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In this thesis two contributions are made to the area of mathematical finance.

First, in order to explain the non-trivial skewness and kurtosis that is observed in the

time-series data of constant maturity swap (CMS) rates, we employ the pure jump

Lévy processes, i.e. in particular Variance Gamma process, to model the variation

of unobservable economic factors. It is the first model to include Lévy dynamics in

the short rate modeling. Specifically, the Vasicek [51] type of short rate framework

is adopted, where the short rate is an affine combination of three mean-reverting

state variables. Zero-coupon bonds and a few fixed income derivatives are developed

under the model based on the transform method in Carr et al [13]. It is expected

that the Lévy based short rate model would give more realistic explanations to the

yield curve movements than Gaussian-based models.

Second, the model parameters are estimated by the particle filter (PF) tech-

nique. The PF has not seen wide applications in the field of financial engineering,

partly due to its stringent requirement on the computing capability. However, given



cheap computing cost nowadays, the PF method is a flexible yet powerful tool

in estimating state-space models with non-Gaussian dynamics, such as the Levy-

based models. To customize the PF algorithm to our model, the continuous-time

Lévy short rate model is cast into the discrete format by first-order forward Euler

approximation. The PF technique is used to retrieve values of the unobservable fac-

tors by sequentially using readily available market prices. The optimal set of model

parameters are obtained by invoking the quasi-maximum likelihood estimation.
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Chapter 1

Introduction

The past few decades has seen rapid development in the fixed income market

worldwide. As bonds issued by governments and corporations are being actively

traded between banks and funds, financial institutions on Wall Street have been

aggressive in designing and trading bond derivatives to provide insurance to in-

vestors. This phenomenal progress has stimulated an exuberance of efforts, from

both academia and industry, in mathematically modeling the dynamics exhibited

from the fixed income market.

Modeling the dynamics of short rate, which is the instantaneous increment of

a unit deposit, has been one most popular approach in modeling interest rate term

structures. This stream of work was pioneered by Vasicek [51] and Cox-Ingersoll-

Ross [18], and followed by Hull-White [36], etc. A common feature that all such

models share is to describe the randomness in the interest rate term structure by

Brownian motion. The use of Brownian motion implies that the conditional distri-

bution of the modeled object is normal, and one only needs the mean and variance

to characterize the distribution.

However, in the context of modeling financial assets, e.g. interest rates, such an

assumption is in a contradiction to many aspects of the real market. For instance, the

time series data of swap rates show that significant higher probabilistic moments, i.e.
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skewness/kurtosis, persist (see [24]). In addition, the evidence from the fixed income

derivative market indicates that the normality assumption breaks down too, as the

Black-implied volatilities1 backed from caps/floors/swaptions prices are markedly

non-constant, which otherwise should have been flat if normality holds (see [9]).

Because the market clearly does not support the normality assumption, in this

dissertation I seek to remedy these discrepancies in the existing fixed income models.

I adopted an approach that has seen great success in modeling the equity market

dynamics. This approach, as termed by pure-jump Lévy models, was originally

proposed by Madan et al in [42], and some other researchers [50].

A Lévy process is a stochastic process with independent and stationary incre-

ments. It can be decomposed into three independent components: a deterministic

drift process, a continuous path mean-zero diffusion and a jump process. A drifted

Brownian motion is the special case of a Lévy process without jumps, while the

general Lévy setting permits flexible jump structures in addition to the diffusion

and drift.

In terms of building models for asset returns, it has been argued in Madan

et al [42] that there is no absolute necessity to include a Brownian motion in the

underlying asset movement, because in reality no asset’s values move continuously

(at least the movement is limited by the minimum tick size, e.g. 1 cent for traded

stocks in New York Stock Exchange). Backed by this notion, the aforementioned

1The Black-implied volatility is the market convention to quote the caps/floors/swaptions based

on the Black formula [6]. The calculation of such a quantity is thus a reverse-engineering problem

to back out a model parameter, the Black-implied volatility, from the known prices.
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pure-jump Lévy market models use the infinite-active jump kernels, which make

small jumps arrive infinitely frequent, in order to remove the diffusion component.

Such models can flexibly incorporate the exhibited skewness and kurtosis in the mar-

ket data by specifying the jump kernel. In specific, an uneven jump measure yields

desired skewness, and a heavy tail weight in the jump measure provides adequate

kurtosis. A few pure jump Lévy models for the equity market, including Variance

Gamma (VG) model which is used in this work, have been proved sound to fit both

the time-series of asset returns under physical measure and the smile/skew volatil-

ity surface under the risk-neutral measure. As an evidence of their market success,

some of those models have been reportedly used by a couple of prestigious financial

institutions on Wall Street to evaluate their equity option positions on a daily basis.

In this dissertation, I developed a 3-factor Lévy -based short rate model whose

dynamics is

r(t) = α + β′x(t) ,

dx(t) = (a− κx(t))dt + BdL(t) , (1.1)

where the short rate r(t) is a scaler process expressed as an affine combination of

factors x(t) driven by Lévy dynamics dL(t) in the background. The affine structure

is specified by the scaler coefficient α and vector coefficient β, and the vector x(t)

follows a multidimensional mean-reverting Ornstein-Uhlenbeck (OU) process. The

vector a is denoted as the long run mean-reverting level for the factors x(t), κ as

the mean-reverting strength, and B as the correlating matrix.

This is the first model utilizing the Lévy structure dL(x) in the short rate,
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as opposed to the existing Brownian motion-based models. Multi-factor models

are more effective in explaining the interest rates movements, as one factor models

can not decouple the correlations between bonds across different maturities. The

3-factor model is in line with the conclusion from the seminal paper by Litterman

et al in [41] that found 3-factor is adequate to describe 99% of the yield curve

data. The model follows the Vasicek equilibrium modeling framework (see [51])

by specifying the process under the physical measure. Because we are primarily

concerned about pricing, the measure-change from the physical measure to risk-

neutral pricing measure is developed. Under the risk-neutral measure, closed-form

formulas for pricing bonds, swaps, caps/floors and swaptions via their characteristic

functions are derived based on the transform method in Carr et al [13].

Parameter estimation is of critical importance in applying financial models.

Although the Lévy -based model is structurally superior to Gaussian-based models,

it is computationally more expensive and require more sophisticated algorithms for

parameter estimation.

In order to acquire the stable estimation of the parameters, the model is first

cast into the state-space format. In other words, the state variables are modeled

as latent/unobservable factors while the model outputs observable measurements,

i.e. the prices for the fixed income products. The idea of state-space model is

formularized in Eqn. (1.2)

xt = (I − e−κ∆t)
a

κ
+ e−κ∆txt−1 + B∆Lt ,

zt = O(xt; Θ) + et , (1.2)

4



where the first equation approximates the OU process solution by using the first-

order Euler method. Θ is the set of parameters to be estimated, and the O(xt; Θ)

in the second equation represents the non-linear pricing function w.r.t. the state

variables xt and Θ. zt are the output prices and et are the normally distributed

pricing errors.

We are given 10-year weekly-sampled time-series across 9 different asset values

as data input. The maximum likelihood estimation (MLE) is used as the estimation

algorithm, and the likelihood function is constructed for errors et between the mar-

ket time-series quotes and model output prices. In the context of state-space model

estimation, such a joint error likelihood function is built with the help from employ-

ing the filter technique such as Kalman filter or its likes. However, the widely-used

Kalman filter requires strict theoretical assumptions, i.e. the linearity assumption

on the measurement and propagation functions and normality assumption on the

dynamics. Therefore, despite its power and convenience, Kalman filter (KF) is

not immediately applicable in our model since the randomness is not Gaussian nor

pricing functions linear.

We opt to use its counterpart, the particle filter (see [7, 20]), as our choice

for estimating the model. Particle filter (PF) has not seen massive applications till

recently with the computation cost being reduced tremendously. Contrasting to KF,

which only updates two essential quantities i.e. the mean and variance, the rationale

behind PF is to use a large amount of particles to represent the entire distribution.

The movement of the distribution is carried out by applying forward Monte Carlo

simulation sequentially. Therefore, by design, particle filter offers great flexibility as
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it can accommodate arbitrary dynamic structures and measurement functions.

In a nutshell, at each time step a particle filter first makes an ex-ante prediction

on the unobservable state variables x̂t. Once the new market observation zt is

received, the filter updates the state variables under the Bayes theorem. In theory,

the updated state variables xt converge to its true values, which are used to output

the model prices by O(xt; Θ). A filter technique recursively performs the prediction-

and-update procedure at all time steps till it reaches the end of the time-series. The

joint error likelihood function is then a multidimensional normal distribution across

all sampled dates and assets, and the logarithm of such likelihood function is given

as

L(Θ) = −1

2

M∑
t=1

N∑
i=1

(
(zt − z̃i

t)
′(Ri)−1(zt − z̃i

t)
)

, (1.3)

where zt is the market quote and z̃i
t are model output. R represents the covariance

matrix for the errors. M and N are the number of sampling days and asset classes,

respectively. Maximization of such likelihood function yields the optimal model

parameters as follows

Θ = arg max
Θ

L(Θ) . (1.4)

In the dissertation, Chapter 2 introduces the Lévy process as a mathematical

concept. It discusses a couple of popular pure-jump Lévy market models and their

simulation algorithms. As an important tool to reduce simulation variance, impor-

tance sampling technique for jump processes is studied. Chapter 3 focuses on the

development of 3-factor Lévy -based short rate. The measure change from physical

measure to pricing measure (risk neutral) is derived. Under the risk-neutral mea-
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sure, closed-form formulas for pricing bonds, swaps, caps/floors and swaptions via

their characteristic functions are developed. In Chapter 4, the maximum likelihood

estimation algorithm for the Lévy short rate model with particle filter is discussed

in detail. The estimation results show that the model has certain forecasting power

on the Libor and swap rates. In addition, the yield curve is analyzed using the

factor loading methodology which facilitates hedging and risk management. We

take caplet as an example of pricing fixed income derivatives. The model prices for

caplets show qualitative improvement against the existing models, but it also indi-

cates that the model is inadequate to price fixed income derivatives without further

seasoning.
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Chapter 2

Lévy Processes in Finance and Monte Carlo Simulation

2.1 Background

Mathematical finance has been an active research area after the birth of

Black-Merton-Scholes (BMS) equation in 1973. However, the constant volatility

assumption in BMS was obviously violated by the market observation of non-

constant volatility across maturity and strikes. To explain this so-called “volatility

smile/skew” phenomenon, diligent and astute researchers have proposed numerous

alternatives to BMS theory. The attempts can be grouped into three classes:

1. Local volatility model: The rationale underlying the local volatility model is

that future volatilities are deterministic functions of the underlying value and

calendar time, and these functions are implied by the current vanilla option

prices. The model was developed by Dupire [10] , Rubinstein [48], Derman and

Kani [19] in three independent efforts. The model retains the convenience of

Black-Scholes type of hedging argument. Because of its simplicity, traders to

price and hedge exotic options with the local volatility model after the model

is calibrated to the vanilla option market.

2. Stochastic volatility model: The second alternative is to randomize the volatil-

ity by a second Markovian stochastic process. The stream of efforts was pio-
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neered by Hull and White [36], Heston [34], etc. In those models, a non-zero

correlation between the spot and volatility processes is assigned to reproduce

the skewness across strikes and maturities. The Heston stochastic volatility

model is one of the market standards for derivative pricing and risk manage-

ment.

3. Jump model: The third approach is to keep the dynamics a one-dimensional

Markovian process but add jumps to the underlying, and jump structures could

be made to incorporate the skew/smile exhibited from the market. Merton [45]

in 1976 proposed the first jump-diffusion model for the underlying. Recently,

pure jump Lévy market models become increasingly popular, represented by

Variance Gamma model by Madan et al [42], CGMY by Carr et al [12], etc.

The Lévy models will be the building block for the work in this thesis and will

be elaborated in great details herein.

The Lévy models have been proved effective in explaining the smile/skew in

equity and foreign exchange (FX). People have built certain degree of belief in option

prices under those models. As an evidence of the models’ market success, a couple

of prestigious financial houses on Wall Street have been using those models or their

extensions to evaluate their option positions. In this chapter, I will first introduce

the mathematics needed to understand Lévy processes. A few popular Lévy market

models will then be described, including the VG and CGMY models. Monte Carlo

(MC) simulation is the most widely used computational tool in derivative pricing,

so the last section of this chapter will be dedicated to studying the simulation
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algorithms for the VG and CGMY processes. Importance sampling technique is

discussed as a variance reduction technique for MC simulation, and a couple of toy

examples are presented in the end.

2.2 Mathematics

Levy process is a stochastic process Xt that has independent and stationary

increments. Consequently, it is a Markovian process with the marginal distribution

of random variable Xt being infinitely divisible.

It is most common to study Lévy process by their characteristic functions.

The characteristic function of a random variable X is defined as

φX(u) = E[eiuX ] =

∫ +∞

−∞
eiuxfX(x) dx , (2.1)

where fX(x) is the probability density function of X and u ∈ R.1 The characteristic

function can be graphically viewed as the probability weighted average of a unit

circle on the complex plane. If we denote φX(u) = eψX(u), ψX(u) is then called the

characteristic exponent of X.

A Lévy process Xt is infinitely divisible, which indicates that the characteristic

function of marginal random variable Xt can be expressed as follows

φXt(u) = E[eiuXt ] = etψX1
(u) (2.2)

where ψX1(u) is the characteristic exponent of the Levy process at unit time. The

property of infinite divisibility gives rise to a great convenience to study Xt, namely

1u can be extended to the complex plane.
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one only needs to look at X1 in order to investigate the distributional properties of

Xt for any finite t.

A Lévy process can be decomposed into three independent components: the

first is a deterministic drift with rate b, the second is a continuous path diffusion

with volatility σ and the third is a jump process with the measure ν(dx). Hence,

a Lévy process can be fully characterized by the combined Lévy triplet (b, σ, ν(dx))

where b ∈ R, σ ∈ R+ and ν(dx) is a measure defined on R\{0}. The Lévy measure

ν(dx) describes the arrival frequency of jumps with different sizes, and could be

written in a functional form ν(dx) = k(x)dx, where k(x) is called the Lévy density.

For a one-dimensional Lévy process, the Lévy -Khintchine formula gives the

expression for characteristic exponent ψX1(u) as follows

ψX1(u) = bui− 1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1[|x|<1]) ν(dx). (2.3)

with
∫ +∞

−∞
min(1, x2) ν(dx) < ∞ , (2.4)

For a good reference of Lévy processes, please see Sato [49].

It is worth pointing out that many well-known stochastic processes are special

cases of general Lévy settings. For instance, if we set b = 0 and let the jump density

k(x) vanish for all real x, a standard Brownian motion with variance σ2 is then left.

Or, if both b and σ are set zero but k(x) = λδ(1), where δ(1) denotes the Dirac

measure at 1, the Poisson process with arrival rate λ is restored.

The so-called pure jump Lévy models ignore the Brownian motion component

but use tiny jumps to mimic the continuous movement. This could be realized by
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tilting the Lévy density k(x) sufficiently large as the jump size x approaches to zero.

For such pure jump processes, we can group the models into 3 exclusive categories.

Let’s define

I =

∫ +∞

−∞
ν(dx), J =

∫ +∞

−∞
|x|ν(dx)

where I and J denote the total arrival rate and total variation respectively. Thus,

a Lévy process would be called

1. Finite activity process if I < ∞ and J < ∞

2. Infinite activity but finite variation process if I = ∞ but J < ∞

3. Infinite activity and infinite variation process if I = ∞ and J = ∞

This classification is to distinguish the behavior of small jumps around the

origin. Due to the high frequency of tiny jumps, infinite activity process implies

that the total number of jump occurrence during any time interval is infinite. The

infinite variation process, which encompasses the infinite activity process, indicates

that beyond the infinite jump frequency, the summation of the absolute values of

all occurred jumps goes to infinity too in any finite time interval. Both infinite

activity and infinite variation processes could be used as the building block for the

pure-jump Lévy market models developed in the next section.

2.3 Pure jump Lévy market models

After the 1987 equity market crash, investors flocked to buy out-of-the-money

put options to protect their equity positions and this pushed up the out-of-the-
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money volatility and made the negative skew more pronounced. Additionally, it is

well known that the log daily returns have significant skewness and are fat-tailed.

As the market evidence does not support the constant volatility Brownian motion

models, people started looking for models with richer structures that yield realistic

explanations. It is natural to think, after observing catastrophic market crash, that

the market moves not only continuously, but jumps from time to time. As the

first attempt in this regard, R. Merton in 1976 proposed a jump-diffusion model for

equity market in [45] which used Brownian motion for the small movements and

jumps for the large.

