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Localization of particle wavefunctions in quasi-disordered one dimensional in-

commensurate lattices is studied both numerically and analytically. Through exact

diagonalization, we show that energy dependent mobility edges can appear in the

case of shallow lattices. We also show that these mobility edges can be studied with

a tight-binding model (an extension of the Aubry-André model) that has energy

dependent mobility edges that can be determined analytically.

Topological aspects of the Aubry-André/Harper model are also studied by

numerically calculating the Chern number. We first verify arguments by numerical

calculations that variations in the Chern density decrease with increasing system size

when the potential is incommensurate with the lattice. Next we introduce random

disorder into the model and study the Chern number and the Chern density as a

function of disorder strength by using the non-commutative Brillouin zone. We show

that variations of the Chern density take on the same trends for both commensurate

and incommensurate potentials after some critical disorder strength is reached.



Strongly correlated quantum Hall states are also examined. We numerically

examine the entanglement entropy and the entanglement spectrum of fractional

quantum hall states as a function of the finite layer thickness d of the quasi-two-

dimensional system for a number of filling fractions ν in the lowest and the second

Landau levels: ν = 1/3, 7/3, 1/2, and 5/2. We observe that the entanglement mea-

sures are dependent on which Landau level the electrons fractionally occupy and

are completely consistent with the results based on wavefunction overlap calcula-

tions. We also compare the ground state energies by variational Monte Carlo of

the spin unpolarized Halperin 331 and the spin polarized Moore-Read (MR) Pfaf-

fian fractional quantum Hall states at half filling of the lowest Landau level (LLL)

and the second Landau level (SLL) as a function of small deviations around the

Coulomb point. Our results suggest that even under moderate deviations in the in-

teraction potential the MR Pfaffian description is more energetically favorable than

the Halperin 331 state in the half filled SLL (i.e. ν = 5/2), consistent with recent

experimental investigations.
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2.1 The Aubry-André model . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 The Harper Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Localization of Non-Interacting Particles in 1D Systems 30
3.1 Anderson Localization in a Bichromatic Lattice . . . . . . . . . . . . 30
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Chapter 1

Introduction

If the effects of disorder and electron-electron interactions can be neglected,

then the transport of electrons through various media is well described by the frame-

work introduced by Bloch almost a century ago [1]. The “Bloch wave” as it’s

commonly referred to[2, 3], is an extensive state (i.e. covering the entire span

of the sample in question) that describes the wavefunction of an electron in a

periodic potential as the product of a plane wave and a periodic function (i.e.

ψnk(r) = exp(ik·r)unk(r) where unk(r) reflects the periodicity of the medium). Ad-

ditionally, Bloch waves associate each state with a “crystal momentum,” pk = ~k,

and a “band index”, n, that parametrize the single particle eigenspectrum, allow-

ing the system to be studied in the context of “energy bands” where the energy

is a continuous function of k within the bands. This framework has proven to be

very powerful in describing the electronic properties of materials and provides the

foundation of the vast majority of studies in solid-state physics[2, 3].

Of course, the effects of disorder and electron-electron interactions complicates

the relatively simple picture provided by Bloch theory[4, 5, 2, 3]. In some cases, these

effects can be appropriately handled within the framework of perturbation theory

(e.g. Fermi liquid theory is a notable example[6]). However there are several inter-

esting cases where Bloch theory fails or must be altered in remarkable ways. In a one
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dimensional system, for example, the presence of any random disorder, no matter

how small, has been shown to “localize” all electronic wavefunctions[7, 8, 9]. Co-

herent backscattering from impurities effectively trap electrons into small, localized

regions in the medium, leading to suppressed transport. This effect is a particular

example of “Anderson localization” and is one of the key mechanisms behind metal-

insulator transitions[7]. Another remarkable deviation from Bloch theory occurs

when a two dimensional gas of electrons are subjected to a perpendicular magnetic

field. In some cases, the introduction of the magnetic field leads to non-trivial topo-

logical structure in the Bloch bands that can be described by topological invariants

called “Chern” numbers[10, 11]. Since these Chern numbers are necessarily integers

that lead to the quantization of the conductance for completely filled bands, this

effect is often referred to as the integer quantum Hall effect (IQHE). Also for strong

enough magnetic fields in systems near absolute zero, the electronic kinetic energy

is effectively frozen and the dynamics are fully determined by electron-electron in-

teractions. Thus the system is strongly correlated and as a result, Bloch theory

can not provide a suitable starting point since we can not turn off the interaction.

This problem is often referred to as the fractional quantum Hall effect and has very

remarkable properties such as quasi-particle excitations with fractional charges and

anyonic braiding statistics[12, 13, 14, 15, 16].

In this thesis, we focus on the effects of disorder and electron-electron inter-

actions on electronic wavefunctions. In particular we study problems in Anderson

localization and the quantum Hall effect. For the former, our studies are largely mo-

tivated by recent advances in manipulating cold atoms in optical lattices[17, 18, 19].
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Although Anderson localization was introduced decades ago, it has been difficult

to directly observe experimentally due to the lack of controllable parameters for

disorder in typical solid state systems. But cold atoms provide a potential “quan-

tum simulator” that will allow us to examine many interesting aspects of Anderson

localization directly. In the quantum Hall effect, the exotic topological order that

electrons arrange in may result in quasi-particle excitations with non-Abelian any-

onic excitations [20, 21, 22] that may prove to be the building blocks of a so-called

“topological” quantum computer[23, 24]. In this chapter, we provide some basic

background on these two phenomena and outline the studies presented in this the-

sis.

1.1 Anderson Localization

Before Anderson’s seminal work in 1958[7], the effect of disorder on electronic

wavefunctions in periodic crystals was often treated as a perturbation about ex-

tended Bloch waves. Prior to this work, impurity scattering and its effect on dissi-

pation was not well understood where it was expected that the electronic wavefunc-

tions would still extend across the whole sample for any finite amount of disorder.

Anderson, however, in his seminal work showed that for disorder strength above a

critical value, particles become trapped in small, localized regions within the crystal.

The envelope of such localized electronic wavefunction, ψ(r), fell off exponentially

with distance, (i.e. |ψ(r)| ∼ exp(|r − r0| /ξ) where ξ is the localization length). This

localization of particle wavefunctions significantly suppresses transport through the
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crystal, resulting in a insulating phase. This phenomena is commonly referred to as

“Anderson localization” and is one of the key mechanisms behind metal-insulator

transitions in weakly interacting systems. In this section, we provide a brief in-

troduction to Anderson localization. More thorough reviews can be found in Refs.

[25, 26, 27].

A qualitative understanding of Anderson’s original argument for localized

wavefunctions can be obtained by considering the limit of very strong disorder where

the potential can be approximated by a series of potential wells with random depths.

If we consider an initial bound state within one of the potential wells, tunneling to

other wells is suppressed since the adjoining bound states differ considerably in en-

ergy due to the randomness. Thus, we can argue that transport (i.e. quantum

diffusion) is suppressed in this limit and the eigenstates are exponentially localized.

An alternative argument can be made by considering the sum of all paths for a

particle propagating through a disordered medium. In the case of zero magnetic

field and no magnetic impurities (i.e. time reversal invariant), paths that begin and

end in the same place constructively interfere with their time reversed counterparts.

Thus the particle can be effectively localized due to coherent backscattering where

the probability the particle returns to where it started is enhanced.

1.1.1 Scaling Theory

A theory of localization and metal-insulator transitions in disordered systems

was introduced in 1979 by Abrahams, Anderson, Licciardello, and Ramakrishnan
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(the so-called “gang of four”). Their “scaling theory of localization”[28] expands

on work by Thouless, Mott, Wegner, and others[29, 30, 31, 32] concerning the con-

ductance of a system and how it changes with system size. In particular, Thouless

introduced the dimensionless conductance, g = G/(e2/~) and argued that at some

characteristic length scale (i.e. the mean free path, l, for an extended system or the

localization length, ξ, for a localized system), the conductance, g0, is a microscopic

measure of disorder. Thouless also argued that the conductance, g, of a hypercube

sample of size (2L)d is a function of the conductance for a smaller Ld sample. Thus

the scaling of g with Ld is a function of g0. To complete these arguments, the gang

of four introduced a universal scaling function, β(g), that, they argue, is a function

of g only:

β(g) =
d ln(g)

d ln(L)
. (1.1)

The β function describes how g scales with system size, L, so negative values for β

imply that the system is localized.

A qualitative understanding of how β(g) behaves with g can be obtained by

studying the expected asymptotic forms in the limit of strong and weak disorder.

In the limit of no disorder, the conductance is expected to scale according to Ohm’s

law for L� l:

g(L) ∼ σL(d−2), (1.2)

where σ is the conductivity. Thus, β(g) is a constant:

β(g) = (d− 2). (1.3)

When the effect of weak disorder is included, it can be shown through diagrammatic
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Figure 1.1: Schematic drawing of β(g) as a function of system size (ln(L)) for 1,2
and 3 dimensions. From Ref. [25].

perturbation theory that there is a 1/g correction in β(g)[25]. In other words, β(g)

in weak (but finite) disorder with large g behaves as

β(g) = (d− 2)− a/g. (1.4)

where a = π−2 for an electron gas. Therefore, β(g) is always less than what is

expected from Ohm’s law. In the limit of strong disorder, we expect the states to

be localized and the conductance to fall exponentially with L� ξ:

g(L) ∝ exp(−L/ξ). (1.5)

In this case, β(g) is given by

β(g) ∼ ln(g/gc), (1.6)

where gc � g is a characteristic conductance that, generally, divides the two regimes.

Assuming that β(g) is continuous and monotonic, a qualitative interpolation be-

tween the two forms above is shown in Fig. 1.1. From the figure, we can draw
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several conclusions about localization in disordered systems. 1) In one-dimensional

systems, β(g) is always negative. Therefore, all 1D systems are localized for any

non-zero amount of disorder. This conclusion was also reached in earlier studies by

Mott and Towse [8] and Borland [9]. 2) In three dimensions, a system can be either

localized or extended. Thus there is a metal-insulator transition between the limits

of small and large disorder. 3) In the case of two dimensions, all states are localized

at but, in practice, the localization length is exponentially large in inverse disorder

strength, so finite systems would appear to be metallic even at T = 0 if the disorder

is weak since the localization length would be larger than the system size. In gen-

eral when interactions are included, the situation is unclear in any dimensionality

(except in one dimension), but most believe that the noninteracting conclusions still

apply whether or not a metal-insulator transition exist in this case.

1.1.2 Quasi-Disordered Systems

Up to this point, we have assumed that the disordered potentials are purely

random (i.e. uncorrelated at all relevant length scales). But similar arguments can

be made for any “quasi-disordered” potential that 1) breaks (discrete) translational

symmetry and 2) has a finite average. A deterministic example of such is the “almost

periodic” incommensurate lattice potential in one dimension. A representative tight

binding model of this potential (also called the Aubry-André model[33]) is given by

Eun = t(un−1 + un+1) + v cos(2παn+ ψ)un, (1.7)
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where α is an irrational number. Similar to the case of random disorder, this po-

tential can lead to localized eigenstates, but a notable difference is that there is

a metal-insulator transition. In particular, all eigenstates are localized for v >

2t and extended for v < 2t. This model is discussed in more detail in Chap-

ter 2. There are also other quasi-disordered potentials with 1D metal-insulator

transitions[33, 34, 35, 36]. Thus, these potentials can be thought of as an interme-

diate case between random and periodic potentials [37].

1.2 Cold Atoms in Optical Lattices: A Test-bed for Observing An-

derson Localization

One of the main difficulties in studying condensed matter systems is that there

are, in general, very few controllable parameters in typical condensed matter exper-

iments. Direct observation of metal-insulator transitions in disordered media, for

example, requires some control of the disorder strength which can be difficult to do

in solid state systems (although the dimensionless strength of disorder can be var-

ied by varying the Fermi energy in doped semiconductors by changing the density).

But new, robust tools are now available to physicists that allow us to shed new

light on old insights such as Anderson localization and, more generally, to explore

many-body regimes that are otherwise inaccessible in solid state systems. These

tools are provided to us by ultra-cold atomic systems where recent advances in their

manipulation essentially provide us with “quantum simulators” that offer unprece-

dented control over the many-body Hamiltonian[17, 18, 19, 38]. Such systems have
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allowed us to directly observe the localization of wavefunctions due to Anderson

localization [39, 40], although questions remain whether what is being observed is

true Anderson localization due to quantum interference induced by random disorder

or just semiclassical localization (i.e. bound state formation) of the system in local

potential wells.. In this section, we briefly discuss ultra-cold atomic systems and

highlight recent cold atom experiments on Anderson localization.

The current capability in manipulating cold-atoms in optical lattices is thanks

in large part to earlier advances in laser cooling and trapping of atoms that earned

Chu, Cohen-Tannoudji, and Phillips the Nobel prize in physics in 1997[41, 42, 43].

Laser cooling via magneto-optical traps combined with evaporative cooling can lead

to temperatures as low as a few nano-Kelvin[44]. At such low temperatures, the

atoms can condense to form a Bose-Einstein condensate (BEC) where a large por-

tion of atoms occupy the lowest quantum level in the system[45]. A BEC of cold

atoms was first achieved by Cornell and Wieman in 1995 for which they, along with

Ketterle, were awarded the Nobel prize in 2001[46, 47]. Also the spatial interference

pattern of cross-propagating light fields combined with the ac Stark effect can create

periodic potentials with tunable periods and depths. Thus a large class of single par-

ticle potentials can be explored by adding more laser fields[48]. Moreover, the inter-

particle interactions can typically be tuned using “Feshbach” resonances[49, 50].

The effect of the potential on the BEC is typically probed by irradiating the atoms

with a resonant light field and imaging the fluorescent response[45].

In order to investigate Anderson localization in cold-atomic systems, several

methods have been proposed to introduce disorder into the system[51]. A relatively
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Figure 1.2: Absorption images at different moments in time of a BEC diffusing
through a 1D optical incommensurate lattice after the trapping potential along that
dimension is released. The degree of incommensuration is given by the ratio ∆/J .
From Ref. [40].

simple method in a 1D system is to shine additional laser beams on the system

to produce an incommensurate lattice, which is a realization of the Aubry-André

model. This is the method implemented in a study by Roati et al. that is reported in

Ref. [40]. A brief snapshot of their results can be seen in Fig. 1.2 which shows time

of flight images of the BEC at different time intervals after the trap is released. In

incommensurate potentials, all states are expected to localize when the perturbing

potential strength is above a critical value. In the figure, we see that for small

disorder, (i.e. ∆/J small), the BEC spreads over the length of the lattice as time

progresses. For large disorder, (∆/J > 7), the BEC remains confined, signifying

localization. The results by Roati et al. are interpreted to be the first to directly

observe Anderson localization within the Aubry-André model.
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1.3 The Quantum Hall Effect

The discoveries of the integer and fractional quantum Hall effect have proven

to be two of the most significant findings in physics in recent years[10, 12]. In

the integer quantum Hall effect, Bloch bands of single (non-interacting) electrons

confined to two-dimensions in the presence of a magnetic field exhibit non-trivial

topological properties with experimentally measurable consequences (i.e. the inte-

ger quantization of the Hall conductance). This effect can even be seen at room

temperature in graphene[52]. In the fractional quantum Hall effect (FQHE), the

unique quantum fluid that manifest in a cold two dimensional electron gas (2DEG)

subjected to a perpendicular magnetic field can not be described by the well-known

Landau theory of phase transitions[53]. As a result, the discovery of FQHE and the

large body of research that followed helped expand our understanding of collective

phenomena beyond the theory of order parameters and helped establish the concept

of “topological” order. In this section, we provide a brief review of the quantum

Hall effect. For a more comprehensive review, the reader is encouraged to examine

Refs. [54, 55, 56]

1.3.1 Integer Quantum Hall Effect

In the classical Hall effect, the introduction of a magnetic field to a current

carrying solid results in a current contribution that is perpendicular to the electric

and magnetic field due to the Lorentz Force (see Fig. 1.3). This current contribution

is often characterized by the Hall resistance, RH = Rxy = B/ρe where ρ is the (3D)
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Figure 1.3: Simple schematic of a 2D “Hall” bar showing the longitudinal current,
Ix, longitudinal voltage, Vx, and the Hall voltage, Vy . The longitudinal resistance is
obtained from the ratio, Rxx = Vx/Ix. Similarly for the Hall resistance, Rxy = Vy/Ix.

particle density. If the current is restricted to only two dimensions (e.g. a 2DEG

found in a AlAs-GaAs heterostructure or within a AlGaAs-GaAs-AlGaAs quantum

well), at very low temperatures, quantum effects can dramatically change this simple

picture. Some of these effects were first discovered by von Klitzing et al. [10] in 1980

where, for high magnetic fields (B ∼ 18T ) and low temperatures ( < 2 Kelvin), the

Hall resistance was found to plateau as a function of B at very precise, quantized

values, regardless of the details of the sample (i.e. the quantization is universal).

In particular, the Hall resistance took on the values RH = h/ne2 where n is an

integer, or alternatively, the Hall conductance σx,y = e2n/h. These plateaus would

occur in the vicinity of integer values for ν = ρh/Be = Ne/Nψ where ρ is the (2D)

particle density, Ne is the particle number, and Nφ is the number of magnetic flux

quanta (φ0 = h/e). Also, the longitudinal resistance, Rxx, vanished in the T → 0

limit, suggesting dissipation-less transport. This effect is commonly referred to as

the integer quantum Hall effect (IQHE).

The theory behind the IQHE can be understood in the limit of free electrons

and the inherent topology of Landau levels. In the presence of a magnetic field, the

kinetic energy of free electrons quantizes into equally spaced (in energy) levels that
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are often referred to as Landau levels. Each Landau level has a degeneracy per unit

area, G = B/φ0, so given the Fermi exclusion principle, the number of filled Landau

levels (ignoring spin) is ν = ρφ0/B = Ne/Nphi. Using the Kubo formula (a result

of linear response theory) to calculate the Hall conductance (σxy) of filled Landau

levels in the presence of a weak periodic potential, Thouless, Kohmoto, Nightingale,

and den Nijs (TKNN) discovered that the Hall conductance is proportional to a

topological invariant that is often referred to as the TKNN invariant[11]. The TKNN

invariant is always an integer as long as the Fermi energy is within an energy gap

between bands. Afterwards, it has been shown that the TKNN invariant is actually

the first Chern number in the theory of fiber bundles[57] and relates to the non

trivial Berry curvature in the magnetic Brillouin zone[58, 59].

1.3.2 Fractional Quantum Hall Effect

In 1982, Tsui, Stormer and Gossard repeated the von Klitzing experiment but

with higher mobility 2DEG’s at lower temperatures and higher magnetic fields and

discovered a quantum Hall plateau corresponding to a filling fraction of ν = 1/3 [12].

Subsequent experiments revealed many other fractions[60, 61, 62, 63, 64, 65, 66] (see

Fig. 1.4) and the effect is often referred to as the fractional quantum Hall effect

(FQHE). Unlike the integer quantum Hall effect, a free electron description of these

states fails immediately because 1) the ground state of a partially filled Landau level

is highly degenerate in the non-interacting limit and 2) Landau quantization freezes

the kinetic energy and, as a result, the ground state is completely determined by
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Figure 1.4: Overview of plateaus observed in the quantum Hall effect. From Refs.
[67, 68]

the mutual Coulomb interactions between particles. Thus FQHE states are strongly

correlated with no “small parameter.”

One of the first major breakthroughs in understanding the FQHE was made

by Laughlin[53] who introduced an ansatz to describe ground states observed at

filling fractions ν = 1/m where m is odd. This wavefunction, which is often referred

to as (not surprisingly) the “Laughlin wavefunction,” is given by

ΨLaughlin =
N∏
j<k

(zj − zk)me−
∑

j |zj |2/4 (1.8)

where z = x− iy is the electron coordinate in the complex plane. This wavefunction

has proven to be quite accurate in its description of ν = 1/m states (called the

Laughlin series) and earned Laughlin the Nobel prize in 1998 (along with Tsui and

Stormer)[69, 70, 71]. One of the more intriguing aspects of Laughlin’s description

is that the quasi-particle/quasi-hole excitations are topological entities that have
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fractional local charge (q = e/m) and fractional braiding statistics[13]. Braiding

statistics in this context refers to the theoretical concept introduced by Leinass,

Myrheim and Wilczek that treats the exchange of two particles as a continuous

process where the two particles “braid” around each other in the process[14, 15, 16].

In two dimensions, this process can lead to non-trivial changes to the many-body

wavefunction. In the case of a Laughlin state, the braiding of two quasi-holes (quasi-

particles) results in a phase change of exp(iπ/m) to the wavefunction instead of -1

(1) for fermions (bosons). Thus, such particles are called “anyons” (i.e. “any”

statistics).

The Laughlin description does not, however, describe all experimentally ob-

served fractions in the fractional quantum Hall effect (e.g. ν = 2/5). Thus, a more

general framework is necessary to fully understand this effect. The most successful

theory that captures most quantum Hall states, including the compressible state ob-

served at ν = 1/2, is the theory of “composite fermions” (CF)[72, 56]. Introduced

by Jain this theory describes FQHE states in terms of a “composite” bound state

consisting of an electron and an even number (2p) of vortices. These “composite

fermions” are weakly interacting and, in most cases, can be treated as effectively

free particles. As a result, these particles can fill so-called Λ levels which are analo-

gous to Landau levels. Within this framework, the fractional quantum Hall effect of

strongly interacting electrons turns into the integer quantum Hall effect of weakly

interacting composite fermions. This line of reasoning eventually leads to the CF

15



wavefunctions (also called the “Jain wavefunctions”) given by

Ψν = PLLLΦn

N∏
j<k

(zj − zk)2p (1.9)

for the filling factor

ν =
n

2pn± 1
(1.10)

for integers n and p where Φn is the wavefunction for n filled Landau Levels and PLLL

is the projection to the lowest Landau level (LLL). The concept of weakly interacting

composite fermions turns out to be very powerful and robust. For example, various

experimental observations of the compressible state (i.e. no plateau) observed at

ν = 1/2 is consistent with the description of a Fermi sea of composite fermions

(so-called “CF Fermi sea”) rather than that of electrons[73]. Also some fractions

(e.g. ν = 4/11) could possibly be described as the fractional quantum hall effect of

composite fermions[74].

1.3.3 Filling Fraction ν = 5/2

An experimentally observed FQHE state that does not fall in either camp (i.e.

the Laughlin or the Jain series) is the plateau observed at half filling of the second

Landau level (i.e. ν = 2 + 1/2 where the lowest Landau level is filled with spin

up and spin down electrons). Discovered in 1987[60], this state is (so far) the only

incompressible FQHE state observed that breaks the “odd denominator” rule in

monolayer systems. The leading description for ν = 5/2 was introduced by Moore

and Read in 1991[20] who used results from conformal field theory to suggest the
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following ansatz that’s often referred to as the Moore-Read (MR) Pfaffian:

ΨMR = Pf

{
1

zj − zk

} N∏
j<k

(zj − zk)2e−
∑

j |zj |2/4 (1.11)

where Pf[Mjk] is the pfaffian of the matrix Mjk. In the context of CF theory, the MR

Pfaffian can be thought of as the p-wave pairing of composite fermions similar to

Bardeen-Cooper-Schrieffer (BCS) pairing of electrons in superconductivity[75]. The

remarkable aspect of the MR theory for ν = 5/2 is that the quasi-hole excitations

have non-Abelian anyonic braiding statistics[20, 21, 22]. In particular, 2n quasi-

holes in the MR description at fixed locations have 2n−1 approximately degenerate

states. The interchange of any pair of quasi-hole excitations results in a unitary

rotation within the degenerate subspace and all possible rotations do not necessarily

commute with each other (i.e. the braiding of quasi-holes is a non-Abelian group).

Direct experimental observation of non-Abelian anyons has not yet been achieved

at the time of this writing but their discovery would be a major breakthrough in

our understanding of collective phenomena.

The true nature of the ν = 5/2 FQHE state is one of the most prominent open

questions in condensed matter physics. Recent experimental studies have explored

this mysterious state and give some weight to the Moore-Read theory. One of these

studies is the recent experiment by Venkatachalam et. al. [76] that measured the

charge of localized excitations in the ν = 5/2 state to be e/4 as predicted by the

MR theory[20]. These results are consistent with previous studies by Radu et. al.

and Dolev et. al. that used shot noise to investigate the local charge [77, 78, 79]. In

addition to the experiments noted above, Willett et. al. [80, 81] have seen evidence
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of quasiparticle interference oscillations that support the existence of charge e/4

excitations at ν = 5/2. Another recent study is work performed by Bid et. al.[82]

which experimentally observed the theorized neutral mode of the ν = 5/2 state

consistent with the MR theory[83, 84]. Although these developments point to the

MR theory as the likely candidate for the ν = 5/2 state, they are not sufficient to

unambiguously establish the existence of non-Abelian anyons. Also, it should be

noted that the MR theory predicts a spin polarized state at ν = 5/2, but recent

experimental work [85, 86] suggest that this state may be unpolarized in some cases.

This aspect will be discussed in more detail in Chapter 7.

1.3.4 Topological Quantum Computing

Another motivation for verifying the existence of non-Abelain anyons is that

such exotic particles may eventually become the building blocks of a fault-tolerant

“topological” quantum computer [23, 24]. Quantum computing, generally speaking,

is the initialization, unitary evolution, and subsequent measurement of a quantum

state in order to perform a calculation[87, 88]. The advantage of using a quantum

rather than a classical system is that the principles of quantum superposition and

entanglement allow for a quantum computer to coherently traverse many paths

in parallel while performing a calculation. This massive quantum parallelism can

potentially preform many calculations significantly faster than a classical computer.

