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Due to the poor understanding of the underlying biological mechanisms of psychiatric
disorders, diagnoses rely upon symptomatic criteria and clinicians’ discretion. Reviews of these
criteria have revealed issues of heterogeneity, over and under specificity, and symptom overlap
between disorders. Deep learning provides a method to produce quantifiable diagnostic labels
based upon biological markers such as specific features of brain anatomy or functionality. In
practice, these methods fail to indicate how a particular result was determined, raising major
obstacles for clinical implementation.To improve the efficiency and interpretability of existing
deep networks, we have developed a novel atlas-based attention module to more easily capture
global information across different areas of brain function. Our model can be extended to
symptom level classification using NIMH data to give clinicians usable information outside of
broad disorder classification. We have compared our model against leading 3D deep learning
frameworks and have shown that our novel atlas-based attention module achieves 88% F1 and
91% accuracy on the UCLA Consortium for Neuropsychiatric Phenomics dataset. We have
embedded our model with elements like deformable convolutions, gradient activation
visualizations, and occlusion testing to show model attention and function. In addition to the lack
of explainability, addressing the ethical issues surrounding clinical implementation of artificial
intelligence is necessary before usage can become a reality. We identified a series of regulatory
recommendations to address pertinent ethical concerns of equity and bias during both model
development and clinical usage. We propose a standardized protocol for developing a clinical
reference standard, the development of diversity reports regarding data used by models, and
regulation of usage scenarios to reduce contextual bias.
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1 Introduction

1.1 Shortcomings of Psychiatric Diagnosis

Mental illnesses are among the most prevalent health conditions worldwide. In 2018, it
was estimated that nearly 20% of adults in the U.S. (47.6 million people) experienced some form
of mental illness (Mental Health By the Numbers, n.d.). Serious mental illnesses affect
approximately 5% of U.S. adults (11.4 million people) (Mental Health By the Numbers, n.d.).
For the majority of the past century, psychiatric diagnoses have relied exclusively upon
categorical symptomatic criteria established in guides such as the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) and International Classification of Diseases (ICD-10)
(Schultze-Lutter et al., 2018; Suris et al., 2016). The DSM provides clinicians with an explicit set
of symptom requirements for each disorder. These criteria are established in a polythetic
structure, with disorder categories consisting of multiple symptom clusters that must be fulfilled
by meeting some minimum number of symptoms within each cluster (Young et al., 2014). This
has the purpose of providing flexibility to the diagnosis in order to encompass a variety of patient
presentations. While having these criteria does improve clinician reliability, heterogeneity within
and across disorders exemplify inconsistencies throughout criteria.

Heterogeneity across disorders manifests as significant symptom overlap across disorder
criteria. For example, hallucinations are part of criteria for psychotic disorders such as
schizophrenia, but also appear in the criteria for bipolar and related disorders, and PTSD
(Allsopp et al., 2019, p. 19). This leads to the relatively high frequency of psychiatric
comorbidities, i.e. the presence of two or more disorders in one patient (Feczko et al., 2019; van
Loo & Romeijn, 2015). Van Loo and Romeijn estimate that up to 45% of patients per year meet
the minimum requirements for multiple comorbid disorders (van Loo & Romeijn, 2015).
Symptom overlap and comorbidity suggests that the divisions between disorders are not as clear
as the disorder categorizations suggest. Without quantitative tests or more complete
understanding of disorder physiology however, it is not evident if this is an artifact of the DSM’s
classification scheme, or if there is a deeper biological commonality between frequently
comorbid disorders (van Loo & Romeijn, 2015).

Heterogeneity within disorders means that a single disorder diagnosis can come from
multiple different symptom combinations. In over half of DSM-5 disorders, two patients can be
diagnosed with the same disorder while sharing no common symptoms (Allsopp et al., 2019, p.
1). For some disorders, the degree of heterogeneity is especially excessive. For example,
Galatzer-Levy and Bryant calculated that 227 unique combinations of symptoms exist for a
major depressive episode, 23,442 combinations exist for panic disorder, and 636,120
combinations exist for post-traumatic stress disorder (PTSD). Furthermore, if comorbid disorders
are taken into account, the number of possible presentations of PTSD and its comorbidities
jumps to over one quintillion (Young et al., 2014). The existence of internal heterogeneity



suggest that these disorders consist of subtypes or exist on continuums, with differences in causal
mechanisms underlying these variations (Allsopp et al., 2019, p. 21; Feczko et al., 2019)

Another shortcoming of symptomatic criteria is that diagnoses significantly depend upon
clinician judgment. A consequence of this is that mental health diagnosis is especially at risk for
being negatively affected by unconscious thoughts and feelings, known as implicit bias (Merino
et al., 2018, p. 723). Implicit biases are especially likely to impact patients from minority groups.
Snowden identifies two main types of bias: overpathologizing bias, in which unfamiliar
behaviors of minorities are misidentified as disorder symptoms, and minimization bias, in which
actual disorder symptoms are ignored (Snowden, 2003). These biases likely contribute to the
overdiagnosis and underdiagnosis of certain disorders, respectively. Minority groups are more
likely to be underdiagnosed with affective disorders such as depression and bipolar disorder, and
overdiagnosed with psychotic disorders such as schizophrenia and schizoaffective disorder
(Merino et al., 2018, p. 724; Schwartz & Blankenship, 2014, p. 134). In particular, Barnes found
that African Americans in state hospitals are almost five times more likely than white Americans
to be diagnosed with schizophrenia. Likewise, Chien et al. state that the disproportionate
diagnosis of African Americans holds despite the epidemiological incidence of schizophrenia
being equal across racial groups, suggesting that there is some factor within clinical diagnosis
contributing to the disparity.

Improvements to psychiatric diagnosis should be made to address the shortcomings of
current disorder criteria. However, the lack of understanding of brain functioning means that the
underlying biological causes of these disorders are also unknown, thereby forcing the continued
dependence on symptomatic descriptions of disorders. Working towards a more descriptive
definition of psychiatric disorders (ie. subtypes, pathophysiology, stage/severity, biological
predisposition) through biomarkers will help physicians move past the currently flawed
standards (Waszkiewicz, 2020). In addition, this will allow for the development of treatments
targeted at specific dysfunctional systems (Kendell & Jablensky, 2003, p. 4). Progress in
developing and establishing this understanding has been slow due to the complexities of the
brain. Disorders are likely caused by a combination of biological factors, e.g. neuroanatomy,
neurochemistry, and genetics (Kendell & Jablensky, 2003). Furthermore, a review of current
techniques reveals the key fact that confounding variables such as neurological disorders,
environmental factors, psychoactive substance use, comorbidities, and medication reduce the
efficacy of measurable markers (Waszkiewicz, 2020).

1.2 Neuroimaging for Biomarker Identification

Our search for descriptive biomarkers began with the assumption that evidence for
psychiatric disorders exists in the brain. While brain imaging is more commonly used to
diagnose trauma and measure brain function, trends in populations suffering from psychiatric
disorders such as altered brain volume and decreased brain activity raises the question of
identifiability via neuroimaging (Mayo Clinic, 2021; Waszkiewicz, 2020). It is understood that
morphological changes occur in regions tied to emotional and cognitive function. For example,



depression leads to decreased volume in the hippocampus, prefrontal cortex, orbitofrontal cortex,
and anterior cingulate cortex (Wilczynska et al., 2018). A meta-analysis quantified this change,
finding an average reduction in hippocampal volume of 8 and 10 percent for the left and right
sides, respectively, in patients with a history of depression (Videbech and Ravnkilde, 2004). In
addition, postmortem microscopic analysis found abnormal variations in cell count and density
in those who suffered from mood disorders (Wilczynska et al., 2018). With measurable
differences found in affected subjects, we move forward with the assumption that features can be
extracted from imaging data to help classify psychiatric disorders.

Magnetic resonance imaging (MRI) is a noninvasive method for doctors to produce high
resolution three-dimensional images of the brain. It has been used for almost 40 years in the
diagnosis of psychiatric disorders to help classify potential structural differences and rule out
underlying brain diseases (Falkai et al., 2018). The prevalence of neuroimaging for better
identification of psychiatric disorders gives us the opportunity to analyze images based on their
salient features. In the world of computer vision, this is broadly defined as clustering and
classification. The most applicable traditional computer vision methods are detector and
descriptor schemes, such as a Scale-invariant feature transform (SIFT) (Georgiou et al., 2020).
SIFT relies on finding and describing keypoints, corners and strong edges, to help quantitatively
define a class of images. This method has been tested on ultrasounds, similar to an MRI, to
automate registration and stitch together 3D panoramas (Ni et al., 2009). However, our problem
requires identification of minute differences in the volume, density, or even structure of the brain.
A scale invariant technique is able to match features across different images using the
corresponding descriptors, but it is up to the user to determine which features best describe a
class (O’Mahony, 2019).

1.3 Deep Learning

As opposed to traditional techniques, deep learning (DL) accurately finds the salient
features of a class without user input or trial and error (O’Mahony, 2019). While we will cover
more in depth descriptions of specific DL algorithms, DL can broadly be defined as “a
multilayered representation of input data” (Georgiou et al., 2020). A representation of input data
in a higher dimensional space allows analysis to be done and results to be obtained that stretch
beyond detector and descriptor schemes and lend well to more descriptive quantitative
definitions of psychiatric disorders.

There are numerous examples of studies using neural networks and brain imaging to
better classify psychiatric disorders in specific populations. Youth ADHD was studied using over
four thousand MRI scans and a multi layer perceptron (Zhang-James et al., 2020). This basic
network was run on 151 variables produced after segmenting the images during preprocessing.
The results pointed to statistically significant subcortical volumetric reduction, cortical thinning,
and reduced brain surface area in children with ADHD. This work led to insights beyond
classification and diagnosis, namely proof for the reduction in severity of ADHD with aging.
Similarly, with a dataset of only 174 functional MRI scans of subjects diagnosed with



schizophrenia, researchers found that they could achieve a classification accuracy of over 80%
by working with only a small number of features (0.5% of all features) generated by their
network (Kalmandy et al., 2019). Information outside of pure classification can be extracted
from imaging data when using machine learning techniques. These studies show that well
defined input data (ie. through segmentation) combined with network defined features not only
produces accurate results, but gives researchers the ability to analyze information encoded in
specific brain regions.

Most DL based Al systems are analogous to a black box; i.e., the method with which they
reach their results are largely, if not completely, unknown. Increased fidelity in explanation and
model attention will allow for more detailed analysis of outputs and translate into greater user
understanding (Alqaraawi et al. 2020). Explainability often translates to a visual interpretation of
the model output, giving the user an idea of the features a model pinpoints and allows users to
take a look under the hood. Various methods of explanation can quantitatively verify model
robustness. Furthermore, the addition of a DL model as a supplementary tool for clinicians could
improve patient care (Tschandl et al., 2020). However, if a DL model were to be implemented in
the clinical setting, explainability of results will be crucial for establishing trust with both the
patient and clinician.

We propose a deep learning model structure implementing both supervised and
unsupervised networks to identify anatomical and functional correlates of various psychiatric
disorders and their symptoms. The addition of post-hoc explainability through numerous
visualization techniques will help facilitate a better understanding of model behavior so its
attention can be used by researchers to better understand the brain, as well as provide a proof of
concept of the potential utility of a deep learning model as a supplementary tool for diagnosis.
We also propose methods of addressing concerns of bias and inequity from the deployment of
artificial intelligence systems in general within clinical settings. The computational foundations
of our work and two iterations of our model design are explored in Chapter 2. Our
interpretability integrations and visualizations can be viewed in Chapter 3. Finally, the ethical
framework and recommendations can be found in Chapter 4.

2 Computational Model Design

2.1 Computational Foundations

2.1.1 Deep Neural Networks

Deep neural networks (DNNS5s) are a class of machine learning models derived from the
perceptron algorithm (Rosenblatt, 1958). Unlike the perceptron and its relative, the multilayer
perceptron, deep neural networks are characterized by many layers and a large number of
parameters. Each layer in the network takes a vector as an input and computes an output vector
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as a nonlinear function of the inputs and a set of tunable parameters called weights (LeCun et al.,
2015). These layers are stacked sequentially, with the output of one layer acting as the input to
the next, allowing the network to perform increasingly complex manipulations of the input
features as its depth increases. The weights of the network are adjusted through a process called
backpropagation. Generally, in the case of supervised learning, backpropagation involves
adjusting the weights iteratively to minimize the difference between the network’s actual output
and the expected output. In recent years, deep neural networks have been applied successfully in
many areas of machine learning, for example, computer vision, natural language processing,
anomaly detection, and structured output learning.

2.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a particular type of DNN that are well-suited
for image processing. Images normally present a challenge for DNNs due to their relative
high-dimensionality, meaning that vanilla fully-connected DNNs often require an impractically
large number of weights per layer in order to be able to do any useful image processing. CNNs
avoid this challenge through a weight sharing scheme, exploiting the fact that many significant
image features are translation-invariant. This approach is loosely inspired by the discovery of
local receptive fields in the human retina. Instead of having a corresponding weight for every
input-output pair, CNNs implement a set of filters, or kernels, that store weights representing a
small portion of the input image. These filters are then “convolved” across the entirety of the
input image, such that the same weights are applied in multiple locations.

This weight-sharing scheme significantly reduces the total number of parameters
required for image processing, thereby allowing for deeper, more complex networks.
Consequently, CNNs have emerged as a leading approach for many computer vision tasks,
beginning with the landmark AlexNet paper (Krizhevsky et al., 2017) which achieved what was,
at the time, state-of-the-art performance on the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC). Since then, many models achieving state-of-the-art performance on the
ILSVRC benchmark (Russakovsky et al., 2015) have been variants of CNNs.