However, in real world trading never happens continuously but rather one

trade after another, and the movement of the stock price path can not be absolutely

continuous because it is at least limited by the minimum tick size (e.g. 1 cent for

the traded stocks on New York Stock Exchange). So it leads to the suspicion that

if the Brownian component should be absolutely needed in the model, especially

in the sense of parsimonious modeling. A few researchers [42] have argued that in

reality the continuous diffusion component is not statistically significant, as long as

the small moves can be represented by alternative structures other than Brownian

motion. Under such rationales, Brownian motion is excluded from the pure jump

Lévy models.

In this section I will first describe the dynamics for a couple of popular Lévy

processes such as VG and CGMY. The market models are to use these processes

to describe the logarithm of the asset price. Consequently, the asset price itself

follows an exponential Lévy process. Careful treatments should be given here, be-
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cause to build a legitimate model for stock price, the model needs to satisfy the

martingale condition under the appropriate measure and associated numeraire in

order to prevent arbitrage opportunities. This section will discuss how to make the

exponential Lévy process a martingale by correcting the convexity term caused by

the exponentiation.

2.3.1 Variance Gamma process

Variance Gamma (VG) model developed by Madan, Carr and Chang in [42] is

an elegant model that offers analytical tractability and straight forward simulation

schemes, and it has been one of the most well-know pure-jump Lévy models in this

area.

A VG random variable X follows a 3-parameter (σ, ν, θ) probability law, and

its characteristic function is given by

φV G(u; σ, ν, θ) = (1− iuθν +
1

2
σ2νu2)−1/ν , (2.5)

with σ ∈ R+, ν ∈ R+, θ ∈ R. The elegance of VG process lies in that its Lévy jump

density can be expressed in a simple form as

kV G(x) =





C exp(Gx)
|x| x < 0 ,

C exp(−Mx)
x

x > 0 ,

(2.6)

where

C = 1/ν ,

G = (

√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν)−1 ,

M = (

√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν)−1 .

(2.7)
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One can recognize that each formula in Eqn.(2.6) is in fact the Lévy measure for

a gamma random variable. This indicates that a VG random variable can be decom-

posed into two gamma random variables; one has positive jumps and the other has

negative jumps. Under this representation, a VG random variable XV G(C, G,M)

can be written as the difference between two gamma random variables

XV G(C, G,M) = Xg(C, 1/M)−Xg(C, 1/G) . (2.8)

This fact leads to a straight-forward simulation algorithm that we will present in

the following section.

The VG process can handle the skewness and excess kurtosis exhibited from

the historical stock prices, and fit well the vanilla option volatility curve for single

maturities. For instance, a negative parameter θ will result in a negative skewness,

and the parameter ν provides the primary control for fat-tails in the empirical

distribution. For the vanilla option market, a negative θ accounts for the negative

slope in the volatility curve.

VG process can also be intuitively expressed as a time-change Brownian Mo-

tion, where the time-change process2 is a gamma process. In specifics, a VG process

can be obtained by substituting the deterministic time t with a gamma random

variable g(t) in a drifted Brownian motion X(t) = bt + σW (t). Under the (σ, ν, θ)

parameterization we have the expression for XV G as

XV G(t) = θg(t) + σW (g(t)) , (2.9)

where g(t) follows gamma distribution gamma(t/ν, ν).

2A time-change process is also called a subordinator in some literatures.
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The concept of time-change Brownian motion has strong economics intuitions.

It is clear that the market does not evolute identically every day; rather, some days

the trading activities are more intensive, while other days the market is just quiet and

has less trading going on. So the length of a market day is better measured by the

concept of random “business time” rather than the calendar time. As a (technical)

benefit, VG process could be simulated by generating the standard Brownian motion

subordinated by gamma random time.

2.3.2 CGMY process

Variance Gamma process is of infinite activity but finite variation, but it can

be extended to have a better control over the fine structure of asset return distri-

bution by adding one parameter. The generalized model is called CGMY model as

developed by Carr et al in [12]. Based on the parameterization (C, G,M) of VG,

CGMY process adds the fourth parameter Y to the power of the denominator x as

in Eqn.2.7. CGMY jump density is then given as —

kCGMY (x) =





C exp(Gx)
|x|1+Y x < 0 ,

C exp(−Mx)
x1+Y x ≥ 0 ,

(2.10)

where C > 0, G > 0,M > 0, Y < 2. (Y < 2 is to keep the process having finite

second moment.)

By adding Y , we gain the flexibility to specify a finer structure. For Y < 0,

the Lévy process is of finite activity; for 0 ≤ Y < 1, it is of infinite activity but finite

variation; for 1 ≤ Y < 2 the process is of infinite activity and infinite variation. As

special cases, VG process is recovered if Y = 0, and Kou’s double exponential model
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in [40] is a finite activity process with Y = −1.

The characteristic function of CGMY random variable is given by

φCGMY (u; C, G,M, Y ) = exp
(
CΓ(−Y )

{
(M − iu)Y −MY + (G + iu)Y −GY

})
,

(2.11)

where the Γ(.) is the gamma function.

CGMY process also has a time-changed Brownian motion representation which

has been recently discovered in Madan et al [43]. We will show it together with

discussion of the CGMY simulation algorithm in the next section.

2.3.3 Market models

Lévy market models assume that the martingale component of the dynamics

in the log price of Xt is given by a Lévy process, e.g. VG or CGMY. As we are

most concerned about pricing derivatives, the model specification is skipped under

the physical measure. Rather, the stock price dynamics as the exponential Lévy

process under the risk neutral measure is given by

St = S0 exp
(
(r + ω)t + Xt

)
, (2.12)

where r is the risk-free interest rate and ω accounts for the “logarithm convexity

correction”. The ω appears in the exponential because it is needed to make the

stock process an exponential martingale, which is a general requirement in asset

pricing theory in order to prevent arbitrage opportunities. It can be shown that ω

is defined as

exp (−ω) = φ(−i; Θ)
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where φ(. ; .) is the characteristic function of the Lévy process and Θ represents the

model parameters. For VG and CGMY models, their characteristic functions have

been given in Eqn.(2.5) and (2.11) respectively.

Lévy market models have been applied to option pricing in the real world

recently and the popularity has been increasing (see [17, 50] for details). Here we

only want to briefly compare the Lévy models with the stochastic volatility models,

in terms of their pros and cons in option pricing. Lévy models have the advantage

of keeping themselves stay within the family of the one dimensional Markovian

process, but the stochastic volatility models need an additional stochastic process

that captures the volatility. Secondly, under stochastic volatility models, which

have only continuous martingale components, are unable to generate the smile/skew

volatility curve for short-dated options. This is caused by the fact that the path

continuity prevents Brownian motions from generating enough variations in a short

period of time dt. However, such a problem does not exist for infinite activity Lévy

models because during the time interval of any length there are an infinite number

of jumps occurring. Therefore, even for short-lived options such Lévy models can

produce the exhibited skews.

However, pure jump Lévy models contradict the market in some other aspects.

For instance, under Lévy models the implied volatility curve of the long-dated op-

tions flattens out, but the market shows significant skew in those options. This is

because of the i.i.d. increment assumption that Lévy processes hold. The central

limit theorem (CLT) states that the summation of a large number of i.i.d random

variables approaches to the normal distribution, so for the long run the skewness
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and kurtosis provided by the Lévy process are suppressed by CLT. Another con-

tradicting example is that under the time-homogeneous Lévy models the implied

volatility surface for the forward-start option 3 is theoretically an exact duplication

of the current implied volatility surface, whereas the market indicates a significant

difference between those two surfaces. A third unsatisfactory outcome with the

Lévy models is the process’s constant variance, which can not explain the volatility

clustering and leverage effect observed in the historical data of the realized volatility.

To solve the above problems associated with basic Lévy models, Carr et al

in [14] proposed the stochastic volatility Lévy models which essentially employ an

additional Markovian process to time-change the Lévy process in the spot price

dynamics. These models essentially combine the advantages of the basic Lévy and

stochastic volatility models, thus simultaneously attack the aforementioned deficien-

cies successfully.

Although it would be very naive to claim the stochastic Lévy models are the

perfect description of the real world, those models provide a closer look to help

explain the option market phenomena.

2.4 Monte Carlo simulation

Monte Carlo simulation has been widely used in financial engineering with

applications ranging from pricing, hedging, risk managing, etc. Compared to other

methodologies in pricing derivatives, Monte Carlo simulation has the advantage of

3A plain vanilla option that comes into life on a specified future date.
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being flexible and easy-to-implement. In fact, Monte Carlo simulation serves as the

only approach when pricing derivatives with complicated structures such as exotics

options or hybrids products that is becoming a booming business in recent years.

For a full account with overviews in this regard, readers are referred to [26, 37].

It is a well-known drawback of Monte Carlo simulation that the convergence is

slow, i.e. the confidence interval decreasing at a rate proportional only to the square

root of the number of the random draws. In practise, one needs to seek for variance

reduction techniques in order to speed up the convergence. Depending on specific

scenarios, different variance reduction tools should be chosen. For instance, when

pricing far-out-of-money options people use importance sampling to redirect the

process to the interested area and then change it back by multiplying the Radon-

Nikodym ratio. Variance reduction is especially important in derivative pricing

business, because very often a customer wants a real-time quote on a product with

however complicated structures.

In this section I will focus on discussing the simulation algorithms for VG and

CGMY processes, and provide numerical comparisons between different simulation

schemes. I will also talk about the importance sampling technique under the Lévy

process, and numerical demonstrations will be presented.
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2.4.1 Simulate VG and CGMY

Variance Gamma

We have learned from Eqn. (2.8) that a VG random variable could be decom-

posed into two gamma random variables. Based on this rationale, one could take

advantage of the gamma random variable simulation and generate VG process as

the difference of those two gamma random variables. The corresponding simulation

algorithm, using the {C, G,M} parameterization, is listed in Table (2.1)

Simulation of Xt ∼ VG(t; C, G,M)

1. Generate G−
t ∼ gamma(tC, 1/G)

2. Generate G+
t ∼ gamma(tC, 1/M)

3. Return Xt = G+
t −G−

t

Table 2.1: VG process simulation as the difference of two gamma random variables

CGMY

Unfortunately, the elegant simulation algorithm, as in the above VG case,

is not available for all Lévy processes. The most general approach to simulate an

arbitrary Lévy process is to treat the jumps as compound Poisson process and sample

from its Lévy density. For the compound Poisson simulation, one first calculate the

jump arrival rate and simulate the point process to locate the random sequence of

jump time epochs. Given a jump has occurred, we sample the jump size from the

normalized Lévy density. A compound Poisson random variable XCP (t) is then the
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summation of all jumps up to time t.

The problem of the above solution is that for infinite activity and infinite vari-

ation Lévy processes, the arrival rate is infinite for any time interval. However, one

realizes that this infinity problem is caused by jumps of tiny sizes while the arrival

rates for large jumps are always finite by definition. This provides a general way of

simulating such processes — namely the small jumps are cut off and approximated

while large jumps are simulated as compound Poisson. This general idea is tailored

to the CGMY simulation algorithm as discussed below.

We first cut off the small jumps of absolute size less than ε, a small positive

value4. Those small jumps will be approximated by Brownian motion with cor-

responding variance5. For the large jumps left, compound Poisson simulation is

employed and we sample jumps using the acceptance-rejection method.

For large jumps, we first make a truncated jump density kε
CGMY in Eqn. (2.10)

and then we have

kε
CGMY (x) =





C exp(Gx)
|x|1+Y x < −ε ,

C exp(−Mx)
x1+Y x ≥ ε ,

In order to make the best efficiency for the acceptance-reject method, we want to

find a function f ε(x) whose value is close to but always greater than kε
CGMY (x) at

every x. For x ≥ ε, it can be shown that the function

f ε(x) =
Y εY

xY +1
1[|x|≥ε], Y < 2

4For practical purpose we pick ε = 10−4.
5Brownian motion provides a good approximation for small jumps as shown by Asmussen and

Rusiński [1]
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has an efficiency close to 1 as ε approaches to zero. The cumulative distribution

function of f ε(x) is obviously F ε(x) = 1 − εY

xY 1[|x|>ε] whose inversion is simply

F−1
ε (x) = εu−1/Y where u is a uniform random variable. The case of negative

large jumps can be treated identically.

For jump sizes with absolute values smaller than ε, we calculate their variance

as follows

σ2
ε =

∫ +ε

−ε

x2 ν(dx) < ∞ .

The small jumps are then approximated by a Brownian motion with drift zero and

variance σ2
ε .

So far we have developed a simulation algorithm by decomposing the CGMY

process into three components, i.e. the large positive jumps, the large negative jumps

and small jumps, and generate the each component separately. The algorithm is

listed in Table (2.2).

The I− and I+ are intensities for positive and negative jumps respectively,

and they can be calculated as a gamma incomplete function.

2.4.2 Simulate VG and CGMY as time-change Brownian motion

The benefit of viewing a Lévy process time-changed Brownian Motion has two

folds with respect to simulation. First, we avoid directly dealing with the Lévy jump

density which might be difficult to sample from. Second, it provides a modularity

benefit so as to fit into the existing simulation package.
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Simulation of Zt ∼ CGMY(t; C, G,M, Y ) process

1. Calculate I− = C
∫ −ε

−∞
eGxdx
|x|Y +1 for x < 0, I+ = C

∫∞
ε

e−Mxdx
xY +1 for x > 0

2. Simulate N− = poisson(tI−) and N+ = poisson(tI+), where N− and N+

refer to the number of negative and positive jumps respectively

3. For negative jumps, Loop i = 1 : N−

• Generate U ∼ uniform[0, 1]

• Repeat

– Generate {W,V } ∼ uniform[0, 1]

– Set X−
i = εW−1/Y

– set T =
Cfε(X−

i )ε−Y e−λε

Y kε
CGMY (X−

i )

• Until V T ≤ 1 and then store X−
i

4. Do the same calculation for N+ as in step (3), and store all X+
i

5. Calculate σε =
∫ +ε

−ε
x2 kCGMY (x)dx < ∞

6. Simulate Xε = σε

√
tB where B ∼ Normal(0, 1)

7. Return Zt = −
N−∑

i

X−
i +

N+∑
i

X+
i + Xε

Table 2.2: CGMY process simulation as compound Poisson and Brownian motion
approximation

Variance Gamma

As in Eqn.(2.9) VG is viewed as a Brownian motion subordinated by a gamma

process. Below in Table (2.3) is the procedure for simulating VG process Xt with

parameter set (σ, ν, θ).
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Simulation of Xt ∼ VG(t; σ, ν, θ)

1. First step: generate Gt ∼ gamma(t/ν, ν)

2. Second step: insert Gt into a Brownian motion

• Generate a standard normal random variable W ∼ Normal(0, 1)

• Return Xt = θGt + σ
√

GtW

Table 2.3: VG process simulation as the time-change Brownian motion

CGMY

The expression of CGMY as a time-changed Brownian motion is recently dis-

covered by Madan and Yor in [43] by using a random truncation upon a stable

process. We skip the discussion here, but only list the simulation algorithm devel-

oped in [53] in Table (2.6).

2.4.3 Importance sampling under Lévy processes

Monte Carlo simulation is often used to evaluate integrals by sampling ran-

dom points from the relevant probability distribution. However, the choice of sample

distribution obviously makes a real-world difference to the efficiency of the method.

For example, brutal-force simulation for a rare event under the original distribution

creates a great deal of void points that contribute nothing to the calculation of the

integral, and hence causes high variance and slow convergence. Importance sam-

pling is a variance reduction technique. As inferred by the name, it samples from

a different distribution under which most random draws would make non-zero con-

tributions to the integral evaluation. The displacement caused by the distribution
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Simulation of CGMY(t; C, G,M, Y ) process

1. A = (G−M)/2, B = (G + M)/2 .

2. Take an ε a small value, say 0.0001. For jumps in the subordinator that
is smaller than ε we use the expectation to replace it; for jumps bigger
than ε we simulate it by inverting the CDF.

3. The expectation of the small jump is d =
∫ ε

0
y C

y
Y
2 +1

dy = Cε1−
Y
2

1−Y
2

.

4. The arrival rate for jumps bigger than ε is λ =
∫∞

ε
C

y1+ Y
2

dy = 2C

Y ε
Y
2

.

5. Let T be a pseudo-time T = tC
√

πΓ(1+Y
2

)/2
Y
2 .

6. Generate a Poisson RV N with arrival rate Tλ .

7. Generate ti, i = 1, . . . , N uniform distributed within [0, t] .

8. Generate jumps yi at ti given by yi = ε

(1−u1i)
2
Y

, where u1i is an indepen-

dent uniform sequence. (Inversion of the Normalized Lévy density)

9. S(t) = dt +
∑

yi1h(yi)>u2i
, where u2i is another independent uniform

sequence. (the calculation of h(yi) is presented below)

10. Once S(t) is known, then the CGMY process Xt = AS(t) +
√

S(t)W ,
where W follows normal(0, 1).

