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In the modern era, a vast quantities of digital information is available in the

form of audio, image, video, and other sensor recordings. These recordings may

contain metadata describing important information such as the time and the location

of recording. As the stored information can be easily modified using readily available

digital editing software, determining the authenticity of a recording has utmost

importance, especially for critical applications such as law enforcement, journalism,

and national and business intelligence.

In this dissertation, we study novel environmental signatures induced by power

networks, which are known as Electrical Network Frequency (ENF) signals and

become embedded in multimedia data at the time of recording. ENF fluctuates

slightly over time from its nominal value of 50 Hz/60 Hz. The major trend of

fluctuations in the ENF remains consistent across the entire power grid, including

when measured at physically distant geographical locations. We investigate the

use of ENF signals for a variety of applications such as estimation/verification of

time and location of a recording’s creation, and develop a theoretical foundation to

support ENF based forensic analysis.

In the first part of the dissertation, the presence of ENF signals in visual

recordings captured in electric powered lighting environments is demonstrated. The

source of ENF signals in visual recordings is shown to be the invisible flickering



of indoor lighting sources such as fluorescent and incandescent lamps. The tech-

niques to extract ENF signals from recordings demonstrate that a high correlation

is observed between the ENF fluctuations obtained from indoor lighting and that

from the power mains supply recorded at the same time. Applications of the ENF

signal analysis to tampering detection of surveillance video recordings, and forensic

binding of the audio and visual track of a video are also discussed.

In the following part, an analytical model is developed to gain an understand-

ing of the behavior of ENF signals. It is demonstrated that ENF signals can be

modeled using a time-varying autoregressive process. The performance of the pro-

posed model is evaluated for a timestamp verification application. Based on this

model, an improved algorithm for ENF matching between a reference signal and a

query signal is provided. It is shown that the proposed approach provides an im-

proved matching performance as compared to the case when matching is performed

directly on ENF signals. Another application of the proposed model in learning

the power grid characteristics is also explicated. These characteristics are learnt

by using the modeling parameters as features to train a classifier to determine the

creation location of a recording among candidate grid-regions.

The last part of the dissertation demonstrates that differences exist between

ENF signals recorded in the same grid-region at the same time. These differences

can be extracted using a suitable filter mechanism and follow a relationship with

the distance between different locations. Based on this observation, two localization

protocols are developed to identify the location of a recording within the same grid-

region, using ENF signals captured at anchor locations. Localization accuracy of the

proposed protocols are then compared. Challenges in using the proposed technique

to estimate the creation location of multimedia recordings within the same grid,

along with efficient and resilient trilateration strategies in the presence of outliers

and malicious anchors, are also discussed.
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Chapter 1

Introduction

1.1 Motivation

In the modern era, a huge amount of digital information is available in the

form of audio, image, video, and other sensor recordings. These recordings may

contain metadata describing important information such as the time and the place

of recording. However, digital tools can be used to modify the stored information.

For example, digital editing softwares can be used to cut a clip from an original audio

or to insert a foreign clip into it, or to manipulate the metadata field to alter the

recording date and time. Similar changes can also occur with video surveillance and

other types of recordings. These modifications can result in serious consequences

when multimedia recordings are used for law enforcement and journalism cases.

Multimedia forensics is gaining importance in the information era in light of these

capabilities.

The questions related to the time and place of recordings, and their authen-

1



ticity also have grave importance for counter-terrorism operations. In recent years,

terrorists like Osama bin Laden and other have released many propaganda video and

audio recordings threatening attacks on the civilians and governmental infrastruc-

ture. To detain the perpetrators of such crimes, investigation agencies seek answers

to questions such as: When was the given recording created? Where was it created?

Is the recording authentic? To the best of our knowledge, no satisfactory technology

exists that may be applied generally and potentially answer such questions. This is

a major impediment toward counter-terrorism operations.

Several classes of signal processing techniques have been discussed in litera-

ture to verify the integrity of multimedia recordings. For example, watermarking

is a proactive measure to achieve data security and involves embedding the hosting

signal with a signal known to the system designer [1]. In order to determine the au-

thenticity of a recording in question, a forensics examiner can extract the watermark

from the recording and compare it with the database. One of the limitations of dig-

ital watermarking techniques is that the watermark signal is embedded at the time

of data creation or data transmission, and it requires dedicated software/hardware

and protocol. In the absence of proactive watermarking techniques during the initial

data acquisition, an adversary can easily modify the information in a given recording

to his/her advantage.

Another class of signal processing techniques developed for multimedia foren-

sics relates to non-intrusive forensics that traces the origin and the processing history

of multimedia content to its creation process [2]. For example, component forensics

aims to identify the algorithms and parameters employed in the various components
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of the device used in capturing the data [3]. These techniques work by identifying

the traces left in multimedia data when it goes through various processing blocks

inside the recording device. Such techniques can address a number of forensics is-

sues, such as in discovering device-technology infringement, protecting intellectual

property rights, and identifying acquisition devices. This class of techniques offers a

major and more recent alternative to watermarking because they do not require the

active embedding of a known signal in the recording content, but alone they cannot

address the questions related to the time and location of a multimedia recording.

These limitations in the existing schemes motivates us to investigate alternative

technologies to ensure information authenticity.

1.2 Background

The main challenges in multimedia forensics have been to determine the time

and location of a given recording’s creation. Forensic investigators seeking infor-

mation about creation time and creation location mainly rely on the metadata,

which may contain such information. Creation time can be stored with the meta-

data using built-in clocks in most modern media recording devices such as audio

recorders, camcorders, etc. Location-of-recording can also be stored automatically

with recording in devices equipped with a global positioning system (GPS), available

in an increasing number of modern consumer cameras. However, with an advance-

ment in digital tools, it is simple to modify this information stored in the metadata.

Detecting such forgery has been a challenging task for forensic examiners. In this
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thesis, we investigate novel solutions to these multimedia authentication and foren-

sic problems by exploring the presence of an unique time and location dependent

environmental signature, which is embedded in multimedia recordings at the time

of their creation. These signatures arise from ubiquitous power networks, and are

referred to as Electrical Network Frequency (ENF) signals.

ENF is the supply frequency of power distribution networks in a power grid.

The nominal value of the ENF is 60 Hz in the United States and most parts of the

Americas; and 50 Hz in most areas of Europe and Asia. Japan uses dual standards

of 50 Hz and 60 Hz; Taiwan uses 60 Hz in its power distribution networks. An

important property of the ENF comes from its fluctuations from the nominal value

due to dynamically varying loads on the power grid [4]. To ensure the stability

of a power network and proper functioning of many electric equipments, the grid

should be tightly controlled to keep the fluctuations close to the nominal value.

For example, in continental Europe, these fluctuations make the ENF a continuous

random variable with typical values between 49.90 Hz and 50.10 Hz [4], and in the

United States, ENF typically varies between 59.90 Hz and 60.10 Hz [5]. The main

trends of fluctuations from the nominal value are consistent across the power grid’s

geographical region, and it has been shown that frequency fluctuations measured

at a given time at locations physically far apart but connected to the same power

grid have similar values [4] [5]. Similar variations in the ENF across the entire

interconnected power grid stem from the load control mechanism used to stabilize the

power grid [6]. Therefore, the ENF signal recorded at any location in a power grid at

a given time can generally serve as a representative ENF signal in the geographical
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area covered by the power grid at that time.

ENF signal traces are present in various types of multimedia recordings. Digi-

tal audio devices, such as microphone-based voice recorders that are plugged into the

power mains or located near power sources or power transmission lines, often pick up

the ENF signal because of interference from electromagnetic fields generated from

power sources, acoustic hum, and mechanical vibrations produced by surrounding

electric devices [4]. The nature of fluctuations embedded in digital recordings is sim-

ilar to the fluctuations in the power signal captured directly from the power mains

at the corresponding time. In recent years, this property of ENF signals has been

explored to authenticate digital audio recordings [4] [5]. These works demonstrate

that audio recordings capture ENF signal that exhibits a high correlation with the

ENF signal recorded from the power mains supply at the corresponding time.

Complementary to the active recording of ENF signals, the phase continuity

of ENF signals has been used to detect and locate segments of tampering in a given

audio without resorting to the reference ENF signal. A sudden change in the ENF

signal’s phase extracted from audio indicates that the original recording has probably

been modified [7]. This technique was also used to determine the authenticity of

the White House tapes recorded during the Watergate scandal in 1970s [8]. The

investigations discovered that the famous eighteen and one-half minute section of

the recording with buzz sounds does not contain any tampering evidences with the

tapes. This method does not require reference ENF to detect tampering, though

determining the time-of-recording and the time of any inserted segments would still

require matching against a database of reference ENF signals.
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1.3 Main Contribution and Dissertation Organi-

zation

Although most of the prior work of applying ENF signals for forensics is limited

to audio timestamping, a systematic statistical study of ENF signals has not been

conducted in the audio forensics literature. Also, no examination of the presence

of ENF signals in visual recordings has occurred. In this dissertation, we explore

several uncharted aspects of ENF signal analysis, which enables us to answer the

forensics questions related to the creation time and location of a recording. The

main contribution of this dissertation are as follows:

• This dissertation presents the first study to demonstrate the presence of ENF

signals in visual recordings. As visual recordings gain importance in many

security and law enforcement applications, it becomes increasingly necessary

to develop techniques to authenticate these recordings from multiple aspects

of determining the time and location of the recording. We demonstrate the

presence of ENF signal in videos recorded using consumer-end cameras, and

develop signal processing techniques to extract ENF signals from such videos

for timestamping, location-of-recording estimation, tampering detection, and

audio-visual binding of a video.

• We conduct a statistical study of ENF signals with applications to multimedia

timestamp verification. We also propose an analytical model for ENF signals

based on an autoregressive (AR) process and demonstrate that ENF signals
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fit closely into the proposed model. We use the proposed model to devise an

improved method to match two ENF signals.

• In this dissertation, we also explore the location dependent properties of ENF

signals. We demonstrate that the nature of ENF fluctuations varies across

different grid regions. Based on this observation, we devise a location classi-

fication scheme that estimates the grid-region of recording of ENF influenced

media recordings, using AR model parameters as features. We also explore

the “microscopic” properties of ENF signals, which can be used to differen-

tiate recordings conducted at the same time at different locations across the

same power grid region. Using these properties, we devise localization pro-

tocols to estimate the location of recording within the same grid-region. For

a complete exploration, we propose a localization scheme capable of provid-

ing excellent localization accuracy and computational efficiency even in the

presence of adversaries injecting malicious location information.

The dissertation is organized as follows. In Chapter 2, we explore the source

of ENF signals in visual recordings using experiments conducted on photo-diodes.

We hypothesize that ENF signals are embedded in visual recordings from electric

powered light sources such as fluorescent and incandescent lights. We devise exper-

iments to verify our hypothesis, and propose methods to extract ENF signal from

such recordings. We demonstrate that ENF signals can be used to timestamp optical

sensor recording conducted under electric powered illuminated environment.

7



In Chapter 3, we explore the presence of ENF signals in video recordings. We

demonstrate that ENF signals are embedded in the visual track of video recordings

conducted in indoor environments illuminated by electric powered fluorescent lights.

We discuss the challenges in extracting ENF signals from such recordings due to

a low frame-rate of videos. We design a signal processing mechanism to extract

ENF signals from video recordings and use them for various multimedia forensics

applications such as timestamping, forgery detection of clip insertion and deletion,

and audio-visual binding for videos.

In Chapter 4, we conduct a statistical study of ENF signals and propose a

piecewise stationary autoregressive(AR) model to represent ENF signals. We vali-

date the proposed model using the Box-Jenkins methodology, which is widely used

in the literature of statistical time-series analysis. We use the proposed model to

predict the performance of an ENF-based timestamping application under a binary

hypothesis detection framework, and we demonstrate that the proposed model can

predict the performance obtained on audio-power ENF database for a given signal-

to-noise ratio (SNR) and query length. Using the proposed AR model, we also

develop a new method to measure the similarity between two ENF signals. We

demonstrate the effectiveness of the proposed method in terms of a performance

improvement for timestamp verification application.

In Chapter 5, we explore another application of the AR model for ENF signals

to learn the characteristics of different power grids. We demonstrate that ENF signal

characteristics varies from one power grid to another. Based on this observation,

we build a support vector machine based classifier to estimate the grid-region of
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recording by using AR modeling parameters as features. We also evaluate the effect

of noisy ENF signals on location classification accuracy and propose a Bayesian

approach to noise adaptation, which provides a superior classification performance

compared to when noise adaptation is not performed.

In Chapter 6, we study applications of ENF signal analysis for location-of-

recording estimation within the same grid-region. We show that differences exist

between the ENF signals captured directly from power mains at several locations

of the same grid. We design a mechanism to extract location specific signatures

from these recordings and demonstrate that suitable localization methods can be

used to estimate the location-of-recording to a certain precision. We also discuss the

challenges in using the proposed methodology to estimate the location-of-recording

in multimedia recordings due to the noisy ENF signal embedding in such record-

ings, then we present a quantitative criterion to measure precision and resolution to

improve in future work.

In Chapter 7, we propose a localization scheme that applies to ENF based tri-

lateration and general sensor localization problems. The general problem assumes

that the distances between the anchors and the sensor in question can be estimated.

Some of these measurements may not be accurate given the presence of noise. Gen-

erally speaking, it is possible to have adversaries who attempt to inject malicious

location information into the system. We develop an efficient method to localization

under such settings and demonstrate that the proposed method can outperform the

existing localization schemes in terms of computational requirements at a similar or

better localization accuracy.
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In Chapter 8, we conclude this dissertation and outline research issues for

future explorations.
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Chapter 2

Electric Network Frequency based

Timestamping in Optical Sensor

Recordings

2.1 Chapter Introduction

Electrical Network Frequency (ENF) is the supply frequency of power distri-

bution networks in a power grid. ENF signal fluctuates from its nominal value of 50

Hz or 60 Hz due to dynamically varying loads on the power grid [4]. As ENF signals

are also captured in audio recordings at the time of its creation, it has been used in

a variety of forensics application such as timestamping and tampering detection in

recent years [4] [5] [7]. For example, ENF signal from audio recordings can be esti-

mated using signal processing mechanisms and compared with ground truth power

mains signal to estimate the creation time of the given audio. The recorded signal is
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filtered using a narrow bandpass filter with passband centered at the nominal ENF

of interest. Spectrogram based frequency estimation algorithms are applied to ex-

tract the ENF fluctuations, which are compared with the ENF fluctuations from the

power grid stored in a database to determine the time-of-recording or authenticity

of audio. The ENF database may be obtained from the power utilities companies

as they often keep track of it, or can be proactively recorded using simple hardware

utilizing a step-down transformer and a voltage divider. ENF database can also

be synthesized from multimedia recordings containing the ENF signal at a known

recording time.

The next natural research question to address in the direction of using ENF

fluctuations in multimedia forensics is: Are ENF signals present and measurable in

visual sensing data? And what is the potential source of ENF in such measurements?

CCD and CMOS imaging sensors used in video cameras measure the intensity of

photons falling on the sensor array. These intensities are converted to measurable

quantities, such as electric current or further into digital image sequences in video

recordings. The intensity of light from light sources, such as fluorescent or incandes-

cent bulbs, varies according to the frequency of the electric current, and may induce

the ENF signal in recordings made using light sensors and visual sensors.

In this chapter, we explore the presence of ENF signals in optical sensor record-

ings in indoor lightings by conducting experiments on light capturing devices [9].

We build a light sensing device which produces current when light falls on it. The

light sensing device is capable of capturing the light in the wavelength range of the

common electricity powered lighting environments such as fluorescent lights and in-
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candescent lights. We develop a method to detect the presence of the ENF signal

from optical recordings conducted in indoor lightings and validate the timestamping

property of the ENF signal for such recordings. We investigate the use of spectrum

based frequency estimation methods and such subspace based frequency estimation

algorithms as the MUSIC and the ESPRIT to estimate the ENF signal with high

temporal resolution. Such a high temporal resolution of ENF estimation is benefi-

cial for some emerging applications using ENF signal analysis. For example, it will

be demonstrated in Chapter 6 that ENF signals contain location specific signatures

even when they are recorded within the same grid; These signatures can be extracted

using high temporal resolution frequency estimators to determine the location of a

recording within the same grid [10] [11].

2.2 ENF Signal Extraction in Indoor Lightings

ENF signal is captured in the audio recordings because of interferences from

electromagnetic field generated from nearby power sources and power transmission

lines or the acoustic hum and mechanical vibrations produced by electric powered

devices. Such observations raise the question: can ENF signal be captured in the

visual recordings? To answer this, we need to find the potential source of ENF

interference in visual recordings. We observe that the light intensity of commonly

used light sources such as fluorescent and incandescent lights varies in accordance

with the amount of current supplied to it. To understand the mechanism of ENF

fluctuations in indoor lightings, we provide a brief background on the operation of
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fluorescent and incandescent light sources.

Fluorescent Lights: A fluorescent lamp consists of a sealed tube containing a tung-

sten filament at both ends, an inert gas, and a small amount of mercury vapor. On

passing electric current through this tube, electrons traveling in the form of electric

current collide against the mercury atoms. If these electrons have enough kinetic

energy, electrons in the mercury atoms become temporarily excited to higher energy

levels. Unstable high energy levels cause electrons to return to lower energy levels,

releasing photons with energy in the ultra-violet(UV) range. Since UV light is invis-

ible to human eyes, the inner wall of the tube is coated with phosphor which absorbs

UV light and emits light in the visible light range through another electron excita-

tion process. Applying the electric current at the nominal ENF of 50 Hz/60 Hz to

the tube heats the tungsten filament and generates free ions to establish a current

path. As the current changes polarity at twice the rate of the nominal ENF, the

current path inside the lamp turns on and off at 100/120 times per second. As a

result, the lighting fluctuations illuminated by a fluorescent source is expected to be

influenced by the ENF signal at the nominal frequency of 100 Hz/120 Hz.

Incandescent Lights: The mechanism of light production in an incandescent bulb

is substantially different from a fluorescent light source [12]. Incandescent lamp

technology uses electric current to heat a coiled tungsten filament to incandescence.

The glass container that covers the filament is filled with a mixture of nitrogen

and a small amount of inert gas such as argon. The light photons emitted by

the bulb is dependent on the temperature of the coil, which depends on the heat

energy dissipated in the coil and follows a power law with the amount of current
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supplied. As a result, the light intensity from incandescent bulbs varies at double

the frequency of the nominal ENF value and can be expected to be influenced by

the ENF signal at the nominal value of 100 Hz/120 Hz, similar to the fluorescent

lighting. Other commonly used electric light sources such as halogen bulbs also

exhibit similar characteristics as incandescent bulbs [13].

2.2.1 ENF Extraction using Optical Sensors

In this section, we describe the method used to extract ENF signals from

fluorescent and incandescent lightings. Although the mechanism of light production

in these light sources differ, ENF signal from the light intensity signal exhibits high

correlation with the ENF signal captured directly from power mains.

The typical wavelengths of light emitted by fluorescent and incandescent light-

ings are in the visible range (400nm-700nm wavelength). To record the light inten-

sity, we use photodiodes that produce electric current when light falls on it. We

choose BPW21 photodiodes that have light sensitivity of 9nA/lx and high spectral

sensitivity in the visible range. Using a diode with high spectral sensitivity in the

visible range ensures that infra-red signals generated from nearby heating sources

do not interfere with the measurements obtained using the diode. As discussed later

in Section 2.2.4, when fluorescent lamp directly above the sensor is switched off, the

ENF signal is still recorded due to low ambient light present in the room where

recordings are conducted. The current generated by the photodiodes is on the or-

der of µA, that is too weak to be directly recorded by common current measuring
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devices. We use a current-to-voltage amplifier to convert the current to measurable

voltage levels. The schematic and assembled electric circuits used for this amplifi-

cation purpose are shown in Fig. 2.1(a) and 2.1(b). In the first stage, a combination

of a positive and a negative feedback loop is applied to obtain a robust amplifica-

tion. Using the positive feedback loop increases the gain factor, producing less noisy

amplification as discussed in [14]. In the second stage, a negative feedback loop is

applied to further amplify the output from the first stage. For the given values of

circuit parameters in Fig. 2.1(a), the overall gain of this circuit from input current

I induced by incident light to output voltage Vout is approximately 8 × 106Ω. The

output signal is given as an input to a PC sound card and sampled at 1 KHz.

To study the correlation between the ENF signal in indoor lighting captured

using optical sensors and that in power mains supply, we record the ground truth

ENF signal directly from the power mains of the electrical supply using a step-down

transformer to convert the power supply voltage level to 5V. The transformer output

is then given to a voltage divider to limit the current and voltage to safe levels to be

given as input to a PC sound card. A similar mechanism was used to capture the

ENF signal in audio forensics [4]. These experiments are conducted in the state of

Maryland (part of the eastern power grid of the United States), and the ENF signal

from lighting captured by optical sensors is expected at around 120 Hz.

To extract ENF signals, the recorded signals are given as input to an anti-

aliasing low-pass filter with passband of 125 Hz. The resulting signals are down-

sampled by a factor of 4 to reduce the sampling rate from 1 KHz to 250 Hz, and

then passed through an equiripple bandpass filter with a narrow passband centered
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(a) Circuit diagram

(b) Assembled circuit

Figure 2.1: Light sensing circuit used to verify presence of ENF signal in indoor

lightings.
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at 120 Hz for the optical sensor signal and 60 Hz for the power mains signal, respec-

tively.

2.2.2 Instantaneous Frequency Estimation

In this section, we describe the methods used to extract and compare the

ground truth ENF signal captured from the power mains with the ENF signal from

indoor lightings captured using optical sensors. After applying pre-processing to

recorded signals using the method described in Section 2.2.1, we estimate the dom-

inant instantaneous frequencies in each signal to measure the fluctuations in ENF

as a function of time. For this purpose, we explore different types of frequency es-

timators based on parametric and non-parametric spectrum estimation techniques.

