
�����������	
������

����������������
���������
������
����������������
��
�����
�������
������
��������
�
�����
�����������������������
	���	��������� !���������!�����������
	�"���
���!�����#��$������

	�"���
������������%���������	
����������&�������'�������
��������������������
����
���������������
�������
��(������(��������#��$�������
	�"���
���'

�������������	
�����
���
���
����������

TECHNICAL RESEARCH REPORT

Dynamic Resource Allocation of GPS Queues with Leaky
Buckets

by Peerapol Tinnakornsrisuphap, Sarut Vanichpun,
Richard J. La

CSHCN TR 2003-24
(ISR TR 2003-48)

Dynamic Resource Allocation of GPS Queues with
Leaky Buckets

Peerapol Tinnakornsrisuphap, Sarut Vanichpun and Richard J. La
Department of Electrical and Computer Engineering

and Institute for Systems Research
University of Maryland, College Park, MD, 20742

{peerapol,sarut,hyongla}@eng.umd.edu

Abstract

We study the problem of dynamic resource allocation of a GPS server with two
traffic classes when the leaky bucket scheme is employed as a traffic policing mechanism.
Three popular input traffic models – independent Poisson arrival, autoregressive model,
and partially observed traffic (Hidden Markov Model) – are investigated in this paper.

Theoretically, the optimal control can be obtained by a basic dynamic program-
ming algorithm. However, such a solution is computationally prohibitive due to the
curse of dimensionality. Instead, we propose several heuristic policies with improve-
ments using rollout, parallel rollout, and hindsight optimization techniques under the
aforementioned traffic models and show that these techniques can significantly reduce
the penalty associated with the delay and dropped packets.

1 Introduction

Communication networks technologies have been evolving rapidly to satisfy the varying
demands of new applications. Some emerging applications require that network service
providers provide “quality-of-service” (QoS) in the form of delay and/or throughput guaran-
tees. These QoS guarantees can be interpreted as a mutual agreement between the service
provider and users.1 Such an agreement is envisioned to require that a user adhere to an
agreed traffic profile monitored through a traffic shaper, while the service provider guar-
antees certain throughput level, maximum delay, and/or packet loss rate. The problem of
designing an efficient scheduling algorithm capable of providing such QoS guarantees can be
modeled as a stochastic optimization problem, where the service provider tries to minimize
the total price/penalty it needs to pay for packet delays and/or packet losses in violation
of the QoS. In this paper we adopt a popular traffic policing mechanism called leaky bucket
flow control scheme for shaping incoming traffic [4].

1Here a user can in fact be a domain that needs to buy a service level agreement (SLA) from another
domain to carry its traffic.

1

In order to minimize the penalty, the network needs to decide the amount of bandwidth
assigned to each traffic source. The bandwidth allocation should be dynamically adjusted
based on network state and traffic profiles. Ideally, this dynamic bandwidth allocation can
be viewed as a dynamic weight allocation in the generalized processor sharing (GPS) server
with multiclass users, where the input traffic for each class is policed by a leaky bucket flow
controller. GPS can be thought of as an idealized version of a commonly-used scheduling
algorithm for high-speed switches such as Weighted Fair Queueing [10, 11].

While it is possible to write the state and cost functions, and pose the problem of adjusting
the weights of the GPS server with leaky bucket controllers as a classical stochastic dynamic
programming (DP) problem, the problem suffers from the curse of dimensionality because
the size of the state space explodes as the time horizon and the capacity of the server increase.
Instead of attempting to compute the optimal policy through DP we study the performance
of several heuristic policies with improvements using rollout, parallel rollout, and hindsight
optimization under various scenarios.

In this paper, we first describe the model in Section 2, followed by problem formulation
in Section 3. A brief description of hindsight optimization, rollout and parallel rollout is
given in Section 4 along with that of some heuristic policies to be used as a base policy for
rollout. The experimental results are presented in Section 5. Concluding remarks and future
work are presented in Section 6.

2 The model

Consider the problem of two traffic classes sharing a GPS server under the assumption that
each traffic stream is constrained by a leaky-bucket flow controller before arriving at the
GPS server. For each i = 0, 1, let {xi,k, k = 0, 1, . . .} denote the integer-valued random traffic
process i, i.e., xi,k denotes the number of packets that arrive at the beginning of timeslot k
from traffic source i. Assume that the GPS server has a capacity of C packets per timeslot
where C is a positive integer. At the beginning of timeslot k the GPS server has to allocate
φi,k ∈ {0, 1, . . . , C} to class i queue. Here φi,k represent the minimum guaranteed number of
packets that can be transmitted from class i queue in timeslot k. We assume φ0,k +φ1,k = C.
Our objective is to find an optimal sequence {φ0,k, k = 0, 1, . . .} that minimizes a given cost
function which will be specified later. We use the following notation throughout the paper.
For any x, a, b ∈ IR, we denote [x]ba = max(min(x, b), a) and [x]+ = max(x, 0). A vector
[x0,k, x1,k]

′ is denoted by xk.

