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Chapter 1

Introduction, Notation and

Preliminaries

1.1 Introduction

Modular forms of weight 0 for Γ = SL2(Z) are all given as polynomials in j(τ),

the elliptic modular function on the upper half plane H, whose Fourier expansion

at the cusp at ∞ is

j(τ) =
1

q
+ 744 + 196884q + · · · ,

where q = e2πiτ . Values of j(τ) on imaginary quadratic irrationals τ ∈ H are

called singular moduli and they are algebraic integers.

Let d1 and d2 be two negative fundamental discriminants which are relatively

prime. Let wi denote the number of roots of unity in the imaginary quadratic

field of discriminant di. Let [τ ] be the equivalence class modulo Γ of τ ∈ H.

Define

J(d1, d2) =
∏

[τ1],[τ2]
disc(τi)=di

(

j(τ1) − j(τ2)
) 4

w1w2 .
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When d1, d2 < −4, so that w1w2 = 4, this product is the norm of the algebraic

integer j(τ1) − j(τ2) of degree h1h2, where hi is the class number of the order

of discriminant di. In 1984, Gross and Zagier proved a formula which gives the

factorization of J(d1, d2)
2.

Theorem 1.1 (Gross-Zagier, [7]).

J(d1, d2)
2 = ±

∏

x,n,n′∈Z
n,n′>0

x2+4nn′=d1d2

nǫ(n′).

The exponent ǫ(n′) is multiplicative and for a prime l, ǫ(l) is defined via the local

Hilbert symbol at l. One example of this theorem is

J(−67,−163) =j

(

1 +
√
−67

2

)

− j

(

1 +
√
−163

2

)

=215375372(13)(139)(331),

where there is no product since Q(
√
−67) and Q(

√
−163) have class number 1.

In this thesis, we prove a generalization of Theorem 1.1, which gives a factoriza-

tion of values of Borcherds forms at CM points on higher dimensional bounded

symmetric domains. We work in an adelic setting and recover Theorem 1.1 as a

special case.

Let V be a rational vector space with quadratic form Q of signature (n, 2), n ≥

0. Let D be the space of oriented negative-definite 2-planes in V (R), and let

H = GSpin(V ) be the spinor similitude group of V . We denote the finite adeles

of Q by Af and let Ẑ =
∏

p Zp. Associated to z ∈ D, τ ∈ H and h ∈ H is a theta

function, θ(τ, z, h), which is a linear functional on S(V (Af )), the Schwartz space

of V (Af ). Given a meromorphic modular form F : H → S(V (Af )) of weight 1− n
2

for Mp2(Z), evaluation of θ(τ, z, h) on F gives a Γ-invariant function θ(τ, z, h;F )
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on H. This function increases rapidly at the cusp, and so is not integrable over

Γ\H. However, Borcherds defines a regularized theta integral

Φ(z, h;F ) =

∫ •

Γ\H
θ(τ, z, h;F )v−2dudv,

where τ = u+ iv. Then for certain z ∈ D we have

Φ(z, h;F ) = −2 log ||Ψ(z, h;F )||2 + C, (1.1)

where Ψ(F ) is a meromorphic modular form on D×H(Af ), || || is the Petersson

norm and C is a constant. These functions Ψ(F ) are referred to as Borcherds

forms.

Let L ⊂ V be a lattice with dual L∨ and let L̂ = L⊗ZẐ ⊂ V (Af ) be its closure

in V (Af ). Assume the meromorphic form F is valued in SL, the space of functions

with support in L̂∨ and constant on cosets of L̂. Then letting ϕ range over the

characteristic functions of cosets of L∨/L, we can write the Fourier expansion of

F as

F (τ) =
∑

ϕ

∑

m

cϕ(m)qmϕ.

Assuming that cϕ(m) ∈ Z for m ≤ 0, Borcherds constructs Ψ(F ) of weight

c0(0)/2 and explicitly gives its divisor in terms of the cϕ(m) for m < 0.

To obtain CM points, we take a splitting of our vector space

V = V+ ⊕ U

into rational subspaces with sig(V+) = (n, 0) and sig(U) = (0, 2). This splitting

determines a two-point subset, D0 ⊂ D, consisting of the rational negative 2-

plane U(R) with its two orientations. Let z0 ∈ D0. For the introduction, we

assume that our lattice splits, i.e., L = L+ + L− for L+ = V+ ∩ L,L− = U ∩ L.

3



Then the Fourier expansion of F can be written in the form

F (τ) =
∑

ϕ+,ϕ−

∑

m

cϕ+⊗ϕ−
(m)qm(ϕ+ ⊗ ϕ−), (1.2)

where the sum on ϕ± runs over the coset bases for L∨
±/L±. We can also factor

the restriction of the the theta function to the point z0 ∈ D as

θ(τ, z0, h) = θ+(τ, h+) ⊗ θ−(τ, h−).

The Siegel-Weil formula implies that, for τ ∈ H and s ∈ C, there is an Eisenstein

series E(τ, s;−1) of weight −1 such that, for ϕ− ∈ S(U(Af )),

∫

SO(U)(Q)\SO(U)(Af )

θ−(τ, h−)dh− = E(τ, 0;ϕ−,−1).

Using Maass operators, E(τ, s;ϕ−,−1) can then be related to another Eisen-

stein series E(τ, s;ϕ−,+1), which is “incoherent” in the sense of Kudla, so that

E(τ, 0;ϕ−,+1) = 0. We write

E(τ, s;ϕ−,+1) =
∑

m∈Q

Aϕ−
(s,m, v)qm,

and

Aϕ−
(s,m, v) = bϕ−

(m, v)s+O(s2).

Then we define

κϕ−
(m) =















limt→∞ bϕ−
(m, t) if m > 0,

k0(0)ϕ−(0) if m = 0,

where k0(0) is a specific constant. Thus, for m 6= 0, κϕ−
(m) is the value at the

cusp of the second term in the Laurent expansion of the mth Fourier coefficient

of E(τ, s;ϕ−,+1). Our main result is the following
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Theorem 1.2. For F (τ) given by the Fourier expansion (1.2), assume cϕ+⊗ϕ−
(m) ∈

Z for m ≤ 0. Let

κϕ+⊗ϕ−
(m) =

∑

x1∈λϕ++L+

κϕ−
(m−Q(x1)),

where ϕ+ = char(λϕ+ + L+). Then for z0 ∈ D0,

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh = 2
∑

ϕ+,ϕ−

∑

m≥0

cϕ+⊗ϕ−
(−m)κϕ+⊗ϕ−

(m). (1.3)

Let T = GSpin(U) and let K ⊂ H(Af ) be a compact open subgroup. Since

GSpin(U) → SO(U),

the above integral can be written as a finite sum over

h ∈ T (Q)\T (Af )/(K ∩ T (Af )). (1.4)

Since U is a negative-definite space of signature (0, 2), there is an isomorphism

U ≃ k for an imaginary quadratic field k with quadratic form given by a negative

multiple of the norm-form. Then the double coset space in (1.4) is essentially an

ideal class group. Using (1.1), we see that (1.3) gives a formula for the sum

∑

h

log ||Ψ(z0, h;F )||2.

To give a geometric interpretation, we consider the quasi-projective variety

XK = H(Q)\
(

D ×H(Af )/K
)

,

and, for K large enough, XK ≃ ΓK\D+ for some group ΓK ⊂ H(Q). Here,

D+ ⊂ D is the subset of positively oriented 2-planes. We view the zero cycle

T (Q)\
(

D0 × T (Af )/(K ∩ T (Af ))
)

→֒ XK

5



as the set Z(U,K) of CM points inside of XK . Then (1.3) gives the value of

log ||Ψ(F )2|| on Z(U,K). When U ≃ k, an imaginary quadratic field with odd

discriminant, and c0(0) = 0, the values κϕ−
(m) for m 6= 0 are given as the

logarithm of a rational number, which tells us Theorem 1.2 gives a factorization

for
∏

z∈Z(U,K)

||Ψ(z;F )||2.

The proof of Theorem 1.2 is done in two stages. First, we let n = 0 and

prove a preliminary version of the theorem. In this case, V = U and D = D0.

This is essentially the n = 0 version of the main theorem proved by Kudla in

[12]. In that paper, this case was not included and some differences do arise. For

example, a factor of 2 appears in the Siegel-Weil formula.

The key step in the proof of our main theorem is the Schwartz space con-

traction map. For a factorizable ϕ = ϕ+ ⊗ ϕ− ∈ S(V+(Af )) ⊗ S(U(Af )), this is

defined as

〈ϕ, θ+(τ, h+)〉U := θ+(τ, h+;ϕ+)ϕ− ∈ S(U(Af )),

and then is extended linearly. We apply the contraction map to the modular

form F of weight 1 − n
2
, and obtain a modular form 〈F, θ+〉U of weight 1. Then

we can apply the theorem for n = 0 to 〈F, θ+〉U .

In chapter 4, we give explicit formulas for the values κϕ−
(m). This is done by

viewing U ≃ k = Q(
√−m0) for m0 > 0 and letting L = A ⊆ Ok, Q(x) = −Nx

NA
.

We assume m0 > 3 is square-free and m0 ≡ 3 (mod 4). This extends results

of Kudla, Rapoport and Yang in [14], where in that paper m0 = q is a prime

bigger than 3. The reader can compare the positive Fourier coefficients found in

Theorem 1 of [14] with Theorem 4.1 of this thesis.

The remainder of the thesis is devoted to looking at explicit examples of the
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main theorem. For n = 0, we obtain input functions, F (τ,A), via Hecke’s theta

functions (cf. [8]) associated to an ideal A in an imaginary quadratic field. If Ik is

the ideal class group, then the regularized integral Φ(z0, h;F (τ,A)) can be viewed

as a function on Ik × I2
k , and our theorem computes averages of this function. It

is not clear what these functions represent, but they are interesting nonetheless.

The example for n = 1 allows us to reproduce Gross-Zagier (Theorem 1.1). In

chapter 6, we first look at the general setup and prove many useful facts related

to this example. We consider the vector space

V = {x ∈M2(Q) | tr(x) = 0}

with quadratic form Q(x) = det(x) of signature (1, 2). For the lattice L we take

L = M2(Z) ∩ V.

Using scalar-valued modular forms of weight 1
2

for Γ0(4), we follow ideas laid out

in [1] to obtain appropriate input functions.

For the rational splitting of V , we choose a primitive vector x0 ∈ L∨ such

that Q(x0) = r for some r > 0. Then

V = Qx0 + x⊥0 .

Here we find that the lattice L does not split, and in section 6.2 we compute bases

for L± and coset representatives for L/(L+ +L−) and L∨
±/L±. Then, in order to

interpret Theorem 1.2 in classical language, we describe the double coset space

T (Q)\
(

D+
0 × T (Af )/(K ∩ T (Af ))

)

as a certain zero cycle Zµ(r,K) ⊂ Γ\D+. We give a formula for these points as

elements of Γ\H ≃ Γ\D+.

7



In the final chapter, we recover the result of Gross and Zagier. Here we briefly

sketch the argument. Assume, without loss of generality, that d1 is odd. Recall

that the function we are trying to factor is J(d1, d2) from Theorem 1.1. With V,Q

and L as above, we choose x0 ∈ L∨−L such that x0 is primitive and Q(x0) = −d1

4
.

Then we apply the main theorem and get an expression for

∑

h

Φ(z0, h;F )

in terms of the negative Fourier coefficients of F and the values κϕ−
(m) for m > 0

(see chapter 7 for details). Assuming c0(0) = 0 forces the constant in (1.1) to be

zero and the Petersson norm becomes the usual absolute value. This gives us a

formula for
∑

h

log |Ψ(z0, h;F )|2. (1.5)

Define

Jd2(τ) =
∏

[τ2]
disc(τ2)=d2

j(τ) − j(τ2).

Using the explicit divisor of Ψ(F )2 given by Borcherds, we choose the input

function F (with c0(0) = 0) so that

div(Ψ(F )2) = div(Jd2(τ)
2).

By our choice of x0, the set of CM points we sum over becomes

{[τ1] ∈ Γ\H | disc(τ1) = d1},

and (1.5) is 4 log |J(d1, d2)|. Theorem 4.1, which gives an explicit formula for

κϕ−
(m), implies we have

4 log |J(d1, d2)| = log(r0) (1.6)

8



for some r0 ∈ Z>0. This turns out to be

4 log |J(d1, d2)| =

∑

s∈Z

[

∑

q|d1

βq(s) log(q)ρ

(

d1d2 − s2

4

)

+
∑

p inert

βp(s) log(p)ρ

(

d1d2 − s2

4p

)

]

, (1.7)

where ρ(t) counts the number of integral ideals in Q(
√
d1) of norm t, and βq(s) and

βp(s) are some specified integers. The factorization in (1.7) looks very different

from the one given by Gross and Zagier. It does, however, resemble the following

theorem of Dorman.

Theorem 1.3 (Dorman, [6]). Let l be a rational prime and e its ramification

index in Q(
√
d1). Then

ordl(J(d1, d2)) =
1

2e

∑

s∈Z

∑

n≥1

̺l(s)ρ

(

d1d2 − s2

4ln

)

,

where

̺l(s) =















0 if ∃q | d1; q 6= l such that χq(s
2 − d1d2) = −1,

2a(s) otherwise, where a(s) = #{q | (s, d1)}.

Here χq(α) = (α, d1)q. Dorman’s Theorem is equivalent to Gross-Zagier and, to

finish the proof, we compare it with (1.7) and see that they agree.

1.2 Notation and Preliminaries

The metaplectic group Mp2(R) is a double cover of SL2(R). Elements in this

group are given as pairs (γ,
√
cτ + d), where

γ =







a b

c d






∈ SL2(R).

9



Multiplication in Mp2(R) is defined as follows. Let

γ1 =







a1 b1

c1 d1






, γ2 =







a2 b2

c2 d2






∈ SL2(R),

and let φ1(τ)
2 = c1τ + d1, φ2(τ)

2 = c2τ + d2. Then the product of (γ1, φ1) and

(γ2, φ2) is

(γ1, φ1(·))(γ2, φ2(·)) = (γ1γ2, φ1(γ2(·))φ2(·)).

The covering map is (γ, φ) 7→ γ and the inverse image of SL2(Z) is the metaplectic

group Mp2(Z). This group is generated by the elements

T =













1 1

1






, 1






, S =













−1

1






,
√
τ






,

with relations S2 = (ST )3 = Z for

Z =













−1

−1






, i






.

Let G = SL2 and G′
A be the metaplectic cover of GA. We let ω be the

Weil representation of G′
A in the Schwartz space S(V (A)). This representation

is determined by a fixed additive character ψ of A/Q such that ψ∞(x) = e2πix.

Let L ⊂ V be a lattice, and SL ⊂ S(V (Af )) be the space of functions with basis

{char(λ+ L) | λ ∈ L∨/L}.

We now describe how ω acts as a representation of Mp2(Z) on SL and how it

is related to the representation ρL defined by Borcherds on vector-valued modular

forms. Denote the inverse image of SL2(Ẑ) ⊂ G(Af ) by K ′ ⊂ G′
Af

. Then

G′
A = G′

QG
′
RK

′.

10



View Γ′ = Mp2(Z) as a subset of G′
R. If γ′ ∈ G′

R has image γ, then under the

map

G′
R ×G′

Af
։ G′

A

we have (γ′, k′, ) 7→ γ for some element k′ ∈ G′
Af

. The kernel of the above map

is {±1}. So once γ′ is chosen, this specifies a choice of sign and, hence, specifies

k′ uniquely. If γ ∈ Γ, then γ′ ∈ Γ′ and the corresponding element k′(γ′) ∈ K ′.

Writing ω = ω∞ωf , we define

ω(γ′) := ωf (k
′(γ′)).

Now let ϕµ = char(µ+ L) for a coset µ+ L. For the generator T ∈Mp2(Z), the

Weil representation acts by

ω(T )(ϕµ)(x) = e(−Q(µ))ϕµ(x),

where e(y) := e2πiy and x ∈ V (Af ). For S we have

ω(S)(ϕµ)(x) =

√
i
2−n

(−i)2−n

√

|L∨/L|
∑

η∈L∨/L

e(−(µ, η))ϕη(x).

In Borcherds’ language, SL ≃ C[L∨/L], the group algebra of L∨/L. In [2], he

defines a representation ρL of Mp2(Z) on C[L∨/L]. If we write the elements in

the group algebra as eµ for µ ∈ L∨/L and identify eµ ↔ ϕµ, then the Weil rep-

resentation defined above agrees with ρ∨L, the representation on the dual algebra

C[L∨/L]∨. Borcherds takes the convention that

e∨
µ(eη) =















1 if µ+ η = 0,

0 otherwise.

We also mention that in the case of n even, the representation ω is actually a

representation of GA. When this is the case, we will often write ω(g) for g ∈ GA.

11



Let Q be the quadratic form on U , the space of signature (0, 2), and let ∆

be the discriminant of Q. Then we may view U ≃ k = Q(
√

∆) and assume

Q(·) = − N(·)
|NA| , where N is the norm on k and A is some ideal in k. We will

take this point of view when it is convenient. For details on the correspondence

between quadratic forms and ideals see [3].
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Chapter 2

The Adelic (0, 2)-Theorem

2.1 Basic Setup

Let V be a vector space over Q of dimension n + 2 with quadratic form Q, of

signature (n, 2), on V . Let D be the space of oriented negative-definite 2-planes

in V (R). For z ∈ D, let prz : V (R) → z be the projection map and, for x ∈ V (R),

let R(x, z) = −(prz(x), prz(x)). Then we define

(x, x)z = (x, x) + 2R(x, z),

and our Gaussian for V is the function

ϕ∞(x, z) = e−π(x,x)z .

For τ ∈ H, τ = u+ iv, let

gτ =







1 u

1













v
1
2

v−
1
2






,

and g′τ = (gτ , 1) ∈ Mp2(R). Let l = n
2
− 1, G = SL2 and ω be the Weil

representation of the metaplectic group G′
A on S(V (A)), the Schwartz space of
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V (A). If H = GSpin(V ), then for the linear action of H(Af ) we write ω(h)ϕ(x) =

ϕ(h−1x) for ϕ ∈ S(V (Af )). If z ∈ D and h ∈ H(Af ), we have the linear functional

on S(V (Af )) given by

ϕ 7−→ θ(τ, z, h;ϕ) = v−
l
2

∑

x∈V (Q)

ω(g′τ )(ϕ∞(·, z) ⊗ ω(h)ϕ)(x). (2.1)

Let L ⊂ V be a lattice and let SL ⊂ S(V (Af )) be the space of functions with

support in L̂∨ and constant on cosets of L̂. Let F : H → SL be a meromorphic

modular form of weight 1− n
2

and type ω for Γ′ = Mp2(Z). Let Γ = SL2(Z). We

consider the C-bilinear pairing

(( F (τ), θ(τ, z, h) )) = θ(τ, z, h;F (τ)),

and using this pairing we define

Φ(z, h;F ) :=

∫ •

Γ\H
(( F (τ), θ(τ, z, h) ))dµ(τ),

where dµ(τ) = v−2dudv and the integral is regularized as in [2]. The regulariza-

tion is defined by

∫ •

Γ\H
φ(τ)dµ(τ) = CT

σ=0

{

lim
t→∞

∫

Ft

φ(τ)v−σdµ(τ)

}

,

where we take the constant term in the Laurent expansion at σ = 0 of

lim
t→∞

∫

Ft

φ(τ)v−σdµ(τ),

defined initially for Re(σ) sufficiently large. Here F is the usual fundamental

domain for the action of Γ on H and

Ft = {τ ∈ F | Im(τ) ≤ t}

is the truncated fundamental domain.
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2.2 Borcherds Forms

The space D is a bounded symmetric domain. It can be viewed as an open subset

Q− of a quadric in P(V (C)). Explicitly,

D ≃ Q− = {w ∈ V (C) | (w,w) = 0, (w, w̄) < 0}/C×,

where the explicit isomorphism is [z1, z2] 7→ w = z1 + iz2 for a properly oriented

basis [z1, z2]. Assume K is a compact open subgroup of H(Af ) such that H(A) =

H(Q)H(R)+K, where H(R)+ is the identity component of H(R). Define

XK := H(Q)\
(

D ×H(Af )/K
)

.

This is the set of complex points of a quasi-projective variety rational over Q,

and if ΓK = H(Q) ∩H(R)+K, then XK ≃ ΓK\D+, where D+ ⊂ D is the subset

of positively oriented 2-planes.

Let LD be the restriction to D ≃ Q− of the tautological line bundle on

P(V (C)). From this we get a holomorphic line bundle L on XK equipped with a

natural norm, || · ||, called the Petersson norm. Assume we have

V (R) = V0 + Re+ Rf,

where e and f are such that (e, f) = 1, (e, e) = 0 = (f, f). Then sig(V0) =

(n− 1, 1) and for the negative cone

C = {y ∈ V0 | (y, y) < 0},

we have

D ≃ D := {z ∈ V0(C) | y = Im(z) ∈ C}.

The explicit isomorphism is

D → V (C), z 7→ w(z) := z + e−Q(z)f
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composed with projection to Q−. The map z 7→ w(z) can be viewed as a holo-

morphic section of LD.

We now define the notion of a modular form on D ×H(Af ).

Definition 2.1. A modular form on D×H(Af ) of weight m ∈ 1
2
Z is a function

Ψ : D ×H(Af ) → C such that

1. Ψ(z, hk) = Ψ(z, h) for all k ∈ K,

2. Ψ(γz, γh) = j(γ, z)mΨ(z, h) for all γ ∈ H(Q), where j(γ, z) is an automor-

phy factor.

Meromorphic modular forms on D × H(Af ) of weight m ∈ Z can be identified

with meromorphic sections of L⊗m. If Ψ is such a meromorphic modular form,

then the Petersson norm of the section (z, h) 7→ Ψ(z, h)w(z)⊗m associated to Ψ

is

||Ψ(z, h)||2 = |Ψ(z, h)|2|y|2m.