2.2.2.1 Non-Parametric Methods

In this section, we describe the time domain zero-crossing and spectrogram

based frequency estimation techniques, which do not assume an explicit model for

the data.

i. Zero-Crossing Method: We first examine the zero-crossing method [15] to

estimate the instantaneous ENF frequency. We divide the recorded signal into over-

lapping frames of Tframe seconds each with an overlap factor of 50%, and count

the number of times the signal crosses zero in each frame. The dominant instanta-

neous frequency in each frame is recorded as half of the zero-crossing count. This

method is easy to compute, but does not give a high estimation accuracy for slowly

varying signals. Next, we examine spectrogram based methods that provide a high
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frequency resolution in analyzing ENF fluctuations.

ii. Spectrogram Methods: Spectrogram is a common time frequency analysis

and visualization tool. It can facilitate dominant instantaneous frequency estimation

in a signal as a function of time by calculating and displaying the short time Fourier

transform (STFT) of the signal [16]. To obtain the spectrogram of the ENF signal,

we divide the signal into overlapping frames of Tframe seconds each with an overlap

factor of 50%. A high resolution 8192 points FFT is taken for each frame, providing

a frequency resolution of approximately 0.03 Hz for a pre-processed signal at 250

Hz sampling rate. After obtaining the spectrogram of the ENF signal, we use

the following frequency domain techniques to estimate the dominant instantaneous

frequencies in the ENF signal:

(a) Maximum energy: In this method, the frequency corresponding to the

maximum energy in each time bin of the spectrogram is identified. The resulting

one-dimensional signal represents the instantaneous frequencies as a function of

time. This method is susceptible to frequency outliers caused by sudden changes

in energy due to such factors as sudden variations in ambient lighting, etc. For

example, movement near sensors can cause change in the dominant frequency.

(b) Weighted Energy: The weighted energy method records the weighted

average frequency in each time bin of the spectrogram. The average frequency

is obtained by weighing frequency bins around the nominal ENF value with the

corresponding energy present. That is:
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F (n) =

L2∑

l=L1

f(n, l)|S(n, l)|

L2∑

l=L1

|S(n, l)|

, (2.1)

where L1 = b (fENF−0.5)NF

fs
c and L2 = d (fENF+0.5)NF

fs
e; fs and NF are the sampling fre-

quency and the number of FFT points used to compute the spectrogram; f(n, l) and

S(n, l) are the frequency and the energy in the lth frequency bin of the nth time-frame

of the recorded signal’s spectrogram, respectively. Since we are interested in esti-

mating the dominant instantaneous frequency around a known frequency value, i.e.,

the nominal ENF value, the value of l is chosen to include the band within ±0.5 Hz

of the ENF frequency of interest. As weighting brings robustness against outliers,

this method is a more accurate estimator of the instantaneous ENF frequencies than

the maximum energy method. Compared to the time-domain zero-crossing method,

the spectrogram based methods for instantaneous frequency estimation provide sig-

nificantly higher accuracy.

2.2.2.2 Parametric Methods

Subspace methods are a class of commonly used parametric spectrum estima-

tion techniques for frequency estimation of a sinusoidal signal submerged in additive

noise. These methods are primarily used in applications where the length of a given

signal is small, and the separation between the frequencies to be retrieved may be

shorter than the Fourier resolution limit. For our problems, ENF signals in multime-

dia recordings can be quite noisy and the dynamic range of the frequency variations
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is often small. Subspace methods may assist us in obtaining accurate estimation

of ENF signals and increasing the temporal resolution of ENF matching in such

scenarios. We examine two widely used subspace based methods for ENF signal

estimation: the MUSIC [17] and the ESPIRIT [18].

i. MUSIC: The Multiple Signal Component (MUSIC) algorithm is a method used

to estimate the underlying parameters of a signal from the given observations [17].

This method improves the simpler Pisarenko algorithm and estimates the frequency

components of a signal consisting of a known number of sinusoids, submerged in

white noise. The method relies on the orthogonality property of the sinusoidal signal

subspace and the noise subspace, and provides a high resolution frequency estimate

of a sinusoidal signal using a smaller number of data points than spectrogram based

methods.

More specifically, the MUSIC algorithm estimates the frequency component of

a signal by using an eigenspace analysis. The method estimates the M ×M auto-

correlation matrix Rx of the given signal, x(n), consisting of p complex sinusoids in

white Gaussian noise. The eigen-vectors corresponding to the p highest eigen-values

of the matrix Rx span the signal subspace; the remaining eigen-vectors span the

noise subspace. After estimating the eigen-vectors of the matrix Rx, the frequency

estimation function of the MUSIC algorithm is:

PMUSIC(e
jω) =

1
∑M

i=p+1 |e
Hvi|2

(2.2)

where e = [1 ejω . . . ej(M−1)ω]T and vi represents an eigen-vector from noise sub-
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space. The ω values corresponding to the peaks in PMUSIC(e
jω) are the estimated

frequencies present in the sinusoid signal x(n). An alternative version of the MU-

SIC algorithm, known as Root MUSIC [19], offers a high resolution to estimate the

above mentioned ω values with substantial savings in computation power.

ii. ESPRIT: The Estimation of Parameters using Rotational Invariant Techniques

(ESPRIT) is a method similar to the MUSIC. Substantial differences between the

MUSIC and the ESPRIT include that the ESPRIT uses the signal subspace while

the MUSIC uses the noise subspace [18], and that the ESPRIT estimates the signal

subspace from the data matrix, while the MUSIC does an explicit computation of

the correlation matrix. Similar to the MUSIC, the ESPRIT is promising to provide

a robust estimate of signal parameters - the frequency in our case - using a smaller

number of data points as compared with spectrogram based techniques.

In our work, the instantaneous frequency signal, which we refer to as ENF

signal for short, is estimated by dividing the given signal into overlapping segments

of Tframe duration with an overlapping factor of 50%, and obtaining an estimate

of the frequency of each segment by applying the frequency estimation algorithms

described above.

2.2.3 Correlation Between Sensor Signal and Power Signal

After estimating the frequency fluctuations in ENF signals as a function of

time, we estimate the Normalized Cross-Correlation (NCC) function between the
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Figure 2.2: Block diagram for estimating creation time of a sensor recording.

two ENF signals as:

ρ(k) =

N∑

n=1

[Fs(n)− µs][Fm(n− k)− µm]

√√√√
N∑

n=1

[Fs(n)− µs]
2

N∑

n=1

[Fm(n− k)− µm]
2

, (2.3)

where Fs(n) and Fm(n) are the dominant instantaneous frequencies in nth time-frame

of ENF signal in optical sensor recording and power mains recording, respectively;

µs and µm are the mean values of Fs(n) and Fm(n), respectively; and N is the

total number of frames in optical sensor signal. The peak value of ρ(k) represents

an estimated delay of k frames in the time-of-recording between the optical sensor

signal and the power mains signal. A block diagram of the overall system used to

extract the ENF fluctuations over time and compare multiple ENF signals is shown
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(a) Power mains ENF signal (b) Optical sensor ENF signal

Figure 2.3: ENF fluctuations of signals captured in Experiment 1.

in Fig. 2.2.

2.2.4 Experimental Results and Discussions

In this section, we describe different experiments conducted to investigate the

presence of ENF signals under fluorescent and incandescent lightings. A light sensing

circuitry shown in Fig. 2.1(b) is assembled, and its output is given as an input to a

PC sound card to record it. A recording directly from power mains is also conducted

in parallel to extract the ground truth ENF signal.

2.2.4.1 Experiment 1

In our first experiment, a fluorescent light is switched-on near the light sensing

circuitry, and data are recorded for 55 minutes. Power mains signal recording is

started with a delay of 15 seconds from the optical sensor recording to determine

the accuracy of our method in estimating the time-of-recording. In the controlled

settings used in this and the following experiments with photodiodes, all other lights
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in the room are switched-off. The spectrograms of the ENF signals obtained from

the ground truth signal and the optical sensor signal around the frequencies of

interests are shown in Fig 2.3(a) and 2.3(b), respectively. From these figures, we

observe that ENF fluctuations captured under fluorescent lightings are similar to

that of the ground truth ENF signal, and the fundamental component of the ENF

signal from sensors is present at a frequency of 120 Hz. As the 120 Hz component

in the sensor signal represents the fundamental component of the ENF, in order to

facilitate examination of the ground truth ENF signal and the sensor ENF signal on

the same scale, we subtract a value of 60 Hz and 120 Hz from the ground truth ENF

signal and the sensor ENF signal, respectively. We plot the ENF fluctuations in

Fig. 2.4(a)-(d) using frequency estimation methods described in Section 2.2.2. High

similarity can be seen between the ENF signals obtained using different frequency

estimation methods for Tframe = 16 seconds and an overlap factor of 50%.

The plots of the NCC function, ρ(k), for the zero crossing and the spectro-

gram based frequency estimation methods described in Section 2.2.2 are shown in

Fig. 2.5(a) for Tframe = 16 seconds. The maximum value of ρ(k) occurs at one time-

frame lag for all the three methods, verifying that the delay between the sensor

signal recording and power mains signal recording is in the 8–24 seconds interval.

The peak value of ρ(k) found using the frequency estimates from the zero-crossing

method is very small compared to those obtained by the spectrogram based methods

because of the low precision of the zero-crossing method for frequency estimation.

The peak value of ρ(k) obtained using the maximum energy method is smaller

than that obtained using the weighted energy method. This is due to the presence
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Figure 2.4: ENF fluctuations for experiment 1 measured using different frequency

domain methods for Tframe=16 seconds.
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Figure 2.5: NCC coefficient, ρ(k), for experiment 1 as a function of time-frame lag

k (a) zero-crossing and spectrogram methods; (b) weighted energy and subspace

methods.

of outlier frequencies that affect the frequency estimation in the maximum energy

method. To achieve a better time resolution for time-of-recording estimation, Tframe

duration can be reduced. However, decreasing the value of Tframe may lead to a

low frequency resolution due to the time-frequency tradeoff observed in frequency

estimation approaches.

In Fig. 2.5(b), we plot the NCC function for weighted energy spectrogram

and subspace based frequency estimation methods described in Section 2.2.2 for

Tframe = 2 seconds. From this plot, we observe that decreasing the value of Tframe

leads to a higher resolution in time lag estimation, as NCC peak for Tframe = 2 is

found at k = 15 indicating that the start time of the recording can be narrowed

down to a delay of 15–17 seconds interval. Frequency estimates from the subspace

and spectrogram methods are almost same, and hence, the NCC functions shown in
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Fig. 2.5(b) are almost overlapping with each other. In general, decreasing the value

of Tframe leads to an increase in the resolution of time lag estimation. However,

the peak value of correlation coefficient decreases. Decreasing the value of Tframe

further gives lower confidence in estimation of time-of-recording as the peak value

of the NCC function decreases and side-lobe value increases.

We would like to note here that signals recorded from the light sensing circuitry

are of high signal-to-noise ratio (SNR). As a result, we can reduce the Tframe to a

small value and still expect to obtain good estimates of instantaneous frequencies and

achieve very fine temporal resolutions. However, for the cases of video recordings,

the recorded ENF related signals are noisy due to camera sensors’ low sensitivity and

interference from visual content. For such cases, as will be shown in Chapter 3, the

performance in timestamp estimation degrades significantly as the Tframe duration

is decreased. Reducing the value of Tframe leads to noisy frequency estimates and

makes the time lag estimation worse.

2.2.4.2 Experiment 2

In our second experiment, a fluorescent light is switched off for the first 17-

minutes and then switched on for the next 13-minutes. In this experiment, the power

mains signal recording is started with a delay of 70 seconds from the sensor signal

recording. The room where the experiment is performed also receives some light

from a low ambient light source. The spectrogram of the optical sensor recording

for this experiment is shown in Fig. 2.6. From this figure, we observe that the

ENF signal is weak for the period when the light is off. However, the fluctuations
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Figure 2.6: ENF for optical sensor signal in Experiment 2, including a weak signal

for first 17 minutes from the ambient light, when the main light is switched off.

still show high correlation with the ground truth signal (the corresponding power

mains signal not shown due to limited space), implying that optical sensors can

also capture fluctuations from ambient fluorescent lights. In this case, the NCC

coefficient is found to be maximum for k = 8 or equivalently at a time delay of

64−−80 second interval for Tframe = 16 seconds, verifying the approximate timing

at which the recording started. The temporal resolution in time lag estimation can

be increased by reducing the value of Tframe and using the subspace based frequency

estimation methods.

2.2.4.3 Experiment 3

In our third experiment, an incandescent lamp is switched on at a delay of 19

seconds with the power mains signal recording. The signal from the light sensing

circuitry is recorded for 20 minutes. The peak value of the NCC function occurs

at k = 18 for Tframe = 2 seconds and 50% overlap factor, as shown in Fig. 2.7.
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Figure 2.7: NCC coefficient, ρ(k), for experiment 3 as a function of time-frame lag

k using different frequency estimation methods for Tframe = 2 seconds. Curves ob-

tained using the MUSIC and the ESPRIT frequency estimation methods are closely

overlapping with each other.

This indicates that the recording began at a delay of 18–20 seconds from the power

mains signal. Similar to the observations in experiment 1 and experiment 2, we have

observed that the number of side-lobes increases for decreasing the value of Tframe.

In our experiments, we also observe a weak signal around 60 Hz in the optical

sensor recordings. The energy in this signal is approximately 20 times less than

that of the ENF signal at 120 Hz when fluorescent or incandescent light falls on

the circuit. The 60 Hz signal component is highly correlated with the ground truth

ENF signal, suggesting that ENF fluctuations are also captured in the optical sensor

signal around the nominal ENF value of 60 Hz. We conjecture that the source of

this signal may be from electromagnetic interferences of power supply with the light

sensing circuitry.
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2.3 Chapter Summary

In this chapter, we demonstrated that the near invisible flickering of such in-

door lighting environments as fluorescent and incandescent lightings is a source of

ENF fluctuations in optical recordings. We used an optical sensor circuitry and con-

ducted different experiments in fluorescent and incandescent lighted environments.

We also developed a signal processing mechanism to estimate the ENF signals from

optical sensor recordings and power recordings. We used spectrogram and subspace

based frequency estimation methods to estimate the instantaneous frequencies in

ENF signals. A correlation coefficient based matching was performed to demon-

strate that the ENF signal from power recordings exhibit a high correlation with

the ENF signal from optical sensor recordings at the corresponding creation time

and can be used to estimate/verify the creation time of optical sensor recordings.

Subspace based frequency estimation methods such as MUSIC and ESPRIT was

shown to provide a better temporal resolution in creation time estimation as com-

pared with spectrogram based frequency estimation methods.
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Chapter 3

Video Forensics using ENF Signals

3.1 Chapter Introduction

The recent decade has witnessed a huge amount of multimedia data in the

form of audio, image, video, etc. Such data can make rapid and broad social im-

pacts when multimedia recordings are distributed to users through social networks.

Video recordings are also increasingly used for surveillance purpose in defense and

security applications. These recordings are generally stored on disks or other storage

devices, and contain metadata describing important information such as the time

and the place of recording. However, the digital nature of multimedia data makes

it vulnerable to digital forgeries. For example, many digital edifying software tools

can be used to modify the creation time/location information stored as metadata,

or to cut a clip of one recording and insert it into another. These modifications

can result in serious consequences when multimedia recordings are used for law en-

forcement and journalism cases. In the absence of any cryptographic protection
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and watermarking techniques during the initial data acquisition, such modifications

can be difficult to detect. Developing forensic tools which can identify data origin

and detect content tampering is necessitated in views of the feasibility of digital

forgeries.

As Electrical Network Frequency (ENF) fluctuations have been shown as time

dependent signatures which are embedded in audio and optical sensor recordings

at the creation time, it can also prove to be useful in forensic analysis of digital

videos. As shown in Chapter 2, flickering in indoor lighting environment carry

ENF information and can be extracted using a suitable signal processing mecha-

nism. Most consumer end video cameras use charged coupled device (CCD) and

complementary metal oxide semiconductor (CMOS) sensors, which are optical sen-

sors capturing light coming from different places in the field-of-view of the camera.

These recordings can be influenced by the light coming from electric powered indoor

lighting devices such as fluorescent lamps and/or incandescent lamps.

In this chapter, we demonstrate the challenges in extracting ENF signals from

video camera recordings. In particular, sensors used in video cameras capture visual

data at the rate of 25/30 frames-per-second, which is considerably lower than the

nominal ENF value of 50 Hz/60 Hz. A low sampling rate of such cameras introduces

significant aliasing of the ENF component in video recordings, especially for videos

recorded using CCD cameras. We devise a methodology that extracts the ENF

signal from video recordings in indoor lighting under this aliasing. The ENF signal

from optical sensor recordings and video recordings shows a significant correlation

with the reference ENF signal extracted from power mains recordings, and can be
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used to verify or estimate the time-of-recording. We also devise a new method to

extract the ENF fluctuations from CMOS camera recordings by taking advantage

of the sequential sampling of rows of a frame using the rolling shutter mechanism

in these cameras [20].

As information about the time-of-recording can facilitate the integrity verifica-

tion of video recordings, we examine potential applications of the proposed technique

to authenticate surveillance videos. Another potential multimedia application that

we study in this chapter is to determine if the audio and visual tracks in a video

recording are actually captured together, or if the audio track from a different record-

ing was manually added to the visual track. ENF signals extracted from audio and

visual tracks can provide natural alignment and binding of audio-visual recordings.

3.2 ENF Extraction from Video

ENF signal extraction in video recordings is not as straightforward as com-

pared with the case of optical sensors due to the low temporal sampling frequency

(frame-rate) of video cameras. The nominal value of ENF is considerably higher

than the sampling rates in commonly available video cameras. Most of the com-

mercial video cameras are available at three different sampling rates in terms of

frames-per-second (fps). Cameras using 24 fps are used in movie making, while

most amateur hand-held cameras are available in 25 fps or 30 fps. Cameras with

25 fps sampling rate originated from PAL analog TV standard prevalent in Europe

and most of Asia, while 30 fps camera originated from NTSC standard prevalent
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across North America and Japan [21].

The actual frame-rate used in most video cameras may not be exactly 25

fps or 30 fps, but varies slightly. The PAL standard specify the frame-rate as

24.98 fps, while the NTSC standard is at 29.97 fps. These slight changes in the

recording rates from the nominal values were introduced to make the transmission

of color video compatible with the black and white television standards and the then

newly introduced color televisions in the 1960s. As different digital video camera

manufacturers may not strictly follow the standards, it is common to have NTSC

digital cameras with a frame-rate of either 29.97 fps or 30 fps. Similarly, PAL

cameras commonly have frame-rate of 24.98 fps or 25 fps. A video recording using

these readily available cameras under indoor lighting may lead to significant aliasing

of the captured ENF fluctuations depending on the temporal sampling frequency of

the camera.

3.2.1 Aliasing Analysis

ENF signals recorded by video cameras under electric powered indoor lightings

experience significant aliasing due to the lower temporal sampling rate of cameras

compared to the 100 Hz/120 Hz frequency components present in the light flickering.

ENF signals in videos appear at different predetermined frequencies, which can be

analyzed from the sampling theorem [22].

As an example, we examine the effect of a video recording in indoor lightings

powered by a 50-Hz source. Since the current changes polarity at twice the power
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Figure 3.1: Spectral domain illustration of the aliasing effect in video capturing

of ENF signals: (Top) Spectral composition of the original fluorescent light signal

powered using 50 Hz supply frequency; (Bottom) Spectral composition of ENF

related signals after sampling at 29.97 fps by video camera.
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mains frequency, the light flickers at 100 Hz. Additionally, when the power mains

signal slightly deviates from a perfect sinusoid form, higher harmonics of decaying

energy are often present at integer multiples of 100 Hz. The bandwidth of these

higher harmonics is also greater than the main component because the practical

ENF signal of interest is a narrowband signal and not a perfectly stable sinusoid.

So, the bandwidth of the kth-harmonic component will be k-times the bandwidth

of the main ENF component at 100 Hz. In addition, in practical visual recordings,

we have observed little or no anti-aliasing lowpass filtering along temporal axis

during the initial analog-to-digital acquisition in our experiments. Suppose the

camera used for capturing video is an NTSC standard camera with a frame-rate of

29.97 Hz. Because of the low temporal sampling rate as compared to the required

Nyquist sampling rate to avoid aliasing, the resulting spectra will have periodic

tiling of frequency components at ±100+ 29.97k, k = 0,±1,±2, . . .. Because of the

periodic nature of the resulting spectra, it suffices to focus on replicas within one

period. Aliasing effect introduced due to such video recordings is shown in Fig. 3.1.

From this figure, we observe that multiple copies of the ENF related components

will appear in the temporal spectrum of the video signal around different but pre-

determined frequencies. These multiple copies arise due to the presence of higher

harmonics in the power mains signal, and may be combined strategically to obtain

a better estimate of the video-ENF signal [23].

We further recall that the magnitude spectrum of a real valued signal is sym-

metric about the y-axis. Because of this, the original spectrum of the ENF signal

in indoor lighting also has symmetric components at −100 Hz and its harmonics,
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Table 3.1: Aliased frequency for different combinations of power mains frequencies

and video camera frame-rates.

Power Mains Video Frame Aliased Base Aliased 2nd
(Hz) Rate (fps) Frequency (Hz) Harmonic (Hz)

60 29.97 0.12 0.24
60 30 0 0
50 29.97 10.09 9.79
50 30 10 10

as shown in Fig. 3.1. After sampling by a video camera, the frequency component

E, which is at −200 Hz in the spectrum of the original signal, appears at 9.79 Hz

in the recorded signal; and the component A that was present at 100 Hz in the

spectrum of the original signal appears now at 10.09 Hz. As a result, we obtain

replicas of the ENF signal at 9.79 Hz and 10.09 Hz, and they are mirrored versions

of each other with different bandwidths. Similar analysis can be performed on other

combinations of different camera frame-rates and power mains frequencies to find

the frequencies at which the main component and the second harmonic component

of the signal appear. The values of these frequencies are summarized in Table 3.1.

3.2.2 Experimental Setup for Video Recordings

In this section, we describe the settings under which experiments are conducted

to detect the presence of ENF signals in videos. We have collected video data from

three geographical regions – China, India, and USA – to demonstrate the capability

of the ENF signal to act as a timestamp and authentication signal. For each of these

areas, we record videos under the following two settings:
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3.2.2.1 White Wall Video

In this setting, we record a constant white wall scene illuminated under fluo-

rescent lights for 10 minutes and examine the video for ENF traces. This experiment

can be considered a first step towards demonstrating the presence of ENF signals

in videos recorded under fluorescent lightings. As incandescent lightings were also

shown to be influenced by the ENF signal in Chapter 2, similar results to those re-

ported in this section can be expected for video recorded in incandescent lightings.

To extract the ENF signal from video recordings, we compute the average

intensity of each frame, and pass this intensity signal over time through a temporal

bandpass filter with passband corresponding to the frequencies of interest, as listed

in Table 3.1, where aliased components of the ENF signal are expected to appear in

videos. As the content of the video is mostly the same in each frame, the presence

of a significant amount of energy in the frequency of interest can be attributed to

the ENF signal. For all the experiments conducted on video data, the frequency

estimation algorithms discussed in Chapter 2 are applied to extract the ENF signal

around the aliased frequency bands.

