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Abstract— We propose a landmark-based representation of
maps to be used for robot navigation and exploration. Our ap-
proach is aimed towards mobile robots that operate over expan-
sive, imprecisely known terrain without a single “global” map.
Instead, a map is pieced together from local terrain and navi-
gation data stored in a directed graph. Each of the graph’s ver-
tices contains information describing a landmark locally (e.g. a
detailed map of that landmark’s immediate surroundings). The
geometric relationships between landmarks are unknown. Graph
edges store language-based directions that enable a robot to steer
between landmarks. These directions are written in the motion
description language MDLe, reducing the complexity of the map
and making navigation programs robot-independent. Further-
more, the proposed architecture is economical with respect to
the amount of storage required to describe far-flung areas of in-
terest. We present preliminary results demonstrating our ideas
using an indoor robot.

I. Introduction

Mobile robots have “evolved” to the point where
they have become useful in limited ways, for exam-
ple as tour guides [1], for intra-building deliveries [2],
and in planetary exploration [3]. A key characteristic
of most successful automated vehicles is their ability
to navigate their environment. In practice, most mo-
bile robots are still restricted to fairly structured and
precisely described domains; at the same time, there
is a need for autonomous robots that can operate in
unstructured environments and over geographical re-
gions which are large compared to the robot’s size and
sensing range. A robot might rely on a set of noisy on-
board sensors that provide information about its local
environment as well as odometry information. In such
a setting, navigation and cartography become chal-
lenging problems partly because:
• no global coordinate system is available; terrain data
gathered from widely separated regions cannot easily
be placed in a common map.
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• odometry information is useful only over short dis-
tances because of sensor noise and because the terrain
metric may be unknown [4].
• only a few “interesting” regions need to be mapped
in detail. Exhaustive exploration of the entire terrain
might be impractical and wasteful.

These considerations suggest storing maps in small
pieces with each piece describing the terrain around a
landmark. This is akin to the situation that arises in
geometry where a manifold is covered by a collection of
coordinate patches. One of the challenges in the navi-
gation and exploration problems motivating this work
has to do with the difficulty in describing relations be-
tween coordinate systems of different landmarks due
to a lack of information about their relative positions.
This paper proposes a graph-based map structure for
exploration and navigation in precisely such a setting.

The idea of robot motion control using landmarks
has been used extensively for localization on a global
map [5], [6]. In [7], so-called “short-term maps” are
used as a type of dynamic landmark. Building on that
work, [8] developed a system of simultaneous explo-
ration, localization, and navigation. In [9], areas that
are dense in identifiable features are used in a “coastal
navigation” algorithm. Most recently, [10] used a net-
work of landmarks for indoor navigation. These ap-
proaches typically require that all navigable areas be
accurately mapped on a “global” coordinate system
so that a robot can get from one landmark to another.
This requirement can be impractical for robots that
move over large areas or in terrain that is sparse in eas-
ily identifiable landmarks. Works on landmark-based
navigation in the absence of a global map include [11]
and [12]. Finally, [13] proposed a graph-based repre-
sentation of the world similar to that discussed here,
with an eye towards separating the environment into
regions where different “behaviors” are relevant. The
approaches mentioned there often require dense cover-
age of an environment with landmarks so that a robot
may accurately locate itself without getting “lost” be-
tween landmarks. These requirements are too restric-
tive and resource-consuming (vis-a-vis the number of
landmarks required and the maps of inter-landmark



space). Furthermore, because the geometric relation-
ships between landmarks must be known, map making
and navigation are sensitive to position and orienta-
tion errors. For these reasons current landmark-based
navigation approaches are ill-suited for environments
in which the locations which are deemed “relevant” or
“interesting” are sparsely distributed. In this paper,
we describe an approach to robot navigation in which
selected, distant areas of the “world” (landmarks) are
related not geometrically but in terms of control in-
structions which allow a robot to move from one place
to another. The resulting map structure (defined in
Sec. V) is parsimonious in the level of detail used to
describe the environment and agrees with our intu-
ition on how humans use directions to navigate. Sec-
tion IV-A discusses the motion description language
MDLe which is used to specify the control laws (“direc-
tions”) allowing a robot to move between landmarks.
Section VI presents an experiment which demonstrates
the main idea.

