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Geophysical Inversion
and

Two-Dimensional Signal Processing

Abstract: This report is motivated by the need to understand the possible applications of two-
dimensional (2-D) modeling of stochastic processes and related techniques in signal processing to
problems of inversion of geophysical data. Here we first provide a brief overview of 2-D modeling
and signal processing techniques. We then address the problem of passing from free air gravity
anomaly data (FAG) to bathymetry. We present an approach to this fundamental inversion prob-
lem, based on a systematic spatial segmentation of the 2-D data followed by statistical modeling
within the segments.‘ We also suggest possible improvements on current approaches based on

transfer function methods.
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1. Introduction:

It 1s now possible to obtaln very rellable mapplngs of the earth’s gravity field
using alr-borne gravimeters. Measurements of sea-level using radar or laser
altimeters on satellites also provide a wealth of Information concerning the geold.
Typleally the data is collected along tracks followed by the instrument-bearing
platform. The tracks provide a grid like pattern of data to be used for inversion .
purposes, e.g. Inverting FAG to bathymetry. Current practice In this fleld Is
based on modeling and slgnal processlng methods that are Intrinsically one
dimenslonal (along the data-collection tracks) In nature. To make effective use of
such techniques, it Is also customary to assume certaln directional uniformity pro-
pertles perpendlcular to the tracks. From the polnt of view geophysics, such
assumptions may be unnatural. )&lso, processing along tracks often implies only
partlal use of the informatlon at hand. These and other reasons, motivated us to
Investigate the possiblllty of uslng the methods of two dimensional stochastic

modeling for the purposes geophysical Inversion.

In the present report, we begin by glving a brlef overview of certaln aspects
of the theory of 2-D random filelds In sectlon 2. We focus primarily on certaln
recent developments In 2-D autoregresslve moving average (ARMA) type models.
An important idea In our work Is that when such models are constructed for
FAG data, they will be valld only over llmlted reglons of the earth, In part deter-
mined by the ’'largest wavelength’ appropriate for the data. It 1s therefore neces-
sary to properly segment the FAG data Into varlous spatlal reglons and construct

models within the reglons. Our approach to segmentation Is based on detecting



edges across which large changes In FAG data arlse. We discuss a class of tech-
niques for detecting edges In FAG data In sectlon 4. (The methods may be of

Independent geophyslcal Interest than for Inverslon.)

In section 4.1, we present our approach to the use of two dlmensional model-
Ing technlques for the problem of Invertlng from FAG data to bathymetry. We
give detalls of our estimation technique and segmentation technlque In sections
4.2 and 4.3. In sectlon 4.4, we present a brlef dlscussion of some recent advances
in the theory of deconvolutlon. We think that these new results could be of con-

siderable use in modeling and Inversion based on transfer functions.

The final sectlon 5 contains proposals for future work. Among other things,

we believe that detalled studlies of sea bottom roughness models may help make

our statlstical technlques more rellable.



2, Parametric Models for 2-D Random Fields:

A baslc problem assoclated to an array of (random) data on a two-.
dimenslonal “‘grld’ Is that of reconstructing the underlying signal corresponding
to the data. Based on thelr success In treatlng one dimenstonal signals,
parametric models are highly deslrable In thls Instance also. Two dimensional
analogues of ARMA models can be Introduced for this purpose. We do so follow-

Ing a prellminary discussion of random flelds.

2.1. Random Fields

A stochastic process over T 1s a famlly of random varlables Indexed by a
parameter set T. We denote thls famlly as x 2 {X,:¢t € T}. Here we assume
that the random varlables X, take vallues In a vector space - typlcally ¥, If N

= 1, It Is customary to refer to x as a unlvariate stochastic process.

/

Usually, the Index set T denotes time, l.e. T,,"f= R or Z. However If T Is a
multidimenslonal space, we say that x Is a random ﬁeld. For our purposes, we
will mostly restrict attentlon to T = R? (random fleld on a plane) or T = 22
(random fleld on a planar grid or lattice).

Many Important concepts from the theory of stochastic processes over R (or

Z) generallze to random varlables over R* (or Z*").

We say that a unlvarlate random fleld x over R® (or Z") taking values In @

Is homogeneous if,

EX,)=pn YteR" (or Z"),

and



EX Xy +)=EX X, ), Yt, ¢ ,r€R" (or Z").
We denote as R(¢t - ¢ ) the correlation E{(X, - E(X;))(X; - E(X; )} of a glven

homogeneous random fleld. It Is Important to note that R (¢t-¢ ) s non-negative
definite, l.e., given a set {a,, ..., a,} of complex numbers, m an arbltrary posi-
tive integer,

m

E E a,-?z'_,- R(t,' - t]') ZO

i=1 j=1

for any cholce {t,,...,t,, } € R" (or Z").

It follows by a famous theorem of Bochner and Herglotz that we have a

(spectral) representation,

Rt)= [ e"<»> dF@).
R* (2.1.1)

or
- T”
(Here T" denotes the n-torus). F Is a measure known as the spectral measure.
When 1t Is posslible to write,
dF (V) = S)d v,
we say that S (v) 1s the spectral density of the given random field.

Homogeneous random flelds are singled out for modellng data sets that
appear to possess a translation Invarlance property In thelr correlatlon. A further
special class of random flelds of Importance 1s the class of homogeneous and iso-
tropic random flelds satisfylng;

EX)=p=0 %t €R" (or Z"),

and

E(X, Xy )=EXpuyXpw ) Yt,0 €R" (or Z™),
and the map ¢ —P (¢) denotes a rigld motion In R* (or Z"). Recall that a rigld



motlon In R" Is a comblnation of rotation and translation. Thus, for a planar,
homogeneous and Isotrople random fleld to be a good model for a glven data set,
the latter should have both translational and rotational Invariance properties in

1ts statlstics.