3.2.2.2 Surveillance Video

In this setting, a camera is placed inside a room for surveillance purposes; the

camera locations vary in several recording sessions. Fluorescent lights illuminate the

room. Occasional movement of people can be seen in the foreground of the video.

Such recordings can be considered representative of real-life surveillance scenarios
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in places where few events are expected to occur. In these experiments, because the

content in each frame of the video is not constant, a direct averaging of the frame

pixel values may not be a suitable preprocessing before performing the frequency

analysis. As ENF signal from fluorescent lightings is recorded by each sensor pixel

in the form of light intensity interferences, we can use a part of the video frame to

extract the ENF signal. For example, we locate the relatively stationary areas in

video frames where content does not change much, mostly at the top and bottom

areas of video frames in our experiments. We use these areas to extract the ENF

signal based on the spectrogram of average pixel intensity. Alternatively, the process

of finding the static regions in frames of the video can be automated using common

motion estimation techniques. In the next section, we will report the experimental

results under these settings for forensics applications.

3.3 Applications of ENF Signal Analysis to Video

Forensics

In this section, we describe some potential applications of the ENF signal

analysis in video forensics. We examine the use of the proposed technique to estimate

or verify the time-of-recording, detect clip insertion/deletion operation in videos, and

forensically bind audio-visual data to determine if the audio and visual tracks of a

video were recorded at the same time or superimposed from different recordings.
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Figure 3.2: ENF fluctuations measured for the whitewall video experiment in China.

This figure is best viewed in color.

3.3.1 Estimating or Verifying Time-of-Recording

To study the applications of ENF signal analysis for estimating and verifying

the time-of-recording, we record several videos with a known time lag from the power

mains signal. ENF signal is extracted from these recordings, and the NCC function

is calculated between the ENF signal from each video recording and that from the

power mains. The time corresponding to the peak value of the NCC function is

the estimate of the time lag between video and power mains recording. In a large

database of power mains frequency data with timestamp information, the peak value

will suggest the actual time-of-recording of the video data. We now present results

of timestamp estimation experiments conducted in different geographical areas.

41



3.3.1.1 Recordings from China

In China, 50 Hz supply frequency is used in power distribution networks. As a

result, the ENF signal in the light flickering is around 100 Hz. We use a Panasonic

camera with a frame-rate of 29.97 fps to record videos in China. For this experiment,

video recording is started at a delay of 50 seconds with respect to the power mains

signal, and the video is recorded for a duration of 10 minutes. As discussed in

Section 3.2.1 and shown in Fig. 3.1, we expect the main component of the ENF

signal in video recordings to be present in the band around the aliased frequency

of 10.09 Hz. Higher harmonics of the ENF signal in video recording are present in

the band around 9.79 Hz (from the second harmonic) and 0.30 Hz (from the third

harmonic).

The magnified spectrogram of the ENF signal for the white wall video record-

ing around 10 Hz frequency band is shown in Fig. 3.2, in which we can see multiple

copies of the ENF signal around different frequencies in accordance with our anal-

ysis in Section 3.2.1. We also observe from this figure that the bandwidth of the

video-ENF signal present around 9.79 Hz is approximately double of the bandwidth

of the video-ENF signal around the frequency band at 10.09 Hz. This can also be

explained from Fig. 3.1, as the copy of the video-ENF signal at 9.79 Hz originates

from the second harmonic of the base ENF signal, present at 200 Hz from the light

flickering.

As explained in Section 3.2.1, the 9.79 Hz component of the recorded signal is

a mirrored version of the 10.09 Hz component. So, we flip the ENF signal extracted
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Figure 3.3: NCC coefficient, ρ(k), as a function of time-frame lag k using different

frequency estimation methods on video data from China: (a) Weighted energy; (b),

(c) subspace methods on signals at the 9.79Hz band at longer and shorter time-frame

size, respectively.
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from 9.79 Hz component in the NCC function calculation to make the overall cor-

relation positive. The plot of the NCC function between the video-ENF signal and

power-ENF signal evaluated using the video-ENF signal present around 10.09 Hz

and 9.79 Hz frequency band is shown in Fig. 3.3(a) for Tframe = 16 seconds by the

spectrogram based weighted energy method. The plot obtained using the video-ENF

signal from 10.09 Hz band is similar to that obtained using the ENF signal from

9.79 Hz frequency band. The maximum value of the NCC function is obtained at a

lag of k = 6 time-frames. This indicates that the video recording began at a delay of

48–64 seconds interval from the power mains signal; the actual delay of 50 seconds

lies in the interval. As the value of the peak correlation coefficient for the ENF

signal estimated from the 9.79 Hz band is slightly higher than the 10.09 Hz band,

we use the 9.79 Hz frequency band to estimate the ENF signal in our subsequent

results. We plot the NCC function for the subspace and the weighted energy spec-

trogram methods in Fig. 3.3(b) and 3.3(c) for Tframe = 16 seconds and Tframe = 4

second, respectively. From these figures, we observe that for Tframe = 16 seconds,

the NCC function reaches similar peaks by both spectrogram and subspace methods

at time lag k = 6. For Tframe = 4 seconds, the peak value of the NCC function for

MUSIC method is observed at k = 24, indicating that the recording was done at a

refined delay estimate of 48–52 second. The spectrogram based method gives worst

performance among the three methods for this case.

The plots of the peak NCC value corresponding to the time-of-recording for

different values of Tframe are shown in Fig. 3.4. From this plot, we observe that

as Tframe increases, the peak correlation coefficient value generally increases. It
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Figure 3.4: Peak NCC for different values of Tframe for frequency estimation at 9.79

Hz band.

is possible to extract other harmonic copies of ENF traces in the video signal by

passing the video-ENF signal through bandpass filters with passband frequencies

around which each harmonic copy is located. These copies of the signal can then be

combined to perform correlation analysis to find the time of recording [23].

3.3.1.2 Recordings from India

Similar to China, the nominal value of the ENF in India is 50 Hz, hence, the

ENF signal from light intensity is expected at a fundamental frequency of 100 Hz.

In this experiment, we use a 30 fps NTSC Sony HDR SR12 camera to record a video

for 10 minutes. The video camera recording and the power mains recording start

simultaneously. From the aliasing discussion in Section 3.2.1, with this sampling

frequency, the ENF signal at 100 Hz will appear at an aliased frequency of 10 Hz in

video recordings. Spectrogram of the ENF signal for a white wall video recording
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is shown in Fig. 3.5(b). From this figure, we can clearly observe a high correlation

between the pattern of the ENF signal at 10 Hz and the ground truth ENF signal

at 50 Hz obtained directly from power mains supply, as shown in Fig. 3.5(a). The

maximum value of the NCC coefficient, ρ(k), between the video-ENF signal and

the power mains signal is found to be at k = 0 for Tframe = 16 seconds, as shown

in Fig. 3.5(c). This indicates that the recording began at a delay of 0–16 second

interval for the power mains signal and the video signal. We can obtain better

time resolution in our estimation by reducing the value of Tframe, although the peak

correlation coefficient value would generally be smaller.

In Fig. 3.6, we plot the average peak correlation coefficient obtained over the

10 video recordings. Each of the recordings is about 10 minutes’ long for the cases

when ground truth ENF from each recording is matched with the corresponding

ENF signal (the matching case) and when video-ENF signal from each recording is

matched with the ground truth ENF signal from other recordings (the non-matching

case). From this figure, it can be observed that as the value of Tframe increases, the

average peak correlation coefficient for all the three frequency estimation method

improves for the matching case. For the non-matching case, the value of the aver-

age peak correlation coefficient is close to zero, indicating that the video and the

power signals were recorded at different times. We also observe that the subspace

based MUSIC performs substantially better than the weighted spectrogram energy

approach.

For the experiment on surveillance video recording, the first five minutes of

video are recorded with the camera constantly panning such that all parts of the
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Figure 3.5: (a), (b) ENF fluctuations measured for the whitewall video experiment

in India; (c) NCC coefficient, ρ(k), as a function of time-frame lag k for Tframe =

16 seconds. ρ(k) curves obtained using the MUSIC and the ESPRIT frequency

estimation methods are closely overlapping with each other.
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Figure 3.6: Average Peak NCC value for matching and non-matching case over 10

videos.

video frames undergo some changes, while the remaining part is recorded with the

camera stationary. From the spectrogram of this recording’s ENF signal shown in

Fig. 3.7(b), we see that the ENF signal is not strong during the first five minutes

when the camera pans. Nevertheless, the pattern in the ENF signal around 10 Hz

for the first five minutes follows a similar pattern to the power-ENF signal shown in

Fig. 3.7(a). The NCC function, ρ(k), attains the highest value at k = 0, indicating

that the video signal recording began at a delay of 0–16 seconds with the power

mains signal. Higher temporal resolution can be obtained by reducing the value of

Tframe and using the subspace methods for frequency estimation.

3.3.1.3 Recordings from USA

The nominal value of the power supply frequency in the United States is 60 Hz.

The ENF signal from the light flickering can be expected at 120 Hz. We use the
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(a) Power-ENF signal (b) Video-ENF signal

Figure 3.7: ENF fluctuations measured for surveillance video experiment in India.

same 29.97 fps Panasonic camera from experiments done in China to conduct video

recording in the United States. We recall from Table 3.1 that the ENF signal in the

video recordings is expected at an aliased frequency of 0.12 Hz. Fig. 3.8(a) shows

the spectrogram of the ENF signal for the white wall video. This spectrogram is

plotted for the time-frame duration Tframe = 16 seconds with a 50% overlap and

1024 point NFFT. Significant energy band at 0.12 Hz confirms the presence of the

ENF signal in these video recordings. The NCC function between the video-ENF

signal and the power-ENF signal is plotted in Fig. 3.8(b) for Tframe = 16 seconds.

The maximum value of the NCC coefficient is found to be 0.95 corresponding to

a lag of k = 4, indicating the video recording was started with a delay of 32–48

seconds from the power signal. The actual delay in recording time is approximately

38 seconds. This again shows the timestamping capability of the ENF signal in

video recordings. High temporal resolution can be obtained by decreasing the value

of Tframe. For example, the time lag estimate of k = 9 is found for Tframe = 8

seconds, indicating that recording was started at delay of 36–44 seconds interval
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Figure 3.8: (a) ENF fluctuations measured for the whitewall video experiments in

US; (b) NCC coefficient, ρ(k), as a function of time-frame lag k.

with the power mains.

3.3.2 Tampering Detection

We design two experiments to demonstrate an application of the ENF signal

analysis for tampering detection of surveillance videos. For this purpose, we record

a 980-second video in India in an indoor environment illuminated with fluorescent

lights. We perform a simple video clip insertion by cutting the last 160 seconds of

video and inserting it in between the remaining clip of the video close to the 340th

second. ENF signal extracted from this tampered video and the ground truth ENF

signal extracted from the power mains signal database corresponding to the time-

of-recording are shown in Fig. 3.9(a). From this figure, we can locate the regions in

the ENF signal from the video that have similar patterns as the ground truth ENF
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signal for the given time-of-recording. We observe that the ENF signal from video

recording shows the same pattern as the ground truth ENF signal for 340 seconds in

the beginning of the video as shown by the red arrows in the figure. Similarly, video-

ENF signal from time index 500 second to 980 second have the same pattern as the

ground truth ENF signal between time index 340th and 820th seconds. The video-

ENF signal between time index 340th seconds and 500th seconds does not match

with the ground truth ENF signal, suggesting that the video recording is likely

to be modified in the corresponding region and a video clip insertion operation was

performed. Beyond visual examinations, more rigorous verification can be performed

by quantitatively comparing the segments of ENF sequence from video with the

reference ENF database.

Similar to the clip insertion example, we perform a clip deletion operation on

a video recorded in China. The video is 570 seconds long and part of the video clip

is deleted between 240th second and 340th second. The ENF signal extracted from

the tampered video and the corresponding ground truth ENF signal are shown in

Fig. 3.9(b). From this example, we see that the ENF traces from the tampered video

match with the ground truth ENF signal for the first 240 seconds. The remaining

part of the ENF traces from the tampered video match with the ground truth ENF

signal after 340th seconds, confirming that the video clip between time index of 240th

second to 340th second is removed from the video. From these two examples, we can

see that the ENF signal analysis is potentially a powerful technique to detect video

tampering for videos recorded in indoor lighting.
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Figure 3.9: ENF matching result demonstrating video tampering detection based

on ENF traces.
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3.3.3 Audio-Visual Authentication and Synchronization

We now explore an important application of the ENF signal analysis for foren-

sic binding of audio-visual recordings. Such binding determines whether the audio

and visual tracks in a given video recording are captured together, or if the sound

track from a different recording is manually placed with the visual track. ENF

signals extracted from both visual and audio tracks can provide natural alignment

and binding of audio-visual recordings. As noted above, ENF signals are captured

in visual track of a video due to light flickering and in the audio track through

electromagnetic interference and related acoustic vibrations. When audio and vi-

sual tracks are recorded simultaneously, we expect that the ENF traces in these

two streams should exhibit similar patterns, and the synchronization between the

audio and the visual tracks can be verified by quantitatively comparing these two

signals. Discrepancies between the ENF traces in the audio and visual track would

provide a strong indicator of some kind of tampering on the video recording. For

example, if the audio and visual track of a given video do not contain similar ENF

fluctuations, it can be claimed that the two tracks were likely not recorded together.

Therefore, synchronization can be authenticated even if the ground truth ENF sig-

nal from power mains is not available at the time-of-recording. Fig. 3.10 shows an

example of the ENF traces obtained from the audio and visual tracks of a video

recording. From this figure, we see that the ENF signal captured in audio, as shown

in Fig. 3.10(a), exhibits similar patterns and have a high correlation with the ENF

signal captured in the visual track, as shown in Fig. 3.10(b).
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(a) ENF signal from the audio track (b) ENF signal from the video track

Figure 3.10: ENF matching between audio and video tracks of a video recording.

3.4 Discussions and Extensions

3.4.1 Effect of Compression

ENF signals in digital video recordings are very weak signals and can be dis-

torted from such lossy compression as the MPEG standard family. To study the

robustness of ENF signals against different compression levels, we take a video

recording from China and compress it at different bit rates. The plot of the peak

NCC value at the time lag corresponding to the time-of-recording for different bit

rates of video compressed using MPEG-2 standard for Tframe = 16 seconds is shown

in Fig. 3.11. From this figure, we observe that the value of peak correlation coef-

ficient decreases as the video bitrate decreases; and the MUSIC and the ESPRIT

methods perform better at low bit rates as compared with the spectrogram based

method. This is because the SNR of the ENF signal in the video decreases as bi-

trate decreases, and at lower SNR, subspace based methods have shown to provide a
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Figure 3.11: Peak NCC value for different compression rates for videos recorded in

China.

better estimate of the ENF signal as compared with the spectrogram based methods.

3.4.2 ENF Extraction from CMOS Imaging Cameras

In this section, we explore ENF signal extraction from cameras with CMOS

imaging sensors, which are increasingly used in a wide variety of imaging systems of

still images and videos, such as mobile phone cameras, web cameras, and standalone

digital cameras. Most consumer-end cameras equipped with CMOS sensors contain

column-parallel readout circuits. These circuits read all the pixels in a row at the

same time. The readout proceeds from a row to another in a sequential manner

from top to bottom, with no overlap in the readout time of different rows. Such

a sampling mechanism by the imaging sensors is referred to as a rolling shutter

mechanism [20]. An example of the CMOS imaging sensor sampling mechanism is

shown in Fig. 3.12.
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Traditionally, rolling shutter has been considered detrimental to the image

quality, as each row of the image is exposed to the light at a different time, which

creates artifacts for fast moving objects in the scene. However, as each frame of a

video captured using rolling shutter cameras has undergone space-time sampling,

recent literature has exploited this mechanism for high-speed photography and op-

tical flow based applications [20], kinematics, and object pose estimation [24] [25].

The spatial-temporal sampling nature of the rolling shutter provides us with a po-

tentially high sampling rate of the ENF signal as compared to the traditional CCD-

based cameras. As we recall from our aliasing analysis in Section 3.2.1, the ENF

signal captured in recordings using CCD camera with 29.97 fps and 30 fps in the

60 Hz power frequency region is expected to appear at 0.12 Hz and DC frequency,

respectively. ENF signal at these aliased frequencies can be obscured by the con-

tent frequency of the video recordings, making ENF extraction difficult from such

recordings. By exploiting high temporal sampling on a line by line basis from CMOS

camera recordings, we can mitigate the aliasing problem on the frame level.

To extract ENF signals from videos recorded using CMOS cameras, we use the

spatial average of each row as a sample. We pass the resulting signal through a band-

pass filter in the ENF frequency band of interest. We downsample the bandpassed

signal to 1000 Hz sampling frequency, and resultant signal is used for frequency

estimation using the methods described in Section ??.

We use a Canon SX230-HS camera that employs a rolling shutter mechanism

in the CMOS image sensor to record 20 videos in the US, each being 10 minutes long.

The frame-rate of this camera is 30 fps. We also record the reference power signal
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Figure 3.12: Rolling shutter sampling mechanism in CMOS cameras. Figure is

adapted from [20].
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(a) Whole frame signal extraction (b) Row-by-row signal extraction

Figure 3.13: Comparison of the spectrograms of a video signal recorded using a

CMOS camera and processed in two ways: a) treating each video-frame as a single

sampling instant (similar to CCD mechanism), b) treating each row of a video-frame

as a single sampling instant (rolling shutter mechanism).
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from power mains. In Fig. 3.13(a), we plot the spectrogram of one of the recorded

videos, whereby the ENF signal is processed on a frame-by-frame basis similar to

the CCD camera processing discussed in Section 3.2.2. From this figure, we observe

that the traces of the ENF signal are not clearly present. Fig. 3.13(b) shows the

spectrogram for the same recording, when signal is processed on a row-by-row basis

by explicitly considering the rolling shutter sampling. From this figure, we can

clearly observe the presence of ENF signal at 60 Hz. These examples illustrate the

advantages of making use of the rolling shutter effect of CMOS camera recordings

in ENF signal extraction as compared with the CCD camera recordings.

In Fig. 3.14, we plot the value of average peak correlation coefficient between

video-ENF signals extracted using the CMOS extraction method and the corre-

sponding ground truth ENF signal for different values of Tframe and for different

frequency estimation methods. From this figure, we observe a similar nature of

results to what was observed in our previous results over different Tframe and fre-

quency estimation methods: the correlation in the matching analysis improves for

higher values of Tframe for a given frequency estimation methods, with subspace-

based methods giving higher correlation values than the spectrogram-based method.

In all of these recordings, if the whole frame is considered as one sampling instant,

we do not obtain any meaningful signal by applying our ENF estimation methods.

From this result, we conclude that CMOS image sensor cameras employing rolling

shutter mechanism provides a better embedding of the ENF signal, and it is easier to

extract these signals from recording using CMOS cameras than with CCD cameras.
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Figure 3.14: Average peak NCC for different values of Tframe for the videos recorded

using CMOS image sensor cameras utilizing a rolling shutter bases sampling mech-

anism.

3.5 Chapter Summary

In this chapter, we have demonstrated the presence of ENF signals in indoor

video surveillance recordings. Video recorded under indoor lighting environment

have been shown to have high correlation with ENF signals captured directly from

the power mains supplies. The estimated time-of-recordings for video signals have

been shown to be accurate up to a time resolution of four seconds for video-ENF

signals which are noisy in nature. Subspace based methods have been shown to

provide better results as compared with spectrogram based methods for low SNR

ENF signals and short duration video clips for most test cases. Results from our

investigations suggest that ENF signals can be used as a natural timestamp for video

surveillance recordings in an indoor environment. ENF signals from video clips have
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been shown to be quite robust to strong compression up to a bit rate of 250Kbps for

standard size videos. ENF signals can also be used to facilitate the authentication

video data, as data tampering by adversaries are likely to cause abrupt changes in

the ENF signal at the corresponding part of the recordings. ENF traces also provide

a natural binding of audio and visual tracks to verify their temporal synchronization

and integrity.
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Chapter 4

Statistical Modeling and Analysis

of ENF Signals

4.1 Chapter Introduction

In previous chapters, ENF based forensics analysis was shown to be useful in

authenticating multimedia recordings for time-of-recording estimation/verification,

tampering detection, etc. The methodology for time-of-recording estimation using

ENF signal analysis requires extraction of ENF signals from a given audio or video

by means of a temporal bandpass filtering, followed by instantaneous frequency

estimation as a function of time. These estimated frequencies are compared with

ENF databases containing historic measurements. The time corresponding to the

maximum similarity between the ENF signals from the multimedia recording and

the database is the estimated time-of-recording of the given multimedia.

The techniques for the ENF signal analysis in the literature typically require a
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substantial duration of multimedia recording to measure the similarity between the

extracted ENF signal with the ENF database, as ENF patterns may exhibit self-

similarity over time. The self-similarity may provide a wrong estimate of time-of-

recording, if the ENF signal in question is not sufficiently long. This pseudo-periodic

nature of ENF patterns is due to the cyclic nature of power demand and supply,

and the control mechanism used to regulate power grids [6]. An increase in the load

on a grid causes the supply frequency to drop temporarily; the control mechanism

senses the frequency drop and additional power is drawn from adjoining areas to

compensate for the increased demand. As a result, the load in adjoining areas also

increases and the supply frequency drops. A similar mechanism is used to compen-

sate for an excess supply that results in a surge in the supply frequency. In forensic

applications of the ENF analysis, the effect of such pseudo-periodic patterns reduces

if multimedia signal is of sufficiently long duration, typically 10-15 minutes [26]. De-

veloping tools to authenticate relatively short recordings may enhance the benefit

and affect of ENF based forensic techniques.

The first step in understanding the properties of ENF patterns requires sta-

tistical study of the signal. In this chapter, we enact a statistical study of the

properties of ENF signals. Based on these properties, we model ENF signal as an

autoregressive (AR) process using the Box-Jenkins methodology, which is a common

mechanism to model time-series signals in forecasting and control applications [27].

We then use this proposed model to examine the performance of ENF based foren-

sics and temporal alignment technology under a simple binary hypothesis detection

framework and to understand the effect of clip duration and signal-to-noise ratio

62



(SNR) on the ENF matching. The application scenario considered here is times-

tamp verification, where the authenticity of the attached timestamp in the metadata

of a given recording needs verification. Based on the proposed AR model of the sig-

nal, we decompose the ENF signal into two components: a predictive process and

an innovation process. As innovation processes are uncorrelated over time, we pro-

pose the use of a decorrelated innovation process for ENF matching. As will be

shown later, the decorrelation based matching help reduce the false alarm rate in

timestamp verification [28]. We experimentally validate the proposed approach of

ENF matching for timestamp verification on a 25-hours long power-audio dataset.