2.1 Leaky bucket (σ, ρ)

A (σ, ρ) leaky bucket flow controller is a traffic shaper that works as follows: When a packet
arrives, the packet is allowed into the network only if a token is available in the leaky bucket.
Tokens are generated at a constant rate of ρ tokens/timeslot. The leaky bucket is allowed
to store up to σ tokens in a token bucket, and tokens generated when the token bucket
has σ tokens are discarded. A packet that finds the token bucket empty must wait till a
token becomes available before entering the network. The number of packet arrivals into the
network over any period of duration M timeslots is constrained by σ + M · ρ under a leaky

2

Bucket size = σ

Token rate = ρ

Bucket size = σ

Token rate = ρ

Bucket Queue size = B

Bucket Queue size = B

Max Queue Size = Q

Max Queue Size = Q
Capacity = φ

Capacity = φ

GPS: φ+φ = C
1

1

1

1

max

max

max , 0

max, 1

0

0

0
Arrival traffic X

Arrival traffic X

 A

 A

00

1 1

Traffic Policer/Leaky Buckets GPS Queues

Figure 1: The model

3

bucket with parameters (σ, ρ).
Let Ti,k, i = 0, 1, be the number of tokens available at the beginning of timeslot k and

Bi,k be the number of packets queued in the leaky bucket queue at the beginning of timeslot
k. Assume that the leaky bucket queue has a capacity of Bmax packets. The value of Bmax

is typically small because the traffic arrival to a leaky bucket is supposed to conform to the
traffic arrival profile and the network is not penalized for any packets dropped from this
queue.

With the leaky bucket (σi, ρi) scheme, the evolution of Ti,k and Bi,k is given by

Ti,k+1 = [Ti,k + ρi − (Bi,k + xi,k)]
σi
0 ,

Bi,k+1 = [Bi,k + xi,k − Ai,k]
Bmax
0

where Ai,k is the output process of the leaky bucket i, i.e., the number of packets leaving the
leaky bucket i at the beginning of timeslot k and is given by

Ai,k = min(Ti,k + ρi, Bi,k + xi,k) k = 0, 1, . . . (1)

2.2 GPS queue

Let Qi,k, i = 0, 1, denote the queue size of class i traffic at the GPS server at the beginning
of timeslot k. Since class i traffic is first passed through the leaky bucket i, the arrival
process at the GPS server is given by {Ai,k, k = 0, 1, . . .}. The server will then transmit as
many of the available packets in each class as allowed by {φi,k, k = 0, 1, . . .}. However, if
Qi,k + Ai,k < φi,k, then the other traffic class 1− i can use the remaining capacity, i.e., class
1− i can transmit up to C −Qi,k −Ai,k packets in the timeslot. Any unused capacity in the
timeslot will be wasted.

Assumption 1. For any sequence {φ0,k, k = 0, 1, . . .} such that there exists an integer m
and i ∈ {0, 1} that φi,m > Qi,m + Ai,m and φ1−i,m < Q1−i,m + A1−i,m, there exists a sequence
{φi,0, φi,1, . . . , φi,m−1, Qi,m+Ai,m, φi,m+1, . . .} for class i traffic which yields the same or lower
cost.

The above assumption is natural in the sense that the server should not assign more
bandwidth to one class than needed while the other class has more packets to transmit.
This assumption also allows us to capture the evolution of Qi,k by

Qi,k+1 = [Qi,k + Ai,k − φi,k]
Qmax,i

0 , k = 0, 1, . . . , (2)

where Qmax,i is the maximum queue size of class i traffic. This assumption is true for a large
class of cost per stage functions.

2.3 Cost per stage function

The performance of this system can be measured by delay and loss of the packets. The delay
cost of class i in timeslot k, is proportional to Qi,k/φi,k, which is the expected number of
timeslots needed to empty the current queue of class i traffic, given that the transmission

4

rate is φi,k. We also incur a heavy penalty for each packet loss. The number of dropped
packets from class i in times slot k equals [Qi,k + Ai,k − φi,k − Qmax,i]

+. The cost per stage
h(Q0,k, Q1,k, φ0,k, φ1,k, A0,k, A1,k) is defined to be

h(Q0,k, Q1,k, φ0,k, φ1,k, A0,k, A1,k) =

1∑
i=0

(fi(Qi,k, φi,k) + Ki[Qi,k + Ai,k − φi,k − Qmax,i]
+) (3)

where Ki > 0 is the penalty per each dropped packet from class i and f : Z
2
+ → IR+ is the

delay penalty function. We now prove that Assumption 1 is true for a certain class of cost
functions.

Lemma 2. Consider a two-class GPS server described earlier. Assumption 1 holds for the
cost function (3) with the delay penalty function fi : Z

2
+ → IR+, i = 0, 1, given by

fi(Qi, φi) =

{
gi(max(Qi

φi
, 1)) if Qi > 0

0 if Qi = 0
, (4)

where gi : IR+ → IR+ is an increasing function.