Calculation of truncation function h(y)

1. h(y) = e−
−(B2−A2)y

2
Γ(Y +1

2
)

Γ(Y )Γ( 1
2
)

2Y (B2y
2

)
Y
2 I(Y, B2y, B2y

2
).

2. I(Y, 2λ, λ) = H−Y (
√

2λ) Γ(Y )

(2λ)
Y
2

, where Hν(.) is the Hermite function.

3. Hermite function is explicitly known in terms of Confluent Hypergeo-
metric Function 1F1, where

Hν(z) = 2ν/2π
[ 1

Γ(1−ν
2

)Γ(1
2
)

1F1(
−ν

2
,
1

2
, z2/2)

− z√
2Γ(−ν

2
)Γ(3

2
)

1F1(
1− ν

2
,
3

2
, z2/2)

]

Table 2.4: CGMY process simulation as the time change Brownian motion
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change will be corrected by multiplying the each individual random evaluation by a

ratio, which will be discussed in details below.

Suppose p(x) is a probability distribution function (pdf) and one is interested

in the integral

I =

∫
f(x)p(x)dx . (2.13)

With a large number of random draws from the original p(x), the integral I could

be approximated as

I ′ =
∑

f(xi) . (2.14)

However, the pdf function p(x) and the evaluated function f(x) are independent

so p(x) could concentrate its weights in the region where f(x) has no significant

values. Monte Carlo approximation then becomes inefficient because most draws

will be wasted in this case. To increase the efficiency, we can equivalently rewrite

the integral as

J =

∫
f(x)

p(x)

q(x)
q(x)dx , (2.15)

such that it can be approximated by

J ′ =
∑

f(xj)
p(xj)

q(xj)
, (2.16)

with points xj drawn from the new distribution q(x), termed the importance distri-

bution. q(x) shares the same sample space as p(x) but can be chosen to concentrate

in areas where the values of f(x) are non-zero. The technique reduces the variance

incurred in the integral approximation.

Above defined is the concept of importance sampling on random variables. In

finance however, we are dealing with time series of asset returns which are processes,
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i.e. a collection of random variables indexed by time. Nevertheless, a process can

be considered as a random variable X measured by the probability law P in the

path space Ω. Then if we construct a new probability measure Q such that it is

equivalent to P, namely

P(Ω) = 1 ⇐⇒ Q(Ω) = 1 ,

then we call the new probability measure a change of measure.

The Radon-Nikodym derivative Zt = dP
dQ |Ft is what we need to perform the

importance sampling. It is defined a Ft measurable martingale process under mea-

sure Q. The rigor in defining the general Radon-Nikodym derivative Zt for Lévy

processes can be found in Sato [49]. Here we discuss the special case — pure jump

Lévy process without continuous martingale component, i.e. Brownian motion.

Proposition 1 Let (Xt, P ) and (Xt, P
′) be two pure jump Lévy processes with the

triplets (b, 0, ν) and (b′, 0, ν ′), then P |Ft and P ′|Ft are equivalent for all t if and

only if the following two conditions are satisfied

1. The Lévy measures are equivalent with

∫ +∞

−∞
(eφ(x)/2 − 1)2ν(dx) < ∞ ,

where φ(x) = ln
(

dν
dν′

)

2. We must also have

b′ − b =

∫ 1

−1

x(ν ′ − ν)(dx) .

When they are equivalent, the Radon-Nikodym derivative is

dP ′

dP
|Ft = eUt (2.17)
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where Ut is given

Ut = lim
ε→0

( ∑

s≤t,|∆Xs|>ε

φ(∆Xs)− t

∫

|x|>ε

(eφ(x) − 1)ν(dx)
)

. (2.18)

The definition of the Radon-Nikodym derivative in the Proposition 1 indicates

that in general its calculation depends on the information of all jumps {∆Xs,∀s < t}

along each entire path. This is an unwanted property because it could substantially

increase the requirement for computer storage and computation. For example, sup-

pose one is applying the importance sampling technique to price far out-of-money

European option. However, simulating only the terminal stock prices under the new

measure is no longer sufficient to price the option, and one has to generate the whole

evolution for each sample path. As a matter of fact, the benefit from the variance

reduction will be largely offset, if not totally lost, by the excessive CPU time spent

on the path simulation.

However, the next two propositions show that in certain cases, i.e. if the ratio

of two Lévy measures is strictly exponential, we could still rely on the terminal

values to calculate the Radon-Nikodym derivative. And as a matter of fact, VG and

CGMY processes fall in this convenient class.

Proposition 2 Let (Xt,P) and (Xt,P ′) be two pure jump Lévy processes with the

triplets (b, 0, ν) and (b′, 0, ν ′), then the Radon-Nikodym derivative dP ′
dP |Ft only de-

pends on the terminal value Xt instead of the whole path {∆Xs,∀s ≤ t} if and

only if the ratio of the two Lévy measures dν
dν′ is a strict exponential function, i.e.

dν
dν′ = ecx for all x, where c is a constant.
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Proof of Proposition 2. From Eqn.(2.17), we have

dP ′
dP |Ft = eUt

= exp
(
lim
ε→0

( ∑

s≤t,|∆Xs|>ε

φ(∆Xs)− t

∫

|x|>ε

(eφ(x) − 1)ν(dx)
))

= exp
(
lim
ε→0

( ∑

s≤t,|∆Xs|>ε

φ(∆Xs)
))

exp
(
lim
ε→0

(−t

∫

|x|>ε

(eφ(x) − 1)ν(dx)
))

= exp
(
lim
ε→0

( ∑

s≤t,|∆Xs|>ε

c∆Xs

))
exp

(
lim
ε→0

(−t

∫

|x|>ε

(eφ(x) − 1)ν(dx)
))

= exp (cXt) exp
(
lim
ε→0

(−t

∫

|x|>ε

(eφ(x) − 1)ν(dx)
))

As shown in the proof, under the condition in Proposition 2 the calculation of

the measure change solely depends on the terminal value Xt and no long requires the

path information. We show in the next Proposition 3 how this simplified measure

change is applied to Variance Gamma process.

Proposition 3 Let P and P ′ be the measures of Variance Gamma processes fol-

lowing V G(t; C, G,M) and V G(t; C ′, G′,M ′). The Lévy measures are ν and ν ′, re-

spectively. Xt is the random variable under the measure of P and can be decomposed

into the difference of two gamma random processes, i.e.

Xt = g+
t − g−t

where g−t ∼ Gamma(Ct, G) and g+
t ∼ Gamma(Ct, M). Then the Radon-Nikodym

derivative dP ′
dP |Ft only depends on the terminal value g−t and g+

t but not the entire

path {∆g±s ,∀s ≤ t} only if C = C ′ such that

dP ′
dP |Ft = exp (−tZ) φ+(g+

t ) φ−(−g−t )
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where

Z =

∫ ∞

−∞
(ν ′ − ν)(dx)

φ−(x) = e−(G′−G)|x|, x < 0

φ+(x) = e−(M ′−M)x, x > 0

The validity of Proposition 3 can be easily proved by Proposition 2, and the ex-

tension from VG to CGMY process is straight-forward too. We skip both proofs

here.

The measure change technique is used widely in pricing complicated financial

derivative products. For example, for far out-of-the-money European put option a

naive Monte Carlo simulation will have significant variance in the price since only

a small proportion of simulated paths will end up lower than the strike. Another

example is the up-and-out barrier option in which the upper barrier is far away from

the spot so the probability of breaching the barrier is slim. In those cases, a limited

number of simulation paths will not be sufficient to make accurate estimation of the

price.

To perform importance sampling, we need to alter the process and redirect

it to the interested region. For example, if the underlying dynamics follows a

VG(t; C, G,M) law and the task is to price a up-and-out barrier call option with

a high upper barrier. So we could sample from a new measure VG(t; C ′, G′,M ′)

with G′ > G but M ′ < M so as to make more upward moves and less downward

moves for the new process than the original process. Note: the parameter C and C ′

should be kept the same in order to satisfy the condition in Proposition 2. By this
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means, more paths will be favorably sampled to shoot toward the barrier; the bias

caused by the change would be corrected by multiplying the results by the Radon-

Nikodym derivative developed in Proposition 2. We will show a concrete numerical

example in the next subsection.

2.4.4 Numerical results

Simulation validation

In this section we first present some simulation results for CGMY process

using two different algorithms — as the compound Poisson and as the time-change

Brownian motion (TCBM). We draw a comparison between the two algorithms on

the CPU time spent on the simulation.

Figure 2.1 qualitatively illustrates the goodness-of-fit for the two algorithms

for the symmetric case (G = M), and Figure 2.2 for the asymmetric one (G 6= M).

In both plots, the blue lines represent the binned simulation data while the red lines

are theoretical PDFs, which are obtained from Fourier inversion from characteristic

function using algorithm developed in [44]. Both figures show good fitting qualities.

We also tabulate the chi-square goodness-of-fit numerical results in Table (2.5)

and (2.6) 6 with a quantitative view of the algorithms performance. We conduct

the experiment for various configurations of model parameters for both algorithms.

6χ2 is the chi-square test statistic, k is the number of freedom, p is the chi-square CDF value,

and χ2
α,k is the critical value at confidence level α with freedom k. The null hypothesis H0 can

not be rejected (denoted by ”H0 N.R.” in both tables) if χ2 is less than χ2
α,k.

32



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700
Chi−square test for CGMY as compound Poisson

X
t

#

Theoretical
Simulated

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700
Chi−square test for CGMY as TCBM

X
t

#

Theoretical
Simulated

Figure 2.1: Chi-Square goodness-of-fit test illustration for simulation of CGMY (t;
C, G, M , Y ) process, as compound Poisson and time-change Brownian motion, with
t = 0.5, C = 0.8, G = 30,M = 30, Y = 0.5, 2× 104 samples
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Figure 2.2: Chi-Square goodness-of-fit test illustration for simulation of CGMY (t;
C, G, M , Y ) process, as compound Poisson and time-change Brownian motion, with
t = 0.3, C = 0.5, G = 20,M = 10, Y = 0.5, 2× 104 samples
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The tables show that in all cases the null-hypothesis H0, which states that the

simulated random variables are drawn from the specified CGMY distribution, can

not be rejected for three levels of significance (α = 0.01, 0.05, 0.1).

Efficiency comparison

Given the fact that both algorithms can successfully pass the goodness-of-fit

test, we next compare the efficiencies in terms of CPU time. In CGMY process simu-

lation, the value of parameter Y should be given special attention because it controls

the behavior of small jumps, which cause most of the difficulties in simulation. For

a large value of Y (Y < 2), the Lévy density increases sharply around the origin and

hence tiny jumps happen more frequently than a smaller Y . Computation-wise,

a larger Y value takes more simulation time for both algorithms. Although the

compound Poisson method is more efficient for small Y , it suffers most from an

increasing Y because the acceptance-rejection method would reject more and more

draws as Y gets larger. The time-change Brownian motion takes more time than

the compound Poisson for small Y since it involves the computation of complex

functions such as the confluent hypergeometric function (the 1F1 function), but it

beats the counterpart for larger Y because the rejection rate becomes overwhelming

for the compound Poisson’s performance. The Figure (2.3) illustrates the following

two aspects about the efficiency of the two algorithms —

1. both methods consume more CPU time with an increasing Y ,

2. the compound Poisson beats time-change Brownian motion (TCBM) for Y ≤ 1
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Parameter set Chi-square statistics Critical value & results
t C G M Y χ2 p k χ2

0.01,k χ2
0.05,k χ2

0.10,k

0.5 0.8 30 30 0.5 95.77 0.42 98 133.476 122.108 116.315
H0 N.R. H0 N.R. H0 N.R.

0.5 0.5 10 10 0.5 182.17 0.57 178 224.8 210.1 202.6
H0 N.R. H0 N.R. H0 N.R.

0.5 0.5 30 20 0.5 80.64 0.13 95 130 118.8 113
H0 N.R. H0 N.R. H0 N.R.

0.3 0.2 30 20 0.8 77.26 0.33 82 114.7 104.1 98.78
H0 N.R. H0 N.R. H0 N.R.

0.3 0.2 30 20 1.2 114.24 0.09 135 176.1 163.1 156.4
H0 N.R. H0 N.R. H0 N.R.

0.2 0.1 20 10 1.4 152.07 0.62 146 188.7 175.2 168.3
H0 N.R. H0 N.R. H0 N.R.

Table 2.5: Chi-Square goodness-of-fit test numerical results for simulation of
CGMY (t; C, G, M , Y ) process as compound Poisson process, 104 samples. N.R.
stands for Not Rejected

Parameter set Chi-square statistics Critical value & results
t C G M Y χ2 p k χ2

0.01,k χ2
0.05,k χ2

0.10,k

0.5 0.8 30 30 0.5 86.91 0.24 96 131.141 119.871 114.131
H0 N.R. H0 N.R. H0 N.R.

0.5 0.5 10 10 0.5 186.69 0.68 178 224.8 210.1 202.6
H0 N.R. H0 N.R. H0 N.R.

0.5 0.5 30 20 0.5 106.79 0.64 101 137 125.5 119.6
H0 N.R. H0 N.R. H0 N.R.

0.3 0.2 30 20 0.8 62.66 0.07 80 112.3 101.9 96.58
H0 N.R. H0 N.R. H0 N.R.

0.3 0.2 30 20 1.2 130.76 0.34 137 178.4 165.3 158.6
H0 N.R. H0 N.R. H0 N.R.

0.2 0.1 20 10 1.4 169.60 0.85 150 193.2 179.6 172.6
H0 N.R. H0 N.R. H0 N.R.

Table 2.6: Chi-Square goodness-of-fit test numerical results for simulation of
CGMY (t; C, G, M , Y ) process as time-change Brownian motion, 104 samples.
N.R. stands for Not Rejected
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but underperforms TCBM for Y > 1.

Importance sampling

We next show how to improve the accuracy of Monte Carlo simulation using

importance sampling. For the purpose of simplicity and convenience we take Vari-

ance Gamma process in this demonstration. We follow the Proposition 3 to perform

the measure change for VG process. Assume that the underlying follows the sym-

metric process VG(t; C, G,M) and our task is to price a pseudo far out-of-money

put option with a deep-low strike. We pick a new VG(t; C ′, G′,M ′) process trending

downward so that paths are more likely to breach the low strike. The model param-

eters and option specifications are listed in Table (2.7). With a smaller G′ but larger

M ′ we allow more negative jumps to happen than positive ones. As illustrated in

Figure (2.4), the draws of random variables under the new measure is concentrated

on the negative half axis, which is exactly what is needed to have more probability

mass in the neighborhood of the deep-low strike. Figure (2.5) plots the averaged

Monte Carlo price against the number of simulation runs for the naive Monte Carlo

and Monte Carlo with importance sampling technique. Clearly, it shows the supe-

rior performance of applying importance sampling, as the option price under the

new process with importance sampling converges much faster than that under the

original one.
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Figure 2.3: CPU time comparison of compound Poisson and time-change Brownian
motion for simulating CGMY (t; C, G, M , Y ) with t = 0.2, C = 0.1, G = 20,M = 10
and varying Y , 104 samples
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Original VG New VG Option specifications
C G M C ′ G′ M ′ Type Strike Maturity Initial Interest
5 10 10 5 7 12 Euro Put K = −1.5 T = 4 S0 = 0 r = 0

Table 2.7: Parameters and specifications for the numerical illustration of VG mea-
sure change
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Figure 2.4: Histogram comparison for V G(t; C, G, M) and V G(t; C ′, G′, M ′) with
parameters listed in Table (2.7), 2× 104 samples
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C, G, M) and V G(t; C ′, G′, M ′) with importance sampling, parameters listed in
Table (2.7)
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Chapter 3

The 3-Factor Lévy Based Short Rate Model

3.1 Background

Whereas for modeling in equity markets one has the Black-Scholes theory ar-

guably as a bench mark or market standard, the situation in fixed income market

is more complicated. The mathematics involved in modeling the fixed income mar-

ket dynamics is essentially infinite dimensional and no market standard has been

established for more than special asset classes.

On the other hand, the fixed income market is much larger than equity market.

It is so large that even bond derivatives are liquidly traded. On 04/25/2006, for

instance, the outstanding notional for the CBOT futures contracts on government

bonds with maturities of [30, 10, 5, 2] years was worth 180 billion dollars, which

amounts to the 2004 GDP of the country Ireland ranked the 30th largest in the

world in terms of GDP.