2.1.3 The ResNet Architecture

Inspired by the observation that deep CNNs tend to perform better as their depth
increases (Szegedy, Wei Liu, et al., 2015), ResNets use residual learning to improve the training
efficiency of very deep network architectures (He et al., 2015). Unlike vanilla CNN modules, the
output of residual layers is taken as the sum of a vanilla CNN layer output and the unaltered
input signal. This simple modification mitigates the negative impacts of two well-known
problems with the training of deep neural networks. The first is the vanishing gradient problem,
which refers to the fact that in traditional backpropagation, error signals from early layers
decrease exponentially with network depth. In the worst case, this can result in weight updates
for early layers in very deep networks being negligibly small, drastically reducing training
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efficiency (Bengio et al., 1994). The second problem concerns the fact that increasing network
depth can often lead to saturation and ultimately a degradation of performance (He et al., 2015).

First proposing the ResNet architecture in 2015, He et al. demonstrated that the use of
residual layers as opposed to vanilla CNN layers allowed for the effective training of much
deeper networks than previously tested (He et al., 2015). Identity operations, as seen in Figure 1,
in residual layers meant that there were less vanishing gradients in the deeper layers of the
network. Their deep ResNet-based architectures achieved first place on the 2015 ILSVRC
classification, ImageNet detection, COCO object detection, and COCO object segmentation
tasks. Given their utility and simplicity of implementation, residual connections such as those
used in ResNet have become a critical component in many recent deep image processing
network architectures.

X
Yy
weight layer
F(x) Lrelu <
weight layer identity

Figure 1. Mathematical operations describing a residual layer in deep networks. The identity
operator in addition to the normal weight layer helps with reducing vanishing gradients. Image from He et
al.

2.1.4 The U-Net Architecture

U-Net is a convolutional network architecture proposed specifically for biomedical image
segmentation (Ronneberger et al., 2015). Given the relatively limited availability of labeled
biomedical imaging data, U-Net was designed to leverage data augmentation techniques to train
from small imaging datasets (tens of images as opposed to thousands). As seen in Figure 2, the
network is organized into two sequentially-connected pathways. First, the contracting pathway
downsamples the input image using traditional convolutional and max pooling layers in order to
capture image context. Once the contracting pathway performs this feature extraction, the
symmetric expanding pathway upsamples the latent image representation using up-convolution
layers until the output matches the original input in the height and width dimensions. A final
convolution layer is used to assign labels on a pixel-by-pixel basis, effectively producing a
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segmentation map of the original image. The original U-Net architecture achieved best
performance on the ISBI challenge for the segmentation of neuronal structures in 2015.
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Figure 2. Dimensions and operations done using U-Net architecture for image segmentation. Image
from Ronneberger et al.

2.1.5 Attention Mechanisms

Attention is a powerful and widely-used machine learning technique. Generally, attention
mechanisms work by enhancing certain parts of the input signal and diminishing other parts,
effectively increasing the impact of relevant portions of the input on the output and decreasing
that of irrelevant parts. Unlike standard weights, which are fixed at runtime, attention parameters
are computed at runtime as a function of the input data. This feature has led attention parameters
to sometimes be referred to as “soft weights.”

Although attention-like mechanisms have existed in machine learning since at least the
1990’s, they gained significant popularity in 2017 with the creation of the Transformer network
for natural language processing (Vaswani et al., 2017). The Transformer replaced recurrent
components entirely with attention mechanisms for sequence learning, improving performance
over previous encoder-decoder approaches while significantly increasing model parallelizability
and decreasing overall training time. There is however a downside with the quadratic memory
cost. Since then, attention and attention-like mechanisms have been effectively used for a variety
of machine learning tasks, including neural machine translation (Tang et al., 2018), image
classification (Guo et al., 2019; Ramachandran et al., 2019; Srinivas et al., 2021; Zhao et al.,
2020), graph representation learning (Velickovi¢ et al., 2018), and medical deep learning (Kaji et
al., 2019).

More recently, attention mechanisms have been introduced to the realm of computer
vision. These Vision Transformers have demonstrated extraordinary performance and many
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works have explored different approaches for integrating them into standard convolutional
networks as well as replacing the convolution entirely with just self-attention blocks. Our work
builds off of two methods namely Visual Transformers (Wu et al., 2020) and Pyramid Vision
Transformer (PVT) (Wang et al., 2022). The first work introduces a semantic grouping module
that is able to group pixels in the image and use the pooled features for each group as tokens
rather than the singular pixel features. The motivation behind this is that the module creates a
more compact set of tokens and thereby reduces the computational cost of the attention module.
After obtaining the token-to-token self-attention map, a projection module is used to transform
the image features based on the attended group features. The paper integrates the attention
module by replacing the last stage of convolutions with their proposed attention architecture,
thereby reducing the number of parameters and floating-point operations considerably. PVT
approaches the problem differently by proposing to replace convolutions with a custom attention
architecture that applies a learned downsampling of the image to a fixed resolution and then
attending the image features with the downsampled image features. In this case, the
downsampled features preserve global information in the image features. Both models
demonstrate improved efficiency and accuracy on ImageNet compared to their convolutional
counterparts.

2.1.6 Transfer Learning

Transfer learning is the process by which knowledge accumulated when learning one task
can be repurposed to improve baseline performance on another different but similar task. In
machine learning applications, this is usually accomplished by training some or all layers of a
neural network on one task and then using these trained weights to initialize a model that is then
trained for a different task. The process of learning weights from a pretext task is known as
“pre-training”, and the process of adjusting these pretrained weights on the target task is
commonly known as “fine-tuning.” Transfer learning can be especially useful in task domains
where labeled input data is scarce, including medical imaging contexts.

Datasets used for pretraining models are varied, though use of large-scale general datasets
has proven to be effective in jump-starting the training process for many ML applications. In the
field of computer vision, the ImageNet dataset from the ILSVRC benchmark is a widely used
dataset for performing transfer learning for a number of different target tasks, including image
classification, object detection, image segmentation, and action recognition (Huh et al., 2016).
The popularity of ImageNet for transfer learning in computer vision is likely due to its large size
(1.2 million images) and the large number of object classes (1000). As a consequence of these
factors, models pre-trained on ImageNet seem to learn good “general-purpose” features which
are amenable to many target task domains. In their experiments with ImageNet pre-training,
(Huh et al., 2016) found that reducing the number of ImageNet images by 50% and the number
of output classes by over 80% both individually result in only small performance decreases on
other image classification benchmarks. They speculate this may mean that pre-training for CNNs
is more resilient than previously thought, and that previous estimates of the number and variety
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of image samples required to learn good “general-purpose” CNN features were larger than
necessary.

More recent works have investigated potential mechanisms for reusing weights learned in
2D classification contexts, such as those from networks pre-trained on ImageNet, to 3D contexts,
such as volumetric medical imaging. Some of these mechanisms will be discussed in the
following sections.

2.1.7 The 13D Architecture

The Two-Stream Inflated 3D ConvNet (I3D) uses one proposed method for repurposing
pre-trained weights from 2D image classification models for 3D imaging tasks (Carreira &
Zisserman, 2018). The original paper proposes using 2D pre-trained weights for a
spatio-temporal imaging task with video input, though from a theoretical perspective the
approach used by I3D can apply to arbitrary volumetric imaging tasks. I3D works by “inflating”
2D N X Nfilters into 3D N X N X N filters. Initializing these 3D filters is very straightforward:
the contents of the 2D filter are simply duplicated at each index along the new axis and
normalized by the length of the axis, such that taking their sum along the third axis produces the
original 2D filter.

The authors of 13D use this approach to inflate an Inception vl model with batch
normalization, pre-trained on the ImageNet classification task (Ioffe & Szegedy, 2015). They
then pre-train the resulting 3D model again on the Kinetics Human Action Video dataset (W.
Kay et al., 2017) before testing it on the HMDB-51 (Kuehne et al., n.d.) and UCF-101 (Soomro
et al., 2012) action classification datasets. The resulting I3D model achieved state-of-the-art
performance on both action classification tasks, highlighting the effectiveness of ImageNet
pre-training even for volumetric imaging tasks.

2.1.8 ACS Convolutions

Axial-coronal-sagittal convolutions (ACS) is another proposed method for natively using
2D pre-trained weights in 3D imaging contexts (Yang et al., 2021). The authors of ACS address
an inherent flaw in the 13D approach for generalizing 2D pre-trained weights to 3D volumetric
imaging contexts. Unlike spatio-temporal applications, where the new temporal axis is
semantically distinct from the existing spatial axes, arbitrary volumetric imaging applications do
not necessitate a distinction between the new spatial axis and the existing spatial axes. In other
words, it is unclear which spatial axis the 2D filter should be oriented to (duplicated across)—in
many imaging contexts, including medical imaging, all seem equally valid. The authors address
this issue of selecting the optimal axis by avoiding it altogether. Instead of duplicating the 2D
filter across a single axis, the K X K 2D filter is split into 3 separate kernels: one K X K X |
filter for the axial axis, one K X [ X K filter for the coronal axis, and another / X K X K filter
for the sagittal axis. Due to the threefold increase in the number of filters applied to each region
relative to the original network, each of these three resulting filters is normalized by a factor of
one third. During an ACS convolution step, these three filters are convolved independently
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across the original 3D input. The three outputs are then aggregated either by concatenation or
(weighted) averaging, depending on the application.

Like I3D, ACS convolutions provide two major benefits for generalizing 2D
convolutional networks to 3D task domains. First, any 2D network architecture can be adapted to
3D input using this scheme with minimal modifications, and second, this scheme permits
2D-to-3D transfer learning by directly loading pre-trained weights from the parent 2D network.
In their experiments, Yang et al. (2021) found that a variant of Mask R-CNN adapted to use ACS
convolutions consistently benefitted from 2D pre-training on the DeepLesion benchmark,
outperforming the previous best approach. Even without pre-training, their ACS model was
comparable with or superior to other 3D convolutional approaches that were not as amenable to
2D-to-3D transfer learning.

2.1.9 Deformable Convolutions

While CNNs are well suited for visual recognition tasks they are subject to limitations
when they try to accommodate for geometric variations and transformations which can change
the position, orientation, and scope of an image. One way to address this is to incorporate these
variations in the training dataset. This is typically done by modifying the existing data with
affine transformations (Dai et al., 2017). Another method is to apply techniques such as SIFT
(scale invariant feature transform) to extract transformation invariant features. However, each
method is subject to limitations. The former usually results in expensive training and complex
model parameters while the latter might be too difficult to perform for complex variations and
transformations. To address these shortcomings Dai et al. introduced deformable convolutions.

Deformable convolutions address the shortcoming of traditional convolutions by adding
offsets to the regular sampling grid. Traditional convolutional layers employ a rectangular kernel
of fixed size to sample from the input feature map. This introduces a limitation on the layer as it
forces all the activation units to have the same receptive field sizes. This makes the model less
desirable to use when recognition tasks involve object detection and segmentation. The offsets
added to the regular grid by deformable convolutions fix this issue by modifying the constant
receptive field of each activation unit. This allows the model to account for data containing
variations in image scale.

2.1.10 Multilabel Classification and Triplet Loss

When dealing with numerous classes or a situation where there are only a few samples of
data to train on, softmax cross entropy loss likely will not suffice due to the sparsity of the
network. One way of combating this issue by employing the triplet loss function (Hoffer &
Ailon, 2018). Triplet loss centers around the idea of learning the embeddings of the data in a way
such that data points with the same labels have embeddings that are similar to each other and
data points with different labels have embeddings that are dissimilar to each other. To achieve
this requirement the loss is calculated over a triplet of embeddings: anchor, positive, and
negative. The anchor serves as the reference input to which the positive and negative
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embeddings are compared to. The positive embedding shares a label with the anchor while the
negative embedding label differs from both the anchor and positive. Ideally the distance between
the positive and anchor should be small and the distance between and the distance between the
negative and anchor should be large. The bulk of the learning occurs when this is not the case
and the negative embedding is closer to the anchor causing the model to adjust the weights to
reduce the distance to the positive embedding and increase the distance to the negative
embedding.

2.1.11 Dropout

Large DNNs that are trained on smaller datasets have a high propensity to overfit the
training set due to sampling noise. In theory the best way to address this is to average the
predictions from fitting the training set on all possible DNNs. At its full scale this is infeasible
but this process can be approximated by using a smaller collection of models called an ensemble.
While this process usually improves model performance, averaging predictions of large DNNSs is
very computationally expensive (Srivastava et al., n.d.). Dropout regularization, proposed by
Srivastava et al., addresses this issue by combating overfitting while approximating the ensemble
modeling process in an efficient manner.

Dropout works by randomly ignoring certain nodes in a layer. This results in removing all
incoming and outgoing connections for that node which effectively removes it from the network
temporarily. This results in making the training process slightly more noisy which forces nodes
to act more independently as opposed to completely relying on the result of other outputs. This in
turn reduces the likelihood of overfitting as the chance of complex relations occurring between
the hidden nodes is much less, making the model more generalizable.

2.2 Prior Domain Applications

In recent years, machine learning methods, including deep learning, have seen various
applications in psychiatric research. This section will review some areas in which machine
learning has been applied to psychiatry, with a particular focus on disorder classification tasks. It
is not meant as a comprehensive review, but rather as a demonstration of the variety of methods
previously investigated for psychiatric applications and a brief summary of their conclusions.

2.2.1 Alzheimer’s Disease

Alzheimer’s disease (AD) affects approximately 50 million people globally as of 2020,
and is estimated to cause over half of all cases of dementia (Breijyeh & Karaman, 2020). It is
currently incurable. As a neurodegenerative disorder, AD is, at least in principle, easier to detect
from structural neuroimaging scans than other psychiatric disorders whose impact on brain
structure is not as well known. Consequently, many studies investigating techniques for AD
classification have relied on structured neuroimaging data as the primary data modality.
Organizations such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al.,
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2005) have made available relatively large datasets of imaging data from Alzheimer’s patients.
As a result of these factors, AD has become a significant focus for researchers investigating
applications of machine learning to neuroimaging.