Proof. Assume the condition in Assumption 1, i.e., there exists i ∈ {0, 1} and an in-
teger m such that a sequence φi = {φi,k, k = 0, 1, . . .} that φi,m > Qi,m + Ai,m and
φ1−i,m < Q1−i,m + A1−i,m. Consider another sequence φ′

i = {φi,0, φi,1, . . . , φi,m−1, Qi,m +
Ai,m, φi,m+1, . . .}. We see that up to timeslot m − 1, both sequences have the same cost
and both state spaces are identical up to timeslot m. At timeslot m, we have from the
assumption that φi,m > Qi,m + Ai,m, which results in Qi,m/φi,m < 1 and so the delay cost
for the control sequence φi at this stage is gi(1) + g1−i(Q1−i,m/φ1−i,m) while the cost per
stage of φ′

i is gi(1) + g1−i(Q1−i,m/(C − Qi,m − Ai,m)) which is always no greater because
C −Qi,m −Ai,m > C − φi,m = φ1−i,m and gi is increasing. Since φi,m > Qi,m + Ai,m, we have
Qi,m+1 = 0 and the remaining capacity C − Qi,m − Ai,m will all be utilized by the queue

1− i. Therefore, Q1−i,m+1 = [Q1−i,m − (C −Qi,m −Ai,m) + A1−i,m]Qmax

0 for either the control
sequence φi and φ′

i for class i queue. This indeed concludes the proof and hence the model
described by (2) is justified. �

In this paper, for i = 0, 1, we consider the delay penalty function, fi : Z
2
+ → IR+, given

by

fi(Qi, φi) =




ai
Qi

φi
if φi > 0

M if φi = 0 and Qi > 0
0 if φi = 0 and Qi = 0

(5)

where ai > 0 and M > maxi=0,1{aiQmax,i} is an upper bound on the cost when φi = 0 but
Qi > 0. This function approximates the delay penalty function in Lemma 2 and we assume
Assumption 1 holds for this function.

5

3 Problem formulation

We formulate here the finite horizon dynamic programming problem. By letting N be the
final timeslot, the goal is to find the optimal policy π = {φ0,k, k = 0, . . . , N − 1} where
φ0,k ∈ {0, . . . , C} such that it minimizes the total cost

E

[
N−1∑
k=0

h(Q0,k, Q1,k, φ0,k, C − φ0,k, A0,k, A1,k)

]
. (6)

3.1 Traffic models

3.1.1 Independent traffic model

In this case, for each i = 0, 1, the rvs {xi,k, k = 0, 1, . . .} are independent. Thus, the state
of the system at each time k has a fixed dimension and is given by yk = [Q′

k T ′
k B′

k]
′ and

yk+1 = F (yk, xk, φk) where F is an appropriate map.
In a more realistic traffic model, for each i = 0, 1, the rvs {xi,k, k = 0, 1, . . .} are correlated.

It is possible that either the number of states is fixed for each timestep k or is increasing
as k grows large. As a consequence, two problems arise. First, the curse of dimensionality
leads to the state space that grows larger as the correlation horizon of the input traffic
process increases. Second, since the input process may not be known exactly, we may have
imperfect state information. The correlated traffic models with perfect and imperfect state
information considered in this paper are Autoregressive (AR) models and Hidden Markov
models (HMM), respectively.

3.1.2 Autoregressive model

For each i = 0, 1, let {xi,k, k = 0, 1, . . .} be the m-step autoregressive process, i.e.,

xi,k+1 =

m−1∑
l=0

αi,lxi,k−l + wi,k, (7)

where the rvs {wi,k, k = 0, 1, . . .} are independent. For this system, we assume the perfect
state information where, at time k, the past values of xi,k−1, . . . , xi,0 are known for each
i = 0, 1. If we define the state variable for this system to be yk = [Q′

k T ′
k B′

k xk−1 . . . xk−m]′,
this problem reduces to the basic problem with independent noise {wi,k, k = 0, 1, . . .}.

3.1.3 Partially observed traffic model

It is well-known that HMM can capture a variety of interesting input traffic processes, and
is widely used in network traffic modeling [1, 9]. Under the HMM traffic, the problem is now
one of imperfect state information.

For each source i = 0, 1, the HMM traffic has a finite set of states ∆i, where each state s
in ∆i is associated with a packet arrival distribution Gs

i over Z+ and a next state transition
probability F s

i over ∆i, i.e., a state s in ∆i generates n packets with probability Gs
i (n) and

then moves to state s′ with probability F s
i (s′).

6

At each timeslot k, the system can estimate the probability distribution of the belief
state as follows: For all s ∈ ∆i, let Πi,k(s) be a probability estimate that the actual state
is s at timeslot k. Given ni packet arrivals from source i in timeslot k, we update the
distribution Πi,k+1 by applying Bayes’ rule, i.e., Πi,k+1(s) = α

∑
s′∈∆i

Gs′
i (ni)F

s′
i (s)Πi,k(s

′),
where α is a normalizing factor so that {Πi,k+1(s)}s∈∆i

is a probability distribution. Now
Πi,k = {Πi,k(s)}s∈∆i

can be used to augment the state variable to be yk = [Q′
k T ′

k B′
k Π′

k]
′,

and the problem reverts back to the basic dynamic programming formulation.

4 Policy selection

A naive approach to our problem is to directly apply the DP algorithm. However, as men-
tioned earlier, a straightforward DP approach is computationally prohibitive. Instead, we
propose some heuristic policies for this problem and improve them using rollout and parallel
rollout. These heuristic policies should be optimal in some regions of the state space in order
for the rollout or parallel rollout policies to perform well. Also, we consider the hindsight
optimization technique for this problem as well.