The research on modeling fixed income market has been active. The first at-

tempt was the equilibrium modeling as pioneered by Vasicek [51] and Cox-Ingersoll-

Ross [18] and followed by Hull-White [36], etc. Those models view the short rate,

defined as the instantaneous increment of a unit deposit, as the only source of uncer-

tainty in the economy. Short rate is then modeled by a mean-reverting process with

Gaussian randomness. Short rate models are favored by hedge funds and invest-
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ment banks’ proprietary trading desks because those models supply the equilibrium

prices which are presumably the prices the market will asymptotically converge to.

However, fixed income derivative traders are not fond of this type of short rate mod-

els because they are not arbitrage free — i.e. differences between the model prices

and the market quotes always exist under such models. Pricing derivatives with a

model that can not make the underlying arbitrage free is dangerous and is avoided

by practitioners.

No-arbitrage models came up in mid-90’s represented by Heath-Jarrow-Morton

(HJM) model [31]. Instead of modeling the short rate, the HJM model was to

describe the forward rate dynamics. In the HJM framework, market models such as

BGM/J model [8, 38] were developed for particular fixed income rates. No-arbitrage

models give reasonable derivative prices, because the underlying values are perfectly

matched to the market by design.

However, all the aforementioned models uses Brownian motion to describe

the uncertainty. As we have discussed, the normality assumption associated with

Brownian motion was barely supported by the market because Brownian motion

lacks the structural properties to model many observed market phenomena.

Although the disagreement among the choice of models has not deterred banks

from trading, a better model certainly helps understand the market better, and

hence profit more. In this chapter we are going to develop a new short rate model

based on the Vasicek framework yet without using Brownian motion. Rather, in-

finitely active Lévy jump structures are included in the short rate in order to rec-

oncile the discrepancy between the market and the existing models.
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As one factor models have been proved less effective in explaining the correla-

tions between bonds across different maturities, three independent Lévy factors are

employed in the model. This setup is in line with the conclusion as in [41, 32] which

showed that 3 factors in the dynamics are adequate to explain more than 99% of

the yield curve data historically.

In this chapter, the basic conventions and methodologies used in the fixed

income modeling will be firstly introduced. A brief overview on the existing fixed

income models will be provided. The degree of mathematics of general asset pric-

ing theory will be kept minimal — only necessary concepts and notations will be

included. We will spend most of this chapter developing the 3-factor Lévy based

short rate model with a view on measure change. The formulas for fixed income

derivatives under the model will be developed in the end.

3.2 Overview on fixed income modeling

3.2.1 Bond market and money account

Bonds are the basic element in the fixed income market. For all fixed income

modeling it serves as the market input to determine model structures and estimate

model parameters. In practice, the zero-coupon bond is mostly used as the reference

instrument to infer the yield curve. For the sake of argument we hereafter assume

that the zero-coupon bonds with continuous maturity in time are traded on the

market.

A bond is a securitized form of loan; that is, a loan that can be traded. A zero-
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coupon bond P (t, T ), issued at time t maturing at T , is a contract that guarantees

the holder a dollar to be paid at terminal time T .1 For brevity, such a coupon

bond P (t, T ) is called a T -bond. In contrast to the T -bond, a coupon bond has

intermediate coupon payments between t and T periodically.

We summarize the assumptions we have made on T -bond below:

• P (T, T ) = 1 for all T ;

• P (t, T ) < 1 for all t < T ;

• There exists a market for T -bonds for every T > 0, and P (t, T ) is continuously

differentiable in all T .

To complete the market, people usually assume there is a frictionless risk-free

money account B(t). Money account grows as follows

B(t) = exp

( ∫ t

0

r(s)ds

)
, (3.1)

where B(0) = 1 and the compounding is taken continuously. Here we have intro-

duced the concept of a spot rate r(t) which is defined as the instantaneous increment

at time t of the money account.

Clearly B(t) is a risk free asset insofar as its future value at t + dt bears no

uncertainty infinitesimally. B(t) is also important to relate the amount of currency

at different times: in order to have one dollar in the bank account at time T we

need to have

B(t)

B(T )
= exp

(
−

∫ T

t

r(s)ds

)

1Here we assume the bond is default free.
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dollars in the account at time t ≤ T .

The relationship between a T -bond P (0, T ) and the money account B(T ) can

be described as

P (0, T ) = exp

(
−

∫ T

0

r(s)ds

)
=

1

B(T )
. (3.2)

We need another important yet straight-forward relationship linking T -bond

P (t, T ) with spot rate r(t) as given by

P (t, T ) = exp

(
−

∫ T

t

r(s)ds

)
. (3.3)

As the Eqn.(3.3) is not intuitive in knowing how much the bond grows during

the period (t, T ), people designated the term yield to maturity (or yield) R(t, T ) to

describe the average gain per unit time from the specific T -bond P (t, T ), where

P (t, T ) = exp

(
−R(t, T )(T − t)

)
,

R(t, T ) = − log P (t, T )

T − t
. (3.4)

It is clear that at time t, the yield is a function of maturity T given the

short rate dynamics. The plot of R(t, T ) against the maturity T is referred as yield

curve, the Figure 3.1 shows a upward sloping yield curve on February 9th, 2005. In

theory, yield curve on different days can have all sorts of shapes, e.g. up-sloping,

down-sloping or humped reflecting people’s expectation on future interest rate level.

While the yield curve could be bootstrapped off from the bond prices by Eqn.

(3.4), the spot rate is not directly observable. Available market proxies for the short

rate include the Fed rate and short-dated, say 1-month, treasury rate, but the latter

is considered better since the short-dated treasury bond is being liquidly traded.
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Figure 3.1: US treasury yield curve on Feb. 09, 2005

3.2.2 Forward rate and Libor rate

The term structure of zero-coupon bond prices does not contain very rich

visual information, but a few better measures can explained by implied interest

rates. Below we list a variety of them including both the conceptual and the market-

observable ones.

• The discrete forward rate F (t; T1, T2) for period [T1, T2] prevailing at t is de-

fined as

F (t; T1, T2) =
1

T2 − T1

(
P (t, T1)

P (t, T2)
− 1

)
.

It can be regarded as the expected average return for future time period

[T1, T2], viewed at time t.
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• The simple spot rate for the period [t, T ] is denoted by

F (t, T ) = F (t; t, T )

• The instantaneous forward rate f(t, T ) with maturity T prevailing at t is

defined as

f(t, T ) = −∂ log P (t, T )

∂T
,

which determines the instantaneous gain of the continuously compounded T -

bond at future time T .

• Libor (London InterBank Offer Rate) rates are the most important market

observable rates and underly many interest rate derivative contracts such as

swaps and caps/floors. In essence, Libor rates are simple-compounded forward

rate of different tenors with the most used one being the 3-month Libor rate.

A Libor rate with tenor τ is given as

Lt(T, T + τ) = F (t; T, T + τ) .

Some simple yet important links between the bond prices and the above defined

rates are summarized here. The T -bond price relates to the instantaneous forward

rate in the following manner

P (t, T ) = exp (−
∫ T

t

f(t, u)du) .

And the instantaneous forward rate approaches to the short rate as T nears t,

r(t) = lim
T→t

f(t, T ) .
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3.2.3 Change of numeraire

Since the celebrated Black-Scholes work, the most popular pricing tool for

computing asset prices has been the “risk-neutral pricing”. As argued in Harrison &

Kreps [29] and Harrison & Pliska [30], the absence of arbitrage implies the existence

of a risk-adjusted probability Q such that the current price of any security should

equal its discounted expectation of future values. Under this equivalent measure Q

the associated discounting factor, referred as the numeraire, is the riskless money

account B(t). Thus, the problem of derivative pricing is simply left as calculating

the discounted expectation under risk neutral measure Q.

However, Geman et al [25] noted that the neither Q measure is necessarily

the most natural choice for pricing a contingent claim nor the money account is

the most convenient numeraire. In fact, under the measure Q many calculations

of the expectation could be considerably complicated. In such cases, a change of

numeraire can help to simplify the problem, and it has surprisingly helped reduce

the complexity in pricing derivatives, especially in the fixed income market. In

specific, Geman et al in [25] introduced the following definition.

Definition 4 A numeraire is any positive non-dividend-paying asset.

Intuitively, a numeraire is a unit asset chosen so as to normalize all other asset.

With this definition, the following Proposition 5 holds.

Proposition 5 Assume there exists a numeraire N and a probability measure QN ,

equivalent to the original measure Q0, such that the price of any traded asset X
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discounted by N is a (local) martingale under QN , i.e.,

Xt

Nt

= EN

[
XT

NT

|Ft

]
0 ≤ t ≤ T.

Let U be an arbitrary numeraire associated with measure QU . Similar to

(N,QN), (U,QU) satisfies

Xt

Ut

= EU

[
XT

UT

|Ft

]
0 ≤ t ≤ T.

Then the Radon-Nikodym derivative defining the measure QU is given by

dQU

dQN
=

UT N0

U0NT

. (3.5)

By Proposition 5, the calculation of the discounted expectation of a traded asset

X under an inconvenient measure could be translated under another convenient

measure by

EN

[
XT

NT

]
= EU

[
XT

NT

dQN

dQU

]
= EU

[
U0

N0

ZT

UT

]
.

The change of numeraire technique is a useful pricing tool at one’s disposal. It

is typically employed when the money account discount factor under the risk-neutral

measure makes the expectation calculation difficult, such as pricing caps/floors etc.

To be specific we can make the following transformation

E0

[
h(XT )

BT

]
= S0E

S

[
h(XT )

ST

]

whenever the following two properties are satisfied.

• XtSt is a tradable asset (0 ≤ t ≤ T )

• h(XT )/ST is conveniently simple
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where h(XT ) is the payoff function at time T . The first condition is to make the

quantity XtSt

St
= Xt so that Xt could be modeled as a martingale under the measure

QS; and the second condition ensures that under the new numeraire the computation

could be made simpler.

Change of numeraire is widely applied in fixed income and foreign exchange

derivative pricing. As one can see in the sections where pricing of caps/floors and

swaptions are discussed, the change of numeraire significantly reduced the complex-

ity of pricing. For FX derivatives, change of numeraire is used when the derivative

is priced in one currency but the underlying is dominated in another currency, e.g.

a quanto option. Interested readers are referred to [3].

3.3 Current short rate models

The first seminal paper on short rate model was published by Vasicek [51]

in 1977, and together with the development of interest rate market, fixed income

models have been mushrooming ever since. As the first short rate model, Vasicek’s

work assumes the short rate evolves as an Ornstein-Uhlenbeck (OU) process with

constant coefficients

dr(t) = κ(θ − r(t))dt + σdW 0(t) , (3.6)

where dW 0(t) is the Brownian motion under real-world measure. As far as pricing

is concerned, one needs to move the process from the physical measure to the risk

neutral measure. Therefore, the concept of market price of risk is introduced as

the compensation that the investors are paid to take the risk by entering a risky
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contract. If we specify the market price of risk process λ(t) to be linear with the

short rate2, i.e.

λ(t) = λr(t)

with λ being a constant, the short rate process under risk-neutral measure would

stay within the same OU process family. Thus, the risk-neutral short rate process

is given as follows

dr(t) = (κ + λσ)(
κθ

κ + λσ
− r(t))dt + σdW (t) ,

where dW (t) is the Brownian motion under risk neutral measure such that

dW (t) = dW 0(t) + λ(t)dt.

The solution to the SDE in Eqn.(3.6) suggests that at every time t, the random

variable r(t) is normally distributed. On the bright side, this property brings ana-

lytical solutions to pricing a variety of fixed income products. However, r(t) being

normally distributed implies the possibility of having negative short rate, which is

counter-intuitive. For practical purposes, this drawback is tolerated sometimes by

practitioners as they argue that, with reasonable parameter sets, the probability of

r(t) dropping below zero is slim. Nevertheless, it is an undesired property of having

possible negative short rates.

Then there came the celebrated Cox-Ingersoll-Ross (CIR) [18] model that fixed

this drawback. From its inception, CIR model has become the benchmark short rate

2In general there is no reason why the market price of risk process should take the linear form,

but this form is taken to simplify the problem.
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model for years. Under CIR model, the short rate r(t) also follows a mean-reverting

process, but it differs from Vasicek’s by having the Brownian motion term multiplied

by the square root of r(t). The CIR dynamics is given as

dr(t) = κ(θ − r(t))dt + σ
√

r(t)dW 0(t)

It can be shown that the solution to the SDE of CIR process follows a non-central

Chi-square probability distribution, which is strictly non-negative3.

Analogous to Vasicek’s, we move the process to the risk neutral measure by

specifying the market price of risk under CIR model being linear in the square root

of r(t), i.e.

λ(t) = λ
√

r(t)

Under this formulation, the risk-neutral CIR process is given by

dr(t) = (κ + λσ)(
κθ

κ + λσ
− r(t))dt + σ

√
r(t)dW (t) .

dW (t) is the Brownian motion under the risk neutral measure such that

dW (t) = dW 0(t) + λ(t)dt

Both Vasicek and CIR have closed-form formulas for pricing bonds and bond

options under risk-neutral measure, whereas the solutions under Vasicek’s are much

simpler. Therefore, for the sake of simplicity, the Vasicek framework is adopted in

our Lévy -based short rate model.

We have covered two of the milestone models, but a complete review about

existing models is far beyond the scope of this thesis. Interested readers are referred

to books by Brigo and Mercurio [9], Cairns [11], Rebonato [47] and Zagst [52]

3for a very small set of parameters, the process could hit zero.
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3.4 3-Factor Lévy short rate model dynamics

The problem that puzzled the researchers for fixed income modeling resembles

that for equity modeling. Historical data show strong non-normality, and the deriva-

tive market exhibits significant non-constant implied volatility. These markedly vio-

lations against the classic Black-Scholes or Black model require alternative structures

to explain the market behavior.

We are encouraged by the success of pure jump Lévy models on equity model-

ing, and conjecture that similar problems on fixed income market could be tackled

in the same manner. Therefore, in my dissertation a short rate model is developed

using multi-factor Vasicek framework by replacing the Brownian motion with a pure

jump Lévy dynamics.

3.4.1 Motivation

A preliminary investigation (see [24]) of changes in 10 swap rates over the

period 04/25/1994 to 10/14/2004 using the methods of independent components

analysis (ICA for short) revealed that they may be written as mixtures of factors

with the following statistics in Table 3.14.

We notice that the first three factors have highly non-zero skewness of 1.05,

−1.52, −1.12 and significant kurtosis 21.62, 132.28, 68.27 respectively. The results

indicate that classic Gaussian-based short rate models such as Vasicek and CIR,

regardless of the dimensionality, are inadequate to explain those time series data.

4We note that all ICA factors have zero means and unit variances by construction.
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Factor Skewness Kurtosis
1 1.05 21.62
2 -1.52 132.28
3 -1.12 68.27
4 -.08 10.98
5 .15 11.72
6 .33 15.86
7 -.47 7.5
8 .37 6.5
9 .07 5.08
10 .0029 4.18

Table 3.1: ICA statistics for swap rates of 10 maturities

Besides, the statistics in Table 3.1 is confirming the conclusion as in Litterman [41]

that 3-factor is sufficient to explain the variations in the yield curve.

Lévy processes, as described in Chapter 2, are ideal candidates for incorpo-

rating non-vanishing higher moments as revealed in the time series. We are then

motivated to use a 3-factor Lévy dynamics to model the short rate in order to

capture the characteristics shown in the table.

3.4.2 Model dynamics

Vasicek started modeling the short rate by studying the economic equilibrium,

but this step is skipped here. We simply borrow the conclusion. The spot rate is

written in a linear relationship with the 3 latent factors under the physical P measure

as

r(t) = α + β′x(t) (3.7)
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where x(t) is a vector of three dimensional latent factor process, α is a real number

and β is a 3-dimensional vector.

We specify x(t) of following the multidimensional Ornstein-Uhlenbeck (O-U)

process whereby we write the stochastic differential equation (SDE) of x(t) is given

as

dx(t) = (a− κx(t))dt + BdL(t) (3.8)

where a is a 3-dimensional vector, κ,B are full 3 by 3 matrices and L is a 3-

dimensional, independent Lévy processes.

The solution of the SDE in Eqn.(3.8) takes the form

x(t) = e−κtx(0) +

∫ t

0

e−κ(t−s) (ads + BdL(s)) (3.9)

The detailed derivation can be found in Appendix A.1.

This specification determines the short rate dynamics under physical measure

P . However, pricing bonds and other contingent claims must be done under a risk

neutral measure Q. To change from physical measure to risk-neutral measure, we

propose a specific form for the Radon-Nikodym derivative of Q with respect to P .