The most well-known example of this is the Shor quantum algorithm[89] which can

factor a prime number in polynomial time compared to the exponential time scaling
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that is required by the best classical algorithms. However, one of the main hurdles

in implementing a quantum computer is correcting for errors. Quantum systems

can not be perfectly isolated and will couple with the environment. This coupling

eventually leads to decoherence where the quantum state used for computation

evolves into a mixed state (i.e. classical uncertainty is introduced). Also, systematic

errors can be introduced if the unitary evolution of the state is not done perfectly.

These errors can accumulate after many operations, leading to unreliable results.

These errors can potentially be remedied by employing quantum error correction

algorithms and introducing “quantum redundancy,” but this process can, itself,

introduce errors[90]. Thus the calculation can only be made fault-tolerant with

quantum error correction if the basic error rate is below a certain threshold. The

most optimistic estimate for this threshold is on the order of 10−4, meaning that

the calculation can, at most, produce a single error after performing 104 operations

to be fault-tolerant[91].

Many of the difficulties with quantum errors described above can potentially

be overcome with a quantum computer constructed with non-Abelian anyons [23,

24]. Such a topological quantum computer would operate in the Hilbert subspace

consisting of the degenerate ground states and unitary evolutions in this subspace

would be carried out by braiding the non-Abelian anyons. The advantage of doing

this is that the degenerate subspace is topologically protected and is immune to

local perturbations. As long as the temperature is much lower than the size of the

energy gap, the quantum system will remain in this subspace. Systematic errors

are also avoided since rotations in this subspace are not dependent on the details of
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how the quasi-holes are braided (as long as the trajectories do not encircle any other

quasi-holes). Thus, such a quantum computer is naturally fault-tolerant. However,

in the case of the MR Pfaffian, the set of possible unitary operations that can

be preformed by braiding non-Abelian anyons is not enough to perform universal

quantum computation (i.e. the system can not perform any arbitrary calculation).

It should be noted that ν = 5/2 is not the only fraction predicted to have

non-Abelian anyons, and the fractional quantum Hall effect is not the only system

that’s proposed to have such exotic excitations. Fractions that fall under the Read-

Rezayi series (ν = N +k/(Mk+ 2) for M odd and k ≥ 2) are also predicted to have

non-Abelian anyonic excitations. A notable example in this series is the ν = 12/5

state, but the true nature of this state has not been settled [63, 92]. Other systems

that may have non-Abelian anyons include one-dimensional nano-wires adjoining

s-wave superconductors where the signature of bound Majorana modes is believed

to have been seen [93], cold atomic systems with spin-orbit interactions [94], px+ ipy

superconductors [95, 96], and Josephson junctions [97].

1.4 Overview

We now provide a brief overview of the chapters that follow in this thesis.

In Chapter 2, we provide background information on the 1D Aubry-André

(AA) and Harper models. We outline the derivation for the mobility edge in the

AA model and show how the Harper model is related to the problem of a particle

traversing a 2D lattice in the presence of a magnetic field.
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In chapter 3, we study localization in the 1D AA model and in the continu-

ous Schrödinger equation representing a particle in an incommensurate bichromatic

lattice. For the latter, we find that for shallow lattices, the problem has energy-

dependent mobility edges that can not be mapped to the AA model. To understand

the mobility edges in the framework of a tight binding model, we consider various

extensions of the AA model by including extra hopping terms and show that these

extended models have energy dependent mobility edges through exact diagonaliza-

tion. We also produce a model that has a duality point that can be determined

analytically and we show that this model can be mapped to the Schrodinger equa-

tion for shallow lattices.

In chapter 4, we examine topological aspects of the AA/Harper models by

numerically calculating the Chern number. Recently it has been shown that[98]

the AA model can be associated with a topological invariant. This association is

due to the incommensurate ratio which results in the Chern density being constant

over the twist angles. In this chapter we first verify these arguments by numerically

calculating the Chern number for commensurate and incommensurate potentials

and show that variation in the Chern density decreases with increasing system size,

implying that it is constant in the thermodynamic limit. Next we introduce random

disorder into the model and study the Chern number and the Chern density as

a function of disorder strength by using the non-commutative geometry approach

introduced by Bellissard [99]. We show that variations of the Chern density take

on the same trends for both commensurate and incommensurate ratios after some

critical disorder strength is reached.

21



In chapter 5, we provide background on Landau levels in the context of the

quantum Hall effect. We also discuss the quantum Hall effect in the spherical ge-

ometry, which we use exclusively in the subsequent chapters, and discuss how the

Coulomb potential can be parametrized by the Haldane pseudopotentials.

In chapter 6, we theoretically examine entanglement in fractional quantum hall

states, explicitly taking into account and emphasizing the quasi-two-dimensional

nature of experimental quantum Hall systems. In particular, we study the entan-

glement entropy and the entanglement spectrum as a function of the finite layer

thickness d of the quasi-two-dimensional system for a number of filling fractions

ν in the lowest and the second Landau levels: ν = 1/3, 7/3, 1/2, and 5/2. We

observe that the entanglement measures are dependent on which Landau level the

electrons fractionally occupy, and find that filling fractions 1/3 and 7/3, which are

considered to be Laughlin states, weaken with d in the lowest Landau level (ν=1/3)

and strengthen with d in the second Landau level (ν=7/3). For the enigmatic

even-denominator ν = 5/2 state, we find that entanglement in the ground state is

consistent with that of the non-Abelian Moore-Read Pfaffian state at an optimal

thickness d. We also find that the single-layer ν = 1/2 system is not a fractional

quantum Hall state consistent with the experimental observation. In general, our

theoretical findings based on entanglement considerations are completely consistent

with the results based on wavefunction overlap calculations.

In chapter 7, we compare ground state energies by variational Monte Carlo of

the spin unpolarized Halperin 331 and the spin polarized Moore-Read (MR) Pfaffian

fractional quantum Hall states at half filling of the lowest Landau level (LLL) and
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the second Landau level (SLL) as a function of small deviations around the Coulomb

point via the finite thickness effect and direct alterations to the the first two Haldane

pseudopotentials. In the comparison we find that in the LLL, either the 331 state or

the MR Pfaffian may be lower in energy depending on the deviations. In the SLL,

however, the MR Pfaffian is consistently lower in energy except for large deviations.

These results suggest that even under moderate deviations in the interaction poten-

tial (through various physical process such as finite thickness, Landau level mixing,

etc.), the MR Pfaffian description is more energetically favorable than the Halperin

331 state in the half filled SLL (i.e. ν = 5/2), consistent with recent experimental

investigations.
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Chapter 2

Quasi-Disordered Crystals

As discussed in chapter 1, Anderson localization of electronic wavefunctions

can be caused by “quasi-disordered” potentials as well as purely random potentials.

In this chapter, we focus on a particular example of quasi-disorder, the Aubry-André

(AA) model[33], which is a tight binding approximation for the incommensurate

lattice potential. We also discuss a precursor to the AA model, the Harper model,

which was discussed long before AA’s work to examine the behavior of an electron

traversing a 2D periodic potential in the presence of a uniform magnetic field. Some

of these results will prove to be relevant when we study topological aspects of the

model in chapter 4.

2.1 The Aubry-André model

Conditions under which Anderson localization occurs due to correlated or de-

terministic potentials do differ in some ways compared to that of truly random

disorder. One of the more striking differences is the possibility of mobility edges

in 1D systems[34, 35, 36, 37]. One of the first quasi-disordered models to show a

mobility edge was introduced by Aubry and André in 1980[33] in their study of

one-dimensional quasicrystals. In this model, a 1D periodic lattice with a harmonic

perturbation that is incommensurate with the underlying lattice is approximated
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by a tight binding model. With this model, they show that all states are localized

for an incommensurate potential strength above a critical value. In this section, we

will review the AA model and its main results. For further details, see the original

paper by Aubry and André[33], or its subsequent reviews[37, 100] .

Consider the following tight-binding model

Eun = t(un−1 + un+1) + v cos(2παn+ φ)un, (2.1)

where t is the nearest neighbor hopping amplitude and, v > 0 is the strength of

the on-site potential. This system approximates an incommensurate lattice when

α is an irrational number. The phase shift, φ is given for completeness, but is not

relevant in determining localization (but will become crucial later when the hidden

topological properties of the AA model are discussed). To study this model, we

define localized states to be those that are normalizable in an infinite system. In

other words, ∑
n

|un|2 <∞. (2.2)

Thus, extended states are unnormalized states with bounded amplitudes. A simple

example of such is a plane wave, exp(inq) for some q. An exponentially localized

state is a state where the envelope falls off exponentially with distance. At long

length scales, these states can be described as un ∝ exp(−γ(n − n0)) where γ ≥ 0

is the characteristic exponent (also known as the Lyaponuv exponent).

Solutions to (2.1) can be written as sums of plane waves (i.e. discrete Fourier

transform)

un = einλ
∑
m

fme
im(2παn+φ). (2.3)
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If fm is normalizable (i.e. localized), then we expect un to be extended and vice

versa given that α is irrational. (Note that for α = p/q where p and q are relatively

prime, the series would have a finite set of unique terms with fm+q = fm exp(iφq).

Thus fm is always extensive for α irrational). Inserting (2.3) into (2.1), we see that

fm satisfies

v

2
(fm−1 + fm+1) + 2t cos(2παm+ λ)fm = Efm. (2.4)

Here we see that solving (2.1) for un given t and v is equivalent to solving for fm

with the roles of t and v reversed. Also we see that (2.1) and (2.4) become duals

of each other when v = 2t and φ = λ. Since (2.3) transforms localized states to

extended states and vice versa and solving for un at v/2t is equivalent to solving

for fm at v′/t′ = 2t/v, then we should expect that the states un are extended for

v/2t < 1 and localized for v/2t > 1. Thus, the AA model has a mobility edge (i.e.

a metal-insulator transition).

We can make a somewhat more rigorous argument for a mobility edge by

calculating the characteristic exponent, γ. To do so, we make use of “Thouless

formula” which relates the characteristic exponent to the density of states. For the

state un at energy E satisfying (2.1), the characteristic exponent γ1 is given by

γ1(E) =

∫
dE ′ ln

∣∣∣∣E − E ′t

∣∣∣∣ ρ(E ′), (2.5)

where ρ(E) is the density of states. Similarly for (2.4), the characteristic exponent,

γ2 is given by

γ2(E) =

∫
dE ′ ln

∣∣∣∣2(E − E ′)
v

∣∣∣∣ ρ(E ′). (2.6)

Since E is not changed after the transformation (2.3), then the density of states,
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ρ(E), is the same for both (2.5) and (2.6). Therefore we can relate the characteristic

exponent of un with that of fm by the simple relation: γ1(E) = γ2(E) + ln(v/2t).

Since γ ≥ 0, if γ1(E) > 0, then by (2.3), γ2(E) = 0 and so γ1(E) = ln(v/2t) which

implies that un is localized for v > 2t. Similarly, if γ2(E) > 0, then γ1(E) = 0 and

γ2(E) = ln(2t/v) which implies that un is extended for v < 2t.

What happens when v = 2t? In this case, the states are neither localized nor

extended, but are critical. These states are weakly localized with a power law decay

and the eigenspectrum is self-similar (i.e. has fractal structure)[101].

2.2 The Harper Model

Before Aubry and André introduced their quasi-disorder model to study local-

ization, a similar model was introduced by Harper[102] in two dimensions and later

studied by Hofstadter[103] to examine the energy spectrum of an electron in two

dimensions in the presence of a magnetic field. In this section, we briefly motivate

this model.

Consider an electron in a two dimensional square lattice in the x − y plane

in the presence of a uniform magnetic field, B = Bẑ. In the Landau gauge, we

can use for the vector potential A = (0, Bx, 0) where ∇ × A = B. Using Peierls

substitution where hopping terms in the presence of a magnetic field are related to

zero-field hopping terms by

tn,m = t(0)
n,m exp

(
ie

~c

∫
A · dl

)
, (2.7)

where dl is along the link between sites n and m on the lattice, a tight binding
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model for the single particle wave function, Ψ(x, y), is given by

EΨ(x, y) = tx(Ψ(x+ a, y) + Ψ(x− a, y)) +

ty

(
exp

(
ie

~c
Bxa

)
Ψ(x, y + a) + exp

(
− ie
~c
Bxa

)
Ψ(x, y − a)

)
, (2.8)

where, a is the lattice constant and tx (ty) is the tunneling strength between neigh-

boring sites along the x(y)-axis. The y-coordinate is cyclic, so the solution is of the

form Ψ(x, y) = u(x) exp(ikyy). In terms of the discrete tight binding wavefunction

un = u(na) where n is an integer, we have

Eun = tx(un+1 + un−1) + 2ty cos(2παn+ kya)un, (2.9)

where α = Ba2e/hc. Thus α gives the number of magnetic flux quanta per plaquette

in the lattice. This model is often referred to as the diagonal Harper model. Note

that this is the same as Eq. (2.1) for t = tx, v = 2ty, and φ = kya. Thus the

problem of an electron traversing an incommensurate lattice is analogous to that of

an electron traversing a square lattice with a perpendicular magnetic field.

This model was later studied by Hofstadter who showed that the eigenspec-

trum takes on a self-similar structure when plotted over a range of different rational

values for α[103]. The structure is shown in Fig. 2.1 and is often referred to as

the “Hofstadter Butterfly.” Using this self-similar structure, Hofstadter was able

to show that the spectrum for α irrational formed a so-called Cantor set (i.e. has

measure zero in the thermodynamic limit).
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Figure 2.1: Energy spectrum as a function of α (bottom axis) of the Harper model
with t fixed and −4 < α < 4. From Ref. [103].
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Chapter 3

Localization of Non-Interacting Particles in 1D Systems

In this chapter, we examine localization of non-interacting matter waves in one

dimensional systems. We mostly focus on the bichromatic incommensurate lattice

potential which can be studied experimentally in cold atomic systems [39]. The

results presented here are published in Refs. [104, 105, 106].

3.1 Anderson Localization in a Bichromatic Lattice

One of the potentials that can be generated by laser beams to study localization

in cold atomic systems is the 1D bichromatic lattice which is the addition of a

primary and secondary lattice. For non-interacting particles moving along the x-

axis, the Schrödinger equation with a bichromatic potential is given by(
− ~2

2m

d2

dx2
+
V0

2
cos(2kLx) +

V1

2
cos(2kLαx+ φ)

)
ψ(x) = Eψ(x). (3.1)

where V0 and V1 describe the depth of the primary and secondary lattices respec-

tively, kL is the wave-vector of the primary lattice along the x-axis, and φ is an arbi-

trary phase. For an incommensurate system, α approximates an irrational number.

When the depth of the primary lattice is sufficiently large as compared with the

recoil energy Er ≡ (~kL)2/2m as well as the depth of the secondary lattice V1, the

physical properties of the system can be studied with the single-band tight-binding

Aubry-André model discussed in the previous chapter (Sec. 2.1). Thus this system
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is expected to have a mobility edge as a function of the ratio of the lattice strengths,

V1/V0. To estimate the mobility edge, we map Eq. (3.1) to the Aubry-André model

by estimating ψ(x) =
∑
un 〈x|n〉, where |n〉 is the nth Wannier state. We use the

Gaussian approximation to estimate the Wannier states in the lattice. In other

words, we treat the primary lattice potential as a string of independent simple Har-

monic oscillators (SHO) and estimate the Wannier states as the ground states of

each:

〈x|n〉 ≈
√
kL

π1/4

(
V0

Er

)1/8

exp

(
−1

2

√
V0

Er
(kLx)2

)
. (3.2)

From this, we can estimate the tunneling rate, t (i.e. 〈n |H0|n+ 1〉 where H0 is

given by Eq. (3.1) with V1 = 0, by

t ≈ 4√
π
Er(

V0

Er
)3/4exp(−2

√
V0

Er
). (3.3)

Also the incommensurate potential strength, v is approximated by

v ≈ 〈n| V1

2
cos(2kLαx) |n〉 ≈ V1

2
exp(− α2√

V0/Er
). (3.4)

Note that v, and, therefore, the mobility edge predicted by the Aubry-André model,

depends on V1, α, and V0/Er.

To demonstrate localization of Eq. (3.1) for irrational α and the mapping

the the AA model, we numerically solve the single-particle Schrödinger equation

without any tight-binding approximation. To do so we discretize the Schrödinger

equation in the position basis with a finite system size of length L = Na, where

a is the lattice constant of the primary lattice associated with V0. The discretized
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Schroedinger equation is given by

(
− ~2

2m

)
ψn+1 − 2ψn + ψn−1

δ2
+ (V0 cos(2kLnδ) + V1 cos(2kLαnδ))ψn = Eψn, (3.5)

where δ = Na/M is the step interval for the discretization with M denoting the

total number of steps. Then we proceed by diagonalizing the M × M matrix of

the discretized Hamiltonian and study the first N eigenstates with smallest energy

eigenvalues. These states would correspond to the ground band for the case with

no secondary lattice (i.e. V1 = 0). In our calculations for the following results, we

have set N = 500, M = 80, 000, and 2kL= 1. As our metric for localization, we use

the inverse participation ratio (IPR) given by

IPR(i) =

∑
n |u

(i)
n |4

(
∑

n |u
(i)
n |2)2

=

∑
n |ψ

(i)
n |4

(
∑

n |ψ
(i)
n |2)2

, (3.6)

where the superscript i denote the i-th eigenstate (ordered according to energy from

low to high). For spatially extended states, IPR approaches zero whereas it is finite

for localized states [100]. IPR values of the first N eigenstates as a function of the

secondary lattice strength V1 are shown in Fig. 3.1 for a primary lattice strength

of V0 = 30Er. In Fig. 3.1(a) the irrational ratio α is set to be the inverse golden

mean, (
√

5− 1)/2 whereas in Fig. 3.1(b), α = π/2. The bold-dashed line represents

the AA duality point calculated with Eqs. (3.3) and (3.4). We can see that the

localization properties shown in Fig. 3.1 closely resemble the well-known results

from the AA model. We do note, however, that the IPR results of Fig. 3.1 indicate

a dependence on the specific value of α with α = (
√

5 − 1)/2 providing a sharper

AA duality than α = π/2.
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Figure 3.1: Inverse participation ratio obtained by solving the Schrödinger equation
and calculated AA duality point (dashed line) at V0 = 30Er (a) α = (

√
5 − 1)/2;

(b) α = π/2.

In Fig. 3.2(a) we show the IPR values for the case of V0 = 2Er, a relatively

shallow lattice compared to the case in Fig. 3.1, and α = (
√

5 − 1)/2. In this

case, the eigenstates no longer appear to localize all at once, but in discrete steps

(represented by the solid lines in the figure). Also the transitions occur at fairly large

values for V1, where the secondary lattice can no longer be treated as a perturbation.

We have also studied the cases where V0 = 2Er, α = π/2 (Fig. 3.2(b)) and α =

(
√

5 + 1)/2 (not shown in the figure). In these cases no localization was observed in

the eigenfunctions for any value of V1 investigated (up to V1 = V0). This suggests

that incommensurability between the lattices is not a sufficient condition to observe

localization for shallow cases.

To examine the dependence of the localization transitions on α, we set V0 = V1
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Figure 3.2: (a) Inverse participation ratio obtained by solving the Schrödinger
equation and calculated AA duality point (dashed line) at V0 = 2Er (a) α = (

√
5−

1)/2, solid lines are estimated location of localization transitions; (b) α = π/2.

and calculate the IPR of the ground state for various values of V0 and α (the values

of α examined are all proportional to (
√

5− 1)/2). These results are shown in Fig.

3.3. We see fairly distinct regions of localized and extended states, with localization

tending towards areas of larger values for V0 and smaller magnitudes for α. The

curve in Fig. 3.3 represents the set of points (α,V0) such that the AA duality point

(calculated from Eqs. (3.3) and (3.4)) is equal to the lattice strength V0. These sets

of points serve as a simple heuristic estimation of the boundary between localized

and extended states based on AA duality condition. Although in principle we should

not expect the AA duality point obtained from Eqs. (3.3) and (3.4) to be applicable

in the case of shallow lattices, this simple analytical result is in good qualitative

agreement with our numerical findings.
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Figure 3.3: Inverse participation ratios of the ground state wavefunction for the case
V0 = V1 and α equal to fractional multiples of (

√
5−1)/2. The solid curve represents

an approximate analytical boundary between localized and extended regions based
on the AA duality point.
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Figure 3.4: Inverse participation ratio of ground state wavefunction at time T0 ≈
~/Er after the trap potential Vtrap = Ωx2 has been turned off (Ω/Er ≈ 10−7).
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We now briefly discuss how some of these results may be observed in cold atom

experiments. We consider a diffuse BEC that is loaded into an incommensurate

optical lattice, confined by a harmonic trap, Vtrap = Ωx2. We assume that the

diffuse gas is prepared in the ground state. At time T = 0, the harmonic trap is

suddenly turned off and the BEC is allowed to diffuse. Localization can be observed

by monitoring the IPR of the density wave function over time. In Fig. 3.4, we

present the calculated values for the IPR as a function of V1 for the wave function

after a fixed period of time, T0 ≈ ~/Er, has passed since the trap was turned off

for the cases with V0 = 2Er, Ω/Er ≈ 10−7, α = (
√

5 − 1)/2 and α = π/2. In the

figure, we see the two cases are similarly delocalized for small values of V1. But for

larger values of V1, the IPR for the α = (
√

5 − 1)/2 case begins to grow, showing

increasing degree of localization, while in the α = π/2 case it remains constant.

3.2 The Aubry-André model with next-nearest-neighbors hopping:

the t1 − t2 model

In the previous section, we showed that even in the case of relatively shallow

lattices, the AA model could qualitatively predict the mobility edge for the ground

state and its dependence on the incommensuration ratio, α. However, the AA model

is limited in its applicability since it can not explain the presence of energy dependent

mobility edges in shallow lattices. In this section, we study a somewhat näıve

extension to the AA model, by including next-nearest-neighbors (nnn) hopping. In
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Figure 3.5: Inverse participation ratio of all eigenstates for t1 − t2 model with
α = (

√
5 − 1)/2. The size of the system is chosen to have 1000 sites. The four

panels correspond to t2 = 0, 0.01, 0.05, and 0.1 respectively. (t1 is the unit for
energy.) Darker shading corresponds to more extended states while lighter shading
corresponds to more localized states.

particular, we consider the model:

∑
d=1,2

td(un−d + un+d) + Vnun = Eun (3.7)

where Vn = V cos(2πn). We solve the equation by direct diagonalization and quan-

tify the localization of the wave function using the IPR via Eq. (3.6).

Fig. 3.5 shows the IPR values of all eigenstates as a function of the effective

strength V of the secondary lattice based on the tight-binding t1 − t2 model with

α = (
√

5 − 1)/2 for various values of t2 (t1 is chosen to be unit of energy). The
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Figure 3.6: Inverse participation ratio on the t2−V plane for α = (
√

5−1)/2 based
on the t1 − t2 model. The four panels correspond to four eigenstates labeled by i,
with ascending eigenenergies. Darker regions correspond to more extended states
and lighter regions correspond to more localized states.
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calculation for Fig. 3.5 is done for a system with 1000 sites in the primary lattice.

For small values of t2 (e.g. t2 = 0.01), the localization properties of the system

have essentially the same features as those determined by the AA model. However,

when t2 = 0.05 or higher, AA duality is clearly destroyed and localization transitions

appear to be energy dependent. For lower energies, the transition can appear for

V < 2t1 and for higher energies, the transition can appear for V > 2t1.

In order to demonstrate the dependence of the localization transition on t2 ,

we show the distribution of IPR on the t2−V plane for four different eigenfunctions

with α = (
√

5−1)/2 in Fig. 3.6. For the calculation, the size of the system is chosen

to be 40,000. At t2 = 0, the t1 − t2 model reduces to the AA model, and from Fig.

3.6, one can see the sharp transition when V is increased across the duality point

V = 2. However, the localization property of the system is greatly complicated

when t2 is finite. Besides the appearance of mobility edges, the results also reveal

that the dependence of the localization property on t2 is not monotonic, e.g. at

fixed V < 2 when t2 is increased the ground state could be tuned from extended to

localized, but further increasing of t2 could bring the ground state into an extended

state again.

We infer from the results presented in Figs. 3.5 and 3.6 that 1) the AA duality

is destroyed by having t2 6= 0; 2) instead of the V = 2t1 dual point, the system has

energy dependent mobility edges for t2 6= 0; 3) the precise localization condition

deviates up or down from the V = 2t1 AA condition depending on the energy of the

eigenstate and the value of t2. As illustrated by Figs. 3.5 and 3.6, the t1− t2 model

itself could be of interest.
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However, for the study of localization properties in 1D incommensurate lat-

tices, its validity must be dealt with caution, especially when t2 is not sufficiently

small as compared with t1. The tight binding nn and nnn hoping integrals t1 and t2

can be estimated with the Wannier basis, which is fully determined by the primary

lattice. One can easily estimate that when V0 = 3Er, the ratio of t2/t1 is on the

order of 10%. To get higher t2/t1 ratio, one will need to tune the lattice potential

shallower and should expect the tight-binding approximation to break down at some

point.