Borcherds proved that the regularized integral Φ(z, h;F ) satisfies the equation

Φ(z, h;F ) = −2 log ||Ψ(z, h;F )||2 − c0(0)(log(2π) + Γ′(1)) (2.2)

for a meromorphic modular form Ψ(F ) on D ×H(Af ) of weight m = 1
2
c0(0).

Definition 2.2. A Borcherds form Ψ(F ) is a meromorphic modular form on

D × H(Af ) which arises (via (2.2)) from the regularized theta lift of a modular

form F .

2.3 CM Points

Assume that we have a rational splitting

V = V+ ⊕ U,
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where V+ has signature (n, 0) and U has signature (0, 2). This determines a two-

point subset D0 ⊂ D given by U(R) with its two orientations. For z0 ∈ D0, we

are interested in computing the integral

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh. (2.3)

Let T = GSpin(U) and let K be as in section 2.2. Define KT = K ∩ T (Af ).

The above integral can be written as a finite sum over T (Q)\ T (Af )/KT , and we

consider the set of CM points

T (Q)\
(

D0 × T (Af )/KT

)

→֒ XK .

Our main theorem gives a formula for (2.3), which then, via (2.2), gives a formula

for the average of a Borcherds form over these CM points.

2.4 Some Useful Observations for n = 0

First we consider the case when n = 0 and our space V = U is negative-definite.

In this case, D = D0, the Gaussian is ϕ∞(x) = eπ(x,x) and the theta function is

θ(τ, z0, h;ϕ) = v
1
2

∑

x∈U(Q)

ω(g′τ )e
π(x,x)ϕ(h−1x). (2.4)

Let F (τ) be a meromorphic modular form of weight 1 valued in SL, and let

F (τ) =
∑

ϕ

fϕ(τ)ϕ =
∑

ϕ

∑

m∈Q

cϕ(m)qmϕ, (2.5)

where ϕ runs over the characteristic functions of cosets of L in L∨. We assume

cϕ(m) ∈ Z for m ≤ 0. The functions fϕ are meromorphic modular forms with

some real multiplier for a congruence subgroup of SL2(Z), and it will be very

useful to know how large their Fourier coefficients can be.
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Lemma 2.3. Assume mϕ ∈ Z is such that cϕ(mϕ) 6= 0 and cϕ(m) = 0 for all

m < mϕ. Then there are constants C and C ′ such that, for m > 0,

|cϕ(m)| ≤ C ′
(

(−mϕ + 2)(m−mϕ)6 +m6eC
√

m
)

,

where C depends on mϕ and on the multiplier and C ′ depends on the polar part

of fϕ.

Proof. The cusp form of weight 12, (2π)−12∆(τ) = q
∏∞

n=1(1−qn)24, has Fourier

expansion

(2π)−12∆(τ) =
∞
∑

N=1

τ(N)qN ,

where |τ(N)| ≤ C1N
6 for some constant C1. Let ∆̃(τ) = (2π)−12∆(τ). We can

look at fϕ/∆̃, which has weight −11 = 1 − 24
2
. If

fϕ/∆̃ =
∞
∑

m=mϕ−1

aϕ(m)qm,

then for m > 0, (3.38) of [12] tells us there are constants C2 and C such that

|aϕ(m)| ≤ C2m
− 25

4 eC
√

m,

where C depends on mϕ and on the multiplier. We have

fϕ(τ) =
(

∞
∑

N=1

τ(N)qN
)(

∞
∑

m=mϕ−1

aϕ(m)qm
)

=
∞
∑

N=1

∞
∑

m=mϕ−1

τ(N)aϕ(m)qN+m

=
∞
∑

m=mϕ

[

m−mϕ+1
∑

N=1

τ(N)aϕ(m−N)

]

qm.
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Then

|cϕ(m)| =

∣

∣

∣

∣

∣

m−mϕ+1
∑

N=1

τ(N)aϕ(m−N)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

N≥m

τ(N)aϕ(m−N) +
∑

0<N<m

τ(N)aϕ(m−N)

∣

∣

∣

∣

∣

≤ C1

m−mϕ+1
∑

N=m

N6|aϕ(m−N)| + C1C2

∑

0<N<m

N6(m−N)−
25
4 eC

√
m−N .

We know there is a constant C3 such that |aϕ(m)| ≤ C3 for m ∈ {mϕ, . . . , 0},

and thus

|cϕ(m)| ≤ C1C3(−mϕ + 2)(m−mϕ)6 + C1C2m
6eC

√
m

≤ C ′
(

(−mϕ + 2)(m−mϕ)6 +m6eC
√

m
)

,

for some constant C ′.

In the n = 0 case, it turns out that the regularized integral is always finite.

Proposition 2.4. For h ∈ H(Af ),

Φ(z0, h;F ) =

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ)

is always finite.

Proof. This case corresponds to signature (2, 0) in [2]. In Theorem 6.2 of [2],

Borcherds points out that Φ is nonsingular except along a locally finite set of

codimension 2 sub-Grassmannians λ⊥, for some negative norm vectors λ ∈ L.

No such vectors exist in signature (2, 0). For ease of the reader, we give the proof

in our notation. We have

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ) = CT

σ=0

{

lim
t→∞

∫

Ft

θ(τ, z0, h;F )v−σdµ(τ)

}

, (2.6)
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and we can write the integral on the right hand side of (2.6) as

t
∫

1

1
2
∫

− 1
2

θ(τ, z0, h;F )v−σdµ(τ) +

∫

F1

θ(τ, z0, h;F )v−σdµ(τ).

The integral over the compact set F1 is finite and independent of t, so we just

look at the first part. By [15], we have

ω(g′τ )e
π(x,x) = v

1
2 e(uQ(x))e2πvQ(x),

where e(y) = e2πiy. Then (2.4) is

θ(τ, z0, h;ϕ) = v
∑

x∈U(Q)

e(uQ(x))e2πvQ(x)ϕ(h−1x),

and so the integral over Ft −F1 is

∑

ϕ

∑

m∈Q

∑

x∈U(Q)

cϕ(m)ϕ(h−1x)

t
∫

1

1
2
∫

− 1
2

e(um)e(uQ(x))e−2πvme2πvQ(x)v−σ−1dudv.

(2.7)

Lemma 2.5. If m+Q(x) /∈ Z, then cϕ(m) = 0.

Proof. When we consider the transformation law for F , we have F (τ + 1) =

ω(T )(F (τ)). That is, for any x ∈ U(Af ),

∑

ϕ

∑

m

cϕ(m)qme(m)ϕ(x) = ω(T )

(

∑

ϕ

∑

m

cϕ(m)qmϕ

)

(x)

=
∑

ϕ

∑

m

cϕ(m)qmω(T )(ϕ)(x)

=
∑

ϕ

∑

m

cϕ(m)qme(−Q(x))ϕ(x).

We see m+Q(x) /∈ Z implies cϕ(m) = 0.
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For m+Q(x) ∈ Z,

1
2
∫

− 1
2

e(um)e(uQ(x))du =















1 if m+Q(x) = 0,

0 otherwise.

.

Integrating with respect to u in (2.7) and letting t→ ∞ gives

∑

ϕ

∑

m∈Q
m≥0

∑

x∈U(Q)
Q(x)+m=0

cϕ(m)ϕ(h−1x)

∞
∫

1

e−4πmvv−σ−1dv. (2.8)

We have m ≥ 0 since Q(x) ≤ 0. When m = 0, we get

∑

ϕ

cϕ(0)ϕ(0)

t
∫

1

v−σ−1dv = c0(0)
1

σ
(1 − t−σ),

which equals zero when we take the limit as t → ∞ followed by the constant

term at σ = 0. For m > 0, (3.35) of [12] says

∞
∫

0

e−4πmvv−σ−1dv ≤ C(ǫ, σ)e−4πm

for any ǫ with 0 < ǫ < 4πm, where the constant C(ǫ, σ) is uniform in any σ-

halfplane and independent of m. Using this in (2.8), we have

C(ǫ, σ)
∑

ϕ

∑

m>0

cϕ(m)e−4πm
∑

x∈U(Q)
Q(x)+m=0

ϕ(h−1x),

which is finite by Lemma 2.3.

2.5 Eisenstein Series

Here we give the basic definition of an Eisenstein series and some related theory

when V has signature (n, 2) for n even. What follows is a summary of the
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explanations given in [12] for n even, and we refer the reader to that paper for

the more general theory. Inside of GA, we have the subgroups

NA = {n(b) | b ∈ A}, n(b) =







1 b

1






,

and

MA = {m(a) | a ∈ A×}, m(a) =







a

a−1






.

Define the quadratic character χ = χV of A×/Q× by

χ(x) = (x,−det(V )),

where det(V ) ∈ Q×/(Q×)2 is the determinant of the matrix for the quadratic

form Q on V . For s ∈ C, let I(s, χ) be the principal series representation of GA.

This space consists of smooth functions Φ(s) on GA such that

Φ(n(b)m(a)g, s) = χ(a)|a|s+1Φ(g, s).

We have a GA-intertwining map

λ = λV : S(V (A)) → I
(n

2
, χ
)

, (2.9)

where λ(ϕ)(g) = (ω(g)ϕ)(0). If K∞ = SO(2) and Kf = SL2(Ẑ), then a section

Φ(s) ∈ I(s, χ) is called standard if its restriction to K∞Kf is independent of s.

The function λ(ϕ) has a unique extension to a standard section Φ(s) ∈ I(s, χ)

such that Φ
(

n
2

)

= λ(ϕ). We let P = MN and define the Eisenstein series

associated to Φ(s) by

E(g, s; Φ) =
∑

γ∈PQ\GQ

Φ(γg, s),
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where GQ is identified with its image in GA. This series converges for Re(s) > 1

and has a meromorphic analytic continuation to the whole s-plane.

One step in proving the (0, 2)-Theorem is to apply Maass operators to obtain

a relation between two Eisenstein series. Let

X± =
1

2







1 ±i

±i −1






∈ sl2(C).

For r ∈ Z, let χr be the character of K∞ defined by

χr(kθ) = eirθ, kθ =







cos θ sin θ

−sin θ cos θ






∈ K∞.

Let φ : GR → C be a smooth function of weight l, meaning φ(gkθ) = χl(kθ)φ(g),

and let ξ(τ) = v−
l
2φ(gτ ) be the corresponding function on H. Then X±φ has

weight l ± 2, and the corresponding function on H is

v−
l±2
2 X±φ(gτ ) =















(

2i ∂ξ
∂τ

+ l
v
ξ
)

(τ) for +,

−2iv2 ∂ξ
∂τ̄

(τ) for −.

Lemma 2.6 (Lemma 2.7 of [12]). Let Φr
∞(s) ∈ I∞(s, χ) be the normalized

eigenvector of weight r for the action of K∞. Then

X±Φr
∞(s) =

1

2
(s+ 1 ± r)Φr±2

∞ (s).

For ϕ ∈ S(V (Af )), let E(g, s; Φr
∞ ⊗ λ(ϕ)) be the Eisenstein series of weight r

on GA associated to ϕ. For the Gaussian, ϕ∞(x, z), we have λ(ϕ∞) = Φl
∞
(

n
2

)

,

where l = n
2
− 1. This means we have

X−E(g, s; Φl+2
∞ ⊗ λ(ϕ)) =

1

2
(s− l − 1)E(g, s; Φl

∞ ⊗ λ(ϕ)).

On H, this translates to

−2iv2 ∂

∂τ̄

{

E(τ, s;ϕ, l + 2)
}

=
1

2

(

s− n

2

)

E(τ, s;ϕ, l), (2.10)
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where we write E(τ, s;ϕ, l) = v−
l
2E(gτ , s; Φ

l
∞ ⊗ λ(ϕ)). One main result we need

is the Siegel-Weil formula.

Theorem 2.7 (Siegel-Weil formula). Let V be a vector space of signature

(n, 2). Assume V is anisotropic or that dim(V ) − r0 > 2, where r0 is the Witt

index of V . Then E(g, s;ϕ) is holomorphic at s = n
2

and

E
(

g,
n

2
;ϕ
)

=
α

2

∫

SO(V )(Q)\SO(V )(A)

θ(g, h;ϕ)dh,

where dh is Tamagawa measure on SO(V (A)), and α is 2 if n = 0 and is 1

otherwise.

Here θ(g, h;ϕ) is defined as in (2.1) without v−
l
2 and with g replacing g′τ . The

integration for SO(U)(R) is with respect to the action h−1
∞ x in the argument of

ϕ∞.

Let us now consider the situation V = U , sig(U) = (0, 2). The representation

we are interested in is I(0, χ). This global principal series is a restricted tensor

product of local ones,

I(0, χ) = ⊗′
vIv(0, χv).

For the local space Uv = U(Qv), define the quadratic character χv of Q×
v by

χv(x) = (x,−det(Uv))v.

Let Rv(U) be the maximal quotient of S(Uv) on which O(Uv) acts trivially. The

following proposition is a special case of Proposition 1.1 of [11].

Proposition 2.8. (i) If v 6= ∞, then

Iv(0, χv) = Rv(U
+) ⊕Rv(U

−),

24



where U± has Hasse invariant ǫv(U
±) = ±1.

(ii) If v = ∞, then

I∞(0, χ∞) = R∞(U(0, 2)) ⊕R∞(U(2, 0)),

and the spaces have opposite Hasse invariants.

Now we define the notion of an incoherent collection.

Definition 2.9. An incoherent collection C = {Cv} of quadratic spaces is a set

of quadratic spaces Cv such that

1. For all v, dimQv
(Cv) = 2, and χCv

= χ.

2. For almost all v, Cv ≃ Uv.

3. (Incoherence condition) The product formula fails for the Hasse invariants:

∏

v

ǫv(Cv) = −1.

Then we have, cf. (2.10) in [11],

I(0, χ) ≃
(

⊕

U ′

Π(U ′)

)

⊕
(

⊕

C
Π(C)

)

as a sum of two irreducible pieces defined as follows. U ′ runs over all global

quadratic spaces of dimension 2 with χU ′ = χ, while C runs over all incoherent

collections of dimension 2 and character χ, and

Π(U ′) = ⊗′
vRv(U

′), Π(C) = ⊗′
vRv(C).

For λ = λU as in (2.9), we have λ(ϕ∞) = Φ−1
∞ (0), where Φ−1

∞ is the normalized

eigenvector of weight −1 for the action of K∞. From the theory of principal series
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representations, we have Φ−1
∞ (0) ∈ R∞(U(0, 2)) and Φ1

∞(0) ∈ R∞(U(2, 0)). Then

Lemma 2.6 implies

X+Φ−1
∞ (s) =

1

2
sΦ1

∞(s),

so we see that the Maass operator X+ shifts the coherent Eisenstein series

E(g, s; Φ−1
∞ ⊗ λ(ϕ)) to the incoherent Eisenstein series E(g, s; Φ1

∞ ⊗ λ(ϕ)). The-

orem 2.2 of [11] then tells us that

E(g, 0; Φ1
∞ ⊗ λ(ϕ)) = 0.

2.6 The (0, 2)-Theorem

The integral we want to compute is

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh, (2.11)

which is equal to

∫

SO(U)(Q)\SO(U)(Af )

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ)dh. (2.12)

As in [12], we would like to be able to switch the order of integration, where the

inside integral is regularized. That is, we want (2.12) to equal

∫ •

Γ\H
(( F (τ),

∫

SO(U)(Q)\SO(U)(Af )

θ(τ, z0, h)dh ))dµ(τ).

Note that F : H → SL implies F (τ) ∈ S(U(Af ))
K , where

K = {h ∈ H(Af ) | h(λ+ L) = λ+ L,∀λ ∈ L∨/L}

is an open subset of H(Af ). Before we justify the interchange of integrals, we

need to make some remarks about our specific case. For a reference on Clifford
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algebras, see [4] or [9]. The Clifford algebra C(U) can be written as C(U) =

C0(U)⊕C1(U), where C0(U) and C1(U) are the even and odd parts, respectively.

C0(U)× acts on C1(U) by conjugation. Assume U has basis {u, v} with Q(u) =

a,Q(v) = b and (u, v) = 0. Then C(U) is spanned by {1, u, v, uv} with C0(U) =

span{1, uv} and C1(U) = span{u, v}. By definition,

H = {g ∈ C0(U)× | gUg−1 = U}.

Since C1(U) = U , H = C0(U)×. In C0(U) we have (uv)2 = −ab, so if k =

Q
(√

−ab
)

, then H ≃ k×. This means SO(U) ≃ k1 and k× → k1 is the map

x 7→ x

xσ

by Hilbert’s Theorem 90. We have the exact sequence

1 → Z → H → SO(U) → 1,

where H(Af ) ≃ k×Af
, H(Q) ≃ k×, Z(Af ) ≃ Q×

Af
and Z(Q) ≃ Q×. If B(h) is a

function on H(Af ) which only depends on the image of h in SO(U)(Af ), then

we can view B as a function on SO(U)(Af ) as well.

Lemma 2.10. Let B(h) be a function on H(Af ) depending only on the image of

h in SO(U)(Af ). Assume B is invariant under K and H(Q). Then

∫

SO(U)(Q)\SO(U)(Af )

B(h)dh = vol(K)
∑

h∈H(Q)\H(Af )/K

B(h),

and the sum is finite.

Proof. We have the exact sequence

1 → k1
A → k×A → R×

+ → 1,

where the map to R×
+ is the absolute value map. By the product formula, k× ⊂ k1

A

and we know k×\k1
A is compact.
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Lemma 2.11. k×A = Q×
Ak

1
A.

Proof. Q×
A injects into k×A and also maps onto R×

+. So if (a) ∈ k×A then ∃(b) ∈ Q×
A

with |(b)| = |(a)|. Then (b) ∈ Q×
A ⊂ k×A implies k1

A(b) = k1
A(a), so (a) ∈ Q×

Ak
1
A.

Lemma 2.11 implies

k×\k1
A ։ k×Q×

A\k×A ,

and so k×Q×
A\k×A is also compact. The set we integrate over is

SO(U)(Q)\SO(U)(Af ) = H(Q)\H(Af )/Z(Af ) ≃ k×Q×
Af
\k×Af

.

This is compact since k×Q×
A\k×A maps onto it. Then K is open and K ⊃ Z(Af ) so

H(Q)\H(Af )/K is finite. The volume term appears since B is K-invariant.

Proposition 2.12.

∫

SO(U)(Q)\SO(U)(Af )

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ)dh

=

∫ •

Γ\H
(( F (τ),

∫

SO(U)(Q)\SO(U)(Af )

θ(τ, z0, h)dh ))dµ(τ).

Proof. The main point is that since F (τ) ∈ S(U(Af ))
K , we know

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ)

is K-invariant. So if we let

B(h) =

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ),

then Lemma 2.10 says

∫

SO(U)(Q)\SO(U)(Af )

B(h)dh = vol(K)
∑

h∈H(Q)\H(Af )/K

B(h)

=

∫ •

Γ\H
vol(K)

∑

h∈H(Q)\H(Af )/K

θ(τ, z0, h;F (τ))dµ(τ),

(2.13)
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since the sum is finite. Now apply Lemma 2.10 again to θ(τ, z0, h;F (τ)) and

(2.13) is

=

∫ •

Γ\H
(( F (τ),

∫

SO(U)(Q)\SO(U)(Af )

θ(τ, z0, h)dh ))dµ(τ).

The quadratic space U is anisotropic, so we can apply Theorem 2.7. This tells

us that for any ϕ ∈ S(U(A)),

∫

SO(U)(Q)\SO(U)(A)

θ(τ, z0, h;ϕ)dh = v
1
2E(gτ , 0;ϕ,−1), (2.14)

where E(gτ , s;ϕ,−1) is a coherent Eisenstein series of weight −1.

Lemma 2.13.

∫

SO(U)(Q)\SO(U)(Af )

θ(τ, z0, h;ϕ)dh = v
1
2E(gτ , 0;ϕ,−1).

Proof. Since the Gaussian is ϕ∞(x) = eπ(x,x), the theta function is invariant under

the action of SO(U)(R). We have that SO(U)(R) acts on SO(U)(Q)\SO(U)(A),

so we can project

SO(U)(Q)\SO(U)(A) → SO(U)(Q)SO(U)(R)\SO(U)(A),

and

SO(U)(Q)SO(U)(R)\SO(U)(A) ≃ SO(U)(Q)\SO(U)(Af ), (2.15)

since SO(U)(A) = SO(U)(R) × SO(U)(Af ). For this factorization, we choose a

factorization for the measure dh = dh∞× dhf such that vol(SO(U)(R)) = 1. We

have

vol
(

SO(U)(Q)\SO(U)(A)
)

= 2
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and so

vol
(

SO(U)(Q)\SO(U)(Af )
)

= 2.

Then

∫

SO(U)(Q)\SO(U)(A)

θ(τ, z0, h;ϕ)dh (2.16)

=

∫

SO(U)(Q)SO(U)(R)\SO(U)(A)

∫

SO(U)(R)

θ(τ, z0, h∞hf ;ϕ)dh∞dhf .

Using vol(SO(U)(R)) = 1 and the invariance under SO(U)(R) along with (2.15),

we see (2.16) equals

∫

SO(U)(Q)\SO(U)(Af )

θ(τ, z0, hf ;ϕ)dhf .

Hence, writing dh instead of dhf , we have

∫

SO(U)(Q)\SO(U)(Af )

θ(τ, z0, h;ϕ)dh = v
1
2E(gτ , 0;ϕ,−1).

Now we can compute vol(K).

Lemma 2.14.

vol(K) =
2

#(H(Q)\H(Af )/K)
.

Proof. Using Lemma 2.10 and the volume assumptions made in the proof of

Lemma 2.13, we have

2 =

∫

SO(U)(Q)\SO(U)(Af )

dh = vol(K)(#(H(Q)\H(Af)/K)).