The Radon-Nikodym derivative dQ
dP

is defined as

dQ

dP
=

3∏
i=1

E ((
eγix−ηi|x| − 1

) ∗ (µi − νi)
)

(3.10)

where µi is the random counting measure associated with the jumps of Li, νi is

the compensation measure for µi under P measure. γi, ηi are coefficients for risk

pricing, with (γi − ηi) being the risk premium of positive jumps and (γi + ηi) the

risk premium of negative jump risks. E(.) denotes the stochastic exponential, which
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makes the Radon-Nikodym derivative an exponential martingale. (For a complete

treatment of stochastic exponential see Protter [46]) Under this proposed form of

measure change, the risk neutral process and the physical process remain in the

same parametric family.

Now that the model dynamics and measure change have been worked out,

we choose the Variance Gamma (VG) process as the specific structure of the back-

ground driving Lévy process L(t). The model parameters are listed in Table (3.2).

As shown in the left column, the original model has totally 45 parameters. Appar-

ently, this large number of parameters would overwhelm the computer program for

model estimation and hence substantially slow down the optimization convergence.

Therefore, we seek to simplify the model configuration by removing the redundan-

cies in the model parameters. For instance, matrix B is to correlate dL(t) and create

dependence on factors x(t), whereas the matrix κ has an identical effect. Hence,

we can harmlessly collapse the matrix B to the constant identity matrix. Second,

matrix κ does not need to be a full matrix, i.e. a lower triangular matrix (positive

definite) suffices its functionality yet save 3 more parameters. Third, since we are

primarily interested in pricing not the physical process of the short rate, we could

assume the model parameters are under risk-neutral measure; this way we could

eliminate the inclusion of six measure change parameters γi and ηi in Eqn. (3.10).

The model parameterization is then reduced to only have 25 parameters as listed in

the right column of Table 3.2. The model estimation is conducted in Chapter 4 for

the reduced form.
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Original Parameter Set Reduced Parameter Set
(With physical parameters) (With risk-neutral parameters)
Symbol Number Symbol Number
α 1 α 1
β 3 β 3
a 3 a 3
κ 9 κ 6, lower triangular matrix
B 9 B 0, constant identity matrix
x(0) 3 x(0) 3
L1,2,3 9 L1,2,3 9
γ1,2,3 3 γ1,2,3 0
η1,2,3 3 η1,2,3 0
Total 43 Total 25

Table 3.2: Numbers of model parameter for original model and reduced model

3.5 Pricing of bond and bond derivatives

In this section we discuss the analytical solutions for pricing fixed income

products. It is a common practice to look at those problems by developing the

characteristic function for the short rate (and its integral). As the building block

to pricing derivatives, the bond pricing formula is first derived. Given the bond

pricer, it is straight-forward to calculate the swap rate which can be represented by

a bond portfolio. Derivatives pricing formulas, such as caps/floors and swaptions,

are derived through Fourier transform.
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3.5.1 Joint characteristic function

We first write the characteristic function of the multi-factor OU process x(t)

as follows

Φx(t)(u) = E
[
eiu′x(t)

]
= E

[
eiu′e−κtx(0)+iu′

R t
0 e−κ(t−s)(ads+BdL(s))

]

= exp
(
iu′e−κtx(0) + iu′

(
I − e−κt

)
κ−1a−

3∑
j=1

∫ t

0

ψj((u
′e−κ(t−s)B)j)ds

)

= exp(−ψx(t)(u)) , (3.11)

where the characteristic function for each individual Lévy process is denoted by

E
[
eivLj(1)

]
= exp(−ψj(v)) .

We may then rewrite the characteristic exponent of x(t) as

ψx(t)(u) = −iu′e−κtx(0)− iu′
(
I − e−κt

)
κ−1a +

3∑
j=1

∫ t

0

ψj((u
′e−κ(t−s)B)j)ds .

Recall the spot rate r(t) as in Eqn. (3.7) is an affine combination of x(t), thus

the characteristic function of r(t) can be straight-forwardly given as

Φr(t)(u) = E[eiur(t)] = E[eiuα+iuβ′x(t)]

= eiuα exp(−ψx(uβ)) .

To find the bond price, we are interested in the characteristic function of the

integral of r(t). Below, we develop the joint characteristic function of the spot rate

r(t) and its integral of
∫ t

0
r(s)ds

Φt(u, v) = E

[
exp

(
iu

∫ t

0

r(s)ds + ivr(t)

)]
.
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We develop as follows.

E

[
exp

(
iu

∫ t

0

r(s)ds + ivr(t)

)]

= E

[
exp

(
iu

∫ t

0

(α + β′x(s))ds + iv(α + β′x(t)

)]

= eiα(v+ut)E




exp
(∫ t

0
iuβ′ (e−κsx(0)) ds + iuβ′

∫ t

0

∫ s

0
e−κ(s−w)(a dw + B dL(w))ds

)

× exp
(
ivβ′ (e−κtx(0)) + ivβ′

∫ t

0
e−κ(t−w)(a dw + B dL(w)

)




= eiα(v+ut)+[iuβ′(I−e−κt)κ−1+ivβ′e−κt]x(0)+[iutβ′−iuβ′(I−e−κt)κ−1+ivβ′(I−e−κt)]κ−1a

×E

[
exp

(∫ t

0

∫ s

0

iuβ′e−κ(s−w)B dL(w) ds +

∫ t

0

ivβ′e−κ(t−w)B dL(w)

)]
.

For the final expectation we note first that

∫ t

0

∫ s

0

iuβ′e−κ(s−w)B dL(w)ds =

∫ t

0

∫ t

w

iuβ′e−κ(s−w)dsB dL(w)

=

∫ t

0

iuβ′
(
I − e−κ(t−w)

)
κ−1B dL(w) .

The joint characteristic function is therefore given as

Φt(u, v) = E

[
exp

(
iu

∫ t

0

r(s)ds + ivr(t)

)]
(3.12)

= exp




iα(v + ut) + [iuβ′(I − e−κt)κ−1 + ivβ′e−κt]x(0)

+[iutβ′ − iuβ′ (I − e−κt) κ−1 + ivβ′(I − e−κt)]κ−1a




× exp

(
−

∑
j

∫ t

0

ψj

([
uβ′

(
I − e−κ(t−w)

)
κ−1 + vβ′e−κ(t−w)

]
Bj

)
dw

)
.

3.5.2 Bond

Equipped with the knowledge of the joint characteristic function, we could

obtain the bond price P(0,t), given the factors at level x(0) = x, by setting u =

59



i, v = 0 in Eqn.(3.12),

P (0, t) = E

[
exp

(
−

∫ t

0

r(s)ds)

)]
= Φt(i, 0) = exp(A) ,

where

A = −αt− β′
(
I − e−κt

)
κ−1x

+[β′
(
I − e−κt

)
κ−1 − tβ′]κ−1a

−
∑

j

∫ t

0

ψj

(
iβ′

(
I − e−κ(t−s)

)
κ−1Bj

)
ds .

The matrix exponentials exp (−κt) involved can be calculated by the following

transformation

κ = TΛT−1 =
∑

k

λkQk ,

where matrix Qk is given by

Qk = TkR
′
k ,

and R′
k is the kth row of T−1. We may then expand A as

A = −αt− β′κ−1x +
∑

j

β′Qjκ
−1xe−λjt

−tβ′κ−1a + β′κ−2a−
∑

j

β′Qjκ
−2ae−λjt

−
∑

j

∫ t

0

ψj

(
iβ′κ−1Bj − i

∑

k

β′Qkκ
−1Bje

−λk(t−s)

)
ds .

Given Lévy processes are time-homogeneous, the more general bond prices
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P (s, t) can be expressed as

P (s, t) = exp




−α(t− s)− β′
(
I − e−κ(t−s)

)
κ−1x(s)

+[β′
(
I − e−κ(t−s)

)
κ−1 − (t− s)β′]κ−1a




× exp

(
−

∑
j

∫ t−s

0

ψj

(
iβ′

(
I − e−κ(t−s−w)

)
κ−1Bj

)
dw

)

= exp
(
as,t + b′s,tx(s)

)
, (3.13)

where the coefficients as,t and bs,t are defined as

as,t = −α(t− s) + [β′
(
I − e−κ(t−s)

)
κ−1 − (t− s)β′]κ−1a

−
∑

j

∫ t−s

0

ψj

(
iβ′

(
I − e−κ(t−s−w)

)
κ−1Bj

)
dw

= −α(t− s)− (t− s)β′κ−1a + β′κ−2a−
∑

j

β′Qjκ
−2ae−λj(t−s)

−
∑

j

∫ t−s

0

ψj

(
iβ′κ−1Bj − i

∑

k

β′Qkκ
−1Bje

−λk(t−s−w)

)
dw , (3.14)

b′s,t = −β′
(
I − e−κ(t−s)

)
κ−1

= −β′κ−1 +
∑

j

β′Qjκ
−1e−λj(t−s) . (3.15)

3.5.3 Swaps

Interest rate swaps have been central in the fixed income derivative market

(over-the-counter, OTC), and it is proven to be very successful in managing risks

and arguably the most successful innovations in financial market. Many exotic fixed

income derivatives are written with the swap rate underlying. The economic mo-

tivation behind swap is attributed to the comparative advantage; that is, different

companies can borrow at different rates in different markets, but they would be bet-

ter off if they are allowed to borrow from other markets that they can not access by
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themselves. So the interest rate swap contract is designed to enable those companies

that have different borrowing conduits to exchange the comparative benefits. See

Hull in [35] for more economic explanations.

In technical terms, an interest rate swap is an agreement between two parties to

exchange cash flows at a series of predefined future dates. In a vanilla payer(receiver)

interest rate swap, one party agrees to pay(receive) a predetermined, fixed rate on

agreed dates and receive(pay) a floating rate, often referred as Libor (London Inter-

Bank Offer Rate) that is prevailing one period before. The payer swap can be

specified as follows —

• notional N and a fixed rate K;

• a number of future dates when to exchange cash flows, T0 < T1 < . . . < Tn

with αi = Ti − Ti−1 being the time fraction; 5

• fixed-leg pays NKαi and receives NαiLTi−1
(Ti−1, Ti) at time Ti, where the

LTi−1
(Ti−1, Ti) is the Libor rate prevailing at Ti−1 lasting for the period [Ti−1, Ti].

Pricing interest rate swap is to find the fair value of the fixed rate K so that

it is costless (with respect to the current yield curve) for both sides to enter such

a contract at the initial time. To determine the swap contract value, let’s have a

closer look at a single payment at time Ti. From payer swap holder’s point of view,

5There is no cash flow changing hands on the first date T0, but T0 sets the first floating rate

paid on T1
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the present value of the net cash flow at time Ti would be

Πi(t,K) = NαiP (t, Ti) (F (t; Ti−1, Ti)−K)

= N (P (t, Ti−1)− P (t, Ti)−KαiP (t, Ti)) . (3.16)

Thus the total discounted cash flow Π(t,K) will be the summation of the all the

future discounted cash flows

Π(t,K) =
∑

i

Πi(t,K) = N

(
P (t, T0)− P (t, Tn)−K

n∑
i=1

αiP (t, Ti)

)
.

The swap rate is obtained by setting Π(t,K) = 0 such that

K = kt(T0, . . . , Tn)
P (t, T0)− P (t, Tn)

n∑
i=1

αiP (t, Ti)

(3.17)

for all t < T0.

By the formula in Eqn.(3.17), the swap rate can be expressed as the ratio

of two T -bond portfolios. Armed with the bond pricer developed in the previous

section, the swap pricing is straight-forward following this formula.

3.5.4 Swaptions

Swaption by the name is an option written on the underlying swap. A Eu-

ropean vanilla payer/receiver swaption with strike rate K is an option giving the

holder the right but not obligation to enter a payer/receiver swap at a given future

date, the maturity. Usually the maturity coincides with the first resetting date T0

of the underlying swap, and the time from Tn to T0
6 is called the tenor of the

swaption.

6See Section 3.5.3 for swap specification.
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Recall that the value of a payer swap with fixed rate K at the first reset date

T0 is given by

Π(T0, K) = N

n∑
i=1

αiP (T0, Ti) (F (T0; Ti−1, Ti)−K) ,

and the payoff of the swaption with strike K at maturity T0 is

w(T0, K) = N

(
n∑

i=1

αiP (T0, Ti) (F (T0; Ti−1, Ti)−K)

)+

. (3.18)

A swaption can be viewed as an option on a bond portfolios, and this makes it

very difficult to be evaluated because it can hardly be decomposed into elementary

payoffs.

Since Π(T0, K = kT0) with kT0 being the swap rate at time T0 has to be made

zero, one can show that the payoff in Eqn. (3.18) can also be written as

w(T0, K) = N(kT0 −K)+

n∑
i=1

αiP (T0, Ti) . (3.19)

Eqn. (3.19) can be easily extended to evaluate the expectation for the swaption at

time t < T0 that follows

w(t,K) = NEQ

[
e−

R T0
t rsds(kT0 −K)+

n∑
i=1

αiP (T0, Ti)|Ft

]
, (3.20)

where the expectation is taken on the risk-neutral measure Q.

We notice that the swaption formula in Eqn. (3.20) indicates the valuation

problem can be translated as valuing a vanilla option written on the swap rate

multiplied by the value of a traded bond portfolio. The difficulty lies in that, under

the risk-neutral measure, the discounting factor and bond portfolio multiplier are

dependent on the payoff such that they could not be taken outside the expectation

operator.
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To overcome this difficulty, we consider change of numeraire technique as dis-

cussed in Section 3.2.3. We take the new numeraire to be the bond portfolio value

and call it forward swap measure, which is defined by

dQ̃

dQ
= Λs = e−

R s
0 r(w)dw

∑n
i=1 αiP (s, Ti)∑n
i=1 αiP (0, Ti)

(3.21)

= E
((

Ỹs(y)− 1
)
∗ (µ− ν)

)

for 0 < s < T0 where Q̃ is denoted as the forward swap measure. Under the measure

Q̃, the swap rate ks is a positive martingale with

ks = E ((Ys
swap(y)− 1) ∗ (µ− ν̃)) , (3.22)

where E is the stochastic exponential (see [46]). In the above equations, µ stands for

the random jump measure, and ν̃ and ν the compensation jump measures associated

with forward swap measure Q̃ and the risk neutral measure Q, respectively.

The value of a swaption at time 0 with strike K is given by

w(K) = N
n∑

i=1

αiP (0, Ti)E
eQ [

(kT0 −K)+]
.

The problem is now reduced to evaluate the expectation of (kT0 −K)+ under the

measure Q̃. We learned from Carr and Madan [13] that the evaluation of such an

expectation can be done using the transform method, i.e. the Fourier Transform,

given the closed-form formula for the characteristic function of the swap rate ks is

readily known.

We then develop the characteristic function for ks under the measure Q̃. To

approach it, we need to evaluate Ỹs(y), which is the response of the measure change
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process Λs to a jump shock in the Lévy factors. Consider a jump of size yj in the

j-th factor (j = 1, 2, 3). We have that

dΛj
s

Λj
s

=
(
Ỹs(yj)− 1

)
.

On the other hand, by the definition of Radon-Nikodym derivative Λs in Eqn. (3.21)

we may observe that

dΛj
s

Λj
s

=
n∑

i=1

αiP (s, Ti)∑n
i=1 αiP (s, Ti)

(
eb′s,Ti

Bjyj − 1
)

=
n∑

i=1

ωi(s)
(
eb′s,Ti

Bjyj − 1
)

. (3.23)

To reduce the complexity in Eqn.(3.23), we adopt the idea of slow-varying martingale

as in the BGM model [8], setting ωi(s) ≈ ω(0). Such an approximation is empirically

valid, because in reality the variability of ωi is much less than eb′s,Ti
Bjyj−1. Therefore,

Eqn.(3.23) is simplified to be

dΛj
s

Λj
s

≈
n∑

i=1

ωi(0)
(
eb′s,Ti

Bjyj − 1
)

=
n∑

i=1

αiP (0, Ti)∑n
i=1 αiP (0, Ti)

(
eb′s,Ti

Bjyj − 1
)

.

Now we wish to see dΛj
s

Λj
s

expressed in the exponential form

dΛj
s

Λj
s

=
(
eas(yj) − 1

)
.

This implies that

as(yj) = ln

(
1 +

n∑
i=1

αiP (0, Ti)∑n
i=1 αiP (0, Ti)

(
eb′s,Ti

Bjyj − 1
))

,

and taking a first order approximation gives

as(yj) =
n∑

i=1

αiP (0, Ti)∑n
i=1 αiP (0, Ti)

(
b′s,Ti

B
)

j
yj .
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We then write

Ỹs(y) = exp

(
3∑

j=1

n∑
i=1

αiP (0, Ti)∑n
i=1 αiP (0, Ti)

(
b′s,Ti

B
)

j
yj

)
.