3.3 Extension of the Aubry-André Model: An Exactly Solvable Model

In the previous section, we explored the localization of particle wavefunctions

in cold-atomic systems with shallow lattices through numerical calculations and

showed the presence of energy dependent mobility edges, in contrast to the predic-

tions of the AA model with only nn hopping, which is expected to be relevant for

deep optical lattices. We also showed that such energy dependent mobility edges

might be explained by the nnn extension of the AA model although this extension

breaks AA duality. In this section, we will explore a different tight binding model

that has a duality point similar to the nn AA model despite having long range hop-

ping terms but naturally predicts energy dependent mobility edges which can be

analytically determined.

Consider the following tight binding model:

Eun =
∑
n′ 6=n

te−p|n−n
′|un′ + V cos(2παn+ δ)un, (3.8)
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where α is an irrational number and p > 0. This model can be thought of as a

simple extension of the Aubry-André model with exponential hopping terms rather

than the simple nearest neighbor. Like the AA model, this model also possesses

self-duality and, thus, has a mobility edge. But we will also show that this mobility

edge is necessarily energy dependent for finite p.

We begin by defining the parameter, p0 > 0 such that

(E + t)− V cos(2παn+ δ) = ΩTn, (3.9)

Tn =
cosh(p0)− cos(2παn+ δ)

sinh(p0)
, (3.10)

Ω =
√

(E + t)2 − V 2 (3.11)

then it follows that (E + t)/V = cosh(p0) and we can rewrite Eq. (3.8) as

ΩTnun =
∑
n′

te−p|n−n
′|un′ . (3.12)

If we now consider the transformation:

ũm =
∑
n

eim(2παn+δ)Tnun, (3.13)

and note that for p > 0 we have the identity,

T−1
n =

∑
m

e−p|m|eim(2παn+δ), (3.14)

then it follows that the state, ũm satisfies the equation:

ΩT̃mũm =
∑
m′

te−p0|m−m
′|ũm′ , (3.15)

where T̃m is given by:

T̃m =
cosh(p)− cos(2παm+ δ)

sinh(p)
. (3.16)
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We see that Eq. (3.12) is self dual under the transformation Eq. (3.13) when p = p0,

or equivalently cosh(p) = cosh(p0) for p, p0 > 0. Therefore, the duality condition for

Eq. (3.8) is given by:

cosh(p) =
E + t

V
. (3.17)

Thus our duality condition for this model is explicitly dependent on the energy

eigenvalue, E. Moreover, if we take the limit as p→∞, we recover the AA duality

point (i.e. V = 2t). Also note that the transformation in Eq. (3.13) is similar to

the duality transformation for the AA model,Eq. (2.3). And just like Eq. (2.3), this

transformation takes localized states to extended states and vice versa. Therefore

we expect that the eigenstates of the system are critical (i.e. weakly localized) when

Eq. (3.17) is satisfied.

Similar to the arguments made for for the AA model in the previous chapter,

we now argue that the eigenstates of Eq. (3.12) are localized for p > p0 and extended

for p < p0 (i.e. that Eq. (3.17) does, indeed, define a mobility edge). Since the

Thouless formula used by Aubry and André was derived for models with nn hopping,

we can not use it for our particular model. Therefore, our first step is to generalize

the idea of the Thouless formula for the long-range hopping model. To do so, we

treat Ω as the eigenvalue and consider the Green’s matrix

G(Ω)m,n = (ΩI− H)−1
m,n (3.18)

=
cofactor(ΩI− H)m,n∏

β(Ω− Ωβ)
(3.19)

where the cofactor is the appropriately signed determinant with the mth row and

nth column removed and H is the Hamiltonian corresponding to the eigenvalue
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equation given in Eq. (3.12) where we have set t = 1 without loss of generality;

I is the identity matrix. Assuming a non-degenerate eigenspectrum, the Green’s

matrix has a simple pole for each eigenvalue, Ωµ. Since, by definition, the residue

of G(Ω(µ))m,n is the product of the mth and nth elements of the eigenvector (i.e.

Res(G(Ω)m,n,Ωµ) = u
(µ)
m u

(µ)
n )[107], then we have for the product of the first and last

elements of the eigenvector:

u
(µ)
1 u

(µ)
N =

cofactor(ΩµI− H)1,N∏
β 6=µ(Ωµ − Ωβ)

. (3.20)

If the state is exponentially localized about the site n′, then we expect un ∼

exp(−γ|n′−n|) where γ ≥ 0 is the characteristic (or Lyapunov) exponent. Therefore

the product u1uN ∼ exp(−γ(N − 1)). Thus, the characteristic exponent for large N

is given by

γ(Ωµ) = lim
N→∞

−(N − 1)−1 ln |u(µ)
1 u

(µ)
N |

= lim
N→∞

(N − 1)−1(
∑
β 6=µ

ln |Ωµ − Ωβ|

− ln |cofactor(ΩµI− H)1,N |). (3.21)

This is the generalized Thouless relation for the characteristic exponent of a wave-

function. For the case where H is given by Eq. (3.12), the cofactor takes on the

form:

cofactor(ΩµI− H)1,N = ΩN−2
µ e−(N−1)pT−1

N . (3.22)

Then we have for the characteristic exponent,

γ(Ωµ) = p− ln |Ωµ|+ lim
N→∞

(N − 1)−1
∑
β 6=µ

ln |Ωµ − Ωβ|. (3.23)
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We now compare the characteristic exponents of the eigenvectors of Eq. (3.12),

which we denote as γ(Ω), with the exponents of the dual problem Eq. (3.15), denoted

as γ̃(Ω). Since the eigenvalue, Ω is not changed by the transformation given by Eq.

(3.13), then we expect the summation term on the RHS of Eq. (3.23) to be equal

for both Eq. (3.12) and Eq. (3.15). Therefore, the characteristic exponents have

the following relation:

γ(Ω) = γ̃(Ω) + (p− p0). (3.24)

Considering the case when p > p0, since γ̃(Ω) ≥ 0, then it follows that γ(Ω) > 0

and therefore the eigenstate, un is localized while the dual state, ũn is extended.

Similarly, when p0 > p, we can argue that γ̃(Ω) > 0 and therefore the dual state, ũn,

is localized while un is extended. Therefore, returning to the original problem given

by Eq. (3.8) and using the fact that cosh(p0) is a monotonically increasing function

of p0 > 0, then it follows that the eigenstates are localized for (E + t)/V < cosh(p)

and extended for (E + t)/V > cosh(p).

The self-duality described above has a general form. Considering a model of

the general form ∑
m

tmun+m + V0vnun = Eun. (3.25)

The model will have a similar form of self-duality if the on-site potential and the

hopping terms satisfy the relation:

A

B − vn
=
∑
m

tme
im(2παn+δ) (3.26)

where A and B are constants. In particular, the constant B gives the slope of the

the duality condition (i.e. B = E/V0).
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(a) (b)

(c) (d)

Figure 3.7: Energy eigenvalues and inverse participation ratios of Eq. (3.8) with
500 lattice sites and α = (

√
5− 1)/2 for (a) p = 1, (b) p = 2, (c) p = 3, (d) p = 4.

The solid line represents the analytical boundary between spatially localized and
spatially extended states.
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Figure 3.8: Eigenstates of Eq. (3.8) with 500 lattice sites, α = (
√

5−1)/2, V = 1.8,
and p = 1.5 for different energy eigenvalues: a) low energy localized state below the
mobility edge b) high energy extended state above the mobility edge c) critical state
near the mobility edge.
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We now numerically examine localization in Eq. (3.8) (and equivalently Eq.

(3.12)) by calculating the inverse participation ratio (IPR) of the wavefunctions

(3.6) Fig. 3.7 plots energy eigenvalues (or eigenstate number) and the IPR of the

corresponding wavefunctions for Eq. (3.8) as a function of potential strength, V ,

with α = (
√

5− 1)/2 and p = 1, 2, 3, or 4. The solid curves in the figures represent

the boundary given in Eq. (3.17). From the figure we see that IPR values are

approximately zero for energies above the boundary and are finite for energies below

the boundary. This supports our assertion that the mobility edge is, indeed, given

by Eq. (3.17).

In Fig. 3.8, we directly examine sample eigenstates in each regime (i.e. local-

ized, extended and near the mobility edge) for p = 1.5 and V = 1.8. We see that

the wavefunction is localized for low energies (Fig 3.8a), extended for high energies

(Fig 3.8b), and critical (power law decay) near the boundary (Fig 3.8c).

We now examine the eigenvalues of Eq. (3.12) for different values of α at the

duality point (p = p0) where we expect the eigenspectrum to form a fractal set for

large N. The results of this are given in Fig. 3.9. In the figure, we see that for

large values of p, the eigenspectrum closely resembles the well known Hofstadter’s

butterfly which results from the solutions of Harper’s equation [102, 103]. For smaller

values of p, however, we see a generalized form of Hofstadter’s butterfly that is not

symmetrical about the the band center, but skewed towards lower eigenvalues. The

self-similarity in the figure suggest that the eigenspectrum does, indeed, form a

Cantor set at the duality point in the thermodynamic limit.

To understand the relevance of these results to ultra-cold atoms in optical
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(a) (b)

(c)

Figure 3.9: Eigenspectrum of Eq. (3.12) with varying α for (a) p = 1 , (b) p = 2,
and (c) p = 3.
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lattices, we draw the connection between the implicit short-range tight binding

model given in Eq. (3.8) and the fundamental single particle Schrödinger equation

in (3.1). To do this, we study the ground band Wannier functions [108], wn(x) of

Eq. (3.1) for V1 = 0 and approximate the matrix elements of the Hamiltonian in

the Wannier basis. Using the Gaussian approximation for the ground band Wannier

states, the potential strength, V , in Eq. (3.8) is approximated by the expression

given earlier in Eq. (3.4). Also from this approximation, we have for the constant

energy difference between (3.8) and (3.1):

E0 = 〈wn|H0|wn〉 ≈
1

2
(V0e

−
√

Er
V0 +

√
V0Er), (3.27)

where H0 is the Hamiltonian corresponding to (3.1) with V1 = 0. The hopping

coefficient, t, can be estimated using the deep lattice approximation for the ground

bandwidth:

t ≈ 4√
π
Er(

V0

Er
)3/4exp(−2

√
V0

Er
+ p). (3.28)

To estimate the hopping overlap integrals, we make use of the results reported by

Kohn on the analytical properties of Wannier functions [109]. According to Kohn,

the overlap integrals have the asymptotic characteristic:

〈wn|H0|w′n〉 ∼ e−p|n−n
′|, (3.29)

where p is the imaginary part of the branch point of E(k) (k is the quasi-momentum)

that connects the ground band to the first excited band in complex k-space. The

parameter p can be obtained from the first stationary point, µ0, of Kramers’ func-

tion µ(E) = cos(k(E)b) [110], where b is the period of the primary lattice, by the
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Figure 3.10: Schematic drawing of Kramers’ function [110]. The energy bands
correspond to |µ(E)| ≤ 1 and the band gaps correspond to |µ(E)| > 1

expression:

p = | cosh−1 |µ0||. (3.30)

Fig. 3.10 gives a representative schematic plot of Kramer’s function, µ(E).

Let W0 be the bandwidth of the ground band and let W1/2 be the width of the first

bandgap. If we use as an approximation for the ground band energy:

E ≈ −W0

2
cos(kb) + ε0, (3.31)

where ε0 is a constant, then we have as an estimate for dµ/dE at the top edge of

the ground band, labeled ε+:

dµ

dE

∣∣∣∣
E=ε+

≈ − 2

W0

. (3.32)
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If we approximate µ(E) as a parabola within the bandgap and use (3.32), then we

obtain as an approximation for µ0:

µ0 ≈ −1− W1/2

2W0

. (3.33)

The ratio W1/2/W0 can be estimated using properties of the Mathieu functions [111]:

W1/2

W0

=

√
π

8
(
V0

Er
)−1/4 exp

(
2

√
V0

Er

)
. (3.34)

Finally, using (3.30) and (3.4), the equivalent of (3.17) for the 1-D incommensurate

lattice Schrödinger equation (3.1) is given by:

2 exp

(
α2√
V0/Er

)
(E − E0 + t) = V1

(
1 +

W1/2

2W0

)
, (3.35)

where E0 is estimated by (3.27). One interesting implication of (3.35) is that the

sharpness of the extended/localization transition is determined by the ratio of the

bandgap width to the width of the ground band. The AA condition is analogous to

(3.35) when the bandgap is much larger than the width of the ground band.

To examine the accuracy of (3.35), we numerically integrate (3.1) to obtain the

energy eigenvalues and wavefunctions and calculate the IPR. In our calculations, we

set kL = 1, α = (
√

5−1)/2, m = 1. The size of the system is given by L = Na where

a is the lattice constant. N is chosen to be 500 and (3.1) is sampled over 80,000

points. Fig. 3.11 gives eigenstates at three different energy eigenvalues for V0 = 2Er

and V1 = 1.43Er(similar to Fig 3.8). Similar to the results in the tight binding

model, we see that for a fixed potential strength an eigenstate can be localized for

low energies (Fig 3.11a), extended for high energies (Fig 3.11b), and critical near

the boundary (Fig 3.11c). Fig. 3.12 gives calculated IPR values as a function of
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position

|ψ
|

a) Low E state below edge

b) High E state above edge

c)state near boundary

Figure 3.11: Eigenstates of (3.1) with 500 lattice sites, α = (
√

5− 1)/2, V0 = 2Er
and V1 = 1.43Er for different energy eigenvalues: a) low energy state below mobility
edge b) high energy state above mobility edge c) critical state near the predicted
mobility edge.

eigenstate number and V1 for the first N eigenstates (equivalent to the ground band

when V1 = 0) The solid curves gives the analytical boundary between localized

and extended states as given by (3.35). We see in Fig 3.12 that our analytical

prediction is in good agreement with our IPR calculations. We also note that (3.35)

is dependent on incommensuration and may predict no localization transition for

α2/
√
V0/Er � 1, where the slope of the boundary in E − V1 space is essentially

flat. This is consistent with numerical results reported in section 3.1 [104] where

localization transitions in (3.1) are observed to be dependent on incommensuration

for shallow lattices.
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Figure 3.12: Inverse participation ratios of the approximate ground band eigen-
states of (3.1) with α = (

√
5 − 1)/2 for a) V0 = 2Er and b) V0 = 5Er. The solid

curves represent the analytical boundary between spatially localized and spatially
extended states.
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3.4 Non-dual Extensions of the Aubry-Andre Model

In the previous section, we have introduced a tight binding model that natu-

rally predicts energy-dependent mobility edges that can be determined analytically

and showed an approximate mapping to the Schrodinger equation. The mapping,

however, is not perfect and it is likely that the exponentially decaying hopping model

is not appropriate for all shallow lattices. With these caveats in mind, we examine

alternative models where the extended hopping terms are allowed to decay either

more quickly (i.e. Gaussian) or more slowly (i.e. power law). These models do not

have an easily discernible duality point like that seen in Eq. (3.8) or in Eq. (2.1),

but these models do show energy dependent mobility edges which can be predicted

qualitatively by the condition in Eq. (3.17).

We begin by revisiting the t1 − t2 model discussed in section 3.2. We have

already seen that this model gives energy-dependent mobility edges for t2 > 0. Here,

we will use this model to illustrate a heuristic prediction of mobility edges based

on Eq. (3.17). If we consider an approximately equivalent exponential hopping

model, then the parameters are given by p = ln(t1/t2) and t = t1e
p. Using Eq.

(3.17), we can approximate the boundary between localized and extended states.

To examine how well this heuristic works in practice we calculate the IPR of the

eigenstates of Eq. (3.7). The results are given in Fig. 3.13 for 500 lattice sites,

α = (
√

5 − 1)/2 and various values of the ratio t2/t1. The solid lines in the figure

give the approximate mobility edge given by Eq. (3.17). From the figure, we see

that for small values of t2/t1, the approximate boundary is in good qualitative
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(a) (b)

(c) (d)

Figure 3.13: Inverse participation ratios and energy eigenvalues of all eigenstates
of Eq. (3.7) with 500 lattice sites and α = (

√
5 − 1)/2 for t2/t1 = (a) 0.05, (b)

0.1, (c) 0.3, (d) 0.5. The solid curves represent the approximate boundary between
spatially localized and spatially extended states.
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(a) (b)

(c) (d)

Figure 3.14: Inverse participation ratios and energy eigenvalues of all eigenstates
of Eq. (3.36) with 4096 lattice sites and α = (

√
5− 1)/2 for σ = (a) 1.0, (b) 0.5, (c)

0.25, and (d) 0.10. The solid curves represent the approximate boundary between
spatially localized and spatially extended states.

56



agreement with the numerical IPR results. For larger values, however (t2/t1 & 0.3)

the boundary differs considerably from the linear condition in Eq. (3.17), as we

might expect.

It is likely that the exponentially decaying approximation for the tunneling

rate is an overestimation of the actual rate. In this case, a more appropriate model

may be to assume that the tunneling rate has a Gaussian (rather than exponential)

decay with distance. Such an alternative tight binding model is of the form,

∑
n′ 6=n

e−σ|n−n
′|2un′ + V cos(2παn+ δ)un = Eun, (3.36)

where σ describes the decay rate. Given the results on the t1− t2 model, we expect

that this model will still display energy-dependent mobility edges for large enough

σ. Also, in some cases, the heuristic we applied in the t1 − t2 model will also give a

qualitative prediction for the mobility edges. To determine this heuristic based on

the condition given in Eq. (3.17), we estimate p from the ratio t2/t1, which yields

p = 3σ. To examine how well the heuristic works on the Gaussian decaying hopping

model, we again look at the IPR for different values of σ. The IPR results for this

model are given in Fig. 3.14 (again, α = (
√

5 − 1)/2 and t1 = 1). In this figure,

we see that the approximate boundary is in good qualitative agreement with the

numerical results for larger values of σ. Small values of σ (i.e. σ < 0.5), however,

do not easily fit the heuristic. Also, the mobility edges in these cases have very

interesting trends. In particular, in some cases, the lower and higher energy tails

have extended states while the states in the middle of the band are localized.

Finally we consider the case where the decay in the tunneling rate is relatively
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(a) r = 1/3 (b) r = 2

(c) r = 3

Figure 3.15: Inverse participation ratios and energy eigenvalues of all eigenstates
of Eq. (3.37) with 2000 lattice sites and α = (

√
5 − 1)/2 for various values of r.

The solid curves represent the approximate boundary between spatially localized
and spatially extended states.
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slow (i.e. a power low) compared to the exponential model. For power law decay in

the hopping terms, we examine the model:

∑
n′ 6=n

t
un′

|n− n′|r + V cos(2παn+ δ) = Eun. (3.37)

In this case, the exponential coefficient, p for our heuristic prediction is given by

p = r ln(2). Fig 3.15 gives IPR results for this model with α = (
√

5 − 1)/2 and

r = 1/3 (Fig 3.15(a)), r = 2 (Fig 3.15(b)), and r = 3 (Fig 3.15(c)). In each of these

cases, the approximate localization boundary is in good qualitative agreement with

the numerical results.

From the numerical results above, we see that, in general, extensions of the AA

model that include hopping terms beyond the nn coupling predict energy dependent

mobility edges. However, the difference between the models and how the mobility

edges emerge is intriguing and deserves further discussion. Suppose that there is a

functional form for the critical potential strength at which an eigenstate at energy

E localizes and that it is a function of E, say Vc(E). Then for the exponentially

decaying hopping model, this function is known (i.e. Eq. (3.17)) and varies linearly

with E. In the case of the power law decay in tunneling rate, it appears that Vc(E)

is monotonically increasing with positive curvature (d2Vc/dE
2 ≤ 0). For Gaussian

decay in tunneling rate, Vc(E) appears to have negative curvature and is not one-to-

one in some cases (i.e the inverse is multi-valued). Thus it appears that the speed

with which tunneling decays with distance in the quasi-disordered tight binding

models affects the curvature of Vc(E) with our solvable model being the case where

the curvature of Vc(E) is flat (i.e. linear). Further study is necessary, however, to

59



verify the nature of Vc(E) with respect to tn and the type of quasi-disorder.
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Chapter 4

Topological Quasi-Crystals: Chern Numbers in the

Harper/Aubry-André Model

In chapter 2, we showed that the Aubry-André model is a special case of the

Harper model which describes an electron in a 2D periodic potential in the presence

of a perpendicular magnetic field. This mapping from 2D to an effective 1D problem

has been known for quite some time [102], but some of the topological aspects of

this mapping have only recently been discussed. In a recent publication, Kraus et

al.[98] showed that through adiabatic change of the phase shift, φ (which we largely

ignored in our localization studies), topological edge states that traverse the bulk

gaps can be seen in the spectrum. Furthermore, the Aubry-André model (where α in

the Harper model is irrational) is a special case where an unambiguous topological

index can be assigned for all values of φ. In this chapter, we will briefly review the

arguments by Kraus et al. and study the topological index (i.e. the Chern number)

with respect to random disorder[112].

4.1 Background

Recall that in the derivation of the 1D Harper model in Eq. (2.9), the phase

shift in the onsite harmonic potential, φ, is proportional to the quasi-momentum

in the cyclic dimension ky of the original 2D tight binding model. Thus, we can
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say that the phase shift is an “extra-dimensional” degree of freedom that retains

information from the higher dimensional (2D) model. The interesting observation

made in Ref. [98] is that topological features of the 2D system (in particular, the

Chern number) can be teased out from the 1D system by varying φ. To demonstrate

this, we numerically solve (2.1) for α = (
√

5 + 1)/2 (the golden mean) with varying

φ and fixed boundary conditions. The resulting spectrum is shown in Fig. 4.1. In

the eigenspectrum, we see states that traverse the bulk gaps as a function of φ.

These states are localized on the edges of the system and are topological in nature.

In particular, they signify that the bands from the 2D ancestor model have non-

trivial Chern numbers. The existence of topological edge states is not contingent on

irrational α, however. Such states will present themselves for any α associated with

a 2D ancestor with non-trivial Chern number (e.g. α = 1/3) . What makes the

irrational case special is that a topological index can be associated with the system

regardless of φ. We outline the argument below. For full details, see Ref. [98].

In Ref. [58], Avron et al. showed that the Chern number of a 2D band of single-

particle states (or alternatively, a many-body state of electrons that fill a band)

can be obtained by introducing twisted boundary conditions (i.e. Ψ(x + Lx, y) =

exp(iθ)Ψ(x, y) and Ψ(x, y+Ly) = exp(iφ)Ψ(x, y)). The twisted boundary conditions

are equivalent to threading magnetic flux through the rings of a torus. Similar

boundary conditions can be imposed on the Harper model in order to obtain the

Chern number of the 2D ancestor. Consider the following altered version of the

62



0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

φ/π

E
/t

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

|ψ
|

n

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

|ψ
|

n

a) b)

c)

Figure 4.1: a) The eigenspectrum of the AA model with fixed boundary conditions
as a function of φ with N = 99 and α = (

√
5 + 1)/2. States that cross the bulk

band gaps are localized at the edge of system. Examples are shown in b) and c).
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Harper/AA model with periodic boundary conditions:

Eun = teiθ/Nun+1 + te−iθ/Nun−1 + λ cos(2παn+ φ)un. (4.1)

where N is the system size. The additional phase terms, exp(iθ/N), on the hopping

coefficients threads θ/2π flux quanta through the ring and is equivalent to imposing

a twisted boundary condition along the x-axis in the 2D ancestor model (i.e. Ψ(x+

L, y) = exp(iθ)Ψ(x, y) for L = Na). Similarly, fixing φ is equivalent to imposing

a twisted boundary condition along the y-axis (i.e. Ψ(x, y + L) = exp(iφ)Ψ(x, y)

for φ = kyL). Thus, following TKNN, Avron, and others [11, 58, 59], the Chern

number of the 2D ancestor model can be found from the following integral:

ν =
1

2πi

∫
dθdφC(θ, φ), (4.2)

where C(θ, φ) is the “Chern density” given by

C(θ, φ) = Tr

(
P (θ, φ)

[
∂P

∂θ
,
∂P

∂φ

])
. (4.3)

The projection operator, P (θ, φ), is given by

P (θ, φ) =
∑

Em<Egap

|ψm(θ, φ)〉 〈ψm(θ, φ)|, (4.4)

where |ψm(θ, φ)〉 is an eigenstate of Eq. (4.1) with eigenvalue Em and Egap is the

energy at the center of a gap.

Following Kraus et al.[98], we examine the dependence of the Chern density

with respect to θ and φ. From Eq. (4.1), we see that the effect of θ is suppressed

by 1/N , so we expect that in the thermodynamic limit, (i.e. N → ∞), the Chern

density becomes constant with respect to θ. For irrational α, Kraus et al. argues
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that in the thermodynamic limit, for any phase shift φε = 2πm/N for integer m,

there exist an integer nε independent of φ such that the shift in phase φ → φ + φε

is equivalent to a translation of the lattice sites n → n + nε. Spatial translations

in the lattice do no affect the spectrum (i.e. close energy gaps). Therefore, given

the correspondence between shifts in φ and translations, changing φ has no physical

consequences (although the wavefunctions may change, the spectrum will not). Thus

it can be argued that ∂H/∂φ is independent of φ in the thermodynamic limit and,

therefore, the Chern density is a constant in θ and φ. So for constant Chern density,

2πC/i is an integer. As a result, this integer can be associated to the 1D AA

equation for arbitrary φ in the thermodynamic limit when α is irrational.