We let

E(τ, s;−1) := v
1
2E(gτ , s;−1).
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Then for (2.11) we have

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh =

∫ •

Γ\H
(( F (τ), E(τ, 0;−1) ))dµ(τ). (2.17)

For F as in (2.5), the right hand side of (2.17) is

∫ •

Γ\H
(( F (τ), E(τ, 0;−1) ))dµ(τ) =

∫ •

Γ\H

∑

ϕ

fϕ(τ)E(τ, 0;ϕ,−1)dµ(τ). (2.18)

Let

I(s, t) :=

∫

Ft

∑

ϕ

fϕ(τ)E(τ, s;ϕ,−1)v−2dudv.

In order to state the main theorem of this chapter, we view U ≃ k = Q(
√
−d),

where d ∈ Z>0 is square-free, and let χd be the character of Q×
A defined by

χd(x) = (x,−d)A. Let ∆ be the absolute value of the discriminant of k. We

define the normalized L-series

Λ(s, χd) = π− s+1
2 Γ

(

s+ 1

2

)

L(s, χd).

Theorem 2.15 (The (0, 2)-Theorem). For ϕ ∈ S(U(Af )), let

E(τ, s;ϕ,+1) =
∑

m

Aϕ(s,m, v)qm,

where the Fourier coefficients have Laurent expansions

Aϕ(s,m, v) = bϕ(m, v)s+O(s2)

at s = 0. For any ϕ ∈ S(U(Af )), let

κϕ(m) :=















limt→∞ bϕ(m, t) if m > 0,

k0(0)ϕ(0) if m = 0,

where

k0(0) = log(∆) + 2
Λ′(1, χd)

Λ(1, χd)
.
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Let F : H → SL ⊂ S(U(Af )) be a meromorphic modular form for SL2(Z) of

weight 1, with Fourier expansion

F (τ) =
∑

ϕ

fϕ(τ)ϕ =
∑

ϕ

∑

m

cϕ(m)qmϕ,

where ϕ runs over the coset basis with respect to some lattice L. Also, assume

cϕ(m) ∈ Z for m ≤ 0. Let

Φ(z0, h;F ) =

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ).

Then
∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh = 2
∑

ϕ

∑

m≥0

cϕ(−m)κϕ(m).

Proof. Our proof is similar to that in [12]. The integral we want to compute is

given by (2.18). Letting l = −1 in (2.10), we have

E(τ, s;ϕ,−1)v−2 =
−4i

s

∂

∂τ̄
{E(τ, s;ϕ,+1)} .

This means we can write

I(s, t) =
1

2i

∫

Ft

d
(

∑

ϕ

fϕ(τ)
−4i

s
E(τ, s;ϕ,+1)dτ

)

.

By Stokes’ Theorem, this is

=
−2

s

∫

∂Ft

∑

ϕ

fϕ(τ)E(τ, s;ϕ,+1)dτ

=
−2

s

− 1
2
+it
∫

1
2
+it

∑

ϕ

fϕ(τ)E(τ, s;ϕ,+1)du

=
2

s
· const. term of

(

∑

ϕ

fϕ(τ)E(τ, s;ϕ,+1)
)

∣

∣

∣

∣

v=t

. (2.19)
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The definition of the regularized integral implies

∫ •

Γ\H
(( F (τ), E(τ, 0) ))dµ(τ) =

CT
σ=0

{

lim
t→∞

∫

Ft

∑

ϕ

fϕ(τ)E(τ, 0;ϕ,−1)v−σdµ(τ)

}

.

We need Proposition 2.5 of [12] to hold for n = 0. If we use Proposition 2.6 of

[12] and the fact that a factor of 2 appears in the Siegel-Weil formula here, then

in our notation this is

Proposition 2.16.

CT
σ=0

{

lim
t→∞

∫

Ft

∑

ϕ

fϕ(τ)E(τ, 0;ϕ,−1)v−σ−2dudv

}

= lim
t→∞

[

∫

Ft

∑

ϕ

fϕ(τ)E(τ, 0;ϕ,−1)v−2dudv − 2c0(0) log(t)

]

.

Proof. From Lemma 2.10, the left hand side of the desired identity is

vol(K)
∑

h

CT
σ=0

{

lim
t→∞

∫

Ft

((F (τ), θ(τ, z0, h) ))v−σ−2dudv

}

,

where vol(K) = 2
#(H(Q)\H(Af )/K)

. Fixing h, we have

CT
σ=0

{

lim
t→∞

∫

Ft−F1

((F (τ), θ(τ, z0, h) ))v−σ−2dudv

}

+

∫

F1

((F (τ), θ(τ, z0, h) ))dµ(τ).

(2.20)

The first term in (2.20) can be written as

CT
σ=0







lim
t→∞

t
∫

1

C(v, h)v−σ−1dv







, (2.21)
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where

C(v, h) = v−1

1
2
∫

− 1
2

((F (τ), θ(τ, z0, h) ))du

= const. term of v−1((F (τ), θ(τ, z0, h) ))

=
∑

ϕ

∑

m∈Q
m≥0

cϕ(m)
∑

x∈U(Q)
Q(x)+m=0

ϕ(h−1x)e4πvQ(x).

Then we write (2.21) as

CT
σ=0







lim
t→∞

t
∫

1

[C(v, h) − c0(0)]v−σ−1dv + lim
t→∞

t
∫

1

c0(0)v−σ−1dv







. (2.22)

As in [12],
∞
∫

1

[C(v, h) − c0(0)]v−σ−1dv

is a holomorphic function of σ. Note, this fact follows, in part, from Lemma 2.3.

For the other piece of (2.22) we have

t
∫

1

c0(0)v−σ−1dv = c0(0)
1

σ
(1 − t−σ).

This term makes no contribution when we take the limit as t → ∞ followed by

the constant term at σ = 0. We are left with

lim
t→∞





t
∫

1

C(v, h)v−1dv −
t
∫

1

c0(0)v−1dv



 = lim
t→∞





t
∫

1

C(v, h)v−1dv − c0(0) log(t)



 .

We have the volume term in front and we sum over h ∈ H(Q)\H(Af)/K, so this

adds on a factor of 2.

We point out that the value c0(0) appearing in (2.5) and in Proposition 2.16

is independent of the choice of L. If we view F (τ) ∈ S(U(Af )) as F (τ, x) for
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x ∈ U(Af ), then c0(0) is the zeroth Fourier coefficient of F (τ, 0). Proposition

2.16 tells us

CT
σ=0

{

lim
t→∞

∫

Ft

∑

ϕ

fϕ(τ)E(τ, 0;ϕ,−1)v−σdµ(τ)

}

= lim
t→∞

[ ∫

Ft

∑

ϕ

fϕ(τ)E(τ, 0;ϕ,−1)v−2dudv − 2c0(0) log(t)

]

= lim
t→∞

[

I(0, t) − 2c0(0) log(t)
]

.

We need to compute I(0, t). We have

Aϕ(s,m, v) = bϕ(m, v)s+O(s2), (2.23)

where there is no constant term in Aϕ(s,m, v) since E(τ, s;ϕ,+1) vanishes at

s = 0. Then (2.19) implies

I(s, t) =
2

s

∑

ϕ

∑

m

cϕ(−m)Aϕ(s,m, t),

so using (2.23) we have

I(0, t) = 2
∑

ϕ

∑

m

cϕ(−m)bϕ(m, t). (2.24)

Now we show that parts (i) and (ii) of Proposition 2.11 of [12] hold for n = 0.

Proposition 2.17. (i) For m < 0, bϕ(m, t) decays exponentially as t→ ∞.

(ii)

lim
t→∞

(

2
∑

ϕ

∑

m<0

cϕ(−m)bϕ(m, t)

)

= 0.

Proof. If ϕ = ⊗pϕp ∈ S(U(Af )) and

E(τ, s;ϕ,+1) =
∑

m

Em(τ, s;ϕ,+1),
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then for m 6= 0 we have the product formula

Em(τ, s;ϕ,+1) = Aϕ(s,m, v)qm = Wm,∞(τ, s; +1)
∏

p

Wm,p(s, ϕp).

Proposition 2.6 (iii) of [14] tells us that for m < 0,

Wm,∞(τ, 0; +1) = 0,

and

W ′
m,∞(τ, 0; +1) = πiqm

∞
∫

1

r−1e−4π|m|vrdr.

For the finite primes we have

C(m) :=

(

∏

p

Wm,p(s, ϕp)

)

∣

∣

∣

∣

s=0

= O(1).

Then

bϕ(m, t) = C(m)W ′
m,∞(τ, 0; +1)

= C(m)πiqm

∞
∫

1

r−1e−4π|m|vrdr,

and we have

|bϕ(m, t)| = O
(

v−1|m|−1e−4π|m|v) .

This proves (i). Part (ii) then follows from Lemma 2.3.

Part (ii) of Proposition 2.17 tells us that we may ignore the sum on m < 0 in

(2.24). This means our formula for the integral is

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh =

lim
t→∞

[

2
∑

ϕ

∑

m≥0

cϕ(−m)bϕ(m, t) − 2c0(0) log(t)

]

.

We can improve this by looking at the m = 0 part. The analogue of Proposition

2.11 (iii) of [12] is
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Lemma 2.18. For m = 0,

b0(0, t) − log(t) = log(∆) + 2
Λ′(1, χd)

Λ(1, χd)
,

and for ϕ 6= ϕ0, bϕ(0, t) = 0.

Proof. By Theorem 3.1 of [16], we have

E0(τ, s;ϕ,+1) = v
s
2ϕ(0) +W0,∞(τ, s; +1)

∏

p

W0,p(s, ϕp)

= v
s
2ϕ(0) − 2πi

2−sΓ(s)v−
s
2

Γ
(

s
2

+ 1
)

Γ
(

s
2

)

∏

p

W0,p(s, ϕp),

which by the duplication formula is

= v
s
2ϕ(0) −

√
πiv−

s
2

Γ
(

s+1
2

)

Γ
(

s
2

+ 1
)

∏

p

W0,p(s, ϕp).

Theorem 5.2 of [16] implies W0,p(s, ϕp) = 0 if ϕp is not the characteristic function

of the local lattice. So bϕ(0, t) = 0 for ϕ 6= ϕ0. Now let ϕ = ϕ0. Propositions 2.1

and 6.3 of [16] imply

E0(τ, s;ϕ0,+1) = v
s
2 −

√
πv−

s
2

Γ
(

s+1
2

)

L(s, χd)

Γ
(

s
2

+ 1
)

L(s+ 1, χd)
c0,

where

c0 = 2α2

∏

q|d
q=odd prime

q−
1
2

and

α2 =































0 if 2 is unramified,

−1 if 2 ∤ d and d ≡ 1(mod 4),

−3
2

if 2 | d.
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Then c0 = ∆− 1
2 , where ∆ is the absolute value of the discriminant of Q(

√
−d).

We have

E0(τ, s;ϕ0,+1) = v
s
2 − v−

s
2

π− s+1
2 Γ

(

s+1
2

)

L(s, χd)

π− s
2
−1Γ

(

s
2

+ 1
)

L(s+ 1, χd)
∆− 1

2

= v
s
2 − v−

s
2

Λ(s, χd)

Λ(s+ 1, χd)
∆− 1

2 .

The functional equation for Λ(s, χd) (cf. [5]) is

Λ(s, χd) = ∆
1
2
−sΛ(1 − s, χd).

We normalize E0(τ, s;ϕ0,+1) by ∆
s+1
2 Λ(s+ 1, χd) giving

E∗
0(τ, s;ϕ0,+1) = ∆

s+1
2 v

s
2 Λ(1 + s, χd) − ∆

s+1
2 v−

s
2 ∆−sΛ(1 − s, χd)

= ∆
s+1
2 v

s
2 Λ(1 + s, χd) − ∆

1−s
2 v−

s
2 Λ(1 − s, χd).

Hence,

E∗,′
0 (τ, 0;ϕ0,+1) = 2

∂

∂s

{

∆
s+1
2 v

s
2 Λ(1 + s, χd)

} ∣

∣

∣

s=0

= ∆
1
2 Λ(1, χd)

{

log(∆) + log(v) + 2
Λ′(1, χd)

Λ(1, χd)

}

= hk

{

log(∆) + log(v) + 2
Λ′(1, χd)

Λ(1, χd)

}

,

by the residue formula. Then since E∗,′(τ, 0;ϕ0,+1) = hkE
′(τ, 0;ϕ0,+1), we have

b0(0, t) − log(t) = log(∆) + 2
Λ′(1, χd)

Λ(1, χd)
.

Now the m = 0 part is

2
∑

ϕ

cϕ(0)bϕ(0, t) − 2c0(0) log(t) = 2
∑

ϕ 6=ϕ0

cϕ(0)bϕ(0, t) + 2c0(0)(b0(0, t) − log(t)),

and Lemma 2.18 tells us that this expression is 2c0(0)k0(0). This finishes the

proof of Theorem 2.15.
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Chapter 3

The Adelic (n, 2)-Theorem

3.1 The Rational Splitting V = V+ ⊕ U

Now we consider the general case. Assume we have the decomposition V = V+⊕U

where V+ has signature (n, 0) and U has signature (0, 2). For x ∈ V , write

x = x1 + x2, x1 ∈ V+, x2 ∈ U . Let z0 ∈ D0. Then R(x, z0) = −(x2, x2) so we see

ϕ∞(x, z0) = e−π(x,x)z0 = e−π[(x1,x1)−(x2,x2)] = e−π(x1,x1)eπ(x2,x2),

which is equal to ϕ∞,+(x1)ϕ∞,−(x2) for the Gaussians on V+ and U , respectively.

We also have ω(g′τ )ϕ∞ = ω+(g′τ )ϕ∞,+ ⊗ ω−(g′τ )ϕ∞,− for the corresponding Weil

representations. For this decomposition of V , we can write the theta function on

S(V (Af )) as a tensor product of two distributions, one on S(V+(Af )) and one on

S(U(Af )). To see this, let ϕ ∈ S(V (Af )). The theta functions are linear, so it
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suffices to look at a factorizable Schwartz function ϕ = ϕ+ ⊗ ϕ−. This gives

θ(τ, z0, h;ϕ) =v−
l
2

∑

x∈V (Q)

ω(g′τ )(ϕ∞(·, z0) ⊗ ω(h)ϕ)(x)

=v−
l
2

∑

x1,x2

(ω+(g′τ )ϕ∞,+(x1)ϕ+(h−1
+ x1))(ω−(g′τ )ϕ∞,−(x2)ϕ−(h−1

− x2))

=v−
n
4

(

∑

x1

ω+(g′τ )ϕ∞,+(x1)ϕ+(h−1
+ x1)

)

×

v
1
2

(

∑

x2

ω−(g′τ )ϕ∞,−(x2)ϕ−(h−1
− x2)

)

=θ+(τ, z0, h+;ϕ+)θ−(τ, z0, h−;ϕ−).

Hence,

θ(τ, z0, h) = θ+(τ, z0, h+) ⊗ θ−(τ, z0, h−),

where their respective weights are n
2

and −1. Since z0 is fixed, we write

θ±(τ, h±) = θ±(τ, z0, h±).

3.2 The Contraction Map

Now we describe the main way in which we use the above factorization of the

theta function. Let ϕ ∈ S(V (Af )). Then we can write ϕ =
∑

j ϕ
j
+ ⊗ ϕj

−, where

ϕj
+ ∈ S(V+(Af )), ϕ

j
− ∈ S(U(Af )) and the sum is finite. We define the Schwartz

space contraction map

〈·, θ+(τ, h+)〉U : S(V (Af )) → S(U(Af ))

by

〈ϕ, θ+(τ, h+)〉U :=
∑

j

θ+(τ, h+;ϕj
+)ϕj

−.
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It is clear that

(( ϕ, θ(τ, z0, h) )) = (( 〈ϕ, θ+(τ, h+)〉U , θ−(τ, h−) )).

The expression on the right hand side is nice because it is the pairing of a function

in S(U(Af )) and the theta function for U . This is just as in the n = 0 case. The

value of the contraction map that we are interested in is 〈F (τ), θ+(τ, h+)〉U .

Lemma 3.1. 〈F (τ), θ+(τ, h+)〉U is a modular form of weight 1 and type ω− for

Γ′.

Proof. By definition,

〈F (γ′τ), θ+(γ′τ, h+)〉U = (cτ + d)
〈

ω(γ′)(F (τ)), ω∨
+(γ′)(θ+(τ, h+))

〉

U
. (3.1)

Assume that F (τ) =
∑

j ϕ
j
+ ⊗ ϕj

−. We have

ω∨
+(γ′)(θ+(τ, h+)) = θ+(τ, h+;ω+(γ′)−1 ◦ ·),

so (3.1) is

= (cτ + d)

〈

∑

j

ω+(γ′)(ϕj
+) ⊗ ω−(γ′)(ϕj

−), θ+(τ, h+;ω+(γ′)−1 ◦ ·)
〉

U

= (cτ + d)
∑

j

θ+(τ, h+;ω+(γ′)−1ω+(γ′)(ϕj
+))ω−(γ′)(ϕj

−)

= (cτ + d)
∑

j

θ+(τ, h+;ϕj
+)ω−(γ′)(ϕj

−)

= (cτ + d)ω−(γ′) (〈F (τ), θ+(τ, h+)〉U) .

We will also see that assuming the non-positive Fourier coefficients of F lie

in Z implies the same is true for 〈F (τ), θ+(τ, h+)〉U . In order to compute this
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Fourier expansion, we need the expansion of θ+(τ, h+;ϕ+) for ϕ+ ∈ S(V+(Af )).

We take h+ = 1 since the integral we are interested in is

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh.

The explicit q-expansion of θ+(τ, 1;ϕ+) follows from how the Weil representation

acts in S(V+(R)). In our particular case,

θ+(τ, 1;ϕ+) = v−
n
4

∑

x1∈V+(Q)

ω+(g′τ )ϕ∞,+(x1)ϕ+(x1)

= v−
n
4

∑

x1

ω+(g′τ )e
−π(x1,x1)ϕ+(x1),

which by [15] is

= v−
n
4

∑

x1

v
n
4 e2πiuQ(x1)e−πv(x1,x1)ϕ+(x1)

=
∑

x1

e2πiτQ(x1)ϕ+(x1)

=
∑

m∈Q

(

∑

x1
Q(x1)=m

ϕ+(x1)
)

qm. (3.2)

Define

dϕ+(m) :=
∑

x1
Q(x1)=m

ϕ+(x1).

Let L+ ⊂ V+ be a lattice. Note that if ϕ+ is the characteristic function of a

coset λ+ + L+, then dϕ+(m) is an integer which counts the number of vectors

x1 ∈ λ+ + L+ such that Q(x1) = m. Also, V+(Q) is positive definite so m ≥ 0 in

(3.2).

Now we compute the Fourier expansion of 〈F (τ), θ+(τ, 1)〉U . We know F (τ) ∈

SL for some lattice L ⊂ V . If we let L+ = V+∩L and L− = U ∩L, then generally

the lattice L does not split. We have

L+ + L− ⊂ L ⊂ L∨ ⊂ L∨
+ + L∨

−.
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Let

L∨ =
⋃

η

η + L, L =
⋃

λ

λ+ (L+ + L−),

where η and λ range over L∨/L and L/(L+ + L−), respectively. If we write

η = η+ + η− and λ = λ+ + λ−, then

L∨ =
⋃

η

⋃

λ

(η+ + λ+ + L+) + (η− + λ− + L−) .

Let F (τ) =
∑

η fη(τ)ϕη+L for ϕη+L = char(η + L). Then

ϕη+L =
∑

λ

ϕη++λ++L+ ⊗ ϕη−+λ−+L−
,

and we have

F (τ) =
∑

η

∑

λ

fη(τ)
(

ϕη++λ++L+ ⊗ ϕη−+λ−+L−

)

.

By definition of the contraction map, this gives

〈F (τ), θ+(τ, 1)〉U =
∑

η

∑

λ

fη(τ)θ+

(

τ, 1;ϕη++λ++L+

)

ϕη−+λ−+L−
. (3.3)

In order to apply the (0, 2)-Theorem (Theorem 2.15), we want to have

〈F (τ), θ+(τ, 1)〉U ∈ SL−
.

From (3.3), we see this is in fact the case, but we point out that the cosets

η− + λ− + L− need not be incongruent mod L−. Let cη(m) = cϕη+L
(m) and

dη++λ+(m) = dϕη++λ++L+
(m). Then the Fourier expansion of 〈F (τ), θ+(τ, 1)〉U is

〈F (τ), θ+(τ, 1)〉U =
∑

η

∑

λ

(

∑

m

cη(m)qm
)(

∑

m

dη++λ+(m)qm
)

ϕη−+λ−+L−

=
∑

η

∑

λ

∑

m

(

∑

m1+m2=m

cη(m1)dη++λ+(m2)
)

qmϕη−+λ−+L−

=
∑

η

∑

λ

∑

m

Cη,λ+(m)qmϕη−+λ−+L−
,
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where we define

Cη,λ+(m) :=
∑

m1+m2=m

cη(m1)dη++λ+(m2).

The coefficients dη++λ+(m) ∈ Z≥0 for m ≥ 0 and dη++λ+(m) = 0 if m < 0. So

assuming cη(m) ∈ Z for m ≤ 0 implies Cη,λ+(m) ∈ Z for m ≤ 0. We have pointed

out several facts about the function 〈F (τ), θ+(τ, 1)〉U which we summarize in the

following proposition.

Proposition 3.2. If F : H → SL is a meromorphic modular form of weight 1− n
2

and type ω for Γ′, then

(i) 〈F (τ), θ+(τ, 1)〉U is a meromorphic modular form of weight 1 and type ω− for

Γ′,

(ii) 〈F (τ), θ+(τ, 1)〉U ∈ SL−
for L− = U ∩ L,

(iii) The non-positive Fourier coefficients of 〈F (τ), θ+(τ, 1)〉U lie in Z.

3.3 The (n, 2)-Theorem

As in chapter 2, there is a coherent Eisenstein series of weight −1 such that, for

any ϕ− ∈ S(U(Af )), we have

∫

SO(U)(Q)\SO(U)(Af )

θ−(τ, h−;ϕ−)dh− = v
1
2E(g′τ , 0;ϕ−,−1),

and we let E(τ, s) := v
1
2E(g′τ , s). Now we can state and prove the main theorem.

