies of the percentage
Dy(e)~DM (o)
Dy(c)

¢, where Pyy,5(c) (Dp(c)) and P® (c) (D,(,k)(c)) denote the usual

loss

Pioss (Dp) and P,(o':L (Dl(,k)) corresponding to a D-BMAP with
parameter ¢ € {0.1,0.2,...,0.9}. We observe in this case that by
using the Markov approximation of memory 2 (k = 2), we obtain
very close approximations to the true performance measures for
the entire range of values of ¢. Figs. 4 and 5 also show that the
iid. approximation does not perform well when ¢ > 0 (which
implies that C2 > 0), the reason being that the approximating
i.i.d. process has C2 = 0.

Using the same model, we study the effect of a on the approxi-
mations of performance measures when p and c are fixed. Here, we
choose p = 0.9 and ¢ = 0.5. Figs. 6 and 7 display the discrepan-
cies between the true and approximating performance measures
in the same fashion as in Figs. 4 and 5, except that they now
depend on a. In this case, we also have to use the Markov ap-
proximation of memory 2 to get close approximations to the true
performance measures; for 0.2 < a < 0.8, and for a = 0.1 or 0.9,
we have to increase k beyond 2 to get satisfactory approximations
(not shown here). Another interesting point is that, for a = 0.5,
we observe from Figs. 6 and 7 that all Markov approximations
perform extremely well. This perfect agreement is due to the fact
that the D-BMAP degenerates to an i.i.d. process when a = 0.5,
as do all of its Markov approximations.

Next, we demonstrate the strength of our approach when the
parameters of the D-BMAP are not known. We proceed by sim-
ulating a sample path (a trace of an arriving cell stream) of a
D-BMAP and then estimating the parameters of approximating
Markov processes, from the sample path, via the ML method.
Subsequently, the approximating performance measures can then
be computed. Here, we use the same D-BMAP as the one used in
Figs. 4-7 with p = 0.92, a = 0.3 and ¢ = 0.6. As before, the buffer
size K = 80. Ten independent sample paths are generated using
the OPNET"® software package and the averages of the approx-
imating performance measures, based on different sample sizes

1OPNET is a product of MIL 3, Inc., Washington D.C

difference of average waiting time, i.e., I * 100, on




(in terms of time slots), are plotted against the true performance
measures in Figs. 8 and 9. The averages of the “empirical” perfor-
mance measures obtained from these sample paths are also shown.
For this particular example, the empirical probability of cell loss
is equal to zero for all the sample sizes considered. These numer-
ical results show that, with relatively small sample size (10° time
slots), the approximating performance measures obtained from
a Markov process of memory 1 are very close to the true per-
formance measures, and out-perform the empirical performance
measures. These results also suggest that the estimated parame-
ters of Markov processes almost converge to the true parameters
at a sample size of about 10° slots. For this sample size, the
discrepancies between the true and approximating performance
measures arise mainly from the difference between the D-BMAP
and its approximating Markov process, and not much from the
estimation method. Therefore, further increments of sample sizes
will not improve by much the approximations.

5 Discussion

Our work suggests that it is often advantageous to represent
a VBR source by a Markov process, instead of a more compli-
cated D-BMAP, when the performance measures of interest are
the probability of cell loss (due to buffer overflow) and the average
cell delay. Analytical results in terms of upper-bounds on devia-
tions from the true performance measures are presented, and val-
idated numerically. Though these (information-theoretic) upper-
bounds are somewhat “loose”, our objective has been to obtain
asymptotic results which is why no attempt was made to obtain
tighter bounds.

In general, Markov processes, by virtue of their finite mem-
ories, are poor approximations of the D-BMAP which, typically
has “infinite” memory. Since our numerical results have shown
that only a relatively small memory of the matched Markov pro-
cess is required in order to obtain satisfactory approximations,
it appears that the discrepancies between the D-BMAP and its
Markov approximations are nicely smoothed out in the process of
computing these performance measures. It is likely for some other
(steady state) performance measures that a D-BMAP will still be
well-approximated by a suitable Markov process, although the
requisite memory may no longer be small .

An immediate application is to use this estimation technique
to reduce the simulation time needed in assessing the performance
measures of a switching node fed by a VBR source. The issue of
controlling network operations based on parameters of approxi-
mating Markov processes for any VBR source, using our tech-
nique, needs further investigation.
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Figure 1: Time diagram
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Figure 2: The probability of cell loss vs Memory of Markov
approximation (M =4, N =5, p =0.812, K = 40)
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Figure 3: The average waiting time vs Memory of Markov
approximation (M =4, N =5, p = 0.812, K = 40)
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Figure 4: The absolute of log. difference of Ploss vs ¢ (M =
2,N=9,p=09,a=03,K = 80)
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Figure 5: The percent difference of avg. waiting time vs ¢
(M=2,N=9,p=0.9,a=0.3,K = 80)
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Figure 6: The absolute of log. difference of Ploss vs a (M =
2,N=9,p=09,c=0.5,K = 80)
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Figure 7: The percent difference of avg. waiting time vs a
(M=2,N=9,p=009,c=05,K = 80)
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Figure 8: The probability of cell loss vs Sample size (M =
2,N=9,p=092,a=0.3,c=0.6, K =80)
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Figure 9: The average waiting time vs Sample size (M =
2,N=9,p=092,a=0.3,c=0.6,K = 80)