The basic problem in dynamic programming can be outline as follows [3]: Consider the
dynamic system yk+1 = f(yk, uk, wk) for k = 0, . . . , N − 1 where at each time k, yk ∈ S,
uk is the control to be chosen from the nonempty subset U (yk) of a control space C, and
wk is a random disturbance. The rvs {wk, k = 0, 1, . . .} are independent. If g(yk, uk, wk)
represents the cost at timestep k, we define the total cost under policy π = {µ0, . . . , µN−1},
where µk(yk) ∈ U (yk), as

Jπ
N (y0) = E

[
N−1∑
k=0

g(yk, µk(yk), wk)

]
(8)

for each initial state y0. The objective is to find the optimal policy π∗ that minimize the
cost (8).

Moreover, we define for each i = 0, . . . , N − 1,

Jπ
N−i(yi) = E

[
N−1∑
k=i

g(yk, µk(yk), wk)

]
and

J∗
N−i(yi) = min

π
(Jπ

N−i(yi)).

The DP algorithm is then given by

J∗
0 (yN) = 0

J∗
N−i(yi) = min

u∈U (yi)
QN−i(yi, u), i = 0, . . . , N − 1.

where we have set

QN−i(yi, u) = E
[
g(yi, u, wi) + J∗

N−i−1(f(yi, u, wi))
]

(9)

7

to be the Q-value of control u at yi for horizon N − i. To allow various approximation in
suboptimal controls, we also define

QJ
N−i(yi, u) = E [g(yi, u, wi) + J(f(yi, u, wi))] (10)

for any function J : S → IR. We are now ready to introduce suboptimal controls used in
this paper.

4.1 Hindsight optimization

The hindsight optimization approach has been proposed by Chang et. al. [5] (see also [8]).
The idea is to find a lower bound on the true Q-value of each control by interchanging the
order of expectations and minimizations in (9) for every timestep, i.e.,

Q̂Hs(y0, u0) = E

[
g(y0, u0, w0) + min

u1,...,uHs−1

Hs−1∑
k=1

g(yk, uk, wk)

]

where Hs << N is the sampling horizon. By Jensen’s inequality, it is easy to see that
Q̂Hs(y0, u0) ≤ QHs(y0, u0).

If the disturbance sequence {w0, . . . , wHs−1} is known, then the minimization in the above
equation is simply the deterministic optimization problem and the best sequence of controls
{u1, . . . , uHs−1} can be chosen after taking action u0 (“in hindsight”). In some problems, the
deterministic hindsight optimization can be solve analytically and can be used to find the
value of Q̂Hs .

However, in a more complicated problem or in an online fashion, the Q̂Hs-value can
be estimated using the Monte Carlo simulation. Formally, at timestep k, the hindsight
optimization policy selects the control uk = arg minu∈U (y) Q̂Hs(y, u). For a given current state

y and every u ∈ U (y), the Q̂Hs-value is computed as follows: First, we generate a number
of sample paths W = {w0, . . . , wHs−1} and find the Q̂Hs,W -value from the deterministic

optimization problem. The estimate Q̂Hs-value is obtained by averaging over all sample
paths.

4.2 Rollout

This is a heuristic method of policy improvement using sampling introduced by Bertsekas
[2, 3]. Rollout using sampling is designed to improve a heuristic policy in an online fashion.
At each timestep 0 ≤ k ≤ N − 1, given that the current state is y, the rollout policy with a
base policy π selects the control uk = arg maxu∈U (y) QJπ

Hs
(y, u) where

QJπ

Hs
(y, u) = E

[
g(y, u, w) + Jπ

Hs−1(f(y, u, w))
]
.

The function Jπ
Hs−1(f(y, u, w)) is estimated by using sampling where Hs << N is the sam-

pling horizon and QJπ

Hs
(y, u) can be computed by averaging over all sample paths.

It has been shown that the cost of using rollout policy with a base policy π is lower than
the cost of using the base policy π [3]. However, there are many candidates for the base
policy and the choice of the base policy can greatly affect the performance.

8

4.3 Parallel rollout

Chang, Givan and Chong [6] propose a new technique which generalizes the rollout policy
by considering a set of base policies instead of one base policy.

Given a set of base policies Π, at timestep k, the parallel rollout approach selects the
control uk = arg maxu∈U (y) QV

Hs
(y, u) where

QV (y, u) = E [g(y, u, w) + VHs−1(f(y, u, w))]

and
VHs−1(f(y, u, w)) = min

π∈Π
Jπ

Hs−1(f(y, u, w)).

For a given current state y and each control u ∈ U (y), the QV -value can be estimated as
follows: First, we generates a number of sample paths of W = {w0, . . . , wHs−1}. For each
sample path, we compute QV

W -value by applying the control u at the first stage, then using
the simulation to find Jπ

Hs−1,W (f(y, u, w0)) for every policy π ∈ Π and taking the minimum
of Jπ

Hs−1,W (f(y, u, w0)) over all policies in Π to find QV
W (y, u). By averaging over all sample

paths, we obtain a good estimate for QV -value.
The new policy obtaining from parallel rollout on Π denoted by πpr has been shown [6]

to have a better performance than all the base policies π ∈ Π, i.e., J
πpr

N (y) ≤ minπ∈Π Jπ
N(y)

for all y ∈ S.

4.4 Heuristic algorithms

This section presents simple heuristic policies which will be considered as base policies for
improvements using rollout and parallel rollout techniques.