Theorem 3.3 (The (n, 2)-Theorem). For ϕ− ∈ S(U(Af )), let

E(τ, s;ϕ−,+1) =
∑

m

Aϕ−
(s,m, v)qm,

where the Fourier coefficients have Laurent expansions

Aϕ−
(s,m, v) = bϕ−

(m, v)s+O(s2)
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at s = 0. Let F : H → SL ⊂ S(V (Af )) be a meromorphic modular form for Γ′ of

weight 1 − n
2
, with Fourier expansion

F (τ) =
∑

η

fη(τ)ϕη+L =
∑

η

∑

m

cη(m)qmϕη+L,

where ϕη+L = char(η + L) and η runs over L∨/L. Also, assume cη(m) ∈ Z for

m ≤ 0. For λ ∈ L/(L+ + L−), we have

θ+(τ, 1;ϕη++λ++L+) =
∑

m

dη++λ+(m)qm,

where dη++λ+(m) = #{x1 ∈ η+ + λ+ + L+ | Q(x1) = m}. Let

κη,λ(m1) :=
∑

0≤m≤m1

dη++λ+(m1 −m)κη−+λ−
(m),

where

κη−+λ−
(m) := κϕη−+λ−+L−

(m) =















limt→∞ bϕη−+λ−+L−
(m, t) if m > 0,

k0(0)ϕη−+λ−+L−
(0) if m = 0,

and k0(0) is as in Lemma 2.18. Define

Φ(z, h;F ) :=

∫ •

Γ\H
(( F (τ), θ(τ, z, h) ))dµ(τ).

Then

κη,λ(m1) =
∑

x1∈η++λ++L+

κη−+λ−
(m1 −Q(x1)),

and for z0 ∈ D0 we have

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh = 2
∑

η

∑

λ

∑

m≥0

cη(−m)κη,λ(m).
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Proof. The desired integral can be written

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h;F )dh

=

∫

SO(U)(Q)\SO(U)(Af )

∫ •

Γ\H
(( F (τ), θ(τ, z0, h) ))dµ(τ)dh

=

∫

SO(U)(Q)\SO(U)(Af )

∫ •

Γ\H
(( 〈F (τ), θ+(τ, 1)〉U , θ−(τ, h−) ))dµ(τ)dh−

=

∫

SO(U)(Q)\SO(U)(Af )

Φ(z0, h−; 〈F (τ), θ+(τ, 1)〉U)dh−. (3.4)

Proposition 3.2 tells us we may apply the (0, 2)-Theorem to (3.4). Doing this we

see

(3.4) = 2
∑

η

∑

λ

∑

m≥0

Cη,λ+(−m)κη−+λ−
(m)

= 2
∑

η

∑

λ

∑

m≥0

(

∑

m1+m2=−m

cη(m1)dη++λ+(m2)
)

κη−+λ−
(m)

= 2
∑

η

∑

λ

∑

m≥0

(

∑

m1≤0

cη(m1)dη++λ+(−m−m1)
)

κη−+λ−
(m)

= 2
∑

η

∑

λ

∑

m≥0

(

∑

m1≥0

cη(−m1)dη++λ+(m1 −m)
)

κη−+λ−
(m). (3.5)

If m > m1, then dη++λ+(m1 −m) = 0, so

(3.5) = 2
∑

η

∑

λ

∑

m1≥0

cη(−m1)
(

∑

0≤m≤m1

dη++λ+(m1 −m)κη−+λ−
(m)

)

= 2
∑

η

∑

λ

∑

m1≥0

cη(−m1)κη,λ(m1).

Then

κη,λ(m1) =
∑

0≤m≤m1

(#{x1 ∈ η+ + λ+ + L+ | Q(x1) = m1 −m})κη−+λ−
(m)

=
∑

x1∈η++λ++L+

0≤Q(x1)≤m1

κη−+λ−
(m1 −Q(x1)). (3.6)
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We know that Q(x1) ≥ 0 and if we define κϕ−
(m) = 0 for m < 0, then we see

(3.6) is
∑

x1∈η++λ++L+

κη−+λ−
(m1 −Q(x1)),

which gives the desired formula for κη,λ(m1). Note, defining κϕ−
(m) = 0 for

m < 0 is very natural according to Proposition 2.17(i).

We now state an important corollary of Theorem 3.3, which gives the average

value of the logarithm of a Borcherds form over CM points. As in chapter 2,

let T = GSpin(U) and let K ⊂ H(Af ) be a compact open subgroup such that

F : H → SK
L . Write KT = K ∩ T (Af ).

Corollary 3.4. (i) When (2.2) holds, the result of Theorem 3.3 can be stated as

∑

t∈T (Q)\T (Af )/KT

log ||Ψ(z0, t;F )||2 =
−1

vol(KT )

(

∑

η

∑

λ

∑

m≥0

cη(−m)κη,λ(m) − C
)

,

where Ψ(F ) is a Borcherds form and C = −c0(0)(log(2π) + Γ′(1)).

(ii) If U ≃ k = Q(
√
−d) where d is an odd fundamental discriminant, then we

have the factorization

∏

t

||Ψ(z0, t;F )||4 = r

(

2de−3γe
2

L′(1,χd)

L(1,χd)

)−hkc0(0)

,

where γ = −Γ′(1) is Euler’s constant and r ∈ Q. This can also be written as

∏

t

||Ψ(z0, t;F )||4 = r

[

(

eγ

8dπ2

)hk d−1
∏

a=1

Γ
(a

d

)wkχd(a)
]c0(0)

,

where wk is the number of roots of unity in k.

Proof. (i) follows from (2.2). For (ii), we have vol(KT ) = 2
hk

, where hk is the

class number of k, and we will see from Theorem 4.1 of the next chapter that

hk

∑

η

∑

λ

∑

m>0

cη(−m)κη,λ(m) (3.7)
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is the logarithm of a rational number. From Λ(s, χd) = π− s+1
2 Γ

(

s+1
2

)

L(s, χd), we

see

Λ′(s, χd)

Λ(s, χd)
= −1

2
log(π) + Γ′(1) +

L′(1, χd)

L(1, χd)
.

So for the corresponding m = 0 part of (3.7) we have

−hkc0(0)

(

log(d) − log(π) + 2Γ′(1) + 2
L′(1, χd)

L(1, χd)
+ log(2π) + Γ′(1)

)

= −hkc0(0)

(

log(2d) − 3γ + 2
L′(1, χd)

L(1, χd)

)

.

The last identity follows from the Chowla-Selberg formula, which says

L′(1, χd)

L(1, χd)
= log(2π) + γ − wk

2hk

d−1
∑

a=1

χd(a) log Γ
(a

d

)

.
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Chapter 4

Explicit Computation of κϕ

In order to compute examples of our main theorem, we need to derive explicit

formulas for κϕµ
(t). We assume U = k, an imaginary quadratic field, and write

κϕµ
(t) as κ(t, µ,A), where our lattice L = A ⊂ Ok is an ideal and ϕµ = char(µ+A)

for µ ∈ A∨/A. For t > 0, κ(t, µ,A) is given by the second term in the Laurent

expansion of a certain Eisenstein series. These Eisenstein series have factoriza-

tions in terms of local Whittaker functions, and we use these factorizations to

derive formulas for κ(t, µ,A). For simplicity, we assume that k = Q(
√
−d), where

d > 3, d ≡ 3 (mod 4) and is square-free. Let A ⊆ Ok be any integral ideal and

let Q be the quadratic form given by Q(x) = −Nx
NA

. Let χ be the character

of Q×
A associated to k, which is defined via the global Hilbert symbol so that

χ(t) = (t,−d)A. Then for a prime p ≤ ∞, the local character is χp(t) = (t,−d)p

where ( , )p is the local Hilbert symbol.

Throughout this section we let p denote an unramified prime and q denote a

ramified prime. Let µ be a coset in D−1A/A, where D is the different, and let

t ∈ Q>0. Write µq for the image of µ under the map

D−1A/A → D−1
q Aq/Aq,
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where Aq = A⊗Z Zq, and similarly for D−1. For t ∈ N, we introduce the function

ρ(t) = #{A ⊆ Ok | NA = t}.

This function factors as

ρ(t) =
∏

p

ρp(t), (4.1)

where ρp(t) = ρ(pordp(t)). The explicit formula for κ(t, µ,A) is given by the

following theorem.

Theorem 4.1. For µ ∈ D−1A/A and t ∈ Q>0,

κ(t, µ,A) = −2k(µ)

hk

∏

q|d
char(Q(µq) + Zq)(t) ×

(

∑

q|d
ηq(t, µ) log(q)(ordq(t) + 1)ρ(dt) +

∑

p inert

ηp(t, µ) log(p)(ordp(t) + 1)ρ

(

dt

p

)

)

,

where

k(µ) = #{q ramified | µq = 0},

ηq(t, µ) =















































0 if µq 6= 0, or µq = 0 and χq(−t) = 1, or χq(−t) = −1 = χq′(−t)

for some ramified prime q′ 6= q with µq′ = 0,

1 if µq = 0, χq(−t) = −1, and χq′(−t) = 1 for all ramified

primes q′ 6= q with µq′ = 0,

and

ηp(t, µ) =















0 if χq(−t) = −1 and µq = 0 for some ramified prime q,

1 otherwise.

Proof. Let ϕµq
be the characteristic function of the coset µq, X = p−s, and

τ = u + iv ∈ H. Using [16] and [14], we have the following formulas for the
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normalized local Whittaker functions. For µ = 0, Lemma 2.3 of [14] tells us we

only need to consider t ∈ Z, and for t > 0 we have,

W ∗
t,∞(τ, s) = γ∞v

1−s
2 e(tu)

2iπ
s
2 e2πtv

Γ( s
2
)

∫

u>2tv

e−2πuu
s
2 (u− 2tv)

s
2
−1du, (4.2)

W ∗
t,p(s, ϕ0) =

ordp(t)
∑

r=0

(χp(p)X)r, (4.3)

W ∗
t,q(s, ϕ0) = γqq

− 1
2















1 + (q,−t)qX
ordq(t)+1 if ordq(t) is even,

1 + (−1)
q−1
2 (q, dt)qX

ordq(t)+1 if ordq(t) is odd.

(4.4)

Here γ∞ and γq are local factors which do not affect our global computations since

γ∞
∏

q γq = 1, where the product is over all ramified primes. For an unramified

prime p, the local lattice Ap = A ⊗Z Zp is unimodular. Hence, we only need

to consider the Whittaker functions at nonzero cosets for ramified primes. For

µq 6= 0 we have,

W ∗
t,q(s, ϕµq

) = γqq
− 1

2 char(Q(µq) + Zq)(t). (4.5)

Note that in (4.5), W ∗
t,q(s, ϕµq

) is either a nonzero constant or is identically zero.

Following [14], the normalized Eisenstein series has Fourier coefficients given by

E∗
t

(

τ, s,Φ1,µ
)

= v−
1
2d

s+1
2 W ∗

t,∞(τ, s)
∏

q|d
W ∗

t,q(s, ϕµ)
∏

p∤d

W ∗
t,p(s, ϕ0). (4.6)

Write t = qαqu where αq = ordq(t). We now show that (4.4) can be combined

into one nice formula.

Lemma 4.2. W ∗
t,q(s, ϕ0) = γqq

− 1
2 (1 + χq(−t)Xαq+1) .

Proof. For αq even, we have

(q,−t)q = (−t, q)q = (−t,−1)q(−t,−q)q = (−t,−1)q(−t, dq)qχq(−t),
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and

(−t,−1)q(−t, dq)q = (−t,−dq−1)q =

(−dq−1

q

)αq

= 1.

For αq odd,

(−1)
q−1
2 (q, dt)q = (−1)

q−1
2 (q, d)q(q, t)q

= (−1, q)q(q, d)q(−t,−q)q(−1, q)q(−t,−1)q

= (q, d)q(−t,−1)q(−t, dq)qχq(−t),

and

(q, d)q(−t,−1)q(−t, dq)q = (q, d)q(−t,−dq−1)q

= (−1)
q−1
2

(

dq−1

q

)αq
(−dq−1

q

)αq

= 1.

So (4.4) can be rewritten as

W ∗
t,q(s, ϕ0) = γqq

− 1
2

(

1 + χq(−t)Xαq+1
)

. (4.7)

Let us first compute κ(t, µ,A) for µ = 0 and t ∈ N. To do this, we need the

following special values for the local Whittaker functions.

Lemma 4.3. At s = 0 we have

(i) W ∗
t,∞(τ, 0) = −γ∞2v

1
2 e(tτ).

(ii) W ∗
t,p(0, ϕ0) = ρp(t), and if ρp(t) = 0 then

W ∗,′
t,p(0, ϕ0) = log(p)

1

2
(ordp(t) + 1)ρp

(

t

p

)

.

(iii) W ∗
t,q(0, ϕ0) = γqq

− 1
2 (1 + χq(−t)), and if χq(−t) = −1 then

W ∗,′
t,q (0, ϕ0) = γqq

− 1
2 log(q)(ordq(t) + 1)ρq(t).
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Proof. See Lemma 2.5 and Propositions 2.6 and 2.7 of [14].

Given (4.6), we consider different cases based on when one and only one local

Whittaker function vanishes at s = 0. Since W ∗
t,∞(τ, 0) 6= 0 for t ∈ N, there are

two cases.

Case 1: W ∗
t,p(0, ϕ0) = 0 for p unramified, W ∗

t,p′(0, ϕ0) 6= 0 ∀p′ 6= p.

W ∗
t,p(0, ϕ0) = 0 implies that p is inert and ordp(t) is odd. Since W ∗

t,q(0, ϕ0) 6= 0

for q ramified, we have χq(−t) = 1 and W ∗
t,q(0, ϕ0) = γq2q

− 1
2 . Computing the

derivative of the Fourier coefficient we get

E∗,′
t

(

τ, 0,Φ1,0
)

= W ∗,′
t,p(0, ϕ0)

[

v−
1
2d

1
2W ∗

t,∞(τ, 0)
∏

q|d
W ∗

t,q(0, ϕ0)
∏

p′∤d
p′ 6=p

W ∗
t,p′(0, ϕ0)

]

= log(p)
1

2
(ordp(t) + 1)ρp

(

t

p

)

[

− v−
1
2d

1
2γ∞2v

1
2 e(tτ)2k(0)

∏

q|d
γqq

− 1
2

∏

p′∤d
p′ 6=p

ρp′(t)

]

= − log(p)(ordp(t) + 1)ρp

(

t

p

)

e(tτ)2k(0)
∏

q|d
ρq

(

t

p

)

∏

p′∤d
p′ 6=p

ρp′

(

t

p

)

,

since ρq

(

t
p

)

= 1 and ρp′(t) = ρp′

(

t
p

)

. So we see

E∗,′
t

(

τ, 0,Φ1,0
)

= − log(p)(ordp(t) + 1)2k(0)ρ

(

t

p

)

e(tτ). (4.8)

Case 2: W ∗
t,q(0, ϕ0) = 0 for q ramified, W ∗

t,p(0, ϕ0) 6= 0 ∀p 6= q.

W ∗
t,q(0, ϕ0) = 0 implies χq(−t) = −1 while for any ramified prime q′ 6= q we have
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χq′(−t) = 1 and W ∗
t,q′(0, ϕ0) = γq′2(q′)−

1
2 . In this case, we see

E∗,′
t

(

τ, 0,Φ1,0
)

=W ∗,′
t,q (0, ϕ0)

[

v−
1
2d

1
2W ∗

t,∞(τ, 0)
∏

q′|d
q′ 6=q

W ∗
t,q′(0, ϕ0)

∏

p∤d

W ∗
t,p(0, ϕ0)

]

=γqq
− 1

2 log(q)(ordq(t) + 1)ρq(t) ×
[

− v−
1
2d

1
2γ∞2v

1
2 e(tτ)2k(0)−1

∏

q′|d
q′ 6=q

γq′(q
′)−

1
2

∏

p∤d

ρp(t)

]

= − log(q)(ordq(t) + 1)2k(0)ρ(t)e(tτ). (4.9)

Recall that the definition of κ(t, µ,A) involves the non-normalized Eisenstein

series, and at s = 0 we have E∗,′(τ, 0,Φ1,µ) = hkE
′(τ, 0,Φ1,µ). This fact and the

above analysis, particularly (4.8) and (4.9), give

κ(t, 0,A) =

−2k(0)

hk

(

∑

q|d
ηq(t) log(q)(ordq(t) + 1)ρ(t) +

∑

p inert

ηp(t) log(p)(ordp(t) + 1)ρ

(

t

p

)

)

,

where

ηq(t) =































0 if χq(−t) = 1 or χq(−t) = −1 = χq′(−t), for some ramified prime

q′ 6= q,

1 if χq(−t) = −1 and χq′(−t) = 1 for all ramified primes q′ 6= q,

and

ηp(t) =















0 if χq(−t) = −1 for some ramified prime q,

1 otherwise.

Now we compute κ(t, µ,A) for µ 6= 0. One main thing to keep in mind is that

there is at least one ramified prime q such that µq 6= 0, but the coset can be zero

locally at other ramified primes. Write µ = (µp), where if p is unramified then
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µp = 0. Again, we consider two cases.

Case 1: W ∗
t,p(0, ϕ0) = 0 for p unramified, W ∗

t,p′(0, ϕµp′
) 6= 0 ∀p′ 6= p.

The formula for the derivative of the Fourier coefficient is

E∗,′
t

(

τ, 0,Φ1,µ
)

= W ∗,′
t,p(0, ϕ0)

[

v−
1
2d

1
2W ∗

t,∞(τ, 0)
∏

q|d
W ∗

t,q(0, ϕµq
)
∏

p′∤d
p′ 6=p

W ∗
t,p′(0, ϕ0)

]

.

Then after cancelling some terms and using Lemma 4.3 and (4.5), we get

= log(p)
1

2
(ordp(t)+1)ρp

(

t

p

)

[

− 2e(tτ)2k(µ)
∏

q|d
µq 6=0

char(Q(µq)+ Zq)(t)
∏

p′∤d
p′ 6=p

ρp′(t)

]

.

If q is a ramified prime with µq 6= 0, then W ∗
t,q(0, ϕµq

) 6= 0 implies ordq(t) = −1.

This means ρq(qt) = 1 and this also equals ρq(dt). If µq = 0, then ρq(t) = 1 =

ρq(dt). Similarly, ρp

(

t
p

)

= ρp

(

dt
p

)

and ρp′(t) = ρp′(dt) = ρp′

(

dt
p

)

. We also see

that if µq = 0, then char(Q(µq)+Zq)(t) = char(Zq)(t) = 1. So the above formula

is

= −2k(µ) log(p)(ordp(t) + 1)ρ

(

dt

p

)

e(tτ)
∏

q|d
char(Q(µq) + Zq)(t). (4.10)

Case 2: W ∗
t,q(0, ϕ0) = 0 for q ramified, W ∗

t,p(0, ϕµp
) 6= 0 ∀p 6= q.

Here the derivative is given by

E∗,′
t

(

τ, 0,Φ1,µ
)

= W ∗,′
t,q (0, ϕ0)

[

v−
1
2d

1
2W ∗

t,∞(τ, 0)
∏

q′|d
q′ 6=q

W ∗
t,q′(0, ϕµq′

)
∏

p∤d

W ∗
t,p(0, ϕ0)

]

= log(q)(ordq(t) + 1)ρq(t)

[

− 2e(tτ)2k(µ)−1
∏

q|d
µq 6=0

char(Q(µq) + Zq)(t)
∏

p∤d

ρp(t)

]

= −2k(µ) log(q)(ordq(t) + 1)ρ(dt)e(tτ)
∏

q|d
char(Q(µq) + Zq)(t). (4.11)

Note that we do not consider the case where W ∗
t,q(0, ϕµq

) = 0 for µq 6= 0, since

then the Whittaker function is identically zero and there is no contribution to
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the derivative. Formulas (4.10) and (4.11) imply that for µ 6= 0,

κ(t, µ,A) = −2k(µ)

hk

∏

q|d
char(Q(µq) + Zq)(t) ×

(

∑

q|d
ηq(t, µ) log(q)(ordq(t) + 1)ρ(dt) +

∑

p inert

ηp(t, µ) log(p)(ordp(t) + 1)ρ

(

dt

p

)

)

,

(4.12)

where

ηq(t, µ) =















































0 if µq 6= 0, or µq = 0 and χq(−t) = 1, or χq(−t) = −1 = χq′(−t)

for some ramified prime q′ 6= q with µq′ = 0,

1 if µq = 0, χq(−t) = −1, and χq′(−t) = 1 for all ramified

primes q′ 6= q with µq′ = 0,

and

ηp(t, µ) =















0 if χq(−t) = −1 and µq = 0 for some ramified prime q,

1 otherwise.

If we take µ = 0 in the above equations, we see that ηq(t, 0) = ηq(t) and ηp(t, 0) =

ηp(t). Also, when µ = 0 then t ∈ N so ρ(dt) = ρ(t), ρ
(

dt
p

)

= ρ
(

t
p

)

and the

characteristic functions can be ignored. This means (4.12) holds when µ = 0 as

well. This finishes the proof of Theorem 4.1.
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Chapter 5

The Example n = 0

The simplest case of our main theorem is taking n = 0. Then V = U is a

quadratic space of signature (0, 2). Assume U = k = Q
(√

−d
)

where d > 0 and

is square-free. Then letting K = Ô×
k , the set we average over in Corollary 3.4 is

isomorphic to Ik, the ideal class group of k. In order to obtain input functions, we

make Schwartz functions out of Hecke’s theta functions. Multiplying by certain

weight-zero modular forms leads to an even richer supply. These input functions

depend on an ideal in the ring of integers, O = Ok, and we will see the main

theorem produces a function on Ik × I2
k .