The proposed approach to matching ENF sequences based on innovation pro-

cess may also prove beneficial for forensic analysis of a possible forgery on ENF

signals given different counter forensic scenarios [29] [30]. On the other hand, the

proposed AR model could provide a tool for an adversary to forge a multimedia

signal using the anti-forensics operations discussed in [29] [30]. The model for the

ENF signal can also apply to the generation mechanism of ENF signals, which can

potentially be used to characterize the properties of a power grid and to estimate

the grid-region in which a recording occurred. Such location estimation capabilities

of the ENF signals using the proposed model are discussed in Chapter 5.

4.2 Autoregressive (AR) Model for ENF

An autoregressive model offers a common way of analyzing a correlated time

series. An AR process is a regression of the current value of a time series based on
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the previous observed values. A time-series u(n), u(n− 1), . . . , u(n−M) represents

realization of a real AR process of order M , denoted by AR(M), if it satisfies the

following difference equation:

u(n) + a1u(n− 1) + . . .+ aMu(n−M) = v(n), (4.1)

where a1, a2, . . . , aM are the constants representing a stable filter, and known as

the AR coefficients, and v(n) is a white noise process and uncorrelated with u(n−

1), u(n − 2), . . . , u(n − M). The process v(n) brings randomness to u(n) and is

known as an innovation process. In terms of linear filtering, an AR(M) can be

generated by feeding v(n) as an input to an all pole filter with a z-transform given

by A(z) = 1
1−

∑
M

m=1
amz−m

. Additionally, if v(n) is a zero-mean Gaussian process of

power σ2
v , the output process u(n) is also a zero-mean Gaussian wide sense sta-

tionary (WSS) process, and its power spectral density is a function of the filter

parameters a1, a2, . . . , aM , and σ2
v . Given such a process u(n), an estimate of the

model coefficients and statistics of v(n) can be obtained by solving a set of lin-

ear equations, known as the Yule-Walker equations. A detailed discussion on AR

processes can be found in [31].

4.2.1 Statistics of ENF signals

Let f(n) denote an ENF signal at any time n, and let F(n) = [f(n), f(n +

1), . . . , f(n+N − 1)]T represent a vector of N consecutive values of ENF at a given

time instant n. The mean function µ̂(n) and the mean-normalized autocorrelation

function r̂(n, n + k) of ENF signal from a frame of N samples are estimated as
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follows:

µ̂(n) =
1

N

N−1∑

l=0

f(n+ l)

r̂(n, n + k) =
1

N

N−1∑

l=0

[f(n+ l)− µ̂(n)][f(n+ l + k)− µ̂(n+ k)].

We record a ENF signal in the United States from the power main supply and

estimate its instantaneous frequency, using the weighted energy spectrogram method

described in [11] [32]. We obtain an estimate of the instantaneous frequency for every

segment of 16 seconds.

The plots of µ̂(n) and r̂(n, n+ 10) for N = 32 (equivalently 512 seconds) and

for different values of n are shown in Fig. 4.1(a) and 4.1(b), respectively. From

these figures, we observe that the mean function µ̂(n) is very close to 60Hz. We

also observe that the autocorrelation function is approximately independent of n

for k = 10. Similar plots are obtained for different values of k. These results

indicate that the ENF signal exhibits characteristics approximating a WSS process.

More generally, if accounting for small variations in the autocorrelation function

for different values of n, ENF signal can be approximated as a piecewise-WSS in

small segments. Furthermore, the probability density function (pdf) of f(n) follows

a Gaussian distribution, as shown in Fig. 4.2(a), for a 25-hours long ENF signal

recording from the power supply. Based on these observations, we model the ENF

signal f(n) as a Gaussian process that is piecewise-WSS with a mean value 60 Hz.

To make it a zero-mean process, we subtract the nominal value of 60 Hz from the

ENF signal. In our subsequent discussions, the mean-normalized version of f(n) is

assumed to be a zero-mean process.
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Figure 4.1: The mean and the autocorrelation function of a ENF signal recording.
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Figure 4.2: pdf of f(n) for a 25-hours long power-ENF recording.
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4.2.2 Box-Jenkins Test for Model Validation

In the previous subsection, we observed that the ENF signal follows the prop-

erties of a Gaussian piecewise-WSS signal. In this subsection, we propose to use an

AR process to characterize ENF signals. For this purpose, we use the Box-Jenkins

methodology, which is widely used to model the time-series signals in statistics [27].

Box-Jenkins methodology applies to the signals following stationary properties. For

non-stationary signals, the series can be converted first to a stationary series by

pre-processing operations such as de-trending and de-seasoning [27].

The Box-Jenkins method involves three steps to model a stationary series:

1) model identification, 2) parameter estimation, and 3) diagnostic testing. If the

results from Step 3 satisfy the hypothesized model, we adopt the hypothesize model

as the underlying model behind the observed process. The three steps are described

below in detail.

1. Model Identification: The first step in model identification is to determine

the stationarity of the signals. As discussed in Section 4.2.1, ENF signals exhibit

WSS properties. Alternatively, the autocorrelation function can also be used to

detect stationarity and hypothesize the model selection. The autocorrelation plot

of the signal provides this information. We use the observations from Table 4.1 to

determine the underlying signal model.

A plot of sample autocorrelation function for the ENF signal extracted from

the US East grid is shown in Fig. 4.3(a). From this figure, we observe that the

autocorrelation function decays exponentially to zero. Since it is only one instant of
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Table 4.1: Hypothesis model of Box-Jenkins methodology.

Shape of r(k) implied model order estimation

Exponential, decaying to zero AR Use PACF for order estimation

One or more spikes MA Order corresponds to k when r(k) = 0

Decaying to zero after few lags ARMA Cannot be determined

No decay to zero Not stationary Use differencing to make stationary
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Figure 4.3: Plot of autocorrelation function.

the autocorrelation function, we plot the mean value of autocorrelation value at a

lag k, and variance of that distribution is shown by bars for a database of 25-hours of

ENF signal in Fig. 4.3(b). From this figure, we see that the decay of autocorrelation

value can be approximated as exponential. Based on this observation, we model the

ENF signal as an autoregressive process, as suggested by Table 4.1.

To determine the order p of the underlying AR(p) process, we use the partial

autocorrelation function (PACF). Given the observations f(n) and f(n + k), the
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PACF denoted by α(k) is defined as the correlation between f(n) and f(n+k), given

the intermediate observations f(n+ 1), f(n+ 2), . . . , f(n+ k− 1). Mathematically,

PACF α(k) is defined as:

α(k) =
E [f(n), f(n+ k)|f(n+ 1), . . . , f(n+ k − 1)]√

E [f(n)2|f(n+ 1), . . . , f(n+ k − 1)]
√
E [f(n+ k)2|f(n+ 1), . . . , f(n+ k − 1)]

. (4.2)

For an AR(p) process, the value of α(k) = 0 for k > p, as f(n+p+1) is uncorrelated

with f(n) for an AR(p) process if the intermediate observations f(n + 1), f(n +

2), . . . , f(n+ p) are known. We use this property of α(k) to determine the order of

the AR model for ENF signals. A sample plot of α(k) from a segment of US East

Coast ENF recording is shown in Fig. 4.4. In this figure, the red line indicates the

95% significance level, indicating the level above which the value of α(k) cannot be

neglected. Since the ENF signal is modeled as a piecewise-WSS signal, we plot the

distribution of α(k) for the US East Coast ENF data in Fig. 4.5. From this figure,

we see that for k > 2, the value of α(k) mostly lies within the insignificance region.

Based on this observation, we model the ENF signal as an AR process of order 2.

Mathematically, the process can be written as following:

f(n) = a1(n)f(n− 1) + a2(n)f(n− 2) + v(n). (4.3)

Since f(n) is a piecewise stationary process to take into account sudden glitches in

the frequency, the value of a1(n) and a2(n) may differ in each segment.

After hypothesizing the underlying model, we go to Step 2 of the Box-Jenkins

methodology to estimate the parameters of the underlying AR(2) process.

2. Parameter Estimation: From Step 1, we model the ENF signal as a piece-
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Figure 4.5: Distribution of partial autocorrelation function α(k). Red dashed lines

represent 95% significance level.
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Figure 4.6: Distribution of AR(2) parameters estimated using the Yule-Walker equa-

tions.

wise AR(2) process. We estimate the AR filter coefficients a1(n) and a2(n) for each

segment using the Yule-Walker equations. The plot of the distribution of estimated

parameters a1(n) and a2(n) for a segment length of 50, with instantaneous frequency

estimated for every 16-second segment, are shown in Fig. 4.6(a) and 4.6(b), respec-

tively. From these figures, we observe that the values of a1(n) and a2(n) each follows

a distribution similar to the Gaussian distribution. As the AR coefficients of the

signal vary, we call the model as a time-varying AR model.

We also calculate the residue process v(n) by passing f(n) through a FIR

filter, given by 1 + a1(n)z
−1 + a2(n)z

−2. The detailed discussion on Yule-Walker

equations and obtaining the residue process can be found in [31].

3. Diagnostic Testing: This step is used to evaluate the fitness of the hypothesized

model in Step 1, using the statistics of residual process v(n) obtained from Step 2.

Diagnostic testing aims to evaluate if the residual process follows the property of
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white noise. If this is the case, then the hypothesized model can be used to represent

the given process. The whiteness of the residual process can be determined by

checking its randomness at each time-lag. However, the Box-Jenkins methodology

uses a more sophisticated statistical test to determine the whiteness of the residual

process. This test is an adaptation of the chi-square test and looks to test the overall

randomness of the residue rather than considering the randomness at each time-lag.

The test involves evaluating the Q-statistics as following:

Q(m) = N(N + 2)

M∑

k=1

ρ̂2k
N − k

,m << N, (4.4)

where ρ̂k is the correlation between the residue process v(n) and v(n − k) defined

as following:

ρ̂k =

∑N−k
n=1 v(n)v(n− k)
∑N−k

n=1 v(n)2
, (4.5)

where N is the length of the segment. According to this test, Q(m) follows a

chi-square distribution with m − p degrees of freedom, where p are the number of

parameters in the model. For our case of AR(2) model, the value of p = 2,

Q(m) ∼ χ2
m−2. (4.6)

The mean and the variance statistics of Q(m) are given by,

E [Q(m)] = m− 2

E
[
(Q(m)−E [Q(m)])2

]
= 2(m− 2). (4.7)

We plot the mean and the variance of Q(m) for the residue process obtained

after passing the ENF signal through an AR filter of order 2 with coefficients ob-

tained using the Yule-Walker equations. This plot is shown in Fig. 4.7. From this
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Figure 4.7: Mean and variance of Q(m) for the residue process v(n) obtained by

assuming an AR(2) process for ENF signal.

figure, we observe that the expected value of the mean, and the variance of the

Q-statistics closely follows the empirical values obtained from the Q-statistics of

residue process. We also plot the statistic of Q(m) for residue process v(n) obtained

under the assumption that our data follows an AR(1) and AR(3) model. These plots

are shown in Fig. 4.8(a) and 4.8(b), respectively. From these plots, we observe a

large mismatch between the expected statistics and the empirical statistics of Q(m)

for AR(1) model. For AR(3) and other higher order models, these statistics remain

close to the expected statistics. However, a higher model may lead to an overfit-

ting of the data. So, we use the alternative model order selection criterion such as

Bayesian Information Criterion (BIC) and the Akaike information criterion (AIC),

which include a penalty term for the higher orders to avoid overfitting [33] [34].

AIC and BIC provides a quantifiable way of model order selection. The basic
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(b) Q(m) test for AR(3) assumption.

Figure 4.8: Mean and variance of Q(m) for the residue process v(n) obtained by

assuming different orders of AR process for ENF signal.

idea behind these criteria incorporates is that there is a trade-off between the exact-

ness of fit and the model complexity. By increasing the model order, data can fit to

a model with increased likelihood. To avoid overfitting, AIC and BIC introduce a

penalty term for the number of parameters in the model. For our case, the objective

functions to minimize for the AIC and the BIC are given by the following equations:

AIC(k) = 2k +N. ln

(∑N
i=1 v

2
i

N

)
(4.8)

BIC(k) = k. ln(N) +N. ln

(∑N
i=1 v

2
i

N

)
(4.9)

The plots of AIC(k) and BIC(k) for different model orders k for N = 50 are given

in Fig. 4.9. From this figure, we observe that AIC(k) and BIC(k) reach their

minimum value for k = 2. Based on these results, we conclude that ENF signals

follow a time-varying AR(2) process.
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Figure 4.9: AIC(k) and BIC(k) for the residue process v(n).

4.3 Timestamp Verification as Hypothesis

Testing

In this section, we study the performance of the proposed ENF signal model

for a timestamp verification application. In this application, each query multimedia

file Z is assumed to contain an embedded timestamp in the metadata denoted by

n, representing the time-of-recording claimed in the file. We want to verify the

authenticity of this timestamp, i.e, to determine if the recording actually took place

at time n. We use a hypothesis testing framework to study the performance of

timestamp verification using ENF signal. We extract ENF signal from query Z

using a bandpass filter, followed by instantaneous frequency estimation, and denote

it by W = [w(0), w(1), . . . , w(N − 1)]T , where N is the length of the ENF signal W
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extracted from the file.

4.3.1 Matching using ENF sequences

We start with a highly simplified model to help gain insights on the ENF

matching problem while retaining analytical tractability. Let us denote an N-point

reference ENF signal at time instant n as F(n) = [f(n), f(n+ 1), . . . , f(n+N − 1)]T ,

which is stored in a database available to the detector. This database serves as a

reference for the timestamp verification. Such an ENF database can be built by

a continuous recording of the voltage signal from the power main supply and ex-

tracting the ENF signal using the instantaneous frequency estimation methods, as

described in [32] [35]. Alternatively, the database can also be obtained directly from

the power distribution companies as they generally keep a record of ENF signal [4].

As the sensitivity of various multimedia recording devices may vary, and in-

terfering signals may exist in the frequency band around the nominal ENF value,

distortion may be introduced in ENF signal embedded in query Z. Based on such

observations, W can be assumed to be a distorted version of F(·) corresponding

to the actual time-of-recording. We model this distortion using an additive white

Gaussian noise vector C(n) = [c(n), c(n + 1), . . . , c(n + N − 1)]T with distribution

N (0, σ2
c I), where I denotes a N ×N identity matrix.

Under the settings described above, we model the ENF signal based timestamp

verification as a binary hypothesis testing problem. We define two hypotheses, H0
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and H1, as follows:

H0 : W = G(n) +C(n),

H1 : W = F(n) +C(n).

Under the null hypothesis, the ENF signal W is a sample from G(n), which has the

distribution of a multivariate AR(2) process. Since each dimension of vector G(n)

is a correlated random variable, it is difficult to derive its exact statistics. However,

the first and the second order statistics can be derived as follows:

E(G(n)) = 0N×1,

E(G(n)G(n)T ) = RN×N , (4.10)

where RN×N is the correlation matrix with its (i, j)-th entry given by r(i − j),

with r(·) being the autocorrelation function of ENF signal f(n). Given the vector

F(n) corresponding to timestamp n attached with the query file, and the vector W

corresponding to the ENF signal extracted from the query file, a similarity based

detector is used to measure the similarity as follows:

S =
WT F(n)√∑N−1

i=0 w(i)2
√∑N−1

i=0 f(n+ i)2
. (4.11)

Under the described framework, the detector decides the authenticity of an

intrinsically embedded timestamp in the given query Z by comparing the value of

S with a pre-defined constant τ :

δD(S) =





1 : H1 is declared if S > τ ,

0 : H0 is declared if S ≤ τ .

(4.12)

77



The performance of the timestamp verification under our model can be evaluated

using the false alarm probability, Pf , and the detection probability, Pd, defined as:

Pf = Pr(δD = 1|H0),

Pd = Pr(δD = 1|H1), (4.13)

where Pr(·) denotes the probability of the given event. The value of τ presents

a trade-off between Pf and Pd. For a practical system, the value of τ should be

chosen so that Pf is low and Pd is high. Due to a complex distribution of W, it

is difficult to derive the closed form expressions for Pf and Pd. To compare the

performance of the proposed model with that of real data obtained from audio and

power recordings, we use the Monte-Carlo simulations.

4.3.2 Results & Discussions

To obtain the Receiver Operating Characteristics (ROC) of the S-statistics

defined in Eq. (4.11), we conduct Monte-Carlo simulations. We use the values

obtained from an audio-power ENF database as the parameter values in our sim-

ulations. To build the audio-power ENF dataset, we record a 25-hour long audio

signal using a microphone at a sampling rate of 1KHz and divide the recorded signal

into different segment lengths. The beginning time index is stored in the metadata

as the time-of-recording for each segment. Instantaneous frequency is estimated for

a frame duration of Tframe seconds using the weighted energy spectrogram method

described in Chapter 2. Concurrent power recordings are also conducted using a

current sensing circuitry, as discussed in Chapter 2, and the weighted energy spec-
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Figure 4.10: Receiver Operating Characteristics (ROC) of hypothesis detection

framework for timestamp verification under the proposed AR(2) model for ENF

signals.

trogram is used to estimate the ENF signal from this recording. The ENF estimates

obtained from the power signal can be considered its cleanest, most readily available

form, so an estimate of the signal-to-noise ratio SNR for audio-ENF signal may be

obtained by subtracting the audio-ENF signal from the power-ENF signal to esti-

mate the noise power. The instantaneous frequency estimation provides less robust

estimates of frequency because the value of Tframe is decreased, so the SNR can be

expected to decrease with the value of Tframe.

We plot the ROC of the S-statistics obtained using the Monte-Carlo simu-

lations for different values of N for the SNR of 15 dB and 9 dB in Fig. 4.10(a)

and 4.10(b), respectively. These SNR values correspond to the SNR of the audio-

power ENF dataset for Tframe = 16 seconds and Tframe = 8 seconds, respectively.

From these figures, we observe that the ROC characteristics improve as the value
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Figure 4.11: Comparison of the ROCs of the hypothesis detection framework for

Tframe = 8 seconds and Tframe = 16 seconds for different query segment duration.

of N increases. For SNR corresponding to Tframe = 16 seconds, Pd approaches 1 for

Pf close to zero for N=32 (equivalently 512 seconds long query segments). While

for SNR corresponding to Tframe = 8 seconds, Pd ≈ 99% for Pf = 1%, when N=64

(equivalently 512 seconds long query segments). This result indicates that for a given

query duration, a higher value of Tframe works best to determine the matching be-

tween the multimedia and the power recordings using ENF signals. The relative

performance of the detector for the values of N such that the query duration is the

same for Tframe = 8 seconds and Tframe = 16 seconds is shown in Fig. 4.11(a). From

this figure, it can be clearly seen that for the same query duration, using a higher

value of Tframe improves the detection performance.

We also evaluate the performance of the proposed detector on timestamp ver-

ification for the power-audio ENF dataset described previously. Each audio file is

given to the detector with every possible timestamp m 6= n for the false matching
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Figure 4.12: Pdf of S for the audio-power data for Tframe = 16 seconds under H0

and H1 hypotheses for different query durations.

cases, and m = n for the correct matching case. This setting gives us 700, 350,

and 175 correct matching samples for segment lengths of 128 seconds, 256 seconds,

and 512 seconds, respectively in our database. The plots of the pdf of S obtained

using this dataset under H0 and H1 hypotheses for Tframe = 16 seconds are shown

in Fig. 4.15(a) and 4.15(b) for N = 16 and N = 32, respectively. We observe from

these figures that the distribution of S spreads more uniformly in [-1,1] range under

H0 for N = 16 as compared with that of N = 32. As the value of N increases, the

distribution of S under H0 closely follows a Gaussian distribution. We also notice

that the distribution of S under H1 is concentrated around 1. The distribution of

S under the two hypotheses partially overlap, which will cause errors in detection.

The plots of the ROC for a query duration of 128 seconds, 256 seconds, and 512

seconds for Tframe = 8 seconds and Tframe = 16 seconds are shown in Fig. 4.11(b).

From this figure, we observe similar trends as predicted from the ROC of the S-
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Figure 4.13: Comparison of the ROCs of the hypothesis detection framework for

timestamp verification under the proposed model and the empirical data for different

query duration.

statistics under the proposed model, as shown in Fig. 4.11(a). The performance

improves with an increase in the value of Tframe for a fixed query duration, and for

an increase in query duration for a fixed Tframe.

In Fig. 4.13(a)-(c), we compare the ROC performance of the hypothesis de-

tection framework for timestamp verification under the proposed model and the

empirical data for different query duration of 128 seconds, 256 seconds, and 512
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seconds, respectively. From these figures, we observe that the ROCs obtained from

the model closely match with that obtained from the empirical data for Tframe = 8

seconds and 16 seconds. We also discover that the gap between the ROCs from the

model and that of the empirical ENF data reduces as the query duration increases.

These results indicate that best results are obtained using a large query segment for

matching, and for a given segment length, a larger value of Tframe will provide better

matching performance. Next, we study an improved method to compare the ENF

signals from multimedia with that of power-recordings using the proposed model for

ENF signals.

4.4 Improved Method for Matching ENF Signals

In the previous section, we have formulated the problem of ENF signal based

timestamp verification as a binary hypothesis testing problem. We have observed

that the distribution of the detection statistics S underH0 andH1 shows a significant

amount of overlap. A major contributor to this overlap is the correlation within an

ENF signal over time, as evidenced from the autoregressive model of ENF signal

described in Section 4.2. Such correlation may lead to local peaks in the value

of S at time shifts other than the true match and, in turn, a high false alarm

probability. To improve the detection performance, we propose to use samples from

the innovation process V(n) = [v(n), v(n + 1), . . . , v(n + N − 1)]T for matching.

Using the ENF signal model from Section 4.2, the process V(n) can be obtained

after decorrelating the ENF signal F(n) at time n by filtering it through a filter
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H(z) = 1
A(z)

= 1− a1(n)z
−1 − a2(n)z

−2. The filter coefficient a1(n) and a2(n) can

be estimated using the Yule-Walker equations applied to the ENF data F(n) at time

n. Since v(n) is an i.i.d. sequence for an AR process, this methodology addresses

the false alarm probability described above and may provide an improvement in the

detection performance.

By passing W through the estimated filter H(z), we obtain the corresponding

query innovation process and denote it by Wd = [wd(0), wd(1), . . . , wd(N − 1)]T .