4.4.1 Fixed Rate, Constant Rate and Bang-bang policies

The fixed rate a policy is simply a capacity sharing scheme similar to dedicated capacity
where the rates allocated to both traffic streams are fixed throughout the horizon, i.e.,
φ0,k = a and φ1,k = C − a, k = 0, 1, . . . where a ∈ {0, . . . , C}.

The constant rate policy is a special case of the fixed rate policy where the rate assigned to
each traffic class corresponds to its relative fluid transmission rate, i.e., the ratio between its
average traffic arrival rate and total traffic arrival rate of both classes. With traffic policing
mechanism such as leaky-buckets, the long-term average rate is bounded from above by ρ.

The bang-bang policy uses the queue size of the traffic stream to make a decision. If
Q0,k ≥ Q1,k, then φ0,k = C − 1 and φ1,k = 1. Otherwise, φ0,k = 1 and φ1,k = C − 1. This
policy tries to maximally reduce the larger queue size.

The bang-bang, constant rate, and the fixed rate a policy for a = 0, . . . , C form a set of
base policies to use with parallel rollout approach.

4.4.2 Square-root of queue size (SqrtQ) policy

Given the delay cost function fi(Qi, φi), i = 0, 1 in (5), one can find φ� = (φ�
0, φ

�
1) ∈ IR2 that

minimizes f0(Q0, φ0) + f1(Q1, C − φ0). We summarize this finding in the following claim.

9

Claim 3. For the delay cost fi, i = 0, 1 given in (5), the service rate for traffic i = 0, 1
which minimizes the total delay cost

∑
i=0,1 fi(Qi, φi) is given by

φ� =

(√
a0Q0√

a0Q0 +
√

a1Q1

C,

√
a1Q1C√

a0Q0 +
√

a1Q1

C

)
. (11)

with the resulting optimal delay cost

∑
i=0,1

fi(Qi, φi) =
2(
√

a0Q0 +
√

a1Q1)

C
. (12)

Proof. By assuming that φ0, φ1 > 0 and noting that φ1 = C − φ0, the total delay cost can
be rewritten as

g(φ0) =
∑
i=0,1

fi(Qi, φi) = a0
Q0

φ0
+ a1

Q1

C − φ0
.

By taking the derivative of g(φ0) with respect to φ0 and set to 0, we find

−a0
Q0

φ2
0

+ a1
Q1

(C − φ0)2
= 0.

From the assumption that 0 < φ0 < C, the optimal φ�
0 that minimizes the total delay cost

is the positive solution of the quadratic equation

(a1Q1 − a0Q0)(φ
�
0)

2 + 2a0Q0Cφ�
0 − a0Q0C

2 = 0.

With a simple calculation, we obtain

φ�
0 =

√
a0Q0√

a0Q0 +
√

a1Q1

C

and

φ�
1 = C − φ�

0 =

√
a1Q1√

a0Q0 +
√

a1Q1

C.

Note that the rates φ�
0 and φ�

1 are positive if both Q0 > 0 and Q1 > 0.
If for some i = 0, 1, Qi = 0, then fi(Qi, φi) = 0 for any φi. Hence, we need only to

minimize f1−i(Q1−i, φ1−i). In this case, the optimal rates that minimize the total delay cost
are simply φ�

i = 0 and φ�
1−i = C which also identify with (11). Lastly, when Q0 = Q1 = 0,

the total delay cost
∑

i=0,1 fi(0, φi) = 0 for any φ0. By substitute φ�
0 and φ�

1 in (11) back into
the total delay cost function, we obtain (12). �

Lastly, we note that if K1 = K2, then the SqrtQ policy minimizes the cost per stage h in
(3) with the delay cost f (5) in the situation when both classes experience packet losses or
neither class experiences a packet loss. In the implementation of this policy, φ�

0 is rounded to
the nearest integer. Also, if max(Q0, Q1) = 0, then we set φ0, φ1 according to the constant
rate policy.

10

4.4.3 Equal weighted delay policy

This policy attempts to equalize the delay of each queue weighted by its cost, i.e.,

a0
Q0

φ0

= a1
Q1

φ1

⇔ φ0

φ1

=
a0Q0

a1Q1

(13)

In other words, each queue will contribute the same amount to the delay penalty. From the
condition φ0 + φ1 = C, if max(Q0, Q1) > 0, then we have

φ0 =

(
a0Q0

a0Q0 + a1Q1

)
C and φ1 =

(
a1Q1

a0Q0 + a1Q1

)
C. (14)

Again, we round φ0 to the nearest integer and set φ0 and φ1 according to the constant rate
policy if Q0 = Q1 = 0.

4.4.4 Look ahead policy

For traffic model such as AR, we can also utilize the additional knowledge of the state infor-
mation in the policy. For instance, this additional information can be used in conjunction
with the φ0 in this timeslot to predict the queue level in the next timeslot and to minimize the
cost. More specifically, the best estimate of the noise in timeslot k (ignoring non-linearity)
is

x̂i,k+1 = max

(
round

(
m−1∑
l=0

αi,lxi,k−l + E[wi,k]

)
, 0

)
.

Then, an estimate of the queue size Q̂k+1 can be computed for any φ0, and the policy that
minimizes the total cost can be computed.

4.4.5 Equal weighted packets policy

This policy is designed to use the knowledge of state information in the case of HMM traffic
model. Instead of looking at the delay as in Section 4.4.3, we consider the estimated number
of packets from each class in the system. For each i = 0, 1, the estimated number of packets
from traffic i in timeslot k + 1 is simply the current queue size plus the rate of the current
belief state si,k, where the belief state si,k is computed from

si,k = arg max
s∈∆i

Πi,k(s).