5.1 The Ideal Class Group

Let T = GSpin(U). Since U = k, SO(U) = k1 and T = k×. We have the exact

sequence

1 → Q× → k× → k1 → 1,

57



and the map k× → k1 is x 7→ x
xσ by Hilbert’s Theorem 90. The space we sum

over in Corollary 3.4 is

T (Q)\T (Af )/K, (5.1)

where K ⊂ T (Af ) is an open subgroup. The double coset space (5.1) is isomor-

phic to k×A/k
×
∞k

×K. We define our lattice to be L = A ⊂ O, where A is an ideal

with NA = A, and define the quadratic form Q(x) = −Nx
A

. Then the dual lattice

is

L∨ =

{

x ∈ k | tr(xA)

A
∈ Z

}

= D−1A.

T (Af ) acts on lattices by

t · L = tt−σL̂ ∩ U(Q).

Take K to be the subset which acts trivially on L∨/L.

Lemma 5.1. K = Ô×.

Proof. Ô× fixes L so K ⊆ Ô×. We have the map Ô× → Aut(L∨/L) with K as

the kernel. Then L∨/L ≃ D−1A/A ≃ D−1/O, which locally is either isomorphic

to Fq at a ramified prime q or is trivial. If q is the prime ideal lying above q, then

the inertia group of q equals the decomposition group of q, so x
xσ ≡ 1 (mod q)

for any x ∈ O×. This tells us that K = Ô×.

Corollary 5.2. T (Q)\T (Af )/K = k×A/k
×
∞k

×Ô× ≃ Ik.

5.2 Input Functions

Next we consider the input functions that we plug into the regularized integral

Φ. These must be meromorphic modular forms for SL2(Z) of weight 1 valued in
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SL ⊂ S(U(Af )). We also require that their non-positive Fourier coefficients lie in

Z. We take a variation of Hecke’s theta function, which we write as

ϑ(τ, µ,A) =
∑

x∈µ+A

e

(

τ
Nx

A

)

, (5.2)

and make it into a Schwartz function lying in S(U(Af )). To do this, view A ⊂ O

as a lattice inside of U and let ϕµ = char(µ + Â) for µ ∈ D−1A/A. Then the

Schwartz function we consider is

F (τ,A) =
∑

µ∈D−1A/A

ϑ(τ, µ,A)ϕµ, (5.3)

which is valued in SL.

Lemma 5.3. F (τ,A) is an appropriate input function.

Proof. For the matrices

T =







1 1

1






, S =







−1

1






,

we have

ω(T )(ϕµ) = e−2πiQ(µ)ϕµ,

and

ω(S)(ϕµ) =
−i

√

|L∨/L|
∑

δ∈L∨/L

e2πi(µ,δ)ϕδ.

Note, in [8], Hecke uses theta functions of the form

ϑ
(

τ, µ,A,
√

Dk

)

=
∑

x∈µ+A
√

Dk

e

(

τ
Nx

A |Dk|

)

,

where Dk is the discriminant of k. These functions are related to (5.2) by

ϑ(τ, µ,A) = ϑ
(

τ,
√

Dkµ,A,
√

Dk

)

.
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The transformation laws (12) and (14) on pp. 222-223 of [8] imply

ϑ(τ + 1, µ,A) = e2πi Nµ
A ϑ(τ, µ,A), (5.4)

and

ϑ

(

−1

τ
, µ,A

)

=
−iτ
∣

∣

√
Dk

∣

∣

∑

δ∈D−1A/A

e
−2πitr

“

µδσ

A

”

ϑ(τ, δ,A). (5.5)

For T , (5.4) gives

F (τ + 1,A) =
∑

µ

ϑ(τ + 1, µ,A)ϕµ

=
∑

µ

e2πi Nµ
A ϑ(τ, µ,A)ϕµ

=
∑

µ

ϑ(τ, µ,A)ω(T )(ϕµ)

= ω(T )(F (τ,A)).

For S, (5.5) implies

F

(

−1

τ
,A

)

=
∑

µ

ϑ

(

−1

τ
, µ,A

)

ϕµ

=
∑

µ





−iτ
∣

∣

√
Dk

∣

∣

∑

δ∈D−1A/A

e
−2πitr

“

µδσ

A

”

ϑ(τ, δ,A)



ϕµ,

while

ω(S)(F (τ,A)) =
∑

µ

ϑ(τ, µ,A)ω(S)(ϕµ)

=
∑

µ

ϑ(τ, µ,A)





−i
∣

∣

√
Dk

∣

∣

∑

δ∈D−1A/A

e
−2πitr

“

µδσ

A

”

ϕδ





=
−i

∣

∣

√
Dk

∣

∣

∑

µ

∑

δ

e
−2πitr

“

µδσ

A

”

ϑ(τ, µ,A)ϕδ. (5.6)

If we interchange what we call δ and µ, then tr
(

µδσ

A

)

is unchanged and (5.6) is

−i
∣

∣

√
Dk

∣

∣

∑

δ

∑

µ

e
−2πitr

“

µδσ

A

”

ϑ(τ, µ,A)ϕµ.
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Hence, F (Sτ,A) = τω(S)(F (τ,A)) = j(S, τ)ω(S)(F (τ,A)).

We can obtain more input functions by letting k1
Af

act on F (τ,A). Let h ∈

k1
Af

= SO(U(Af )). Define the Schwartz function ω(h)(F (τ,A)) by

ω(h)(F (τ,A))(x) = F (τ,A)(h−1x)

for x ∈ U(Af ). Recall k1
Af

acts on ideals by h · A = hÂ ∩ k. Then we have

Lemma 5.4. For h ∈ k1
Af

, ω(h)(F (τ,A)) = F (τ, h ·A) and this is an appropriate

input function valued in Sh·L, where the quadratic form is Q(x) = −Nx
A

.

Proof. For a coset µ ∈ L∨/L, define h·µ = h(µ+Â)∩k. Then ϕµ(h−1x) = ϕh·µ(x).

So we have

ω(h)(F (τ,A))(x) =
∑

µ∈D−1A/A

ϑ(τ, µ,A)ϕh·µ(x)

=
∑

µ∈D−1(h·A)/h·A
ϑ
(

τ, h−1 · µ,A
)

ϕµ(x).

Note that N(h · A) = (Nh)NA = NA since h ∈ k1
Af

. Then

ϑ
(

τ, h−1 · µ,A
)

=
∑

y∈h−1·µ+A

e

(

τ
Ny

A

)

=
∑

y∈µ+h·A
e

(

τ
N(h−1y)

A

)

=
∑

y∈µ+h·A
e

(

τ
Ny

NA

)

=
∑

y∈µ+h·A
e

(

τ
Ny

N(h · A)

)

= ϑ(τ, µ, h · A).

So

ω(h)(F (τ,A)) =
∑

µ∈D−1(h·A)/h·A
ϑ(τ, µ, h · A)ϕµ = F (τ, h · A),

which is an input function by Lemma 5.3.
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We note that, for any t ∈ k×Af
, tÔ ∩ k =

∏

p pordp(tp). This is the ideal given

by the usual mapping from ideles to ideals, which implies that for t, t′ ∈ k×Af
we

have

(tÔ ∩ k)(t′Ô ∩ k) = tt′Ô ∩ k.

It is also clear that (tÔ ∩ k)−σ = t−σÔ ∩ k. Then for h ∈ k1
Af

, we have h = tt−σ

for some t ∈ k×Af
, which tells us that in the ideal class group

[h · A] = [tt−σÂ ∩ k] = [C][C]−σ[A], (5.7)

where C = tÔ ∩ k. Raising to the power −σ is trivial in Ik, which means (5.7)

is [C]2[A]. So for different h, applying ω(h) to F (τ,A) gives input functions that

cycle over the coset of A modulo the principal genus I2
k .

Using the function F (τ,A), we can produce even more input functions by

considering the weight-zero modular forms Jr(τ) for r ∈ N. These are defined to

be the unique modular function whose Fourier expansion is

Jr(τ) = q−r + cr(1)q + · · · .

That is, cr(−r) = 1 and all other non-positive coefficients are zero. These are

given as monic polynomials of degree r in j(τ). The first two are (cf. [17])

J1(τ) = j(τ) − 744 = q−1 + 196884q + · · ·

and

J2(τ) = j(τ)2 − 1488j(τ) + 159768 = q−2 + 42987520q + 40491909396q2 + · · · .

Then we get more input functions by letting

Fr(τ,A) = F (τ,A)Jr(τ).
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5.3 The Function F (τ,A)

We now look more closely at the (0, 2)-Theorem for the input function F (τ,A).

Let

B(A, t) := Φ(t;F (τ,A)).

Proposition 5.5. B(A, t) satisfies the following properties:

1.

B(A, t) =

∫ •

Γ\H

∑

µ

ϑ(τ, µ,A)ϑ(τ, tt−σµ, tt−σA)v−1dudv.

2. As a function of A, B(A, t) only depends on [A] ∈ Ik.

3. As a function of t, B(A, t) only depends on the double coset of t in

T (Q)\T (Af )/K. So B(A, t) can be viewed as a function on Ik × Ik.

4. If [tÔ ∩ k]2 = [t′Ô ∩ k]2, then B(A, t) = B(A, t′). This means B(A, t) can

actually be viewed as a function on Ik × I2
k .

5. B(A, t) = B(tt−σA, t−1).

Proof. B(A, t) is defined as

B(A, t) =

∫ •

Γ\H
θ(τ, t;F (τ,A))dµ(τ).

For h ∈ k1
Af

, we have

θ(τ, h;F (τ,A)) =
∑

µ

ϑ(τ, µ,A)
∑

x∈U(Q)

ϕ∞(τ, x)ϕµ(h−1x), (5.8)

where ϕ∞(τ, x) = ω(g′τ )(ϕ∞(x)). Then U(Q) = k and h = tt−σ, t ∈ T (Af ),

so (5.8) is

=
∑

µ

ϑ(τ, µ,A)
∑

x∈k

ϕ∞(τ, x)ϕµ(t−1tσx). (5.9)
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For ϕ∞ we have, by [15],

ϕ∞(τ, x) = ve2πiQ(x)τ = ve−2πiτ Nx
A = vq

Nx
A . (5.10)

This, along with ϕµ(t−1tσx) = ϕtt−σµ(x), implies (5.9) becomes

=
∑

µ

ϑ(τ, µ,A)
∑

x∈(tt−σµ+tt−σA)∩k

vq
Nx
A =

∑

µ

ϑ(τ, µ,A)ϑ(τ, tt−σµ, tt−σA)v,

since N(tt−σA) = NA = A. This proves (1). For (2), we view the function

F (τ,A) as F (τ,A, x) for x ∈ U(Af ). Then for α ∈ k×, we have

F (τ, αA, x) =
∑

µ∈D−1(αA)/αA

ϑ(τ, µ, αA)ϕµ(x) =
∑

µ∈D−1A/A

ϑ(τ, αµ, αA)ϕαµ(x),

and

ϑ(τ, αµ, αA) =
∑

x∈αµ+αA

e

(

τ
Nx

NαA

)

=
∑

x∈µ+A

e

(

τ
Nx

A

)

= ϑ(τ, µ,A).

So

F (τ, αA, x) =
∑

µ∈D−1A/A

ϑ(τ, µ,A)ϕαµ(x) = F (τ,A, α−1x), (5.11)

which shows F (τ,A) is not a function of [A]. However, when we compute

θ(τ, h;F (τ, αA)), using (5.11), we get

θ(τ, h;F (τ, αA)) =
∑

µ∈D−1A/A

ϑ(τ, µ,A)
∑

x∈U(Q)

ϕ∞(τ, x)ϕαµ(t−1tσx)

=
∑

µ∈D−1A/A

ϑ(τ, µ,A)
∑

x∈U(Q)

ϕ∞(τ, αx)ϕµ(t−1tσx). (5.12)

By (5.10), the Gaussian for the lattice αA is ϕ∞(τ, x) = vq
Nx

N(αA) , so (5.12) is

=
∑

µ

ϑ(τ, µ,A)
∑

x∈(tt−σµ+tt−σA)∩k

vq
Nx
A = θ(τ, h;F (τ,A)),

which tells us B(A, t) only depends on [A]. Now we need to see how B(A, t)

depends on t. To do this, part (1) implies we can look at ϑ(τ, tt−σµ, tt−σA). Fix
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µ and A and let t ∈ K = Ô×. Then tt−σ acts trivially on L∨/L ≃ L̂∨/L̂, so

tt−σ(µ+ Â) = µ+ Â and ϑ(τ, tt−σµ, tt−σA) = ϑ(τ, µ,A). If we let t ∈ T (Q), then

we have

θ(τ, tt−σ;F (τ,A)) =
∑

µ

ϑ(τ, µ,A)
∑

x∈k

ϕ∞(τ, x)ϕµ(t−1tσx)

=
∑

µ

ϑ(τ, µ,A)
∑

x∈k

ϕ∞(τ, tt−σx)ϕµ(x). (5.13)

So tt−σ ∈ SO(U(Q)) ⊂ SO(U(R)) implies (5.13) is

=
∑

µ

ϑ(τ, µ,A)
∑

x∈k

ϕ∞(τ, x)ϕµ(x) = θ(τ, 1;F (τ,A)).

Hence, θ(τ, t;F (τ,A)) is a function of t ∈ T (Q)\T (Af )/K ≃ Ik. Statement (4)

is stronger than (3). We have

[tÔ ∩ k]2 = [tÔ ∩ k][tÔ ∩ k] = [tÔ ∩ k][tÔ ∩ k]−σ = [tt−σÔ ∩ k],

and by assumption this is [t′(t′)−σÔ ∩ k]. So (3) and the fact that B(A, t) is

really a function of tt−σ imply B(A, t) = B(A, t′). For the last statement, let

At = tt−σA. Then

B(At, t
−1) =

∫ •

Γ\H

∑

µ∈D−1At/At

ϑ(τ, µ,At)ϑ(τ, t−1tσµ, t−1tσAt)v
−1dudv

=

∫ •

Γ\H

∑

µ∈D−1A/A

ϑ(τ, tt−σµ, tt−σA)ϑ(τ, µ,A)v−1dudv = B(A, t).

We mention that B(A, t) is like the Petersson inner product of ϑ(τ, µ,A) and

ϑ(τ, tt−σµ, tt−σA) summed over µ. The Fourier expansion of F (τ,A) is

F (τ,A) =
∑

µ∈D−1A/A

∑

n∈Q≥0

d(n, µ,A)qnϕµ,
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where

d(n, µ,A) = #

{

x ∈ µ+ A | Nx
A

= n

}

.

Then the (0,2)-Theorem gives

1

hk

∑

t∈T (Q)\T (Af )/K

B(A, t) =
∑

µ

∑

n≥0

d(−n, µ,A)κ(n, µ,A). (5.14)

We have

d(0, µ,A) =















1 if µ = 0,

0 otherwise.

So (5.14) becomes

1

hk

∑

t∈T (Q)\T (Af )/K

B(A, t) = κ(0, 0,A)

= log(∆k) + 2
Λ′(1, χd)

Λ(1, χd)

by Lemma 2.18, where ∆k is the absolute value of the discriminant of k and

χd(α) = (α,−d)A.
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Chapter 6

The Example n = 1

6.1 Input Functions

Let V = {x ∈ M2(Q) | tr(x) = 0} with quadratic form Q(x) = det(x) and

bilinear form (x, y) = tr(xyι), where ι is the involution ( a b
c d )

ι
=
(

d −b
−c a

)

. This is

a quadratic form of signature (1, 2). We define our lattice L to be L = V ∩M2(Z).

The dual lattice is

L∨ =

















a
2

b

c −a
2






| a, b, c ∈ Z











,

and so | L∨/L |= 2. Write L0 and L1 for the trivial and nontrivial cosets,

respectively. The input functions we need are modular forms of weight 1
2

and

type ω for Mp2(Z). In this section, we show that such an input function can be

obtained from a scalar-valued meromorphic modular form of weight 1
2

for Γ0(4)

whose Fourier coefficients satisfy certain congruence conditions. We also mention

a result of Borcherds on the existence of these scalar-valued modular forms.

Let f0 be a scalar-valued modular form of weight 1
2

for Γ0(4). Assume f0 has

67



Fourier expansion

f0(τ) =
∑

n

c0(n)qn.

Definition 6.1. We say f0 lies in the Kohnen “plus space,” denoted M 1
2
(Γ0(4))+,

if c0(n) ∈ Z for all n and c0(n) = 0 unless n ≡ 0, 1 (mod 4).

Given f0 ∈M 1
2
(Γ0(4))+, let

h0(τ) =
∑

n

c0(4n)qn,

and

h1(τ) =
∑

n

c0(4n+ 1)qn+ 1
4 .

Then f0(τ) = h0(4τ) + h1(4τ).

Proposition 6.2. Let ϕµ = char(Lµ) for µ = 0, 1. For f0(τ), h0(τ) and h1(τ) as

above,

F (τ) = h0(τ)ϕ0 + h1(τ)ϕ1

is a meromorphic modular form for Mp2(Z) of weight 1
2

and type ω.

Proof. We need to show that

F (τ + 1) = ω(T )(F (τ)) (6.1)

and

F

(

−1

τ

)

=
√
τω(S)(F (τ)). (6.2)

Here we follow the ideas in the proof of Lemma 14.2 of [1]. For any γ ∈ Γ0(4),

we have f0(γτ) = j(γ, τ)
1
2f0(τ). If we let σ ∈ H, then

f0

(

σ

4σ + 1

)

= f0













1

4 1






σ






=
√

(4σ + 1)f0(σ). (6.3)
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Let τ = 4σ + 1. Then (6.3) becomes

f0

(

τ − 1

4τ

)

=
√
τf0

(

τ − 1

4

)

,

which says

h0

(

τ − 1

τ

)

+ h1

(

τ − 1

τ

)

=
√
τ
(

h0(τ − 1) + h1(τ − 1)
)

,

or

h0

(

−1

τ
+ 1

)

+ h1

(

−1

τ
+ 1

)

=
√
τ
(

h0(τ − 1) + h1(τ − 1)
)

. (6.4)

If z ∈ H, the definitions of h0 and h1 imply h0(z ± 1) = h0(z) and h1(z ± 1) =

±ih1(z). This means (6.4) becomes

h0

(

−1

τ

)

+ ih1

(

−1

τ

)

=
√
τ(h0(τ) − ih1(τ)). (6.5)

If we let τ = ix be purely imaginary, plugging this into (6.5) gives

h0

(

− 1

ix

)

+ ih1

(

− 1

ix

)

=
√
ix(h0(ix) − ih1(ix)). (6.6)

Using
√
i =

√
2

2
(1 + i) and equating real and imaginary parts in (6.6) gives

h0

(

− 1

ix

)

=

√
2x

2
(h0(ix) + h1(ix)),

and

h1

(

− 1

ix

)

=

√
2x

2
(h0(ix) − h1(ix)).

Since these two identities hold for all x ∈ R>0, we have

h0

(

−1

τ

)

=

(

1 − i

2

)√
τ(h0(τ) + h1(τ)), (6.7)

and

h1

(

−1

τ

)

=

(

1 − i

2

)√
τ(h0(τ) − h1(τ)). (6.8)
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Note that in the proof of Lemma 14.2 in [1], the equation resembling (6.8) is off by

a sign. We now go back to the modular form F and prove formulas (6.1) and (6.2).

Take ξ =
(

1
2

− 1
2

)

as a coset representative for L1. For (6.1), ω(T )(ϕ0) = ϕ0 and

ω(T )(ϕ1) = e−2πiQ(ξ)ϕ1 = iϕ1, so

ω(T )(F (τ)) = h0(τ)ϕ0 + ih1(τ)ϕ1 = h0(τ + 1)ϕ0 + h1(τ + 1)ϕ1 = F (τ + 1).

If µ ∈ L∨/L, then for signature (1, 2) we have

ω(S)(ϕµ) =

√
i(−i)√

2

(

ϕ0 + e2πi(ξ,µ)ϕ1

)

=
1 − i

2

(

ϕ0 + e2πi(ξ,µ)ϕ1

)

,

where in the superscript we mean µ = 0 or ξ. This implies

ω(S)(F (τ)) = h0(τ)ω(S)(ϕ0) + h1(τ)ω(S)(ϕ1)

= h0(τ)

(

1 − i

2
(ϕ0 + ϕ1)

)

+ h1(τ)

(

1 − i

2

(

ϕ0 + e2πi(ξ,ξ)ϕ1

)

)

=
1 − i

2

(

h0(τ)(ϕ0 + ϕ1) + h1(τ)(ϕ0 − ϕ1)
)

.

Using (6.7) and (6.8),

F

(

−1

τ

)

= h0

(

−1

τ

)

ϕ0 + h1

(

−1

τ

)

ϕ1

=

(

1 − i

2

)√
τ
(

(h0(τ) + h1(τ))ϕ0 + (h0(τ) − h1(τ))ϕ1

)

=

(

1 − i

2

)√
τ
(

h0(τ)(ϕ0 + ϕ1) + h1(τ)(ϕ0 − ϕ1)
)

,

which proves (6.2).

Proposition 6.2 tells us we can construct input functions from modular forms

f0 ∈ M 1
2
(Γ0(4))+. We would also like to know to what extent these input func-

tions exist. The following lemma is about the existence of modular forms in

M 1
2
(Γ0(4))+, and, therefore, tells us something about the existence of our input

functions.
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Lemma 6.3 (Lemma 14.2 of [1]). Every sequence of integers c0(n) for n ≤

0, n ≡ 0, 1 (mod 4) which are almost all zero is the set of coefficients of non-

positive degree for a unique modular form f0 ∈M 1
2
(Γ0(4))+.

6.2 Lattice Computations

Define

Lµ(r) = {x ∈ Lµ | Q(x) = r},

for r ∈ Q and µ = 0, 1. Let r > 0 and x0 ∈ Lµ(r) be given by

x0 =







a
1+µ

b

c − a
1+µ






, (6.9)

where a, b, c ∈ Z and if µ = 1, then a is odd. Note that r ∈ Z if µ = 0, and

r ∈ 1
4
Z− 1

2
Z if µ = 1. We also assume x0 is primitive, i.e., gcd(a, b, c) = 1. Then

x0 determines a splitting of our vector space, V = V+ + V−, where V+ = Qx0

and V− = x⊥0 . Define the positive and negative lattices, L±, as L± = V± ∩ L.