4.2 Chern number in the Harper/Aubry-André Model without dis-

order

We now examine the topological aspects of the Harper/AA model by numeri-

cally calculating the Chern number and the Chern density for the altered Harper/AA

model with varying φ and θ. Results on the Chern number for α = 1/3 are shown in

Fig. 4.2 for λ = 1 and λ = 6. Also shown is the density of states. In the figures, we

see that in the areas where the Fermi energy is within an energy band, the Chern

number is not an integer. This is indicative of level crossings as a function of θ

and/or φ where, strictly speaking, the Chern number is not well defined. However,

changes in ν within a band can be thought of as an indicator of “current-carrying”

states. Between integer values within the energy band gaps, the Chern number
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varies monotonically for both λ = 1 and λ = 6. This differs from the case with

α = (
√

5 + 1)/2 (the AA model), which is shown in Fig. 4.3. In this case, we see

peaks in the lower and upper band of the spectrum, possibly indicating the presence

of “sub-bands” with non-trivial topology. But these peaks are not integer valued.

This suggests that these “sub-bands” are not fully formed in the sense that they

do not form a complete subspace in which the Chern number is well defined. This

is similar to earlier results reported on the Hall conductivity in 2D systems with

anomalous band structure[113].

The main difference between rational and irrational values for α (i.e. the

Harper and AA models respectively), can be made evident by examining the Chern

density as a function of φ. According to Kraus et al., for irrational α, the Chern

density becomes independent of φ in the thermodynamic limit. To examine this

argument we calculate the Chern density and integrate over θ. In particular, we

calculate

C̄(φ) = −i
∫
dθC(θ, φ). (4.5)

For C constant, C̄ is an integer (i.e. C̄ = 2πC/i). Calculations for C̄(φ) are given in

Fig. 4.4 with N = 105. In the case of α = 1/3, we see that C̄ oscillates as a function

of φ with relatively large amplitude. In contrast, in the case of α = (
√

5 + 1)/2

the variation is relatively small which is consistent with Kraus et al.. In both

cases, however, the amplitude appears to increase with λ. At least in the case of

α = (
√

5 + 1)/2, we suspect that the non-zero amplitude in C̄(φ) to be a finite size

effect given Kraus et al. arguments but it seems this effect is dependent on λ. To
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Figure 4.2: The Chern number as a function of the Fermi energy with α = 1/3,
N = 105 for a) λ = 1 and b) λ = 6. The respective density of states are given in c)
and d).
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examine this further and to verify that the amplitude does approach zero in the

thermodynamic limit, we calculate the Chern density for several different system

sizes and estimate the amplitude by calculating the statistical standard deviation

of C̄(φ) over the discretized grid of points in φ that are used in the numerics. We

denote this estimate as σ(C̄). The result of this is shown in Fig. 4.5(a) for λ = 1, 2,

4, and 6 as a function of 1/N . The data shown in the figure are obtained for system

sizes N = 21−100. In the figure, we see that the the amplitude of the Chern density

fluctuates for different system sizes, but tends towards zero with 1/N as expected.

Despite the fluctuations, the overall trend in the amplitude with 1/N appears linear,

so we have fitted the results to a simple linear relation with the y-intercept fixed at

zero. The results are shown by the dashed lines. The slopes of these fits are plotted

against λ in Fig. 4.5(b). Here we see that the slopes appear to increase linearly

with λ. It would be interesting to verify this result with a larger set of values for λ.

This verification we leave for future work.

4.3 Chern number in the disordered Harper/AA model

We now introduce random disorder into the Harper/AA model and examine

how robust the Chern number is with respect to disorder. In particular, we now

study the model

Eun = teiθ/Nun+1 + te−iθ/Nun−1 + (λ cos(2παn+ φ) + vn)un, (4.6)

where vn is random disorder uniformly distributed from [−v/2, v/2]. To study this

model, we can apply Eqs. (4.2) and (4.3) and average the results over several differ-
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ent realizations of vn to obtain an ensemble average, but this is a numerically cumber-

some task. An alternative approach is to take advantage of the “non-commutative”

Chern number introduced by Bellissard et al. [99] to study disorder in the IQHE.

In this approach, the formalism of non-commutative geometry is applied to gener-

alize the definition of the Chern number for disordered systems without the use of

twist angles. We will now very briefly summarize this approach. For full details

the interested reader is encouraged to examine the report by Bellissard et al. in

Ref. [99]. Also details on how to implement this approach numerically for various

systems beyond IQHE is described in Ref. [114], which we will mostly follow here.

To very briefly summarize the non-commutative approach, first consider the

2D case with no disorder where the crystal momentum, k, is well-defined. In this

case the Chern number can be obtained by integrating the Chern density over the

first Brillouin zone,

ν =
1

2πi

∫
dk2Tr

(
Pk(kx, ky)

[
∂Pk
∂kx

,
∂Pk
∂ky

])
, (4.7)

where the projection operator, Pk is defined in the same way as Eq. (4.4), but is now

considered a function k instead of the twist angles. To generalize the Chern number

for disordered systems where the crystal momentum is no longer a good quantum

number, we first note that the partial derivative of an operator with respect to k

can be written as a commutator: ∂kiA = −i[xi, A] where x is the position operator.

This commutator is well-defined even in the case of disorder where k is no longer

a good quantum number. Next, we note that for certain operators, A(k), in the

unperturbed Hilbert space, there are a family of operators, Aω associated with
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disorder configurations ω ∈ Ω such that in the thermodynamic limit

1

(2π)2

∫
d2kTr[A(k)] = lim

N→∞

1

N2

∫
dP (ω)Tr[Aω], (4.8)

where dP (ω) is the probability measure for the disorder configuration, ω. These

observations allow for the construction of a so-called “non-commutative Brillouin

zone” where a Chern number can be defined and is given by

ν = lim
N→∞

2πi

N2

∫
dP (ω)Tr [Pω[−i[x, Pω],−i[y, Pω]]]., (4.9)

where Pω is the projection operator in the disordered configuration, ω. For a more

through discussion of the non-commutative Chern number, see [99] and [114].

We now seek to apply this idea to the disordered Harper/AA model. A

straightforward extension of Eq. (4.9) to our 1D disordered problem is to con-

sider a “hybrid” space consisting of the 1D disordered configuration, ω, and the

extra-dimensional parameter φ. The hybrid expression for the Chern number is

given by

ν =
i

N

∫
dP (ω)dφTr

[
Pφ,ω

[
−i [x, Pφ,ω] ,

∂Pφ,ω
∂φ

]]
. (4.10)

An example of Eq. (4.10) in use is given in figure 4.6 for the case with α = 1/3,

λ = 1, and disorder strength v = 0.6. Fig. 4.6(a) shows the “raw” Chern numbers

as a function of energy for 100 different random configurations. Fig. 4.6(b) shows

the average Chern number as function of the Fermi energy. Note that this result

only differs qualitatively with the case without disorder (Fig 4.2(a)) by a sign. The

similarity suggests that Eq. (4.10) behaves as we expect.

In Fig. 4.7, we show the effect of disorder on ν in the case of α = (
√

5 + 1)/2

with λ = 1. For small disorder (i.e. v = 0.1) ν is qualitatively similar to the results
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Figure 4.6: Chern number, ν, for disordered Harper model using Eq. (4.10) for
α = 1/3, λ = 1, v = 0.6, and N = 99. a) “Raw” values of ν for 100 different
realizations of the disordered potential as a function of energy and b) the average
values for ν as function of the Fermi energy.

in Fig. 4.3(a). For intermediate disorder (i.e. v = 0.1), the peaks are suppressed,

but ν does reach integer values in the band gaps. In strong disorder, ν varies

weakly with energy but never reaches integer values other than zero. In this case,

the bands have almost completely mixed due to the disorder (Fig. 4.7(d)). As a

result, the contributions to ν from states in different bands cancel each other out.

Thus qualitatively speaking, the topological Chern number is robust to the presence

of random disorder provided the disorder strength is weaker than the band gap.

Only for disorder stronger than the original band gap are the topological features

destroyed.

To get a sense of how the Chern number varies with both λ and v, we calculate

ν for the first band gap which we determine from the spectrum of the non-disordered

model for each value of λ under investigation. The result for α = 1/3 is shown in
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Figure 4.7: a) Chern number, ν, for disordered AA model using Eq. (4.10) for
α = (

√
5 + 1)/2, λ = 1, and N = 99 at different values for the disorder strength, v.

The density of states are given for v = b) 0.1, c) 1.6, d) 4.1.

Fig. 4.8(a) with N = 84. For comparison, we also provide the band-gap as a

function of v and λ in Fig. 4.8(b). From the figure, we see that ν remains near the

integer value, 1, for v . 2. This boundary appears to be insensitive to λ and does

not correlate with any equipotentials in the band gap. However, the λ− v contour

for ν ∼ 0.5 does, qualitatively, appear to vary linearly with λ and correlates with

the E ∼ 0 equipotential in the plot for the band gap. The case for α = (
√

5 + 1)/2

gives similar results and is shown in Fig. 4.9. Here we see also that ν ∼ −1 for

v . 2 and the ν ∼ −0.5 contour increases monotonically with λ. But in this case,

the band gap equipotentials appear to vary with the root of λ in contrast to the

previous case.

We now examine the effect of random disorder on the Chern density and how it
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varies with the angle φ. In the context of Eq. 4.10, we define C̄(φ) in the disordered

case as

C̄(φ) =
2πi

N

∫
dP (ω)Tr

[
Pφ,ω

[
−i [x, Pφ,ω] ,

∂Pφ,ω
∂φ

]]
. (4.11)

For C̄ independent of φ, C̄ = ν. Similar to what was done in the case of no disorder,

we diagonalize the system for different values of N and estimate the amplitude of

C̄(φ) by calculating the standard deviation over the mesh of points used in the

numerics. Again, we denote this result by σ(C̄). The results of this calculation

are given if Fig. 4.10 as a function of 1/N for λ = 1, and N = 21 − 100. In the

case of α = 1/3 (Fig 4.10(a)), σ(C̄) increases somewhat with N with low disorder

(i.e. v = 0.1, 1.36). In the highly disordered case (v = 6), σ(C̄) decreases with

N and is likely zero in the thermodynamic limit. This corresponds to the case

where the bands have completely mixed and the total Chern number is zero. For

α = (
√

5 + 1)/2, we see that σ(C̄) decreases with N in small (v = 0.1, 1.36) and

large disorder (v = 6), but increases with N with “intermediate” disorder. This

may be indicative of some kind of “phase” transition. It is interesting to see that

for α irrational, σ(C̄) behaves similarly for small and large disorder. The case of

λ = 6 is shown in fig. 4.11. Here, σ(C̄) is constant or slightly increasing with N for

α = 1/3 and decreasing with N for α = (
√

5 + 1)/2 in all cases shown.

To summarize the effect of disorder on the Chern density, we perform a linear

fit on σ(C̄) and examine how the fitting parameters vary with v. In particular, we

estimate the parameters c1 and c2 such that σ(C̄) ∼ c1/N + c2. The result of this

is shown if Fig. 4.12. For λ = 1, c1 (Fig. 4.12(a)) is initially negative for α = 1/3
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and positive for α = (
√

5 + 1)/2 as was seen in the case of no disorder. As v is

increased however, c1 decreases for α = (
√

5+1)/2 and eventually becomes negative

near v ∼ 2. This is the transition that was observed in Fig. 4.10(b). After this

transition, the value of c1 for α = (
√

5 + 1)/2 takes on similar values to those with

α = 1/3, which both begin to increase for v & 3. Similar trends are seen for the

intercept in Fig. 4.12(b). Here c2 is relatively large initially for α = 1/3 then begins

to decrease. c2 for α = (
√

5 + 1)/2 has the opposite trend initially until v ∼ 3 where

the two cases both begin to decrease in v while giving very similar values for c2.

These results seem to suggest that the two systems transition to similar states near

v ∼ 3. Thus it could be argued that the there is no longer any distinction between

rational and irrational α at this point. But it should be noted that ν is non-zero at

this transition point for both cases (|ν| ∼ 0.5), so we can not say that the disorder

has completely suppressed the contributions from the extra-dimensional parameter.

Figs. 4.12(c) and (d), show the case for λ = 6 where there does not appear to be

a transition point where the two cases merge in the disorder strengths shown, but

we expect from the trends in the figures and from the results of λ = 1, that such a

point exists for some v > 6.

4.4 Conclusions

In summary, we have examined topological aspects of the Harper and AA mod-

els with and without random disorder through numerical calculations of the Chern

number. Our calculations support the argument that the case of irrational α (i.e.
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Figure 4.12: Results on the linear fitting parameters c1, and c2 where σ(C̄)) ∼
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a quasi-crystal) has topological properties that are distinct from the rational case

(i.e. normal crystal). In particular, we have shown that the variations in the Chern

density decreases with increasing system size, suggesting that it is constant in the

thermodynamic limit. We have also shown through the use of the non-commutative

Chern number, that this distinction can be destroyed by the introduction of dis-

order. There results are not surprising since we might expect that disorder will

eventually overshadow the lattice, leading to the two cases to look identical.
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Chapter 5

Landau Levels in the Quantum Hall Effect

In this chapter, we briefly review some of the main results on Landau levels

and their single particle eigenstates. Many of these results are used in subsequent

chapters to study the quantum Hall effect. More through derivations can be found

in Refs. [54, 55, 56].

5.1 Planar Geometry

A single non-relativistic electron with mass m and electric charge q = −e

confined to two dimensions and in the presence of a uniform perpendicular magnetic

field is described by the time independent Schrodinger equation, HΨ = EΨ where

the Hamiltonian, H, is given by

H =
1

2m

(
p +

eA

c

)2

, (5.1)

p = −i~∇ is the canonical momentum, and A is the vector potential which is

related to the magnetic field by ∇×A = Bẑ. The Hamiltonian is gauge invariant,

so we are free to choose a convenient gauge to solve Eq. (5.1). For now, we use

the Landau gauge where A = (0, Bx, 0). With this choice of vector potential, the

Hamiltonian becomes

H =
p2
x

2m
+

1

2m

(
py +

eBx

c

)
. (5.2)
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There is no dependence on y, so py = ~ky is a good quantum number. As a result,

the problem maps to that of a simple harmonic oscillator. Defining the magnetic

length, ` =
√
~c/eB, and the cyclotron frequency, ωc = eB/mc, we have for the

Hamiltonian:

H =
p2
x

2m
+

1

2
mω2

c

(
x+ `2ky

)
. (5.3)

This is a simple harmonic oscillator with shifted center about x0 = `2ky. Thus,

the energy eigenvalues are the same as those in the harmonic oscillator: En =

~ωc(n+ 1/2) where n is a non-negative integer. The eigenstates are plane waves in

the y dimension, and harmonic oscillator wavefunctions in the x dimension. The

(unnormalized) eigenstate, for quantum numbers, ky and n, is given by

Ψ(x, y) = eikyye−
1
2(x

`
+`ky)

2

Hn

(x
`

+ `ky

)
, (5.4)

where Hn are the Hermite polynomials. The degeneracy per unit area (ignoring

spin) is given by G = 1/(2π`2) = B/φ0, where φ0 = hc/e is the magnetic flux

quantum.

In some cases, it is more convenient to work in the symmetric gauge where

A = B(−y/2, x/2, 0). In this gauge, the Hamiltonian is given by

H =
1

2m

(
px −

eBy

2c

)2

+
1

2m

(
px −

eBy

2c

)2

(5.5)

=
1

2m

(
p2
x + p2

y

)
+
e2B2

8mc2

(
x2 + y2

)
+

eB

2mc
(xpy − ypx) (5.6)

=
1

2m

(
p2
x + p2

y

)
+

1

2

(ωc
2

)2 (
x2 + y2

)
+

eB

2mc
Lz, (5.7)

where Lz = xpy − ypx is the z-component of the orbital angular momentum. This

Hamiltonian describes two decoupled harmonic oscillators with an additional term
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that couples to angular momentum. The Hamiltonian commutes with Lz, so H and

Lz can be diagonalized simultaneously. In terms of the ladder operators, ai, a
†
i , the

Hamiltonian becomes

H = ~
ωc
2

(
a†xax + a†yay + 1

)
+ i~

(
axa

†
y − a†xay

)
(5.8)

where the ladder operators are given by

ax =

√
mωc
2~

(
x+

i

mωc
px

)
(5.9)

a†x =

√
mωc
2~

(
x− i

mωc
px

)
. (5.10)

Similarly for ay. A more convenient form for the Hamiltonian comes from making

the following canonical transformation:

a =
ax − iay√

2
(5.11)

b =
ax + iay√

2
. (5.12)

The resulting commutation relations are [a, a†] = 1, [b, b†] = 1 with all other combi-

nations resulting in zero. Then the Hamiltonian and Lz are now written as

H = ~ωc
(
a†a+

1

2

)
(5.13)

Lz = −~
(
b†b− a†a

)
. (5.14)

If we denote the eigenstates by |n,m〉 where Lz |n,m〉 = −m~ |n,m〉 and H |n,m〉 =

En |n,m〉 and noting that the eigenvalues of the number operators (i.e. Na = a†a,

Nb = b†b must be non-negative), then the eigenvalue, m, takes on integer values

between −n to ∞. This implies that the operation of b† increases m by one while
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a† increases n by one and decreases m by one. Thus the eigenstates are given by

|n,m〉 =
(b†)m+n√
(m+ n)!

(a†)n√
n!
|0, 0〉 . (5.15)

To determine 〈r|n,m〉, we solve the equation a |0, 0〉 = b |0, 0〉 = 0 where the ladder

operators can be written in terms of z = x− iy and z̄ = x+ iy,

b =
1√
2

(
z̄

2`
+ 2`

∂

∂z

)
, (5.16)

b† =
1√
2

(
z

2`
− 2`

∂

∂z̄

)
, (5.17)

a† =
1√
2

(
z̄

2`
− 2`

∂

∂z

)
, (5.18)

b =
1√
2

(
z

2`
− 2`

∂

∂z̄

)
. (5.19)

This ultimately leads to the following wavefuntions (see [56, 115] for complete deriva-

tion)

ηn,m =
(−1)n√

2π

√
n!

2m(m+ n)!
e−

r2

4 zmLmn

(
r2

2

)
, (5.20)

where Lmn (r) are the Laguerre polynomials.

5.2 Spherical Geometry

We now examine the case of an electron confined to the surface of a sphere

with fixed radius, R that surrounds a hypothetical magnetic monopole with magnetic

charge 2Q. One of the advantages of the spherical geometry is that there are no

edges, so bulk properties are much more easily accessible in calculations. Also, each

Landau level has finite degeneracy, so it is easier to work with full or partially filled

Landau levels given a finite number of electrons. These aspects make it easier to

study FQHE states numerically in many cases[56]. In subsequent chapters, we will
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work exclusively in the spherical geometry. In this section, we give a very brief

overview of the Landau levels on the sphere. For a complete discussion, see Refs.

[116, 117].

The non-interacting Hamiltonian on the sphere surrounding a magnetic monopole

with magnetic charge, 2Q, is given by

H =
~2

2mR2
|Λ|2 , (5.21)

where

Λ = R×
(
−i∇+

e

~c
A(Ω)

)
, (5.22)

Ω = R/R, and the flux through the surface is 2 |Q|φ0 = 4πR2 |B|. For the vector

potential, it has been shown that any gauge choice will have at least one singularity

in the vector potential [118]. Also it has been shown that in order for this singularity

to not have any physical consequences, 2Q, must be an integer (for details see Refs.

[119, 120, 121]). The singularity can be removed by patching the surface of the

sphere with different over-lapping gauge choices, similar to coordinate maps on a

manifold [119, 120, 121], but this is not necessary for our purposes since the Coulomb

matrix elements are not affected by the singularity. In this section, we will use the

following gauge choice:

A =
−~cQ
eR

cot(θ). (5.23)

An angular momentum operator can be introduced by noting that the operators Λ

and Ω have the commutation relations (in Cartesian coordinates)

[Λi,Λj] = iεijk(Λk −QΩk) (5.24)

[Λi,Ωj] = iεijkΩk. (5.25)
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Thus, we can introduce the operator

L = Λ +QΩ, (5.26)

which satisfies the angular momentum algebra

[Li, Lj] = iεijkLk. (5.27)

Since Λ ·Ω = 0, then it follows that

|Λ|2 = |L−QΩ|2 = L2 −Q2. (5.28)

Thus, the Hamiltonian commutes with L and the solutions can be simultaneous

eigenstates of H, L2, and Lz. These solutions are often referred to as “monopole

harmonics” which are similar to the spherical harmonics for Q = 0 and are denoted

YQ,l,m where LzYQ,l,m = mYQ,l,m and L2YQ,l,m = l(l+ 1)YQ,l,m. The angular momen-

tum commutation relations constrain the eigenvalues, l and m, such that l must be

a non-zero integer or half integer (i.e. l = 0, 1/2, 1, 3/2, ...) and m = −l,−l + 1, ...l

(note that due to the singularities in the vector potential, m is not constrained

to only integers as is the case with Q = 0 [115]). Also Eq. (5.28) implies that

l(l+1) > Q2 which suggests l = |Q| , |Q|+1, |Q|+2 · · · . And the energy eigenvalues

are given by

EQ,l,m = ~2ωc
l(l + 1)−Q2

2 |Q| . (5.29)

In this case, the nth Landau level is associated with eigenvalue l = |Q| + n. Thus

each Landau level has a finite degeneracy, G = 2l + 1 = 2(|Q|+ n) + 1. The planar

result (i.e. En = ~ωc(n+ 1/2)) is obtained in the limit |Q| → ∞.
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The solutions for the YQ,l,m are obtained by solving the Schrödinger equation.

The solution is given below for the LLL (i.e. YQQm) without proof (details can be

found in Refs. [116, 117, 56])

YQQm =

(
2Q+ 1

4π

(
2Q

Q−m

))1/2

(−1)Q−mvQ−muQ+m, (5.30)

where v = sin(θ/2) exp(−iφ/2) and u = cos(θ/2) exp(iφ/2).

A notable difference between the spherical and the planar geometries is that the

filling fractions in the spherical geometry are only well defined in the thermodynamic

limit,

ν = lim
N→∞

N

2 |Q| . (5.31)

For finite N , there will often be a shift in the actual filling: Nφ = N/ν − χ, where

χ is an integer. The shift, χ, will depend on the state under investigation. For

example, for the Jain composite fermion wavefunctions at planar filling fraction

ν = n/(2pn + 1), the shift is given by χCF = 2p + n. This shift call also lead to

an effect called “aliasing” where a given pair (N,Nφ) can fit more than one FQHE

state describing different filling fractions[122]. For example, filling fraction ν = 2/5

is aliased with ν = 4/7 for N = 8. (Note that the case of N electrons (Ne) at filling

fraction ν is equivalent to that of N holes (Nh) at filling fraction ν ′ = 1− ν)

For FQHE states on the sphere, the uniform ground state has total angular

momentum, L = 0. Thus the ground state can be obtained in the Hilbert subspace

where the total z-component of angular momentum, Lz = 0.
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5.3 The FQHE Hamiltonian and Landau Level Projection

The FQHE Hamiltonian for an interacting two dimensional electron gas in the

presence of a perpendicular magnetic field is given by (ignoring disorder)

H =
∑
j

1

2m

(
p +

e

c
A(rj)

)2

+
e2

ε

∑
j<k

1

|rj − rk|
+ gµB · S, (5.32)

where µ is the Bohr magneton and g is the Landé g-factor. The first term is the ki-

netic energy which leads to quantized Landau levels as discussed in previous sections

in the limit of no interactions. The second term is the Coulomb interaction energy.

And the third term is the Zeeman energy that describes the coupling between the

magnetic field and the electron spin. In studying FQHE, an appropriate starting

point can be reached by considering the limit B →∞. Approaching this limit, the

Landau level splitting EL ∼ ~ωc increases linearly with B, the Zeeman splitting,

EZ ∼ gµB, also increases linearly with B, but the Coulomb energy EC ∼ e2/ε`

increases with the square root of B. Therefore in the limit of very large magnetic

fields, the splitting between Landau levels, EL and the energy to flip the spin of

an electron in a magnetic field, EZ are greater than the effective Coulomb energy.

As a result, the many-body ground state is expected to be entirely in the lowest

Landau level (LLL) (assuming ν < 1) with the spin degree of freedom effectively

frozen. Thus we can treat the problem as spinless, interacting electrons residing in

the LLL. This gives the following effective Hamiltonian:

H = PLLL
e2

ε

∑
j<k

1

|rj − rk|
PLLL, (5.33)
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where PLLL is the projection into the LLL. In the case of higher Landau levels where

ν > 2 (i.e. the LLL is filled twice with spin up and spin down electrons) we treat

the filled Landau levels as inert and assume all relevant interactions occur in the

partially filled Landau level.

Of course, real 2DEG’s in experimentally relevant conditions are much more

complicated. This is especially true for the Zeeman term. When considering the

renormalized mass and Landé factor for an electron inside the band structure of a

material (e.g. GaAs) at relevant magnetic fields, the Zeeman energy is often much

less than the Coulomb energy. Thus, FQHE states can be polarized, unpolarized, or

partially polarized depending on the filling fraction. For most FQHE fractions, the

polarization of states is well understood with the application of an altered Hund’s

rule that is applied to composite fermions rather than electrons [56]. But there are

a few cases, particularly the case of ν = 5/2, that is controversial and remains to be

settled. This case is studied in more depth in chapter 7.

5.4 Haldane Pseudopotentials

In 1983, Haldane introduce a very useful representation for the Coulomb in-

teraction between particles in the LLL[116]. In this representation, the potential is

parametrized in terms of the relative angular momentum between two particles. In

this section, we briefly review how these parameters, which are often referred to as

“Haldane pseudopotentials,” are arrived at. This discussion will largely follow Refs.