II. Landmark-based Navigation in a Sparse

Environment

For the purposes of this work, there exists a set
of “interesting” geographical locations which we call
landmarks Li, i = 1, 2, ..., N and which are scattered
about in the world. We have in mind that a landmark
is a terrain feature or set of features which the robot
may use to decide when it has arrived at that place.
More specifically, let s(t) ∈ IRp be the sensor data col-
lected by a robot at time t and let L be the “current
landmark” taking values in {Li} ∪ ∅. Then

L = Li if s(t) = si(t) t ∈ [t0, t0 + T ] (1)

where si(t), t ∈ [t0, t0+T ] is a sensor “signature” of the
ith landmark. The above definition can be modified to
incorporate “post-processing” of the sensor data be-
fore identification can be made, or to accommodate
a probabilistic description of the current landmark for
the case where the Li are not uniquely identifiable from
the sensor signal. In this paper we will forgo such con-
siderations and assume that a set of landmarks has
been chosen and that each of them can be reliably and
uniquely identified when the robot is in that vicinity1.
Any location can be a landmark as long as it is deemed
relevant for the task that a robot is performing. Exam-
ples of possible landmarks include GPS coordinates,
visual or sonar cues. In this work, a landmark L will

1The question of unique identifiability will depend on several
factors, including the capabilities of the sensor suite, and the
available time in which identification must be made. Deciding
if a location should be designated a landmark is an interesting
problem in itself. In general, the answer will depend on the avail-
able sensing modalities and the environment. For a discussion
of some of these issues see [14].

be defined by a pair L = (M,x) where M is a “patch”
of terrain (representing a small area of the world) and
x : M → IR2 are coordinate functions defined on M
(where x is a diffeomorphism and we assume that the
robot is moving on a two-dimensional surface). By
convention, the landmark location will be at the origin
of the coordinate system x−1(0) ⊂M .

We will categorize navigation tasks in two broad
classes. The first involves motion control near a land-
mark Li = (Mi, xi). For example, a robot might move
from one side of a hill to the opposite, or from one room
to another through a doorway. Throughout the task,
the robot remains within the map Mi surrounding the
landmark. Problems of this type can in principle be
solved by path planning on the single map-coordinate
system pair (Mi, xi), assuming that the robot can use
its sensors to localize itself within Mi. In the follow-
ing we will focus on a second class of navigation tasks
which involve steering the robot from one landmark
L1 to another L2 when M1 ∩M2 = ∅ and the terrain
separating L1 from L2 is only approximately known.

III. Robots as Kinetic State Machines

We have in mind that there is an underlying phys-
ical system (a robot in this case) outfitted with a set
of sensors and actuators. At the lowest level, the sys-
tem is modeled by a so-called kinetic state machine
depicted in Fig. 1 [15]. The robot is governed by a
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Fig. 1. The kinetic state machine (from [15]).

differential equation of the form

ẋ = f(x) +G(x)U ; y = h(x) ∈ IRp (2)

where x(·) : IR+ → IRn, U(·) : IR+ × IRn → IRm and
G is a matrix whose columns gi are vector fields in
IRn. The robot has access to a set of timers Ti and
can evaluate a set of boolean functions ξi : IRp →
{0, 1} defined on the space of sensor outputs. An input
U(x, t) is to be thought of as a general feedback law
which can be suspended by the interrupt functions ξi
or timers Ti.



IV. Landmark-to-Landmark Navigation and

Control

In this work the available hardware (a Nomadic
Technologies robot) allowed us to create landmarks
relatively easily by exploring a particular location and
storing sensor and position information. The local
map associated with each landmark was a 150in. ×
150in. grid (detailed in Sec.VI). Within such small
areas odometry errors were small and the resulting
maps were relatively accurate. Mapping larger areas
is difficult due to the need to register new sensor data
against an existing map (in the presence of positional
uncertainty and - if outdoors - terrain curvature) and
by the memory storage and time requirements of such
a task. For these reasons, we want to avoid having
to relate distant features geometrically. Instead, an
ordered pair of landmarks will be associated with a
set of “directions” for getting from the first landmark
to the second. Towards that end, the extended Mo-
tion Description Language (MDLe) is used to encode
these directions on a set of robot-independent control
primitives (to be defined shortly).