Given that neuronal atrophy is a known biomarker of AD, some studies have had success
in identifying AD and its precursory states using deep learning-based imaging techniques trained
on structural neuroimaging data. Basaia et al. (2018) trained a 3D CNN to distinguish between
diagnosed AD patients, patients with mild cognitive impairment preceding an AD diagnosis
(c-MCI), and patients with “stable” cognitive impairment that did not lead to AD (s-MCI) from a
single cross-sectional SMRI scan. Their trained model was able to correctly distinguish AD
patients from healthy controls (HC) with an accuracy of 99% on the ADNI dataset and 98% on
an independent dataset assembled using non-ADNI data from two prior studies on AD diagnosis
(Albert et al., 2011; McKhann et al., 2011). Cui et al. (2019) take a similar approach to
classifying AD and its precursor states using deep learning. However, instead of constructing a
CNN from scratch, the authors adapted an existing network, Inception v3 (Szegedy, Vanhoucke,
et al., 2015), for this task. Their model was trained and tested on subsets of the ADNI dataset,
achieving classification accuracies of 100%, 89.5%, and 77% for AD patients, mild cognitive
impairment (MCI), and healthy controls, respectively.

Folego et al. (2018) develop a deep 3D CNN called ADNet for classification of AD,
MCI, and HC patients from structural MRI data. Their solution is designed to be entirely
automatic, fast, and effective without the incorporation of any prior domain knowledge besides
that inherent in the training dataset—no additional clinical information is required besides the
scan data, and no brain ROI’s are selected prior to training. ADNet is trained on data provided by
ADNI and tested on the CADDementia challenge (CADDementia - Grand Challenge, n.d.). They
also created a second classifier, ADNet with domain adaptation, which achieved a classification
accuracy of 52.3% on the CADDementia challenge and was approximately 80 times faster than
previous best approaches (Folego et al., 2020).

Importantly, Folego et al. (2018) recognize the importance of ensuring accountability of
results obtained by machine learning approaches for diagnostic applications. They consider a few
approaches for increasing interpretability of their results, including examination of learned CNN
filters, occlusion testing, and visualization of feature representations using t-SNE. Occlusion
testing and other methods for improving interpretability will be discussed in chapter 3. They
ultimately found that occlusion testing provided the most interpretable information about their
model. Using occlusion testing, they found larger activations in their network for AD patient
scans in the temporal regions of the brain as well as the posterior cingulate and medial prefrontal
cortices, all of which have been previously associated with AD progression.

2.2.2 Major Depressive Disorder

Major depressive disorder (MDD) is a common disorder that has been linked to increased
morbidity and mortality across cultures (Kessler & Bromet, 2013). As of 2014, it was ranked by
the WHO as the fourth most prevalent cause of disability worldwide. Lifetime prevalence of
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MDD across cultures has been estimated between 1.0% (Czech Republic) to 16,9% (United
States). Other psychiatric disorders, such as generalized anxiety disorder (GAD) and bipolar
disorder (BD), exhibit many overlapping symptoms with MDD, making MDD often difficult to
discern accurately in clinical settings (Gao et al., 2018; Hilbert et al., 2017). Consequently, a
large portion of the literature on the use of machine learning in automatic classification of MDD
has been concerned with distinguishing between MDD and other disorders with similar
symptomatic profiles. Unlike AD, less is known about potential biomarkers for MDD, and less
studies have been conducted using deep learning techniques and neuroimaging for MDD
classification.

Hilbert et al. (2017) take a multimodal approach to distinguish between MDD, GAD, and
healthy patients using machine learning. Their results indicated that questionnaire data was
useful for case-classification but not disorder-classification, while the opposite was true for
imaging data (gray and white matter volumes). Gao et al. (2018) developed an approach to make
a similar distinction between MDD and BD using SVMs for classification. They note that, as of
2019, the overwhelming majority of studies investigating machine learning for MDD
classification from neuroimaging data use a combination of SVMs or similar approaches and
feature reduction steps, rather than deep learning or other methods which operate “natively” on
imaging data. Schnyer et al. (2017) also use an SVM to classify MDD patients vs HC patients
given a brain map of white matter fractional anisotropy values (FA). Their results supported the
hypothesis that relevant information for predicting MDD is not localized, and instead is
distributed across many networks within the brain.

Despite the relative lack of deep learning studies for MDD classification from
neuroimaging data, some studies using deep learning for MDD classification have been
conducted. Mumtaz and Qayyum (2019) developed a deep learning framework to classify MDD
based on temporal patterns in EEG signals. Their model was validated on an independent dataset
of 63 patients and achieved a classification accuracy of 98.32%, highlighting the potential
effectiveness of EEG for MDD diagnosis. Uyulan et al. (2020) also developed a deep learning
framework based on EEG for MDD classification. They trained 3 CNNs, ResNet-50 (He et al.,
2015), MobileNet (Howard et al., 2017), and Inception v3 (Szegedy, Vanhoucke, et al., 2015), to
classify MDD patients and healthy controls. Wang et al. (2021) do use a novel CNN, called
3D-DenseNet, that is designed to operate natively on sMRI. They employ this network with a
novel transfer learning approach for MDD, pre-training their CNN on ADNI data for AD
classification. Their 3D-DenseNet achieved a classification accuracy of 77.4%. Notably, their
ADNI-Transfer pre-training approach improved the classification accuracy of their model by
9.95% compared with training from scratch, suggesting that visual features of neuroimaging data
obtained by pre-training on other sMRI classification tasks are highly effective for improving
classification performance.
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2.2.3 Schizophrenia

Schizophrenia (SCZ) is less prevalent than many other psychiatric disorders, affecting up
to 1% of the global population (Javitt, 2014), but it can have debilitating consequences for
patient quality of life. Over half of all SCZ patients experience long-term psychiatric
consequences, and approximately one fifth of all patients experience chronic symptoms (Owen et
al., 2016). Unemployment among SCZ patients is extremely high at approximately 80-90%, and
life expectancy is reduced by 10-20 years on average. Like MDD, SCZ is often difficult to
reliably identify due to frequent symptom overlap with other psychiatric disorders, especially
those which can cause psychotic episodes.

One promising area for identifying potential biomarkers for SCZ is resting-state
functional connectivity (FNC) (Arbabshirani et al., 2013; Owen et al., 2016). Arbabshirani et al.
(2013) investigate a number of ML approaches for SCZ classification using FNC data. They
found that even simple classifiers were able to achieve reasonably high accuracy, e.g.,
approximately 96% for both k-nearest neighbors (k-NN) and SVM. Kalmady et al. (2019) use
functional connectivity (FC) metrics and other regional activity metrics derived from
resting-state fMRI to create an ensemble approach for SCZ classification. Their model, called
Ensemble algorithm with Multiple Parcellations for Schizophrenia prediction (EMPaSchiz),
achieved a classification accuracy of 87% on a dataset that was notably larger than many of those
previously used for automatic SCZ classification (N = 174).

Like MDD, many existing SCZ classification studies focus on using computationally
simpler models with feature reduction steps as opposed to more complex models, such as deep
learning approaches, that operate directly on imaging data. However, some studies have been
conducted that use deep learning approaches with FC-based features. Zeng et al. (2018) use a
deep network called a deep Discriminant Autoencoder Network with Sparsity constraint (DANS)
to automatically classify SCZ patients using multi-site functional connectivity MRI data. They
train their model on a large dataset of over 1000 participants compiled from prior sources. Their
dataset contained a mixture of drug-naive patients and patients who were previously prescribed
antipsychotic medications. Their deep network was able to obtain a classification accuracy of
85.0% on a validation set when using pooled data from multiple sites of interest.

2.2.4 Bipolar Disorder

Bipolar disorder (BD) is estimated to affect between 1 and 5% of the global population
(Jan et al., 2021)(Jan et al., 2021). BD patients have a high risk of suicide and frequently exhibit
self-harm behaviors. Indeed, the life expectancy for BD patients is approximately 9 to 17 years
below average (Jan et al., 2021). BD patients may or may not experience psychosis. Given its
devastating effects on patient quality of life, early and accurate diagnosis of BD is a high priority
for the psychiatric community. BD, like MDD, is frequently prone to misdiagnosis due to its
symptom heterogeneity and overlapping symptom profile with other psychiatric disorders such
as attention deficit hyperactivity disorder (ADHD), SCZ, and MDD (Anderson et al., 2012) (Jan
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et al., 2021). These misdiagnoses can have significant detrimental effects on the quality of
patient care and treatment (Jan et al., 2021).

Fung et al. attempt to automatically distinguish between BD, MDD, and HC using an
SVM. Their training data consists of two structural neuroanatomical features: cortical thickness
and cortical surface area. Their model achieved an overall accuracy of 74.3% (Fung et al., 2015).
Like previous SVM-based approaches with similar feature engineering, their approach benefitted
from having easily interpretable results. They found that BD patients had greater cortical surface
area in the left bankssts, precuneus, precentral, inferior parietal, superior parietal, and right
middle temporal gyri compared with MDD patients. Such findings may pave the way for the
discovery of potential neuroanatomical biomarkers of BD in the future.

Grotegerd et al. also attempt to develop a framework for automatic discrimination of BD
and MDD. An SVM was employed for pattern matching of fMRI scans masked to include
regions related to emotional recognition and processing. The model achieved an accuracy of 90%
when using fMRI data in happy and neutral states (Grotegerd et al., 2013). While a relatively
simple computational model was used for class identification, this research was the first evidence
that pattern classification could be used to differentiate unipolar and bipolar depression.

Campese et al. performed psychiatric disorder classification on a BD and SCZ dataset
using three methods: SVM, 2D CNN, and 3D CNN. The studies from Fung et al. and Grotegerd
et al. show the potential effectiveness of a simple SVM, but Campese et al. proves empirically
that 3D CNN models outperform the simpler counterparts. VNet, UNet, and LeNet architectures
were compared against classical 2D CNNs and SVMs. VNet achieved the highest average
accuracy across two datasets, showing that the effectiveness of 3D convolutional neural networks
lends well to neuroimaging and provides a better accuracy than traditional techniques (Campese
etal., 2019).

2.2.5 Attention Deficit Hyperactivity Disorder

The pervasiveness of attention deficit hyperactivity disorder (ADHD) is difficult to track.
ADHD is a childhood disorder that can continue through adolescence. Studies estimate as low as
1% to as high as 20% of the worldwide school aged population (4-17) has ADHD (Polanczyk et
al., 2007). A pooled prevalence puts the more realistic global rates at close to 5% (Polanczyk et
al., 2007) in 2007, however that number increased almost 42% between 2003 and 2011 (National
Institute of Mental Health [NIMH], 2014). The age of onset for moderate ADHD is six years
with children exhibiting difficulties with focus, attention span, controlling behavior, and
hyperactivity (NIMH, 2014). Children with ADHD are more prone to troubles with schooling,
substance use, and other psychiatric conditions (Evans et al., 2010). With high risks and equally
high diagnosis rates, there are also problems associated with overdiagnosis and unnecessary
medication. More than two thirds of children diagnosed with ADHD rely on medication as it is
the most effective treatment for symptoms of impulsivity, inattention, and hyperactivity (NIMH,
2014) but the long term effects of stimulants in adolescents is not well documented (Ford-Jones,
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2015). Proper identification of ADHD will help limit misdiagnosis (as discussed in previous
sections), overdiagnosis, and overmedication in these young populations.

Zhang-James et al. used an ensemble classifier consisting of SVM, random forest (RF),
k-nearest neighbor (KNN), and gradient boosting (GB) classifiers. 16 principle factors along
with age and sex were extracted from the ENIGMA-ADHD dataset of 3,377 structural MRI
(sMRI) images. An accuracy of around 66% was achieved. The more important results of this
study were findings that intracranial volume, surface area, and subcortical volumes were the
most important structures for prediction. The use of an ensemble classifier allowed for
interpretable results that help verify our hypothesis of structural biomarkers in the brain, one of
which being differences in brain volume.

Mao et al. tackled a harder problem than the previous paper, garnering more accurate
results and giving us insight into the benefits of DL and the use of CNNs. The paper proposed a
diagnostic method for resting state functional MRI scans (rs-fMRI) which are basically
spatio-temporal scans of patients’ brains. They used a 4D CNN and tested different methods of
granular computing on the ADHD-200 public dataset. An accuracy of 71.3% was achieved
without using hand-crafted features like previous papers. While this paper shows the ability of
deep learning networks to accurately learn patterns from scratch, its output gives the user less
information by virtue of the model selected features.

2.3 Model Implementation v1

As we were collecting data and researching different mental illnesses, we understood that
mental illnesses were prone to being misidentified leading to worse care for the patients.
Although we identified many datasets that we could use to train machine learning algorithms on,
we still faced the question of how to incorporate existing expertise, such as labeled datasets, into
these models without being fully reliant on it. On one hand, clinical diagnoses are the only
source of ground truth data for detecting mental illnesses from MRI scans, and training a model
to correctly predict the disease would make it as accurate as the clinicians’ diagnosis. If we were
able to gather enough data to train a model that was accurate enough, then it had the potential of
working with clinicians to help diagnose patients. On the other hand, as we saw from our
research of different mental illnesses, clinicians’ biases show up substantially in mental illness
diagnosis and using the biased data to train our model will result in a model that reflects the
current biased state of diagnosis. Although it is impossible to obtain purely unbiased data, if we
wanted to work towards real world application of our model, we would need to at the very least
be able to identify these biases as they occurred. Therefore, we decided to use supervised
learning with current clinician and researcher labeled data to train our model, and unsupervised
learning with the same data to visualize patterns that were unseen by the supervised models. We
hope that by combining these two approaches, we could identify these biases and also get high
accuracy on our model.