[56, 115].
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Consider the kinetic energy of two particles in a magnetic field (in the sym-

metric gauge):

H =
1

2m

(
p1 +

e

c
A(r1)

)2

+
1

2m

(
p2 +

e

c
A(r2)

)2

. (5.34)

We can transform to the relative and center of mass coordinates, Z = (z1 + z2)/2

and z = z1 − z2 (i.e. R = (r1 + r2)/2 and r = r1 − r2) and define the relative and

center of mass ladder operators

b†C =
b†1 + b†2√

2
=

1√
2

(
Z

2`C
− 2`C

∂

∂Z̄

)
, (5.35)

b†r =
b†1 − b†2√

2
=

1√
2

(
z

2`r
− 2`r

∂

∂z̄

)
, (5.36)

a†C =
a†1 + a†2√

2
=

1√
2

(
Z̄

2`C
− 2`C

∂

∂Z

)
, (5.37)

a†r =
a†1 − a†2√

2
=

1√
2

(
z̄

2`r
− 2`r

∂

∂z

)
, (5.38)

where `C = `/
√

2 and `r =
√

2`. Under this transformation, the relative and center

of mass degrees of freedom decouple. As a result, the eigenstates can be written in

terms of the total and relative angular momentum. In particular, for the LLL,

|M,m〉 =
(b†C)M(b†r)

m

√
M !m!

|0, 0〉 , (5.39)

where M is the eigenvalue for the z-component of the total angular momentum.

This leads to the following expression for the wavefunction:

ηM,m(R, r) = ηCM((R))ηrm((r)) =
(Z/`C)M√
2π`2

C2MM !

(z/`r)
m√

2π`2
r2
mm!

exp

(
−ZZ̄

4`2
C

− zz̄

4`2
r

)
.

(5.40)

In this basis, the Coulomb interaction Hamiltonian has a simple form. Assum-

ing the interaction only depends on the distance between particles, then we have for
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the interaction matrix elements

〈M ′,m′|V (|r1 − r2|) |M,m〉 = δM ′,Mδm′,m 〈m|V (r) |m〉 . (5.41)

This simple form is a result of momentum conservation. Thus the interaction Hamil-

tonian becomes

PLLLV (|r1 − r2|)PLLL =

=
∑
M,m

〈m|V (r) |m〉 |M,m〉 〈M,m|

=
∑
M,m

VmPM,m, (5.42)

where Vm = 〈m|V (r) |m〉 are the so-called Haldane pseudopotentials and PM,m is

the projection operator onto the state with total momentum M and relative angular

momentum m in the LLL. The pseudopotentials in the LLL can be determined from

the wavefunctions given in Eq. (5.40):

Vm =
e2

ε`

∫
d2r

1

r
|ηrm(r)|2 (5.43)

=
e2

2ε`

Γ(m+ 1
2
)

Γ(m+ 1)
.

The pseudopotentials provide a very useful alternative to the real space po-

tential, V (r), in describing the interaction strength that is convenient for numerical

calculations and obtaining trial wavefunctions. The particular numerical values for

the pseudopotentials has inspired various “toy” models which are easier to describe

analytically. A particularly famous example of this is the “hardcore” potential,

Ĥ
(q)
L =

q−2∑
m

∑
i<j

Pm(mij). (5.44)
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where Pm(mij) projects onto states where particles i and j have relative angular

momentum mij = m. (Note that for spinless fermions, the pseudopotentials for even

m are irrelevant due to the exclusion principle). This model effectively assumes that

Vm = 1 for m < q and zero otherwise (this is in units where e2/ε` = 1). This model

is motivated by the fact that the LLL pseudopotentials decrease considerably with

m. The exact solution for the ground state of this potential is the famous Laughlin

wavefunction at filling fraction ν = 1/q. Also, a similar 3-body model can be arrived

at that results in the MR Pfaffian [123]:

To study higher Landau levels, we note that the problem of particles in the

nth Landau level with interaction potential, V (r) can essentially be simulated in the

LLL where particles are interacting with an effective potential, Veff(r) that satisfies

〈n,m′1,m′2|V (|r1 − r2|) |n,m1,m2〉 = 〈m′1,m′2|Veff(|r1 − r2|) |m1,m2〉 . (5.45)

This argument essentially says that Landau level subspaces, at least in planar sys-

tems, are mathematically equivalent. The effective potential can be found in Fourier

space (see Ref. [115] for details) by the expression

Veff(k) =

(
Ln

(
k2

2

))2

V (k), (5.46)

where V (k) is the Fourier transform of the Coulomb interaction (i.e. 1/k in 2D in

units of e2/ε`), and Ln are the Laguerre polynomials. Thus, the psuedopotentials

for the nth Landau level are given by the integral

V (n)
m =

∫ ∞
0

dk

(
Ln

(
k2

2

))2

Lm(k2)e−k
2

. (5.47)

The Haldane pseudopotentials in the spherical geometry are similarly defined.

91



In this case, the two particle matrix element can be written as

〈Qm′1, Qm′2|V (r) |Qm1, Qm2〉 =

2Q∑
L=0

L∑
M=−L

〈Qm′1, Qm′2|LM〉VL 〈LM |Qm1, Qm2〉.

(5.48)

The spherical Haldane pseudopotentials,VL, in the LLL are given by (see Ref. [117]

for details):

VL =
e2

ε

2

R

(
4Q−2L
2Q−L

)(
4Q+2L+2
2Q+L+1

)(
4Q+2
2Q+1

)2 (5.49)

In general, the spherical pseudopotentials differ only “slightly” from the planar

pseudopotentials. In particular, Vm = VL in the thermodynamic limit. As a result,

planar pseudopentials are often used in spherical geometries.

5.5 The Quasi-2D Coulomb Potential

In all of our discussions of the quantum Hall effect in the previous sections,

we have assumed that the electrons exist in a purely 2D system. Of course, the full

3D description of a 2DEG is slightly more complicated. Although the movement

of electrons along the perpendicular axis (i.e. the z direction) is, indeed, frozen for

2DEG’s under typical experimental conditions, the quantum well the electrons re-

side in has a non-zero thickness. This finite thickness essentially smears the charge

of the electron over the extent of the quantum well. As a result, the effective inter-

action between electrons differs somewhat from the purely 2D Coulomb potential.

This deviation is often referred to as the quasi-2D potential, or the finite thickness

effect[124, 125, 126, 127].

A straight forward model of the finite thickness effect can be obtained by
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treating the quantum well in the z-dimension as an infinite square well. Then an

effective Coulomb potential can be obtained by averaging over the single particle

ground state (i.e., n(z) =
√

2/d cos(πz/d)), in the perpendicular dimension, where

d is the effective thickness of the layer. This gives for the the effective interaction

potential (given in Fourier space)

VSQ(k) =
e2

εl

1

k

∫
dz1dz2|n(z1)|2|n(z2)|2e−k|z1−z2|

=
e2l

εk

{
3kd+ 8π2

kd
− 32π4(1−e−kd)

(kd)2[(kd)2+4π2]

}
(kd)2 + 4π2

. (5.50)

There are other models that account for the finite layer thickness for different con-

finement potentials (e.g. triangular confinement as appropriate in a heterostruc-

ture) [124, 125, 126, 127], however, these models all provide similar qualitative

results [128, 129]. So for qualitative studies, the square well potential is often ad-

equate, although for precise quantitative accuracy (or for comparison with experi-

mental data) more refined quasi-2D models may be necessary..
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Chapter 6

Entanglement Measures of Quasi-2D Fractional Quantum Hall States

In Chapter 1 we discussed how the quantum Hall effect is an example of a

“topological” phase of matter where the many-body groundstates have non-trivial

topological structures. And these topological properties have consequences that can

be probed experimentally. The fractional charge of excitations, for example, has

been experimentally verified for several fractions [130, 131]. Also anyonic braiding

statistics have also claimed to have been observed for some fractions [132]. However,

these experimentally accessible properties can not, in some cases, uniquely determine

the true nature of the underlying quantum Hall state and its topology. The prime

example of this is the case of ν = 5/2. Several experimental results such as the

fractional charge of excitations [76, 80, 81, 77, 78, 79] and the observation of an

excited neutral mode [82, 83, 84] are consistent with the Moore-Read theory for

this state, but these experiments neither verify nor rule out the existence of non-

Abelian anyons. Thus for several FQHE states, particularly ν = 5/2, we must rely

on theoretical tools to probe certain aspects of their topological structures.

A particularly straightforward theoretical probe for FQHE states is calcula-

tion of the overlap integral between a numerically obtained ground state and a trial

wavefunction. This method has proven to be a very powerful tool in numerical

investigations of FQHE states. In fact, the wide acceptance of the Laughlin wave-
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function (and others) is almost entirely due to results with the overlap (e.g. an

overlap of 0.9964 for ν = 1/3 was calculated with the Laughlin wavefunction of 7

electrons [117]). However, initial results on the ν = 5/2 state showed modest overlap

with the MR Pfaffian (e.g. 0.8674 for 8 electrons [133]). But subsequent studies

have shown that this overlap can be improved by certain alterations of the interac-

tion potential. An especially interesting example of this is a study reported in Ref.

[129] which showed that when the finite thickness effect is taken into account (see

section 5.5), the overlap is near unity for some optimal value of the thickness, d, of

the 2DEG. Additionally, this “strengthening” of the overlap with d appears to be a

feature of second Landau level (SLL) states. States in the LLL show the opposite

behavior. But we must exercise caution in interpreting results on the overlap since

it is not a definitive confirmation of a trial wavefunction and it can be misleading in

some cases. An example of this involves the ν = 2/5 state that has been shown to

have a large overlap with both the Jain composite fermion wavefunction as well as

the so-called “Gaffnian” wavefunction, even though these two states have different

underlying topological orders [134, 135]. The problem here is that the extrapolation

to the thermodynamic limit from finite size overlap calculations may be non-unique

or simply unknown. Thus we seek alternative theoretical tools that would, ideally,

be able to distinguish topological order within numerically obtained groundstates.

Recently, several studies have shown that measures of entanglement within

many-body groundstates can reveal certain aspects of the underlying topological

order. One of the most common entanglement measures that is used in this regard

is the bipartite entanglement entropy. The entanglement entropy (EE), generally
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speaking, measures the extent to which degrees of freedom are entangled in a bipar-

tioned system[136] and has proven to be a very powerful tool in examining quantum

correlations in interacting many-body systems[137, 138]. Also, the EE can be used

to calculate a topological invariant known as the “topological entanglement entropy”

which is an indicator of topological order[139, 140], although the measure can be

ambiguous in some cases. An alternative to the EE, which is commonly known as

the “entanglement spectrum” (ES), directly examines the eigenvalues of the reduced

density matrix and reportedly offers more information about the underlying topol-

ogy than the EE alone. In this chapter, we examine these tools (the EE and ES)

and apply them to numerically obtained FQHE states. We do this while varying

the thickness, d, of the Coulomb interaction in the finite thickness effect in order to

tease out possible Landau level dependence in the same spirit as Ref. [129]. This

work is also provided in Ref. [141].

6.1 Entanglement Measures Overview

6.1.1 Entanglement Entropy

The entanglement entropy is defined as the the von-Neuman entropy,

SE(ρA) = Tr[ρA ln ρA] (6.1)

of the reduced density matrix ρA/B = TrB/A[|Ψ〉 〈Ψ|] for state |Ψ〉 ∈ H = HA ⊗HB

in a Fock space H that has been partitioned into two parts. The partitioning of H

can be any division of the degrees of freedom, but is often done in real space where
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the physical space is effectively divided into two equal (or almost equal) parts. In

this case, the EE is sometimes referred to as the spatial entanglement entropy. The

spatial EE has been shown to have the following form:

SE(ρ) = αL− γ + O(L−1). (6.2)

where L is the area (length) of the boundary between the two partitions. The first

term in the expression reflects the “area law”[136, 137] where the EE is expected to

scale linearly with the boundary area. The coefficient, α, is nonuniversal, but the

constant term, γ, has been shown to be a topological invariant. In particular, γ is

related to the “total quantum dimension”, D, by the relation

γ = lnD, (6.3)

where

D2 =
∑
a

d2
a, (6.4)

and da is the quantum dimension of the quasiparticle of type a. The quasiparticle

types and their respective quantum dimensions can be derived from the fusion rules

of the anyon model that describes the excitations. A good review of this topic can

be found in Ref. [24]. For Laughlin states at filling fraction ν = 1/q, D2 = q for

odd q. For the MR Pfaffian, D2 = 4q for filling fraction ν = 1/q with q even.

The topological EE in a 2D system can be obtained, generally speaking, by

dividing the medium into several partitions, calculating the EE of these partitions,

and summing them in such a way that the αL term cancels (details can be found in

Ref. [142]). This kind of partitioning, however, is not possible in FQHE states since
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the Landau level basis does not have two spatial degrees of freedom. An alternative

approach is to calculate S(ρA) at different partition sizes and system sizes to estimate

α in the thermodynamic limit. This has been attempted in Refs. [143], [144], and

[145]. Their results are consistent with the Laughlin and MR Pfaffian descriptions

for ν = 1/3 and ν = 5/2 respectively (although Ref. [144] had the interesting

conclusion that ν = 7/3 was more consistent with the k = 4 Read-Rezayi state [146]

instead of the Laughlin state) however they are not definitive since the extrapolation

process inevitably introduces numerical errors. In this chapter, we do not attempt

to calculate γ. Instead we examine the EE in finite systems with respect to the

quasi-2D thickness. This study is exploratory in the sense that we seek to learn

what can be gleaned from the EE alone about the nature of FQHE states.

6.1.2 Entanglement Spectrum

The entanglement spectrum (ES) attempts to tease out more information from

the reduced density matrix than the von-Neuman entropy alone. Consider again the

many-body non-degenerate groundstate, |Ψ〉 of the Hamiltonian, H and the reduced

density operator, ρA = TrB[|Ψ〉 〈Ψ|] for the partition H = HA ⊗HB. In Ref. [147],

Li and Haldane suppose that the reduced density matrix can be associated with a

system governed by a separate hermitian Hamiltonian, Ĥ, at finite “temperature”,

T = 1 . In other words, the reduced density matrix can be written as

ρA = e−Ĥ . (6.5)
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In this form, Li and Haldane conjecture that the Hamiltonian, Ĥ, is in the same

universality class (i.e. has the same topological structure) as the original Hamil-

tonian of the full system, H. Therefore we can study topological properties of the

original Hamiltonian through Ĥ, or by extension, the reduced density matrix. What

makes the Li-Haldane conjecture (and to a lesser extent, the topological EE) quite

remarkable is that topological aspects of H can essentially be inferred by studying

the groundstate alone. Since this conjecture was initially made in Ref. [147], several

studies have followed that support it [148, 149, 150, 151, 152, 153].

When applied to FQHE states, the structure of the entanglement spectrum

appears to follow the so-called “Haldane exclusion statistics” of FQHE states [154].

The Haldane exclusion statistics are topological properties of FQHE states that can

be thought of as a generalized version of Fermi statistics. To illustrate Haldane

statistics, consider the many-body wavefunction in the spherical geometry |Ψ〉 =

|nm1 , nm2 , nm3 , ...nmmax〉 where nmi
is the number of particles in the mi orbital, mi <

mi+1. For spinless fermions, Fermi statistics tells us that no more than one particle

can be in any single orbital (i.e. nmi
≤ 1). In the thermodynamic limit, Haldane

showed that for Laughlin states at ν = 1/q, the occupation of orbitals follow a

stronger restriction where no more than one particle is allowed within a set of q

consecutive orbitals. For example, for q = 3, |1, 0, 0, 1, 0, 0, 1, 0, 0〉 is allowed, but

|1, 0, 1, 0, 0, 0, 1, 0, 0〉 is not. The Haldane statistics are very useful in the counting

of quasihole states and is topological in origin [154]. The MR Pfaffian state follows

similar exclusion rules where a set of 4 consecutive orbitals can have no more than

2 particles.
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Figure 6.1: Graphical illustration of the partitioning of the Fock space. In the
spherical geometry, the single-particle states are states with the z-component of
angular momentum from l to −l, represented by the solid latitudinal lines. We
choose our partitions to cut the sphere in two as close to the equator as possible,
represented by the dashed lines. Thus, for Norb = 2l + 1 even, we cut the sphere
after Norb/2 (see top panel) and after (Norb + 1)/2 for Norb odd (see bottom panel).
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Figure 6.2: The entanglement spectrum of the Laughlin wavefunction with N = 7
particles in the spherical geometry with respect to

∣∣LAz ∣∣. The cut is chosen so that
NA

orb = 10. The state corresponding to the root configuration is denoted. Also the
number of states is also shown for several values of

∣∣LAz ∣∣ up to ∆L = LAz −LAz,root = 4
is shown. At ∆L = 4, the number of states (4) differs from that expected from
Haldane statistics (5).

To illustrate how Haldane statistics manifest in the entanglement spectrum,

we take the Laughlin state at ν = 1/3 in the spherical geometry, partition the sphere

in half and calculate ξi = 2 ln(|ρi|) where ρi is the i-th eigenvalue of the reduced

density matrix. In splitting the sphere, we note that in the LLL, the single particle

Lz orbitals are well localized about regularly spaced latitudinal lines on the sphere

(see Fig. 6.1). Thus we can partition the sphere into two sections by writing our

Fock space as H = HA ⊗HB with respective basis states

∣∣ψjA〉 =
∣∣∣nj−l, nj−l+1 . . . n

j

−l+NA
orb−1

〉
∈ HA (6.6)∣∣ψkB〉 =

∣∣∣nkl−NB
orb
, nkl−NB

orb+1 . . . n
k
l

〉
∈ HB (6.7)

where NA
orb +NB

orb = Norb ≡ 2l+1 is the total number of Landau level orbitals. Since
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the quantum numbers for angular momentum and particle number in each region,

LAz , L
B
z , N

A, NB, are constrained such that LAz + LBz = Lz = 0 and NA +NB = N ,

the reduced density matrix is block diagonal with LAz and NA being good quantum

numbers for the eigenstates of ρA. Therefore LAz and NA are good labels for the cor-

responding entanglement spectrum. In Fig. 6.2, we show the result for the ES with

respect to LAz of the Laughlin state with N = 7 electrons, NA
orb = 10, and NA = 4.

In the figure, we see a very sparse pattern of states. According to Li-Haldane, the

counting of these states follows Haldane statistics. To see this, we note that for

the full system, Norb = 19 and Haldane statistics tells us that the ground state

configuration is ’1001001001001001001’ with total Lz = 0. After tracing out the

degrees of freedom in the B partition, we are left with a hemisphere that has an

edge. Thus, in this reduced geometry, we can expect to see edge excitations about

the partitioned ground state, ’1001001001’, with
∣∣LAz ∣∣ = 9 + 6 + 3 + 0 = 18. This is

the “root configuration” and has the maximal value for
∣∣LAz ∣∣ and corresponds to the

state seen in Fig. 6.2 at
∣∣LAz,root

∣∣ = 18. We can determine the edge excitations by

adding orbitals to the root configuration and determining the possible states that

satisfy the Haldane statistics. The first excitation, for example, is ’10010010001’

(move the last electron one orbital to the left) with
∣∣LAz ∣∣ = 9 + 6 + 3 + −1 = 17

so ∆L = LAz − LAz,root = 1. There is only one state possible with ∆L = 1, so

we see only one state in the ES at LAz = 19. For ∆L = 2 we have two possi-

bilities, ’100100100001’ and ’100100010010’. For ∆L = 3, we have 3 possibilities:

’1000100100100’, ’1001000100010’, and ’1001001000001’. This counting rule breaks

down at ∆L = 4 (we should expect 5 states instead of 4). This breakdown is due
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Figure 6.3: The entanglement spectrum of the ν = 1/3 filled FQHE state with
N = 7 particles in the spherical geometry with respect to

∣∣LAz ∣∣. The cut is chosen
so that NA

orb = 10. The lowest “energy” states that match the counting in the ES
of the Laughlin wavefunction are marked in red.

to the finite extent of the original system since the counting rule persists longer in

larger systems[147], so it is expected to be true in the thermodynamic limit.

When we examine the ES of a FQHE state (i.e. ground state of the LLL

projected Coulomb potential), the spectrum is more complicated. The ES of the

ν = 1/3 state is shown in Fig. 6.3 for N = 7, NA
orb = 10 and d = 0. In this case,

we see a great deal more states than what is seen in the ES of the Laughlin state.

However, for ∆L small, there appears to be low “energy” states that are separated

from a band of higher energy states by a gap. Li and Haldane conjecture that these

low-lying states are topological and are the same as those that we discussed when
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examining the Laughlin state. The higher energy states, however, are generic. Li

and Haldane also conjecture that as long as there is an appreciable gap between the

low-lying topological states and these generic states, the FQHE state can be said to

have the same topology as the Laughlin state. Thus, the size of these gaps in the ES

(also called the entanglement gaps) can be thought of as a quantitative measure of

how well the ν = 1/3 state fits the Haldane statistics governing the Laughlin state.

The closing of these gaps for larger ∆L is conjectured to be due to the finite size

of the system. To distinguish the two kinds of states, we call the states that are

consistent with the Haldane statistics (and/or with the counting seen in a model

wavefunction) “topological” states (these states are also sometimes called “CFT”

states since they are consistent with the “conformal field theory” description of the

state).

6.1.3 The Conformal Limit

One of the limitations of the ES that is apparent in Fig. 6.3 is that there is

not a “full” gap in the spectrum. The entanglement gaps can only be interpreted as

a function of LAz and, according to Li and Haldane, only the gaps for small values

of ∆L have meaning. Thus in general, the ES can only be interpreted if there is a

good quantum number in which to interpret the ES and only a portion of the ES has

meaning. It has recently been suggested however, that some of the finite size effects

can be corrected for, allowing for a full use of the entire ES [155]. This correction,

which has been introduced as the “conformal limit”, applies specifically to the ES
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of states on the sphere. This limit is obtained by expressing the ground state in

terms of a special choice of unnormalized basis states. The normalized single particle

wavefunction on a sphere in the LLL with angular momentum m is given by Eq.

(5.30). In the conformal limit, we “unnormalize” the single particle wavefunctions

by removing the prefactor in Eq. (5.30) such that the wavefunctions take the simple

form Ψ′(u, v) = ul+mvl−m. This procedure is an attempt at removing the finite

size effects inherent in these calculations by basically removing the “length” in the

problem. With the ground state redefined in this new basis, the entanglement

spectrum is calculated in the usual way. Examples of this are given in section 6.2.4.

6.2 Numerical Results for Quasi-2D FQHE States

6.2.1 Method

In this study, we consider the FQH ground states at the Laughlin filling frac-

tions ν = 1/3 and ν = 7/3 with particle number N = 6, 7, and 8 and the even-

denominator filling fractions ν = 1/2 and ν = 5/2 with particle number N = 8

and N = 10. We restrict ourselves to these relatively modest system sizes in order

to investigate a large number of FQH ground states for various values of the finite

thickness d/` with reasonable computing resources. Although the Hilbert space for

particle number N = 12 at the half fillings is not prohibitively large, this system is

also aliased with ν = 2/3 and could, therefore, yield ambiguous results. Since we are

largely concerned with the qualitative features of the finite-thickness effect, these

system sizes are adequate. We diagonalize the FQH Hamiltonians (one for each d/`
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and LL index n) in the spherical geometry[116] where N electrons are confined to

the surface of a sphere. Although we use this geometry, we use the pseudopoten-

tials obtained from the infinite planar geometry (Eq.(5.47)) since the finite layer

thickness effect is more conveniently modeled in this case. Furthermore, the pseu-

dopotentials in the spherical geometry equal those in the planar geometry as the

thermodynamic limit is approached (as the spherical radius is taken to infinity) and

it can be argued that they provide a better approximation to the thermodynamic

limit (this is discussed in detail in Ref. [129] and in section 6.2.6). To model the

finite thickness effect, we use the Coulomb potential derived from the infinite square

well potential (Eq. (5.50)).

We calculate the entanglement entropy (EE) and the entanglement spectrum

(ES) of FQH ground states by dividing the sphere into two regions as given in Eqs.

(6.7) and (6.7). For all cases we choose our partitions when dividing our Fock space

H into HA and HB such that for the number of single particle orbitals Norb = 2l+ 1

even, NA
orb = NB

orb = Norb/2 and for Norb odd, NA
orb = NB

orb + 1 = (Norb + 1)/2.

Geometrically this is equivalent to dividing the sphere along a line of latitude (see

Fig. 6.1).

6.2.2 Entanglement Entropy

We now report numerical results for the entanglement entropy (EE) of quasi-

2D FQH ground states as a function of the finite layer thickness d/` for FQH states

in the LLL (ν = 1/3 and 1/2) and the SLL (ν = 2 + 1/3 = 7/3 and 2 + 1/2 = 5/2).
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Figure 6.4: Entanglement entropy SE as a function of finite layer thickness, d/`
for Laughlin filling fractions ν = 1/3 and ν = 7/3 for particle number N = 6, 7
and 8. The dashed and dotted lines in the left panels correspond to the Coulomb
Hamiltonian of a quasi-2D system in the LLL and SLL, respectively, while the solid
lines in the left panels corresponds to the finite size Laughlin states. The plots in
the right panels give one minus the percentage difference in the Coulomb EE and
the model state EE, i.e., 1− |∆SE|/SE,model in the LLL (dash-dotted line) and the
SLL (dotted line) and are found to be similar qualitatively and quantitatively to
overlap calculations [156, 127, 128, 129].