We may then infer that

ρ̃s,j (ỹj) = ecs,jρj (ỹj)

cs,j =
n∑

i=1

αiP (0, Ti)∑n
i=1 αiP (0, Ti)

(
b′s,Ti

B
)

j
,

where ρ̃s,j and ρs,j are Levy densities under Q̃ and Q measures for the j-th factor.

Following Lévy -Khintchine theorem we have the characteristic exponent ψ̃s,j(u)

for the jth Lévy factor at time s under the new forward swap measure,

ψ̃s,j(u) = −
∫ ∞

−∞

(
eiuyj − 1

)
ρ̃s,j(yj)dyj

= −
∫ ∞

−∞

(
eiuyj − 1

)
ecs,jyjρs,j(yj)dyj

= −
∫ ∞

−∞

(
e(iu+cs,j)yj − ecs,jyj

)
ρs,j(yj)dyj

= −
∫ ∞

−∞

(
e(iu+cs,j)yj − 1

)
ρs,j(yj)dyj +

∫ ∞

−∞
(ecs,jyj − 1) ρs,j(yj)dyj

= ψQ
s,j(u− ics,j)− ψQ

s,j(−ics,j) ,

where ψQ
s,j is the risk neutral characteristic exponent for Levy factor j at time s.

We now determine Y swap
s (y) in Eqn. (3.22). Consider now a jump of yj in the

evolution of the j-th factor. We have that

dks

ks

= (Y swap
s (yj)− 1) .

Again, by direct computation

dks

ks

= − P (s, Tn)

1− P (s, Tn)

(
e(b′s,T B)jyj − 1

)
−

n∑
i=1

αiP (s, Ti)∑n
i=1 αiP (s, Ti)

(
eb′s,Ti

Bjyj − 1
)

.
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Following the similar approximations (slow varying martingale and Taylor expanded

exponential), we show the solution of Y swap
s (y) as

Y swap
s (y) = exp

(
3∑

j=1

ζs,jyj

)

ζs,j = − P (0, Tn)

1− P (0, Tn)
b′s,Tn

Bj −
n∑

i=1

αiP (0, Ti)∑n
i=1 αiP (0, Ti)

b′s,Ti
Bj .

We are now able to build the characteristic function of the logarithm of swap

rate process kT0 at maturity T0 under the forward swap measure by noting that

kT0 = exp

(
3∑

j=1

ζT0,j∆Fj −
3∑

j=1

∫
T0

0

∫ ∞

−∞

(
eζs,jyj − 1

)
k̃s,j(yj)dyj

)
.

We recognize from this expression that

E
[
eiu ln kT0

]
= exp

(−ψswap
T0

(u)
)

,

where

ψswap
T0

(u) = −iu
3∑

j=1

∫ T0

0

ψ̃s,j(−iζs,j)ds +
3∑

j=1

∫ T0

0

ψ̃s,j(uζs,j)ds .

We realize at this time, with the knowledge of ψswap
s , we can fully utilize the FFT

method in [13] to evaluate the swaption prices across different strikes.

3.5.5 Caps/Floors

A cap (floor) is a strip of caplets (floorlets) that gives the holder the protection

over the rising (declining) rates. Thus, a cap contract would consist of the following

elements —

• a notional of N and a fixed strike K;
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• a number of future dates T0 < T1 < . . . < Tn with Ti − Ti−1 = αi;

• at each time Ti, i = 1, . . . , n, the holder of the cap contract receives the cash

flow Nαi

(
LTi−1

(Ti−1, Ti)−K
)+

.

A floor contrasts a cap in that the floor contract holder receives the cash

amount Nαi

(
K − LTi−1

(Ti−1, Ti)
)+

at each time Ti. It is important to note the

following equality, known as the cap/floor parity, holds

Cp(t,K)− Fl(t,K) = Πp(t,K) ,

where Cp(t,K) denotes the value of a cap at time t with strike K, Fl(t,K) the

corresponding value of a floor, and Πp(t,K) the value of a payer swap7. In this

section, we show how to price the caplet under the model. The floorlet’s valuation

would be straight-forward using the parity relationship.

Because the present value of a cap is simply the summation of the present

values of all caplets prior to maturity, a cap can therefore be viewed as a portfolio

of options. This is an important distinction from a swaption contract which is an

option on a portfolio, and makes the evaluation of caps is relatively easier than a

swaption.

A single caplet with reset date Ti−1 and settlement date Ti pays the holder

the notional N multiplied by the difference between a Libor rate LTi−1
(Ti−1, Ti) and

maturing at time Ti) and the strike K if LTi−1
(Ti−1, Ti) > K, or zero otherwise.

Therefore the value wi(K) of such a caplet at initial time maturing is

wi(K) = NαiE
Q

[
e−

R Ti
0 rsds

(
LTi−1

(Ti−1, Ti)−K
)+

]
,

7The cap, floor and swap must have the exact coinciding dates for future cash flow exchanges.
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where the expectation is taken under the risk-neutral measure Q.

Similar to the swaption case, the above expression is inconvenient for evalu-

ation, so we seek for convenient measure change. The new measure, termed as Ti

forward measure, is defined in the following way for s < Ti

dQ̃Ti

dQ
= ΛTi

(s) = e−
R s
0 r(w)dw P (s, Ti)

P (0, Ti)
, (3.24)

= E
((

Ỹ Ti
s (y)− 1

)
∗ (µ− ν)

)
.

We show that

dΛj
Ti

(s)

Λj
Ti

(s)
= exp (bs,T Bjyj)− 1 ,

where yj is the jump in the j-th jump component (j = 1, 2, 3). After identical

algebraic manipulation and approximation as in the swaption case, we have

Ỹ Ti
s (y) = exp

(
3∑

j=1

bs,T Bjyj

)
.

The characteristic exponent for the j-th jump component under the forward

measure is therefore given by

ψ̃Ti
s,j(u) = −

∫ ∞

−∞

(
eiuyj − 1

)
k̃s,j(yj)dyj

= −
∫ ∞

−∞

(
eiuyj − 1

)
ebs,Ti

Bjyjks,j(yj)dyj

= −
∫ ∞

−∞

(
e(iu+bs,Ti

Bj)yj − ebs,Ti
Bjyj

)
ks,j(yj)dyj

= −
∫ ∞

−∞

(
e(iu+bs,Ti

Bj)yj − 1
)
ks,j(yj)dyj +

∫ ∞

−∞

(
ebs,Ti

Bjyj − 1
)
ks,j(yj)dyj

= ψQ
j (u− ibs,Ti

Bj)− ψQ
j (−ibs,Ti

Bj) ,

where the ψQ0

j denotes the characteristic exponent of the j-th jump component

under the original risk-neutral measure Q0.
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Now we look at the dynamics of the underlying forward rate Li(s) = F (s; s, Ti)

which is the simple compounded spot rate prevailing at time s and Ti defined as

Li(s) =
1

αi

(
1

P (s, Ti)
− 1

)

=
1− P (s, Ti)

αiP (s, Ti)
,

where αi = Ti − s. It is easy to see that under the forward measure Q̃Ti , Li(s) is a

martingale. Analogous to the swaption case, we define

dLi(s)

Li(s)
=

(
Y f

i,s(yj)− 1
)

and we try to determine Y f
i,s(y) on the analysis of

dLi(s)

Li(s)
= − P (s, Ti)

1− P (s, Ti)

(
e
P

j bs,Ti
Bjyj − 1

)− (
e
P

j bs,Ti
Bjyj − 1

)

= − 1

1− P (s, Ti)

(
e
P

j bs,Ti
Bjyj − 1

)
.

Hence, we approximate

Y f
i,s(y) = exp

(
3∑

j=1

− bs,Ti
Bjyj

1− P (0, Ti)

)
.

We then obtain the characteristic exponent of the logarithm of Li(Ti−1) = F (Ti−1, Ti)

since the cap contract payoff is known at time Ti−1.

E
[
eiu ln Li(Ti−1)

]
= exp(−ψi

i−1(u)) ,

and we have

ψi
i−1(u) = −iu

3∑
j=1

∫ Ti−1

0

ψ̃Ti
s,j(−iξs,j)ds +

3∑
j=1

∫ Ti−1

0

ψ̃Ti
s,j(uξs,j)ds ,

ξs,j = − bs,Ti
Bjyj

1− P (0, Ti)
.
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Once we have obtained the characteristic function for the logarithm of the

forward rate Li(s) at time Ti−1, the rest calculation is similar to the swaption case,

i.e. the FFT method is applied to calculate the value of a single caplet which pays

off at each time Ti. The price of a cap is thus the summation of all caplets, and one

can use the parity equation to deduce the value of a floor with the same structure

as the cap.
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Chapter 4

Particle Filter and Parameter Estimation

4.1 Background

The mission of assessing the empirical validity of interest models in general,

and of our Lévy based model in specific, is of obvious importance. Before engaging

in any performance comparison with other models, we should have a clear picture of

how our model parameters influence the observable market quantities, such as the

bond prices. That is, the model should first be sensibly estimated.

The problem has two aspects. From the theoretical point of view, we have

developed a state-space model containing time-invariant parameters and a vector

of latent state variables driven by a multi-factor Lévy process. The short rate is

an affine combination of the latent factors. Bond prices and their derivative values

are non-linear functions of the current state variables, given the model parameters

known. From the empirical perspective, time series of market prices for the past

10 years are available. However, market prices are noisy data mixed with trading

errors, bid/ask spread, market mis-specification, etc. Here, the task is to design

an algorithm, which accounts for both the model structure and the disturbed data

supply, to acquire a sound estimation of the model parameters.

Parameter estimation, also called “calibration” in financial engineering lingo, is

an optimization procedure that minimizes the difference between the model outputs
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and market inputs. The challenge in estimating the state-space model is that the

model outputs depend on the knowledge of state variables which are not directly

observable. Therefore, the critical step in estimating such models is to retrieve the

values of latent state variables by filtering out the aforementioned noises using the

filter technique. Once the state variables are determined, the optimization is carried

out by minimizing the pricing errors. As a special case, if the errors are assumed

to be white noises following multidimensional normal distribution, the maximum

likelihood estimation could be invoked.

In specific, the model estimation under the state-space model with time series

data consists of two steps.

(1) Take the initial guess on the model parameters (or the returned parameter

values from last optimization iteration); estimate sequentially the state vari-

ables through time by filtering; generate model prices based on the filtered

state variables.

(2) Maximize the joint likelihood function for the errors between the model prices

and market prices

Step (1) is the focus of this chapter; that is, we will focus on designing al-

gorithms that could sequentially retrieve the unobservable state variables from a

large set of noisy signals. Kalman filter (KF) is the standard tool in this area,

and under the assumption that the state variables are driven by Brownian motion

and the measurement/propagation functions are linear, KF has been proved very

capable of providing efficient, robust estimation. We have seen massive applica-
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tions of this techniques in the area of financial engineering for model calibration or

price predictions, etc. For instance, one investment strategy that hedge funds and

banks’ proprietary trading desks often use is to build an equilibrium model, cast

it into state-space form, estimate it using the KF technique, make projections on

price movements, and trade the difference between the model prediction and the

market quotes. If the model indeed describes the correct market dynamics, market

prices should converge (statistically) to the predicted price and traders pocket the

difference. Performance of such strategies crucially depend on the quality of the

implementation of the filter technique used for model estimation and prediction.

The KF-like filter would perform well if we live in a perfect linear and Gaussian

world. Unfortunately, the real world is not even close to be perfect. As pointed out

in the Chapter 3, non-Gaussianity exists significantly in the fixed-income world, and

pricing functions are highly nonlinear. Whereas the extended Kalman filter (EKF)

and unscented Kalman filter (UKF), as extensions to the original KF, were devised

to cope with the non-linearity, the non-Gaussianity could not be rescued anyway in

the restrictive Kalman filter world.

Therefore we resort to the particle filter (PF), a newly emerged filtering tech-

nique that has not been vastly applied due to its high demand in computing power.

However, as this demand is being eased by the dramatic reduction in computing

cost recently, particle filter has become an attractive alternative to handle the non-

Gaussian and non-linear problems. Unlike KF where the distribution is completely

determined by the variance-covariance specification, PF relies on a large number

of simulated particles to represent the distribution. The distribution is moved for-
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ward by propagating the entire set of particles, while under KF only the variance-

covariance matrix needs to be updated. The propagation of the particles are realized

by Monte Carlo simulation, and this is why PF is also referred by some literature

as sequential Monte Carlo method.

In this chapter, Kalman filter and its extensions will be firstly discussed, given

its prominent status in the area of state-space models estimation. Next we will

focus on explaining the particle filter technique, and generic algorithms including

the resampling technique will be studied. The generic particle filter algorithm is

then customized to our model context and numerical results are presented. After

the model is estimated, we perform factor analysis on the yield curve and experiment

caplet pricing using Monte Carlo simulation.

4.2 The problem and conceptual solution

Let’s introduce the filtering problem. Define xk ∈ Rnx the state vector where

nx is the dimension of the state variable and k is the time index. The evolution of

xk follows the below discrete-time stochastic model function

xk = fk−1(xk−1, vk−1) (4.1)

where vk−1 is the randomness from the state variable evolution, and fk−1 is the

propagation function perturbed by the randomness vk−1, which is the unforeseeable

disturbance in the state motion. The measurements are functions of state variables

xk and the measurement noises wk

zk = hk(xk, wk) , (4.2)
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where zk ∈ Rnz , and hk
1 is a known, possibly non-linear function. The error wk is

often assumed as the white noise.

The challenge is to extract the values of unobservable xk for all k based on

the observations of Zk , {zi, i = 1, . . . , k} which become readily available over

time. Because xk themselves are random variables, the problem essentially is to

discover the posterior probability density function (PDF) p(xk|Zk), conditioned on

the observation Zk. Assuming the initial p(x0) , p(x0|Z0) is known, we invoke Bayes

theorem to recursively update the posterior distribution of xk at each k. There are

two steps in this task: prediction and update.

1. First we make the prediction about the PDF p(xk|Zk−1) by applying the

Chapman-Kolmogorov equation

p(xk|Zk−1) =

∫
p(xk|xk−1, Zk−1)p(xk−1|Zk−1)dxk−1

=

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1 . (4.3)

Note: from the first line to second line in Equation. (4.3) we used the Markov

property, namely the information of Zk−1 has been included in xk−1.

2. Second, after the observation zk becomes available, Bayes rule is used to update

the posterior

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (4.4)

where the normalizing factor in the denominator could be written as

p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1)dxk .

1It is noteworthy that for convenience in many cases both evolution function fk and measure-

ment function hk are time-homogeneous such that the time index k could be dropped.
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The conceptual solution as in Eqn. (4.4) unfortunately can not be determined

optimally in general. It is because the storage of the entire PDF is equivalent to an

infinite dimensional vector; therefore, one has to resort to sub-optimal algorithms

to approximate the solution to the problem. However, this difficulty is considerably

alleviated for models assuming linearity and Gaussian dynamics. In the next section

we demonstrate how the Kalman filter leads to an optimal solution under the ideal

assumptions.

4.3 Kalman filter

The Kalman filter assumes that the posterior PDF at every time step is Gaus-

sian which can be completely characterized by the mean vector and covariance ma-

trix. In other words, if p(xk−1|Zk−1) is normally distributed, it can be proved that

p(xk|Zk) is also normal if the following conditions about Eqn.(4.1) and (4.2) are

satisfied —

• vk−1 and wk are samples from normal distribution

• xk = Fk−1xk−1 + vk−1, with Fk−1 being a nx × nx matrix such that function

fk−1(xk−1, vk−1) is linear in xk−1 and vk−1

• zk = Hkxk + wk, with Hk being a nz × nz such that function hk(xk, wk) is

linear in xk and wk

We further denote Qk−1 and Rk the covariance matrix for the white noise vk−1

and wk respectively, which are mutually independent.
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Then the Kalman filter algorithm can be viewed in the following recursive

manner —

p(xk−1|Zk−1) = N (xk−1; x̂k−1|k−1, Pk−1|k−1) (4.5)

p(xk|Zk−1) = N (xk; x̂k|k−1, Pk|k−1) (4.6)

p(xk|Zk) = N (xk; x̂k|k, Pk|k) (4.7)

where N (x; m,P ) is the density function of the normal distribution with mean m

and covariance P , and x̂k|k and Pk|k denote the posterior estimate of the mean

and covariance, and x̂k|k−1 and Pk|k−1 denote the prior estimate for the mean and

covariance without the newest update.