Once we have features from both the supervised and unsupervised models over a lot of
data, comparing the two would give us information about the neurophysiological changes that
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can be observed for mental illnesses as well as ways to identify if there are biases present in the
data. If the supervised and unsupervised models found similar changes in the brain for a
particular disorder, then we can say that this disorder has some identifying neurophysiological
changes. In addition, we can also obtain more information about the disorders including
heterogeneity and symptom overlap. Heterogeneity occurs when people can qualify for a disease
with differing symptoms, if our models show that there are varying types of changes that
correspond to a particular disease, then we can observe that heterogeneity might be present for
that disease. In addition, if the same symptom is present for multiple diseases, and if our model
can identify the physiological changes associated with it, we can help identify other factors
which can help differentiate the diseases. Lastly, assuming that the models work perfectly, if
there is a disagreement between the features from the two approaches, then we can conclude that
there are some biases present in the labeled data that should be further analyzed. This can be
done by looking at other factors such as race, ethnicity, gender, etc, that can also affect the
diagnosis with a professional.

2.3.1 Dataset preprocessing and acquisition

The data that is used for both of our models comes from two main sources. The first
source, the same one as used before from the original 3D convolution paper by (Pominova et al.,
2019), is the UCLA Consortium for Neuropsychiatric Phenomics. This dataset consists of MRI
scans of 272 subjects: 130 healthy subjects, 43 subjects with ADHD, 49 subjects with bipolar,
and 50 subjects with schizophrenia (Gorgolewski et al., 2017). We downloaded the dataset from
the website and used the dataset in our model as is.

The UCLA dataset was used in our experiments to predict mental illness class from the
MRI image. These images were obtained preprocessed, so we did not have to do any
preprocessing on the images prior to training our model. The class labels, ADHD, bipolar,
schizophrenia, or healthy, corresponding to each scan was provided in a csv file, and were used
as ground truth labels while training our models.

2.3.2 Supervised model structure

To start developing a supervised algorithm, we started by using the approach by
Pominova et al. (2019). They developed a 3-dimensional deformable convolutional neural
network and had trained the model on a dataset available from UCLA Consortium for
Neuropsychiatric Phenomics. In 3-dimensional deformable convolutions, there are offsets for
each convolution operation which learns to look at a different position than its location. These
offsets can help focus the model on the more important parts of the scan and ignore anything that
is not useful such as blank space. We wanted to first train the model on the dataset as it was
shown in the paper, then use visualization techniques to locate biomarkers in the brain scans.
Thus, if a scan was predicted positively by the model, then these visualizations could determine
which areas in the brain it looked at to determine its decision. This way we could understand
how the model was working, and also uncover patterns in the brain scans which aligned with
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each disease. For example, if many of the subjects with schizophrenia had similar changes in the
brain, then it could be an indication of a physiological change that can be measured that
corresponds with schizophrenia.

2.3.3 Unsupervised model structure

For our unsupervised algorithm, we used an encoder-decoder type autoencoder (AE).
Specifically, we decided to use Scale Space Autoencoder (Baur et al., 2020) as shown in Figure
3. First a 2D slice of a brain scan is fed into the model, which performs calculations to represent
the scan in a low dimensional space, called the latent dimension. Then, a decoder tries to
extrapolate the latent dimensional representation and reconstruct the original scan. Based on the
differences of the reconstructed scan and the original scan, the entire model is updated to
improve its performance. The Scale Space Autoencoder does this by using a separate
autoencoder on different frequency bands of brain MRI as seen in Figure 3. Their method helps
improve reconstruction and anomaly detection at higher resolutions (Baur et al., 2020). We used
this method for our unsupervised algorithm since our images had larger resolution. As an
autoencoder learns, it will learn to represent important attributes in the latent space, meaning if
we analyze the latent dimension we should be able to see clusters of features that arise. We
wanted to use these features and see if they were similar to the features found in the supervised
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Figure 3. Visualization of different frequency bands used while reconstructing scans. Image taken
from Baur et al., 2020.

2.3.4 Supervised Results

For our version of the model we ran two different classification problems. The first was a
binary classification experiment between schizophrenia (SCZ) and bipolar (BD) and the second
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was a multiclass classification between controls, schizophrenia, bipolar, and ADHD. A version
of the multiclass problem was also run with triplet loss. The model performed best on the
classification of schizophrenia vs bipolar disorder (light blue) achieving a 59% validation
accuracy. For the multiclass classification (orange) problem it achieved a validation accuracy of
46% and 44% for the variation with triplet loss (dark blue). Our validation accuracy curves can
be seen in Figure 4.
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Figure 4. Validation accuracy for the three experiments. Key: schizophrenia vs bipolar disorder (light
blue), multiclass classification (orange), and variation with triplet loss (dark blue).

A key component of our model was the visualizations that could be generated using the
deformable offsets (see Section 3.1.3). With offsets it is possible to highlight potential regions of
interest in the image by clustering the voxels with greatest deformation. In Figure 5 below, the
red dots indicate the voxels of greatest deformation the model sampled when predicting
diagnosis. The colored polygons indicate regions of points that were closer together than other
points. These areas potentially indicate regions of greatest interest to the model.
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Bipolar ADHD

Control SCz

Figure 5. Visualization of offsets with greatest deformation. Red dots represent areas
of higher clustering of the deformable offsets in the model. Shaded polygons represent areas that
show exceptionally high levels of clustering. Clustering represents areas that the model looked at
while deciding its prediction on the scan’s phenotype.

2.3.5 Unsupervised Results

We adapted the architecture for the Scale Space VAE and attempted to apply it for
reconstructing patients in the control section. The motivation of the architecture was to increase
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focus on the high frequency features as classic VAE architectures generally have blurry outputs,
with the assumption that these high frequency features contain the discriminating information
between MRI scans from different disorders. However, we found that it was much more difficult
for the VAE to reconstruct the high-frequency features as can be seen by the blurry
reconstructions in the left figure, as shown in Figure 6. The analysis of the frequency features on
the right demonstrate that while some of the high frequency information such as the brain
boundaries and some lobe boundaries are preserved, most of it is lost. Due to additional time
constraints, we were unable to further improve on this architecture.
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Figure 6. Unsupervised model outputs. Model images are shown along with reconstructed (Rec)
images. High frequency images show the detail obtained from higher frequencies from analyzing outputs
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2.3.6 Lessons Learned

Offset visualizations for the deformable vox resnet from version two can be seen in the
following figures. The deformable vox resnet was trained on two datasets UCLA and NDA. In
the prior case a binary classification was run between control vs presence of a mental illness and
in the latter a multi label classification was performed on three symptom labels.

The supervised model was on team members’ computers using their GPU resources. We
saw that even if we followed the same hyperparameters used by Pominova et al., 2019 we were
not able to replicate the general performance of the 3D deformable network. It should be noted
that our classification problems differed slightly from those performed in (Pominova et al.,
2019). As opposed to a dichotomy between diseases and controls, our experiments primarily
focused on differentiating between two diseases and multi class experiments involving
classification between three diseases and healthy controls. Of the different experiments we ran
the schizophrenia vs bipolar classification performed the best which matched our initial
predictions based on the performance of the 3D deformable net from Pominova et al. on
classifications of schizophrenia vs healthy controls and bipolar vs healthy controls as these had
accuracies of 82% and 68% respectively.

For the unsupervised method, we were unable to train the model well enough to get
meaningful results. The model was very large and had unstable loss values that did not decrease.
In addition, unsupervised methods often require large amounts of data to train properly and just
using the UCLA Consortium for Neuropsychiatric Phenomics dataset was not enough. It should
be noted that our classification problems differed slightly from those performed in (Pominova et
al., 2019). As opposed to a dichotomy between diseases and controls, our experiments primarily
focused on differentiating between multiple diseases with the multi class experiment involving
controls.

2.4 Model Implementation v2

Since our main challenge in our earlier experiments was that we did not have enough data
to train a robust machine learning model, we wanted to gather more data. In addition, while
dealing with these issues, we thought of an alternative using the patient symptoms as the truth
values instead of diseases. Given our end goal of trying to visualize the irregularities in the brain
we thought that training the model on patient symptoms would give a better chance of potentially
mapping the symptoms to said irregularities. Potentially this model could be used to measure
symptom intensity as well and also help us with our inquiry into the symptom overlap problem
between multiple diseases.

2.4.1 Dataset preprocessing and acquisition

As before, we used the dataset from Gorgolewski et al. (2017) in our experiments to
predict mental illness class from the MRI image. The class labels, ADHD, bipolar,
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schizophrenia, or healthy, corresponding to each scan was provided in a csv file, and were used
as ground truth labels while training our models.

In addition to the UCLA dataset, we obtained access to the NDA/NIMH data archive
which gave us a large amount of datasets to use. We wanted to first focus on psychosis for our
analysis to start and so we downloaded two datasets that had a large amount of MRI images
(Tamminga, 2017, 2020). Both of the NDA/NIMH datasets were not preprocessed when we
obtained it. We developed a preprocessing pipeline which took as input the NDA downloaded
file directory and outputted a preprocessed dataset which could be used in our model. These
datasets included the PANSS scale which measures many symptoms that are present in mental
illnesses (S. R. Kay et al., 1987).

Our preprocessing pipeline consisted of several steps to filter, convert, and move MRI
scans. First, we filter the image description table using the regular expression
' *MPRAGE.*|.*mprage.*|.*T1.*', in order to obtain only the MRI scans that we are interested
in. Then, we remove duplicate values from the PANSS diagnostic table, the image description
table, and the subject description table so that we only have one entry per participant. Then, we
join the tables together to create a large table and unzip the images that we are interested in and
convert them from dicom format to niftii format. We use the pydeface tool to deface the images
so that the identifiable parts of the image, such as facial features are censored when training the
model (Gulban et al., 2019). This is to reduce the chance that the model learns something that is
not important and reduce bias in the model’s predictions. Once we have our dataset, we create a
yaml file and use it for training our model. Our model code is developed using the TorchlO
framework which makes data processing medical images for deep learning models using pytorch
efficient and easy to use (Pérez-Garcia et al., 2021). Our model code is available online on
Github.

Access to an NDA dataset helped us realize some of these ideas as it gave us a much
larger sample size which translates into a more robust and less biased model. Specifically, we
obtained 291 images from the first NDA study we downloaded and 24 from the second and
decided to use the former for our experiments since it had a substantial amount of images. The
dataset also came with symptom information in the form of PANSS scores which are based on
interviews conducted with the patient. PANSS scores, which would act as the regression values
for the model, record the intensity of different types of symptoms making it very useful for
capturing symptom intensity in our visualizations which was one of our goals when
incorporating symptom based classification. We used the column from the PANSS questionnaire
which rated the severity of the symptom of interest from 1 to 7, with 1-4 being low, and 5-7
being high.

2.4.2 Atlas Attention Module

This section describes the motivation behind our atlas attention module and its
architecture. Inspired by Wu et al. (2020) and Wang et al. (2022), we aim to group the MRI scan
into groups of meaningful components. Rather than using a learnable module which would
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require more data, we utilize an off-the-shelf segmentation model that is able to generate roughly
accurate atlases for a scan. We then use the segmentations to pool the image features. The
segmentation model can partition the scan into at most 95 different segments. We then add a
separate segment to distinguish between empty regions within the brain and the background. We
use these pooled features to generate our region-wise attention map which is able to capture
global feature information across each slice. After attending the global features, we then project
them back to the image space using the aforementioned approach. This mechanism is closely
related to the PVT attention module except rather than using a downsampled feature to capture
global features, we use the atlas regions. The benefit of this is that we can better identify
meaningful regions that correspond to the potential presence of a specific mental illness. Since
each atlas is slice dependent, we ensure that our base model does not pool in the slice dimension.
In order to facilitate slice-wise dependencies though, we add a temporal convolution prior to
applying the atlas attention module.

2.4.3 Supervised model structure

Unfortunately, during our exploration of unsupervised methods for identifying latent
classes in our MRI data, we ran into a number of computational challenges. Despite many efforts
to optimize hyperparameters, the performance of our unsupervised models was unable to
compare with that of our supervised learning experiments. These reasons have been mentioned
earlier but an additional explanation for poor performance could be the smaller size of our
training dataset(s). While the unsupervised methods might theoretically avoid the pitfalls of
biases in diagnostic labels, since they have no prior knowledge to rely on, deconstructing the
input data generally requires more samples for results to be practically useful. Considering both
the large size and high-dimensionality of individual MRI input samples and the relative scarcity
of large MRI datasets, we simply did not have a large enough training set to use unsupervised
learning approaches effectively. With these two limitations in mind, we eventually decided to
shift our attention away from the unsupervised methods and focus entirely on our supervised
models.

In doing so, we recognized that our continued reliance on predetermined diagnostic labels
meant that the results of our supervised approach would be subject to the same criticisms as
existing symptom-based classification, such as heterogeneity and over-/under-specificity. In an
attempt to remedy this, we shifted away from single-label classification using diagnoses and
adopted multilabel classification using symptom-based dimensions. These symptom-based labels
were obtained by the method described in section 2.4.1. Specifically, we used the columns for
delusions, hallucinations, and anxiety for our experiments.