Under this setting, for an embedded timestamp n in the given query Z, we use Wd

and V(n) for hypothesis testing. The two hypotheses now become:

H0 : Wd = U(n) +D(n),

H1 : Wd = V(n) +D(n),

where D(n) = [d(n), d(n + 1), . . . , d(n + N − 1)]T is a vector of zero-mean colored

Gaussian noise process, with its components given by d(n) = c(n)−a1(n)c(n−1)−

a2(n)c(n− 2), where a1(n) and a2(n) are the AR coefficients for the corresponding

segment. The power of the noise process d(n) is denoted by σ2
d. Under the null

hypothesis, Wd is a sample fromU(n). The distribution of the innovation sequences

from ENF database, U(n), can be modeled as N (0, σ2
vI). To measure the similarity

between Wd and V(n), we define a similarity based metric similar to Eq. (4.11) as

follows:

S ′ =
Wd

T V(n)√∑N−1
i=0 wd(i)2

√∑N−1
i=0 v(n+ i)2

'
1

N

Wd
T V(n)√

σ2
wd

√
σ2
v

, (4.14)
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where σ2
wd and σ2

v are the variances of components in Wd and V(n), respectively.

In practice, the value of S ′ is obtained by using estimated values of σ2
wd and σ2

v in

the denominator of Eq. (4.14). The estimated values of σ2
wd and σ2

v is computed

as σ̂2
wd = 1

N

∑N−1
k=0 w2

d(k) and σ̂2
v = 1

N

∑N−1
k=0 v2(n + k), respectively. The covariance

matrix Rd of the process D(n) is not diagonal because the noise is colored after

passing through filter H(z). (i, j)th entry of Rd is given by rd(i− j), and rd(0) = σ2
d

and rd(k) = 0 ∀ |k| > 2. The distribution of the detection statistics S ′ under H0

and H1 can be written as follows:

S ′|H0 ∼ N

(
0,

1

N

)
, (4.15)

S ′|H1 ∼ N


 1√

1 + 1
SNR′

,
1

N

(
1

1 + SNR′

)
 , (4.16)

where SNR′ is defined as σ2
v

σ2

d

. The detailed proof of these expressions are provided in

the Appendix at the end of this chapter. Note that the value of SNR′ is significantly

less than that of SNR, as filtering W using the filter 1 − a1(n)z
−1 − a2(n)z

−2

leads to an increase in the noise power σ2
d of the resulting signal Wd. As will be

discussed in Section 4.4.1, even given this reduced signal-to-noise ratio, the detection

performance of timestamp verification improves with matching using innovation

sequences.

4.4.1 Results on Audio

The ROC of the S ′-statistics for different values of query length N are shown

in Fig. 4.14(a) and 4.14(b) for SNR’=4.95dB and SNR’=-3.68dB. These values of

SNR’ correspond to the empirical values obtained from the dataset after deorrelating
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Figure 4.14: Receiver Operating Characteristics(ROC) of the proposed AR decor-

relation based hypothesis detection framework for timestamp verification using the

model.

the power and audio ENFs by using an AR(2) decorrelation on both the ENFs

estimated using Tframe = 16 seconds and Tframe = 8 seconds, respectively. Firstly,

these empirical values of SNR′ have values approximately 10dB less than those of

SNR for the same Tframe size, when the ENF signals are matched directly. As the

ROC performance is dependent of the noise level in the signal used for matching,

the effect of decorrelation on ROC may be nullified by a decrease in SNR conditions,

when matching is performed using innovation sequences. The trends in the ROC

have similar results to the ROC obtained when matching occurred directly using the

ENF signals. The ROC performance improves as the value of N improves because

using more number of points for similarity measure is robust against noise. We

also observe that for a fixed query duration, Tframe=16 seconds provides a better

performance compared to Tframe = 8-seconds.
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Figure 4.15: Pdf of S ′ for the audio-power data for Tframe = 16 seconds under H0

and H1 hypotheses for different query durations.

For our audio experimental data, we use an AR(2) model to estimate the

filter parameters a1(n) and a2(n) of A(z) for the power-ENF signal F(n) at time

n using the Yule-Walker equations. To obtain V(n) and Wd, we filter the power-

ENF signal F(n) and the query audio-ENF signal W by passing them through

H(z) = 1 − a1(n)z
−1 − a2(n)z

−2, where a1(n) and a2(n) are the AR coefficients

obtained from F(n). Using the same settings as described in Section 4.3.2, we

conduct a timestamp verification operation by a direct ENF sequence matching and

decorrelated innovation sequence matching, respectively. Fig. 4.15(a) and 4.15(b)

show the pdf plots of S ′ under H0 and H1 hypotheses for Tframe = 16 seconds for

N = 16 and N = 32, respectively. We observe that the distribution of S ′ under H0

and H1 follows a Gaussian distribution, as indicated by our analysis used to derive

Eq. (4.15). We also note that the distribution of S ′ under H1 concentrates around

1. The distribution of S ′ under the two hypotheses partially overlap and will cause
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some errors in detection.

The ROC curves for the detectors described in Section 4.3.1 and 4.4, when 256-

second and 512-second long queries are used for timestamp verification, are shown in

Fig. 4.16(a) and Fig. 4.16(b). From these figures, we observe that the performance

of the detector on audio data compares well to the performance predicted using

our analytical model. We further observe that using the innovation sequences for

matching performs slightly better than using the ENF sequences directly, especially

for a low false alarm rate. For example, the probability of detection increases from

92% to 95% for a false alarm rate of 1% for 256-second segments, when innova-

tion sequences are used for matching in our experiments. Similarly for 512-second

segments, the probability of detection increases from 82% to 87% for a false alarm

rate of 5% when innovation sequences are used for matching. We note a significant

improvement in the detection performance when the query clip duration increases

from 128 seconds to 256 seconds, for matching with direct ENF sequences and the

innovation sequences.

In addition, from Fig. 4.16(a) and 4.16(b), we observe a slight mismatch be-

tween the performance of the analytical model and the experimental results. This

mismatch may occur due to the simpler binary hypothesis detection framework

used in this paper. In general, correlation between query ENF sequence and ENF

database also appears high for time index near the actual time-of-recording. A

composite hypothesis, taking such correlated structures near the time index cor-

responding to time-of-recording into account, would be a more desirable choice to

model H0. The ROC performance of the proposed model may match better with
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Figure 4.16: ROC characteristics of the correlation detector for ENF matching v.s.

innovations matching at two query segment length for Tframe = 16 seconds.

that from the ENF data using such a composite hypotheses detection framework.

4.4.2 Results on Video

We use the proposed AR(2) model to demonstrate a performance improvement

for a timestamp verification setting considered similar to experiments on audio. Un-

der this setting, we assume that each video recording contains a timestamp attached

to it as a metadata. We use a database of 40 video-clips, each 10-minutes in du-

ration and containing a timestamp. We also create multiple files and modify their

metadata timestamps to other possible timestamps in the database. These two cases

correspond to the following binary hypotheses:




H0 : The attached timestamp is fabricated;

H1 : The attached timestamp is genuine.

(4.17)

Under this setting, we estimate the S-value between the ENF signal extracted
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sequences for matching.

from the video clip and the ENF signal extracted from the power signal correspond-

ing to the timestamp attached to the recording. We then estimate the S ′-value

between the innovation signals obtained after decorrelating the ENF signals using

the proposed AR(2) model. The attached timestamp is declared genuine if the val-

ues of similarity measure S and S ′ are greater than a threshold. From the ROC for

this experiment shown in Fig. 4.17, we can observe an improvement in the detection

performance when the innovation signals obtained after applying AR(2) model are

used for matching, as compared to when direct ENF signals are used for match-

ing. This happens because the side lobe that may be present in the normalized

cross-correlation function (NCC) function of the ENF sequences given the corre-

lated nature of the ENF sequences has been substantially mitigated in the NCC

function of the innovation sequences.
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4.5 Chapter Summary

In this chapter, we have proposed an analytical model for ENF signals based on

autoregressive process. We have verified the model’s fitness using the Box-Jenkins

methodology. The proposed model has been used to study the problem of timestamp

verification under a hypothesis detection framework. The trends in the receiver

operating characteristics of the analytical model for different segment size used for

matching are similar to those obtained from the experimental data. Based on the

proposed model, a decorrelation based innovation process matching approach has

been adopted to improve the performance of the timestamp verification under the

proposed framework. The experimental results with audio data has demonstrated

an improvement in the detection performance for a low value of false alarm rate. The

binary hypothesis framework used in this chapter can be considered as a first-step

exploration on the problem of ENF modeling for timestamp verification. Although

the simplified hypothesis framework presented in this paper has a slight gap with

the realistic characteristics as observed from our experiments, it shows that an AR

process based decorrelation provides improvement in the detection performance,

and this improvement is observed consistently when applied to audio data. The

performance of the proposed model match more closely with the audio experimental

data as segment length increases.
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Appendix: Derivation of Detection Statistics of S’

From Eq. (4.14), S ′ between Wd and V(n) is defined as following:

S ′ =
1

N

Wd
TV(n)√

σ2
wd

√
σ2
v

, (4.18)

where σ2
wd = σ2

v + σ2
d. The distribution of Wd under hypothesis H0 and H1 for a

given V(n) is given by the following equations:

Wd|H0 v N
(
0, (σ2

vI+Rd)
)

(4.19)

Wd|H1 v N (V(n),Rd) (4.20)

where Rd is the correlation matrix of the noise D(n). The noise process d(n)

becomes a moving average (MA) process after c(n) is passed through H(z), and the

matrix Rd is not diagonal. (i, j)th entry of Rd is given by rd(i− j), and rd(0) = σ2
d

and rd(k) = 0 ∀ |k| > 2. As Wd is a Gaussian multivariate distribution and S ′ is

a linear function of Wd, so S ′ also follows a Gaussian distribution. We derive the

mean and the variance of S ′ as following:

E[S ′|H1] =
1

N

E[Wd
T |H1]V(n)√

σ2
v + σ2

d

√
σ2
v

=
1

N

V(n)TV(n)√
σ2
v + σ2

d

√
σ2
v

(a)
∼=

σ2
v√

σ2
v + σ2

d

√
σ2
v

∼=
1√

1 + 1
SNR′

, (4.21)

where SNR′ = σ2
v

σ2

d

.
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E[S ′2|H1] =
1
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E
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=
1
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]
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2
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(a)
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σ2
dσ

2
v

(σ2
v + σ2

d)(σ
2
v)

=
1

N

(
1

1 + SNR′

)
, (4.22)

where vi is a notation used to represent v(n+ i), and (a) follows from the ergodicity

assumptions 1
N

∑N−1
i=0 v2i

∼= σ2
v .

1
N

∑N−2
i=0 vivi+1

∼= 0 and 1
N

∑N−3
i=0 vivi+2

∼= 0 because

v(n) is a white noise process. SNR′ is defined as the signal-to-noise ratio of audio

innovations with respect to power innovations and SNR′ = σ2
v

σ2

d

. From Eq. (4.21)

and (4.22),

S ′|H1 ∼ N


 1√

1 + 1
SNR′

,
1

N

(
1

1 + SNR′

)
 . (4.23)

The pdf for S ′ under H0 is derived using the similar steps:

E[S ′|H0] =
1

N

E[Wd
T |H0]V(n)√

σ2
v + σ2

d

√
σ2
v

= 0. (4.24)

V ar [S ′|H0] =
1

N2

trace(E
[
WdWd

T |H0

]
V(n)V(n)T

(σ2
v + σ2

d)(σ
2
v)

=
1

N2

trace
(
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vI+Rd)V(n)V(n)T
)

(σ2
v + σ2

d)(σ
2
v)

(a)
∼=

1

N
(4.25)
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where (a) follows from the similar steps used to derive Eq. (4.22). From Eq. (4.24)

and (4.25), the distribution of S ′ under H0 can be written as follows:

S ′|H0 ∼ N

(
0,

1

N

)
. (4.26)
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Chapter 5

AR Model Parameters for Grid of

Recording Classification

5.1 Chapter Introduction

In the previous chapters, we discussed the timestamping property of ENF sig-

nals in such multimedia recordings as audio and video. ENF signal can be extracted

from multimedia recordings that are influenced by electric power and compared with

a power-ENF database to estimate or verify the time of recording. In this and the

next chapter, we explore another important forensics problem of how to determine

the location-of-recording of a given multimedia using power traces, which can be

separated into two levels: a) region of recording as delineated by independent power

grid, e.g., the US east, US west, Ireland, China, India, etc.; b) more specific area of

the recording within a given region, e.g., to determine whether a recording happened

in Maryland, North Carolina, or Massachusetts within the US east. A system that
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possesses the capability of identifying a recording’s location can be useful in many

multimedia forensics and security applications as it allows identification of the ori-

gins of audio and videos originating from terrorist organizations, ransom demands,

or child pornography and exploitation [36]. This sort of system can also be used for

commercial applications such as automatic geo-tagging of user created multimedia

data on social networking websites such as Twitter, YouTube, and Facebook.

From our discussions in Chapter 2 and 3, we have established that the main

trend of ENF signal variations at different areas of the same grid are the same at

a given time due to the interconnected nature of the grid. Conversely, the ENF

signal variations across different power grids are unalike, as the grids operate inde-

pendently. In the presence of concurrent power recordings from the candidate grids,

ENF signals from the given multimedia recording can be compared with the ENF

database from the candidate grids to estimate the grid-of-recording. However, the

record of concurrent power-ENF references from the candidate grids may not always

be available. In this chapter, we focus on the problem of identifying the grid-region

of a multimedia recording without having concurrent power references. In particu-

lar, we explore the grid characteristics from the AR modeling parameters, described

in Chapter 4, as the features. We observe that some characteristics of ENF signals

from different grids can be described using the AR modeling parameters. We build a

support vector machine based classifier using these features to learn a classification

model that can differentiate recordings made in various grids.
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5.2 ENF Variations Across Different Grids

The statistical modeling presented in Chapter 4 reveals some highly interest-

ing properties about the behavior and function of power grids. We have observed

differences in the nature of ENF variations in different grids. We plot sample ENF

signals for seven different grids in Figs. 5.1(a)- 5.1(d) and Figs. 5.2(a)- 5.2(c) for the

European and the Asian grids of a Spanish island of Canary, Turkey, Ireland, and

China, and the North American grids of US east, US west, and Quebec, respectively.

The Spanish island, Turkey, Ireland, and China have a 50 Hz nominal ENF value,

while US east, US west, and Quebec have a 60 Hz nominal ENF. From these figures,

we observe the differences in the ENF signal variations on their particular grids. For

example, the rate of change of ENF much higher in Quebec as compared with the

other two grids on the continental North America. Similar observations can be made

from the ENF plots of European and Asian grids. For example, ENF patterns for

China tend to vary at a different rate than that of Ireland. ENF signal in Ireland

shows a tendency to drift longer before returning to the nominal value, as compared

with China and the Spanish island. Generally, the nature of fluctuations in the

ENF depends on the size of the grid, i.e., a smaller capacity grid is less controlled

and may exhibit a higher range of fluctuation, while a larger capacity grid tends

to be more tightly controlled and may exhibit a smaller range of fluctuations [6].

For example, ENF signals in the Spanish island, Turkey, and Ireland power grids

vary more greatly than the US east grid, as can be seen from Figs. 5.1(a)- 5.1(c)
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(c) Ireland
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(d) China

Figure 5.1: Sample ENF plots for European and Asian grids.

and 5.2(a).

The ENF variations in the power grids happen with a dynamically changes

in load demand and supply. Power grids employ a frequency control mechanism

to regulate the variations. When the frequency drops due to an increase in the

load, the control mechanism senses the fluctuations and starts drawing power from

adjoining areas/additional generators. This feedback compensates for the increased

load to bring an increment in the supply frequency to bring it close to the nominal

value. A similar feedback mechanism decreases the frequency value when supply
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Figure 5.2: Sample ENF plots for continental North American grids.
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frequency surges due to a drop in the load. Given the interconnected nature of the

power grid, the ENF variations remain similar across a geographical region. Hence,

the frequency control mechanism can also be considered similar for the entire power

grid. As the current value of the ENF depends on its past values, the autoregres-

sive model for ENF signals, described in Chapter 4, reflects such dynamics of the

frequency control mechanism. An autoregressive model can be represented using

autoregressive coefficients and noise power of the innovation process. We hypoth-

esize that these modeling parameters can be used to characterize a grid, and can

facilitate the identification of the grid-of-recording for any recording influenced by

the ENF signals.

5.3 AR Modeling Parameters as Features

5.3.1 Feature Description

To understand the characteristics of the AR coefficients used to model the ENF

signals in the power grids, we conduct multiple power recordings across different

geographical regions covered by their own power grids. From each recording, we

take a 8-minute long segment as one instance of recording and extract the ENF

signal from it for a frame size of Tframe = 16 seconds using the weighted spectrogram

method described in Chapter 2. We then obtain a 30-points ENF signal for each 8-

minute instance of recording in the same fashion. We extract the following features

from this 30-point ENF signal:
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Average Frequency: Two main nominal levels of ENF exist around the world, namely

50 Hz and 60 Hz, that can provide a basic 2-class information about the geographical

location in terms of the power grid where the recording occurred. We compute

the average frequency, Fave, of the 30-point ENF signal obtained from the given

recording example and use it as a feature for grid-region of location classification.

AR Modeling Parameters: We extract the AR(2) parameters, a1 and a2, and the

noise innovation power, σ2
v , from the zero-mean normalization of ENF signal ob-

tained after subtracting fave from the signal. Each recording instance of 8-minute

long is represented by the following feature vector:

X = [fave, a1, a2, σ2
v ]

T (5.1)

We obtain feature vectors for multiple instances of recordings from different

power grids. Since the dynamic range of each feature within the vector can vary

significantly, we normalize features using a standard normal procedure that makes

each feature dimension have a zero-mean and unit-variance. This can be achieved by

calculating the mean and the standard deviation along each feature dimension, then

subtracting the mean followed by a division with the standard deviation from each

feature value. A plot of the normalized AR modeling parameter features obtained

from multiple instances of 8-minute signals across different power grids of Euro-Asia

(50 Hz nominal ENF) and North America (60 Hz nominal) are shown in Fig. 5.3(a)

and 5.3(b), respectively. From these figures we observe that the feature points

obtained from the data from the same grid form clusters. For example, in North

American grids, the features obtained from the power recordings obtained from the
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Quebec grid form a non-overlapping cluster separate from the features obtained

from the US east and the US west recordings. We also observe a partial overlap

between the feature clusters from the two US grids, indicating that it may not be

possible to classify the recordings from the US east and the US west with a high

confidence by a linear classifier built on only AR parameters as features. Some

overlap between clusters also occur for the European and the Asian grids. However,

it may be possible to build a non-linear classifier, such as through the proper choices

of kernels, to provide a better separation boundary.

5.3.2 Experimental Setup

We build a multi-class classifier using a support vector machine (SVMs) method

that has shown excellent classification accuracy in classifying the complex data in

a number of applications [37]. We use the LibSVM implementation of a multi-

class SVM for training a location classifier [38]. We have collected power and audio

recordings from three grids in North America: the US east, the US west, and the

Quebec interconnection; and from four grids in Europe and Asia: the Spanish is-

land, Turkey, Ireland, and China. As discussed before, each training and testing

examples contain features extracted from an 8-minute long recording.

The total numbers of training and testing examples from the power record-

ings across different grids in our database are available in Table 5.1. This table

also shows the number of audio examples, which will be used for testing purposes

for the classifier trained on features obtained from the power recordings. As the
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training data for each class is unbalanced, i.e., the number of training examples are

different for each class, we use a weighted-SVM implementation of the LibSVM. The

weighted-SVM approach avoids over-fitting due to the unbalanced data by weighing

the misclassification cost of each class as inversely proportional to the number of

training examples present in that class. As non-linear classifiers demonstrate bet-

ter classification accuracy as compared with the linear classifiers, we adopt a radial

basis function (RBF) kernel to train the SVM classifier. RBF is a Gaussian-like

shape non-linear kernel that has shown a superior classification results as compared

to other kernels for many applications. The RBF kernel requires selection of two

parameters, the cost C for each misclassification and the regularization parameter γ

to control the spread of the RBF kernel. We use a 10-fold cross-validation strategy

to search for the best values of these parameters. A contour plot for the validation

accuracy for different values of C and γ is shown in Fig. 5.4. From this figure, we

observe that the best validation accuracy of 78.10% for the training data is obtained

for C = 20, and γ = 2−8. We use these values of C and γ to train a multi-class

SVM model.

5.3.3 Results and Discussions

We evaluate the classification accuracy of the proposed grid-region of record-

ing classifier on the power and audio recordings. Table 5.2 shows the accuracy of

validation, training, and testing for a classifier trained and tested on power-ENF

data from seven different grid-regions, along with testing accuracy for audio record-
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Table 5.1: Number of training and testing examples in the dataset.

Grid-region Training (power) Testing (power) Testing (audio)

Spanish island 113 28 148
Turkey 220 55 210
Ireland 161 40 0
China 135 33 0
US east 244 61 189
US west 139 34 115
Quebec 48 12 0

Total 1060 263 662
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Figure 5.4: Classification accuracy of optimal parameter selection search of RBF

kernel parameters C and γ using 10-fold cross validation.
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ings from four power grids. This table also lists the testing accuracy for the audio

recordings from four different grid-regions for the same classifier. From the table

we observe that the testing accuracy for the power recordings compare favorably

to the validation and training accuracy. These numbers indicate that the proposed

location classifier can provide a good classification for ENF signals recorded from

different power grids. The current study uses only the AR modeling parameters and

average frequency as features for classification to investigate the effectiveness of the

AR modeling in learning the grid characteristics. It may be possible to obtain a

better representation of the feature vector by using other properties, such as high

order moments, the range, and the sub-band features of ENF signals [39].

Fig. 5.5 shows the classification results for power testing data from different

grids. From this plot, we observe that for each grid’s testing data, a maximum

number of testing examples are correctly classified into that particular grid. For the

North American grids, the classification accuracy is better than for the more diverse

data from Europe and Asia. For example, recordings from the Quebec grid show a

100% classification accuracy. The classification accuracy for the China recordings is

higher when compared with other European and Asian grids. It is worth noting that

the geographical regions covered by North American and China grids are expansive

compared with the Turkey, Spain, and Ireland grids. These results indicate that the

proposed feature extraction method can be used to determine the grid-region of a

recording, especially for power recordings.

The classification performance degrades when audio recordings are used for

testing, as seen in Table. 5.2. The accuracy for the classifier trained on power-ENF

106



Table 5.2: Classification accuracy for power-ENF training. All numbers are shown

in % terms.