As mentioned above we choose the partition to be as close to the equator of the

sphere as possible to minimize finite size effects.

The results for EE for the Coulomb ground state at filling fractions ν = 1/3

and ν = 7/3 are shown in Fig. 6.4 as a function of finite layer thickness d/`. For

comparison, the EE of the corresponding Laughlin model wavefunction is also shown

as a d/` independent horizontal line. In each of the figures, we see that in the LLL,

the EE is near that of the Laughlin model wavefunction at d = 0 and rises slightly

as a function of d/`. In contrast, the EE in the SLL is large compared to that of the
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Figure 6.5: (Color online) Entanglement entropy SE as a function of finite layer
thickness, d/` for even-denominator filling fractions ν = 1/2 and ν = 5/2 for N = 8
and 10. Similar to Fig. 6.4 the plots in the right panels give one minus the percentage
difference between SE and SE,model.

Laughlin model at d = 0, but decreases as a function of d/` and evidently reaches

an asymptotic value. The qualitative behavior is independent of system size. If

we consider ∆SE = SE − SE,model for both the LLL and SLL filling fractions and

speculate that ∆SE is a qualitative measure of how far removed the ground state

is from the Laughlin model state, then we see that the LL dependence of ∆SE as

a function of d/` behaves qualitatively similar to that of the overlap between the

ground state and the model wavefunction as reported in Ref. [156, 127, 128, 129]. In

particular, the ground state in the LLL is a “strong” FQHE state (i.e., ∆SE is small)

at d = 0 and gradually becomes “weaker” for increasing d/` (albeit only slightly),

whereas in the SLL, the ground state is initially weak at d = 0 but gets stronger with

increasing d/` (i.e., ∆SE decreases). Thus, the EE for these cases qualitatively and

semi-quantitatively captures how well the states are “Laughlin-like” as a function
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of d/` in similar manner to the overlap.

Our operational definition of “weak” and “strong” depends on how close the

EE of the Coulomb state is to the model state which, in this case, is the Laugh-

lin state. In the SLL, SE becomes closer to the SE for the Laughlin state but, as

mentioned above, appears to saturate at some asymptotic value that is still nearly

∼ 1.1SE,Laughlin. In contrast, the EE in the LLL is almost identical to that of the

Laughlin state. We conjecture as to the reason for this difference between the EE in

the SLL Coulomb ground state compared to the Laughlin state and the difference

between the EE in the LLL as compared to the SLL: (i) it is possible that the FQHE

at 7/3 is not described by the Laughlin state and is instead described by a state in a

different topological universality class such as those given by Read and Rezayi [146]

and Bonderson and Slingerland [157], (ii) perhaps composite fermion interactions,

which are thought [158] to be more relevant in higher LLs, are producing this dif-

ference in SE and the Laughlin state, (iii) perhaps the 7/3 FQHE state is in fact

a Laughlin state but our model system is leaving out realistic effects such as LL

mixing which are crucial to its success.

Fig. 6.5 gives results for the EE of FQH ground states with even denominator

filling fractions ν = 1/2 and 5/2 as a function of finite layer thickness d/`. Also

shown in the figure is the EE of the Moore-Read Pfaffian state for comparison. In

the LLL (ν = 1/2), the EE has a weak minima as a function of d/`, in contrast

to the Laughlin fractions (this minimum is difficult to discern on our scale). The

location of this minima changes with N , suggesting a finite size effect, but the

qualitative behavior is similar in both cases. In the SLL (ν = 5/2), the EE has a
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very pronounced minima that approaches the EE of the MR Pfaffian model state for

N = 10 and crosses it for N = 8. This suggest that the FQH states becomes more

MR Pfaffian-like at near an optimal d/`. However, this optimal d/` also changes

with N . Similar to the Laughlin fractions, this LL dependence in EE as a function

of d/` is also qualitatively similar to that seen in the overlap between the FQH

ground states and MR Pfaffian reported in Ref. [128, 129]. These results suggest

that ν = 1/2 is not particularly well-described by the MR Pfaffian, whereas ν = 5/2

is better described by the MR Pfaffian model state at finite thickness.

We note that recently, entanglement entropy in the SLL including finite thick-

ness effects has been investigated [144, 145]. However, the previous study did

calculations using the torus geometry, in contrast to our spherical geometry, and

attempted to isolate and calculate the topological entanglement entropy. The con-

clusion of Refs. [144, 145] was that the topological entropy of the ground states of

the LLL or SLL Coulomb Hamiltonians was consistent with associated model states

(we note, however, that in Ref. [144] it was concluded that ν = 7/3 was more consis-

tent with the k = 4 Read-Rezayi state [146] instead of the Laughlin state). However,

they also included finite thickness in the form of an infinite square well potential

and, interestingly, found that there was not much difference between the EE and the

topological entropy with or without finite thickness included. We, however, clearly

see a finite thickness effect on the EE. It is possible that this difference in the two

studies (our present study and Refs.[144, 145]) is due to the different geometry used

in the calculations (sphere vs. torus) but we find this scenario unlikely since most

quantities of interest produce consistent results in the two geometries [159, 128, 129].
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Such a comparison between geometries (torus vs sphere) was shown in Ref. [160]

to give similar results for the entanglement spectra of Laughlin states, supporting

our suspicion. Also results given in Ref. [161] suggests that the the extrapolation

procedure performed in Refs. [144, 145] may have been inappropriate for the torus.

More work is clearly necessary in understanding the difference between the results in

spherical and toroidal geometries, particularly in the presence of the realistic finite

thickness effects.

Before moving on to entanglement spectra we briefly discuss how our results

compare to the previous overlap calculations done in Refs. [128, 129]. The right

panels in Figs. 6.4 and 6.5 gives one minus the percentage error in the entanglement

entropy, 1 − |∆SE|/SE,model. In Ref. [129] it is found that the overlap between the

Laughlin state and the Coulomb ground state at 1/3-filling in the LLL and SLL is

approximately ∼ 0.99 at d/` = 0 and is reduced monotonically to ∼ 0.98 at d/` = 8

in the LLL and is ∼ 0.73 at d/` = 0 and has a maximum of ∼ 0.84 for d/` ∼ 4 in the

SLL. These overlap trends are very consistent with what we have seen previously

in EE. For the 1/2-filled LLL and SLL we find [128, 129] the overlap is relatively

constant in the LLL at ∼ 0.9 and in the SLL it is ∼ 0.96 at d/` = 0 and has a

maximum value of nearly ∼ 1 at d/` ∼ 4. Again, one minus the percentage error in

the entanglement entropy tracks the behavior in the overlap to a remarkable degree.

Perhaps this is not a surprise since if the overlap 〈Ψ0|Ψmodel〉 is close to one then

the EE (which is a particular combination of |Ψ〉〈Ψ|) should also be nearly identical

to the EE of the model state Ψmodel.
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6.2.3 Entanglement Spectrum

In the previous section, we saw that the entanglement entropy SE (and in

particular, ∆SE) as a function of d/` behaves qualitatively similar to the over-

lap [128, 129]. For the half-filled case, increasing d/` makes the calculated SE closer

to the MR Pfaffian state for the SLL (ν = 5/2) in a rather dramatic way while

increasing d/` has very little effect on the SE in the LLL (ν = 1/2), i.e., using the

entanglement entropy as a measure we see that the MR Pfaffian is stabilized by

finite thickness. For the 1/3-filled case we find that increasing d/` drives SE away

from the Laughlin value in the LLL (ν = 1/3) and closer to the Laughlin value in

the SLL (ν = 7/3), however, as in the previous overlap investigations, the value of

the entanglement entropy for the 7/3 case never gets as close to the Laughlin value

as the 5/2 entanglement entropy gets to the MR Pfaffian. As discussed above, this

could be a hint that something is missing from our understanding of the physics for

the FQHE at ν = 7/3.

To gain a deeper understanding of entanglement, we now turn our attention to

the finite layer thickness dependence of the entanglement spectrum (ES), which as

discussed earlier, provides more information than the EE alone. To calculate the ES,

we partition the sphere the same as was done for the EE. We follow the convention

established by Li and Haldane[147] and restrict ourselves to the part of the ES

where the number of particles in the A partition, NA, is the same as that of the

“root” configuration for the corresponding Laughlin or Moore-Read Pfaffian model

wavefunction[162, 147] for a given partition size NA
orb. The “root” configurations
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FQH state NA
orb root config. LAz NA

Laughlin 1/3,7/3 8 ‘10010010’ 13.5 3

10 ‘1001001001’ 18 4

11 ‘10010010010’ 24 4

MR Pfaffian 1/2, 5/2 7 ‘1100110’ 16 4

9 ‘110011001’ 24.5 5

Table 6.1: Root configurations of the Laughlin (ν = 1/3, 7/3) and MR Pfaffian
(ν = 1/2, 5/2) wavefunctions for the given partition sizes, NA

orb, on the sphere.
‘10010010′, for example, means that the single-particle angular momentum l = 7.5,
l − 3 = 4.5, and l − 6 = 1.5 are all occupied with the others unoccupied. Hence,
there are NA = 3 electrons with total z-component of angular momentum LAZ =
l − 9 = 13.5 in this root configuation.

describe the occupancy of LL orbitals for MR Pfaffian and Laughlin model states

in the thermodynamic limit. Root configurations with a maximum z-component of

angular momentum, and their corresponding quantum numbers, NA and LAz , are

given in Table 6.1 for different filling fractions and partition sizes.

In order to obtain a general qualitative picture of how the ES changes as

a function of the finite layer thickness, we calculate the “entanglement gaps” in

each ES and plot it as a function of d/`. An entanglement gap[147] is defined as

the difference between the low-lying levels (i.e., those levels displaying the Haldane

statistics counting structure discussed in section 6.1.2) and the generic levels for a

given value of LAz in the spectrum. According to the Li and Haldane conjecture, the

state has a non-trivial topology if the entanglement gaps are finite in the thermo-
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Figure 6.6: Entanglement spectrum of the ν = 1/3 filled Laughlin model state
for particle number N = 6 (top panel), 7 (middle panel), and 8 (bottom panel).
The finite size cutoff used to examine the entanglements gaps is illustrated by the
vertical line.
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dynamic limit. However only the entanglement gaps at relatively “small” values of

∆L = LAz,root − LAz are relevant due to finite size effects, where LAz,root is the total

z-component of angular momentum of the root configuration. The finite number

of LL orbitals limits the number of possible “edge excitations.” Therefore only a

few levels are expected to have the same counting structure as the topological edge

modes. The “depth” (i.e., the max ∆L) at which the counting structure in the ES

is consistent with the topological edge modes is dependent on the system size, N .

We can determine a suitable cutoff for ∆L by examining when the level count-

ing in the ES of the model states deviate from the expected counting in the thermo-

dynamic limit. To illustrate this finite size cutoff, we give the ES of the Laughlin

state in Fig. 6.6. For the Laughlin state, the multiplicity of topological levels is

given by p(∆L) where p(m) is the partition function of the integer m. The first 7

values of p(m), starting with m = 0 are 1, 1, 2, 3, 5, 7, and 11. In Fig. 6.6, we see

that for N = 6 and 7, the level counting begins to deviate from p(∆L) at ∆L = 4,

and for N = 8, the deviation begins at ∆L = 5. Thus, for our study we will focus

on the entanglement gaps for ∆L = 0, 1, 2 and 3 for the N = 6 and 7 Laughlin

systems, and for N = 8, we also examine the entanglement gap at ∆L = 4.

We determine the finite size cutoff for the entanglement gaps of the half-filled

FQH states in a similar manner, which we now illustrate. The ES for the MR

Pfaffian model states are shown in Fig. 6.7. The counting rules for the MR Pfaffian

model state depend on where the partition is made, which correspond to choosing

one of the three sectors of the corresponding conformal field theory (CFT)[147].

For the case of N = 8, the partition along the equator is equivalent to the P [0|0]
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partition in Li and Haldane’s nomenclature (i.e., a cut between two unoccupied

orbitals in the root configuration). The level counting for the first 4 levels of this

partition are 1, 1, 3, and 5. The counting in the MR Pfaffian ES given in Fig. 6.7

with N = 8 deviates from this structure at ∆L = 3. For N = 10, the partition along

the equator corresponds to P [1|1] (i.e., a cut between two occupied orbitals of the

root configuration), which has a level counting of 1, 2, 4, and 7 for the first 4 levels.

Examining the ES in the figure for N = 10, we see this spectrum also deviates from

the expected counting at ∆L = 3. Thus for the half-filled FQH states we examine

in this study, we concern ourselves only with the entanglement gaps up to ∆L = 2.

The entanglement gaps, which we denote as ∆i for i = ∆L, are calculated

by finding the difference between the largest suspected topological level and the
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next highest level at the given value of LAz in the ES of the numerically obtained

Coulomb ground states for varying d/`. We also calculate the minimal gap between

topological and generic levels for ∆L ≤ m, which we denote as ∆0−m where m is the

cutoff described above. The minimal gap gives us a qualitative measure of how well

separated, overall, the topological levels are from the generic levels. The suspected

topological levels are identified by the expected counting described above. An ex-

ample of this procedure is shown in Fig. 6.8, which shows the entanglement gaps in

the ES of the ν = 1/3 ground state for d = 0 and N = 7. Note that throughout this

work, when presenting figures showing ES, we color code the suspected topological

levels with red diamonds connected by a red dash and all other ES levels with a

black dash. The topological levels are chosen by calculating the ES for the model
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Figure 6.10: Entanglement spectrum for the Coulomb Hamiltonian as a function
of z-component of angular momentum LAz for filling fraction ν = 1/3 and particle
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state (be it the Laughlin or the MR Pfaffian) and noting how many ES levels n(LAz )

there are for each LAz . Then, when we consider the ES for the Coulomb Hamilto-

nians, we identify topological levels (and color code them) as the lowest n(LAz ) ES

levels for each LAz .

Entanglement gaps as a function of finite layer thickness d/` for the Laughlin

filling fraction ν = 1/3 are shown in Fig. 6.9. The entanglement gaps are slightly

decreasing with d/` for all cases, indicating that the states are weakening. These

trends are similar to those observed in the EE at ν = 1/3. Note that the minimal

gap for N = 6 and N = 8 is initially small and becomes zero for d/` & 4. This may

indicate that the FQH state collapses at a finite thickness, as has been shown in

previous works[127, 163] (the previous works showed the FQHE to collapse at very
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large d/`). However, this effect is not seen in the minimal entanglement gap for

N = 7. This “even-odd” finite size effect is likely due in part to a trade-off between

the finite size cutoff and the number of available orbitals. Indeed, the finite size cutoff

is the same for N = 6 and N = 7, but the larger Hilbert space for the N = 7 case

allows for more “edge excitations” which strengthens each entanglement gap, not

just the minimal gap, compared to N = 6. In all cases, however, the overall trends

in the entanglement gaps (i.e., slight decrease with d/`) are qualitatively similar to

those seen in the EE (in particular, ∆SE) and the overlap in Refs. [128, 129].

To illustrate this overall trend in the entanglement gaps for ν = 1/3, we provide

the ES of the ground states in Fig. 6.10 for d/` = 0, 2 and 6. We have marked the

levels that are consistent with the counting found in the ES of the Laughlin model

state shown in Fig. 6.6 for all values of ∆L and indicate our chosen finite size cutoff.

We see that qualitatively, the ES is largely insensitive to finite d/`. Also on the

right of the finite size cutoff, except for the largest topological state at ∆L = 4, the

topological levels are well-separated from the higher energy generic levels.

We now examine the case when ν = 7/3 in comparison. In Fig. 6.11 are

the entanglement gaps as a function of finite layer thickness. For N = 6, the root

entanglement gap, ∆0, is generally increasing with d/`. ∆1 and ∆2 each have a

weak, local maxima near d/` ∼ 4 and ∆3 is actually decreasing with d/`. Also the

minimal entanglement gap is zero throughout. The entanglement gaps for N = 7

are are each monotonically increasing with d/`, similar to ∆0 in the N = 6 case.

The minimal gap, which is initially zero, opens at d/` ∼ 3 then gradually increases

with d/` in this case. The case when N = 8 shows trends similar to the N = 6
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case. Here ∆0, ∆1, and ∆2 increase with d/`, ∆3 has a local maxima near d/` ∼ 4,

and ∆4 decreases with d/`. The minimal gap for N = 8 is zero throughout. Again

we see an “even-odd” finite size effect in the entanglement gaps as was seen with

ν = 1/3. However, in this case, we have entanglement gaps that increase, decrease,

or have a weak maxima as a function of d/`. This is in contrast to the ν = 1/3 case

where all entanglement gaps follow the same trend with finite d/`. The different

trends in the entanglement gaps may suggest that the topological signature of the

ν = 7/3 state differs from that of the Laughlin state.

Some illustrative examples of ES at ν = 7/3 are given in Fig. 6.12 with N = 8

and d/` = 0, 4 and 6. The given ES appear to have structure similar to that seen in

the ν = 1/3 case, however, we see that for ∆L = 4, the higher energy “topological”

states are virtually indistinguishable from the “generic states”. This “blending”

appears to get worse for larger d/`. Again, these results may suggest that the

Laughlin model state is not an accurate description for the ν = 7/3 state.

Results on the entanglement gaps for the even denominator filling fraction

ν = 1/2 are shown in Fig. 6.13. Here we see that the entanglement gaps are slightly

decreasing with d/` and behave similarly to the EE at this filling fraction. Also

note that for N = 8, the minimal gap is small and decreases with d/`, while for

N = 10, the minimal gap is zero throughout. As mentioned earlier, there has been

no definitive experimental observation of FQHE at ν = 1/2 in monolayer systems

consistent with our calculations. The ES of the ground states for d/` = 0, 2 and

6 and N = 8 are given in Fig. 6.14,. Qualitatively, we see that the ES is largely

insensitive to the finite-thickness effect. Also, the largest suspected topological level
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marked.
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Figure 6.16: Entanglement spectrum for the Coulomb Hamiltonian as a function
of z-component of angular of angular momentum LAz for filling fraction ν = 5/2 and
particle number N = 8 for d/` = 0 (left panel), d/` = 4 (middle panel), d/` = 6
(right panel). The levels consistent with the MR Pfaffian model state for each LAz
are marked.
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for ∆L = 2 is well separated from the other CFT levels and appears to be more

consistent with the generic levels. Again, this suggests that ν = 1/2 is not described

by the MR Pfaffian wavefunction.

In Fig. 6.15 are the entanglement gaps at filling fraction ν = 5/2. For N = 8

each entanglement gap peaks at a certain value for d/`. In particular ∆2 peaks near

d/` ∼ 2.5; the other gaps peak near d/` ∼ 4. We also see peaks in the entanglement

gaps for the case when N = 10. Here, the gaps gradually rise to a local maxima

near d/` ∼ 1.5 then slowly decay for increasing d/`. Note that the gaps in this case

are generally smaller compared to those observed for N = 8. These results may

suggest that there is a slight difference in the finite-size effect on the different MR

Pfaffian sectors (i.e choice of partition in the root configuration). However, these

results are qualitatively similar to the EE results and the results on the overlap in

Refs. [129] (i.e., the MR Pfaffian signature of the ν = 5/2 state is strengthened by

the finite size effect).

We also provide the ES of the ν = 5/2 state for N = 8 in Fig. 6.16 for d/` = 0,

4, and 6. Here, we see the ES “opens” at d/` = 4, giving a larger separation

between the topological and generic levels in the spectrum compared to d/` = 0

and 6. Again, these results suggests the ν = 5/2 is, indeed, described by the MR

Pfaffian wavefunction, and this description is more stable at finite thickness.

In summary, the entanglement gaps in the ES have similar dependence on

finite thickness as the EE, leading to similar conclusions. However finite size effects

prevent us from making definitive statements. In the next section, we attempt to

alleviate this problem using the conformal limit.
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Figure 6.17: ES for the Coulomb Hamiltonian for ν = 1/3, d = 0, and N = 7 as a
function of LAz before and after taking the CL. The suspected topological states are
based on the ES of the Laughlin model wave function shown (inset) and are marked
in the ES. An illustrations for the minimal, maximum, and average entanglement
gap is also shown.

6.2.4 The Conformal Limit

In the previous section, we used entanglement gaps in the ES to evaluate

the “strength” of a state as a function of d/` and we were able to confirm the

MR Pfaffian signature of the ν = 5/2 state and distinguish it from the (lack of)

signature of the ν = 1/2 state. However, we have intentionally ignored a significant

part of the ES in order to avoid finite size effects, i.e., we focused on the region

of the ES with small ∆L (see Fig. 6.8). We determined the size of this region by

examining where the ES of the finite sized MR Pfaffian and Laughlin model states

deviate from the conjectured structure in the thermodynamic limit (i.e., the edge

state level counting given by Haldane statistics). Thus, we have only confirmed the

MR Pfaffian and Laughlin signatures to a certain extent because, in fact, there is

not an actual entanglement gap in the ES.

It has been conjectured that the full entanglement spectrum of the finite sized
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Figure 6.18: Conformal Limit Entanglement Gaps for the Coulomb Hamiltonian
as a function of finite layer thickness, d/` for filling fraction ν = 1/3 and particle
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Figure 6.19: Conformal Limit Entanglement spectrum for the Coulomb Hamilto-
nian as a function of LAz for filling fraction ν = 1/3 and particle number N = 8 for
d/` = 0 (left panel), d/` = 2 (middle panel), d/` = 6 (right panel). The suspected
topological levels consistent with the Laughlin model state for each LAz are marked.
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as a function of finite layer thickness, d/` for filling fraction ν = 1/3 and particle
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Figure 6.21: Conformal Limit Entanglement spectrum for the Coulomb Hamilto-
nian as a function of LAz for filling fraction ν = 1/3 and particle number N = 8 for
d/` = 0 (left panel), d/` = 4 (middle panel), d/` = 6 (right panel). The suspected
topological levels consistent with the Laughlin model state for each LAz are marked.
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model states contain information on the topological signature of the FQH state.[148,

149] Thus, all states in the ES can be used to identify the topological quantities.

With this in mind, we now examine the entanglement spectrum of quasi-2D FQH

states in the “conformal limit” (CL), which reportedly allows the use of the entire

spectrum to examine the state by unambiguously defining a full entanglement gap.

As discussed briefly above, and at length by Thomale et al. in Ref. [155], the CL

works by removing finite size effects due to the curvature of the sphere and gives an

ES with a “full” unambiguous entanglement gap in the spectrum for topologically

ordered states. Thus the presence of an entanglement gap in the conformal limit

is conjectured to be a sign of topological order. A demonstration of an ES before

and after the CL is given in Fig. 6.17. After taking the CL of an ES (CLES), we

determine the “minimal gap” by taking the difference between the highest suspected

topological level and the lowest generic level in the entire spectrum. The suspected

topological levels are determined by comparing the CLES to that of the model state

with the assumption that all levels in the ES of the model state are topological. For

comparison, we examine the entanglement gaps for each value of LAz and define the

“average gap” as the average of the individual entanglement gaps. We also define

the “maximum gap” as the maximum of the entanglement gaps. Individual gaps

that are near infinite (i.e., no levels above the highest topological level) are ignored.

The minimal gap, the average gap, and the maximum gap are calculated for each

CLES as a function of the finite layer thickness, d/`.

CLES entanglement gaps as a function of finite layer thickness d/` for ν = 1/3

(LLL) are shown in Fig. 6.18. For N = 6 and 7, the entanglement gap measures
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decreases with d/` but remains finite throughout. This behavior is qualitatively

similar to the ES gaps for small ∆L, as well as the EE results, suggesting a weakening

of the Laughlin state. The fact that the minimal entanglement gap in the ES for

the N = 6 case (Fig. 6.9) differs from the minimal gap in the CLES may indicate

that the closing of the gap in the ES is due to finite size effects related to the

curvature of the geometry rather than the limited number of LL orbitals. However,

the minimal gap for the case where N = 8 seems anomalous. Although the average

and maximum gaps follow similar qualitative trends, the minimal gap is at or near

0 for all values of d/`, including d = 0. How to interpret this result is unclear since

there is a general consensus that the Laughlin state does, indeed, model the ν = 1/3

state. We can shed some light on this anomaly by examining the CLES of the FQH

states directly. In Fig. 6.19 are the CLES for ν = 1/3, N = 8 FQH state at finite

thickness d/` = 0, 2 and 6. The suspected topological levels are marked in each plot.

In the figure, we see 3 “spurious” topological states that cross the gap, resulting in

the minimal gap vanishing. The origin of these states are actually due to our choice

of planar pseudopotentials. This is discussed in section 6.2.6.

We examine CLES in the SLL case (ν = 7/3) in Fig. 6.20. In general, each

gap measure behaves differently with varying d/`. The minimal gap appears fragile

and virtually disappears for larger N . The average gap has two local maxima in d/`

for N = 6. Only one of the local maxima in the average gap is preserved when we

look at the N = 7 case, and for N = 8, the average gap fluctuates. The maximum

gap, in general, increases with increasing d/` but has a notable peak near d/` ∼ 0.7

for N = 8. The inconsistency in these results may suggest, from the ES and EE
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Figure 6.22: Conformal Limit Entanglement Gaps as a function of finite layer
thickness, d/` for filling fraction ν = 1/2 and particle number N = 8 (top panel)
and N = 10 (bottom panel)

results, that the Laughlin model state is not a suitable model for the ν = 7/3 state,

or other ignored effects are needed for the Coulomb state to be adequately described

by the Laughlin state.