After addressing issues with compute resource requirements and reliance on existing
diagnostic labels, we wanted to improve the interpretability of our model’s results.
Interpretability presents a major obstacle to the implementation of medical artificial intelligence
in clinical practice. One reason for this is that it is often difficult to understand the output of deep
learning models in medicine within the context of existing domain knowledge. Explaining
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reasons which led to a specific diagnosis are important for building trust and understanding
between patients and medical professionals. Consequently, models that help bridge the gap
between “black-box” predictions and the domain knowledge of human practitioners will likely
have a much better chance of being effectively deployed in a clinical setting. To this end, we
sought to incorporate some information about structural and functional neuroanatomy into our
model via a novel Atlas Attention module.

2.4.4 Ablation Models

To add rigor to our experiments, we compared the performance of our Atlas Attention
module with other imaging models for MRI vision tasks. These models included a deformable
VoxResNet and 2D-to-3D models such as I3D and ACS. In all cases, these models were adapted
to our task by adjusting input and output dimensions and, in the case of the I3D and ACS
models, initializing weights from a ResNet model pre-trained on the ImageNet object
classification task. These models were compared in multiple experiments on both the UCLA and
PANSS datasets. For the Atlas Attention network, we experimented with various layer orders to
manipulate the relative location of the Atlas Attention module. We also experimented with
various hyperparameters such as learning rate and learning rate decay for all models to try and
optimize our model training.

2.4.5 Results

UCLA - Control vs {Bipolar,
Schizophrenia, ADHD}

dVoxResNet Accuracy F1 N_params LR Model Size

ABLATION - CLASSIFICATION - ‘ ‘ ‘
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(MB)

Vanilla 69.34% 68.83% 2,545,810  1.00E-05 2,562.98
Model Size

13D - W/O ATLAS Accuracy F1 N_params LR (MB)

Inflated 66.03% 66.03% 33,167,298  1.00E-05 21,310.53

Not Inflated 66.03% 66.03% 11,177,538  1.00E-05 21,226.64
Model Size

13D - w/ Atlas Accuracy F1 N_params LR (MB)

Inflated 15,474,114  1.00E-04 13,619.07

Not Inflated 66.04% 65.93% 9,999,426  1.00E-04 13,597.17
Model Size

ACS Convolution Accuracy F1 N_params LR (MB)

Vanilla 62.26% 60.57% 11,177,538  1.00E-05 31,810.64

Table 1. Results on UCLA dataset while training control vs. all disorders (bipolar, schizophrenia, ADHD).

ABLATION - CLASSIFICATION -
UCLA - Control vs Bipolar

Model Size
dVoxResNet Accuracy F1 N_params LR (MB)
Vanilla 71.43% 41.67% 2,545,810 1.00E-05 2,562.98
Model Size
I3D - W/O ATLAS Accuracy F1 N_params LR (MB)
Inflated 77.14% 59.77% 33,167,298  5.00E-05 21,310.53
Not Inflated 82.86% 73.21% 11,177,538  5.00E-05 21,226.64
Model Size
13D - W/ ATLAS Accuracy F1 N_params LR (MB)
Inflated 15,474,114  5.00E-05 13,619.07
Not Inflated 71.43% 41.67% 9,999,426  5.00E-05 13,597.17
Model Size
ACS Convolution Accuracy F1 N_params LR (MB)
Vanilla Skip Skip Skip Skip Skip
Table 2. Results on UCLA dataset while training control vs. bipolar.
ABLATION - CLASSIFICATION -
UCLA - Control vs Schz
Model Size
dVoxResNet Accuracy F1 N_params LR (MB)

32



Vanilla 85.71% 83.81% 2,545,810  1.00E-05 2,562.98

Model Size
I3D - W/O ATLAS Accuracy F1 N_params LR (MB)
Inflated 88.57% 85.04% 33,167,298  1.00E-05 21,310.53
Not Inflated 85.71% 83.81% 11,177,538  1.00E-05 21,226.64

Model Size
13D - W/ ATLAS Accuracy F1 N_params LR (MB)
Inflated 5.00E-05 13,619.07
Not Inflated 91.43% 88.35% 9,999,426  5.00E-05 13,597.17
ACS Convolution Accuracy F1 N_params LR Model Size
Vanilla Skip Skip Skip Skip Skip
Table 3. Results on UCLA dataset while training control vs. schizophrenia.
ABLATION - CLASSIFICATION -
PANSS

Model Size
dVoxResNet Accuracy F1 N_params LR (MB)
Vanilla 50.84% 86.27% 2,545,939  1.00E-03 2,562.98
I3D - FOR COMPARISON W/ Model Size
ATLAS Accuracy F1 N_params LR (MB)
Inflated - No ATLAS 37.28% 71.73% 33,167,811 1.00E-03 21,310.53
Not Inflated - NO ATLAS 44.06% 82.86% 11,178,051 1.00E-03 21,226.64
Not Inflated - ATLAS Skip Skip Skip Skip Skip
Inflated - ATLAS Skip Skip Skip Skip Skip

Model Size
ACS Convolution Accuracy F1 N_params LR (MB)
Vanilla Skip Skip Skip Skip Skip

Table 4. Results on NDA dataset while training on three symptoms.

2.5 Discussion

Our experiments with the UCLA dataset consisted of control vs. multiple disorders(Table
1), control vs. bipolar disorder (Table 2), and control vs. schizophrenia (Table 3). For each of
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these experiments, a random chance would have an accuracy of 50%. All of our models that we
trained performed better than random chance. For our experiments with the NDA dataset (Table
4), the model was classifying if symptoms in interest would be classified as high or low. In these
experiments, three symptoms were used: delusions, hallucinations, and anxiety. Random chance
accuracy would be at 12.8%. Some experiments had to be skipped due to memory limitations
and time constraints during training.

For the control vs. ill experiment, the deformable dVoxResNet performed the best, for the
control vs. bipolar experiment, the non-inflated I3D had the best performance, and for the control
vs. schizophrenia experiment, the inflated I3D performed the best. For the experiments with
PANSS, the deformable VoxResNet also performed the best. Our learning rate was set at le-5 for
the UCLA experiments with a 1/10 decay every 5 epochs. For the NDA/PANSS models, our
learning rate was set at 1e-3 and a decay of 1/10 every 15 epochs. For both datasets, we trained
our models for 50 epochs.

For the UCLA dataset, healthy vs. schizophrenia (Table 3) classification had higher
performance than the healthy vs. ill (Table 1) and healthy vs. bipolar disorder (Table 2). This was
consistent with results seen in the original deformable offset method, which also had the highest
performance for the healthy vs. schizophrenia classification (Pominova et al., 2019). In addition,
the atlas attention model integrated with the non-inflated 13D was able to improve the
performance for health vs schizophrenia on the UCLA dataset to 88% F1 and 91% accuracy
compared to existing models. However, the model performed slightly worse for the overall
healthy vs ill classification compared to I3D and on par with dVoxResNet on the healthy vs.
bipolar at 41.7% F1. This could be due to convergence issues since the F1 and accuracy for 13D
without inflation was around 73% and 82% respectively. Furthermore, adding atlas attention as
the last stage led to a significant decrease in number of parameters and model size.

Interestingly, the model trained on NDA was able to learn and differentiate symptoms
fairly well. As seen in Table 4, the best NDA model was trained using the deformable
VoxResNet and got an F1 score of 94.64% for predicting delusions, 67.46% for predicting
hallucinations and 97.39% for predicting anxiety and an accuracy of 50.84% overall. This seems
to show that it is possible to predict these symptoms from MRI scans.

While these results show that the model was able to recognize some changes in the brain
that helped differentiate the diseases, they are not very useful without visualizations to help see
which regions are affected by the diseases.
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3 Explainable Methods and Design

Explainability and interpretability within Al are the key issues in trust critical
applications. The machine learning algorithms that give the best performance are often seen as
black boxes and thus considered unreliable. Fundamentally, all methods of model interpretability
work to build a pipeline for unveiling transforms that map inputs to outputs. This is facilitated by
showing how the model came to its conclusion in a way that is interpretable to a user (Chromik
etal., 2021). For ML algorithms to enter clinical use, the results of a model must be presented in
a way such that a non-expert can understand and reason with its conclusions. Counter examples,
perturbations, and varied levels of explanation are necessary to verify a model is returning
explainable results (Zhang et al., 2022; Chromik et al., 2021). Thus, it is crucial to make the
model as transparent as possible to allow for users to examine its predictions.

3.1 Foundational Literature

3.1.1 High level ML Taxonomy

Explainability comes in two main variants, transparent models and post-hoc explanations.
Transparent models are defined by 3 tenants: “simulatability, decomposability and algorithmic
transparency” (Barredo Arrieta et al. 2020). Simulatablity implies that a human can reason
through how a model came to its results. Decomposability is the ability to explain the model
piece by piece in a manner humans can understand. Algorithm transparency is the principle that
mathematical analysis and related methods, which may be hard to conceptualize, can explain
model function (Lipton n.d.).

Post-hoc methods, rather than explain the exact function of the model via its structure,
attempt to explain model function via forms of metaphor or model attention extraction. For
example, local explanations clarify inner function by demonstrating the effect of a single feature
or element on the output (Barredo Arrieta et al. 2020). The most useful explainability methods
are forms of visual explanations which try to illustrate model behavior. The following sections
show implementations of various post-hoc explainability methods.

3.1.2 Deep Neural Network Explainability Methods

DL models are largely interpreted through forms of post-hoc explanations. Methods of
explanation for DNN’s analyze the network gradients or propagate through the network to
unearth behavior. Sensitivity analysis and Taylor decomposition rely on gradient analysis while
deconvolution, guided backpropagation, and layer-wise relevance propagation propagate through
the network. Sensitivity analysis measures activation gradients to determine the relevance of
certain features in a sample. Taylor decomposition attempts to create a relevance metric that
combines the local sensitivity at a point and the impact of that value on a particular prediction.
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This method tends to yield more complete results than sensitivity analysis alone at the cost of
magnifying negative relevance (Montavon et al., 2018).

The following methods are forms of backpropagation which use the DNN structure to
propagate and then pool activation in reverse. Deconvolution creates a parallel structure similar
to that of the original model. Features at various layers are marked and used to reconstruct the
DNN’s feature outputs via unpooling (Zeiler et al., 2014). Guided backpropagation functions by
using a deconvolution and backpropagation together. It takes values coming from the features
unpooled in the deconvolution and the values returned from the backpropagation and when
negative masks it. This leads to higher fidelity results (Springenberg et al., 2014). Layer-wise
relevance propagation uses a forward pass where activations are collected, a computed score
from network output is then back propagated via a set of rules which change the relevance
valuation per neuron. This method tends to have more flexible visualizations and can function
after transfer learning (Montavon et al., 2018).

3.1.3 Deformable Offsets

While traditional CNN networks have performed well in various CV tasks, they are
inherently limited by the regular shape of the convolution kernel. Deformable convolutions allow
for the kernel points (ie. the location of the convolution) to be learned as well. These allow for
the model to pick up on more geometrically complex input data (Dai et al., 2017 ). This
approach has proven useful in medical imaging analysis as seen in Pominova et al. 2019.
Deformable CNNs were more accurate than comparable CNN variants in classification of both
processed and unprocessed static MRI images. Additionally, deformations have proven useful for
medical segmentation tasks. Li et al. demonstrated the networks were able to pinpoint more clear
and anatomically specific regions of interest in high noise tumor segmentation. Deformations
also have shown promise in creating explainable part models. The principle behind this approach
by Donnelly et al. 2021 is the model can be trained to find significant features, and when shown
another member of the same class deform the ‘prototype’ for that class onto the other image as a
way to examine similarity. Finally, Zhu et al. 2018 introduced the principle of added modulation
to the convolutional deformation which incorporates spatial attention metrics that effectively
focus the deformation by zeroing out areas found to be irrelevant. This proved to be more
accurate and create more clear regions of interest mappings. Deformable convolutions embed the
model with region-of-interest mappings that can be recovered from the learned defformed
offsets. This creates a post-hoc but non-model agnostic method to display attention visually.

3.1.4 Saliency Visualization

Saliency maps display class appearance models via a strategy of backpropagation and
maximization per class (Simonyan et al, 2014). Class appearance models are how an image class
looks to the model. This directly leads into back propagation based methods that take advantage
of gradient propagation for an input as discussed in Montavon et al. (2018). One such approach
is Grad-CAM by Selvaraju et al. (2020) which utilizes gradient information from convolutional
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layers to assign importance to neurons. Backpropagation then allows pixel importance to be
determined after each layer gets average pooled. These methods are model-agnostic, assuming
convolutional layers are present and have been implemented in a flexible framework as in
Gotkowski et al. (2020). This enables quick application of Grad-CAM and other gradient
activation based saliency map methods. In addition, there are other methods of saliency that go
beyond back propagation based methods. Mundhenk et al. (2020) proposes a more efficient
saliency map generation method. It takes the output at each scale layer, the layers before
downsampling and filtering, uses them to measure that activations by an input and then computes
the informativeness of the output activation. After being done for each scale they are combined
together with a threshold of saliency in a particular color coding scheme that indicates which
scale layer the pixel coloring originates.

3.1.5 Text Based Explanation

An alternative to visual explanations for DNN models is the use of textual explanation for
key features in image classification. Kim et al. (2018) proposes a Concept Activation Vector
(CAV). A CAV creates mappings from set concepts an image could hold and then maps samples
into hyper planes that may or may not match. Directional derivatives help gauge the sensitivity
of a region of perturbation in relation to how it corresponds with a concept. Hernandez et al.
(2022) proposes a similar but more unsupervised method Mutual-Information-Guided Linguistic
Annotation of Neurons (MILAN). Activation masks are computed for the input images. A
probabilistic estimation of what a human would describe a region and or one neuron is made.
Image regions probabilities are approximated by a Show-And-Tell model (Xu et al. 2016). While
the probability that any neuron would be described in a manner is approximated with a two-layer
LSTM on the annotations language of MILAN (Hochreiter et al. 1997). The estimations are
derived from a human annotation of known image sets like ImageNet and Places365 for specific
local information rather than full scene descriptions. Then the probabilities of local area
description and overall description are weighted and a selection of highly probable terms are
selected via a beam search.