Assume that the average rate of each state in ∆i is given. By letting λi be the average rate of
the belief state si,k, i.e., λi =

∑
n∈Z+

n ·Gsi,k

i (n), the equal weighted packets policy is defined
as

φi = round

(
(Qi + λi)

(Q0 + λ0) + (Q1 + λ1)
C

)
, i = 0, 1. (15)

11

5 Empirical results

5.1 Experimental set-up

We set up a Monte-Carlo simulation of the model described in Section 2 and the cost per
stage in (3) with the delay cost in (5). For each simulation run, we use heuristic policies
described in Section 4 to adjust the weight assigned to each GPS traffic class. The simulation
parameters are fixed throughout all experiments in this section as follows: σ0 = σ1 = 5,
ρ0 = ρ1 = 5, Bmax = 5, Qmax = 20, C = 10. The delay cost parameters are a0 = 2 and
a1 = 1, while the cost for each dropped packet is set to K0 = K1 = 10 for both classes.
The duration of horizon is N = 1000. We start the simulation with the initial conditions
Qi,0 = Ti,0 = Bi,0 = 0, i = 0, 1.

Three types of arrival traffic processes are considered here, namely, Poisson, autoregres-
sive, and HMM arrival processes as described in Section 3.1. We consider each of these traffic
models in turn.

5.2 Poisson arrival process

We first test the arrival traffic according to Poisson processes. Poisson traffic arises naturally
in several situations. For example, it is well known that the multiplexed packet traffic
generated by a large number of bursty data sources is well described by a Poisson process.

Poisson traffic can be modeled in discrete-time as follows: in each timeslot, the number
of packet arrivals in the timeslot is a Poisson random variable (rv). In our case, we consider
the case where the number of packet arrivals to leaky bucket i, i = 0, 1, in each timeslot are
i.i.d. rvs with a constant rate λi. We consider several heuristic policies in the simulations:

(a) Constant rate : Since the traffic arrival for both classes are identically distributed, we
choose a constant rate C/2 for each class.

(b) Bang-bang policy

(c) Equal Weighted Delay

(d) SqrtQ

(e) Rollout-SqrtQ : In this policy, we use SqrtQ as the base policy for rollout.

(f) ParallelRollout-FixedRate : For this policy, we use the fixed rate policy with a =
0, . . . , C as base policies for parallel rollout.

(g) ParallelRollout-Heuristic : For this policy, we use ‘Constant rate’, ‘Bang-bang’, ‘Equal
Weighted Delay’, and ‘SqrtQ’ as base policies for parallel rollout.

(h) Hindsight Optimization : We use a standard deterministic dynamic programming al-
gorithm to solve the deterministic optimization problem required for hindsight opti-
mization.

12

Policy λ = 1 λ = 2 λ = 3 λ = 4 λ = 5
Constant 0.5 13.4 121.4 584.3 1998.2
Bang-bang 74.4 211.5 452.4 1319.0 3985.0
Equal Weighted Delay 0.7 68.1 371.5 874.8 1915.5
SqrtQ 0.6 59.5 357.6 835.0 1868.4
Rollout-SqrtQ 17.0 34.6 113.0 443.1 1341.4
ParallelRollout-FixedRate 16.3 29.6 100.0 397.5 1431.7
ParallelRollout-Heuristic 15.8 31.1 95.9 395.8 1419.8
Hindsight 16.7 31.7 101.0 401.7 1745.2

Table 1: Comparison between the average cost of each policy when the traffic arrival in each
timeslot is i.i.d. Poisson with mean λ.

Throughout the simulations in Section 5, for all of the rollout and parallel rollout policies,
the sampling horizon for the “noise” process is 5 timeslots and the sampling width is 10
sample paths. For the hindsight optimization, we reduce the sampling horizon to 3 timeslots
due to the explosion of the state space which causes even the deterministic optimization to
be computationally expensive.

The system is simulated for a total of 10 traffic sample paths, and we compute the average
cost for each value of λ = 1, . . . , 5. The simulation results are shown in Table 1 and Figure
2.

5.2.1 Discussion

From the simulation results, it is clear that when the arrival rate is small, simple heuristic
policies such as constant rate perform well due to the fact that the burstiness of the arrival
traffic is almost unaffected by the leaky-bucket flow controller and the capacity of the server
is relatively high. As the arrival rate increases, simple heuristic policies become less effective.
All three rollout policies incur a similar cost and are significantly better than the base policies.
Therefore, rollout substantial reduces the cost with a marginal increase in the computational
complexity. While hindsight optimization marginally reduces the cost, it incurs exponential
increment in computational complexity. Until a more computationally scalable algorithm
for solving the deterministic problem can be found similar to [6], hindsight optimization may
not be practical.