With the notations above, the Kalman filter algorithm is carried out as follows,

x̂k|k−1 = Fk−1 x̂k−1|k−1 (4.8)

Pk|k−1 = Qk−1 + Fk−1Pk−1|k−1F
T
k−1 (4.9)

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1) (4.10)

Pk|k = Pk|k−1 −KkSkK
T
k (4.11)

where

Sk = HkPk|k−1H
T
k + Rk

is the covariance of the innovation term, and

Kk = Pk|k−1H
T
k S−1

k

is the so-called Kalman gain.

By looking at the Eqn. (4.11) we find how Kalman filter helps reduce the

covariance of the state variables with the reception of new information. The posterior
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covariance Pk|k equals the prior covariance Pk|k−1 less KkSkK
T
k , which is the amount

of variance reduction coming from the new observation of zk through Kalman gain.

From Eqn. (4.8) to (4.11) is the complete recipe of Kalman filter. The Kalman

filter is the only optimal solution with the aforementioned assumptions held. How-

ever, in cases where the measurement functions are non-linear, sub-optimal solu-

tions such as extended Kalman filter (EKF) and unscented Kalman filter (UKF)

(see [20, 27, 28] for details) are devised to cope with the broken assumptions.

1. If the function(s) f(x, v) or h(x,w) (or both) are almost linear, we approximate

them by the first-order Taylor expansion and replace those functions with their

Jacobian matrices. This is the extended Kalman filter.

2. If non-linearity is high in functions f(x, v) or h(x,w), we use the unscented

transformation that draws the deterministic sigma points to approximate the

distribution. This method is the unscented Kalman filter or UKF.

Both EKF and UKF attempt to reconcile the non-linearity violation in the

original KF, but neither could theoretically handle the problem if the state vari-

ables are non-Gaussian. However, it is crucial in our case to relax the Gaussianity

restrictions since the state variables in our model are driven by pure jump Lévy

processes. We hereby resort to the counterpart of KF — the particle filter.

4.4 Particle filter

Reality often manifests itself as being very complex: non-Gaussian, non-linear

with continuous/discontinuous state space. Therefore, Kalman filter, albeit theoret-
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ically sound, is not applicable in many practical situations. Particle filter emerged

as an alternative algorithm to substitute Kalman filter in the non-Gaussian case.

Instead of updating only the mean and covariance, PF uses a large number of

points/particles to empirically approximate the posterior distribution in interest.

Admittedly in comparison to the optimal Kalman filter, particle filters are

sub-optimal. Obviously, a finite number of simulated particles could not completely

recover a continuous distribution, though more particles will help increase the pre-

cision. However, the number of particles could not go too large in the practice of

state-space model estimation, since one needs to perform the simulation at every

time step. This is a heavy load of computation which has prohibited from applying

PF in the past when computing cost was high. Given enough computing power

nowadays however, particle filter technique can be very helpful and offer great flexi-

bility in estimating state-space models without restricted assumptions. Our 3-factor

Lévy fixed income model is a perfect application in this regard.

In this section we will discuss in detail about particle filter in its generic format.

Importance sampling again will be reviewed in the context of PF implementation.

Sequential importance sampling (SIS), as the simplest PF implementation will be

investigated. As naive SIS introduces the degeneracy problem, resampling technique

is discussed to reduce the degree of degeneracy.
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4.4.1 Importance sampling in particle filter

The mechanism of importance sampling has been demonstrated in Eqn.(2.13)

to (2.16), and the idea behind it is to make the random draws from a more concen-

trated region that most concerns the calculation in interest. In the particle filter

context, since we are interested in finding the posterior distribution pX(.), we want

to generate particles from a guessed importance distribution qX(.) which preferably

are close to the true posterior. In fact, with a more educated guess about qX(.), the

calculation on pX(.) using Bayes theorem would be more accurate. It can be shown

that, to some extent, the quality of the parameter estimation depends on the choice

of the guessed importance distribution. The selection of the importance distribution

will be addressed later on in this chapter.

Recall that in order to apply importance sampling, the Radon-Nikodym deriva-

tive ω̃(.) needs to be calculated for each particle xi as follows

ω̃(xi) =
pX(xi)

qX(xi)
. (4.12)

Since the information about pX() is not known beforehand, we can not rely

on Eqn. (4.12) to compute the weights ω̃(xi). To bypass this difficulty, the nor-

malization is introduced so the new weights for each drawing i can be obtained

by

ω(xi) =
ω̃(xi)∑
ω̃(xi)

. (4.13)

The normalization procedure will be discussed in details in the next section.
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4.4.2 Sequential importance sampling

Now we discuss how to apply importance sampling with particle filter based

on the conceptual solution as in Eqn. (4.4). We denote Xk = {xj : j = 1, . . . , k}

the sequence of state variable x and Zk = {zj : j = 1, . . . , k} the sequence of

observations of z both up to time k. The the joint posterior distribution at time k

is estimated as follows

p(Xk|Zk) =
N∑

i=1

ωi
kδ(Xk −X i

k) , (4.14)

where δ(.) is the delta function. The calculation of weights ωi
k follows Eqn.(4.13).

In particular, if samples are drawn from an importance density q(Xk|Zk) other than

the true density, then the weights can be expressed as

ωi
k ∝

p(X i
k|Zi

k)

q(X i
k|Zi

k)
. (4.15)

Suppose at time k− 1 we have samples that constituting an approximation of

p(Xk−1|Zk−1) and we are interested in having p(Xk|Zk) at time k with the reception

of new observation zk. If the importance distribution is chosen to have the following

factorization

q(Xk|Zk) = q(xk|Xk−1, Zk) q(Xk−1|Zk−1) , (4.16)

one can then augment the existing samples X i
k−1 ∼ q(Xk−1|Zk−1) with the new state

xi
k ∼ q(xk|Xk−1, Zk) to obtain samples X i

k ∼ q(Xk|Zk).

To derive the weight update, the PDF p(Xk|Zk) can be expanded in the fol-

lowing manner — (For derivation see Appendix (A.3))

p(Xk|Zk) ∝ p(zk|xk) p(xk|xk−1) p(Xk−1|Zk−1) . (4.17)
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Now if we plug Eqn.(4.16) and (4.17) in the Eqn.(4.15), the weight update

equation can be shown as

ωi
k ∝ p(zk|xi

k) p(xi
k|xi

k−1) p(X i
k−1|Zk−1)

q(xi
k|X i

k−1, Zk) q(X i
k−1|Zk−1)

= ωi
k−1

p(zk|xi
k) p(xi

k|xi
k−1)

q(xi
k|X i

k−1, Zk)
. (4.18)

The relationship in Eqn.(4.18) can be simplified by the Markov property to

drop the dependence on the history

q(xi
k|X i

k−1, Zk) = q(xi
k|xi

k−1, zk) , (4.19)

such that the importance density only depends on the most recent state and ob-

servation xk−1 and zk. This reduction is particularly helpful when only the filtered

posterior p(xk|Zk) is estimated sequentially but large storage of past information is

undesired. After the simplification, the weights update equation reads

ωi
k ∝ ωi

k−1

p(zk|xi
k) p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
. (4.20)

And the updated posterior density is approximated as

p(xk|Zk) ≈
N∑

i=1

ωi
kδ(xk − xi

k) . (4.21)

The Sequential Importance Sampling (SIS) algorithm gives rise to propagate

the posterior distribution with new updates at each time step by Monte Carlo sim-

ulating a large number of particles. With the knowledge of the entire posterior dis-

tribution obtained sequentially we could be able perform any relevant calculations

involving the distribution of the state variables, such as the likelihood function.
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4.4.3 Selection of the importance density

The quality of the particle filter estimation crucially depends on the selection

of the prior distribution q(xi
k|xi

k−1, zk) as in Eqn.(4.20). The optimal prior choice

would minimize the variance of the importance weights. However, except in a few

exceptions, finding the optimal choice is infeasible. Here we present the most widely-

used suboptimal choice that is the so-called transitional prior,

q(xi
k|xi

k−1, zk) = p(xi
k|xi

k−1) . (4.22)

This choice is very popular due to its simplicity. With this prior, the weight update

function Eqn.(4.20) is conveniently reduced to

ωi
k ∝ ωi

k−1 p(zk|xi
k) . (4.23)

The SIS algorithm under this choice of prior distribution is summarized in Table

(4.1).

The transitional prior would be find if the domain for most of prior’s distri-

bution mass is narrower than that of the likelihood function p(zk|xk), otherwise

problems such as fast degeneracy and impoverishment will arise. Improved algo-

rithms to handle those problems have been developed in the past, and one of them,

the resampling technique, will be discussed in the next section. Interested readers

are suggested to read Chapter 3 in [27] for a more detailed account.

4.4.4 Resampling

Any suboptimal choice of prior distribution, such as the transitional prior

discussed in the previous section, causes the degeneracy problem. In specific, it is
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[{xi
k, ω

i
k}N

i=1] = SIS([{xi
k−1, ω

i
k−1}N

i=1, zk])

• For i = 1 : N

– Draw xi
k from the prior distribution q(xi

k|xi
k−1, zk) = p(xi

k|xi
k−1);

– Evaluate the non-normalized weights according to Eqn.(4.23)

ω̃i
k = ωi

k−1 p(zk|xi
k)

• End For

• Calculate the normalizing factor Z =
∑N

j=1 ω̃j
k

• For i = 1 : N

– Normalize: wi
k =

ω̃i
k

Z

• End For

Table 4.1: Sequential importance sampling algorithm

found that the suboptimal prior could increase the variance in the importance weight

over time. As a consequence, it is very likely that, after a few time steps, one particle

picks up all the weights while other particles weigh little. The degeneracy problem

leads to a large variance in the posterior distribution and harms the estimation.

Unfortunately, it is theoretically inevitable when applying the suboptimal sequential

importance sampling algorithm.

Whereas it is impossible to totally avoid the degeneracy, we could seek to

reduce it. The degree of degeneracy could be measure by the effective sample size

N̂eff is defined as

N̂eff =
1∑
(ωi

k)
2
.

The smaller N̂eff is, the stronger degeneracy exists. N̂eff is then monitored over

time; once a pre-defined threshold Nthr is breached, resampling is executed to lessen
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the degeneracy degree. The resampling procedure is to split particles that carry

large weights into small particles based on the probability, so technically it is to

map a random measure {xi
k, ω

i
k} into another random measure {xi∗

k , 1
N
} of equal

weights. The new random measure is generated by sampling with replacement N

times from the approximated discrete posterior p(xk|Zk) given by Eqn.(4.21) such

that P{xi∗
k = xj

k} equals ωj
k. Therefore, after resampling, a new set of particles with

uniform weights is drawn and available for the next step of propagation.

The mechanism of resampling procedure is illustrated in Fig.(4.1), and the

algorithm is summarized in Table 4.2.

Figure 4.1: Resampling scenario and mechanism in particle filter
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[{xi∗
k , ωi

k}N
i=1] = RESAMPLE([{xi

k, ω
i
k}N

i=1, zk])

• Initialize c1 = ω1
k

• For i = 2 : N
ci = ci−1 + ωi

k

• End For

• Draw random number n1 ∼ U [0, 1/N ], set i = 1

• For j = 1 : N

– Let uj = u1 + j−1
N

– While uj > ci

i = i + 1

– Assign xi∗
k = xi

k and ωj
k = 1

N

• End For

Table 4.2: Resampling algorithm

4.4.5 Generic particle filter algorithm

We conclude this section by summarizing the algorithm of the general particle

filter which combines the sequential importance sampling (SIS) with resampling

in Table 4.3. The algorithm is to generate the N new pairs of {xi
k, ω

i
k} for i ∈

{1, . . . , N} at the time step k with input of {xi
k−1, ω

i
k−1 = 1

N
}.

[{xi
k, ω

i
k}N

i=1] = PF([{xi
k−1, ω

i
k−1}N

i=1, zk])

• Filtering via SIS in Table 4.1

• Resample using the algorithm in Table (4.2)

[{xi
k, ω

i
k =

1

N
}N

i=1] = RESAMPLE([{xi
k, ω

i
k}N

i=1, zk])

Table 4.3: Particle filter algorithm
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4.5 Estimate the 3-factor Lévy short rate model

In this section we will first describe the data set we use in the estimation

and then cater the generic particle filter algorithm to our model estimation context.

Numerical results will be presented and analyzed.

4.5.1 Data description

By courtesy of Caspian Capital Management LLP, we are provided with the

over-the-counter Euro-dollar future rates and constant maturity swap (CMS) rates

across different maturities and tenors.

In specific, the first 3 columns of data are rates reflected from the Eurodollar

future contracts, which are written on the 3-month Libor rates for 3 different ma-

turities of T = 3, 6, 12 months. The next 6 columns of data are the swap rates of 6

different maturities including Tn = 2, 3, 5, 10, 15, 30 years. In those swap contracts,

the fixed-rate coupon payments are made semi-annually.

Therefore we have in total 9 columns of data. The data set contains 10 year

daily market quotes that start from 04/25/1994 through 10/13/2004. To avoid

weekday effects in the estimation, we only sample data weekly on every Wednesday.

This makes the sampled data set have 9× 538 = 4842 entries.
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4.5.2 Quasi-maximum likelihood estimation with particle filter

Quasi-maximum likelihood estimation (MLE)2 is applied to calibrate the model.

The continuous-time dynamics of the short rate factors is first cast into a discrete

version as the data supply is sampled weekly. Particle filter then helps to retrieve

the values of state variables sequentially on every sampled time step. Based on the

filtered state variables, pricing equations output the model prices, and pricing errors

are simply the differences between market prices and the model prices. Errors are

assumed to be white noises with pre-estimated variances, and the error likelihood

functions are computed via the multidimensional normal distribution function. The

concretes procedures will be given below.

We cast the SDE of the state variables x(t) in Eqn. (3.8) and (3.9) by Euler

approximation into discrete propagation equations here as

xt = (I − e−κ∆t)
a

κ
+ e−κ∆txt−1 + B∆Lt , (4.24)

where I is the 3× 3 identity matrix and ∆Lt is our Lévy randomness. With weekly

sample frequency, we set ∆t = 7/365.

We construct measurement functions for Eurodollar futures and swap rates of

different kinds, assuming additive, normally distributed measurement errors:

zt = O(xt; Θ) + et , (4.25)

where zt denotes the observable prices at time t, and O(xt; Θ) denotes the model-

implied values as a function of the parameter set Θ and the factor vector xt . The

2It is called quasi-maximum likelihood method because the likelihood function is, strictly speak-

ing, the conditional likelihood function.
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term et denotes the normally distributed pricing errors with 0 mean and R the

co-variance matrix 3.

Recall the pricing formulas O(xt; Θ) for Eurodollar futures and swap rates

which are summarized below:

Lt(T, T + α) =
P (t, T )− P (t, T + α)

αP (t, T + α)
, (4.26)

Kt(T0, . . . , Tn) =
P (t, T0)− P (t, Tn)

n∑
i=1

αP (t, Ti)

, (4.27)

where the bond formulas, given the state variables, are shown in Eqn.(3.13). The

Lt(T, T + α) in Eqn.(4.26) denotes the Eurodollar future rate prevailing at time t

for the period [T, T +α] where α = 3 months. And the Kt(T0, . . . , Tn) in Eqn.(4.27)

stands for the rate of the swap contract with coupons being paid on T1, . . . , Tn.

In such a contract, the fixed rate leg makes the payment every α = 0.5 year. To

match the data, the pricing function O(xt; Θ) is 9-dimensional, with the first 3 being

Eurodollar futures maturing in T = 3, 6, 12 months and swap contracts maturing

in Tn = 2, 3, 5, 10, 20, 30 years. And we define the pricing errors as the differences

between z̃t, the rates output by the model and zt, the rates observed from the

market.

The particle filter technique we developed in Section 4.4 can be straight-

forwardly customized in the context of our model estimation. In specific, at a

particular time t − 1 one has a large number of particles with known values xt−1

that represent the posterior distribution at time t − 1. To propagate the poste-

3For the sake of convenience, in the estimation we take the covariance matrix R to be the

identity matrix I times a constant scalar σ2
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rior distribution to the next time step t, one first makes the ex ante predictions x̃t

according to Eqn. (4.24). Now at time t market quotes zt become available and

we now use the observable data to update the prediction. As shown in Table 4.1,

this is equivalent to find the weight function ωi
t for each particle i. Recall that the

pricing error for each day t and each asset value i is modeled as white noise with

variance R so the log-likelihood function lit = log p(zt|x̃i
t) is the exponent of the

normal distribution

lit = −1

2

(
(zt − z̃i

t)
′(R)−1(zt − z̃i

t)
)

. (4.28)

To estimate the parameters, we build the joint log-likelihood function across

the entire history for every sampled data. That is,

L(Θ, zM
t=1) =

M∑
t=1

N∑
i=1

lit , (4.29)

where M is the number of days when we sample data from and N is the number of

particles we simulate4. We choose parameters to maximize the log-likelihood of the

data series, which is expressed as

Θ = arg max
Θ

L(Θ, zM
t=1) .