3.1.6 Quantitative Evaluation

Visual explanation methods can be evaluated by robustness, fidelity, and contrastivity.
Robustness is a measure developed by Alvarez-Melis et al. 2018 which follows the implicit idea
that when an input image is minorly perturbed it should still receive a similar visual attribution.
This was measured as a function of local stability with local Lipschitz continuity, measured with
Local Interpretable Model-Agnostic Explanations (LIME) by Ribeiro et al. (2016) and Shapel
Additive Explanations (SHAP) by Lundberg et al. (2017). Fidelity was defined by Pope et al.
(2019) as the change in accuracy related to occlusion of pixels with high saliency. Pixels with
sufficient saliency are directly related classification and occluding them could lead to changes in
accuracy. A similar method of evaluation was proposed by Mundhenk et al. (2020) in the Keep
And Retain (KAR) and Remove And Retain (ROAR) methods. The prior keeps high saliency
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information under the proposition that it should be the only important information and the latter
keeps the least salient information under the influence that accuracy should drop sharply if the
saliency corresponds to actual model function. The performance of the saliency method can then
be seen via accuracy comparisons when KAR and ROAR are taken at the same threshold of
saliency among different explainability methods. Contrastivity defined as by Pope et al. (2019) is
a measure of the uniqueness of the visual mappings each class received. This is computed by
taking the hamming distance of the binarized saliency maps attributed to different classes.

3.2 Implementation

When implementing explainability methods into our MRI classification models we had
two key issues: 1) How can we extract model attention in a way that does not impact
performance? 2) How can we ensure these features would be relevant to a clinician?

Our first approach was a non-model-agnostic deformable offset image annotation
method. It used the underlying attention metrics computed by the deformable offsets to reveal the
significance of certain areas of the brain (Zhu et al. 2018). Our second involved the use of
Grad-CAM techniques to extract backpropagation saliency to display model attention in another
format. This latter method was non-model-agnostic which proved helpful in later versions of
ablation testing and model design reconfiguration. To help increase the relevance of saliency and
offset annotations we found that parallel segmentation of input MRI images allowed for rapid
overlay of known functional regions of the brain onto our predicted regions of interest. Finally,
we integrated a segmentation based occlusion function which would use saliency metrics
combined with the known functional regions. In areas with large overlap, we tested the
robustness and other quantitative metrics to measure how the model changed in performance.

3.2.1 Deformable Offset Display

Within the first model structure modeled based off of Pominova et al. (2019), the
activations of the offsets for the deformable convolution could be extracted by a PyTorch hook.
Displaying the offsets made it clear that filtering was needed, otherwise the input MRI becomes
imperceptible due to too many dot annotations. The process to filter and then display the dots
was as follows: measure offset displacement within the slice, select kernel representative point,
select kernel points based on a threshold and modifier, rescale and map kernel points to original
input scale, dot information encoding, and dot grouping. Displacement measurements were taken
by computing the per kernel point offsets in all dimensions and then computing it into a
euclidean displacement vector.

Kernel point representatives were selected via a kernel point selector. Two selectors were
used, the mean point and the extreme point. The mean point takes all displacement vectors in a
kernel and produces the average vector. Given that all points in a kernel exist within the same
local region, they should have similar displacement and grouping them should more coherently
group information. The extreme point takes the kernel points and selects the absolute largest one
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as the representative. The intuition being the most extreme movement is linked to the area of
highest attention and should be selected.

Once representatives are produced for all vectors they are then set for annotation by
checking if the length of the displacement vector for that point is over a target threshold. The
higher the threshold the fewer points there are in the annotation. This leads to more sparse
groupings. The threshold was a scaled mean of the lengths of all the representative vectors. After
the final set of points was selected, they are geometrically rescalled to match the initial input
dimension. The size difference between the initial input and the deformable convolutional layer
input are commuted to perform the rescaling. At times, due to the selection method, total point
wide deviations could be seen so a flexible shifting constraint was added to recenter points.

Points were then displayed in a MatplotLib annotation of a point scatter over the original
image slice. These points had their size and transparency scaled to be less than one image cell to
preserve visibility. Their relative hue, which were shades of red, was determined by either the
relative offset in the dimension that would point outward from the 2D view of the 3D scan or
they were set to all be equal. The points also had applications of other annotations like quivers
applied to show the relative displacement between points. This helps point to areas of
displacement convergence in the image.

Finally, offset points were clustered into groups to illustrate areas of specific attention.
These were done via K-Means clustering and other similar algorithms like OPTICS (Likas et al.,
2003, Ankerst et al., 1999). These clusters were then grouped to make a convex hull to identify a
larger area of significance around the relevant point.

3.2.2 Grad-CAM Saliency Maps

As the model structure changed and limits of the deformable offsets became apparent, an
alternative model attention display mechanism was necessary. Grad-CAM was implemented via
the existing M3d-CAM toolbox from Gotkowski et al. (2020). Saliency maps for each layer were
analyzed; earlier layers gave the most directly relevant features to the input image and thus were
used as the main saliency visualization. However, the individual fidelity of any saliency map was
low. In general, most of the MRI received some form of attention. To focus in on the most
critical features, the saliency score for each voxel was analyzed and removed if it fell below
certain thresholds. The thresholds were set at one standard deviation above the mean. This
augmentation was joined by layered saliency views to encode multiple layers onto the same view
as done in Mundhenk et al. (2020).

3.2.3 Atlas Segmentation

Brain atlas segmentation was performed with the same code base as the atlas attention
module. For visualization and comparison purposes, the quick segmentation network of
Henschel et al. (2022) was used. This leverages the pre-trained FastSurferCNN network to parse
the MRI image into 95 distinct brain structures. These distinct structure segmentations are then
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taken as voxels points and matched with existing dot annotations and Grad-CAM derived
saliency maps. Following this, areas of individual focus are identified by brain region label.

3.2.4 Occlusion Methods

Occlusion methods were incorporated in similar style to Alvarez-Melis et al. 2018 and
Mundhenk et al. (2020) where areas of high / low saliency were defined by Grad-CAM based
attention identification. Effectively these zeroed out sections of the image as a perturbation to
check the robustness of the explainable visualization based on what was identified with full
information. Additionally these were also targeted based on brain regions that reached high
saliency to see the effect of total region elimination on model accuracy.

3.3 Results

Initial uses of explainability visualization proved useful for fast model sensibility
checking, as when model attention cannot be investigated large errors can be introduced and
remain undiscovered. Earlier model training operations required the use of the Pillow Python
library. This is one of the commonly used libraries for image processing and data pipelines for
machine learning. However, due to the transformations the MR files would take when subjected
to library interpolation it effectively inverted the image. This led to the model moving its
attention away from the actual point of interest, the brain and to the irrelevant empty space
around the patient's head in the MRI scan.

Visualizations with offset dots in the first model version can be seen below. There are
clear groupings of attentive points around the brain region and specific clusters as shown in
Figures 8-10, with offset clustering which could point to brain areas of importance. Generally,
for images from the UCLA datasets, Figures 7-9, they cluster around the frontal cortex in all
cases than Schizophrenia. This indicates that areas of the brain linked with higher functioning
may display a correlational relationship with certain mental illness designations. For images
generated from the NDA dataset, the clusterings are less clear and harder to characterize (figures
10-14). Which likely indicates that the model had difficulty focusing on specific areas in
particular for the multi label classification. Further analysis of the specific clustering in relation
to brain segmentations and metrics on the sparsity of these clusterings should be done in the
future.
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Bipolar

Control SCZ

Figure 7. Dot offset display Clustering for UCLA dataset in model version 1. Clustering from
dVoxResNet models trained on all four classes. Offset visualization for bipolar, ADHD, schizophrenia
and control patients. Dots indicate areas of offset clustering and areas that the model looked at to decide
diagnosis. Colors of regional areas indicate close clusters of points, the color is to distinguish groups not
for image segmentation.
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coronal axial

sagittal

Figure 8. Clustering for Control and Bipolar from UCLA Dataset in model version 2. Clustering
from dVoxResNet models trained on all four classes. Offset clusterings are shown on a random Control

subject and a random Bipolar subject. The colors of different dot groups indicate groups of close offset points.
The color is only to distinguish groups from one another.
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Figure 9. Clustering for Schizophrenia and ADHD from UCLA Dataset in model version 2.
Clustering from dVoxResNet models trained on all four classes. Offset clusterings are shown on a random
Schizophrenia subject and a random ADHD subject. The colors of different dot groups indicate groups of
close offset points. The color is only to distinguish groups from one another.
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Figure 10. Clustering for a random healthy subject from NDA dataset.
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Figure 11. Clustering for a random subject with delusions from NDA dataset.
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Hallucinations
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Figure 12. Clustering for a random subject with hallucinations from NDA dataset.

Anxiety

coronal axial

sagittal

Figure 13. Clustering for a random subject with anxiety from NDA dataset.
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Figure 14. Clustering for a random subject with delusions, anxiety, and hallucinations from the
NDA dataset.

Atlas segmentation as seen in Figure 15 was also done. Due to a limited color space of
the images they were not overlaid on the existing dot structures to make them easier to read.
However, they still provide unique information on the direct brain structure which dots may
relate to.
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Figure 15. Atlas brain segmentation from a random sample in the UCLA dataset.

Grad-cam saliency attention maps for all layers of version one of the deformable vox
resnet, can be seen in Figure 16. Clearly layers higher up in the model have the most usable
views. They appear to highlight special brain regions. The lower layers by contrast learn less
interpretable features. They highlight what could be the background or an unclear blob. It is
likely that adding visuals via interpolated stacking of images may be useful. Through a
multilayer view some of the lower layer features may have the context needed to make them
useful.
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Figure 16. Grad cam visualizations from dVoxResNet.
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3.4 Discussion

Offset displacement on both interpretations of the model show clear attention towards the
brain. This demonstrates at a post-hoc level that the model finds specific parts of it more salient
than others. While these results are qualitative at the moment it appears in both cases to pay more
attention to the temporal lobe, auditory area, frontal lobe, and occipital lobe. These presences
mesh with understandings of the resultant symptoms. Overall segmentation appears roughly
homogeneous between the brain hemispheres. This indiacts at first pass in the symptoms and
disorders examined the structural impact of them does not involve side specific or favoring
functions.

Results on the NDA dataset show that the clustering of the offsets on the brain don’t
show as many meaningful patterns from qualitative analysis. While there are clusters on regions
of the brain as shown in the figures above, the offset clusters are scattered across the brain with
limited patterns that we could determine from qualitative assessment. In the future, we hope to
aggregate all the offsets from each of the samples and do a statistical analysis to determine
clusters that occur for each symptom over all the samples. It is possible that due to multi-label
classification some of the more sparse sample types are not able to propagate offset
displacements as much within the training time.

Results from the UCLA dataset in terms of clustering were much more promising. Clear
areas of the brain were favored in a sparse way. Actual quantitative evaluation of these areas to
tie them to an individual disorder are pending. Likely the improved performance was due to the
binary training the model received in this case which would allow more information to reach
higher into the model faster in training.

Given these results it is possible to clearly gain limited significance of brain attention
areas in structure. Explainability results clearly offer a deeper insight into the model and derive
greater inspection of how it is operating which can inform future model design. Given our results
at this moment an ensemble based classifier where the comparies form healthy to each label /
disorder appears to be both the most promising from an accuracy level and from an
interpretability one. Further quantitative analysis of these model interpretations are needed to
make stronger claims on the matter.
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4 Bioethical Considerations for Medical Al

4.1 Introduction

With the rapid improvement of Al techniques, the incorporation of medical Al into the
clinical setting is becoming closer to reality. Consequently, ethical concerns surrounding Al
models need to be considered and addressed to facilitate implementation and ensure that the
powerful benefits can be realized while also minimizing risks.

The medical field is guided by four fundamental principles: beneficence,
non-maleficence, autonomy, and justice. These principles should also apply when developing Al
models intended for the clinical setting. Beneficence provides the obligation for the clinician to
act for the benefit of the patient (Floridi et al., 2018; Varkey, 2020). This principle may be
satisfied in intention, where developers and clinicians aim to develop and use Al to improve
patient care, but the beneficial impacts on patients may be overshadowed if the other ethical
concerns are not addressed. Non-maleficence provides the obligation for no harm to be done to
the patient (Varkey, 2020). For Al models, this relates heavily to the principle of justice, which
calls for fair, equitable, and appropriate care, due to the possibility for biases to be introduced
throughout development and deployment. Medical Al has the potential to reduce disparities in
access and quality of care, so addressing biases is therefore necessary both to achieve equitable
care and to reduce the potential consequence of patient harm. Finally, autonomy states that
patients should be able to exercise self-determination.

Methods for ethical development of Al models have been widely investigated (Vokinger
et al., 2021). In addition to efforts by developers, ethical usage of Al may also be promoted
through regulation to establish baseline expectations. Like other medical equipment,
implementation of AI/ML systems as supplemental medical tools will require approval and
regulation by a centralized body. Within the US, this falls within the jurisdiction of the Center for
Devices and Radiological Health (CDRH) branch of the US Food and Drug Administration
(FDA), and more specifically, with the Digital Health Center of Excellence. At present, over 300
AI/ML-based devices have been approved. However, there are no specific regulatory pathways
for AI/ML systems, so these devices have instead been cleared through one of three generic
device pathways: premarket approval, de-novo premarket, or 510(k) (Muehlematter et al., 2021).
The FDA has begun to lay the groundwork for specific regulation with its fairly recent creation
of Software as a Medical Device (SaMD) categorization (Muehlematter et al., 2021). SaMD is
defined as software which is intended for one or more medical purposes without being a part of a
hardware medical device. In April 2019, the FDA released a discussion paper acknowledging
that AI/ML-based SaMD is distinct from other products they oversee and that new regulatory
policies must be developed to promote safety and effectiveness of these products (US Food and
Drug Administration, 2019)).