It follows that
EXX )=R(| |t - ¢ |]) (2.1.2)
Is a functlon only of the Euclldean dlstance | |t - ¢ | | (or the lattice dis-
tance). A very nice theorem analogous to Bochner-Herglotz holds.

Theorem:

A function R (v), o<v<oo 1s the correlatlon function of an Isotroplc and

homogeneotus random fleld over R" Iff,

% T n-gyaAr)

R(r)= f oy ) (2.1.3)

(For n==2, R (r)= [Jo(\r) dF o(\))

Here J,= Bessel functlon of order 0O, etc.

Remark 2.1.1: This theorem tells us how to pass correctly from correlation func-
tlons to spectral density functlons. The ordlnary Fourler transform s not the
right thing to use for homogeneous and Isotroplic random fields.

Remark 2.1.2: For data in 2 dimenslons, a plot of the correlation function should
reveal radlal symmetry If present and suggest what class of random fleld models
to use. We will In any case always make the assumption that homogeneity is
valld for FAG data if the data is restricted to a reasonably sized segment. Pre-

clsely how to determine the segmentation will be one of our major concerns.



Before we close this sectlon, we note that the property of Markovianness
which plays a key role in connectlon with stochastic processes over R has a con-
slderably more complex theory In the case random flelds. One definitlon based on

conditional independence has the assoclated plcture:

9D

{X,: z€R?} Is Markov If for any reglon D - as above, X,-and X, are Independent,
conditioned on {X,:z€ 8D }. We shall see below in sectlon (2.3) that a different

notion of Markovlanness 1Is needed.

Since we are primarlly concerned with gridded FAG data, we shall conflne

all our discusslons on modellng to 2-D random flelds over the planar lattlce.

2.2. Models for 2-D Discrete Random Fields:

From 2-D linear system theory, we have the notlon of an Input-output sys-

tem as a dlscrete convolution;

Y(n 1,n2) = (I_H * X) (n 1:"‘2)

0

3 h(ny-my, no-mp)X(m,, my) (2.2.1)

— 00 my=-00

Me

my

where X (-,-) 1s an wnput and Y () Is the corresponding output and h(-,’) denotes

the impulse response or weighting pattern.



The system (2.2.1) Is causal If,

h(n,ny)=0 +/n, n,<o0. -(2.2.2)
The welghting pattern k(-,') Is sald to be separable If

h(nyung) = f(n)g(ng) Yn,n,€Z (2.2.3)
Much of 2-D reallzation theory, [Bose 1982, Multidimenstonal System Theory] is
concerned with conditions on welghting patterns satisfylng (2.2.2) that can be

realized as, difference equations of the form,

M, M,
Y m, Y(ny—my, ng—my) (2.2.4)

m =0 m =0

L L

1 2
= 3 > ﬂll,IQX(nl_lln ng—1ly).
ll=0 12—‘—-0
If Y(,) and X (-,”) are random flelds and if we let X (:,) be a discrete 2-D white
nolse process, then (2.2.4) becomés the analogue of the notlon of ARMA model

widely used In time serles analysis [Box Jenkins 1971 Time Serles].

We say that H 1s stable if In (2.2.1) we get bounded outputs for bounded
Ilnputs. We note,

Theorem (Stabllity):

Let H(z,z,)= 3} by h(n,ngz, ‘z, 2 and assume that H Is casual

7y=-00 Rp=—00

A (Z 1»22)

~————. Then H Is stable If it 13 analytic In
B(sz2)

and of the form, H(z,z,) =

| Z, |21, | Z.] 21

While the subject of causal 2-D models Is of Independent Interest there Is no
compelling reason for us to work with such models in the present context of geo-

physical flelds. One would however expect geophyslcal data to satisfy certaln



relatlons between fleld values assoclated to polnts In a glven lattice nelghborhood
of a lattlce polnt. Thus, we are In a situation where noncausal 2-D models gen-

eralizing (2.2.4) are needed. One class of such models Is glven by the following:

Xr,a == E ai(X;'—f,a + Xr+i,n) +

§ =1

n
+ 30X X)) + W, (2.2.5)
=1

Here {W, ,; - oco<r <oco ,~00<s <oo} Is the 2-D analog of discrete time white nolse,

satisfying

E(W,’,)”:O

Ccov (W, Wy o )=68r— ,8-¢ )gq, g >0

(&(¢,7) 1s the usual Kronecker symbol). Models of this type are Investigated In

the elegant volume [Bartlett 1976, Spatlal Patterns]. In the speclal case,

Xevt,er1 =0, X o1 + 05X, 4y, (2'2°6)

- alaz)(r,s + Wra
we get an exponential correlation of the form,
RXX(i’j) A= E()(r,chq'—i,a-H)

=o%xp[~c, |t ] - ¢ez]5]|] ¢, €2>0. (2.2.7)

The parameter c,, ¢, and ¢ In the correlation function are related to the param-

eters of the casual model (2.2.8) by the following formulas:

a, = exp(-¢,)
a, = exp(—¢y) (2.2.8)

g =0%1 - af)1 - aj)

From (2.2.8), 1t Is clear that one can estimate the parameters of the model (2.2.8),

if indeed the data Justifies a correlation functlon of the form (2.2.7).