We have the projection maps pr± : V → V±. When comparing L with the

sublattice L+ + L−, we will see that L does not split. In this section, we give

Z-bases for L±, and also investigate the structure of various coset spaces, namely,

L/ (L+ + L−) , pr±(L∨)/L± and L∨
±/L±. The facts that we prove are very useful

for doing explicit computations.

Proposition 6.4. For r > 0, let x0 ∈ Lµ(r) be given by (6.9) and assume x0 is

primitive. We have the decomposition, V = V+ + V− = Qx0 + x⊥0 , and positive

and negative lattices L± = V± ∩ L. Choose u, v ∈ Z such that uc − vb = (b, c).

Then

L+ = (1 + µ)Zx0,
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and

L− =















1
2
l1Z + l2Z if (b, c) is even and µ = 0,

l1Z + l2Z otherwise,

where

l1 = ue1 + ve2 =







(b, c) − 2a
1+µ

u

2a
1+µ

v −(b, c)






,

l2 =
(1 + µ)b

2a(b, c)
e1 +

(1 + µ)c

2a(b, c)
e2 =







− b
(b,c)

c
(b,c)






,

for

e1 =







c − 2a
1+µ

−c






, e2 =







−b
2a

1+µ
b






.

Proof. Since x0 is primitive, we have

L+ = Qx0 ∩ L = (1 + µ)Zx0.

Let

Y1 =







1

1






x0 =







c − a
1+µ

a
1+µ

b






,

and

Y2 =







1

−1






x0 =







c − a
1+µ

− a
1+µ

−b






.

Then

tr(x0Y
ι
1 ) = tr






x0x

ι
0







−1

−1












= 0,

and similarly tr(x0Y
ι
2 ) = 0. Note that Y1 and Y2 do not have trace zero. If we

modify them into matrices which do have trace zero, we get

y1 =







c−b
2

− a
1+µ

a
1+µ

b−c
2






,
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and

y2 =







b+c
2

− a
1+µ

− a
1+µ

− b+c
2






.

Then y1 and y2 are perpendicular to x0 and have trace zero, i.e., they lie in V−.

In fact, they form a basis for V−, yet they do not lie in L−. Let e1 = y1 + y2 and

e2 = y1 − y2. That is,

e1 =







c − 2a
1+µ

−c






, e2 =







−b
2a

1+µ
b






.

In terms of this basis, L− is given by

L− =

{

B1e1 +B2e2 | B1, B2 ∈
1 + µ

2a
Z, B1c−B2b ∈ Z

}

.

Write Bj =
(1+µ)Cj

2a
for j = 1, 2. There are two cases to consider.

Case 1: (b, c) is odd.

Choose u, v ∈ Z such that uc− vb = (b, c). Then C1c−C2b ∈ 2a
1+µ

Z implies there

exists r1 ∈ Z such that C1c − C2b = 2a
1+µ

(b, c)r1 = 2a
1+µ

(uc − vb)r1. From this we

have
(

C1 − r1
2a

1 + µ
u

)

c =

(

C2 − r1
2a

1 + µ
v

)

b

or
(

C1 − r1
2a

1 + µ
u

)

c

(b, c)
=

(

C2 − r1
2a

1 + µ
v

)

b

(b, c)
.

c
(b,c)

and b
(b,c)

are relatively prime so there exists r2 ∈ Z such that

C1 − r1
2a

1 + µ
u = r2

b

(b, c)
, C2 − r1

2a

1 + µ
v = r2

c

(b, c)
.

That is,






C1

C2






= r1







2a
1+µ

u

2a
1+µ

v






+ r2







b
(b,c)

c
(b,c)






.
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This tells us

B1e1 +B2e2 =

(

r1u+
(1 + µ)b

2a(b, c)
r2

)

e1 +

(

r1v +
(1 + µ)c

2a(b, c)
r2

)

e2

= r1(ue1 + ve2) + r2

(

(1 + µ)b

2a(b, c)
e1 +

(1 + µ)c

2a(b, c)
e2

)

,

and, hence, {l1, l2} gives a Z-basis for L−. Note that if µ = 1, then the above

argument works for (b, c) even as well.

Case 2: (b, c) is even, µ = 0.

As in case 1, we have uc − vb = (b, c) for some u, v ∈ Z. Then b and c are both

even, so C1c − C2b ∈ 2aZ implies there exists r1 ∈ Z such that C1c − C2b =

a(b, c)r1 = a(uc − vb)r1. Continuing as in case 1, we get a Z-basis for L− given

by
{

1
2
l1, l2

}

.

The remainder of this section deals with looking at the structure of different

coset spaces. We begin with L/(L+ + L−).

Lemma 6.5.

L/(L+ + L−) ≃ pr±(L)/L±. (6.10)

Proof. We have L± ⊂ pr±(L), so we can map L → pr±(L)/L±. Then for l ∈

L, l = pr+(l) + pr−(l) and pr±(l) ∈ L± if and only if pr∓(l) = l − pr±(l) ∈ L∓,

i.e., l ∈ L+ + L−.

Using the basis {x0, y1, y2}, we are able to identify pr+(L).

Lemma 6.6.

pr+(L) =















1
r
Zx0 if (b, c) is even and µ = 0,

1
2r

Zx0 otherwise.
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Proof. In terms of x0, y1 and y2, the lattice L is given as

L = A−1Z3,

where the matrix A is

A =













a
1+µ

c−b
2

c+b
2

c a
1+µ

− a
1+µ

b − a
1+µ

− a
1+µ













,

with inverse

A−1 =
1 + µ

2ar













− 2a2

(1+µ)2
− ab

1+µ
− ac

1+µ

a
1+µ

(c− b) − a2

(1+µ)2
− b2+bc

2
a2

(1+µ)2
+ bc+c2

2

− a
1+µ

(c+ b) a2

(1+µ)2
− b2+bc

2
a2

(1+µ)2
+ bc−c2

2













.

From the entries in the first row, we see

pr+(L) =
1

2r
gcd

(

2a

1 + µ
, b, c

)

Zx0 =















1
r
Zx0 if (b, c) is even and µ = 0,

1
2r

Zx0 otherwise.

Corollary 6.7.

|L : L+ + L−| =































r if (b, c) is even and µ = 0,

2r if (b, c) is odd and µ = 0,

4r if µ = 1.

(6.11)

Proof. This follows from Lemmas 6.5 and 6.6 and the fact that L+ = (1+µ)Zx0.

For the positive and negative lattices and their respective duals, we have
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Lemma 6.8.

∣

∣L∨
+ : L+

∣

∣ =















2r if µ = 0,

8r if µ = 1,

(6.12)

and

∣

∣L∨
− : L−

∣

∣ =















r if (b, c) is even and µ = 0,

4r otherwise.

(6.13)

Proof. L+ = (1 + µ)Zx0 so

L∨
+ = {x ∈ V+ | (x, L+) ⊆ Z} =

1

(1 + µ)2r
Zx0,

which takes care of (6.12). For (6.13), we compare

∣

∣L∨
+ + L∨

− : L+ + L−
∣

∣ =
∣

∣L∨
+ : L+

∣

∣

∣

∣L∨
− : L−

∣

∣ (6.14)

with
∣

∣L∨
+ + L∨

− : L+ + L−
∣

∣ =
∣

∣L∨
+ + L∨

− : L∨∣
∣ |L∨ : L| |L : L+ + L−| .

Then
∣

∣L∨
+ + L∨

− : L∨∣
∣ = |L : L+ + L−| and |L∨ : L| = 2 imply

∣

∣L∨
+ + L∨

− : L+ + L−
∣

∣ =































2r2 if (b, c) is even and µ = 0,

8r2 if (b, c) is odd and µ = 0,

32r2 if µ = 1.

Now formulas (6.12) and (6.14) give (6.13).

We will see that pr±(L∨)/L± = L∨
±/L±, which implies that in some cases

pr±(L)/L± = pr±(L∨)/L±, while in other cases they are not equal. We conclude

this section by giving explicit coset representatives for pr±(L∨)/L±.

Lemma 6.9. pr±(L∨)/L± = L∨
±/L±.
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Proof. Map

L∨ → pr±(L∨)/L±

by l 7→ pr±(l)+L±. If we assume pr±(l) ∈ L±, then l−pr±(l) = pr∓(l) ∈ L∨∩V∓.

So

L∨/ (L+ + (L∨ ∩ V−)) ≃ pr+(L∨)/L+,

and

L∨/ ((L∨ ∩ V+) + L−) ≃ pr−(L∨)/L−. (6.15)

Now

L∨ ∩ V+ =

















a′ b′

c′ −a′






| a′ ∈ 1

2
Z, b′, c′ ∈ Z











∩ Q







a
1+µ

b

c − a
1+µ







=















1
2
Zx0 if (b, c) is even and µ = 0,

Zx0 otherwise.

(6.16)

Using |L∨ : (L∨ ∩ V+) + L−| |(L∨ ∩ V+) : L+| = |L∨ : L+ + L−| = 2 |L : L+ + L−|

together with (6.11), (6.15) and (6.16), we see

∣

∣pr−(L∨)/L−
∣

∣ =















r if (b, c) is even and µ = 0,

4r otherwise.

Formula (6.13) implies pr−(L∨)/L− = L∨
−/L−. For pr+(L∨)/L+, we know L∨ ∩

V− ⊇ L− but we need to see when we have equality. Let

γ1 =







a1

2
b1

c1 −a1

2






∈ L∨ ∩ V−.

Then

tr













a1

2
b1

c1 −a1

2













a
1+µ

b

c − a
1+µ







ι




= − aa1

1 + µ
− b1c− c1b = 0.
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If (b, c) is even and µ = 0, or if µ = 1, then a is odd so a1 must be even. This

implies L∨∩V− = L−. Otherwise, a1 can be odd and we have |(L∨ ∩ V−) : L−| =

2. As with pr−(L∨)/L−, we see

∣

∣pr+(L∨)/L+

∣

∣ =















2r if µ = 0,

8r if µ = 1,

so pr+(L∨)/L+ = L∨
+/L+ by (6.12).

Corollary 6.10. 1. If (b, c) is even and µ = 0, then pr+(L)/L+ $

pr+(L∨)/L+ while pr−(L)/L− = pr−(L∨)/L−.

2. If (b, c) is odd and µ = 0, then pr+(L)/L+ = pr+(L∨)/L+ while

pr−(L)/L− $ pr−(L∨)/L−.

3. If µ = 1, then pr+(L)/L+ $ pr+(L∨)/L+ while pr−(L)/L− = pr−(L∨)/L−.

Proof. This follows from (6.10), (6.11), Lemma 6.8 and Lemma 6.9.

Let L∨/L = {0, ξ}, where ξ =
(

1
2

− 1
2

)

represents the nontrivial coset, and

assume pr+(ξ) = ηx0 for some η ∈ Q×. Then (ξ, x0) = (pr+(ξ), x0) = 2rη, and,

by definition, (ξ, x0) = tr(ξxι
0) = − a

1+µ
. So pr+(ξ) = − a

2r(1+µ)
x0. This implies

pr−(ξ) =







1
2

−1
2






+

a

2r(1 + µ)







a
1+µ

b

c − a
1+µ







=
1

2r(1 + µ)2







r(1 + µ)2 + a2 (1 + µ)ab

(1 + µ)ac −r(1 + µ)2 − a2







=
1

2r







−bc ab
1+µ

ac
1+µ

bc






,
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since − a2

(1+µ)2
− bc = r. Let δ ∈ L∨/L be either coset. Then for a given coset

λ+ ∈ pr+(L∨)/L+, we want to find the corresponding coset λ− ∈ pr−(L∨)/L−

such that λ+ + L+ + λ− + L− ⊆ δ + L. Define

(λ+, λ−) < δ

to mean λ+ +L+ + λ− +L− ⊆ δ+L. Let l1, l2, u and v be as in Proposition 6.4.

Lemma 6.11. 1. If (b, c) is even and µ = 0, then λ+ ∈ pr+(L)/L+ has the

form λ+ = y
r
x0, 0 ≤ y < r, and the λ− for which (λ+, λ−) < 0 is λ− =

y
(

A
2
l1 +Bl2

)

, where we choose (α, β, γ) ∈ Z3 such that 2aα+cβ+bγ = −2

and

A =
2(rα− a)

r(b, c)
, B =

(b, c)(b− rβ) − 2au(rα− a)

rb
.

2. If (b, c) is odd and µ = 0, then λ+ ∈ pr+(L)/L+ has the form λ+ = y
2r
x0, 0 ≤

y < 2r, and the λ− for which (λ+, λ−) < 0 is λ− = y(Al1 +Bl2), where we

choose (α, β, γ) ∈ Z3 such that 2aα+ cβ + bγ = −1 and

A =
2rα− a

2r(b, c)
, B =

(b, c)(b− 2rβ) − 2au(2rα− a)

2rb
.

3. If µ = 1, then λ+ ∈ pr+(L)/L+ has the form λ+ = y
2r
x0, 0 ≤ y < 4r,

and the λ− for which (λ+, λ−) < 0 is λ− = y(Al1 + Bl2), where we choose

(α, β, γ) ∈ Z3 such that aα+ cβ + bγ = −1 and

A =
4rα− a

4r(b, c)
, B =

(b, c)(2b− 4rβ) − au(4rα− a)

4rb
.

Furthermore, in all 3 cases, (b, c) divides the numerator of A and b divides the

numerator of B.
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Proof. The proof in each case is very similar, so we only prove (1). Clearly we

can just work with λ+ = 1
r
x0.

1

r
x0 +

A

2
l1 +Bl2 =







a
r

+ A(b,c)
2

b
r
− Aau− b

(b,c)
B

c
r

+ Aav + c
(b,c)

B −a
r
− A(b,c)

2






.

We want this matrix to lie in M2(Z). If a
r
+ A(b,c)

2
= α ∈ Z, then A = 2(rα−a)

r(b,c)
. For

the second entry in row 1, if this is equal to β for some β ∈ Z, then

b

r
− Aau− b

(b, c)
B =

b(b, c) − 2au(rα− a)

r(b, c)
− b

(b, c)
B = β

implies

B = −β(b, c)

b
+
b(b, c) − 2au(rα− a)

rb
=

(b, c)(b− rβ) − 2au(rα− a)

rb
. (6.17)

For the first entry in row 2, if this equals γ for some γ ∈ Z, then

c

r
+ Aav +

c

(b, c)
B =

c(b, c) + 2av(rα− a)

r(b, c)
+

c

(b, c)
B = γ

implies

B =
γ(b, c)

c
− c(b, c) + 2av(rα− a)

rc
=

(b, c)(γr − c) − 2av(rα− a)

rc
. (6.18)

Comparing (6.17) and (6.18) we have

b((b, c)(γr − c) − 2av(rα− a)) = c((b, c)(b− rβ) − 2au(rα− a)),

or

−2bc(b, c) + 2rαa(uc− vb) + 2a2(vb− uc) + (b, c)r(bγ + cβ) = 0.

Since uc− vb = (b, c), this becomes

2(b, c)
(

−a2 − bc+ rαa+
r

2
(bγ + cβ)

)

= 0.
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From −a2 − bc = r we get

r(b, c)(2 + 2aα+ cβ + bγ) = 0.

This means we want to find (α, β, γ) ∈ Z3 such that 2 + 2aα+ cβ + bγ = 0, and

we know we can do this since x0 is primitive and (b, c) is even. Now we prove the

last statement. The numerator of A is 2(rα − a) = −2a2α − 2a − 2bcα, which

modulo (b, c) is −a(−2aα − 2) ≡ −a(cβ + bγ) ≡ 0 (mod (b, c)). Similarly, the

numerator of B (mod b) is (b, c)(b−rβ)−2au(rα−a) ≡ −(b, c)rβ−2aurα+2a2u

and using a2 ≡ −r (mod b), the numerator is congruent to a2(b, c)β + 2a3uα +

2a2u ≡ a2(b, c)β + ua2(2aα + 2) ≡ a2(b, c)β − ua2(cβ + bγ) ≡ a2β((b, c) − uc) ≡

a2β(−vb).

Corollary 6.12. If δ+ ∈ pr+(L∨)/L+ and δ+ /∈ pr+(L)/L+, then δ+ = pr+(ξ) +

λ+ for some λ+ ∈ pr+(L)/L+ and (pr+(ξ) + λ+, pr−(ξ) + λ−) < ξ, where λ− is

as in Lemma 6.11.

Now we let λ± be the generators of pr±(L)/L and let y be as in Lemma

6.11. Corollary 6.10 tells us that sometimes the cosets {yλ±} are disjoint from

{pr±(ξ) + yλ±}, while other times they are the same set of cosets. The following

lemma gives an explicit description of pr±(L∨)/L, and in the cases where {yλ±} =

{pr±(ξ) + yλ±} shows exactly how the two sets agree.

Lemma 6.13. 1. If (b, c) is even and µ = 0, then pr+(L∨)/L+ = {yλ+ | 0 ≤

y < r}⊔{pr+(ξ)+yλ+ | 0 ≤ y < r} while pr−(L∨)/L− = {yλ+ | 0 ≤ y < r}

and pr−(ξ) + yλ− =
(

y − a+r
2

)

λ−.

2. If (b, c) is odd and µ = 0, then pr−(L∨)/L− = {yλ− | 0 ≤ y < 2r} ⊔

{pr−(ξ) + yλ− | 0 ≤ y < 2r} while pr+(L∨)/L+ = {yλ+ | 0 ≤ y < 2r} and

pr+(ξ) + yλ+ = (y − a)λ+.
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3. If µ = 1, then pr+(L∨)/L+ = {yλ+ | 0 ≤ y < 4r} ⊔ {pr+(ξ) + yλ+ | 0 ≤

y < 4r} while pr−(L∨)/L− = {yλ+ | 0 ≤ y < 4r} and pr−(ξ) + yλ− =
(

y − 4r+a
2

)

λ−.

Proof. Our notation is as in Lemma 6.11. We just need to show that either the

two sets are disjoint or that they agree as above. For case 1, if pr+(ξ)+yλ+ = ỹλ+

for some y and ỹ, this is equivalent to having pr+(ξ) + yλ+ ∈ L+ = Zx0 for some

y. Then

pr+(ξ) + yλ+ =
2y − a

2r







a b

c −a






,

but a is odd so (2y − a)a /∈ 2rZ. Since (b, c) is even, a and r are both odd

so a+r
2

∈ Z. For pr−(L∨)/L−, we need to show that for y = a+r
2

(mod r),

pr−(ξ) + a+r
2
λ− = 0. We have

pr−(ξ) +
a+ r

2
λ− =

1

2r







−bc ab

ac bc






+
a+ r

2

(

A

2
l1 +Bl2

)

=
1

2r







−bc ab

ac bc






+
a+ r

2r

[

rα− a

(b, c)







(b, c) −2au

2av −(b, c)






+

(b, c)(b− rβ) − 2au(rα− a)

b(b, c)







0 −b

c 0







]

=
1

2r







−bc ab

ac bc






+

a+ r

2rb(b, c)
×







b(b, c)(rα− a) b(b, c)(rβ − b)

(rα− a)2a(vb− uc) + c(b, c)(b− rβ) b(b, c)(a− rα)







=
1

2r







−bc ab

ac bc






+
a+ r

2r







rα− a rβ − b

1
b
(c(b− rβ) − (rα− a)2a) a− rα






. (6.19)
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Then c(b− rβ)− (rα− a)2a = cb− crβ− 2arα+ 2a2 = −2r− crβ− 2arα− bc =

−r(−bγ) − bc. So (6.19) becomes

=
1

2r







(a+ r)(rα− a) − bc (a+ r)(rβ − b) + ab

(a+ r)(rγ − c) + ac bc− (a+ r)(rα− a)







=
1

2r







arα + r2α+ r − ra arβ + r2β − rb

arγ + r2γ − rc −arα− r2α− r + ra







=
1

2







α(a+ r) + 1 − a β(a+ r) − b

γ(a+ r) − c −α(a+ r) − 1 + a






,

which lies in L− since a+ r, 1 − a, c, b ∈ 2Z. For case 2,

pr+(ξ) + aλ+ = − a

2r
x0 +

a

2r
x0 = 0.

Then a computation similar to the proof of case 1, with y instead of a+r
2

, gives

pr−(ξ) + yλ− =
1

2r







y(2rα− a) − bc y(2rβ − b) + ab

y(2rγ − c) + ac bc− y(2rα− a)






.

If this matrix lies in L−, then −ay−bc, b(a−y), c(a−y) ∈ 2rZ. We know b or c is

odd so assume b is. Then x0 being primitive implies (b, r) = 1. So b(a− y) ∈ 2rZ

tells us a− y ∈ 2rZ. Then −ay− bc = −ay+ r+ a2 = a(a− y) + r ∈ 2rZ, which

is a contradiction. For case 3, L+ = 2Zx0, while

pr+(ξ) + yλ+ =
2y − a

4r







a
2

b

c −a
2






,

which never lies in 2Zx0 since a is odd. Again, a computation similar to the

above gives

pr−(ξ) + yλ− =
1

4r







y(4rα− a) − 2bc y(4rβ − 2b) + ab

y(4rγ − 2c) + ac 2bc− y(4rα− a)






. (6.20)
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Since r ∈ 1
4
Z− 1

2
Z, 4r is odd. Letting y = 4r+a

2
(mod 4r) and using −a2−4bc = 4r,

(6.20) becomes

=
1

4r







8r2α+ 2raα− 2ra+ 2r 8r2β + 2raβ − 4rb

8r2γ + 2raγ − 4rc −8r2α− 2raα + 2ra+ 2r







=
1

2







α(4r + a) + 1 − a β(4r + a) − 2b

γ(4r + a) − 2c −α(4r + a) − 1 + a






,

which is in L− since 4r + a, 1 − a ∈ 2Z.