5.3 Autoregressive arrival process

In the previous section, we consider the case where traffic arrival in each timeslot is Poisson
i.i.d. rv which is a very simplistic traffic model. In order to incorporate a more sophisticate
traffic arrival into the problem, we introduce AR traffic as described in Section 3.1.2 into the
system. We assume that the exact coefficients of the AR process are known and the number
of packet arrivals in previous timeslots (at least equal to the number of taps of the AR filter)
is also augmented into the system state. We assume the noise wi,k are i.i.d. Gaussian rvs
with a mean of 3 packets and standard deviation of 3 packets. Since the number of packet

13

1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Average arrival rate (packets/timeslot)

A
ve

ra
ge

 c
os

t

Average cost vs. Arrival rate: Poisson traffic

Constant
SqrtQ
Rollout−SqrtQ
ParallelRollout−FixedRate
ParallelRollout−Heuristic
Hindsight

Figure 2: Comparison between different policies for Poisson traffic.

14

Policy (α0, α1) = (0.3, 0) (0.3, 0.2) (−0.3, 0)
Constant 1432.0 2376.3 251.2
Bang-bang 2431.1 4366.2 533.7
Equal Weighted Delay 3137.4 5981.7 368.8
SqrtQ 1116.4 1922.8 336.0
Lookahead 1300.9 2097.1 531.5
Rollout-SqrtQ 912.3 1276.8 374.5
ParallelRollout-FixedRate 1077.3 1676.4 337.6
ParallelRollout-Heuristic 872.0 1341.6 363.3
Hindsight 1040.1 1524.3 395.9

Table 2: Comparison between the average cost (over 5 sample paths) of each policy when
the traffic arrival in each timeslot is AR.

arrivals needs to be a non-negative integer, we round xi,k+1 in (7) to the nearest integer
value. Then, we take the maximum of the resulting value with zero as the number of packet
arrivals in timeslot k + 1.

In addition to all the policies used in Section 5.2, we also study the followings policies
for AR models:

(i) Lookahead : This policy exploits the knowledge of state information as discussed in
Section 4.4.4

(g’) ParallelRollout-Heuristic : In addition to the policies considered before, i.e., ‘Constant
rate’, ‘Bang-Bang’, ‘Equal Weighted Delay’, and ‘SqrtQ’, we also consider ‘Lookahead’
as a base policy for parallel rollout.

Note that in all of the rollout, parallel rollout, and hindsight optimization policies, the
augmented states (i.e., the past packet arrivals and the AR filter coefficients) are also needed
to generate the simulated noise sequences. The resulting traffic for three different AR filters
are considered in Table 2.

Again, we found a similar conclusion to Section 5.2. We also tested the effect of positive
correlations to the cost of the system. The AR filter with (0.3, 0.2) coefficients is more pos-
itively correlated than (0.3, 0) and it also incurs much higher cost to the system. However,
we note that policies that exploit the information about the AR filter and the past packet
arrival patterns experience significantly less increase in the cost. On the other hand, nega-
tively correlated traffic such as (−0.3, 0) typically does not cause the queue to build up. As
a consequence, all of the policies perform roughly the same.

5.4 Hidden Markov Model arrival process

In this section, we adopt the HMM arrival processes with the assumption that both traffic
classes have the same set of states ∆ and same transition probabilities over ∆. To obtain a
model that captures the multiple timescales of network traffic behavior, we select a 20-state
HMM where each state is associated with a different packet arrival rate. The state space ∆ is

15

Policy (l1, l2, l3, l4) = (1, 2, 4, 5) (2,3,5,6)
Constant 684.3 1,027.2
Bang-bang 865.0 1,434.8
Equal Weighted Delay 564.5 798.7
SqrtQ 528.3 808.8
Equal Weighted Packets 329.4 655.3
Rollout-SqrtQ 271.2 465.8
ParallelRollout-FixedRate 280.7 486.4
ParallelRollout-Heuristic 265.8 412.7
Hindsight 270.1 295.4

Table 3: Comparison between the average cost (over 5 sample paths) of each policy when
the traffic arrival in each timeslot is HMM.

divided into four different traffic load regions, i.e., ∆ = ∪4
r=1Rr and Rr = {sr,j, j = 1, . . . , 5}.

The packet arrival distribution for sr,j is a Poisson distribution with parameter λr,j, where
λr,j = lr + Ur,j. Here lr is a fixed constant for Rr, and {Ur,j, r = 1, · · · , 4, j = 1, · · · , 5} is a
collection of i.i.d. [-0.5, 0.5]-uniform rvs.

The transition probabilities F s(s′) of the Markov state are selected at the beginning of
simulation and satisfy the following. Suppose that s = sr,j. The probability

∑
s′∈∆\Rr

F s(s′) =

0.1. Also, F s(s) ∈ [0, 0.9] and F s(s
r,(j mod 5)+1

) = 0.9 − F s(s). Note that the transition

within a region forms a circle, which introduces a periodicity in the autocovariance function
of the traffic as found in typical video traffic [7].

The policies we consider here are the same as those used in Section 5.2 with some addi-
tional policies:

(g”) ParallelRollout-Heuristic : In addition to the policies considered in Section 5.2, we also
investigate ‘Equal Weighted Packets’ as a base policy for parallel rollout.

(j) Equal Weighted Packets : By using the state information of HMM models, we can
apply this policy with the system as discussed in Section 4.4.5.

In order to provide multiple timescale bursty behavior, we select two HMM models with
load level (l1, l2, l3, l4) = (1,2,4,5) and (2,3,5,6). From the simulation results, we again reach
the conclusion that rollout and parallel rollout can significantly reduce the cost compared to
the heuristic base policies with a reasonable increase in computational complexity. Moreover,
the equal weighted packets policy that takes advantage of the state information has the
lowest cost when compared to those of the other heuristic policies. Lastly, we note that
in this scenario hindsight optimization performs as well as the rollout and parallel rollout
policies eventhough it has a smaller sampling horizon.