Non-causal models of the form (2.2.5), (2.2.6) and thelr varlants are of
Interest to us as candldates for geophyslcal problems. There are two flelds of
Interest to us: (a) the free alr gravity (FAG) field and (b) the bathymetry fleld.
In what follows, we shall be concerned with Imposing the proper constralnts on

noncausal models In order to be useful for the solution of geophyslcal problems.

2.3. Periodic Random Fields:

The random flelds of sectlon (2.2) were assumed to be deflned over the entire

planar lattice, This conflicts with two Important factors:

0 for a geophysical fleld such as FAG data or bathymetry, one cannot reason-
ably expect spatial homgenelty propertles outslde a certaln window or seg-
ment; different parts of the world should obey different local regularitles

(models).

o} practlcal limitatlons of data collection conflne 6ne to such a window to begin

wlith.

Thus we are forced to impose additional window constralnts. It Is quite obvious
that these considerations are not unique to 2-D models. In fact the above
remarks apply equally well to 1-D models. In his book on time serles, Hannan
[Hannan 1960, Time Serles] considered a class of processes that are perlodic, l.e.
satsify a constraint of the form,

Yiinm =Y Ve meZ (2.3.1)
(N = window slze)

In the present context, one can apply the same idea to a noncausal random fleld
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model, namely to deflne the fleld simply by periodic extension outside a window
of slze N,XN,. As we shall see below, thls has Important consequences for com-
putations as well. In several recent papers, Kashyap and Chellappa have
analyzed an Ilmportant speclal class of noncausal 2-D periodic random fleld
models [Kashyap 1981, Image Modeling][Chellappa, Kashyap 1979 Declslon Rules]
[Chellappa 1980 Spatlal Autoregressions]. For a varlety of reasons that will be
apparent In section 4, we adopt precisely this class of models as candldate models

for geophyslcal flelds.

Let a 2-D discrete real random fleld {Y; ;:7,7€ Z} be glven by an autoregres-
sive model of the form,

1

Y'-'J- + E 0,,Y‘ +qkl-j+qk2:ﬂ2(]i'j (2-3.1)
here @ :={(¢;", ¢,®: k=1,2,..,m} 1s a subset of ZxZ lidentifylng the appropriate
nelghborhood of lattice points assoclated to a glven one. The §; are scalar

welghts, U;; Is a discrete 2-D random fleld corresponding to Gausslan white

nolse; £ [U;;] = 0 and Ver [U; ;] = 1.
The model (2.3.1) is taken together with a perlodleity condition,

Yi vaviewv,= Yij Vijkl€eZ (2.3.2)
Here N, and N, are positive Integers determining the window or segment of

homogeneous behavlor. ‘We shall be concerned with modeling using only data

from within the window

Wi={(i,j): 1< SN 15 SN} (2.3.3)



A typlcal example of Q mlight be

Q :={(-1,0), (0,-1), (1,0), (0,1), (1,1)}. (2.3.4)
The correspondling nelghborhood can represented as In Fig. 2.3.1.

(t,éfi) G+1,3+1)
»
(-1, )= L -)'. —— (1r4, d0)
v,
Y
(r,d-3)
Figure 2.3.1

In sectlon 4 below we analyze the class of models (2.3.1) - (2.3.2) and glve
formulas for estimatlon of parameters. It should be borne In milnd that the

parameters of the model consist of the tuple (Q@.8, N,, N,, § where 0 = (6,,....0,, )y

In general the models (2.3.1) - (2.3.2) do not satlsfy the usual Markov pro-

perty, l.e. Prob density {Y;,; | Yi,: (1.p)7#(¢.5)}

#Prob density {¥; ; | ¥i 5 (2.3.5)



Il =1 +qk1
P =17 + ¢

(&', %7)EQ }
However (2.3.5) Is Indeed an equallity if Q In (2.3.5) Is replaced by some @,D Q.

3. Current Practice in Geophysical Inversion:

The maln problem of gravity Interpretation ls that of Inferring a plausible
subsurface denslty distributlon (or subsurface body) from surface observations of
the free alr gravity anomaly (FAG). More specifically, based on (FAG) data over
the ocean, we seek to infer the bathymetry. There are a varlety of sources of
nonuniqueness In the Inversion process. One example is that of density distribu-
tlons of rapldly osclllating positive and negative densltles at depth. Also more

serlously, geophyslcal processes such as isostalic compensation lead to nonunique-

ness. We make some remarks about current practice in this area.

3.1. Discrete Inverse Theory:

At present, two baslc approaches are used:
(a) model the gravity anomaly by means of of one or more constant-
denslty bodles with wvariable geometry, such as a sphere, cylinder, prism,
polygon, a set of prisms to model an Interface etc. The geometry of the
disturbling body is iteratively adjusted from a starting point;
(b) fix the geometry of the model (for example a regular array of identical
rectangular or square blocks) and allow the denslities of the blocks to vary.

In connectlon with approach (a), both spatial and frequency domaln methods



-— gYou.\n&
T . suvface
z]_i = &z =0

- T

Fa

Flgure 3.1 (Last a Kublk 1983)

d and h are the horizontal and vertical dimenslons of an elementry block. Den-

sity of jth block Is v;.



have been used [Oldenburg 1974 gravity anomalies], [Bhattacharya Leu 1975
gravity and magnetic anomalles], [Pedersen 1978 statistical potentlal flelds],

[Pedersen 1979 Wavenumber domaln].