6.3 Classical Interpretation of the

(n, 2)-Theorem

Let V (r) = {x ∈ V | Q(x) = r} for r ∈ Q. For µ = 0, 1, we have Lµ(r) = V (r) ∩

Lµ. Let G = GL2, K = GL2(Ẑ) and Γ = GL2(Z). We have G(Af ) = G(Q)K.

Then for x ∈ Lµ(r), we consider the sequence of maps

Gx(Q)\ (Dx ×Gx(Af )/Kx) → G(Q)\ (D ×G(Af )/K) ≃ Γ\D, (6.21)

where Kx = K ∩Gx(Af ). By Lemma 2.1 of [10], we have Gx ≃ GSpin
(

x⊥
)

and

x⊥ is a negative definite space of signature (0, 2). This tells us that

Gx(Q)\Gx(Af )/Kx

is the space we sum over in Corollary 3.4. We wish to identify the image in Γ\D

of the first space in (6.21). The isomorphism in (6.21) is given by

G(Q)(z, gK) 7→ Γ
(

γ−1z
)

,

where g = γk0, γ ∈ G(Q), k0 ∈ K.
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For x ∈ V (r), we have

−x2 = −







a b

c −a







2

= −







a2 + bc 0

0 a2 + bc






= rI.

So for k = Q
(√

−r
)

we get an embedding

φx : k →֒M2(Q),

by sending
√
−r 7→ x. Note, if A+B

√
−r ∈ k, then N(A+B

√
−r) = det(AI +

Bx). We define

Ox = φ−1
x (M2(Z)),

and Ox is an order in k.

Definition 6.14. Let R ⊂ M2(Q) be an order. Given an order O ⊂ k, we

say φ : k →֒ M2(Q) is O-optimal with respect to R if φ(k) ∩ R = φ(O) (or

φ−1(R) = O).

Note that if µ = 1, then r = r0

4
for some odd integer r0. Then k = Q

(√
−r
)

=

Q (
√−r0) and φx (

√−r0) = 2x ∈M2(Z), while φx

(√
−r
)

= x /∈M2(Z).

The group G(Af ) acts on orders in M2(Q). For g ∈ G(Af ) and an order

R ⊂ M2(Q), the action is given by gR = gR̂g−1 ∩M2(Q), where R̂ = R ⊗Z Ẑ.

Let R0 = M2(Z) and T = Gx, which is isomorphic to k×.

Lemma 6.15. Assume φx is O-optimal with respect to R0 for some order O ⊂ k.

Then φx is O-optimal with respect to gR0 for all g ∈ T (Af ).

Proof. Let g ∈ T (Af ) and R = gR0. Then

φx(k) ∩R = φx(k) ∩ gR0,
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and g ∈ Gx(Af ) tells us gφx(k) = φx(k), so the above is

= g(φx(k) ∩R0) = gφx(O) = φx(O).

Fix an order O ⊂ k. Define

Opt(φx,O) := {R ⊂M2(Q) | R is an order and φx is O-optimal w.r.t. R} .

We have the following well-known theorem.

Theorem 6.16. T (Af ) acts transitively on Opt(φx,O).

Inside of Lµ(r), we define

Lµ(r,O) := {x ∈ Lµ(r) | φx is O-optimal w.r.t. R0} .

Since
√
−r 7→ x we have Z

[√
−r
]

⊆ O if µ = 0, and Z [
√−r0] ⊆ O if µ = 1, r =

r0

4
.

Lemma 6.17. Γ = GL2(Z) acts on Lµ(r,O).

Proof. Let g ∈ Γ, x ∈ Lµ(r,O). We know that g · x ∈ Lµ(r). By definition,

φg·x(
√
−r) = g · x = gxg−1, so φg·x(k) = gφx(k)g

−1. Then

φ−1
g·x(R0) = {y ∈ k | φg·x(y) ∈ R0}

=
{

y ∈ k | φx(y) ∈ g−1R0g
}

= {y ∈ k | φx(y) ∈ R0}

= φ−1
x (R0).
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Fix x0 ∈ Lµ(r,O). It follows from Witt’s Theorem that V (r) = G(Q)x0. So

if x ∈ Lµ(r,O), then x = γ ·x0 and φx = γ ·φx0 for some γ ∈ G(Q). Let T = Gx0

and φ0 = φx0 . The choice of γ in the expression x = γ · x0 is not unique, but is

determined up to γT (Q).

Proposition 6.18. Γ\Lµ(r,O) ≃ T (Q)\Opt(φ0,O).

Proof. We map

Lµ(r,O) → T (Q)\Opt(φ0,O) (6.22)

by sending x 7→ [γ−1R0]. Note that φx(k) ∩ R0 = φx(O) if and only if γ ·

φ0(k) ∩ R0 = γ · φ0(O), which is equivalent to φ0(k) ∩ γ−1R0 = φ0(O). This

tells us φ0 is O-optimal with respect to γ−1R0, i.e., (6.22) is well-defined. Now

let x1, x2 ∈ Lµ(r,O), x1 = γ1x0, x2 = γ2x0. Then γ−1
1 R0 = γ−1

2 R0 if and only if

R0 = γ1γ
−1
2 R0. The action on R0 is conjugation, so we need the following lemma.

Lemma 6.19. NG(Q)(M2(Z)) = Γ · Z(Q).

Proof. GL2(Q) acts on R̂0 if and only if it acts on each local piece. This means

we need to prove

NG(Qp)(M2(Zp)) = GL2(Zp)Z(Qp).

By the theory of elementary divisors, we have

GL2(Qp) =
∐

a≥b

GL2(Zp)







pa

pb






GL2(Zp).

Let g ∈ GL2(Qp) and assume g = g1δ(a, b)g2 for g1, g2 ∈ GL2(Zp), δ(a, b) =
(

pa

pb

)

. Then g ∈ NG(Qp)(M2(Zp)) if and only if

δ(a, b)M2(Zp)δ(a, b)
−1 = M2(Zp).
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The left hand side looks like






pa

pb













r s

t u













p−a

p−b






=







r spa−b

tpb−a u






, (6.23)

and (6.23) is in M2(Zp) for all r, s, t, u ∈ Zp. This implies a = b, i.e., δ(a, b) ∈

Z(Qp) and g ∈ GL2(Zp)Z(Qp).

So R0 = γ1γ
−1
2 R0 if and only if γ1γ

−1
2 ∈ Γ · Z(Q), which says x1 and x2 are

Γ-equivalent. This means we have

Γ\Lµ(r,O) →֒ T (Q)\Opt(φ0,O).

It remains to show the map is onto. Let R ∈ Opt(φ0,O). We know, by Theorem

6.16, there is some element g ∈ T (Af ) ⊂ G(Af ) such that g−1R0 = R. Then

G(Af ) = G(Q)K and K stabilizes R0, so writing g−1 = γ−1k0 ∈ G(Q)K we have

γ−1R0 = R. Let x = γ · x0. Then [x]Γ 7→ [γ−1R0] = [R].

Corollary 6.20. Γ\Lµ(r,O) ≃ T (Q)\T (Af )/Ô×.

Proof. Theorem 6.16 implies Opt(φ0,O) = T (Af ) · R0. The stabilizer of R0 in

G(Af ) is K · Z(Af ).

Lemma 6.21. Kx ≃ Ô× for any x ∈ Lµ(r,O).

Proof. We have φx : k× →֒ GL2(Q). Since φx(k) ∩M2(Z) = φx(O), we know

φx(k
×)∩GL2(Z) = φx(O×). Then Gx ≃ k× implies Kx = K∩Gx(Af ) ≃ Ô×.

So Opt(φ0,O) = T (Af ) ·R0 ≃ T (Af )/Ô×Z(Af ), but Z(Af ) = Q×Ẑ× so modding

out by Ô× kills the action of Z(Af ).

If Dx0 =
{

z+
0 , z

−
0

}

, let D±
x0

=
{

z±0
}

. For x ∈ Lµ(r,O), write Dx = {z+
x , z

−
x }

and let x = γ · x0, γ ∈ G(Q). We know γ is unique up to T (Q) and we have
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T (Q) ≃ k×. Viewing the imaginary quadratic field inside of M2(Q), we have

det(t) > 0 for t ∈ T (Q) since the determinant is the same as the norm. This

means we can define

sgn(x, x0) := sgn(det(γ)).

Lemma 6.22. Let g ∈ G(Q). Then

(i) sgn(gx, x0) = sgn(det(g))sgn(x, x0),

(ii) sgn(−x, x0) = −sgn(x, x0).

Proof. (i) is clear. For (ii), we know there is some element η ∈ G(Q) such that

η ·x0 = −x0. This says ηx0 = −x0η and so η2 commutes with each element in the

algebra [1, x0, η, ηx0]. This implies η2 = sI, some s ∈ Q×. Then x2
0 = −rI implies

we have the algebra (s,−r)Q, so r > 0 implies s < 0. Since tr(η) = 0, s = −det(η),

and hence det(η) < 0. Then γη · x0 = −x implies sgn(−x, x0) = sgn(det(γη)) =

−sgn(x, x0).

Let

L±
µ (r,O) = {x ∈ Lµ(r,O) | sgn(x, x0) = ±1}.

Then Lµ(r,O) = L+
µ (r,O) ⊔ L−

µ (r,O). Part (i) of Lemma 6.22 implies Γ+ =

SL2(Z) preserves each piece, while Γ−Γ+ switches the two. Part (ii) tells us that

x 7→ −x gives a bijection between the two. If x ∈ L+
µ (r,O), then [x]Γ = [x]Γ+ ∈

Γ+\L+
µ (r,O), while if x ∈ L−

µ (r,O), then ∃β ∈ Γ − Γ+ such that βx ∈ L+
µ (r,O)

and so [x]Γ = [βx]Γ+ . This means

Γ\Lµ(r,O) = Γ+\L+
µ (r,O), (6.24)

and we also have Γ\D = Γ+\D+.

89



Proposition 6.23. The classical interpretation of

T (Q)\
(

D+
x0

× T (Af )/Ô×
)

is

Zµ(r,O) =
∑

x∈L+
µ (r,O)

mod Γ+

pr+(z+
x ),

where pr+ : D+ → Γ+\D+.

Proof. Proposition 6.18 and Corollary 6.20 imply

Γ\Lµ(r,O) ≃ T (Q)\Opt(φ0,O) ≃ T (Q)\
(

D+
x0

× T (Af )/Ô×
)

. (6.25)

Let t ∈ T (Af ), t = γ−1k0. Looking at (6.25) in reverse order, T (Q)(z+
0 , tÔ×) gets

mapped to [tR0] = [γ−1R0] under the second isomorphism. Then this gets sent

to [γ · x0]Γ ∈ Γ\Lµ(r,O). For the sequence of maps

T (Q)\
(

D+
x0

× T (Af )/Ô×
)

→ G(Q)\
(

D ×G(Af )/K
)

≃ Γ\D, (6.26)

the first map sends T (Q)(z+
0 , tÔ×) 7→ G(Q)(z+

0 , tK), and the isomorphism maps

this to pr(γ · z+
0 ) for pr: D → Γ\D. Note that

γ−1Dγx0 =
{

γ−1z | z ∈ D, (z, γx0) = 0
}

=
{

γ−1z | z ∈ D, (γ−1z, x0) = 0
}

= Dx0 .

That is, γDx0 = Dγx0 . So if γx0 = x, then

γz+
0 = zsgn(x,x0)

x .

From (6.24), we can always choose x such that sgn(x, x0) = +1. So using (6.25)

and (6.26), we see the image of Γ+\L+
µ (r,O) in Γ+\D+ is Zµ(r,O).
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We conclude this section by giving an explicit description of Dx = {z+
x , z

−
x }

as a pair of conjugate points in H+ ∪ H−. To do this, we follow the appendix of

[13]. Let x =
( a

1+µ
b

c − a
1+µ

)

∈ Lµ(r,O).

Lemma 6.24. Dx =
{

a+(1+µ)
√
−r

(1+µ)c
, a−(1+µ)

√
−r

(1+µ)c

}

.

Proof. In [13], (A.4) gives an identification of P1(C) − P1(R) with D by

z 7→ w(z) =







z −z2

1 −z






mod C×.

Then (A.8) of [13] implies

Dx =
{

z ∈ P1(C) − P1(R) | (x,w(z)) = 0
}

.

We have

(x,w(z)) = tr













a
1+µ

b

c − a
1+µ













z −z2

1 −z







ι





= tr













a
1+µ

b

c − a
1+µ













−z z2

−1 z













= cz2 − 2a

1 + µ
z − b,

and the roots of this equation are

2a
1+µ

±
√

4a2

(1+µ)2
+ 4bc

2c
=
a± (1 + µ)

√
−r

(1 + µ)c
.
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Chapter 7

Recovering Gross-Zagier

In this chapter we reproduce a classic result of Gross and Zagier as a special case

of our main theorem.

7.1 Gross-Zagier

Theorem 7.1 (Theorem 1.3 of [7]). Let d1 and d2 be two negative fundamental

discriminants which are relatively prime, and let D = d1d2. Let w1 and w2 be

the number of roots of unity in the quadratic orders of discriminants d1 and d2,

respectively. Let

J(d1, d2) =

(

∏

[τ1],[τ2]
disc(τi)=di

(j(τ1) − j(τ2))

) 4
w1w2

,

where [τi] denotes an equivalence class modulo SL2(Z). Then

J(d1, d2)
2 = ±

∏

x,n,n′∈Z
n,n′>0

x2+4nn′=D

nǫ(n′).
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Here ǫ is defined as follows. If l is a prime such that l | D or l ∤ D and (D, l)l = 1,

ǫ(l) =















(d1, l)l if (l, d1) = 1,

(d2, l)l if (l, d2) = 1.

Then for n =
∏

i l
ai

i , where for each i either li | D or (D, li)li = 1, define

ǫ(n) =
∏

i

ǫ(li)
ai .

In [7], two proofs of this theorem are given. The first is algebraic and the second

is analytic. In the algebraic proof, they restrict to the case where −d1 is a prime

q > 3, q ≡ 3 (mod 4). This algebraic proof is then generalized by Dorman, [6], to

the case where d1 = −m is any odd (negative) fundamental discriminant. This

gives the full result since (d1, d2) = 1. Here we recover Theorem 7.1, but our

method of proof is completely different from that in [7] or [6]. For simplicity, we

assume d1, d2 < −4.

7.2 Applying the (n, 2)-Theorem

Assume d1 = −m is odd. As in chapter 6, take V = {x ∈M2(Z) | tr(x) = 0} and

L = M2(Z)∩ V . We begin by choosing a primitive vector x0 ∈ L1

(

m
4

)

, where x0

has the form

x0 =







a
2

b

c −a
2






.

This vector determines a splitting of our space V = Qx0 + x⊥0 . Next, we refer

to section 6.2. Proposition 6.4 tells us L+ = 2Zx0 and L∨
+ = 1

m
Zx0, while the

negative lattice is L− = l1Z + l2Z, where

l1 = ue1 + ve2 =







(b, c) −au

av −(b, c)






, l2 =

b

a(b, c)
e1 +

c

a(b, c)
e2 =







− b
(b,c)

c
(b,c)






.
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Lemmas 6.5 and 6.6 imply L/(L+ + L−) ≃ pr+(L)/L+ and pr+(L) = 2
m

Zx0.

Given λ+ = 2
m
x0, part (3) of Lemma 6.11 says the corresponding element λ−

such that (λ+, λ−) < 0 is λ− = Al1 +Bl2, where

A =
mα− a

m(b, c)
, B =

(b, c)(2b−mβ) − au(mα− a)

mb
.

Letting ξ =
(

1
2

− 1
2

)

represent the nontrivial coset of L in L∨, we have

pr+(ξ) = − a

m
x0, pr−(ξ) =

1

m







−2bc ab

ac 2bc






.

To ease the notation, let ξ± = pr±(ξ). We view x⊥0 ≃ k = Q(
√
−m) and if

A ⊆ Ok is the ideal corresponding to L−, then Theorem 3.3 gives

1

hk

∑

t

Φ(z+
0 , t;F ) =

∑

n≥0

{

c0(−n)
∑

y∈Z/mZ

∑

w∈yλ++L+

κ(n−Q(w), yλ−,A) +

c1(−n)
∑

y∈Z/mZ

∑

w∈ξ++yλ++L+

κ(n−Q(w), ξ− + yλ−,A)

}

.

We assume c0(0) = 0 and use the relation

Φ(z, t;F ) = −2 log
∣

∣Ψ(z, t;F )2
∣

∣ ,

where Ψ is a Borcherds form of weight 0 onD×T (Af ). This, along with Corollary

6.20, gives

2

hk

∑

x∈Γ\L1(m
4 )

log
∣

∣Ψ(z+
0 , z

+
x ;F )2

∣

∣ =

−
∑

n>0

{

c0(−n)
∑

y∈Z/mZ

∑

w∈yλ++L+

κ(n−Q(w), yλ−,A) +

c1(−n)
∑

y∈Z/mZ

∑

w∈ξ++yλ++L+

κ(n−Q(w), ξ− + yλ−,A)

}

, (7.1)
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where z+
x ∈ Dx. In order to simplify this expression, we define

κ1(t, µ) =
∑

q|m
ηq(t, µ) log(q)(ordq(t) + 1)ρ(mt),

and

κ2(t, µ) =
∑

p inert

ηp(t, µ) log(p)(ordp(t) + 1)ρ

(

mt

p

)

.

Then Theorem 4.1 tells us

κ(t, µ,A) = −2k(µ)

hk















κ1(t, 0) + κ2(t, 0) if µ = 0,

∏

q|m char(Q(µq) + Zq)(t)(κ1(t, µ) + κ2(t, µ)) if µ 6= 0.

Plugging this into (7.1), we see we can cancel off the term − 1
hk

on each side.

We would like to simplify (7.1). For y ∈ Z/mZ, write k(y) for k(yλ−) and

κj(t, y) for κj(t, yλ−), j = 1, 2. Let us first focus on the double sum next to

c0(−n). For y = 0, we have w = 2sx0 for some s ∈ Z giving

(−hk)
∑

w∈L+

κ(n−Q(w), 0,A) = 2k(0)
∑

s∈Z

(κ1

(

n− s2m, 0
)

+ κ2

(

n− s2m, 0
)

).

(7.2)

For y 6= 0, w ∈ yλ+ + L+ is of the form w = yλ+ + 2sx0 and Q(w) = y2

m
+ 2ys+

s2m = m
(

y
m

+ s
)2
. Considering the characteristic function in the formula for

κ(t, yλ−,A), we note that Q(w) ≡ Q(yλ+) (mod Z). So for q | m,

ordq(n−Q(w) −Q(yλ−)) = ordq(n− y2Q(λ)). (7.3)

For our purposes, (7.3) ≥ 0 since n ∈ 1
4
Z and λ ∈ L. Putting this together

with (7.2) we have

c0(−n)
∑

y∈Z/mZ

∑

s∈Z

2k(y)

(

κ1

(

n−m
( y

m
+ s
)2

, y

)

+ κ2

(

n−m
( y

m
+ s
)2

, y

)

)

.
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For the double sum next to c1(−n), we refer to section 6.2. Using Lemma 6.9

and Corollary 6.10 we have

pr−(L)/L− = pr−(L∨)/L−,

and

pr+(L)/L+ $ pr+(L∨)/L+ = L∨
+/L+.

Then Lemma 6.13 implies

ξ− + yλ− + L− =
(

y − m+ a

2

)

λ− + L−,

where m+a
2

is reduced modulo m, while a full set of representatives of L+ in L∨
+

is given by {yλ−} ∪ {ξ− + yλ−}. For w ∈ ξ+ + yλ+ + L+, w = ξ+ + yλ+ + 2sx0

for some s ∈ Z. Then

Q(w) =
(2y − a)2

4m
+ s(2y − a) + s2m = m

(

2y − a

2m
+ s

)2

,

and as above we have

ordq

(

n−Q(w) −Q

((

y − m+ a

2

)

λ−

))

= ordq(n−Q(ξ + yλ))

for any q | m. Since n ∈ 1
4
Z and Q(ξ+yλ) ∈ 1

4
Z as well, we do not need to worry

about the characteristic functions here either. For the second part of the right

hand side of (7.1), we have

c1(−n)

[

∑

y∈Z/mZ

∑

s∈Z

2k(y−m+a
2 )

(

κ1

(

n−m

(

2y − a

2m
+ s

)2

, y − m+ a

2

)

+

κ2

(

n−m

(

2y − a

2m
+ s

)2

, y − m+ a

2

))]

.
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7.3 A Theorem of Dorman

To prove Theorem 7.1, we prove the following theorem of Dorman, which is

equivalent to the result of Gross and Zagier.

Theorem 7.2 (Theorem 1.2 of [6]). Let l be a rational prime and e its rami-

fication index in Q(
√
−m). Then

ordl(J(−m,−d)) =
1

2e

∑

s∈Z

∑

n≥1

̺l(s)ρ

(

md− s2

4ln

)

, (7.4)

where

̺l(s) =















0 if there is q | m; q 6= l such that χq(s
2 −md) = −1,

2a(s) otherwise, where a(s) = #{q | (s,m)}.

Proof. The proof is broken up into two cases, based on whether d2 = −d ≡ 0, 1

(mod 4). We first need to translate some things from [7] into our language. In

particular, we need to see how the set

{[τ ] ∈ SL2(Z)\H | disc(τ) = −d}

relates to the set Zµ(r,O) defined in section 6.3.

Lemma 7.3. For d ∈ Z>0,

{

[τ ] ∈ Γ+\H | disc(τ) = −d
}

=















Z0

(

d
4
,Od

)

if −d ≡ 0 (mod 4),

Z1

(

d
4
,Od

)

if −d ≡ 1 (mod 4),

where Od is the maximal order in the field k = Q
(√

−d
)

and Γ+ = SL2(Z).