6 Conclusions

The research on “quality of service” (QoS) in the networking community has long been con-
sidered challenging problems. In this paper, we consider the problem of optimal resource

16

allocations of the GPS server to two traffic classes when the leaky buckets scheme is employed
as a traffic policing at the entrance of the GPS queue. Three traffic models, namely, the
independent Poisson arrival, the AR model and the partially observed traffic (HMM) model,
are used as the input traffic to the system. From these models, the basic dynamic program-
ming problems are formulated. However, using DP algorithm to compute the optimal policy
can be computationally prohibitive. As a consequence, we propose several heuristic policies
and investigate three suboptimal controls, namely, rollout, parallel rollout, and hindsight
optimization.

For all three traffic models, the performance of simple heuristic policies is inconsistent
and sensitive to the system parameters. However, the heuristic policies that exploit the
knowledge of the state information perform better than the other simple policies. The
rollout, parallel rollout, and hindsight optimization significantly improve the performance of
the system. All rollout and parallel rollout policies yield almost similar costs and perform
better than the base policies.

The suboptimal controls using rollout, parallel rollout, and hindsight optimization used
here significantly improve the performance of the system. All rollout and parallel rollout
policies yield almost similar costs and perform better than any of the base policies. However,
the ParallelRollout-FixedRate which has the simplest base policies perform poorer than the
others. This, indeed, demonstrates the effect of selecting the base policy for rollout.

We conclude that rollout greatly reduces the cost with marginal increases in the com-
putational complexity and it can be implemented online. On the other hand, hindsight
optimization gives the same performance as those rollout policies but it incurs exponentially
increase in the computational complexity.

The model we considered here contains only two traffic classes with the assumption that
both are identically distributed. It is interesting to see how these policies work if both
traffic classes are different and their system parameters are different. Furthermore, the
effect of system parameters, e.g., Qmax, Bmax, on the performance of the policies should be
investigated. In a realistic situation, there are more than 2 traffic classes arriving at the
router. Therefore, one basic extension of our problem is to consider the system with N
traffic classes. Some of our heuristic policies can be directly applied to this case.

Lastly, this problem can be formulated as the infinite horizon discounted problem where
the cost is given by

lim
N→∞

E

[
N−1∑
k=0

αkh(Q0,k, Q1,k, φ0,k, C − φ0,k, A0,k, A1,k)

]
, 0 < α < 1.

The objective is to find the optimal stationary policy π that minimizes the discounted cost.
Our conjecture is that under a simple traffic models, a specific form of the value function
can be derived. Moreover, we can study the performance of our policies in the discounted
problem.

References

[1] A.T. Anderson, A. Jensen, and B.F. Nielson, “Modelling and performance study of
packet-traffic with self-similar characteristics over several time-scales with Markovian

17

arrival processes (MAP),” in Proceedings of 12th Mordic Teletraffic Seminar, pp. 269–
283, 1995.

[2] D.P. Bertsekas, “Differential training of rollout policies,” in Proceedings of 35th Aller-
ton Conference on Communication, Control, and Computing, Allerton Park (IL), 1997.

[3] D.P. Bertsekas, Dynamic Programming and Optimal Control: 2nd Edition, Vol. 1,
Athena Scientific, Belmont (MA), 2000.

[4] D. Bertsekas, and R. G. Gallagher, Data Networks, 2nd edition, Prentice-Hall, 1995.

[5] H.S. Chang, R. Givan, and E.K.P. Chong, “On-line scheduling via sampling,” in Pro-
ceedings of the Fifth International Conference on Artificial Intelligence Planning and
Scheduling (AIPS2000), Brekenridge (CO), April 2000, pp. 62–71.

[6] H.S. Chang, R. Givan, and E.K.P. Chong, “Parallel rollout for online solution of par-
tially observable Markov decision processes,” To appear in Discrete Event Dynamic
Systems. Available at http://www.ece.purdue.edu/˜givan/.

[7] D.T. Chen, and M Rieders, “Cyclic Markov modulated Poisson processes in traffic
characterization,” Stochastic Models, vol. 12, no.4, pp. 585–610, 1996.

[8] E.K.P. Chong, R.L. Givan, and H.S. Chang, “A framework for simulation-based net-
work control via hindsight optimization,” in Proceedings of the 39th IEEE Conference
on Decision and Control, Sydney, Australia, December 2000, pp. 1433–1438.

[9] V.M. Misra, and W.B. Gong, “A hierarchical model for teletraffic,” in Proceedings of
the 37th IEEE Conference on Decision and Control, Tampa, Florida, December 1998,
pp. 1674–1679.

[10] A.K. Parekh, and R. G. Gallagher, “A generalized processor sharing approach to flow
control in integrated services networks: the single-node case,” IEEE/ACM Transaction
on Networking, vol. 1, pp. 344-357, 1993.

[11] A.K. Parekh, and R. G. Gallagher, “A generalized processor sharing approach to flow
control in integrated services networks: the multiple node case,” IEEE/ACM Trans-
action on Networking, vol. 2, pp. 137-150, 1994.

18