In connection with approach (b) there are substantial difficulties in reducing
the nonuniqueness. However, recent efforts in this directlon Include the use of
quadratlc programming and monotonlcity assumptlons on the density [Fisher
Howard 1980 Gravity Interpretation quadratic programming] and
“compactification,” or minlmizing the volume of the causative body [Last Kublk
1983 Compact gravity]. We recall here the basic model of [Last Kublk 1983
Compact gravity].

Consider Flgure 3.1. The data Is collected along a track. The geometry Is

fixed, but the density 1s allowed to vary from block- to block. The model for

gravity at «th data polint Is

M
g = 3 a;v; + ¢ 1 =12.,N (3.1.1)

i=1 :
where v; = denslty of jth block, ¢, = nolse assoclated to ¢th measurement and,

a;; == matrix element representing the Influence If the jth block on the ¢th grav-

Ity value. From standard arguments [Garland 1965 Earth’'s Shape and Gravity]

we know,

Tolsg

aj = 29((5; - 2; + d/2)log(——)

LT
r
+ dlog(—) (3.1.2)
Ts

- (zj + h/2)(0, — 6,)



+ (% — h/2)0; - )]
where,

ri =(z; - h/2® + (z; - z; + d/2),

re =(z; + h/2? + (& - z; + d/2)

t

re = (z; - h/2)° + (%, - z; d /2)?,

I

re =(z; + h/2? + (& - z; d /2)%, (3.1.3)
f, = tan"'(z; - z; + d/2)/(z; - h/2),
b, =tan"(&; ~ z; + d/2)/(z; + h/2),
8y = tan(; - z; - d/2)/(2j — h/2),
0, = tan™'(z; — z; — d/2)z; + h/2).

Here + iIs the unlversal gravitational constant.

It follows that one can set up the problem as that of solving for a vector V

of densitles satisyfilng,

=AV + E, (3.1.4)
where G Is the vector of gravity data. One typlcally solves (3.1.4) using least
squares. There are varlous approaches to regularizing the problem Including the

compactification ldea of Last and Kublk. It Is customary to use weighted least

squares.

More recently certaln lmplementations of one dimenslonal track Inverslon

have become avallable that are lterative but not based on least squares. We dis-

cuss one below.



3.2. The Algorithm of Lipman:

Thils particular algorlthm has been Implemented and tested and Is discussed
in a report [Rosenblum 1983 gravity to bathymetry Inverslon]. Since the detalls
are avallable In the report, we llmit ourselves to highlighting the maln features of
the algorlthm:

(a) the method is Iterative starting from an Inltlal mean bathymetry such
that the corresponding FAG = 0;

(b) 1t adjusts the bathymetry by adding or subtracting mass (via prisms)
at each polnt;

(¢) 1t assumes uniform density along a track;

(d) the 1teratlon G based on attempting to bring the computed FAG at
each polnt to some value nc.)t; further than a tolerance ¢ (In mgals) from the
corresponding FAG;

(e) 1t Includes a constraint on slope to avold 's/plklng;

(f) the reallzatlon of step (d) above 1s based on two elements - a declslon
rule that determlines whether a reglon which violates the predefined toler-
ance ¢ In (d) above Is ‘fixable’ - l.e. Improved to within tolerance without
adversely affectlng polnts outside this region but ‘nearby’.

(g) once a region has been found to be fixable, new prismatic masses are

added using a routine called SLABADD.

The above algorithm does not explicitly use a goodness-of-fit measure as in
least squares. In 1ts current implementation, the algorithm requires the followlng

user-defined input parameters:



(a) the FAG data point spacing In the data file (In km);

(b) the average depth along the track (In km);

(c) the average denslty (assumed constant);

(d) the maximum error allowed In fitting the estimated FAG to the meas-

ured FAG (In mgals, usually 2-4 mgals);

(e) the bathymetric stepsize allowed (In kms, about 1/5 the data point

spacing in (a) above);
A certaln amount of user-sophistication appears to be necessary In order to
ensure adequate performance of the algorithm. In the next sub-section, we make
some comments on current practice In order to set the context for our proposed

approach.

3.3. Some Comments on Current Inversion Techniques:

To the best of our knowledge, all currently used technlques are based on
processing data along tracks, l.e. these are 1-D methods. This implies that for
the least squares methods of section 3.1., one has to use uniform prisms that are
of infinite extent perpendlcular to the tracks. In the reglons of the earth where
such directional homogenelty 1s unavallable, the use of 1-D methods 1s at best a
rough and ready approximation. However, direct extenslons of the methods of
sectlon (3.1) to 2-D data lead to conslderable computational problems. Formulas
analogous to (3.1.2) and (3.1.3) can be wrltten down, but are difficult to analyze
for the purposes of determining whether or not “‘influence matrices™ such as A in

(3.1.4) are approximated by sparse matrices. Such conélderatlons are essentlal in



order to make the problem computationally tractable.

We propose that a different approach based on discrete 2-D random fleld
models be consldered for the purposes of Inversion. The detalls are given In the
next sectilon. The mialn polint of our approach is that we propose model building
based on sound statistical principles. The class of models that we consider is that

of periodic random flelds Introduced 1n (2.3).