Proof. If τ ∈ H has Aτ 2 + Bτ + C = 0 for A,B,C ∈ Z with gcd(A,B,C) = 1,

then disc(τ) = B2 − 4AC. This is, of course, the same as the discriminant of

97



the quadratic form (A,B,C) = AX2 + BXY + CY 2. The matrix for (A,B,C)

is
(

A B
2

B
2

C

)

and the action of Γ+ on (A,B,C) is given by

y =







A B
2

B
2

C






7→ tγyγ.

If γ =
(

a1 b1
c1 d1

)

∈ Γ+, then γ · (A,B,C) equals

(

Aa2
1 +Ba1c1 + Cc21

)

X2 + (2Aa1b1 +B(b1c1 + a1d1) + 2Cc1d1)XY+

(

Ab21 +Bb1d1 + Cd2
1

)

Y 2,

while A(γτ)2 +B(γτ) + C equals

τ 2
(

Aa2
1 +Ba1c1 + Cc21

)

+ τ (2Aa1b1 +B(b1c1 + a1d1) + 2Cc1d1) +

(

Ab21 +Bb1d1 + Cd2
1

)

.

This means

{

[τ ] ∈ Γ+\H | disc(τ) = −d
}

⇋

{

Γ+(A,B,C) | disc(A,B,C) = −d
}

.

We have






A B
2

B
2

C






=

1

2
J−1x =

1

2







0 −1

1 0













B 2C

−2A −B






,

and the above action on (A,B,C) corresponds to x 7→ γ−1xγ. If we have a

primitive vector x =
( a

1+µ
b

c − a
1+µ

)

∈ Lµ(r,O4r) for some r ∈ Q, then Lemma 6.24

implies

z+
x =

a+ (1 + µ)
√
−r

(1 + µ)c
,

which is a root of cτ 2 − 2a
1+µ

τ − b = 0. We see disc(z+
x ) = −4r and we want

disc(z+
x ) = −d, so we choose r = d

4
. Primitivity tells us if −d ≡ 0 (mod 4), then

µ = 0, while if −d ≡ 1 (mod 4) we have µ = 1.
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Lemma 7.4. If −d is a negative fundamental discriminant, then

(i) −d ≡ 0 (mod 4) implies L0

(

d
4
,Od

)

= L0

(

d
4

)

,

(ii) −d ≡ 1 (mod 4) implies L1

(

d
4
,Od

)

= L1

(

d
4

)

.

Proof. For µ = 0, 1, let x ∈ Lµ

(

d
4

)

. Then x ∈ Lµ

(

d
4
,O
)

for some order O. If

µ = 0, we have Z[
√

−d/4] ⊆ O ⊆ Od, while if µ = 1, then Z[
√
−d] ⊆ O ⊆ Od.

In case (i), d = 4d′ where d′ is square-free and −d′ ≡ 2, 3 (mod 4). Then Od =

Z[
√
−d′] so O = Od. For (ii), we have

φx

(

1 +
√
−d

2

)

=
1

2
I + x =

1

2
I +







a
2

b

c −a
2






=







a+1
2

b

c −a+1
2






,

which is in M2(Z) since a is odd. Thus, O = Od.

Case 1: −d ≡ 0 (mod 4).

Let

Jd(τ) =
∏

τ2∈Z0( d
4
,Od)

(

j(τ) − j(τ2)
)

.

Then the zero set of Jd(τ) is Z0

(

d
4
,Od

)

. Theorem 1.3 of [12], which is a restate-

ment of Theorem 13.3 of [2], says

div(Ψ(F )2) =
∑

µ∈L∨/L

∑

n>0

cµ(−n)Z(n, µ,K).

The cµ(−n)’s are the negative Fourier coefficients of F while, in our situation,

(A.16) of [13] implies

Z(n, µ,K) =
∑

x∈Lµ(n)
mod Γ+

pr+(z+
x ). (7.5)

This sum is taken over Γ+\Lµ(n). If we take n = d
4

for d as in Lemma 7.4,

then Lµ

(

d
4

)

= Lµ

(

d
4
,Od

)

. Since Lµ

(

d
4
,Od

)

= L+
µ

(

d
4
,Od

)

⊔ L−
µ

(

d
4
,Od

)

and Γ+
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preserves each piece, this implies

Z

(

d

4
, µ,K

)

= 2Zµ

(

d

4
,Od

)

.

This means if we want to have div(Ψ(F )2) = div(Jd(τ)
2), we need to choose F

such that c0
(

−d
4

)

= 1 and all other negative Fourier coefficients equal zero. By

Lemma 6.3, we know that such a function exists. Then Proposition 6.23 implies

we sum over x ∈ Γ+\L+
1

(

m
4
,Ok

)

and evaluate Ψ at z+
x . This gives

4 log |J(−m,−d)| =

∑

y∈Z/mZ

∑

s∈Z

2k(y)

(

κ1

(

d

4
−m

( y

m
+ s
)2

, y

)

+ κ2

(

d

4
−m

( y

m
+ s
)2

, y

)

)

=
∑

y∈Z/mZ

∑

s∈Z

2k(y)

[

∑

q|m
ηq

(

d

4
−m

( y

m
+ s
)2

, y

)

log(q) ×

(

ordq

(

d

4
−m

( y

m
+ s
)2
)

+ 1

)

ρ

(

md− 4m2
(

y
m

+ s
)2

4

)

+

∑

p inert

ηp

(

d

4
−m

( y

m
+ s
)2

, y

)

log(p) ×

(

ordp

(

d

4
−m

( y

m
+ s
)2
)

+ 1

)

ρ

(

md− 4m2
(

y
m

+ s
)2

4p

)]

,

where we write ηq(t, y) for ηq(t, yλ−) and ηp(t, y) for ηp(t, yλ−). From the defi-

nitions of ηq and ηp, we see that ηq(mt, µ) = ηq(t, µ) and similarly for ηp, so the
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above is

=
∑

y∈Z/mZ

∑

s∈Z

2k(y)

[

∑

q|m
ηq

(

md− 4m2
(

y
m

+ s
)2

4
, y

)

log(q) ×

ordq

(

md− 4m2
(

y
m

+ s
)2

4

)

ρ

(

md− 4m2
(

y
m

+ s
)2

4

)

+

∑

p inert

ηp

(

md− 4m2
(

y
m

+ s
)2

4
, y

)

log(p) ×
(

ordp

(

md− 4m2
(

y
m

+ s
)2

4

)

+ 1

)

ρ

(

md− 4m2
(

y
m

+ s
)2

4p

)]

=
∑

y∈Z/mZ

∑

s∈mZ

2k(y)

[

∑

q|m
ηq

(

md− 4 (y + s)2

4
, y

)

log(q) ×

ordq

(

md− 4 (y + s)2

4

)

ρ

(

md− 4 (y + s)2

4

)

+

∑

p inert

ηp

(

md− 4 (y + s)2

4
, y

)

log(p) ×
(

ordp

(

md− 4 (y + s)2

4

)

+ 1

)

ρ

(

md− 4 (y + s)2

4p

)]

. (7.6)

For any s ∈ mZ, we have k(y + s) = #{q ramified | ((y + s)λ−)q = 0}, and

((y + s)λ−)q = 0 if and only if (yλ−)q = 0 since s ∈ mZ. So k(y + s) = k(y)

and it follows that ηq(t, y + s) = ηq(t, y) and ηp(t, y + s) = ηp(t, y). Now we can

write (7.6) as

∑

s∈Z

2k(s)

[

∑

q|m
ηq

(

md− s2

4
, s

)

log(q)ordq

(

md− s2

4

)

ρ

(

md− s2

4

)

+

∑

p inert

ηp

(

md− s2

4
, s

)

log(p)

(

ordp

(

md− s2

4

)

+ 1

)

ρ

(

md− s2

4p

)

]

. (7.7)

Note that, in (7.7), if s ∈ Z is odd, then md is not congruent to s2 (mod 4) and

so ρ
(

md−s2

4pi

)

= 0 for i = 0, 1, and p inert.

Recall that (7.7)= log |J(−m,−d)4|. We now compare formula (7.7) with

formula (7.4) in Theorem 7.2 and show that they agree. The proof is done with
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several lemmas, and we work separately with the cases where the prime is inert

or ramified. Let p be an inert prime. Then inside the logarithm we have

ordp(7.7) =
∑

s∈Z

2k(s)ηp

(

md− s2

4
, s

)(

ordp

(

md− s2

4

)

+ 1

)

ρ

(

md− s2

4p

)

.

(7.8)

Both [7] and [6] state, without proof, that ǫ
(

D−s2

4

)

= −1 holds for general

relatively prime d1 and d2. This fact is useful so we state it as a lemma and give

a proof of it.

Lemma 7.5. If d1 and d2 are two negative fundamental discriminants which are

relatively prime, and D = d1d2, then ǫ
(

D−s2

4

)

= −1 for any s ∈ Z with s2 < D

and s2 ≡ D (mod 4).

Proof. Assume, without loss of generality, that d1 ≡ 1 (mod 4). Write d1 =

−p1 · · · pu and d2 = −qa
1q2 · · · qv, where p1, . . . , pu, q2, . . . , qv are all odd primes

and either q1 is an odd prime and a = 1 or q1 = 2 and a = 2, 3. Assume we have

D − s2

4
=

u
∏

i=1

pai

i

v
∏

j=1

q
bj

j

w
∏

k=1

lck

k ,

where lk ∤ D, ai, bj ≥ 0, ck > 0. Then

ǫ

(

D − s2

4

)

=
u
∏

i=1

(d2, pi)
ai
pi

v
∏

j=1

(d1, qj)
bj
qj

w
∏

k=1

(d1, lk)
ck

lk
. (7.9)

Now, (d2, pi)
ai
pi

= (d2, p
a1
1 · · · pau

u )pi
=
(

d2,
D−s2

4

)

pi

since for all l 6= pi, (d2, l)pi
= 1.

This also works if we replace d2 with d1 and pi with lk or qj. Note for l 6= 2,

(d1, l)2 = (−1)
d1−1

2
l−1
2 = 1 because d1 ≡ 1 (mod 4). So (7.9) becomes

ǫ

(

D − s2

4

)

=
u
∏

i=1

(

d2,
D − s2

4

)

pi

v
∏

j=1

(

d1,
D − s2

4

)

qj

w
∏

k=1

(

d1,
D − s2

4

)

lk

=
∏

p|d1

(

d2,
D − s2

4

)

p

∏

p′∤d1

(

d1,
D − s2

4

)

p′
,
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since if p′ ∤ D and p′ ∤ D−s2

4
, then

(

d1,
D−s2

4

)

p′
= 1. D−s2

4
is positive which means

the product formula for the Hilbert symbol implies

ǫ

(

D − s2

4

)

=
∏

p|d1

(

d2,
D − s2

4

)

p

∏

p|d1

(

d1,
D − s2

4

)

p

=
∏

p|d1

(

D,D − s2
)

p
.

Fix a prime p | d1. If p ∤ s, then (D,D − s2)p =
(

D−s2

p

)

=
(

−1
p

)

since D ≡ 0

(mod p). If p | s, then D−s2

p
is a unit in Zp and D−s2

p
= d′1d2 − ps2

1 ≡ d′1d2 (mod

p), where d1 = pd′1, s = ps1. We see

(

D,D − s2
)

p
= (D, p)p

(

D,
D − s2

p

)

p

= (D, p)p(D, d
′
1d2)p

= (D,D)p = (D,−1)p =

(−1

p

)

.

So

ǫ

(

D − s2

4

)

=
∏

p|d1

(−1

p

)

= −1,

since −d1 ≡ 3 (mod 4) implies −d1 is divisible by an odd number of primes p ≡

3 (mod 4).

Lemma 7.6.
∑

n≥1 ρ
(

md−s2

4pn

)

= 1
2

(

ordp

(

md−s2

4

)

+ 1
)

ρ
(

md−s2

4p

)

for an inert

prime p.

Proof. Inert primes satisfy ǫ(p) = −1, so Lemma 7.5 implies there must be an

odd number of inert primes which are raised to an odd power in the factorization

of md−s2

4
. If there are more than one or none of them are p, then ρ

(

md−s2

4pn

)

= 0

for all n ≥ 1. Otherwise, we can write

md− s2

4
= p2a+1l2a1

1 · · · l2au
u qb1

1 · · · qbv
v ,
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where ǫ(p) = ǫ(li) = −1 and ǫ(qi) = +1. Then

∑

n≥1

ρ

(

md− s2

4pn

)

=
2a+1
∑

n=1

ρ

(

md− s2

4pn

)

=
(

#{n | 1 ≤ n ≤ 2a+ 1, n odd}
)

(b1 + 1) · · · (bv + 1)

=
1

2
(2a+ 2)(b1 + 1) · · · (bv + 1)

=
1

2

(

ordp

(

md− s2

4

)

+ 1

)

ρ

(

md− s2

4p

)

.

Lemma 7.6 tells us that (7.8) can be written

ordp(7.7) = 2
∑

s∈Z

∑

n≥1

2k(s)ηp

(

md− s2

4
, s

)

ρ

(

md− s2

4pn

)

,

while Theorem 7.2 gives

ordp

(

J(−m,−d)4
)

= 2
∑

s∈Z

∑

n≥1

̺p(s)ρ

(

md− s2

4pn

)

.

We now prove a very useful lemma.

Lemma 7.7. If q is a ramified prime, then ordq(s
2 −md) ≤ 1 and

χq(s
2 −md) =















1 if ordq(s
2 −md) = 0,

ǫ(q) if ordq(s
2 −md) = 1.

Proof. Since (d,m) = 1, ordq (s2 −md) ≤ 1. Then χq(s
2−md) = (s2−md,−m)q

while ǫ(q) = (−d, q)q. Say q ∤ (s2 − md). Then χq(s
2 − md) only depends on

s2 −md (mod q) and s2 −md ≡ s2 (mod q), so χq(s
2 −md) = 1. If q | (s2 −md),

then we have q | s. Assume s2 −md = q(qs2
1 −m1d), where m = qm1, s = qs1.

Then s2−md
q

= qs2
1 −m1d and we have

χq(s
2 −md) = (s2 −md,−m)q = (q,−m)q(qs

2
1 −m1d,−m)q.
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Then (q,−m)q = (q,−q)q(q,m1)q = (q,m1)q and qs2
1 − m1d ≡ −m1d (mod q).

Since qs2
1 −m1d is a unit in Zq,

χq(s
2 −md) = (q,−m)q(−m1d,−m)q = (q,m1)q(−m1d, q)q(−m1d,−m1)q.

m1d and m1 are both units in Zq leaving

χq(s
2 −md) = (−d, q)q = ǫ(q).

To finish the case for p inert, we just need to prove

Lemma 7.8. ̺p(s) = 2k(s)ηp

(

md−s2

4
, s
)

.

Proof. k(s) = #{q ramified | (sλ−)q = 0} and (sλ−)q = 0 if and only if q | s,

which implies k(s) = #{q | (s,m)} = a(s). Since 4 is a square, we can ignore it

in ηp

(

md−s2

4
, s
)

. We have

ηp(md− s2, s) =















0 if χq(s
2 −md) = −1 and (sλ−)q = 0 for some q | m,

1 otherwise.

If (sλ−)q 6= 0, then ordq(s
2 −md) = 0 and Lemma 7.7 implies χq(s

2 −md) = 1.

So

2k(s)ηp(md− s2, s) =















0 if χq(s
2 −md) = −1 for some q | m,

2a(s) otherwise,

which equals ̺p(s).

Now let q be any ramified prime. Then looking at equation (7.7), in the

argument of the logarithm we have

ordq(7.7) =
∑

s∈Z

2k(s)ηq

(

md− s2

4
, s

)

ordq

(

md− s2

4

)

ρ

(

md− s2

4

)

.
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Lemma 7.7 implies ordq

(

md−s2

4

)

≤ 1 so
∑

n≥1 ρ
(

md−s2

4qn

)

= ρ
(

md−s2

4q

)

and The-

orem 7.2 says

ordq

(

J(−m,−d)4
)

=
∑

s∈Z

̺q(s)ρ

(

md− s2

4q

)

.

Lemma 7.9. 2k(s)ηq

(

md−s2

4
, s
)

ordq

(

md−s2

4

)

ρ
(

md−s2

4

)

= ̺q(s)ρ
(

md−s2

4q

)

.

Proof. If ordq

(

md−s2

4

)

= 0, then ρ
(

md−s2

4q

)

= 0 and both sides are zero. Assume

ordq

(

md−s2

4

)

= 1. Ramified primes can have ǫ(q) = +1 or −1. As in the proof

of Lemma 7.6, assume we have a factorization

md− s2

4
= p2a+1

1 l2a1
1 · · · l2au

u qb1
1 · · · qbv

v ,

where ǫ(p1) = ǫ(li) = −1 and ǫ(qi) = +1. If p1 is not ramified, then p1 is inert

and ρ
(

md−s2

4q

)

= 0 = ρ
(

md−s2

4

)

. If p1 is ramified and p1 6= q, then we must

have a = 0 and ǫ(q) = +1, while χq(s
2 −md) = +1 and χp1(s

2 −md) = −1 by

Lemma 7.7. Then

ηq(md− s2, s) =































































0 if (sλ−)q 6= 0, or (sλ−)q = 0 and χq(s
2 −md) = 1,

or χq(s
2 −md) = −1 = χq′(s

2 −md) for some ramified

prime q′ 6= q with (sλ−)q′ = 0,

1 if (sλ−)q = 0, χq(s
2 −md) = −1, and χq′(s

2 −md) = 1

for all ramified primes q′ 6= q with (sλ−)q′ = 0.

So χq(s
2 −md) = +1 implies ηq(md− s2, s) = 0 and χp1(s

2 −md) = −1 implies

̺q(s) = 0. We are left with the case of p1 = q. In this case, ρ
(

md−s2

4q

)

=

ρ
(

md−s2

4

)

so we need to show

̺q(s) = 2k(s)ηq

(

md− s2

4
, s

)

. (7.10)
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As in Lemma 7.8, k(s) = a(s) and the 4 can be ignored. Since ordq(md−s2) = 1,

Lemma 7.7 implies χq(s
2 −md) = −1, so ηq(md− s2, s) simplifies to

ηq(md− s2, s) =















0 if χq′(s
2 −md) = −1 for some q′ | m, q′ 6= q,

1 otherwise.

This implies (7.10) and so Lemma 7.9 is proved.

This finishes the proof of Theorem 7.2 for the case where −d ≡ 0 (mod 4).

For the second case, the proof begins in a similar fashion as above. Then we

make one simple substitution and reduce the proof to that of case 1.

Case 2: −d ≡ 1 (mod 4).

Here we let

Jd(τ) =
∏

τ2∈Z1( d
4
,Od)

(

j(τ) − j(τ2)
)

.

The zero set of Jd(τ) is Z1

(

d
4
,Od

)

. Proceeding as in case 1, in order to have

div(Ψ(F )2) = div(Jd(τ)
2) we choose our input function F with c1

(

−d
4

)

= 1

and all other negative Fourier coefficients equal to zero. Again, Lemma 6.3 tells

us such an input function exists, and summing over x ∈ Γ+\L+
1

(

m
4
,Ok

)

and

evaluating Ψ at z+
x gives

4 log |J(−m,−d)| =

[

∑

y∈Z/mZ

∑

s∈Z

2k(y−m+a
2 ) ×

(

κ1

(

d

4
−m

(

2y − a

2m
+ s

)2

, y − m+ a

2

)

+

κ2

(

d

4
−m

(

2y − a

2m
+ s

)2

, y − m+ a

2

))]

.

Proceeding as in case 1, this is

=
∑

y∈Z/mZ

∑

s∈mZ

2k(y−m+a
2 )

[

∑

q|m
ηq

(

md− (2y − a+ 2s)2

4
, y − m+ a

2

)

×
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log(q)ordq

(

md− (2y − a+ 2s)2

4

)

ρ

(

md− (2y − a+ 2s)2

4

)

+

∑

p inert

ηp

(

md− (2y − a+ 2s)2

4
, y − m+ a

2

)

log(p) ×
(

ordp

(

md− (2y − a+ 2s)2

4

)

+ 1

)

ρ

(

md− (2y − a+ 2s)2

4p

)]

.

Now we make the substitution u = y − m+a
2

. Then 2y − a = 2u+m and we get

=

m−1−m+a
2

∑

u=m+a
2

∑

s∈mZ

2k(u)

[

∑

q|m
ηq

(

md− (2u+m+ 2s)2

4
, u

)

log(q) ×

ordq

(

md− (2u+m+ 2s)2

4

)

ρ

(

md− (2u+m+ 2s)2

4

)

+

∑

p inert

ηp

(

md− (2u+m+ 2s)2

4
, u

)

log(p) ×
(

ordp

(

md− (2u+m+ 2s)2

4

)

+ 1

)

ρ

(

md− (2u+m+ 2s)2

4p

)]

.

We can replace m + 2s with s ∈ mZ and again, by vanishing properties of

the function ρ, we do not need to specify the parity of s. Also, for any s ∈

mZ, ((u+s)λ−)q = 0 if and only if (uλ−)q = 0, and this is equivalent to q | u. Since

m is odd, this is also equivalent to q | 2u and we see k(u) = k(u+ s) = k(2u+ s).

Similarly, we can write 2u+ s in the second arguments of ηp and ηq. As y ranges

from 0 to m − 1, 2u ranges over all odd integers from 1 to m − 1. Summing

over s ∈ mZ implies we can replace the double sum by a single sum over all odd

integers s ∈ Z. Then if s is even, ρ vanishes so we can actually sum over all

s ∈ Z. We get

∑

s∈Z

2k(s)

[

∑

q|m
ηq

(

md− s2

4
, s

)

log(q)ordq

(

md− s2

4

)

ρ

(

md− s2

4

)

+

∑

p inert

ηp

(

md− s2

4
, s

)

log(p)

(

ordp

(

md− s2

4

)

+ 1

)

ρ

(

md− s2

4p

)

]

.
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This is exactly (7.7) from case 1. Theorem 7.2 and the rest of the proof of case

1 do not depend on d (mod 4), so we are done by case 1.
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