MDLe is a language for hybrid motion control which
allows one to compose complex, interrupt-driven con-
trol laws from a set of simple primitives and syntactic
rules [15], [16]. The goal of MDLe is to provide a way
of writing hybrid control programs which - when prop-
erly interpreted - would produce the same results in the
presence of uncertainty or in different systems. Early
work on motion description languages was initiated by
Brockett [17], [18]. Further work [15] resulted in the
development of the extended motion description lan-
guage, MDLe, and its recent Linux-based implemen-
tation [16] which this work is based upon. For a more
complete description see [15], [17]. Related work in
the use of abstract languages for hard real-time peri-
odic control can be found in [19]. MDLe programs can
be used to describe geographical relationships not in
terms of where a location is but what one must do to
get there. Apart from being robot-independent, such
descriptions incorporate feedback which reduces the
complexity of the control program required to perform
a task [20].

A. Control programs in MDLe

MDLe programs are strings that can be interpreted
by a kinetic state machine. These strings can be
thought of as control primitives which are “executed”
in a sequence determined by their order of appearance
in the program and by a set of interrupt conditions.
The simplest MDLe program is an atom: σ = (U, ξ, T )
where U(x, t), ξ are as defined in Sec.III and T ∈ IR+

denotes time (measured from the moment the atom
was activated) at which the atom will “time out”. To

evaluate or run the atom σ means to apply the input U
to the kinetic state machine until the interrupt func-
tion ξ goes “low” (0) or until T units of time elapse,
whichever occurs first. T is allowed to be ∞ and U
may be an open loop or feedback control law.

MDLe atoms can be composed into longer strings
with their own interrupt functions and timers. Such
strings are called behaviors. For example, one could
use the atoms σ1 = (U1, ξ1, T1), σ2 = (U2, ξ2, T2) to
define the behavior b = ((σ1, σ2), ξb, Tb). Evaluating b
means evaluating σ1 followed by σ2 as long as the in-
terrupt function ξb is “high” and less than Tb units of
time have elapsed. Behaviors themselves can be nested
to form higher-level strings. We will use the term plan
to refer to an MDLe program. Although MDLe strings
are sequential, the order of execution of atoms in a plan
does not have to coincide with their order of appear-
ance in that plan. This is a consequence of allowing
for interrupts (triggered by external or internal events)
as well as loops and gives MDLe significant expressive
power. For a complete description of MDLe’s syntax
and implementation, see [16].

A.1 Examples of MDLe atoms

The Nomadic Technologies robot which was used as
a testbed for this work has two actuated wheels and is
kinematically equivalent to a unicycle. Its equations
of motion are

ẋ =
u1 + u2

2
cos θ

ẏ =
u1 + u2

2
sin θ (3)

θ̇ =
u1 − u2

d

where (x, y, θ) describe the position of the robot in
SE(2), u1, u2 are the left and right wheel velocities
and d is the wheel separation. The robot has 16 sonar
sensors r0, ..., r15 around its perimeter, numbered in
a clockwise direction, at angles θk = 2πk/16 with re-
spect to an orthonormal coordinate frame whose y axis
points forward and is parallel to the robot’s wheels.
Each sonar returns range information on objects lo-
cated within its 45o cone. The robot is also surrounded
by touch sensors for detecting contact with obstacles.
Some of the interrupt conditions which are currently
implemented include:
• (bumper): returns 0 when the robot’s bumper tape
detects contact, 1 otherwise.
• (wait τ): returns 0 if τ seconds have passed after
an atom has begun to run, 1 otherwise.
• (atIsection b), where b is a 4-bit binary number:
Returns 0 when the sonar sensors detect obstacles (or
absence thereof) in 4 principle directions with respect
to the current orientation of the robot. Each digit in



b selects whether the corresponding direction should
be obstacle-free or not in the order (MSB to LSB):
front,left,back,right. Used mainly to detect arrival at
intersections.
The following are examples of MDLe atoms which have
been implemented together with their constituent con-
trol laws and interrupt conditions. Their syntax is:
(Atom (interrupt condition) (control law)). Under our
previous definitions an atom (U, ξ, T ) in the formal lan-
guage is programmed as: (Atom (ξ OR t ≥ T ) (U))
• (Atom (wait ∞) (rotate α) ): u1,2 = ±k(α −
θ). Causes the robot to make its orientation α with
respect to its current coordinate system.
• (Atom (bumper OR atIsection(b)) go(v,ω)):
u1,2 = v±ωd/2. Causes the robot to move with speed
v cm/sec and turn rate ω rad/sec until it comes into
contact with an obstacle or it arrives at an intersection
specified in b.
• (Atom (wait T) goAvoid(ψ, kf , kt)): u1,2 = uf ±
(utd)/2. Causes the robot to move with heading ψ in
the absence of nearby obstacles. If there are objects
close to the robot then the desired heading is altered
to circumvent them:

uf = kfdm(t) (4)
dm = min(r0(t), . . . , r3(t), r13(t), . . . , r15(t)) (5)

ut = kt(ψ + atan

(∑
i ai sin θi(t)ri(t)∑
i bi cos θi(t)ri(t)

)
− θ)(6)

where ai, bi ∈ IR are a set of tunable parameters.
• (Atom (ri(t) == rj(t)) (align ri rj)): u1,2 =
±k(ri(t) − rj(t)). Causes the robot to rotate until
sonars i and j return equal ranges. Used to align the
robot at a given orientation with respect to walls and
other obstacles.

V. Towards a Directed Graph

Representation of the World

We now describe a structure which incorporates
landmarks (as defined in Sec. II) and navigation di-
rections written as MDLe plans. The proposed map
architecture arranges landmarks in a directed graph
G = {L,E} where L is the set of vertices and E the
set of edges of the graph. Each vertex Li corresponds
to a landmark together with its associated local map
and coordinate system (Mi, xi). A directed edge from
Li to Lj is specified by the ordered quadruple

Eij = {i, j, R,Γ}
where i, j specify a pair of vertices and Γ is an MDLe
plan that if executed while the robot is within the re-
gion R ⊂ Mi, will cause it to stop at a point inside
Mj. Edges are directed because we do not expect that
the same set of instructions will work for going back
from Lj to Li.

A possible map is shown in Fig. 2. Within each

Fig. 2. A partial map structure

vertex the local maps Mi are depicted as occupancy
grids. The presence of a connecting edge between a
pair of landmarks Li and Lj indicates knowledge of
navigating from one to the other, by evaluating a cor-
responding MDLe string, Γj

i . Of course, the graph
need not be fully connected. No explicit information
is stored regarding the relative positions of the land-
marks and no global coordinate system is defined. The
idea is to replace - when possible -the details of a map
locally by a feedback program. One may arrive at such
a program via prior exploration, planning or appropri-
ate encoding of a portion of a map. A graph might be
modified by adding or deleting landmarks and appro-
priately modifying some of its edges. A landmark may
be added by mapping some area of terrain and associ-
ating the resulting information with a new vertex on
the graph. If the instructions in Eij are unreliable due
to the complexity of the intermediate terrain, we may
refine Eij by

Eij → Eik, Lk, Ekj (7)

essentially “splitting” the plan Γj
i into two shorter

ones. A complementary operation deletes a landmark
that is no longer needed

Eik, Lk, Ekj → Eij (8)

where we have assumed that Eij , Ejk are the only two
edges leading to and from Lj . The operations defined
in Eqs. 7,8 may require modification to the two plans
when the map between them is deleted (Eq.8) or to
the initial plan before splitting it (Eq.7).

VI. Experimental Results

To demonstrate the construction and use of the map
structure discussed in the previous section, we per-
formed a simple indoor navigation experiment using



Fig. 3. Evidence grid surrounding Landmark 1: Front lab door
(150× 150 cells); the dimensions of each grid cell are 1in × 1in.
Gray levels indicate the probability of a cell being occupied (0
for white and 1 for black).

an indoor mobile robot. The goal of the experiment
was to create a map which would allow the robot to
repeatably and safely navigate between three locations
in a building, all on the same floor. Three landmarks
were defined, one around each of two doors to a lab
and one around an office entrance. We used evidence
grids [21] to describe local maps around landmarks.
Terrain was represented by an array of cells together
with the probability that each cell is occupied (rang-
ing from 0 if a cell is sure to be empty to 1 if certainly
occupied). To inform the local map associated with a
landmark the robot moved around the landmark while
collecting sensor data. That data were used to update
the probability of occupancy of each cell in the grid
using Bayes’ rule. The resulting evidence grids for the
office and lab locations are shown in Figs. 3,4-a,4-b.