4. Geophysical Modeling and Inversion Using 2-D Discrete Random Fields:

In thls sectlon, we present our algorithm for modeling and Inversion of 2-D
random flelds assoclated to the problem of Inversion from FAG to Bathymetry.
The baslic random flelds for us are the unlvariate flelds of free air gravity and
bathymetry, denoted as G;; and B;; respectively. For computatlonal reasons, we
restrict ourselves to unlvariate techniques. The baslc.steps are given In section
4.1. The detalls of the estimation procedure (following Kashyap) are glven in 4.2.
The procedure In (4.1) assumes that a prior segmentation of the fleld in question
has been glven. In»order to obtaln such a segmentation or windowing we discuss
in section (4.3) a method that has its origins In Image processing. This Is a deter-
ministic two-stage technlque Involving first a convolutlon with the gravity fleld
by a sultable kernel followed by nonlinear processing. In comparison with a sta-
tistical technique proposed by Kashyap, thls method appears to be much less
computation-intensive and has performed well In experlments on real lmages.
Our !dea Is to apply this technlque to the gravity anomaly data and segment It

before doing any detalled modellng.



The last sectlon of thls chapter 1s denoted to some recent advances in decon-
volution technlques. We belleve that these new tools could be of great utliiity in

Inversion algorithms based on transfer function models.

4.1. The Modeling and Inversion Algorithm:

We use the notation of sectlon (2.3). Recall, from that sectlon that a

periodic random fleld model obeys a law of the form:

Yy + é}l 6 Y"ml,iﬂ{“’ = ,8_;- Uj 1<i<N,,1<j<N,
Yigw sen, =Yy Vi 5.k 1€2Z (4.1.1)
Here N, and N, determline the window slze and
Q = {(¢", ¢D) k = 1,2,..,m }C ZXZ determlnes neighborhood dependence. The
fleld {U;} 1s a standard dlscret;e Gausslan white nolse fleld. We find 1t con-

venlent to adapt the well-known polynomilal model notation as follows:

Let s, and s, denote the following shift operators,

s1Yi; = Yia j,
8., = Yi i . (4.1.2)
Then, the difference equatlions in (4.1.1) take the form,
1

m _a. 1 —a 2 =
Yii + 3 0ksi "t s5t Yy =B°U; 1SiSN,1<j<N, (4.1.3)
k

=1

or more compactly,

1

o(s,, s,)Y;; = AUy, (4.1.4)

where



m R
O(s1, 890 =1 + 3, 0 s, sy

k=1

(4.1.5)
Each such model 1s parametrized by the tuple, (Q, 6, N,, N,, §). We are now

ready to state our algorithms.

Modeling Algorithm: (Known Gy; and By ).
Step 1: Choose a window/segment of slze N,XN, and construct a bathymetry

model

Mp a1 .2
a+ 38 "s By = VP US (4.1.6)
k=1

Step 2: Using the same window/segment construct a gravity model

Mg a1 .2
a+ X658 % s, )Gy = VIO US (4.1.7)

k=1

Step 3: Investigate whether the residual field,

Wy = - VEPUZ + VEP U

passes a whiteness test, e.g. by explicltly estlmating the correlation function of

W;; . If 1t does not then construct a residual model of the form,

My a1 0.2 ‘
1+ D o¥s ™t s, )Wy, = VBT U, (4.1.8)
k=1

where U;; 1s a standard white nolse fleld.

Step 4. We now obtaln a model relating gravity and bathymetry,

3 a, ' -4;°
r + E O'sy " 5o )Gs‘j

k=1

mp B _q‘:l —9/;2
= (1 + 33 07s, s, " )By + (4.1.9)
k=1

my 1 2
-9 ~q -
@+ s S yWEY

k=1



Clearly, this can be written In the form,

eV (51,8 2)'90 (s, Q)Gs'j = ew(s 1»52)93 (51,8 2)B-'_7'

+ VBT U, (4.1.10)

The model Is parametrized by the following nelghborhood sets Q%, @¢, Q¥, the

welght vectors 67, 49, 6" and the window size N,XN,.

We can write (4.1.10) compactly In the form,

M(s,,85) Gij = N(s,85)B;; + \//3” Uis» (4.1.11)
where,
N(s,85) =©6W(s,,5,). 6F(s,,)
m (v) S B
=1+ 3 vs, Fegt (4.1.12)
k=1
and

M(s 85 = 9W(3 1,8 Q)GG (s1,82)

m (i) 1

- —q, %
=1+ ) s, Fog 'k (4.1.13)

k=1

where m (1) and m (v) are positlve Integers determined by m%, m? and m©.

Suppose we are now presented with gravity data from a reglon of the earth
which Is geophysically similar to the reglon from which the data for gravity and
bathymetry used In constructing the model (4.1.11) was obtained. It is now
required to Infer the bathymetry for this new reglon. We simply postulate that

n

the model (4.1.11) applies In the new region as well. I}/thls new reglon, the inver-

slon process has thus two steps.
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Step 1: Postulate a model of the form,
M(s,s 2)Go'j = N (s 1»32)B€j + VB U,-,-
with known polynomlals M and N and coefficlent g% .
Step 2: Glven gravity data G;; In the new reglon solve for B;, (e.g. by applylng
least squares to the above model or by constralned least squares If some partlal

bathymetry constraints are at hand).

From the dlscusslon above, it should be apparent that the key modeling pro-
cess Involves constructing three perlodic random fleld models assoclated to the
poynomlals, ©°%(s,,s,), ©%(s,s,) and ©%(s,s,), all of the same generlc form
(4.1.1)-(4.1.2). In the next sectlon we explaln the baslc steps In thls estimation

problem.