Data Validation Training Testing
accuracy accuracy accuracy

Power 78.10 81.18 71.14

Audio(Testing only) - - 44.26

signals and tested on audio recordings is 44.26%, which is considerably lower than

the testing accuracy of 71.14% obtained for the power testing signals. This happens

because of the presence of noise in the audio recordings, which affects the ENF

signal estimation. The presence of noise makes the feature extraction scheme and

the classification scheme prone to error.

To understand the effect of the noise on the classification accuracy, we evaluate

the performance of the proposed location classification method when the classifier

is trained on noisy ENF data at different noise levels. We create the noisy dataset

by adding noise to the power-ENF signal at various SNRs. We train the SVM on

the feature vectors obtained from this noisy data. We use the same power-ENF

dataset used in our previous experiments for the training and the testing. We test

the performance of this classifier with test data at different SNRs. The plots of the

accuracy for classifiers obtained using such a methodology for different training and

testing SNRs are shown in Fig. 5.6. In this figure, the x-axis represents the test

SNR conditions, and the lines correspond to different training conditions. From this

figure, we observe that a mismatch between the training and the testing conditions

leads to a lower classification accuracy compared with the cases using the same
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Figure 5.5: Classification accuracy on power testing data for SVM trained on power

data.

training and the testing SNRs. For example, the highest testing accuracy for the

classifier trained on 10dB SNR condition is 74.52% for a testing SNR of 10dB, while

the accuracy drops to 25% for a testing SNR of 5dB. This suggests that the proposed

location classification provides the best accuracy when the training and the testing

data have matching noise conditions.

For the location classification in multimedia recordings, where the ENF signal

is embedded into an audio or a video recording with the signal’s content, it is not

possible to know the training conditions beforehand. For example, the SNR of

ENF signals from our audio test data varies between 5dB-15dB, depending on the

location-of-recording. These variations in the SNR may arise due to the nature of the

recording device, sources, or mechanism of ENF embedding onto the sensor recording

at the location of recording, and it may not be possible to estimate the accurate
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Figure 5.6: Classification accuracy for different training and testing conditions.

value of SNR for the given query multimedia recording. It, therefore, becomes

necessary to develop a mechanism that can automatically adapt to different types

of noise conditions. We examine a multi-conditional learning approach to adapt our

classifier to different noise levels in the next section.

5.4 Noise Adaptation using Multi-Conditional

Learning

In the previous section, we have observed that a mismatch in the training and

the testing conditions can lead to a lower value of the grid of recording classification

accuracy, unlike when noise conditions between the training and testing match. For

example, the accuracy of a classifier trained on power data and tested on power data

was 71.14%, but it reduces to 21% with test data at 10dB SNR. This may occur

because of the limitations that the simple feature extraction mechanism is not robust

against noise, and the classifier may be unable to adapt to the testing conditions. As
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this work focusses on demonstrating the effectiveness of the AR modeling parameters

in learning the grid specific characteristics, we do not delve into extracting other

types of feature for better signal representation. Instead, using only the existing

AR modeling parameters as features, we investigate a multi-conditional learning

approach to adapt to the mismatch between the training and the testing conditions.

Such multi-conditional learning has been used in the speech processing literature for

the similar problem of mismatch in the noise conditions, for tasks such as speaker

recognition and speech understanding [40] [41].

5.4.1 System Model

Our proposed multi-conditional learning approach has a separate classification

model for each of several different representative noise conditions to match a vari-

ety of environments. For each noise environment, the corresponding classification

model can be derived by transforming the model parameters to better character-

ize the given environment. This transformation is performed based on learning the

environmental model on the corresponding environment’s training data. This can

be achieved by using ENF signals at different noise conditions for feature extrac-

tion, and learning separate classification models for each noise condition. Such ENF

signals can be obtained either from the noisy audio signals or by adding synthetic

white Gaussian noise (WGN) at different noise conditions to the clean power-ENF

signals. In our work, we construct our training dataset by generating WGN at var-

ious SNR conditions and adding it to the power-ENF signal, then we perform the

110



Bayes 

Classifier 
f(X) 

Feature 

Extraction 

φ0 ENF Signal 

Estimation 

[p1,0  p2,0 … pN,0] 

[p1,1 p2,1 … pN,1] 

[p1,L  p2,L … pN,L] 

Noise 

Power 1 Noise  

Generator 
+ 

φ1 Feature 

Extraction 

Noise 

Power L Noise  

Generator 
+ 

φL Feature 

Extraction 

Test query  

  Probabilistic    

   SVM Classifier 

  Probabilistic    

   SVM Classifier 

  Probabilistic    

   SVM Classifier 

Noise 

Conditional 

Distributions 

Power 

Data 

 

Figure 5.7: Block diagram of multi-conditional learning for noise adaptation.

feature extraction on these data.

When a test query is introduced to the classifier trained using the multi-

conditional learning approach, it may find the class of the given test query in one of

the two ways. Firstly, if the noise conditions can be identified before classification,

the model corresponding to the identified noise conditions can be used. Alterna-

tively and more generally, the results from all training models can be fused together

to derive a classification decision criteria. We adopt a Bayesian fusion approach

to compute the classification results, and this framework requires estimating the

likelihood of observing the query feature vector for each noise conditions.
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A block diagram of the proposed system is shown in Fig. 5.7. More specifically,

let φ0 denote the training dataset containing clean power-ENF signal, and p(X|φ0)

represent the likelihood of observing feature vector X from φ0. The proposed ap-

proach for noise adaptation includes two steps. The first step is to generate multiple

copies of the original training set φ0 by introducing different noise conditions at dif-

ferent SNRs to the clean power-ENF signal. We arrive at an augmented training

set at different noise conditions and denote the copies by φ0, φ1, . . . , φL, where φl

denotes the lth training set derived from φ0 by adding WGN at lth noise power.

Under this setting, our goal is to predict the class of grid-region of recording

from the given feature vector X obtained from a test recording. The class prediction

is made by first estimating the probability of X belonging to each candidate class,

and assigning the class with the maximum probability as the location-of-recording.

Let C = {1, 2, . . . , N} denote the candidate classes. Then, the probability of X

belonging to class i can be written as:

p(C = i|X) =

L∑

l=0

p(C = i, φl|X)

=

L∑

l=0

p(C = i|X, φl)p(φl|X)

=
L∑

l=0

pi,l(X)p(φl|X), (5.2)

where pi,l(X) denotes the probability of X belonging to class i under lth noise condi-

tion; p(φl|X) denotes the probability of X belonging to the noise condition φl. The

expression for p(φl|X) is obtained by the Bayes formula as follows:

p(φl|X) =
p(X|φl)p(φl)∑L

l′=0 p(X|φl′)p(φl′)
, (5.3)
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where p(φl) denotes the prior probability of lth noise condition in the dataset. Bring-

ing Eq. (5.3) into Eq. (5.2), we arrive at:

p(C = i|X) =

L∑

l=0

pi,l(X)p(φl|X)

=

L∑

l=0

pi,l(X)
p(X|φl)p(φl)∑L

l′=0 p(X|φl′)p(φl′)
. (5.4)

Assuming that the prior p(φl) is uniform for all l, the expression in Eq. (5.4) can be

written as:

p(C = i|X) ∝
L∑

l=0

pi,l(X)p(X|φl). (5.5)

The decision rule of the class assignment for query vector X can be written as:

f(X) = argmax
i=1,2,...,N

p(C = i|X)

= argmax
i=1,2,...,N

L∑

l=0

pi,l(X)p(X|φl). (5.6)

To perform the classification shown in Eq. (5.6), we compute pi,l(X) and

p(X|φl). The value of pi,l(X) is obtained by using a probabilistic SVM approach

and training separate classifiers under each of the L+ 1 signal conditions [42]. The

probabilistic SVM assigns a likelihood of each feature vector X belonging to class i

based on the distance of each class boundary from feature vector [43]. A discussion

on probabilistic SVM is provided in Appendix at the end of this chapter. The value

of p(X|φl) is obtained by learning the distribution of X for each noise condition.

We learn these conditional distributions of X using two widely used distribution

learning techniques, namely Gaussian mixture models (GMMs) and Parzen-window

density estimation.
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a) Gaussian Mixture Models: Gaussian mixture models (GMMs) are considered uni-

versal approximations of densities, i.e., given a sufficient number of mixture com-

ponents, they can approximate any distribution [44]. A GMM is the weighted sum

of M component densities, each of which is Gaussian. Mathematically, it can be

written as:

p(X|φl) =

M∑

i=1

w
(l)
i N (µ(l)

i
,Σ

(l)
i ), (5.7)

where N (µ(l)
i
,Σ

(l)
i ) represents a Gaussian probability density function (pdf) with

mean vector µ(l)
i

and covariance matrix Σ
(l)
i for the lth noise condition. Given the

training feature vectors X from all training examples of the lth noise condition,

we aim to learn the parameters values {w(l)
i , µ(l)

i
,Σ

(l)
i } of all M components of the

GMM.

We use the popular expectation-maximization (EM) algorithm to obtain the

maximum likelihood estimates of parameters in these probabilistic models, where

the models depend on unobserved latent variables [45]. EM alternates between

performing two steps. In the expectation (E) step, it computes the expectation

of the likelihood function by including the current estimate of parameters and the

latent variables as if they were observed; In the maximization (M) step, it computes

the maximum likelihood estimates of the parameters that maximize the expected

likelihood function found on the E step. The parameters found in the M step are

then used for another E step, and the process repeats until a criterion for convergence

is reached.

b) Parzen-window Density Estimation: The Parzen-window density estimation is
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another popular probability density estimation method based on the observed sam-

ples of a variable [46]. This method estimates the density by superimposing kernel

functions at each observation of the data. In this way, each observation of the

variable contributes to the density estimation.

Let (x1, x2, . . . , xn) be independent and identically distributed (iid) samples

drawn from some distribution with an unknown density p(x). The Parzen-windowing

method estimates p(x) by the following equations:

p(x) =
1

n

n∑

i=1

Kh(x− xi)

=
1

nh

n∑

i=1

K(
x− xi

h
), (5.8)

where K(·) is the kernel function satisfying the constraint that it integrates to one,

i.e.,
∫
R
K(x)dx = 1; h is a window width parameter corresponding to the width of

the kernel. The value of h is typically chosen as inversely proportional to the number

of samples. We use a Gaussian kernel for the Parzen-window density estimation,

and estimate the density for each feature separately. Assuming that each feature is

an independent random variable, we obtain the density of the query feature X by

multiplying the densities of each feature as following:

p(X|φl) = p(fave|φl)p(a1|φl)p(a2|φl)p(σ
2
v |φl). (5.9)

Fig. 5.8 shows the densities for the normalized innovation energy feature, σ2
v , under

different noise conditions and estimated using the Parzen-windowing method. The

normalization results in the mean and the variance of σ2
v as 0 and 1, respectively.

From this figure, we observe that the densities for different SNRs have different
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Figure 5.8: Parzen-window density estimation for different noise conditions for nor-

malized innovation energy feature.

distributions, and our Bayesian fusion based classification method takes these noise

condition distributions into account.

Max Probability Approach: We also attempt an alternative approach to the Bayesian

approach to evaluate the location classification accuracy of the proposed method.

In this method, we train L + 1 probabilistic classifiers under each noise condition,

similar to the Bayesian fusion based approach. In order to reach the final decision

criteria, the output of each classifier is used to select for a candidate location class

based on its output probabilities. More specifically, for lth classifier, the vote count

for ith candidate location increases by one, if pi,l(X) > pj,l(X), ∀ j 6= i. After

the votes of each classifier are registered, the class obtaining the highest quantity

of votes is declared as the grid-region of recording. This approach may benefit

from the multi-conditional training, and it does not require any explicit conditional

distribution for noise.
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5.4.2 Results and Discussions

We use the proposed noise adaptation framework, described in Section 5.4.1

and shown in Fig. 5.7, to evaluate the location classification accuracy on the same

dataset used to evaluate the classifier described in Section 5.3.2. We train multiple

probabilistic SVM based classifiers for clean power-ENF signals and at five different

noise levels of 0dB, 5dB, 10dB, 15dB, 20dB, respectively. The noisy signals are

obtained after adding noise at the corresponding energy to the power-ENF signals.

We also learn the distribution p(X|φl), for the feature vector X under each of the

noise conditions.

We test the classification accuracy of the proposed classifier for a variety of

different testing conditions. The plots of the classification accuracy for the clean

power-ENF and the audio-ENF testing data, when GMMs are used to estimate

the noise conditional distributions are shown in Fig. 5.9. From this figure, it can

be observed that the classification accuracy increases as the number of mixture

models used to train the GMM for noise conditional distribution is increased. The

optimal number of mixtures is determined to be M = 12, where the classification

accuracy for the clean power-ENF signal and the audio-ENF signal is the highest.

Fig. 5.10 shows the classification accuracy under different test SNRs when the noise

conditional distributions of X are learned using different number of mixtures. From

this figure, it can be observed that the classification accuracy improves as the test

SNR increases. This contrasts to Fig. 5.6, in which the classification accuracy was

highest when the testing and the training conditions were matching. We again
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Figure 5.9: Classification accuracy under the proposed Bayesian framework when

the noise conditional distributions are learnt using Gaussian mixture models.

observe that M = 12 mixtures provides the highest classification accuracy for the

test conditions of 5dB, 15dB, 20dB, and clean power-ENF signal. We use this

optimal value of mixture numbers in our subsequent results.

In Fig. 5.11, we compare the classification accuracy of the GMM based Bayesian

method with the Parzen-windowing-based method. From this figure, we observe

that the GMM based method performs slightly better than the Parzen-windowing

method, at test SNR levels of higher than 15dB. For low SNR conditions, the im-

provement in classification accuracy when using the GMM based method is more

significant than that of the Parzen-windowing method. We also observe that the

maximum probability approach shows a bias towards 15dB test SNR, and the clas-

sification accuracy for this test condition is higher than that of the two Bayesian

fusion approaches. The classification accuracy for all location classification methods

described in this chapter are summarized in Table 5.3 for power and audio signals,
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Figure 5.10: Classification accuracy for different test conditions under the proposed

Bayesian framework when the noise conditional distributions are learned using Gaus-

sian mixture models.

whereby the classifier is trained on the power-ENF data. From this table, we see

that the highest value of the classification accuracy on audio data occurs with the

GMM based Bayesian classifier. The improvement in the audio classification accu-

racy improves from 44.26%, when no noise adaptation is performed, to 63.4% for

GMM based Bayesian classification. From these results, we conclude that the pro-

posed Bayesian approach to noise adaptation is promising to improve the location

classification accuracy of audio recordings.

The proposed Bayesian classification approach provides a measure of the prob-

ability of feature vector X belonging to ith class in Eq. (5.4), which estimates the

grid-region of recording using the decision rule in Eq. (5.6). The decision rule locates

the class with the maximum probability and assigns the corresponding class as the

grid of recording.
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Table 5.3: Classification accuracy on power-ENF training for all the methods. All

numbers are in shown in % terms.

Testing No noise Max prob Parzen GMM
data adaptation approach windowing M = 12

Power 71.14 61.98 68.82 70.72

Audio 44.26 56.49 62.23 63.4
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Figure 5.11: Comparison of classification accuracy for GMM, Parzen-windowing,

and max probability approach.
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We also examine a related problem of the location verification, where we deter-

mine a binary answer to verify if the given recording was conducted in the claimed

grid. The information about the claimed grid can be embedded with a recording

in GPS enabled devices. For this purpose, we use the proposed Bayesian fusion

approach and obtain the probability of the query feature vector X belonging to the

claimed location in the metadata. If the ith location is the claimed recording grid,

the probability p(C = i|X) can be obtained using Eq. (5.4). We use a threshold

detector to compare the value of p(C = i|X) with a threshold τ , and decide whether

the claimed location as correct if this value is greater than τ , i.e,

δL(p(C = i|X)) =





Claimed location is correct, if p(C = i|X) > τ ,

Claimed location is wrong, if p(C = i|X) ≤ τ

(5.10)

We measure the localization performance of the proposed detector in terms

of its receiver operating characteristics (ROC). We use the same dataset used in

the previous experiments. We assume that each recording test example has seven

copies with each containing one of the seven candidate locations in the metadata.

The plots of the ROC for the GMM and the Parzen-windowing based method under

this setting for different testing conditions are shown in Fig. 5.12(a) and 5.12(b),

respectively. From these figures, we observe that the ROC performance improves

as the test SNR is increased. The location verification detector provides a better

measure of the confidence as compared with the previous experiments on grid-region

classification. For example, for clean power-ENF test condition, a threshold τ can be

determined, which provides 87% chances of detection for a false alarm rate of 10%,
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(a) GMM based Bayesian method, M = 12
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(b) Parzen-window based Bayesian method

Figure 5.12: Receiver operating characteristics of the proposed location verification

detector.

for both the methods. We also observe that the ROC performance of the GMM

based method is better than the Parzen-windowing method for the test SNRs of

5dB and 10dB, similar to the classification accuracy observed in Fig. 5.11.

5.5 Chapter Summary

In this chapter, we have explored a novel application of the ENF signal analysis

in grid-region of recording estimation of multimedia recordings. We have demon-

strated the characteristics of the ENF signals in different power grids. We have used

AR model proposed in Chapter 4 to capture these variations. Given these observa-

tions, we have proposed a location classifier based on AR parameters and average

frequency as the features to learn a SVM based classifier on the power-ENF data

from seven grids. We have also demonstrated the effect of mismatch in training
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and test noisy conditions on the classification accuracy. To compensate the effect

of mismatch, we propose a Bayesian fusion approach, combining SVM classifiers

trained under different noisy conditions. The proposed approach can automatically

adapt to various noise conditions. Using this approach, we can obtain a location

classification accuracy of approximately 64% for audio data, as compared with the

location classification accuracy of approximately 44% with no noise adaptation. In

the next chapter, we explore the problem of identifying the area of recording within

the same grid using another set of ENF signal characteristics.

Appendix: Probabilistic Support Vector Machines

We employ the probabilistic SVM framework proposed in [42] to compute the

probability pi,l(X) that a given test vector X comes from ith class under lth training

noise condition. Without loss of generality, we provide a discussion on estimating

pi(X) by dropping the subscript l and argument X. With the assumption that

the class conditional probabilities p(X|C = i) is exponentially distributed [43], the

estimates rij of the pairwise class probabilities rij = p(C = i|C = i or j,X) can be

found by the following parametric fitting:

rij =
1

1 + eAĝ+B
,

where A and B are estimated by minimizing the negative log-likelihood function,

and ĝ are the decision values on training data. We then find pi = p(C = i|X), the

probability that the data sample comes from the ith class for a N−class SVM, by

123



solving the following optimization problem:

min
p1,p2,...,pN

N∑

i=1

(
∑

j,j 6=i

rjipi − rijpj

)2

subject to

N∑

i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , N.

Further details of the method can be found in [42], and the implementation of

probabilistic SVM used in this thesis can be found at [38].
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Chapter 6

Intra-grid Location Estimation

using ENF Signals

6.1 Chapter Introduction

The potential of Electrical Network Frequency signals in multimedia forensics

has been mainly explored for timestamping and tampering detection. In chapter

5, we demonstrated that the statistical modeling parameters of ENF signals can be

used to locate the grid-region of the recording. An important, intriguing question

continues to be: “Can the ENF signal be used to estimate or verify the place of

recording of an audio or a video recording within the same grid-region?” An af-

firmative answer could potentially be used in many applications such as national

defense and security, and automatic region-tagging of multimedia data on social

networking sites like YouTube, Facebook, and Twitter.

As shown in Chapter 5, it is possible to differentiate between the recordings
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in different grids at an inter-grid level, as the fluctuations in ENF signals typically

vary at the same time across independently operated grids. At an intra-grid level,

most existing works have assumed that ENF signals across different locations in an

interconnected power grid are similar at the same time. However, minor variations

are likely to be present in the frequency fluctuations at different locations given

local changes in the load and the finite propagation speed of the effects of such

load changes have on other parts of the grid [47]. In this chapter, we study such

effects by conducting experiments on the ENF data collected from several locations

within the US east grid. It will be shown later in the chapter that differences

exist among simultaneous ENF signals extracted from recordings taken in various

locations within the same interconnected power grid. Our study builds a foundation

to design a localization protocol, based on a method of half-plane intersection, to

estimate the location of recordings within the same grid-region. In this study, we

also discuss the challenges to localization arising from the noisy nature of the ENF

signal from multimedia recordings.

6.2 Propagation Mechanism of ENF Signal

The fluctuations in ENF signals in the same grid happen because of the dy-

namic nature of the grid load. Power demand and supply in a given area follows a

cyclic pattern. For example, demand increases during evening hours in a residen-

tial neighborhood, as people switch on air-conditioning and other power units. For

robust operation, any load change within a grid is regulated [6]. An increase in the
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load causes the supply frequency to drop temporarily; the control mechanism senses

the frequency drop and starts drawing power from adjoining areas to compensate

for the increased demand. As a result, the load in adjoining areas also increases,

which leads to a drop in the instantaneous supply frequency. The overall power

supply will elevate to compensate for the rising load, which leads to a drop in the

instantaneous supply frequency in those regions. A similar mechanism compensates

for an excess supply of power flow that leads to surges in the supply frequency.

A small change in the load in a given area may have a localized effect on the

ENF in that area. However, a large change such as the one caused by a genera-

tor failure may have affect an entire grid. In the US east grid, these changes are

known to propagate along the grid at a typical speed of approximately 500 miles

per seconds [47]. We conjecture that load change may introduce location specific

signatures in the ENF patterns, and such differences may be exploited to narrow

the location of a recording within the grid. Due to the finite speed of propagation

of frequency disturbances in the grid, we anticipate that ENF signals could have

greater similarity for locations close to each other as opposed to those further apart.

Such a property of ENF signal propagation across the grid can potentially be used

for localization at a finer resolution within a grid by comparing the similarity of

the ENF signal in question with ENF databases that may be available for a set of

anchor locations within that grid.
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6.3 Location Dependence of ENF Signals

As a first step to explore the availability of location dependent properties of

ENF signals, we focus on the ENF signal obtained directly from the power mains.

This provides the most favorable conditions in terms of a high signal-to-noise ratio

(SNR) of the power-ENF signal. ENF signals collected across different locations

are similar to each other over time, so exploration using high SNR signals may

enhance understanding if ENF signals exhibit location specific characteristics, which

can potentially be exploited to devise a localization protocol. Such a study may be

considered an initial step toward gaining an understanding of the location estimation

capabilities of ENF signals, leading to solutions to the more difficult problem of

location estimation from audio and video recordings; ENF signals in such recordings

are present in a distorted form and at a very low SNR.