In Fig. 6.21 are CLES results for ν = 7/3, N = 8 at finite thickness d/` = 0,

4, and 6. We note that for each value of d/`, there is very little separation between

the suspected topological levels and the generic levels. Indeed, if the suspected

topological levels were not marked, there is no clear entanglement gap across the

whole spectrum. However, there does appear to be structure in the CLES for small

values of ∆L (i.e., near the “root” configuration). What this may imply about the

topological signature of the ν = 7/3 state is not clear.

Results for the CLES gap measures in the even denominator ν = 1/2 FQH

state are shown in Fig. 6.22. We see that the minimal gap is nonzero and gradually

increases with d/` for N = 8. However, for N = 10 the minimal gap is zero
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Figure 6.23: Entanglement spectrum as a function of z-component of angular
momentum LAz for filling fraction ν = 1/2 and particle number N = 10 for d/` =
0 (left panel), d/` = 4 (middle panel), d/` = 6 (right panel). The suspected levels
consistent with the MR Pfaffian model state for each LAz are marked.
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Figure 6.24: Entanglement Gaps as a function of finite layer thickness, d/` for
filling fraction ν = 5/2 and particle number N = 8 (top panel) and N = 10 (bottom
panel) with partition at the equator.
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Figure 6.25: Entanglement spectrum as a function of z-component of angular
momentum LAz for filling fraction ν = 5/2 and particle number N = 10 for d/` =
0 (left panel), d/` = 2 (middle panel), d/` = 6 (right panel). The suspected levels
consistent with the MR Pfaffian model state for each LAz are marked.

throughout. The maximum and average gaps decrease with d/` for N = 8. For

N = 10, the average gap has several local maxima, while the maximum gap decreases

then suddenly becomes constant with d/` with two sharp peaks. Given our results

on the EE and the ES for this state and the inconsistency between the N = 8 and

N = 10 in the CLES gap measures may suggest that the MR Pfaffian model state

is not a suitable model for ν = 1/2. We also provide the CLES of the ground states

in Fig. 6.23 for N = 10 and d/` = 0, 4, and 6. Qualitatively, the CLES do not

change very much as a function of d/`, and there is no clear separation between the

topological and generic levels. This, again, suggests that there is no FQH state at

this filling fraction.

The CLES gap measures for ν = 5/2 in the SLL are given in Fig. 6.24. For
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N = 8, the minimal gap has a very pronounced peak near d/` ≈ 4. The average

and maximum gaps, however, have a local minima near where the minimal gap is

maximum. These “cusps” are a result of level crossings. For N = 10, the minimal

gap is initially zero, but becomes finite for non-zero d/` and peaks near d/` ≈ 4.5.

The average and maximum gap in this case have similar shapes with a peak near

d/` ≈ 3. These results are qualitatively similar to the results of the ES, EE, and

the overlap in Refs. [128, 129]. Also, the difference between N = 8 and N = 10

may suggest that finite thickness affects the partition choices differently, but larger

system sizes are necessary to verify this. In the CLES plots shown in Fig. 6.25 for

N = 10 and d/` = 0, 4 and 6 respectively, we see the entanglement gap between

topological and generic levels “open” at finite d/` = 4 compared to d/` = 0 and 6.

These results are consistent with results observed with the EE and the ES, indicating

that MR Pfaffian signature strengthens with a finite d/`.

In summary, taking the conformal limit of the entanglement spectra provides

us with a full entanglement gap in most cases with a finite thickness dependence

that is qualitatively similar to the results on the EE. The notable exceptions are

the ν = 1/2 which has little or no entanglement gap consistent with experimental

observations, the ν = 1/3 case at N = 8 which is not expected given results with

other system sizes, and the ν = 7/3 case which is consistent with the results on the

EE and ES suggesting other physics besides the Laughlin state alone is needed to

explain this FQHE. The case with N = 8 and ν = 1/3, however, is inconsistent with

most theory and experiment, but when we examine the spectra directly, there are a

few “spurious” states that cross an otherwise full gap. The origin of these “spurious”
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states are related to our use of planar Haldane pseudopotentials rather than spherical

pseudopotentials and is discussed in section 6.2.6. However this choice should not

alter the topological features of the state. Therefore, this result may suggest that a

“full” quantitative entanglement gap is not necessary to identify a topological state

or that the full gap is not topological in origin. In the next section, we introduce

the concept of a entanglement spectral density of states where a qualitative, “soft”

gap may be identified in such cases.

6.2.5 Entanglement Spectrum Density of States

In the entanglement results presented above, we require a model state wave-

function for comparison in order to systematically define and calculate the entan-

glement gaps. These methods have the obvious disadvantage of requiring an ansatz

for comparison. In the conformal limit case, we assume the low-lying states in the

entanglement spectrum should have the exact counting as seen in the model entan-

glement spectrum. This assumption may be premature since other finite size effects

may cause the counting to deviate, even after taking the conformal limit, especially

at the largest ∆L, see Fig. 6.19. With this in mind, we attempt to obtain a general

qualitative sense for how the entanglement spectra vary with finite layer thickness by

extending the analogy with “energy levels” a bit further by calculating the “density

of entanglement spectral states.” With the density of states, we can qualitatively

look for entanglement gaps without relying on a model state for comparison. Also,

we may be able to detect “soft” gaps where a small number of states may be present
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Figure 6.26: Density of entanglement energies before (top panel) and after (bottom
panel) the conformal limit for ν = 1/3 and particle number N = 7 as a function of
finite layer thickness d/`.

within an otherwise prominent gap between two peaks in the density of states. Thus

in this section we briefly examine this extension by providing results for the density

of states (DOS) of the entanglement spectrum, both with and without the conformal

limit, as a function of finite layer thickness, d/`.

The plots shown in Fig. 6.26 give the density of states of the ES and CLES

for ν = 1/3 as a function of finite layer thickness d/` for N = 7. In the DOS for

the ES before taking the CL, we see sparse low lying states that are separated from

a denser cloud of higher states by a series of gaps. These low lying states are the

topological states from the Li and Haldane conjecture. The states appear, largely

to be insensitive to the finite layer thickness. Turning to the DOS for the CLES, a

clear gap is much more evident for the N = 7 cases. Here the higher-energy states
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Figure 6.27: Density of entanglement energies before (top panel) and after (bottom
panel) the conformal limit for ν = 1/3 and particle number N = 8 as a function of
finite layer thickness d/`.
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Figure 6.28: Density of entanglement energies before (top panel) and after (bottom
panel) the conformal limit for ν = 1/3 and particle number N = 7 as a function of
finite layer thickness d/`.
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appear to makeup a wide, low-density band that is well-separated from a low, dense

band of states by a gap that decreases with d/`. This case seems to illustrate the

effect of using the CL.

For comparison, we provide the DOS results for N = 8 in Fig. 6.27. Here there

also appears to be low-lying topological states in the ES below a high density region

of higher energy states. In the DOS of the CLES, a “clear” gap does not appear.

But the low lying band in this case does appear qualitatively similar to the N = 7

case. One may possibly associate a “soft” gap in this case, where a few states appear

to be present between two somewhat distinct regions in the DOS. This “soft” gap

is qualitatively similar to the “clear” gap in the N = 7 case and it does appear to

be slightly decreasing as a function of d/`. However, it is difficult to distinguish this

“soft” gap from the other small gaps in the spectrum.

In Fig. 6.28 we provide DOS plots for the ν = 5/2 FQH state for N = 10 as a

function of d/`. In this case, the ES is especially sensitive to finite layer thickness.

However, we still see a series of small gaps separating thin, dense bands at lower

energies. After taking the CL, a clear gap at finite (non-zero) thickness has a definite

peak corresponding to a level crossing. Below the gap, there appears to be some

band crossings as d/` is varied.

In summary, the DOS of the entanglement spectra (with and without the

conformal limit) gives us a general qualitative picture of how the ES evolve with a

varying parameter (i.e., the finite layer thickness d in our case). Thus we expect

the DOS of the ES to be a good initial cursory tool in examining topological states

with varying parameters.
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6.2.6 Planar vs spherical pseudopotentials at d = 0

The analysis presented above is based on ground state wavefunctions obtained

by diagonalizing the quasi-2D Coulomb potential in a spherical geometry. However

the Haldane pseudopotentials used to construct the Hamiltonian are derived from a

infinite planar geometry rather than a spherical geometry. We choose to use planar

rather than spherical psuedopotentials because 1) the effective Coulomb potential in

a quasi-2D system is more naturally obtained in the infinite planar geometry and 2)

we expect the spherical and planar pseudopotentials to be indistinguishable in the

thermodynamic limit. And given the mostly qualitative nature involved in studying

entanglement spectra, we expected this choice to make little difference in the results.

Nevertheless, there are cases under study where this choice matters. The goal of this

section is to highlight some of these cases. We show that for d = 0, the low energy

spectrum in the entanglement spectra are qualitatively similar between ground states

obtained from either spherical or planar pseudopotentials, but higher energy spectra

can differ in some cases. This difference does not change the qualitative conclusions

drawn from the low energy spectra, but when we consider the conformal limit which

looks for a full entanglement gap, the difference can lead to different conclusions (in

particular, the case of ν = 1/3 with N = 8). We leave the comparison of cases with

d > 0 and larger N for future work.

In Table 6.2 we provide several overlap calculations between exact ground

states at d = 0 obtained using either spherical or planar pseudopotentials. In

column 3 of the table, we see that the overlap between the ground states from the
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N ν 〈Ψsphere|Ψplane〉 〈Ψsphere|Ψmodel〉 〈Ψplane|Ψmodel〉

6 1/3 0.9988 0.9964 0.9921

6 7/3 0.9480 0.5285 0.7369

7 1/3 0.9999 0.9964 0.9952

7 7/3 0.8648 0.6071 0.8737

8 1/3 0.9996 0.9954 0.9954

8 7/3 0.9675 0.5719 0.7441

8 1/2 0.9978 0.9213 0.8953

8 5/2 0.9688 0.8674 0.9639

10 1/2 0 0.8891 0

10 5/2 0.9720 0.8376 0.9342

Table 6.2: Overlap integrals between 1) the exact ground state wavefunction using
spherical (|Ψsphere〉) and planar Haldane pseudopotentials (|Ψplane〉), and 2) the over-
lap between the Laughlin or Pfaffian wavefunction (|Ψmodel〉 and the exact ground
state wavefunction using spherical or planar pseudopotentials.
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Figure 6.29: Entanglement spectra and conformal limit entanglement spectra of
the exact FQHE ground state for N = 7 at filling fraction ν = 1/3 obtained with
either planar or spherical Haldane pseudopotentials at d = 0. Topological states
associated with the Laughlin model wavefunction are marked.

spherical and planar cases is generally high. The notable exception is the case when

N = 10 and ν = 1/2 where the overlap is zero. In this case the ground state obtained

with the planar pseudopotentials possesses a different symmetry compared to the

ground state of the spherical case, which leads to a vanishing overlap. Excluding

these, columns 4 and 5 of the table show that the overlap between the spherical and

planar ground states with the model Laughlin or MR Pfaffian states are qualitatively

similar.

We now turn our attention to the entanglement spectra and how they may

differ with choice of pseudopotentials. ES (with and without the conformal limit)

for the exact ground state of the FQHE state at N = 7 and ν = 1/3 using spherical
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Figure 6.30: Entanglement spectra and conformal limit entanglement spectra of
the exact FQHE ground state for N = 8 at filling fraction ν = 1/3 obtained with
either planar or spherical Haldane pseudopotentials at d = 0. Topological states
associated with the Laughlin model wavefunction are marked.

143



5 10 15 20 25 30
0

10

20

30

40

50

L
z
A

ξ

ES planar N = 8, ν = 7/3

5 10 15 20 25 30
0

10

20

30

40

50

L
z
A

ξ

ES spherical N = 8, ν = 7/3

5 10 15 20 25 30
0

10

20

30

40

50

L
z
A

ξ

CLES planar N = 8, ν = 7/3

5 10 15 20 25 30
0

10

20

30

40

50

L
z
A

ξ

CLES spherical N = 8, ν = 7/3

(a) (b)

(c) (d)

Figure 6.31: Entanglement spectra and conformal limit entanglement spectra of
the exact FQHE ground state for N = 7 at filling fraction ν = 7/3 obtained with
either planar or spherical Haldane pseudopotentials at d = 0. Topological states
associated with the Laughlin model wavefunction are marked.
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Figure 6.32: Entanglement spectra and conformal limit entanglement spectra of
the exact FQHE ground state for N = 10 at filling fraction ν = 1/2 obtained with
either planar or spherical Haldane pseudopotentials at d = 0. Topological states
associated with the MR Pfaffian model wavefunction are marked.
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Figure 6.33: Entanglement spectra and conformal limit entanglement spectra of
the exact FQHE ground state for N = 10 at filling fraction ν = 5/2 obtained with
either planar or spherical Haldane pseudopotentials at d = 0. Topological states
associated with the MR Pfaffian model wavefunction are marked.
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and planar pseudopotentials are given in fig. 6.29. In the figure, we see that the

ES with planar pseudopotentials (Fig. 6.29 a) is qualitatively similar to the spectra

obtained with spherical pseudopotentials (Fig. 6.29 b). The same can also be said

with the ES in the conformal limit between the planar case (Fig. 6.29 c) and the

spherical case (Fig. 6.29 d). Thus, given the results in Fig. 6.29, we would expect

that the choice of pseudopotenials makes little difference in obtaining a qualitative

understanding of the ES in this case.

Fig. 6.30 compares the ES of the FQHE state at filling fraction ν = 1/3 with

N = 8. In this case we see that in the ES before the conformal limit (Fig. 6.30 a and

b), the low energy spectra are qualitatively similar between the planar and spherical

cases. The higher energy spectra in the ES, however, show notable differences with

the planar case having a few topological levels at much higher energy compared to

the spherical case. In the conformal limit, these higher energy topological levels lead

to a vanishing entanglement gap in the conformal limit for the planar case (Fig. 6.30

c) compared to the spherical case (Fig. 6.30 d) where there is a full entanglement

gap. These are the same “spurious” levels identified earlier in section 6.2.4. These

results suggest that the vanishing minimal gap seen in Fig. 6.18 is due to our

choice of planar rather than spherical Haldane pseudopotentials. This may seem

surprising given the large overlaps seen in Table 6.2. However the states associated

with the the higher energy topological levels have exponentially small contributions

to the ground state wavefunction, and thus contribute little to the overlap. Also we

might expect these states to be more sensitive to certain quantitative details of the

potential that do not affect the qualitative picture of the FQHE ground state (e.g.
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values of Vm for “large” m). Thus when taking the conformal limit, the choice of

pseudopotential may matter in some cases in order to observe a full entanglement

gap. But a qualitative understanding can still be gleaned from the planar case since

there does appear to be two distinct regions in the CLES that we can identify, at

least qualitatively, as topological and generic levels.

We now compare the spherical and planar pseudopotentials in the SLL with

ν = 7/3. Fig. 6.31 gives the ES (6.31 a and b) and CLES (6.31 c and d) for the

ν = 7/3 FQHE state obtained with either planar or spherical pseudopotentials with

N = 8. The planar and spherical cases are qualitatively similar in both the ES and

CLES and both suggest that the Laughlin wavefunction may not describe this state,

as discussed in sections 6.2.2, 6.2.3 and 6.2.4.

Results for the even denominator filling fraction ν = 1/2 with N = 10 is given

in Fig. 6.32. In this case, the planar results (6.30 a and c) differ considerably to that

of the spherical case (6.30 b and d). This is not surprising since the overlap between

these two states given in table 6.2 vanishes. However, it appears that neither state

is consistent with the MR Pfaffian.

Comparison of FQHE ground states obtained with planar and spherical pseu-

dopotentials for the ν = 5/2 state with N = 10 is given in Fig. 6.33. Similar to

the ν = 1/3 case, the low energy spectra in the ES (6.33 a and b) are qualitatively

similar between the two cases. The higher energy levels in the spectra do differ, but

the CLES (6.33 c and d) does appear to give the same qualitative picture. Recall

that in section 6.2.4, the minimal gap for this case becomes non-zero only at finite

d for the planar case. We would expect a similar result to occur using the spherical
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psuedopotentials. Verification of this is left for a future work.

6.3 Conclusions

In this chapter we study entanglement in finite sized, quasi-2D FQH states via

the entanglement entropy and the entanglement spectrum as a function of the finite

layer thickness of the transverse dimension in a realistic FQH system and compare

them to the entanglement signatures of the Laughlin and MR Pfaffian model states.

For the Laughlin filling fractions, we find that the EE increases (decreases) with

finite layer thickness for ν = 1/3 (ν = 7/3) in the LLL (SLL) with increasing

(decreasing) deviation from the EE of the Laughlin model state. However the EE

in the SLL reaches an asymptotic value larger than the EE of the Laughlin state,

possibly suggesting the ν = 7/3 state is modeled by different physics than the

Laughlin state. Similar behavior is also seen in the entanglement gaps of the ES for

the Laughlin filling fractions. Here we find that the entanglement gaps decrease with

finite layer thickness for the Laughlin filling fractions in the LLL. But in the SLL,

the behavior of the entanglement gaps depend on the “depth” of the gap. These

results suggest that the Laughlin FQH states “weaken” with increasing thickness in

the LLL, which is consistent with previous work on quasi-2D FQH states [128, 129],

but in the SLL, other physics beyond just the Laughlin state alone is needed to

describe the FQH state. The LL dependence of the finite thickness effect at half-

filling is slightly different. The EE of the ν = 1/2 state in the LLL is largely

insensitive to the finite layer thickness in contrast to that of the SLL ν = 5/2 state
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where the EE has a local minima that approaches the EE of the MR Pfaffian at

finite d/`. This qualitative behavior is also seen in the entanglement gaps of the

ES for half-filled LLs. For ν = 5/2 in the SLL, we see peaks (local maxima) in the

entanglement gaps at finite thickness, suggesting the ν = 5/2 is more “MR Pfaffian-

like” at an optimal thickness, which, again is consistent with previous work[128, 129]

and strongly suggests the ν = 5/2 state is, indeed, MR Pfaffian. In contrast the

entanglement gaps of the ES for the ν = 1/2 state suggest that it is not modeled by

the MR Pfaffian. Thus, the entanglement gaps in the ES allows us to differentiate

the ν = 1/2 and ν = 5/2 states, which we could not definitively establish with the

EE or the overlap calculations. Of course, we must be cautious with these results

since the calculated entanglement gaps only made use of a few levels in the low-lying

spectra due to finite-size effects.

We also investigate the conformal limit of the entanglement spectrum which

is conjectured to remove curvature in the spectrum due to finite size effects and

allow the use of the entire spectrum to determine the topological signature of the

state. Our results on the conformal limit, however are inconsistent between varying

system sizes and are difficult to interpret. This appears to be due to our choice of

using planar pseudopotentials rather than spherical pseudopotentials in obtaining

the FQHE ground states. With this in mind, we examine this choice by compar-

ing the entanglement spectra of ground states obtained by using either spherical

or planar pseudopotentials at d = 0 and observe that the conformal limit can be

affected by components of the ground state that have exponentially small contribu-

tions and, therefore, are sensitive to minor details in the interaction (such as the

150



difference between planar and spherical pseudopotentials). Thus the presence of

the entanglement gap in the conformal limit is sensitive to certain details that may

not be relevant in determining the topological features of the state. Further work

using much larger system sizes would be necessary to resolve this issue which is well

beyond the scope of the current work.

We have also introduced the notion of entanglement density of states as a

method for examining the idea of an entanglement gap without an explicit reliance

on a model wavefunction. Although, far from definitive, the entanglement DOS

suggests itself as a powerful tool to determine the topological nature of a particular

ground state. Our detailed numerical study establishes the entanglement DOS to be

a useful quantity underlying topological FQHE particularly in the context of finite

size numerical calculations.

It is interesting to observe that the entanglement measures give similar results

to those obtained with overlaps in Refs. [128, 129]. Whereas the overlap is a simple

measure of how well a numerically obtained ground state matches a particular model

state (e.g. the Laughlin state or the MR Pfaffian state), the entanglement measures

(in particular, the ES) is a more general measure of how well a state fits a suspected

conformal field theory (i.e. universality class) that describes the model state. There-

fore, it can be said that these results confirm the conclusions in Refs. [128, 129] in

a more general sense in respect to the Laughlin and MR Pfaffian CFTs. However,

we must be cautious in this generalization given that we have only observed the

Laughlin and MR Pfaffian signature up to a certain extent in the spectra and dif-

ferent theories can result in the same low-level structure in the ES [164]. More work
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is necessary to understand how well entanglement measures can definitely identify

universality classes in finite systems.

In interpreting our results and conclusions, one may wonder about the impor-

tance of finite size effects on our numerical diagonalization. The possible limitations

associated with finite-size effects are of course always present in any exact diagonal-

ization study of any FQHE system, and the possibility that some of the conclusions

are affected by finite size effects can never be ruled out even if the calculations are

carried out on systems much larger than what we use in this work, since in the end

any statement about an experimental system based on calculations performed on

few-particle systems is always subject to an extrapolation to the thermodynamic

limit. We believe that all our conclusions regarding the importance of finite quasi-

2D thickness effect on the FQHE entanglement spectra are valid independent of

the rather modest size of our finite system diagonalization study because earlier

work [128, 129] clearly established, when compared with calculations [165, 166] car-

ried out on much larger systems, that the system size we use in this work, namely

N=8, is certainly adequate in making qualitatively correct conclusions about the

SLL FQHE. Our goal in this paper has been to study as many FQHE states as fea-

sible as a function of the quasi-2D layer thickness in depth, thus necessarily (due to

the computational time restrictions) limiting our system size to N=8 which should

be adequate. Nevertheless, we feel that future work should explore larger system

size diagonalization in order to study the finite-thickness effect on the entanglement

spectra of various FQHE states.

In conclusion, we have extended the concept of topological entanglement spec-
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tra and entanglement gaps to finite-thickness FQH systems by calculating the FQHE

topological properties systemically as a function of finite thickness of the quasi-2D

systems, establishing in the process that the FQHE entanglement measures calcu-

lated as a function of system thickness are completely consistent with the results

obtained earlier in the literature using wavefunction overlap calculations. While our

work establishes various entanglement measures as important theoretical quantities

classifying FQHE, more work will be necessary to understand the finite size aspects

of entanglement spectra and entanglement gaps in the context of realistic fractional

quantum Hall systems. Although it is gratifying that the qualitative conclusions of

our entanglement-measure-based results in this work are completely consistent with

earlier FQHE results obtained on the basis of wavefunction overlap calculations, it

remains to be seen whether the entanglement-measure based probes have more pre-

dictive power regarding the nature of FQHE than the wavefunction-overlap based

probes or it is simply a deeper way of looking at the same physics with no obvious

additional implications for the experimental occurrence of FQHE.
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Chapter 7

A Variational Monte Carlo study of polarization in ν = 5/2

7.1 Background

In the previous chapter, we have assumed that FQHE states are completely

polarized. This assumption is largely based on the fact that FQHE states are ob-

served in very large magnetic fields. Because of this, it is usually appropriate to work

in the limit of B → ∞, where the Coulomb potential is the only relevant energy

scale. But as was mentioned in section 5.3, the Zeeman energy can be less than the

Coulomb energy for some filling fractions when the band mass and the renormalized

Landé factor of an electron in a material are properly taken into account. This leads

to non-trivial spin order in FQHE states that differ depending on the filling frac-

tion. Despite this complication, spin-order in most states is well-understood in the

context of composite fermion theory where polarization is seen as a result of filling

Λ-levels with spinfull composite fermions following Hund’s rule[56]. A notable ex-

ception, however, is the case of ν = 5/2. Since it was first discovered in 1987, studies

on spin order in this state have been either inconclusive or seemingly contradictory.

One of the earliest experiments on this matter, for example, reported the collapse

of the ν = 5/2 FQHE state in a tilted magnetic field, suggesting an unpolarized

FQHE state[167]. But this experiment was followed by a seminal numerical study

by Morf which showed that even in the limit of zero Zeeman energy, a polarized
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state is lower in energy than a fully unpolarized state at ν = 5/2[133]. Subsequent

theoretical studies reported similar results[168, 169], and it is now understood that

the collapse in the original “tilt” experiments was likely due to the appearance of

compressible “striped” phases [170] or from orbital coupling of the in-plane magnetic

field[129]. To avoid these issues, Liu et al. [171] performed an “altered” tilt experi-

ment where the in-plane magnetic field is kept small by varying the charge density

and showed that the ν = 5/2 state remains stable for relatively large tilt angles.

Recent rather impressive experiments performed by Tiemann et al. [172] and Stern

et al. [173] provide strong evidence supporting a fully spin polarized 5/2 FQHE

state. But a notable exception is an earlier experiment by Stern et al. [174] using

photoluminescence spectroscopy to probe polarization, suggesting that the ν = 5/2

state is actually unpolarized. A similar result was also seen in a study by Rhone et

al. [85] where spin-order is probed via resonant light scattering. It is possible that

the signatures seen in these optical experiments [174, 85] are due to local spin order

near a charge impurity[175, 176] and are, therefore, inconclusive, but such results

still leave some doubt to the actual nature of spin-order in this state [177]. The

most convincing measurement to date are those by Tiemann et al. and Stern et

al. [172, 174], which do indicate a spin-polarized 5/2 FQHE. Our goal in the current

work is to provide a reasonably complete study of spin-polarization comparing the

candidate states MR Pfaffian versus 331 with respect to the 5/2 FQHE using direct

numerical techniques in reasonably realistic theoretical models to see if one or the

other can be ruled out purely on the basis of numerical studies.