4.2. Estimation of a Generic Univariate Autoregressive Periodic Random Field:

In this section we will continue to use the notatlon of section (2.3). First we

recall the notlon of a cilrculant matrix, i.e. a matrix of the form

| >‘1 X2 >‘n ]
S VU Wt
Aot A )\3 C Mo
circulant (A,...,0, ) & . )\? (4.2.1)
) ) b A )
| Az As A

Now, glven (2.3.1) together with the boundary condition (2.3.2), 1t Is easy to see

that the following holds:



Al A2, A3 .. ANI ?/1 ul
ANI Ay, A, Aer Yo Ug
. — VB (4.2.2)
A, Ay A, o AYA |, Uy,
where,
Y= (Yf,l: YE,Q’ ey Yi,N,)T
and w, = (U;,, U;p - -, U,-,NQ)T. The matrices A, A,, ..., are all N,XN, circulant

matrices depending on the parameter § and on Q. For the example set Q of sec-

tlon (2.3)

A; =0 Xi 12N,
A | = Circulant (1,6;,0,...,0,0,) (4.2.3)
A , = Circulant (4,,6;,0,...0)

AN1 = Circulant (6,,0,0,...0).

The llnear equatlon system (4.2.2) has a block clrculant matrlx structure also, l.e.

By =vhu (4.2.2")

where,

B (§) = block circulant (A ,,A 2""’AN1)
Is an NN, X N,N, matrix.
We are seeking a maximum likelthood estimate for . For thls we need to
write an expression for the likelthood function for the fleld {Y;;} or equivalently
the random vector y. Since the right hand side of (4.2.2’) 1s an N,N, length

Gausslan vector, It follows that the likellhood functlion is,



[Det (B (0))
Lf) = ——=== 1L
Wapr e
<5<N,
exp{ - E%(Yij + k{]l Ok Y, | o170} (4.2.4)

Kashyap [Kashyap 1980, Image Modeling] has shown that,

N1 Nyt .
Det (B (0)) = o I | | A(z{,zé,&)l | (4.2.5)
1 =0 2 =0
where,
A o ot 9°
Azpzo8) = 1 + 3] 0 (207 (21) (4.2.8)
k=1
and
271V -1 .
2z = exp | 7;\[\/—_} t=1,2. (4.2.7)

3

We can now carry out a maximum (log) likelihood estimation procedure for

the unknown parameters (¢,6) using the finlte data set {¥;;:1<i<N,1<;<N,}.

Note,
N,N
(L @) = - 7 neng
1 1 N2 m \
Y ;{31 ng Yy + El b Y +ql g +q,,2] (4.2.8)
1 N1—1 N1 ) '
+ o 35 X (] [AG24.0] 9
§f=0 j=0

Maximlzing In(L (4,8)) with respect to § and g yields the estimates,

8’ = arg [min L (M

N2 m
g = S INL ORI Y AP (4.2.9)

f=1 §=1 k=1

where,
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- Ny Ny m .
L0 = NNl l-gl J'X=31 o+ k£=31 O Y‘.J"’kl’jJquz) ]
N1 Ng1 . .
- S [AGL 0] 1) (4.2.10)

1=0 j=0

The first term In L (#) has a minlmum at,

- N, N, N, N,
=12 DYy » vy (4.2.11)
=1 j=1 1=1 j=1
where,
a T
Y'? = (Ys'-i-qll X ""’Ys' +g,h7 +qm2) (4.2.12)

The formula (4.2.11) Is very useful since It provides a quick estlmate which Is
quite close to the optimal *. In fact, one may use a Newton-Raphson technique

to 1terate from 4 to 8*.

Everything we have done so_far has hinged on a particular cholce of neigh-
borhood of dependence Q. The appropriate cholce of nelghborhood may be
declded upon by conslderlng several different nelghborhoods @,, @,...., @ and
corresponding to each @, compute

N1 Ngt

Ci @ N\NolnB' - %) 30 In | | Ae(eb 25,80 |2 (4.2.13)
=0 j=0
where G, 0, are maximum Illkelthood estimates of the S, 6, In the model

corresponding to @,. The decislon rule for determining the nelghborhood of

cholce Is
select that @, which minimizes G, for ke {1,2,...R }.

See [Chellappa Kashyap Ahu)a 1979 Decislon rules nelghbors] for detalls.



4.3. Segmentation/Window Determination:

Our maln goal Is to describe a method that will assist us in 1dentifying the
window size N, XN, over which one can expect to be able to bulld a satisfactory
homogeneous model for the gravity and bathymetry flelds. Owur idea here is that
if one can find In a glven data set (gravity or bathymetry) the edges across which
there are slgnificant changes In fleld Intenslty, then the edges can be used as
boundaries of segments/windows. The subject of segmentation/edge detection In
image processing has a very large literature. See the book [Rosenfeld 1981 Image
Modeling] for diverse polnts of view. Kashyap himself suggests a statistical tech-
nlque based on hypothesis testing for his models. We find that hls methods are
rather computation-intensive and we present an alternative orliginally arising in
the thesls of Canny [Canny 1;)83 Edges and Lines]. The method s well-
motivated from a signal processing point-of-view unllke a number of ad-hoc pro-
cedures In the literature. For Instance, It brlngs'together considerations of
signal-to-nolse ratio and localizatlon into the design of the edge-detector. It leads
to algorithms with tunable parameters which can be selected to adjust detector
performance. It 1s possible to motivate the maln 1deas by uslng a one dimen-

stonal model.