Fig. 6.1(a) shows a plot of ENF signals extracted from three simultaneous short

recordings conducted in College Park-MD, Princeton-NJ, and Atlanta-GA. These

three areas are located in the US east grid. From this figure, we observe that all

three ENF signals correlate strongly at a macroscopic level; however, in the enlarged

plot shown in Fig. 6.1(b), differences become noticeable across the three recordings.

We extract these variations using a filtering mechanism, and then compare them

to gain an understanding of the relationship between signals recorded at different

locations.
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Figure 6.1: Sample ENF signals extracted from recordings done in three locations

in the US eastern grid at the same time. (Figures are best viewed in colors).

6.3.1 Signal Processing Mechanism to Extract ENF

Variations

As seen in Fig. 6.1(b), variations occur at high frequencies in simultaneous

ENF signals recorded across different locations of the same grid. To extract these

variations, we use a high pass filtering mechanism by passing temporally aligned

ENF signal, f {k}(n), recorded at kth location through a smoothening filter, and

subtract the resulting output signal from f {k}(n). The corresponding high pass

filtered output, f
{k}
hp (n) is given by:

f
{k}
hp (n) = f {k}(n)−

M−1

2∑

m=−M−1

2

w(m)f {k}(n−m), (6.1)

where f {k}(n) is the ENF value at time n, w(·) is the coefficient of the smoothening

filter, and M is the filter order for feature extraction, chosen as an odd number.

After extracting high pass filtered signals for each location, their pair-wise cross-
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Figure 6.2: Signal processing mechanism to extract intra-grid ENF Signatures.

correlations are obtained. The pair-wise cross-correlation between any two filtered

segments at time n from the kth and the lth location is given by:

ρk,l =

∑N−1
p=0 f

{k}
hp (n+ p)f

{l}
hp (n + p)

√∑N−1
p=0 (f

{k}
hp (n+ p))2

√∑N−1
p=0 (f

{l}
hp (n+ p))2

, (6.2)

where N is the length of the signal segment. A block diagram representing this

signal processing mechanism is shown in Fig. 6.2.

6.3.2 Case Study 1: 3-Location Data on the US East Coast

In this section, we describe our experiments on a 10-hour long simultaneous

recording of power data from three locations in the US east grid: College Park in

Maryland, Princeton in New Jersey, and Atlanta in Georgia. We use the mechanism

described in Section 6.3.1 to estimate the cross-correlation between filtered ENF

data from all three locations. We divide the signal into non-overlapping segments

of 10 minutes each. Instantaneous frequency is estimated every 1 second using the

subspace based ESPRIT [48] method, which provides better frequency estimation

accuracy than other methods [11]. The plot of the correlation coefficients between
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Figure 6.3: Correlation coefficient between processed ENF signals for 3-location

data in US east coast for a 10-minute long query segment.

processed ENF signals at different locations for filter order M = 3 is shown in

Fig. 6.3. This figure shows that the correlation coefficient between the signals from

city pairs far apart in geographical distance is less than that between the signals

from the closer city pairs. The correlation coefficient is approximately proportional

to the distance between the cities. These three cities lie in approximately a straight

line on a map, as shown in Fig. 6.4. Based on these observations, we derive a

relationship between the correlation coefficient of the data from different locations

and their geographical distances.

Let us denote Princeton-NJ by city 1, College Park-MD by city 2, and Atlanta-

GA by city 3. Assuming that city distance follows a linear relationship with the

correlation coefficient, we use the values of correlation coefficients ρ1,2, ρ2,3, and

corresponding city geographical distances d1,2, d2,3 to obtain an estimate of d1,3 for

a given observation of ρ1,3. Based on the linear relationship, an estimate of d̂1,3 for
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A : College Park, MD B : Princeton, NJ C: Atlanta, GA

Figure 6.4: Three locations shown on a map for Case Study 1.

a given ρ1,3(n) can be given as:

d̂1,3 = d1,2 +
d1,2 − d2,3
ρ1,2 − ρ2,3

(ρ1,3 − ρ1,2). (6.3)

We compute the mean distance estimation error by averaging the absolute

difference between d̂1,3(n) and true geographical distance d1,3 for different query

segments. The plot of the mean distance error in distance estimation for different

segment lengths and filter orders is shown in Fig. 6.5(a). According to this figure,

when the filter order M = 3 is used, a 15-minutes long segment can provide an

estimate of distance within an accuracy of about 24 miles. Increasing the filter

order degrades the distance estimates because the use of more data in filtering of

the ENF signal averages the effects propagated due to the finite propagation speed

of the frequency disturbances across the grid. To understand the effect of temporal

resolution in distance estimation, we fix M = 3 and plot the average distance

estimation error for different durations of instantaneous frequency estimation in
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Figure 6.5: Mean error in distance estimation between Princeton and Atlanta using

a linear relationship between correlation coefficients and distance between the cities.

Fig. 6.5(b). From this figure, we observe that the best estimates are obtained when

instantaneous frequency is estimated every 1 second. Such a phenomenon can be

explained by the finite speed of signal propagation, which is empirically determined

to be in the order of ≈ 500 miles for the US east grid [47]. As we increase the

duration of data for instantaneous frequency estimation, the effect of the signal

propagation averages, leading to a decrease in the accuracy of distance estimates.

Decreasing the signal duration for instantaneous frequency estimation by less than

1 second leads to an error in frequency estimation itself due to the small number of

data samples available for frequency estimation.

Based on this case study, we see that ENF signals have the potential to be

used as location-stamps. The correlation coefficient between the data recorded at

an unknown location and a known location can be used to estimate the distance

of the recording location from the known location. Known locations can behave as
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anchor nodes in designing localization protocols [49]. In the next section, we discuss

another case study on 5-location data in the US east grid that reveals additional

challenges.

6.3.3 Case Study 2: 5-Location Data on the US East Coast

For this experiment, power data was collected from two additional locations,

Champaign in Illinois and Raleigh in North Carolina. The location of the five lo-

cations are designated on a map in Fig. 6.6. This 5-location data is four hours in

duration. After temporally aligning the signals, we use the mechanism described in

Section 6.3.1 to estimate the correlation coefficients between the data from differ-

ent city pairs for a filter order M = 3 and a segment length of 10 minutes. The

plots of the correlation coefficients between data from different cities are shown in

Fig. 6.7. From these figures, we observe that the correlation coefficients between

the data collected from cities closer to each other are higher than from cities further

apart, similar to the 3-location data. The relative magnitude of the correlation co-

efficients are roughly inversely proportional with the geographical distance between

the cities. For example, the distance between College Park and Princeton is the

least mutual distance among all city pairs, and the correlation coefficient between

the data collected is the highest. However, due to a different grid density and 2-

dimension relation of the electricity flows, it may not be possible to use the straight

line assumption as done in Section 6.3.2.

Fig. 6.8 shows a grid density map of the US east interconnection grid, from
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Figure 6.6: Five locations shown on a map for Case Study 2.

which we observe that the grid-density is non-uniform at different places and along

different directions. As the flow of ENF signals over the wire lines depends on such

parameters as grid topology (road distance may not be the same as the actual wire

distance), grid density, etc., the correlation coefficient between data from different

locations may have a complex relationship with the distance between these loca-

tions. Limited amount of data is available to us, so we must design a localization

protocol without learning an explicit relationship between the correlation coefficient

and the distance between different locations. Instead, we use the observation from

our experiments that the pair-wise correlation between the locations far apart is less

than of the pair-wise correlation between the closer cities. Using such observations,

we devise a method of half-plane intersection to estimate an unknown location of

recording.
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(a) Correlation with Princeton data
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(b) Correlation with College Park data
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(c) Correlation with Raleigh data
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(d) Correlation with Atlanta data
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(e) Correlation with Champaign data

Figure 6.7: Correlation coefficient between the processed ENF signals across differ-

ent locations for 10-minute long query segment for 5-location data in the US east

grid.
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Figure 6.8: Grid density of the US east interconnection grid. [Source:

http://www.slipperybrick.com/2009/03/worm-virus-could-bring-down-us-power-grid/]

6.4 Half-Plane Intersection for Localization

Let us denote the location of K anchor cities by P1 = {x1, y1}, P2 = {x2, y2},

. . . , PK = {xK , yK}. Suppose we are given ENF data collected at all anchor cities,

along with their known locations. Based on this information, we derive a localization

protocol to estimate the unknown location of a city (denoted by PQuery), based on

the ENF data recorded at that location. We assume that the query city location

PQuery and the locations of all anchor nodes lie in a rectangular region surrounding

P1, P2, . . . , PK and denoted by D. We refer to D as the domain of the localization

region. As discussed in Section 6.3.3, if the distance between Pi and PQuery is greater

than the distance between Pj from PQuery, we generally have ρj,Query > ρi,Query.

Based on this observation, we claim that the estimated P̂Query lies in the half-plane
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given by the region denoted by the set of locations P̂i,j for which the following

equations hold:

P̂i,j =





X : ||X − Pi||2 > ||X − Pj ||2, X ∈ D, ifρj,Query − ρi,Query > 0,

X : ||X − Pi||2 ≤ ||X − Pj||2, X ∈ D, ifρj,Query − ρi,Query ≤ 0.

(6.4)

The conditions described in Eq. (6.4) are the sign bit of the difference between

the correlation coefficients, and these use highly quantized information from the cor-

relation coefficient. The conditions also provide us with hard decision boundaries for

the half-plane and do not take into account the noisy nature of pair-wise correlation

coefficients. For example, when the correlation coefficients of the query city’s ENF

signal with ith and jth locations are close to each other, i.e., if |ρi,Query−ρj,Query| < ε

for a small ε, the confidence in assigning a half-plane to the feasible solution set P̂i,j

is reduced in Eq. (6.4). To compensate for such values of correlation coefficients,

we replace the feasible set given by Eq. (6.4) with the following equation with a

tolerance ε:

P̂i,j =





X : ||X − Pi||2 > ||X − Pj ||2, X ∈ D, if ρj,Query − ρi,Query ≥ ε,

X : ||X − Pi||2 ≤ ||X − Pj||2, X ∈ D, if ρj,Query − ρi,Query ≤ ε.

(6.5)

Using the correlation value obtained from all the anchor nodes, the set of feasible

points can be reduced further by computing the intersection of all the feasible half-

planes as following:

P̂Query = ∩i,jP̂i,j i, j ∈ {1, 2, . . . , K}, i 6= j. (6.6)

As we have ENF data from the five locations, we use four locations as anchor

cities and use the ENF data of the fifth city as the query data to estimate its
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location using the proposed half-plane intersection method. In Figs. 6.9(a)- 6.9(f),

we show an example of the set of feasible regions obtained after adding each half-

plane constraint, when College Park, Raleigh, Atlanta, and Champaign are the

anchor cities and Princeton is the query city. In these figures, the shaded region

represents the estimated feasible region for the query city. From this figure, we

observe that the area of the feasible region decreases with an increase in the number

of constraints, meaning that the precision of localization improves.

Due to the limited amount of data, we measure the localization performance of

the proposed method in terms of two metrics: the probability of localization, denoted

by ploc, and the area of localization, denoted by aloc. If data from more anchor cities

are available, location estimates can be defined using such metrics as the centroid of

the feasible set. Among the two metrics we use to evaluate localization performance,

ploc measures the fraction of queries for which the feasible region contains the true

location of the query city, i.e.,

ploc =
# of queries for which P̂Query contains PQuery

# of queries
. (6.7)

ploc determines the performance of the proposed method in terms of classifying the

region of the query city. A higher value of ploc indicates that the proposed method

can localize the query city to a correct feasible region with a high probability. The

second performance metric aloc measures the ratio of the area of the feasible set

to the area of the total domain on which the localization is performed, for cases

when the feasible set contains the location of the query city. The domain can be

defined, for example, as a rectangular region that surrounds all the 5-locations in
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(a) Constraint 1 (b) Constraint 2

(c) Constraint 3 (d) Constraint 4

(e) Constraint 5 (f) Constraint 6

Figure 6.9: Example of localization of Princeton using the half-plane intersection

method, when College Park, Raleigh, Atlanta, and Champaign are the anchor nodes.

Shaded area represents the feasible region after each additional constraint is applied.

The relative positions of the cities with respect to each other are shown.

140



our dataset. aloc can be mathematically represented as:

aloc =
area of region P̂Query

area of domain D
.1(PQuery ∈ P̂Query), (6.8)

where 1(·) is an indicator function. aloc determines the precision of the localization,

i.e., smaller the value of aloc, higher is the localization precision.

Fig. 6.10(a) and 6.10(b) show the plot of aloc vs. ploc of different cities by

considering other four cities in the dataset as anchor nodes for four-minute long

and eight-minute long query segments, respectively. The different values of aloc and

ploc are obtained by varying the value of ε. In an ideal scenario, the value of ploc

should be close to one and the value of aloc should be close to zero. From this plot,

we observe that ploc increases with an increase in the value of aloc for all the cities

(equivalently, the precision decreases). This happens due to the trade-off introduced

by the tolerance ε in ploc and aloc. For low values of ε, the value of ploc is less, as

the hard decision rule does not provide a correct estimate of the feasible area of

location of query city, when measurements are noisy. As the value of ε increase,

hard decision boundaries provide a tolerance, which increases the value of ploc, but

a decrement in the number of constraints also reduces the precision. As the query

segment duration increases from four to eight minutes, the localization performance

also improves as using a large segment size provides a more robust estimate of the

correlation coefficient.
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Figure 6.10: Probability of localization, ploc, and area of localization, aloc for 5-

location US east data using the half-plane intersection method.
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Figure 6.11: Relationship between ρi,j and di,j for 5-location data.
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6.5 Correlation Quantization for Localization

In this section, we describe a method similar to trilateration [10] for localization

using the quantized correlation coefficient information between the city pairs. In

this method, we rely on the observation from Figs. 6.7(a)- 6.7(d) that the values

of correlation coefficient ρi,j between the location signatures of the ith and the jth

location decrease as the distance dij between them increases. We plot ρi,j as a

function of dij for the 5-location data in Fig. 6.11(a), which shows that the locations

close to each other have a higher value of ρi,j as compared for locations further apart.

However, it is difficult to derive a functional relationship between the value of ρi,j and

di,j. A close observation of Fig. 6.11(a) reveals that it may be possible to quantize

the value of ρi,j in a range of distances. One realization of such a quantization is

shown in Fig. 6.11(b). In this figure, the red points indicate the mean of the value

of ρi,j at a particular distance, the blue line indicates the quantization bin on ρi,j

axis, and the black lines indicate the corresponding distance bins. Based on such a

quantization scheme, the following relationship can be derived between ρi,j and di,j:





100 ≤ di,j < 220, if 0.9 < ρi,j ≤ 1

220 ≤ di,j < 450, if 0.83 < ρi,j ≤ 0.9

450 ≤ di,j < 900, if 0.55 < ρi,j ≤ 0.83

900 ≤ di,j, if < ρi,j ≤ 0.55.

(6.9)

Based on the relations in Eq. (6.9), a trilateration based protocol can be de-

rived to estimated the feasible region of recording for a query city. In this trilatera-
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tion protocol, the location signatures from an anchor node correlates to a query city

to estimate the feasible region by using the constraints from Eq. (6.9) as following:

P̂i,Query =





X : 100 ≤‖ X − Pi ‖2< 220, X ∈ D, if 0.9 < ρi,Query ≤ 1

X : 220 ≤‖ X − Pi ‖2< 450, X ∈ D, if 0.83 < ρi,Query ≤ 0.9

X : 450 ≤‖ X − Pi ‖2< 900, X ∈ D, if 0.55 < ρi,Query ≤ 0.83

X : 900 ≤‖ X − Pi ‖2, X ∈ D, if < ρi,Query ≤ 0.55.

(6.10)

The feasible region of localization can then be obtained by the intersection of the

feasible regions obtained using all the anchor nodes as following:

P̂Query = ∩iP̂i,Query , i ∈ {1, 2, . . . , K}. (6.11)

We measure the performance of the protocol in terms of probability of localization

ploc and area of localization aloc, as discussed in Section 6.5 and defined in Eq. (6.7)

and Eq. (6.8), respectively.

As we have ENF data from five locations, we use four locations as anchor

cities and use the ENF data of the fifth city as the query to estimate its location

using the correlation quantization relations described in Eq. (6.9) and (6.10). In

Figs. 6.12(a)- 6.12(d), we show the set of feasible area obtained after each constraint

is added with College Park, Raleigh, Atlanta, and Champaign as anchor cities, and

Princeton as the query city. In these figures, the shaded region represents the

estimated feasible region for the query city. From this figure, we observe that as the

number of constraints increases, the area of the feasible region decreases improving

the localization precisions. From Fig. 6.12(d) and Fig. 6.9(f), we observe that the
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Figure 6.12: Example of localization of Princeton using the correlation quantization

method with College Park, Raleigh, Atlanta, and Champaign as anchor locations.

Shaded area represents the feasible region after each additional constraint is applied.
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localization precision using correlation quantization is better than the half-plane

intersection method, as the value of aloc using the former method is less than the

value of aloc for the latter method.

We also combine the localization constraints from the half-plane intersection

method in Eq. (6.5) and correlation quantization in Eq. (6.10) to obtain the local-

ization accuracy. In Fig. 6.13(c), we plot an example of the localization feasible

area using the combination of half-plane intersection method and correlation quan-

tization method. The corresponding feasible area of localization for the half-plane

method and correlation quantization methods, separately, are shown in Figs. 6.13(a)

and 6.13(b), respectively. From these figures, we observe that the combination of

the two methods improves the area of localization over the half-plane intersection

and the correlation quantization.

We plot the localization performance in terms of ploc and aloc for all three

methods in Figs. 6.14(a)- 6.14(h) for the 5-location data. From these figures, we

observe that localization precision for correlation quantization approach is better

than the half-plane intersection method for all the cities for higher values of ε, when

the value of ploc for the half-plane intersection method may be slightly better as

compared with the correlation quantization method. Using the constraints from the

half-plane intersection method with the correlation quantization method reduced the

value of ploc slightly for a given ε as compared with using the half-plane intersection

method, but improves the localization precision by a significant amount. From

these figures, it can be concluded that the use of the combination of the half-plane

intersection and the correlation quantization improves the localization performance,
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(a) Half-plane method

Princeton

College Park

RaleighAtlanta

Champaign

(b) Correlation quantization method

(c) Half-plane and correlation quantization

method

Figure 6.13: Example of localization of Princeton using all the three localization

protocols with College Park, Raleigh, Atlanta, and Champaign as anchor locations.

Shaded area represents the feasible region after each additional constraint is applied..
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as compared to using any method individually.

6.6 Sensitivity Analysis

In Section 6.3.2 and 6.3.3, we demonstrated the presence of location informa-

tion signatures in ENF signals. These results are obtained on ENF signals extracted

directly from the power mains for the 3-location and the 5-location datasets. ENF

signals extracted from power signal are clean signal with very high signal-to-noise

ratio. This quality has not been observed in ENF signals embedded in multimedia

recordings. It may be possible to use the analysis of Section 6.3.2 and 6.3.3 in mul-

timedia forensics, when the recording device pro-actively captures the ENF signal

from power mains and embeds it into the multimedia recording. Such scenarios can

be made feasible by adding a power capturing device to audio recorders and cam-

eras, and conducting the recording using the device connected to the power mains.

However, in more practical scenarios, it may not be desirable to conduct recordings

using a device connected to the power mains.

To understand the capabilities and limitations of ENF signal analysis for intra-

grid location estimation in multimedia recordings, we conduct a study of the effect

of noise on the localization capabilities of ENF signals. We evaluate the localization

performance of the half-plane intersection method under the assumption that the

ENF signal extracted from the query data is submerged in additive Gaussian white

noise. This scenario is representative of cases when ENF signals at anchor nodes

are obtained from the power mains recordings, and the query data are multimedia
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(c) ploc-College Park
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Figure 6.14: ploc and aloc using different localization methods.
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recordings influenced by ENF signals. We evaluate the effect of different noise levels

in the query ENF signal, and plot aloc v.s. ploc in Figs. 6.15(a)- 6.15(c) for Prince-

ton, College Park, and Raleigh as query cities, respectively. From these figures, we

observe that the localization performance for all three query cities improves with

an increase in signal-to-noise ratio (SNR). For SNR>30 dB, the localization perfor-

mance approaches the localization performance obtained using the clean power-ENF

signal as the query signal.

As discussed in Chapter 4, the value of SNR observed for the state-of-the-

art ENF estimation methods in multimedia signal is in 0-15 dB range. The noise

sensitivity analysis clearly indicates that a SNR of more than 30 dB in the query

signal is necessary for a good localization performance. Based on these observations,

it is difficult to utilize the ENF signals for intra-grid localization in multimedia

recordings using the state-of-the-art ENF estimation techniques and localization

feature extraction techniques presented in this chapter. Nevertheless, this study

demonstrates that intra-grid location specific signatures are present in ENF signals,

which can be used to design localization protocols.

6.7 Chapter Summary

In this chapter, we have explored location estimation capabilities of ENF sig-

nals. For multi-location data, we studied a half-plane intersection method to esti-

mate the location of an unknown recordings. The localization accuracy from this

method can be improved by adding more locations as anchor nodes. The number
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of constraints to estimate the feasible region increases on the order of O(K2), with

the number of anchor cities K. We have also demonstrated that a better perfor-

mance can be obtained by using the constraints based on the proper quantization of

correlation coefficient based features. A combination of the half-plane intersection

method and the correlation coefficient quantization method provided the best lo-

calization performance measured in terms of the probability of localization ploc and

area of localization aloc.

This chapter focussed on exploring the uncharted application of ENF signal

analysis for intra-grid location estimation of multimedia data. The first study con-

ducts experiments on power-ENF signals and provides encouraging results in that

direction. Multimedia ENF data are, however, more challenging than power-ENF

data because of noise. As we employ the high frequency variations of the ENF signal

to extract a meaningful metric for localization, the noisy nature of the ENF signal in

multimedia data may increase the difficulty in localization. Furthermore, as shown

by our experiments, location specific variations are best captured using instanta-

neous frequencies estimated at one-second temporal resolution; reliable ENF signal

extraction from multimedia data at such a high temporal resolution also presents

a research challenge. The results presented in this chapter demonstrate that ENF

signals offer a strong potential to be used as a location-stamp.
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Chapter 7

A Gradient Descent Approach to

Secure Localization

7.1 Chapter Introduction

In Chapter 6, we have studied the location specific signatures in ENF signals,

which can be used to estimate the region of recording within the geographical region

covered by the same grid. Based on these signatures, we have derived a distance

relationship between the signatures from the recording in question with that from

an anchor node. We have proposed a localization method based on half plane inter-

section, which takes highly quantized location information, and we have improved

the precision of the location estimates using more refined quantized information.