Resolving the spin order of ν = 5/2 may have implications on the possibil-
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ity of using FQHE states for topological quantum computing. The MR Pfaffian

description for ν = 5/2, which predicts non-Abelian anyons, is fully spin-polarized

and is the leading theory to date. But there are alternative descriptions that do not

require non-Abelian statistics, and one of the leading alternatives is the unpolarized

Halperin 331 state [178]. Part of the Halperin (m,m,n) family of Abelian fractional

quantum Hall states [178], the 331 state is observed in half filled quantum hall bi-

layers where even denominator fractions are common and well understood. Thus

determining the spin polarization of the state can rule-out either the MR Pfaffian

or the unpolarized 331 description for ν = 5/2.

A possible explanation that may resolve the seemingly conflicting evidence

on spin-order and that we briefly explore in this chapter is the possibility that

the ν = 5/2 FQHE state is not unique[175]. In other words there may be more

than one incompressible FQHE state, each with different spin polarizations, that

satisfy conditions to be experimentally observed at ν = 5/2. Which FQHE state

that is finally observed in an experimental sample may depend on certain details

of the sample or where on the ν = 5/2 plateau the experiment is being carried

out. In this chapter, we briefly explore this possibility by comparing the energy of

two trial FQHE wavefunctions with respect to small deviations: the spin-polarized

Moore Read (MR) Pfaffian, and the unpolarized Halperin 331 state. To examine the

possibility of a phase change between spin polarized and unpolarized incompressible

FQHE states within the ν = 5/2 plateau, we focus entirely on the MR Pfaffian

and the Halperin 331 state and examine how their respective energies change with

respect to small alterations to the effective interacting potential. We alter the 2D

156



Coulomb potential in two ways: 1) through the finite thickness effect, and 2) by

directly perturbing the first two Haldane pseudopotentials. By appealing to the

variational theorem, whichever state has the lowest ground state energy (strictly

speaking, the lowest free energy) is a better physical description of the physics–of

course, the variational theorem cannot rule out the possibility of a lower energy

ground state that we are not investigating (in fact, this is the likely scenario in the

nu=1/2 state in the lowest Landau level where experimentally an FQHE has never

been observed indicating that some kind of a compressible non-FQH state is likely

to be lower in energy than either the MR Pfaffian or the Halperin 331 state in the

lowest Landau level). To achieve this goal we alter the 2D Coulomb potential in two

ways: i) through the finite thickness effect, and ii) by directly perturbing the first

two Haldane pseudopotentials [116] (see below).

In the finite thickness effect, the non-zero thickness of the quasi-2D electron

system provides an effective potential slightly modified from the purely ideal 2D

Coulomb potential, which we refer to as the “Coulomb point” in this work. Since

polarized FQHE states have been shown to be sensitive to this finite thickness ef-

fect (see Chapter 6) and the thickness is expected to vary for different experimental

samples, the finite thickness effect is a natural area to investigate [128, 129]. Al-

though our results do not suggest a direct quantum phase transition between the

MR Pfaffian and the Halperin 331 in the second Landau Level (SLL) induced by

tuning the finite thickness, the energy difference between the two states decreases

with sample thickness, implying that other perturbations may make either state

energetically favorable for very deep wells; some of these other perturbations could
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be Landau level mixing, disorder, effect of nearby gates, self-consistency of the con-

fining potential itself, etc., which are not considered in our work since they are far

too sample-specific to be treated theoretically at this stage.

Our second approach to altering the 2D Coulomb potential – directly perturb-

ing the first two Haldane pseudopotentials [116] – provides us a general theoretical

probe that can identify areas of interest which may be reached experimentally via

other effects. The Haldane pseudopotentials, Vm, parametrize the effective interac-

tion potential in terms of the relative angular momenta m between two particles,

and thus, perturbing the first two pseudopotentials (i.e. m = 1,2) alters the short

range interactions between electrons (note that in this study, we leave the m = 0

term fixed). The method of altering pseudopoentials is a common approach taken

in FQHE exact diagonalization numerical studies aimed at probing sensitivities to

different moments in the interaction strength, however, this approach has not yet

been attempted in VMC studies to the best of our knowledge. We note that our

two alternative ways of introducing ‘small deviations’ or tuning away from the pure

Coulomb point (realistic finite thickness effect and varying the lowest pseudopo-

tentials) are complementary theoretical methods of tuning the system Hamiltonian

since the finite thickness correction modifies all the Coulomb pseudopotentials in

a complex manner which cannot simply be simulated by changing the two lowest

pseudopotentials.

We also examine the lowest Landau level (LLL) (i.e. ν = 1/2) in addition

to the second Landau level (SLL) (i.e. ν = 5/2) for comparison. In the LLL,

no incompressible even-denominator FQHE has been experimentally observed in

158



mono-layer systems to date, but there are several theoretical proposals to engineer

certain experimental conditions in such a way that even-denominator states are

energetically favorable [179]. In these cases the Halperin 331 state and the MR

Pfaffian are likely possibilities. In our study of the LLL, we find that either state may

be energetically favorable in the LLL depending on the pseduopotential deviations.

This is in contrast to our results in the SLL where we find that the MR Pfaffian is

generally lower in energy than the Halperin 331 state for most deviations examined,

suggesting that the MR Pfaffian description is, indeed, better suited for the half-

filled SLL, i.e., ν = 5/2. This is of course also consistent with the most recent

experimental status of the subject where the SLL 5/2 FQHE appears to be spin-

polarized. Our work, however, indicates that the corresponding LLL situation is

more delicate, and if an incompressible FQHE is ever observed at the LLL ν = 1/2

filling in a monolayer 2D system, it could either be a MR spin-polarized Pfaffian or

a Halperin spin-unpolarized 331 state.[180].

We add a theoretical subtlety here which has sometimes caused some confusion

in the literature. The Halperin 331 state in general does not obey the full SU(2)

symmetry (specifically, the so-called Fock condition necessary for a spin-independent

many-body Hamiltonian which must conserve the total spin of the system), and can-

not therefore be a true eigenstate of the single-layer Coulomb Hamiltonian since by

definition this Hamiltonian obeys the full SU(2) symmetry because the Coulomb in-

teraction is spin-independent– the 331 state was originally conceived for the double-

layer 2D system where the Coulomb interaction does indeed depend on the layer

index and is in general not SU(2) invariant in the layer index. This is, however, not
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a problem for our VMC analysis since we are only interested in comparing energies

between variational ground states (which do not care about the symmetry of the

Hamiltonian) and are not trying to obtain the exact theoretical eigenstate of the sys-

tem (which would be an impossible task any way, even the MR Pfaffian can at best

be a good variational state for the system and by no means the exact eigenstate).

In the end, the best theory we can hope for is to obtain a variational ground state

(MR Pfaffian or 331) which is adiabatically connected to the exact ground state of

the experimental system without any intervening quantum phase transition so that

the spin-polarization status of the variational ground state and the exact ground

state remains the same. Thus, for our purpose, both the MR Pfaffian and the 331

are perfectly (and equally) legitimate variational choices, and which ever has lower

VMC energy could be construed as the “correct” ground state of the system (at

least within the narrow, but very reasonable, restricted variational choice of only

two candidate wavefunctions).

We also mention that all our work leaves out the trivial Zeeman energy of the

system arising from the applied magnetic field creating the Landau levels in the first

place, which helps the spin-polarized state over the spin-unpolarized state. Since

the applied field is typically rather small for the ν = 5/2 FQHE, leaving out the

Zeeman energy (which is trivial to include for any given field) is probably a reason-

able approximation, but it is helpful to remember that even if a spin-unpolarized

ground state arises from our VMC analysis, the Zeeman energy could in principle

eventually win over, leading to the experimental state being spin-polarized. The

reverse, however, is not true, i.e. if the zero-Zeeman splitting situation has a (spon-
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taneously symmetry-broken) spin-polarized ground state, it is unlikely that finite

Zeeman splitting will change the ground state to a spin singlet.

7.2 Variational Monte Carlo Evaluation of the Energies Using Effec-

tive Potentials

We use variational Monte Carlo (VMC) methods in the same spirit as Refs

[75] and [168] to estimate the energy per particle of the Halperin 331 state and the

MR Pfaffian state for altered Coulomb potentials in the lowest and second Landau

level with up to N = 120 electrons and extrapolate to the thermodynamic limit,

(i.e. 1/N → 0). To examine the finite thickness effect, we use the potential derived

for the infinite square well potential given in Eq. (5.50).

We also examine the effect of directly perturbing the Haldane pseudopoten-

tials [116] Vm for the Coulomb potential in LLL and SLL. In particular, we examine

the effect of the perturbations Ṽ1 → V1 + ∆V1 and Ṽ2 → V2 + ∆V2 for pseudopo-

tentials derived from the Coulomb potential (i.e. V (k) = 1/k). In order to use

VMC methods to estimate wavefunction energies, we require an effective potential

in real space, Veff(r), such that the application of Eq. (5.47) results in our perturbed

pseudopotentials, Ṽm on the LHS. The immediate difficulty we run into is that there

is no clear procedure to invert Eq. (5.47) to obtain Veff(r) for arbitrary Ṽm–it is a

one-to-many mapping. Also, even in the unperturbed case, estimating energies in

the SLL is not straight-forward since most FQHE trial wavefunctions under study

do not have a closed-form expression in the SLL. To get around these difficulties,
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we chose a variable effective potential with fitting parameters, ci, and set these pa-

rameters such that the result of applying Eq. (5.47) on the effective potential very

closely matches the perturbed pseudopotentials. And when examining the SLL, we

“simulate” the SLL in the LLL by fitting the effective potential within the LLL to

the perturbed SLL pseudopotentials [75], that is, we project the SLL into the LLL.

Several forms for the effective potential have been used for previous Monte Carlo

studies of the FQHE [75, 181, 182]. For our study, we use the following form for the

effective potential (in units of e2/εl):

Veff(r) =
1

r
+

M∑
i=1

cir
2ier

2

. (7.1)

We choose this form because for large enough M , the potential fits both even and

odd pseudopotentials to a reasonable degree – only odd pseudopotentials are impor-

tant when fully polarized or spinless wavefunctions are under investigation – and

the fits to Vm for large m (i.e. m > M) are generally consistent across different per-

turbations, ∆V1 and ∆V2, allowing us to make fair comparisons between different

perturbations. In choosing the number of terms, M , in the effective potential, there

is a trade-off between tighter fits to the pseudopotentials for larger M and ease with

which the Monte Carlo converges – the addition of terms in Eq. (7.1) leads to an

oscillatory potential that takes, in general, more iterations to reach convergence.

For our study, we use M = 6. As an example, we show in Fig. 7.1 perturbed pseu-

dopotentials Ṽm for ∆V1 = −0.06 and ∆V2 = 0.02 in the SLL and the corresponding

fitted pseudopotentials resulting from a non-linear least squares fit of Eq. (7.1) to

Ṽm via Eq. (5.47). It is worth noting that the Vm’s calculated from the effective
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potential for m > M = 6 are very good approximations to the actual values and

only differ at the level of a fraction of a percentage point (∼ 0.6% on average)

Throughout this work we make use of the spherical geometry where electrons

are confined to a two dimensional (2D) spherical surface of radius R with a magnetic

monopole of magnetic charge Q at the center of the sphere[116, 117]. The radius

of the sphere is determined by the magnetic charge Q: R2 = Q. The magnetic

charge for a quantum Hall state with N electrons at filling factor ν is given by

2Q = N/ν+χ where χ is the topological shift[183] and depends on the FQHE state

under investigation. Lastly, the distance between two electrons on the spherical

surface is taken to be the cord distance.

In the spherical geometry, the unpolarized Halperin 331 and polarized MR

Pfaffian states are given by

ψ331 = Â
∏
i<j

(u↑i v
↑
j − v↑i u↑j)3

∏
k<l

(u↓kv
↓
l − v↓ku↓l )3

×
∏
r,s

(u↑rv
↓
s − v↑ru↓s) (7.2)

and

ψPfaff =
∏
i<j

(u↑i v
↑
j − v↑i u↑j)2Pf[M ] (7.3)

where ui = cos(θi/2) exp(iφi/2) and vi = sin(θi/2) exp(−iφi/2), and uσi = ui ⊗ |σ〉

and vσi = vi ⊗ |σ〉, |σ〉 is the spin ket, Â is the antisymmetrization operator, and

Pf[M ] is the Pfaffian of the matrix Mi,j = (u↑i v
↑
j − v↑i u↑j)−1. The magnetic charge for

both states is given by 2Q = 2N − 3.

To evaluate the energy of some wavefunction Ψ via variational Monte Carlo
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Figure 7.1: a) Perturbed pseudopotentials Ṽm for ∆V1 = −0.06 and ∆V2 = 0.02 in
the SLL (the Coulomb point is the Coulomb interaction in the SLL) and the corre-
sponding fitted pseudopotentials from Eq. (7.1). Note that any difference between
the pseudopotentials calculated from the real space effective potential corresponding
to the deviated pseudopotentials and the deviated pseudopotentials themselves is
smaller than the symbols on the figure. b) The resulting Veff(r) compared to the
Coulomb potential V (r) = 1/r
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we calculate the Hamiltonian expectation value

Eψ =

∫
dΩ1 . . . dΩNψ

∗(Ω1, . . . ,ΩN)Ĥψ(Ω1, . . . ,ΩN)∫
dΩ1 . . . dΩN |ψ(Ω1, . . . ,ΩN)|2

=

∫
dΩ1 . . . dΩN |ψ(Ω1, . . . ,ΩN)|2Ĥ∫
dΩ1 . . . dΩN |ψ(Ω1, . . . ,ΩN)|2 (7.4)

where Ω = (θ, φ) is the particle position on the sphere and Ĥ =
∑N

i<j V
eff(|ri− rj|).

In the above, we make use of the identity detM = |Pf[M ]|2.

Before presenting the effects of finite-thickness and directly perturbing Hal-

dane pseudopotentials we briefly discuss the background energy. It is assumed that

there is a uniform distribution of positive charge on the spherical surface so that the

total energy is negative and the electron’s state represents a stable phase of matter.

That is, we place N positive charges on the surface of the sphere and calculate the

interaction energy between an electron and the background Eel−bg and the interac-

tion energy of the background with itself Ebg−bg. For a pure Coulomb interaction

this works out to be

Eel−bg = −N
2e2

√
Qεl

, (7.5)

Ebg−bg =
N2e2

2
√
Qεl

, (7.6)

yielding Ebg = Eel−bg +Ebg−bg = − N2e2

2
√
Qεl

. Remember that the radius of the sphere is

R =
√
Q. Now, strictly speaking, this energy comes about by doing a rather trivial

integral over the surface of the sphere with the distance between particles defined

as the cord distance instead of the arc distance–in the thermodynamic limit both

choices are equivalent.

For our calculations it is a little bit more subtle. We are considering elec-
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trons projected into the LLL with effective potentials that take into account finite

thickness, electrons completely confined to the SLL, and potentials produced by

small deviations away from the Coulomb point through the direct manipulation of

V1 and V2. We find this effective potential through Eq. (7.1) and to get the proper

background energy we calculate

Eel−bg = −e
2N2

2

∫ π

0

dθ sin(θ)Veff(r(θ)) , (7.7)

Ebg−bg = −1

2
Eel−bg , (7.8)

where r(θ) = 2R sin(θ/2). While there is no deep physics hidden in the background

energy, it is needed to ensure that the ground state energy per particle has a well-

defined and finite thermodynamic limit. Further, since we are comparing two ground

state energies, this background energy cancels out in a sense.

7.3 Ground state energies for effective potentials in the LLL and SLL

As a thorough numerical check, we first list our results for MR Pfaffian and

the Halperin 331 state at the Coulomb point with no perturbation in Table 7.1

and find that we are in agreement with Refs. [75] and [168]. We note that other

wavefunctions are also possible, for example, a Composite Fermion fermi sea (CFFS),

in a polarized (P) or unpolarized (UP) variety [72, 73, 170] and the Haldane-Rezayi

singlet state [184] (HR), all whose energies in the LLL and SLL are listed in Table 7.1.

In the LLL, it is clear that the lowest energy state is the unpolarized CFFS which

is a gapless state that does not yield the FQHE, although, the energy of the 331

state is very close. However, we know experimentally [185] that no FQHE has yet
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Figure 7.2: Energy per particle (in units of e2/εl) as a function of finite thickness,
d (in units of the magnetic length, l) for the MR Pfaffian (red) and the Halperin 331
state (green) in the LLL (a) and the SLL (b). The energy per particle increases with
thickness and the difference in energy between the two states decreases. However,
in the LLL, the Halperin 331 is always lower in energy than the MR Pfaffian while,
in the SLL, the opposite is true. In other words, finite thickness alone does not
apparently drive a spin order transition.
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Figure 7.3: Comparison of Halperin 331 and MR Pfaffian in the LLL. a) Energy
per particle as a function perturbation strengths ∆V1 and ∆V2. b) Energy difference
E∆ = EPfaff −E331 as function of ∆V1 and ∆V2. Regions where either Halperin 331
(E∆ > 0) or MR Pfaffian (E∆ < 0) is energetically favorable are denoted. The in-
termediate region denotes area where the energies are within numerical uncertainty
of each other. The star designates the Coulomb point for reference. The statistical
uncertainty in the energies is not indicated on these contour plots for ease of pre-
sentation. However, it is similar in magnitude to what is presented in Fig. 7.2 but
the qualitative effects of the uncertainty is indicated by the “intermediate” regime
where both energies are within statistical uncertainty of each other.
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Figure 7.4: Comparison of Halperin 331 and MR Pfaffian in the SLL. a) Energy per
particle as a function perturbation strengths ∆V1 and ∆V2. b) Energy difference
E∆ = EPfaff − E331 as function of ∆V1 and ∆V2. Regions where either Halperin
331 (E∆ > 0) or MR Pfaffian (E∆ < 0) is energetically favorable are denoted. The
intermediate region denotes area where the energies are within numerical uncertainty
of each other. The star designates the Coulomb point for reference.
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Energy [e2/(εl)] LLL SLL

E331 -0.4631(3) -0.329(3)

EPfaff -0.4573(3) -0.361(2)

ECFFS(P) -0.46557(6) [75] -0.3492(5) [75]

ECFFS(UP) -0.46953(7) [75] -0.2952(3) [75]

EHR -0.3147(3) [75] -0.303(3) [75]

Table 7.1: Energy calculated via VMC of various wavefunctions. Our results for
E331 and EPfaff agree with those of Dimov et al. [168] at the Coulomb point in the
LLL and SLL. The results listed below for the polarized and unpolarized CFFS and
the Haldane-Rezayi singlet state are given by Park et al. [75]. The lowest energy
state at the Coulomb point in the LLL and SLL is the unpolarized CFFS and MR
Pfaffian, respectively (both are indicated in bold).

been observed in single layer systems at ν = 1/2. In contrast, at the Coulomb point

in the SLL, the lowest energy state in Table 7.1 is the MR Pfaffian and, in fact,

the MR Pfaffian has been routinely experimentally observed at ν = 5/2 albeit at

low temperatures and in very high-quality samples, indicating that the ν = 5/2

FQHE is rather fragile with a very small gap and possibly with competing states

with comparable energetics.

Since the purpose of this work is to investigate the spin polarization of the half-

filled lowest and second Landau levels via VMC, we will focus exclusively on the

Halperin 331 versus the MR Pfaffian wavefunctions. A full investigation including

all possible ansatz and more realistic effective potentials that include finite thickness

and Landau level mixing [186] is beyond the scope of this work and will have to await

future works. Our work is in the spirit of a restricted variational study which makes
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sense for this problem since the two candidates we use (i.e. MR Pfaffian and Halperin

331) are essentially the ”only game in town” for incompressible even-denominator

FQHE states in single-layer 2D systems. In fact, part of the motivation of this

work is to establish the feasibility of this sort of VMC investigation of Hamiltonians

described by effective potentials.

Next, we examine the finite thickness effect and how it changes the expected

ground state energy of the MR Pfaffian and the Halperin 331 state. In Fig. 7.2(a)

are the numerically calculated energies in units of e2/εl, as a function of thickness (in

units of the magnetic length, l) in the LLL. The Halperin 331 state is consistently

lower in energy but the gap between the energies of the MR Pfaffian and the Halperin

331 state decreases with thickness. Similar results are seen in Fig. 7.2(b) for the

SLL where the MR Pfaffian is energetically favorable, but the energy difference

between the two states again decrease with thickness. Part of this likely stems from

the fact that the overall energy scale is shrinking due to the finite thickness effect.

Fig. 7.2 hides the complexity of the calculation. For each point on both (rather the

four) curves the following procedure was carried out: (1) for each value of thickness

d the pseudopotentials were calculated, (2) a real space effective potential Veff(r)

was found from these pseudopotentials, (2) many VMC evaluations of the energy of

either Ψ331 or ΨPfaff for N electrons were carried out, and finally (4) these energies

were extrapolated to the thermodynamic limit (1/N → ∞) to generate a single

point.

We now examine the effect of directly perturbing the first two Haldane pseu-

dopotentials in the LLL and the SLL. Fig. 7.3(a) gives the energy estimates for the
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MR Pfaffian and the Halperin 331 state with respect to ∆V1 and ∆V2 in the LLL.

Here we see that the energy of the MR Pfaffian is more sensitive to ∆Vm compared

to the Halperin 331 state. Also the MR Pfaffian decreases in energy with decreas-

ing ∆V1 or increasing ∆V2, whereas the Halperin 331 energy shows opposing trends.

Figure 7.3 (b) shows the energy difference between the MR Pfaffian and the Halperin

331 state and an estimated phase diagram–the phase is determined by whichever

wavefunction has the lowest ground state energy per particle. The “intermediate”

phase indicates where the energies are within numerical uncertainty of each other.

Here we see that the MR Pfaffian can be energetically favorable for relatively small

deviations from the Coulomb point for ∆V2 > 0.

Results for perturbations about the SLL Coulomb point are given in Fig. 7.4(a).

Here we see the same energy versus ∆V1 and ∆V2 has similar trends as was found

in the LLL , but the MR Pfaffian is consistently lower in energy in the SLL for

the majority of perturbations under investigation. Fig. 7.4(b) gives the difference in

energy and an estimated phase boundary between the MR Pfaffian and the Halperin

331. Again, the “intermediate” area indicates where the energies are within numer-

ical uncertainty of each other. Unlike in the LLL case, the MR Pfaffian is generally

favored for any perturbation in the SLL. In the region where the Halperin 331 state

is favorable in the SLL, the perturbations result in V2 < V1, which is a qualitative

feature of the Coulomb point in the LLL. If the effect of Vm>2 are minimal, then we

can argue that this region is qualitatively similar to the Coulomb point of the LLL

and therefore, the Halperin 331 state is energetically favorable in this region given

the results on the LLL.
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7.4 Conclusions

Our results show that through the finite thickness effect, the energies of the

Halperin 331 and the MR Pfaffian state increase with increasing sample thickness

in either LL. The energy difference between the two states decreases with increasing

sample thickness, but there is no crossing between the two states in either LL,

i.e., finite thickness apparently does not drive a spin polarization quantum phase

transition at least for the situation with vanishing Zeeman energy considered in

our work. It is possible, in fact quite likely for the LLL, that a finite Zeeman

splitting will induce a transition from the Halperin 331 to the MR Pfaffian state,

but neither may be the true ground state in the LLL since no ν = 1/2 FQHE has

ever been observed experimentally. Additionally, our results show that the energy

of the MR Pfaffian is more sensitive to changes in the pseudopotentials than the

Halperin 331 state, where the MR Pfaffian energy decreases with increasing ∆V2

and decreasing ∆V1. The energy of the Halprin 331 state, in contrast, is generally

insensitive (in comparison to that of the MR Pfaffian) with slight decreases for

∆V1 > 0 and ∆V2 < 0, cf. Figs. 7.3(a) and 7.4(a). In the LLL, the MR Pfaffian

becomes energetically favorable for small increases in V1 above the Coulomb point.

In the SLL, the Halperin 331 state becomes favorable for relatively large deviations

from the Coulomb point, (i.e. ∆V1 & 0 and ∆V2 . −0.06), again in the absence of

the Zeeman energy – given the small difference between the two VMC energies, it

is quite likely that the MR Pfaffian state has lower energy than the Halperin 331

state for all thickness values and all deviations from the Coulomb point once the
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Zeeman energy is taken into account since the Zeeman energy would always prefer

the spin-polarized state.

Our study adds to the growing body of evidence[133, 169, 173, 171, 172] sup-

porting the spin polarized MR Pfaffian description for FQHE at ν = 5/2. Of course,

conclusive verification of the MR Pfaffian description requires the direct experimen-

tal observation of non-Abelian anyons. But given the difficulty in conclusively de-

tecting non-Abelian signatures [80, 81, 187], novel experimental techniques will be

needed for definitive verification.

Lastly, we emphasize that our study additionally serves as a “proof of prin-

ciple” for VMC studies of various FQH systems that are described by effective

potentials. Effective potentials are needed when considering certain realistic effects

such as finite thickness, Landau level mixing, higher Landau level FQHE, disorder,

etc., or by simply artificially manipulating various Haldane pseudopotentials. Our

work establishes that the VMC technique is a viable alternative to the exact diag-

onalization method in theoretically studying the ground state properties of FQHE

including various realistic effects which are often hard to do using the finite size

diagonalization method.
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