4.3.1. A One-Dimensional Edge Model:

Conslder a one dimenslonal Image/fleld of the form,

I{(z)=Au(z) + n(z) (4.3.1.1)

- where A Is a constant, n(x) Is nolse and u(x) Is the unit step:



1 >0
u(z) = {0 Z;O (4.3.1.2)

Our goal 1s to construct a procedure for detecting the edge « () In the nolsy Image

I() and to locallze 1t. We consider the following scheme:

« f Of) N -

T

Y

Fligure 4.3.1

Here xf denoﬁes convolution by a sultable kernel function f and N denotes
the nonlinear operation of suppr(.esslng all but the local minimum In 0(x). The
output of N Is supposed to be the edge/step. The first (linear) processor Is
chosen to be a convolution by requiring translatiop mvariance (l.e. Insensitivity

to the location of the edge - here the polnt x==0).

Now,
O0@=A [ f(z)u(-z)ds (4.3.1.3)
+ [ f(z)n(-=)ds

A o o«
= g f f (z)dz + ff(x)n(——a:)dz . (4.3.1.4)

Assume that n(x) Is spatlal white nolse with zero mean and ‘‘varlance parameter”

o0

o2. Clearly, O(0) 1s a random varlable with mean = A [ f (z)dr and the spec-

-0



tral energy of O(0) ( or O(x)) arising from the nolse alone Is glven by,

E[ [ f*=z)n*-=z)dz] (4.3.1.5)
The output signal-to-noise ratio SNR is glven by

A [ f(z)ds
SNR. = = (4.3.1.8)

ooa/ [ fz)de

It 1s desirable to choose ‘f” in order to make, SNR as large as possible.

4.3.2 . The Localization Problem:
Since the nqnmaxlmum suppression operatlon marks zero crossings of

—dd—O (z) as edge polnts, and since,
z

O =0 (z)

=0, (z) + 0, (z)

=A f@)+ [ f (y)n(z-y)dy, (4.3.2.1)

It can be shown that, under the assumption that f(x) = -f(-x), the quantity,

LAl O]

. T 1 e (4.3.2.2)

- 00

is a measure of the degree of locallzatlon. If L is large then the standard devia-

tlon of the distance of the actual maximum to the true edge 1s small. Conslder,

f f (z)dz

- 00

A/ [ 13=)dz

T =3(f) = (4.8.2.3)



A=A(f)=— L OL

/ “f 1 % )i (4.3.2.4)

Both = and A are Independent of the magnitude scales for f. Furthermore,

suppose we do spatlal scaling,

70 = fu()

where,

.fu/(:':)= f (x/w)
Then, it can be verifled that,

2(fw) Afw)

Vw [ f(z)ds

= p— lw A .‘_‘2_'___ (4.3.2.5)
f S ¥z)dx f f' ¥x)dx
=Z(f)AMS)

Thus localization can be traded off agalnst detectlon performance. A ‘broad’
function f (1) will have good signal to nolse ratlo but poor localization compared
to a fllter with a narrow f (). One could now try to find f () that maximizes
S(f )A(f ). One can also, for computational ease, try to find f that maximizes
A(f ) while Z(f )= ¢, Is flxed or find f that maximlizes (f ) while A(f )=1¢c, Is
fixed. The corresponding Euler- Lagrange equations yleld expliclt famlilles of f ()

that are appropriate as fliters [Canny 1983 Edges Lines].
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The princlpal defect of the above approach 1s that it does not take into
account the possibility multiple edge responses from the detector caused by nolse.
From the baslc edge detectlon scheme (see figure 4.3.1), 1t 1s clear that such mul-
tlple detector responses are due to zero crossings In the derlvative of the output
of the llnear fliter. These (random) zero crossings can be estlmated by a formula

due to S. Rlce and we are lead to an optimlzation problem of the form,

0

minimize [ (f2 + M\f' 2 + Nf' ' % + NS )dz (4.3.2.6)
-W
where A, X\, A, are Lagrange Multiplers.
Analysls of the corresponding Euler-Larﬁgrange equations leads to a famlly

of solutlons,

f(@)=a,e@sin(wz) + ae®™ cos(wz)
+ age * sin{wer)
+ a,e”® cos{wz) + c;‘f
with boundary conditlons,
J@=0=f(W)

J' ©0)=s; ' -W)=o.

These lead to conditlons on the parameters ¢; and ¢, ln terms of s. We omlit the

detalls.
The nonlinear processor N for nonmaximum suppression Is quite standard in
the llterature on edge detectlon/segmentation and we refer to page 81 of [Canny

1983 Edges and Lines].



We have Implemented a dlscrete 2-D version of the above edge detection

algorithm Involving the followlng steps.

Let I(i,5) be the given Image. Let {h(;)} the discrete convolutor.
Step 1: Compute Y(1,)),

00

Yit.j)= Y k(7 -DIGED)

=1-00

Step 2: Compute X(1,))

X@,0)= 3 h@E-1D)YU.J)
|l = -

Step 3: Do nonmaximum suppression. The above infinite convolutions are

truncated; since we use,

by = € cos (wk) k=0,1,2,...

hpy = —hk k=0,1,2,...

1t 1s possible to lmplement the above algorlthm uslng fast convolutions. The

parameter,

and

w = 0.8)\.