The potential for variability of results due to biases is unique to these systems. Within the
context of ML systems, bias is defined as systematic errors in outcomes for select subgroups of
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the overall population (Vokinger et al., 2021). These biases can arise at multiple points
throughout the model development and deployment process. This can lead to further concerns
due to the ability of AI/ML models to iteratively improve by adapting to inputs from real-world
use. While the dynamic nature of AI/ML-based SaMD can be beneficial, it is important for there
to be regulation regarding these changes to ensure they limit biases.

As such, additional steps should be taken before, during, and after development to ensure
trustworthy results and minimize the potential consequences of biased results. To accommodate
the unique nature of ML-based SaMD, the FDA has proposed the total product life cycle (TPLC)
regulatory framework to monitor these steps, while enabling rapid and regulated changes of the
model post-release for optimization of patient health (US Food and Drug Administration, 2019).
The following recommendations complement the TPLC framework and are meant to provide
considerations for ways in which developers and regulatory bodies can reduce harm from AI/ML
models: (1) Data disaggregation to produce representative datasets. (2) Data diversity reporting
to increase and standardize transparency model characteristics to clinicians for informed decision
making (3) Regulation of models to ensure applicability of models to contexts with differing
resources. (4) Evaluating patient-feedback to continually monitor all aspects of informed consent
and to execute continual regulation post-implementation.

4.2 Contextual Bias

The accuracy and reliability of ML systems depends heavily upon the data used for
training during development. As a model is clinically implemented after testing, differences in
datasets and available resources between development and deployment can result in different
outcomes and impose potential clinical risks, also known as contextual bias (Price, 2019);
(Finlayson et al., 2021). Non-representative data can lead to inaccurate outcomes such as a
failure to properly diagnose a disease, leading to a lack of necessary treatment (Vokinger et al.,
2021). For example, a model trained on predominantly white patients may underperform on
underrepresented racial or ethnic groups (Finlayson et al., 2021). Alternatively, demographic
shifts in the data could be possible, such as in the case of a hospital merger resulting in the
addition of rural patients to an urban patient population, which may result in lower accuracy of
model results (Finlayson et al., 2021). Similarly, a change in equipment used to collect data for
the model can impart inaccurate results as the accuracy of the model may only extend to a
specific version of equipment.

4.2.1 Creation of representative datasets

Many developers are able to access data on open sources such as SchizConnect and
OpenNeuro. Here, they are granted the ability to specifically sort for data, and apply labels that
filter for specific populations. However, how useful is this filtration when much of the data is
already inclined towards a population? In other words, is the data truly diverse and reflective of
the general population if the data as a whole contains demographic information from only a
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select group of people? This leads back to the issue of contextual bias, but more specifically
selection bias. Selection bias occurs when selected patient samples are improperly randomized or
not at all and are thus, unreflective of the general population. Biases such as these carry
downstream negative effects onto minority populations when research is translated into practical
application. Developers are realizing that training and testing datasets are not the most
demographically representative of target populations and are non-representative (Manrai et al.,
2016). For example, databases with skin lesions and melanomas used to train certain medical Al
lack images from patients with darker skin tones (Adamson & Smith, 2018). Thus, to combat
contextual biases like selection bias derived from demographic disparities, disaggregating data to
create more representative datasets targets the data collector rather than the developer. This
portion of the paper suggests a solution to data bias while considering the technical and ethical
facets of Al specifically when used in an imaging setting.

We propose creating more representative datasets through data disaggregation to analyze
the diversity of compiled datasets in order to inform data collection efforts if certain
demographics are found to be underrepresented (Vokinger et al., 2021). Racial and ethnic
disparities and the resulting inequities can be minimized if there is a diverse, high-quality pool of
data that can guide analysis. “Data disaggregation”, for the purpose of this investigation, will
thus be referred to as the purposeful division of collected data into its demographic
subcategories. Many times, epidemiological studies are divided into a few separate patient
outcomes: “White”, “Black”, or “other” (Cahan et al., 2019). However, the reality is that the vast
majority of the nation is more diverse. For example, when referring to the Asian American
community, what lies under that are more than 60 different ethnicities and over 100 languages by
definition. From the developer’s point of view, data disaggregation enhances the precision and
outcome of the algorithm.

Justice, as a clinical ethics principle, must be upheld in the clinical setting despite Al
integration. In other words, differential diagnoses informed by an Al must achieve fair and
equitable treatment of the respective patient. To achieve this, the AI must objectively be taught
equity in the form of equal representations of subgroup data. During surveys or data collection,
the data collector/investigator must conjure a well-rounded demographic survey that is a true
representative population. For example, the National Health and Nutrition Examination Survey
conducts selective surveys that involve interactive interviews, and physical examinations for
carefully selected sample populations that are representative of the general population. They
select a highly specific population via the census and incentivized national surveys. More
importantly, the populations they target are highly diverse and ethnically distinct. For reliable,
realistic statistics, NHANES over-samples individuals who are older than 65 years old and
minority populations like “African Americans, Asians, and Hispanics”. They essentialize their
data to represent a highly diverse set of populations reflective of the actual average
demographics of the nation in order to accurately reflect the health status indicator estimates for
particular subgroups (Zipf et al., 2013). NHANES therefore makes the case for sub-data
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disaggregation in their process of specifying highly disaggregated populations in a holistic
demographic classification.

Machine learning uses regulated data as its foundation for elucidating patterns and eluting
predictions. Therefore, sub-data disaggregation provides a means to improve health research and
policy making. The exact recommendation has the data collector sequentially divide categorical
demographic data into sub-demographic data within race, ethnicity, and age corresponding to a
true, diverse reflection of the community in mind. The proposed process to disaggregate data is
stratified in a sequential fashion. Geographical survey and sample locations should be chosen
with the intention to increase data collection of higher risk and minority populations (Obesity
and Hispanic Americans, 2021). In other words, due to typical oversight of at-risk and minority
populations, special attention should be given to these communities to account for ever-growing
national diversity. For a more informed sample, participants should be either provided with a
physical check-up or have an existing, updated medical history. With the chaotic disorganization
seen in EHR systems today, up-to-date information is vital to eliminating implicit biases. Prior to
the aforementioned steps, prevalence of the disease/illness/condition should be epidemiologically
or sociologically tracked per state per county. This will heavily inform the location of sampling.
Sampling regions would be selected with higher proportions of individuals within certain
sub-demographic groups. In these regions, patient samples are recruited and selected at random,
with detailed consent. Here, when the selected region has a larger proportion of a certain
minority, sampling for those populations rises to much higher probability. Persons would be
chosen at random from each household while being mindful of gender/sex/ethnicity divisions.
This methodology would collectively allow for investigators to select demographically-balanced
samples. Ultimately, these simple, but specific criteria work to ensure that data is properly
distributed, representative, and builds credibility to the equity and justice of the respective study.

4.2.2 Increased transparency through the report of training demographics

To endow clinicians with the ability to make fully informed decisions regarding
appropriate clinical usage of AI/ML models, transparency of data used for the development of
the model should be ensured. With a limited understanding of the basis for model outputs, it is
difficult for subsequent clinical decisions to be informed and to mitigate potential risks. Despite
efforts to enhance the explainability of models (refer to Section 3.1 for a description on
“explainability”), there is an immediate need to provide clinicians with further information
regarding the model to guide the capacity in which the model is used for patient care.

Currently, clinicians are limited to various studies which apply machine learning methods
to clinical prediction and diagnostic modeling. However, the unique risk factors of AI/ML
models within these studies are not effectively reported. Recent efforts to coordinate the
reporting protocols of clinical prediction models using Al have led to the development of
Transparent Reporting of a multivariable prediction model of Individual Prognosis Or Diagnosis
(TRIPOD) statement and the Prediction model Risk Of Bias Assessment Tool (PROBAST)
(Wolff et al., 2019). Reporting criteria that assess the multi-dimensional biases that come with
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ML can help regulatory bodies provide better guidance. Stakeholders and end-users may better
understand whether ML is suitable for their purposes and may dictate usage in a clinical setting
(i.e. a patient with a highly-complex diagnosis may benefit with ML). While tools like
PROBAST enable assessment of the risk of bias and model empiricism, they do not enforce
reporting of their respective conclusions on model characteristics such as participant diversity,
outcome definition, predictors, etc. (Jong et al., 2021).

Reporting is a gateway into transparency. In their discussion of AI/ML-based SaMD, the
FDA recognizes transparency and real-world performance monitoring as necessary components
of their total product lifecycle (TPLC) regulatory approach (US Food and Drug Administration,
2019). Currently, details provided by developers on the nature of data usage, algorithm
development, and products vary wildly (Richardson, 2021). For example, an analysis revealed
that only 1 of 10 FDA-approved Als for breast imaging provided demographic information (i.e
racial, etc.) as a justification for product validation (Ross, 2021). Having disclosure on the
demographic information and additional aspects of training data can guide providers to select a
product most fitting for their clinical environment keeping contextual bias in mind. This call for
transparency in the disclosure of data used by AI/ML-based SaMD has been echoed by the
American College of Radiology (ACR) and the American College of Surgeons (ACS) to help
clinical decision making and increase trust in AI/ML in clinical use (Schneider et al., 2021). As
SaMDs grow, patient and clinician communication are becoming increasingly important. Patient
understanding is especially key in informed consent - for the patient to know the whole truth
behind their treatment and care including Al usage (refer to Section 4.3: User feedback).
Facilitating clinician understanding of the model is essential to support informed
decision-making for clinicians and patients alike.

Providing a comprehensible report of demographic and contextual characteristics of the
data used in the model to clinicians will enable informed decision-making for patient treatment.
Ideally, regular reports of data diversity should be reported to accommodate evolving SaMDs
and the model lifecycle (Schneider et al., 2021). To aid understanding of the model testing data,
the report should outline characteristics of the population demographics including age, sex, race,
ethnicity, gender, and geographic region. Having this knowledge can inform users of the
potential limitations a model may have with different datasets. Clinical characteristics of the data
should be included such as the prevalence of comorbidities, treatment plans/status, and
timing/onset of data collection. Furthermore, the population demographics could be
disaggregated on the basis of clinical characteristics to highlight aspects of the data which are not
palpable. For example, if two ethnicities are equally represented within a dataset but differ in
clinical characteristics, such as prognosis, this finding should be included in the report. It is also
necessary for the report to include domain characteristics of the data including the number of
facilities included in the set and the manufacturer and model of data acquisition devices. Efforts
at Duke University and the Mayo Clinic have worked to create a label (similar to a nutrition
label) that would describe how the model was developed, tested, and deployed (Brodwin, 2020;
Jercich, 2022; Sendak et al., 2020). Motivated by this, we propose that reporting of dataset
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information be integrated into model labeling alongside other model aspects. The diversity label
should clearly demonstrate within what level of context the ML model operates. The information
would be easily integrated into existing EHR systems, such as CRISP, and would be easily
accessible.

4.2.3 Regulation of usage environments

The FDA should also seek to regulate the contexts in which models may be implemented.
Differences in available resources in development environments introduce increased risks for
patient harm. Resources may include the amount of healthcare personnel and their levels of
expertise, amount and sophistication of available equipment, and available drugs.

When implementing a model in a specific location, consideration of the resources and
capabilities of the environment are necessary to minimize risks of inaccurate outcomes. Models
developed for treatment recommendation are of particular concern. If model training and
evaluation occur in high-resource environments, the model is likely to recommend treatments
appropriate for similar environments. However, such treatments may be inappropriate,
unfeasible, or of higher risk than other treatments when considered within the context of a
lower-resource environment (Price, 2019). As an example, consider the treatment of malaria.
Though malaria is unlikely to require analysis from an Al model, it provides a direct example of
the effects of contextual environments on applicable treatments. Treatment of malaria in most
parts of the world typically involves nonsteroidal anti-inflammatory drugs (NSAIDs) to address
malarial fever (Weissglass, 2021). But within the low-resource African regions, where malaria
occurs with much higher incidence, NSAIDs are not recommended as they may result in stomach
ulcers and kidney damage if taken without food or water (Weissglass, 2021). Other possibilities
for less-than-ideal treatment outcomes may be a procedure requiring unobtainable equipment or
personnel with more expertise than is available, and drugs that are not available due to cost or
storage requirements.

Restriction of model usage to specific contexts can reduce risks associated with
contextual bias, but it will likely have the additional consequence of preventing low-resource
environments from ever having access to the power of medical Al models. Al models present a
powerful tool for the democratization of healthcare by allowing for the knowledge of an expert
to be leveraged in contexts where the maximum level of expertise and the size of the healthcare
workforce are diminished (Weissglass, 2021). Thus, while risks of consequences from bias
present conflicts with non-maleficence, inequitable access presents conflicts with beneficence
and justice.

Regulation should balance the need to minimize risks with the need to allow the benefits
of models to come through. As such, intended usage contexts should be restricted, but regulation
should encourage developers to expand initial contexts to include low-resource environments.
According to the FDA’s TPLC framework, developers will have the option to submit
modifications to original intended usage contexts (US Food and Drug Administration, 2019).
Though full generalizability to all contexts is ideal, proving extensive generalizability will be a
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difficult and time-costly process due in part to the likelihood of insufficient data from
low-resource environments (Price, 2019). Rather than initially requiring full generalizability or
leaving applicability to multiple contexts as an option, regulation could require that developers
submit plans for implementing such modifications after initial review. This approach would
therefore not completely prevent models from benefitting any contexts while also supporting the
safe expansion of usage contexts.