4.5.3 Estimation results and discussion

Assuming the Lévy process follows Variance Gamma, we estimate the reduced

form of the model with risk-neutral parameterization as listed in the right column

of Table 3.2 totalling 25 parameters. The program is written in Matlab and uti-

lizes its optimization routines. The selection of initial values of the parameters are

4We take N = 200 in the estimation.
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critical for the optimization, and an informed selection would substantially expedite

the optimization convergence. The initial values are chosen via an trial-and-error

procedure.

On one hand, a large amount of particles will make better precision for rep-

resenting the distribution, and hence reduces the number of iterations used in the

optimization. On the other hand however, having more particles substantially in-

creases the workload in simulation. The optimal number of particles is beyond our

knowledge, but in the Matlab code 200 particles are employed.

The estimation took considerable CPU time for convergence. It is not guar-

anteed that, due to the large-scale optimization along with randomness caused by

simulation, the likelihood maximization stops at the global maximum. But as vi-

sualized by the plots from Figure 4.2 to 4.6, a reasonable convergence has been

achieved. The estimated parameters are presented in Table 4.4.5

The performance statistics of the estimated model are presented in Table 4.5.

Errors are the difference between market prices and model prices and quoted in

basis points6. The statistics of pricing errors for both ex-ante prediction and ex-

post update are presented in panel A and B respectively, and columns titled [Mean,

Median, Std, MAD, Max, Min] refer to the [mean, median, standard deviation,

mean-average-deviation, maximum, minimum] of the error series. EF stands for

Eurodollar futures.

5We use L1, L2, L3 to denote the parameter vectors for each factor. Since we are using VG

process, all are 3-dimensional vectors.
6A basis point is one percent of a percentage.

93



Apparently, with the new market observation, the ex-post performance is much

better than the ex-ante prediction in terms of smaller error standard deviations.

Cross-sectionally, the results are indicating good predicting power as the mean and

median values for all assets but EU(12m, 3m) are within the range of 10 basis points

from zero. EU(12m, 3m) seems to be the least predictable. Also, we notice that the

predictions for swap rates of shorter maturities have much smaller error standard

deviations and MADs than other swap rates and Eurodollar futures. The whole

time series of the model implied values against the market quotes are graphically

illustrated in Figure 4.2 to 4.6 for each of the 9 asset classes.

Although the Lévy based models are structurally superior, the estimation pro-

cedures are, at the same time, considerably more complicated. It is expected that

a better computing facility would enable us to use more particles in order to bring

increased accuracy and enhanced performance.

4.6 Yield curve analysis and pricing

Based on the estimated model from the previous section, we perform the factor

loading analysis on the yield curve and price the caplet using Monte Carlo simu-

lation. The caplet volatility surface is constructed by converting the caplet values

into Black implied volatility.

94



Model SDE: r(t)=α + β′x(t), dx(t) = (a− κx(t))dt + dL(t)
α κ β

0.0762




0.0013 0 0
0.0903 0.6353 0
−0.3450 −0.3927 0.9691






−0.0666
−0.0568
0.1241




a L1 L2 L3 x0


0.0009
0.0353
0.4118






−0.0169
0.1200
0.1702






−0.0996
0.1028
0.1983






−0.0096
0.0828
0.1874







2.1199
−0.4353
1.0190




Table 4.4: In-sample maximum likelihood parameter estimates of 3-factor Lévy
short rate model with particle filter using 10-year data from 04/25/1994 through
10/13/2004

In-sample error statistics in basis points (bps)
Asset Mean Median Std MAD Max Min

A. Ex-ante
EF(3m, 3m) 4.1811 4.1557 18.1331 14.0131 59.8101 -95.3415
EF(6m, 3m) -7.7202 -6.7680 18.1461 13.7373 55.7387 -123.5331
EF(12m, 3m) -12.7738 -10.5906 26.2126 21.0457 49.6241 -99.1613
Swap(2 year) -2.9530 -3.7763 14.7992 11.4461 50.6473 -83.8178
Swap(3 year) -4.9998 -5.6067 16.9883 13.3460 57.3284 -72.2385
Swap(5 year) -5.7343 -6.5089 18.9978 14.8604 63.1169 -57.7497
Swap(10 year) 0.9012 -1.0923 20.4852 15.8901 93.8079 -50.6519
Swap(20 year) 7.7000 5.2903 22.2722 17.5681 110.7255 -39.3156
Swap(30 year) 2.6371 0.5487 23.0010 18.2084 106.6838 -47.9710
Average -2.0846 -2.7053 19.8928 15.5684 71.9425 -74.4200

B. Ex-post
EF(3m, 3m) 7.2434 5.9534 16.2113 12.5880 58.8404 -34.5549
EF(6m, 3m) -4.8583 -4.2072 10.5541 8.2076 51.1436 -43.0244
EF(12m, 3m) -10.3143 -7.5075 18.8791 15.4580 38.4103 -69.2283
Swap(2 year) -0.2902 -0.0407 5.3054 4.1561 12.7163 -21.5128
Swap(3 year) -2.6413 -3.0292 8.5221 6.6426 29.6837 -31.1299
Swap(5 year) -3.8019 -4.6334 11.7396 8.9714 42.5053 -32.8672
Swap(10 year) 2.3866 1.1166 14.3203 10.9077 75.8342 -29.3619
Swap(20 year) 9.0442 7.4268 16.9991 13.2676 92.7829 -25.4996
Swap(30 year) 3.8909 1.6666 18.7174 14.6119 89.2396 -36.5544
Average 0.0732 -0.3616 13.4720 10.5345 54.5729 -35.9704

Table 4.5: In-sample estimation performance statistics of 3-factor Lévy short rate
model with particle filter using 10-year data from 04/25/1994 through 10/13/2004
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Figure 4.2: Illustration of (quasi) maximum likelihood estimation using particle
filter on Eurodollar futures and swap rates against market quotes from 04/25/1994
to 10/13/2004: Upper 2 panels for Eurodollar future on Libor(3m, 3m) and lower 2
panels for Eurodollar future on Libor(6m, 3m)

96



0 200 400 600
0

2

4

6

8

10

Time (week)

R
at

es
 (

%
)

Euro−Dollar Future −− Libor(12m, 3m)

Ex Ante
Ex Post
Market

0 200 400 600
−1

−0.5

0

0.5

1

1.5

2

2.5

Time (week)

R
at

es
 D

iff
er

en
ce

 (
%

)

Euro−Dollar Future −− Libor(12m, 3m)

Ex Ante
Ex Post

0 200 400 600
0

2

4

6

8

10

Time (week)

R
at

es
 (

%
)

2−Year Swap Rate

Ex Ante
Ex Post
Market

0 200 400 600
−0.5

0

0.5

1

1.5

2

2.5

3

Time (week)

R
at

es
 D

iff
er

en
ce

 (
%

)

2−Year Swap Rate

Ex Ante
Ex Post

Figure 4.3: Illustration of (quasi) maximum likelihood estimation using particle
filter on Eurodollar futures and swap rates against market quotes from 04/25/1994
to 10/13/2004: Upper 2 panels for Eurodollar future on Libor(12m, 3m) and lower
2 panels for 2-year swap rate
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Figure 4.4: Illustration of (quasi) maximum likelihood estimation using particle
filter on Eurodollar futures and swap rates against market quotes from 04/25/1994
to 10/13/2004: Upper 2 panels for 3-year swap rate and lower 2 panels for 5-year
swap rate
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Figure 4.5: Illustration of (quasi) maximum likelihood estimation using particle
filter on Eurodollar futures and swap rates against market quotes from 04/25/1994
to 10/13/2004: Upper 2 panels for 10-year swap rate and lower 2 panels for 20-year
swap rate
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Figure 4.6: Illustration of (quasi) maximum likelihood estimation using particle
filter on Eurodollar futures and swap rates against market quotes from 04/25/1994
to 10/13/2004: panels for 30-year swap rate

4.6.1 Yield curve factor loading

Factor loading analysis has been very popular in the field of fixed income

research as pioneered by Litterman and Scheinkman in [41]. As a function of the

maturity, the loading of a yield curve factor stands for the change in the yield of that

maturity given a unit shock in the factor has occurred. The analysis on the factor

loading helps to hedge yield curve related positions, as traders can neutralize the

duration and convexity of each factor individually according to the loading functions.

We follow the parametric approach in [33]. According to Eqn. (3.13), the

coefficient as,t and bs,t determine the term structure of interest rates. The fair

values Y (s, t) of simply compounded spot rates are linked to the yield curve Lévy

factors x(s) by

Y (s, t) = −
([

as,t

t− s

]
+

[
bs,t

t− s

]′
x(s)

)
.

The slope coefficients − bs,t

t−s
are the loading functions of the Lévy factors. We

illustrate the factor loading in Figure 4.7.
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Figure 4.7: Yield Curve and Factor Loading
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The upper panel of Figure 4.7 plots the model implied fair value of yield

curve on the date of Oct. 13th, 2004 and the lower panel illustrates the factor

loading, both as functions of maturity. The upper panel plot is consistent with

the upward trending term structure of the market quote on the same day. The

factor loading plot shows how the three factors control the variation of the yields at

different maturities. The first factor is persistently significant across the spectrum

of maturities; the second is least significant as it picks up slowly for short maturity

but diminishes rapidly for long maturities; the third factor is the most significant

factor for short maturities but dies out quickly after the maturity of 10 years.

4.6.2 Price caplet using simulation

With the estimated model we seek to use Monte Carlo simulation to price one

of the mostly traded fixed income derivatives — caplet (see Section 3.5.5 for the

payoff structures). Black formula is the market benchmark to price a caplet. Under

the Black formula, the annualized caplet rate Cpl(t; T, T + ∆t) with strike K and

volatility σ is

Cpl(t; T, T + ∆t) = P (t, T )
(
F (t; T, T + ∆t)Φ(d+)−KΦ(d−)

)
, (4.30)

where

d± =
log(F (t;T,T+∆t)

K
)± 1

2
σ2(T − t)

σ
√

T − t
, (4.31)

and F (t; T, T + ∆t) is the forward rate prevailing at time t for the future period

[T, T + ∆t].

Obviously, if the price of the caplet is known one can invert by Eqn.(4.30)
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and 4.31 to obtain the implied volatility σ. The market has adopted the convention

of using σ instead of the rate itself to quote the caplet values, which gives a more

intuitive measure about the caplet evaluation.

The Black implied volatilities are reported in the Table 4.6 and illustrated

in the 3-D plot of Figure 4.8. As we can see, the implied volatility is increasing

with the strike going farther out of the money for all maturities. And looking at the

maturity direction, we find that the implied volatility is monotonically decreasing as

the maturity gets longer. These results are consistent with some aspects of market

observations qualitatively.

However, certain unrealistic characteristics about the model pricing caplet ex-

ist. First, the model can only generate a monotonic downward slope in the volatil-

ity surface with respect to maturity, while the market has historically shown a

hump-shaped volatility shape with a peak between 2 years and 6 years. Second,

the volatility is dropping too fast as the maturity goes up, where the 9-year ATM

volatility drops below 5% which is way below the market observations of averagely

20%. This diminishing volatility against long maturity is possibly caused by the

i.i.d. increment assumptions under the Lévy process.

These observations in fact are in agreement with the industry consensus that

equilibrium models, like ours, are not the ideal candidates to price derivatives. It is

because

1. The model is not arbitrage free and the underlying bond prices are not matched

perfectly.
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Black Implied Volatility of Caplet
Moneyness (K/F )

Maturity 1.0 1.02 1.04 1.06 1.08 1.10
1Y 0.2267 0.2420 0.2557 0.2682 0.2796 0.2900
2Y 0.1359 0.1469 0.1566 0.1653 0.1732 0.1804
3Y 0.0992 0.1081 0.1160 0.1229 0.1292 0.1349
4Y 0.0789 0.0866 0.0934 0.0995 0.1049 0.1098
5Y 0.0686 0.0755 0.0816 0.0870 0.0918 0.0961
6Y 0.0607 0.0670 0.0726 0.0774 0.0818 0.0857
7Y 0.0546 0.0605 0.0656 0.0701 0.0742 0.0778
8Y 0.0511 0.0567 0.0614 0.0657 0.0694 0.0728
9Y 0.0492 0.0544 0.0589 0.0629 0.0665 0.0697

Table 4.6: Implied volatility charts of model-generated caplet values of tenor 3-
month on 10/13/2004 with maturity from 1 to 9 years and moneyness from at-the-
money 1 to out-of-the-money 1.1
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Figure 4.8: Implied volatility surface of model-generated caplet values, 10/13/2004
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2. Term structure models can by no means capture certain characteristics that

are unique to derivative markets, e.g. caplet market, as those characteristics

are conceivably not priced in the yield curve.

There are three general methodologies to approach the problem of pricing

derivatives based on yield curve models. First, additional factors besides the yield

curve factors are included in the model and only dedicated to span the variations in

the particular derivative market. The second is to add stochastic volatility to the

Lévy factors in the original model to reflect the dynamics in the derivative market.

The third approach is that people choose to specifically model the market-observable

rate that underlies the derivative, such as Libor rate to the cap market or swap rate

to the swaption market. By doing this, the underlying rates are automatically

matched perfectly and hence arbitrage opportunities are eliminated.
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Chapter 5

Conclusion

This work makes contributions to the mathematical finance area in two aspects

—

1. Developed a 3-factor Lévy -based model, which is the first attempt to use a

non-Brownian motion structure in modeling the short rate dynamics. Bond,

caplet/floorlets and swaption formulas are developed under the model.

2. Implemented a large-scale particle filter to estimate the short rate model.

Particle filter methodology provides robust estimation for state-space models

with non-Gaussian dynamics, and hence is an ideal candidate for studying

Lévy based financial models that are becoming increasingly popular.

The estimation results show quality fittings to the historical data, and the

estimated model demonstrated certain degree of forecasting power. However, the

caplet pricing results indicate that the model is not adequate to price fixed income

derivatives without further seasoning. This is in fact consistent with the consensus

that equilibrium fixed income models such as the short rate models, regardless of the

dynamics, are not able to capture certain characteristics in individual fixed income

derivative market.

As of future work, two things can be done along this line.

1. First, the particle filter implementation can be improved by using more effi-
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cient optimization routine, a better trial-and-error scheme, or generating more

particles to increase the precision.

2. Second, based on the current framework, stochastic volatility can be added

to the Lévy factors in order to explain the unique characteristics exhibited

from different derivatives market and hence give reasonable prices for those

products.

107



Appendix A

A.1 Solution derivation of OU process, Eqn. (3.9)

Proof. We notice from Eqn (3.8) that

d(eκtx(t)) = eκtdx(t) + κeκtx(t)dt

⇒ d(eκtx(t)) = eκt(adt + BdL(s))

⇒
∫ t

0

d(eκsx(s)) =

∫ t

0

eκs(ads + BdL(s))

⇒ eκtx(t)− x(0) =

∫ t

0

eκs(ads + BdL(s))

⇒ x(t) = e−κtx(0) +

∫ t

0

e−κ(t−s)(ads + BdL(s)) .

A.2 Proof of the Bayes rule in the update stage for the conceptual

solution of the filtering problem, Eqn. (4.4)

Proof.

p(xk|Zk) =
p(Zk|xk)p(xk)

p(Zk)

=
p(zk, Zk−1|xk)p(xk)

p(zk, Zk−1)

=
p(zk|Zk−1, xk)p(Zk−1|xk)p(xk)

p(zk|Zk−1)p(Zk−1)

=
p(zk|Zk−1, xk)p(xk|Zk−1)p(Zk−1)p(xk)

p(zk|Zk−1)p(Zk−1)p(xk)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1))
.
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A.3 Proof of the posterior expansion, Eqn. (4.17)

Proof.

p(Xk|Zk) =
p(zk|Xk, Zk−1)p(Xk|Zk−1)

p(zk|Zk−1)

=
p(zk|Xk, Zk−1)p(xk|Xk−1, Zk−1)p(Xk−1|Zk−1)

p(zk|Zk−1)

=
p(zk|xk)p(xk|xk−1)

p(zk|Zk−1)
p(Xk−1|Zk−1)

∝ p(zk|xk)p(xk|xk−1)p(Xk−1|Zk−1) .

We used the Markov properties in deriving those equalities.
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Processes, Mathematical Finance, vol.9, no.1, Jan. 1999, pp.31-53

[24] H. Geman, E. Eberlein and D. Madan, Formulation of Lévy Based Interest
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