Tunlng o glves us control of performance. A smaller value of o glve us good
localization, while & blggey value of o picks up global features. A serles of com-
puter experlments were performed on a VAX 11/780 computer at the Computer
Vision Laboratory at the Unilversity of Maryland, using dlgitized plctures of real

scenes and objects. By tuning the o parameter appropriately 1t was possible to
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Figure 4.4.1

(d) urban scene

(e) Canny detector, parameters
same as in figure 4.4.1 (b)

(f) Sobel mask
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Figure 4.4.1
(g) portrait

(h) Canny detector
A =+1.0
w = 0.7

Note: all pictures with 255 gray levels,
image sizes 128 x 128 pixels.




often obtaln better performance In edge detection than with the help of a tradi-
tlonal algorithm such as the one based on a differencing mask due to Sobel.

Some typlcal plctures are Included (see Figure 4.4.1).

4.4. Some Recent Advances in Deconvolution:

Here we note rather brlefly how some new developments In deconvolution

may be useful for geophysical inversion.

Many observation models in geophyslcal exploration take the form,

f o*pa I{z [ (z —y)d;‘g(y) = g;(z) t{=12,.,N . (4.4.1)

where g 1s a distribution of compact support over a reglon in RrR"* defining an

1

observation process and f () denotes an unknown geophyslical fleld to be deter-
mined (e.g. denslty anomaly) and g;(-) denotes the corresponding observation

(gravity anomaly, magnetic anomaly etc.). The Indexing of the observation data

set by ¢€{1,2,...,N} may be used also to refer to multiple passes/tracks.

The Inverse problem of Interest to us s to determine f () glven
9: (), i€{1,2,...,N}. We call this a deconvolution problem involving multisensors. If
however, only one data set say ¢, Is avallable, then 1t Is well-known that the
Inverse proble Is 1ll-posed -- the Inverse opertor 1s typically unbounded -- and
leads to serlous lIssues of numerical accuracy. Varlous regularization technlques

are known for the problem of approximate reconstruction of f ().

On the other hand, if we have multiple sensors, and If we can solve for v; In

the equation,



Vl*lf‘/‘uz*l;‘/‘""'LVN*llf,:‘s (4.4.2)

where § denotes the Dirac delta function, then it is clear that we have a recon-
struction formula,

[ =wv*g, + %9, + " + vy *gy . (4.4.3)

By taking Fourler transforms of both sldes In (4.4.2), we obtain the

equlvalent form,

PN

vk o+ v+ o+ ue =1 (4.4.4)

Equation (4.4.4) 1s known as the Bezout equalion. In thelr fundamental
work, Berensteln, Taylor and Yger obtalned expllcit formulas for the deconvolu-
tors v,,...,vy, for certaln classes of problems. The key requirement here 1s that, in
order for the exlstence of the deconvolutors v, ..., vy (equivalently, solvabllity

of the Bezout equation), the functions ,u ”N should satlsfy a coprimeness condi-
1

tlon, l.e., In a strong sense, these Fourler transforms should mot have common

ZET0Ss.

In a long report [Berensteln Krishnaprasad Taylor 1985 Deconvolution
methods], the authors undertook a detalled numerlical study of a speclal class of
examples. These examples Involved two sensors (N=2) and the observation map
corresponded to averaging over an interval g;, ¢=1,2,; thus

z +a

6 (@) = —=— [ Ty i=12. (4.4.5)

2(1,' s - a

the corresponding Fourler transforms u and ;}2 are given by
1



L. L (4.4.8)
f ez
The necessary and sufficlent condltion for strong coprimeness (solvability of
the Bezout equation) turns out to be:
a,/a, isirrational !! (4.4.7)
In the paper [Berensteln Krishnaprasad Taylor 1985] extenslve numerical

studies were conducted, using a,—1, a,=v2. The technlquesl applled to the prob-

lem of resolving peaks In a double Gausslan proved to be remarkably robust.

Our maln polnt here Is that 1t would be very useful to try and attempt a
study of the sultabillty of the above deconvolution methods to problems of geo-
physlcal Inversion. As a first step we suggest the use of this method on transfer

function models relating bathymetry and free alr gravity.

5. Future Work:

In thls sectlon we make some prelimlinary recommendations for further
development of our efforts in order to provide practical tools for bastc geophysical
modeling and Inversion techniques. The pervasive theme of thls report is that
while many successful algorithms have been produced for these problems, these
tend to be primarlly based on 1-D processing. WIth the recent advances In the
subject of discrete random flelds, 1t Is desirable to take advantage of new 2-D sig-
nal processing methods. There are several possible directlons. As a first step, 1t
1s desirable to test the proposed 2-D statlstical modellng and Inversion techniques
on synthetlc and real data. Detalled sea-bottom models should be Investigated

with reference to thelr correlation properties.



5.1. Testing of Proposed Inversion Technique:

We suggest that the modeling and Inversion techniques of section 4 be Imple-
mented and first tested on synthetic data of reasonable verlslmllltude. Special
attentlon should be glven to the types of parameter ranges and Q nelghborhoods
involved. The segmentation algorithm should also be implemented and tested

alongslde.

It would be very natural to treat the 2-vector (G; B,-,-)T as a blvarlate ran-

i
dom fleld and then proceed to construct models for 1t directly uslng data from
reglons where we know both gravity and bathymetry. However, at present this
does not appear to be computationally feasible. It is for this reason that we have
chosen to work with univariate field models. However, it 1s desirable that such

bivariate modeling methods be further developed and fast algorithms should be

Investigated.

An Important part of our methodology involves the modeling of bathymetry.
It 1s desirable that detalled statlstical studles of sea-bottom roughness be con-

ducted 1n order to get some Insight Into thls baslc element of our methodology.
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