4.3 User feedback and Informed Consent

User feedback in the context of human-centered design is critical for maximizing the
benefit of the user-experience and improving the underlying output of the model. Feedback
allows the creators to have a real sense of the impact that their model has on the users
themselves, and also provides the model creators with qualitative and quantitative metrics that
they can use to develop their personal goals. In the context of healthcare-associated Al devices,
the use of patient-feedback to continually evaluate through the TPLC, especially
post-implementation, can be just as important. Indeed, patients are the central beneficiaries of
Al-based clinical tools and medical applications, and although such tools may help improve
diagnostics, treatment planning, and patient outcomes, patients should be ensured that they will
not be harmed in any way by Al-based devices, and rather will benefit for the use of the
technology in the healthcare setting. To enable the integration of the technology into healthcare,
along with device developers seeking CMS approval, the associated concerns and risks should be
addressed through patient-surveys and discussion of possible concerns with the patient. To
measure such feedback and evaluate informed consent, the following is recommended: (1)
surveys/interviews with patients using the specified health services, (2) resourceful surveys with
clinicians, and (3) close observation of clinical encounters between patients and clinicians.
Patient comments at the end of surveys can also help enhance patient experience and healthcare
delivery, and such cautious actions can serve to help measure patient-centered care (Silva, 2014).

4.3.1 Patient Concerns

Concerns with the technology itself, with ethics, and the regulation are associated with
the perceived risks of the technology. For the technology, the perceived concerns include a lack
of transparency, complexities associated with interpreting results, and the safety of
recommendations driven by the Al. There is performance anxiety in that the users may have a
perception of the threat for the system to malfunction and not work as intended, rendering it
unable to deliver the service (Esmaeilzadeh, 2020). Systems can be vulnerable to hackers
(untraceable attacks) and unexpected errors. These medical errors could endanger patient safety,
and so, users might be concerned that the Al mechanisms can lead to inaccurate
diagnoses/treatments. Nonrepresentative datasets and incompleteness in the models can also
produce medical errors or inaccurate predictions. There are also perceived barriers to
communication as the use of Al devices in healthcare may also change communications between

55



patients and physicians. Ultimately, privacy concerns, mistrust in the Al mechanisms, and social
biases may also influence how a patient feels about such technologies. Patients are often also
concerned about cost, and whether they can gain access to such technologies via their insurance
plans. There are also concerns with the regulations and governing of the Al systems themselves.
There are perceived unregulated standards, and this is a critical challenge to the Al tools not yet
being transparent. As the technology is rapidly developing, helping patients and clinicians
understand how the device works, and what it is used for is a critical part of ensuring
transparency. Furthermore, algorithms that continuously change with features may not be able to
abide by original clinical trials. The current standards should be formalized to maintain the safety
and impact of Al-based healthcare technologies. Regulatory agencies must agree on a set of
standards that establishes official requirements, policy, and guidelines, such as that offered by the
FDA. Perceived liability is also an issue as there are concerns about who will account for the
errors that may occur with Al-based decisions. Autonomous decisions by Al-based healthcare
devices creates a risky situation where it isn’t clear who is responsible for wrong
recommendations. Also, there is a liability risk if recommended treatment options by Al are
dismissed. For patients to be able to use and trust such technologies in a healthcare setting, these
perceived risks must be addressed. User-feedback and ensuring informed consent by facilitating
communication among the patient-clinician, developer-clinician, and developer-patient
relationships is critical for identifying actionable plans against such perceived risks.

4.3.2 FDA Action Plan

The Digital Health Center of Excellence falls within CDRH of the FDA, and it aims to
align interests for digital health innovation as well as provide support to all stakeholders involved
including the developer community. In October of 2021, the Digital Health Center of Excellence
held a meeting with the Patient Engagement Advisory Committee (PEAC). The PEAC consists
of patient advocates, caregivers, and patients, and this committee along with the FDA helped
outline a five-point action plan for AI/ML-enabled medical devices (Kiarashi et al., 2021). As
mentioned, there are currently more than 300 FDA-authorized AI/ML-enabled devices, and so
the action plan consisted of: (1) updating a tailored regulatory framework for AI/ML-based
SaMD, (2) encouraging GMLP through development, (3) supporting transparency through a
patient-centered approach and enhancing trust, (4) supporting methods related to model
evaluation, improvement, and robustness as well as identifying bias and eliminating it, and (5)
working with stakeholders through the real-world performance. Increasing transparency and trust
remains an important part of addressing potential patient concerns.

4.3.3 Patient Surveys

Chats, surveys, emails, and support tickets are just a few examples for how developers
might traditionally provide feedback, providing a means of communication for the
developer-patient as well as patient-clinician relationships. With regards to healthcare delivery,
patient feedback can be in the form of surveys that incorporate questions about the firsthand or
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secondhand experience of the patients with the model. The surveys may ask, for example,
whether the physicians explained the purpose of the diagnosis/treatment or whether the medical
staft is responsive when patients need them. The primary goal of this survey would be to have
comparable data from the patient’s perspective on the care that they receive. A few commonly
used tools for measuring patient-care include the Individualized Care Scale (ICS), the Measure
of Process Care (MOPC), the Person-centered Care Assessment Tool (P-CAT), and the
Person-centered Climate Questionnaire (PCCQ). The ICS serves to evaluate how patients
perceive individuality in the care and their evaluation of the overall healthcare experience. The
ICS and such perception surveys can be particularly important tools for data developers to
consider because it provides an opportunity to be an integral part of the two-way dialogue
between the patient and those contributing to the treatment of the patient (Kiarashi et al., 2021).
Whereas customer surveys have an emphasis on the satisfaction for the products/services they
engage with, patient surveys have an emphasis on the patients’ perceptions of the care that they
receive, often through check-box questions. The ICS in particular is a 15-minute questionnaire
with 40-items that is a promising tool that provides an opportunity for the expression of patient
perceptions of care (Suhonen et al., 2005).

4.3 .4 Informed Consent

The level of trust that patients and clinicians have also directly has an impact on how
much the users will be able to rely on the model. This means that this further influences the
efficacy of the health care diagnosis. If a particular development is accepted into the clinical
community, the patient might have to accept it de facto based on the trust that the patient has
with his/her provider. Also, it is important to note that this level of trust may not always have a
positive correlation with the patient outcomes. Thus, it is quite important that the user experience
is improved and addressed with any healthcare associated Al device so that patients and
clinicians can feel that they can trust or use such technologies. Ensuring that there is
communication between the developer and clinician is also important to equip clinicians with the
necessary tools for understanding the recommendations made by the Al-healthcare devices. As
the PEAC committee mentions in their discussion, device developers must properly find ways to
communicate how the device works to the clinician, and must also help the clinician find ways to
explain the processes to the patient (Kiarashi et al., 2021). Knowing how it works as well as the
extent to which it works is important to identify when the associated device might not be
working how it’s supposed to. Understanding how it works is also important for identifying bias,
and so finding ways to communicate as well as educate should be considered to help improve
that transparency.

4.3.5 CMS Approval

Furthermore, something that shouldn’t be overlooked comprises the economics/costs of
such technologies. Whether a clinician will use the technology might be dependent on its
performance but also on whether that type of care is reimbursed. Doctors will not reimburse for
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the care and will not use the Al technology if there is no reimbursement. After FDA approval,

the device makers should also obtain reimbursement approval from the Center of Medicare and
Medicaid Services (CMS) for use of the products by Medicare beneficiaries. The approval for
CMS to provide reimbursement for use of the products with the indication can be challenging yet
could be a critical step for acceptance into the community. The cost of using such devices in the
clinic and how the patients will be billed is crucial to consider because it may determine whether
the devices are adopted for clinical use in the first place.

There are overall several considerations to take into account when emphasizing ways to
help enhance patient trust and facilitate communication among patients, clinicians, and
developers. Emphasizing post-implementation within the TPLC and finding ways to continue to
have model feedback going from the patients to the clinicians to the developers should help
increase that trust/transparency. In addition, when considering this patient-centered approach,
communicating about data privacy, how the AI/ML-enabled device works, and the device’s
intended use will be an important aspect of patients being able to make informed decisions about
their care. Finally, techniques to reduce the burden of economics and costs of the device through
such CMS programs will help integration of the technology into the healthcare system.
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5 Conclusion

Efforts to better understand mental illnesses have been ongoing. The National Institute of
Mental Health (NIMH) began its Research Domain Criteria (RDoC) project with the goal of
understanding mental disorders based on observable behavior and neurobiological measures
(Cuthbert & Insel, 2013). This is accomplished through the investigation of multiple units of
analysis (ie. genes, molecules, cells, circuits, physiology, behavior, self-reports, and paradigms)
(Insel & Cuthbert, 2009).

Our work for the past three years focused on learning more about mental illnesses,
developing algorithms to detect physiological changes in the brain, and addressing the ethics
behind real world use of these algorithms. While there are many studies linking changes in the
brain to mental illnesses, we decided to improve upon these methods and develop visualizations
to make them interpretable (Wilczynska & Waszkiewicz, 2020). By using deep learning, we
would be able to detect changes in SMRI between patients with mental illnesses and those who
were healthy. In order to begin our research, we investigated prior applications of deep learning
in mental illness diagnosis, including Alzeimers disease, Major Depressive Disorder,
Schizophrenia, Bipolar Disorder, and ADHD.

In our first implementation, we decided to use supervised and unsupervised models and
compare the biomarker results that were produced from both approaches. Our goal was to
develop an accurate model on the data using the supervised method, and an unbiased model of
the biomarkers using the unsupervised method. While we did get some results for the supervised
method, the unsupervised method was very challenging to train and we ran into many issues that
ultimately led to us moving on to a different approach.

Our second implementation was to improve on our supervised model by developing on
recently published work on using deep learning for MRI scans (Carreira & Zisserman, 2018;
Yang et al., 2021). We also developed a novel network using Atlas Attention maps. These
attention maps segment the brain into multiple areas which can help with visualizing which areas
of the brain were more important when deciding the disease. We also increased our dataset size
to include symptom based classification, by obtaining access to NIMH NDA datasets, so that
symptoms, instead of diseases, would be predicted from brain scans. From these results we saw
that atlas attention was able to improve or maintain performance across three classification tasks.
We were also able to train a model on the NDA dataset which was able to detect the three
symptoms with 50.84% accuracy.

While most deep learning methods for medical applications are currently still in
development, continuing advancements mean that implementation into clinical settings are
coming closer to reality. We identify various recommendations to address bioethical concerns
relating to the effects of bias that should be taken into consideration when developing and
deploying deep learning models. The recommendations are meant to inform, guide, and provide
potential considerations for AI/ML SaMD devices to minimize the risks of contextual biases and
increase transparency throughout the TPLC of a medical device. They will equip healthcare
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providers with the tools to understand potential risks, provide ways to enhance patient-centered
care, and ensure continual regulation/updating of the model post-implementation are all crucial
aspects to help facilitate the relationships among all stakeholders: clinicians, patients, developers,
and regulators.

5.1 Future Work

Our results emphasize the difficulty of distinguishing between multiple disorders and
multiple symptoms. This task becomes especially difficult when limited to using only sMRI data.
The potential of other imaging and imaging-like techniques, such as EEG, MEG, and fMRI,
should continue to be investigated. Additionally, for certain psychiatric disorders, other
non-imaging features can provide valuable diagnostic information, for instance, prior history of
substance abuse. An ideal classifier might integrate imaging data with other non-imaging data
modalities through techniques such as ensemble classification. Future studies that use similar
pixel processing methods of deep learning would gain greatly from using a multi-image format
such as T1 along with T2 weighted images for a patient as each image form would encode
unique brain information that is directly interrelated but not visible in full scope without the use
of this multi model approach.

Additionally, the avenue of model explainability can go much further within brain image
classification. Collecting the sparsity of groupings of attention encodings, offsets, or other model
decision metrics could help indicate biomarkers and should be studied at a class wide base to
find repeating features. Adding metrics like KAR or RAOR in addition to multi method
performance could also open more anquenuse to evaluate the model perforce across classes with
than just f1 score or accuracy. If computation methods are going to enter medicine the results the
models get and how they got there will need to be interpretable to the clinician. Thus metrics of
its interpatiblity should be investigated for both research and use purposes.

Like many previous studies using neuroimaging data, we were limited by the sizes of our
datasets. Deep learning models generally require large training datasets in order to generalize
well. The amount of data required generally increases as the number of trainable parameters
increases, making this consideration especially important for large imaging models such as those
used to conduct our experiments. We hope that future work in this area will benefit from larger,
cleaner datasets like those being compiled by organizations such as ADNI and OpenNeuro.
Ideally, these datasets will make distinctions between medicated patients and drug-naive ones.
Consistent with our ethical recommendations in Chapter 4, we hope that future work in this area
will continue to push for representative datasets and transparency in data reporting in order to
minimize bias. An alternate avenue of research would be more detailed data augmentation.
Existing machine learning techniques like general adversarial networks could be used to take
sparse samples and effectively rebalance data sets. This may also open the door to dense brain
encodings that could allow image samples to be more tersely summarized and thus possible brain
image features to be discovered via the reconstruction process.

60



Independent of classifier performance, many obstacles such as image modality,
explainability, and data quantity, accessibility, and bias exist to the potential widespread clinical
application of deep learning-based diagnostic tools. Research in these areas will serve as a
continuation to the work done in this project and more importantly as candidates for future
endeavors in this field. We hope that developments in the aforementioned areas will continue,
and improve existing technologies in order to better combine the power of computer-aided
diagnostic tools with human experts and clinicians.
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