The coordinate systems associated with each land-

(a) (b)

Fig. 4. Evidence grid surrounding (a) Landmark 2: Office door
and (b) Landmark 3: Rear lab door (150 × 150 cells). Cell
dimensions are 1in × 1in.

mark were chosen to be orthonormal, with their origin
at the center of each of the doorways.

The control inputs to drive the robot from the
rear of the lab (Lab 1) to the front of the

lab (Lab 2) were encoded in the MDLe plan:

Γlab1
lab2

= { Lab2ToLab1Plan (bumper)

(Atom (atIsection 0100) (goAvoid 90 40 20))
(Atom (atIsection 0010) (go 0 0.36))
(Atom (wait ∞) align 7 9)
(Atom (atIsection 1000) (goAvoid 0 40 20))
(Atom (atIsection 0100) (go 0 0.36))
(Atom (wait ∞) align 3 5)
(Atom (wait 7) (goAvoid 270 40 20))
(Atom (atIsection 1000) (goAvoid 270 40 20))

}

where the atoms and behaviors are defined in Sec-
tion IV-A.1. Γlab1

lab2 can be executed when the robot
is anywhere in the hallway, i.e. Rlab2 = {(x, y, θ) :
x > 0, π < θ < 2π}. This plan takes the
robot through the halls around the lab rather than
through the lab itself. A plan that steers the robot
from the front of the lab to the office is given by

Γoffice
lab

= { Lab1ToOfficePlan (bumper)

(Atom (atIsection 1001) (goAvoid 90 40 20))
(Atom (atIsection 0011) (go 0 0.36))
(Atom (wait ∞) align 11 13)
(Atom (atIsection 0100) (goAvoid 180 40 20))
(Atom (wait 10) (rotate 90));

}

Similar plans were created to fully connect the graph.
These plans are not unique but they are fairly simple,
and also quite similar to the set of directions one might
give to someone unfamiliar with the floor layout. For
example Γoffice

lab1 can be read as: “walk down the hall-
way until you come to a corner, turn left, walk to the
first open door on your right, turn right”.

When asked to go from landmark i to landmark j
the robot checks for the existence of a connecting path
in the graph (in this case an edge connecting the two
landmarks in the specified direction), retrieves Γj

i from
the graph, and executes it by interpreting each of its
atoms into control signals that actuate the wheels. In
figure 5 we show the graph structure, two of the con-
necting edges, and a blueprint (not to scale) of the
environment along with a typical path produced by
the execution of Γlab1

lab2 followed by Γoffice
lab1 . On the

path produced by Γlab1
lab2 an obstacle in the hallway (not

indicated on the blueprint) caused the robot to tem-
porarily move away from the wall.

VII. Conclusions

We have proposed a new, efficient map representa-
tion which is aimed at enabling robotic exploration and
navigation in a wide range of environments. Relevant
or interesting areas of the environment are stored in a
graph whose vertices are landmarks, linked pairwise by
language-based descriptions of control for landmark-



Fig. 5. Three vertex graph containing the office and lab land-
marks and the environment floor plan

to-landmark navigation. Our preliminary experimen-
tal results suggest that the proposed map representa-
tion is most useful when distinguishable terrain fea-
tures are sparsely distributed or when most features
are irrelevant to the robot’s task. One of the advan-
tages of our approach is the use of MDLe strings to en-
code instructions for steering between landmarks. For
the programs used in our experiment, we described
some of the “atoms” used to implement those pro-
grams on our robot. For different robots, each atom’s
control law and interrupt might have to be modified,
however the MDLe programs stored in the map would
be unchanged. This would be akin to re-writing a set
of device drivers for use in a different computing plat-
form.

As part of our ongoing work, we are investigating
ways of identifying landmarks from sensor data (a kind
of state estimation problem) and automating the pro-
cess of creating new landmarks. The latter problem
might involve starting from a known location and ex-
ploring the environment while recording the MDLe
strings which brought the robot to its present posi-
tion. We expect to report soon on more comprehensive
indoor navigation experiments, using a map with mul-
tiple landmarks, ultimately covering our entire build-
ing. Other related open problems include graph-level
path planning by selecting from the available set of
MDLe strings, as well as augmenting that set to in-
clude new strings which are found to be effective ac-
cording to some appropriate metric. Other interesting
extensions of this work might include a treatment of
environmental or sensory uncertainty and the propa-
gation of probability densities on a graph under the
“action” of MDLe plans.
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