The reason behind using the quantized information is that it is difficult to derive

an explicit relationship between location information and distance between them

due to non-homogenous grid density and the insufficient number of location data
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available to employ some regression methods.

In this chapter, we explore the problem of localization when an explicit rela-

tionship can be determined between location signatures from recordings and distance

between their location. For this scenario, such methods as trilateration can be ap-

plied to estimate the location of a recording. Trilateration based methods can handle

simple measurement noises. However, this type of methods are not robust against

a more general setting in which either adversaries are present or there exist sensing

equipments that lead to outlier measurements. These adversaries try to inject false

location dependent information with an aim to mislead the location estimate. For

example, an adversary can modify the ENF signal recording at some anchor nodes

in order to modify the distance estimates, which results into an incorrect estimate

of location. We address this problem of localization in the presence of malicious ad-

versaries for a general case of sensor network localization. We refer to this problem

of localization under potentially adversarial situations as secure localization.

The problem of secure localization has been gaining more importance in wire-

less sensor networks deployed in hostile scenarios such as military surveillance,

war-field reconnaissance operations, underwater surveillance [50], forest fire detec-

tion [51], flood detection [52], etc. In such applications as forest fire and flood

detection [51] [52], sensors alert the base station to any changes in parameters that

indicate a potential for forest fire or flooding. The base station needs to know the

locations of the nodes transmitting the data, so that appropriate actions may be

taken at the relevant site to prevent disasters or to provide early response and con-

tain the damage. In many applications, static sensors may be randomly deployed
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within an area using helicopters or road vehicles. As a result, the sensor locations

are not known a priori and need to be determined after deployment.

In a hostile environment, an adversary may wish to prevent accurate localiza-

tion of the nodes and thus prevent the entire network from functioning properly.

The adversary may compromise some nodes and thereby gain access to the secret

keys and other data stored on the node. This information can then be used to

provide misleading information to the base station and other nodes in the network.

Incorrect location references may also be provided by intercepting and replaying the

packets containing measurements transmitted by anchor nodes. Without effective

approaches to filter out or nullify the effect of incorrect measurements, localization

would result in a wrong estimate of the sensor position. Hence, there is a strong need

to design secure localization algorithms that are robust to such intentional attacks

and accurately determine the positions of sensors in the presence of adversaries.

At the same time, as the sensors have limited memory, computational, and energy

resources, these secure localization algorithms should be resource efficient.

7.1.1 Prior Work

A related problem of location verification has been explored in the litera-

ture, where the focus is on developing strategies to verify that a node is indeed

located at the claimed position. Methods such as verifiable multilateration, loca-

tion verification using mobile base stations, and several other distance bounding

protocols have been proposed to withstand attacks in secure location verification
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problems [53] [54] [55].

The problem of secure localization in WSNs in the presence of malicious adver-

saries has also attracted attention in the research community. A greedy approach to

find the location consistent with the largest number of measurements from anchor

nodes was explored in [56]. A voting based scheme was also proposed, in which

the localization area is divided into a grid and the vote count of each grid point

is incremented if its distance from an anchor node is approximately equal to the

distance measurement obtained from that anchor. A similar voting approach with

the help of sectored antennas and beacon nodes was proposed in [57]. From a signal

processing point of view, the voting based scheme is similar in spirit to the Hough

transform used for detecting objects with certain shapes in computer vision and

image processing literature [58]. In the Hough transform, a voting procedure is

carried out in a parameter space, from which candidate parameters for objects are

determined as local maxima of accumulated votes. Similarly, in the voting based

scheme for secure localization, the location with the maximum votes is identified as

the position of the node.

A Least Median Square (LMdS) approach was proposed in [59] to solve the

localization problem for scenarios where less than 50% of the nodes are malicious.

This method shares similarities with the Random Sample Consensus (RANSAC)

algorithm [60], as it uses several subsets of nodes to identify candidate locations,

and then chooses the solution that minimizes the median of the residues. Most of

these existing methods localize the nodes with small error as long as the fraction of

malicious nodes is not too large. However, the memory requirement and computa-
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tional cost of running these algorithms is still high and can be difficult to meet in

resource limited applications.

use this information to estimate the location. These prior works assume the

presence of some anchor nodes that are used to determine the position of the mobile

nodes, and cannot be applied to mobile networks without anchor nodes.

In this chapter, we develop an iterative technique for secure localization with

general sensor network applications. In terms of the vector interpretation for it-

erative updates, the proposed algorithm has similarities to the robust localization

algorithm inspired by Self Organizing Maps proposed in [61]. The algorithm in [61]

considered noise, but was not designed to withstand attacks by active adversaries,

whereas we develop an algorithm for localization that can filter out malicious mea-

surements obtained from nodes compromised by adversaries.

In this chapter, we propose a computationally efficient method to solve the

problem of secure localization based on gradient descent. The main idea behind

the algorithm is to minimize a suitable cost function involving the position of the

localizing node and the available measurements using an iterative gradient descent

approach. The cost function is dynamically updated to remove inconsistent mea-

surements arising from malicious nodes. The algorithm operates in two stages. In

the first stage, the cost function involves data from all anchor nodes. In the second

stage, selective pruning of inconsistent measurements is performed to mitigate the

effect of malicious nodes on the solution. The second stage of the algorithm is similar

in spirit to the approach employed in [62] to find the Least Trimmed Squares (LTS)

solution to data containing outliers [63]. We show that the proposed algorithm can
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achieve localization accuracy better than or comparable to existing algorithms in a

computationally efficient manner.

7.2 Secure Localization in Wireless Sensor

Networks

In this section, we consider the secure localization problem for sensor networks

where direct measurements of the distance between the localizing node and the

anchor nodes are available. These measurements may be obtained through different

techniques such as hop count and ToA measurements. When ToA is used to obtain

the distance measurements, each anchor node transmits a beacon signal that includes

a timestamp and its own location. The localizing node determines its distance from

the anchor node based on the embedded timestamp and the time at which it receives

the beacon signal. The scenarios where direct measurements of the distance are

not available, such as when TDoA is used for localization, will be considered in

Section 7.3.

7.2.1 Problem Formulation

Let N be the number of anchor nodes whose locations are known. These may

represent nodes that are deployed at known locations and serve to bootstrap the

localization of the other sensors in the network. Once a node has determined its own

location, it can function as an anchor node for localizing the remaining nodes. Let us
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denote the true position of the localizing node by P = [xtrue, ytrue]
T . The localizing

node receives the location of each of the anchor nodes Pk = [xk, yk]
T and an estimate

of the distance between the anchor node and itself, which may be obtained using

techniques such as ToA. These distance measurements may be noisy in practice, and

we model the measurement errors as additive Gaussian noise with zero mean and

variance σ2. Given the set of noisy measurements {(Pk, dk)}, k = 1, 2, . . . , N , an

estimate for the node’s location P̂ = [x̂, ŷ]T can be obtained by solving the following

over-determined system of equations in a Least Square (LS) sense:

‖Pk − P̂‖ − dk = 0 k = 1, 2, . . . , N (7.1)

Nodes compromised by adversaries may intentionally report wrong information in

their (Pk, dk) measurements. In these cases, the LS estimate may be quite far from

the true location. Thus, we need secure localization algorithms that are resilient to

such attacks.

In the static nodes setting we consider two types of adversaries with differ-

ent objectives and resources. The first kind of adversaries are able to compromise

multiple nodes, but have limited communication and computational resources to

coordinate the attacks launched by these nodes. We refer to these attacks as non-

coordinated attacks. The second type of adversaries have more resources and want

to not only prevent the network from precisely locating the nodes, but also try to

shift the location estimates to some desired position. We refer to these attacks as

coordinated attacks. Detailed formulations of these attacks are as follows.
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7.2.1.1 Non-coordinated Attacks

In non-coordinated attacks, the adversary is assumed to act independently at

each compromised node and aims to prevent accurate localization by perturbing the

distance estimates reported to the localizing node. Without loss of generality, we

assume that each malicious node modifies the dk value of the (Pk, dk) measurements,

since modifying any other parameter can be transformed into an equivalent modifi-

cation of the dk value. We model the non-coordinated attack by adding independent

uniformly distributed perturbations to the actual distance estimates from each mali-

cious node and provide this information to the localizing node. Let distk = ‖Pk−P‖

be the actual distance between the localizing node and the anchor. Define

d
(nc)
k =





distk + uk + nk if node k is malicious,

distk + nk otherwise,

(7.2)

where the uk are independent zero-mean uniform random variables with variance

σ2
attack that model the perturbation introduced from non-coordinated attacks, and

the nk are independent N (0, σ2) Gaussian variables representing the measurement

noise. Under the non-coordinated attack setting, the localizing node receives the

measurements {(Pk, d
(nc)
k )}, k = 1, 2, . . . , N from N anchor nodes, and uses this

information to determine its position.

7.2.1.2 Coordinated Attacks

A stronger attack against the network can be launched by multiple compro-

mised nodes acting together to make a localizing node estimate its position as
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Pmal = [xmal, ymal]
T , which is some arbitrary point determined by the attackers.

We model this scenario by reporting the distance between the anchor node position

Pk and Pmal as the measurement from the malicious anchor. Specifically, let d
(c)
k

be defined as:

d
(c)
k =





‖Pk −Pmal‖+ nk if node k is malicious,

distk + nk otherwise,

(7.3)

where distk is the actual distance between the kth anchor and the localizing node

and nk represents measurement noise as before. The localizing node receives the

measurements {(Pk, d
(c)
k )}, k = 1, 2, . . . , N from the anchor nodes and uses this

information to determine its position. The strength of the coordinated attack is

characterized in terms of the distance, da = ‖Pmal−P‖, between the actual position

and the position reported by malicious nodes.

7.2.2 Proposed Method for Secure Localization

In this subsection, we propose an iterative secure localization algorithm by

combining gradient descent with a selection stage to filter out the malicious mea-

surements [64]. We first consider the likelihood of the measurements given the true

position of the localizing node. When there is no malicious node, and the measure-

ment noise is Gaussian, the likelihood of the measurements given the true position

of the localizing node P is

Pr
(
{dk}

N
k=1 | P, {Pk}

N
k=1

)
=

1

(2πσ2)N/2
exp

{
−

1

2σ2

N∑

k=1

(‖Pk −P‖ − dk)
2

}
. (7.4)
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The Maximum Likelihood (ML) estimate P̂ for the true position can then be found

by maximizing the likelihood of the measurements, or equivalently, by minimizing

the negative of the exponent:

P̂ = argmax
P

Pr
(
{dk}

N
k=1 | P, {Pk}

N
k=1

)

= argmin
P

1

2

N∑

k=1

(‖Pk −P‖ − dk)
2 (7.5)

= argmin
P

f(P),

where f(P) denotes the cost function in Eq. (7.5) and corresponds to the negative of

the exponent in Eq. (7.4). The ML estimate P̂ is thus identical to the LS estimate

obtained by solving Eq. (7.1) in a least squares sense.

In the proposed secure localization algorithm, we adopt an iterative gradient

descent algorithm to first search for the LS solution. The algorithm starts by ran-

domly initializing the estimate P̂(0) to some point in the deployment area. At the

ith step of the iteration, the gradient of the cost function f(P) is evaluated at the

current estimate P̂(i− 1), and the estimate is then updated by moving it one step

in the direction of the negative of the gradient. Let g(i) denote the negative of the

gradient of the cost function at the current estimate of the position:

g(i) = − ∇P (f(P))|P=P̂(i−1) , (7.6)

where ∇P(·) denotes the derivative with respect to P. The estimate is then updated

by moving it one step in the direction of the negative of the gradient as

P̂(i) = P̂(i− 1) + δ(i)×
g(i)

‖g(i)‖
, (7.7)
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Figure 7.1: Force Vector representation of terms contributing to the gradient.

where δ(i) is the step size at the ith iteration and g(i)
‖g(i)‖

is the unit vector in the

direction of the negative of the gradient. The negative gradient g(i) is found to be:

g(i) = − ∇P (f(P))|P=P̂(i−1)

= − ∇P

(
1

2

N∑

k=1

(‖Pk −P‖ − dk)
2

)∣∣∣∣∣
P=P̂(i−1)

=

N∑

k=1

(‖Pk − P̂(i− 1)‖ − dk)×
Pk − P̂(i− 1)

‖Pk − P̂(i− 1)‖

=
N∑

k=1

gk(i), (7.8)

where we define the term gk(i) as:

gk(i) = (‖Pk − P̂(i− 1)‖ − dk)×
Pk − P̂(i− 1)

‖Pk − P̂(i− 1)‖
. (7.9)

Conceptually, as shown in Fig. 7.1, the gradient component gk(i) can be visu-

alized as a “force vector” with direction along the line joining the current estimate

of the location P̂(i−1) and the position of the anchor node Pk and magnitude equal

to the distance between the current estimate and the circle of radius dk around the
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anchor node. The sum of these force vectors gives the overall gradient.

Each iteration results in a new estimate that has a higher probability of being

the true location of the node. This gradient descent algorithm eventually converges

to the ML estimate which is the same as the LS estimate when in the absence of

the malicious nodes. As described previously, due to malicious measurements from

adversaries, the LS estimate can have large errors. Hence, once the gradient descent

algorithm converges to the LS solution, we switch to a selection stage in which some

force vectors are pruned as discussed next.

Selection Stage: In the non-coordinated attack case, the independent perturba-

tions added by various malicious nodes tends to average out and the LS solution is

close to the true position. In the coordinated attack case whereby less than 50%

of the nodes are malicious, the LS estimate obtained from the first stage of the

algorithm is closer to the true position P than to the position Pmal chosen by the

malicious nodes. This is because in such situations, the true position satisfies more

equations in Eq. (7.1) than the position reported by the malicious nodes. So the LS

solution tends to be closer to the true position than Pmal.

As a result, when the estimate of the node’s position P̂(i) approaches the

LS estimate, the residues corresponding to the terms arising from the malicious

nodes tend to be larger than those from the honest nodes. We update the cost

function to exclude the terms with large residues, which are likely to correspond

to the measurements from the malicious nodes. In our algorithm, we achieve this

by pruning out a fraction of the force vectors with large magnitudes and using the

remaining vectors to compute the gradient. The estimate is updated by moving
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Table 7.1: Comparison of run time complexity of different localization algorithms.

Method Complexity Run time(in ms)

Least Median Square Θ(M1N) 24.8
Voting based scheme Θ(n2

1N) 14.8
Gradient Descent Θ(MN) 3.7

(N is the number of anchor nodes, n1 is the size of the grid in the voting scheme,
and M is the number of iterations for the gradient descent algorithm. The values
of the parameters are described in Section 7.2.4.)

it one step in the direction of this modified gradient at each iteration. The final

algorithm is shown in Algorithm 1, and Fig. 7.2 shows a flowchart of the proposed

algorithm.

7.2.3 Comparison of Computational Complexity

We now compare the computational complexity of the proposed gradient de-

scent algorithm to the voting scheme [56] and the LMdS scheme [59]. Table 7.1

shows the computational complexity for each algorithm and the average run time

for a set of experiments conducted on MATLAB platform. From this table, we see

that for the voting scheme, the complexity increases with the square of the grid size.

To obtain better localization accuracy, the grid needs to be quantized more finely,

leading to a higher number of cells in the grid. Alternatively, grids can be coarsely

quantized in the beginning and the localization resolution can be improved by con-

ducting multiple stages of the voting algorithm, with each stage using progressively

finer cells in the areas of the grid which receive high number of votes in the previous

stage. This leads to high computational requirements in the voting scheme.
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Algorithm 1: Proposed algorithm for secure localization

Input: N=number of anchor nodes; M= number of iterations; δ(.)=step size

function (constant or non-increasing) S={all anchor nodes};

{(Pk, dk)}, where Pk = [xk, yk]
T , k = 1, 2, . . . , N be the position

claimed by kth anchor node, and dk be the distance reported to the

localizing node.

Output: Estimated coordinates P̂(M) = [x̂, ŷ]T

Initialization: a random point P̂(0); stage = 1

for i = 1 : M do

for k = 1 : N do

gk(i) = (‖Pk − P̂(i− 1)‖ − dk)×
Pk−P̂(i−1)

‖Pk−P̂(i−1)‖
;

end

g(i) =
∑N

k=1 gk(i); //gradient

if (‖g(i)‖ < threshold)or(stage == 2) then

stage = 2; //enter the selection stage

S={set of N
2
anchor nodes whose corresponding force vectors are the

smallest};

end

g(i) =
∑

kεS gk(i); //update gradient

Update: P̂(i) = P̂(i− 1) + δ(i)× g(i)
‖g(i)‖

;

end
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Figure 7.2: Flow chart for localization algorithm.
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The LMdS approach requires a certain minimum number of subsets of nodes

M1, which increases as the percentage of malicious nodes increases, in order to ensure

that one estimate is the correct estimate with very high probability. An LS estimate

needs to be found for each of these subsets, which is computationally expensive. The

computation complexity associated with the LMdS method is calculated using the

Linear Least Squares (LLS) algorithm described in [65]. LMdS algorithm first per-

forms M1 LLS on different subsets of size n giving a computational complexity of

Θ(M1n). After finding each LLS solution, a consistency check with measurements

from all N nodes is performed, which has a computational complexity of Θ(M1N)

for all M1 rounds. In the final step, another LS estimate is found using the maxi-

mum size subset of nodes that have passed the consistency test. The computation

complexity of this final operation is smaller than that of the first two steps. The

overall computation complexity of LMdS is Θ(M1(N+n)), which can be represented

as Θ(M1N), due to n < N .

In contrast, the computational complexity of the proposed scheme is inde-

pendent of the number of malicious nodes and the grid size, although it increases

linearly with the number of iterations. The number of iterations can be reduced by

choosing variable step size to increase the convergence rate of the algorithm [66]. At

each iteration, our proposed algorithm calculates only the distance of the current

estimate from the anchor nodes and requires less computation. Thus, the gradient

descent algorithm is computationally simpler than the voting based scheme and the

LMdS method.

In Fig. 7.3, we plot the run time required to achieve a desired localization
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Figure 7.3: Comparison of run-time for different localization schemes for a fixed

localization error.

accuracy for different secure localization algorithms considered in this paper. From

this plot, we see that the run time required to achieve a given localization accuracy

for our proposed method is approximately 8 times lower as compared to the LMdS

method. Comparing the voting scheme and gradient descent based scheme, we can

see that they have similar run time at settings that result in medium to high location

error; Location accuracy for the voting scheme can be improved by increasing the

grid density, which leads to a quadratic increase of run time and memory use.

The accuracy for our proposed gradient descent scheme can be controlled by the

terminating condition of the iteration, and the run time for higher location accuracy

increases quite moderately and is considerably lower than the other two schemes.
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7.2.4 Simulation Results

We experimentally compare our proposed algorithm with two existing secure

localization methods, namely, the voting scheme and the LMdS algorithm. The

simulation parameters are similar to those in [56] to allow for comparison of the

results. 30 anchor nodes are randomly deployed in an area of size 60m × 60m.

The measurement noise standard deviation is set to be σ = 2m. For the LMdS

method, the number of subsets is set to be M1 = 20 and the number of nodes in

each subset is chosen to be n = 4. For the voting scheme, the region of deployment

is divided into a square grid with each cell of size 1m × 1m, so that n1 = 60. We

use the algorithm described in [56] to find the votes for each cell. For the proposed

algorithm, in the selection stage, we prune 50% of the force vectors with the largest

magnitude and the number of iterations M = 200. The threshold for switching

to selection stage is determined experimentally by varying its value between 0.01

and 0.1 and choosing the value that gives the best localization performance. For

our simulations, we determine the threshold value to be 0.9. The results shown are

obtained by averaging over 1500 runs of simulations.

We compare the performance of our proposed method when a variable step size

and a fixed step size are used for the gradient descent based method, respectively.

In the fixed step size version of the algorithm, δ(i) = 0.5 for all iterations i =

1, 2, . . . ,M . For the variable step size algorithm, we adopt the following step size

that is linearly decreasing:
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Figure 7.4: Comparison of localization schemes for non-coordinated attacks.

δ(i) = 15−
15(i− 1)

M
(7.10)

7.2.4.1 Non-coordinated attacks

The localization accuracy achieved by various secure localization algorithms

under non-coordinated attacks with different parameters is shown in Fig. 7.4. In

particular, Fig. 7.4(a) shows the localization error as a function of the noise standard

deviation σattack added by the malicious nodes when 30% of the nodes are compro-

mised; and Fig. 7.4(b) shows the corresponding results when 60% of the nodes are

compromised.

From Fig. 7.4(a) we observe that the localization error using our method is

comparable to the other schemes when the fraction of malicious nodes is less than

50%. For 60% malicious nodes, the LMdS method results in a localization error

that increases with attack strength, as it cannot tolerate attacks by more than 50%

of the nodes, but the proposed method can still localize the node with high accu-
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Figure 7.5: Probability of converging to the correct estimate for different localization

schemes under non-coordinated attacks for σattack = 4m.

racy. The independent distance random perturbations by the malicious nodes result

in randomly oriented force vectors, which have a mutually canceling effect when

summed up to compute the overall gradient. As a result, the proposed algorithm is

robust against non-coordinated attacks, and the average localization error does not

increase as the attack noise variance σ2
attack increases. The voting based scheme also

gives good localization accuracy, but the error is slightly higher than the gradient

descent method because of the discrete nature of the grid points. The localization

accuracy in the voting based scheme can be increased by finely quantizing the grid

points at a cost of higher computation and memory.

While the average localization error is a useful indicator of the accuracy of the

algorithm, it may be dominated by the cases where the algorithm does not converge

to the true position. To obtain a different perspective on the accuracy, we compare
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the probability that the algorithm correctly identifies the true position. Due to

the presence of noise, finite grid size, and step size, we consider that the algorithm

has converged to the correct location if the final estimate is within a distance of σ

meters from the true location. Fig. 7.5 compares the probability of converging to

the correct estimate as a function of the fraction of malicious nodes participating in

the attack, for different localization schemes under non-coordinated attacks. We see

that when the fraction of malicious nodes is less than 50%, all the secure localization

algorithms except the simple LS method have similar performance and converge to

the correct estimate about 90% of the time. However, if the fraction of nodes

participating in the attack is more than 50%, the proposed scheme outperforms the

existing algorithms. For example, when the fraction of attacking nodes is 60% or

70%, the gradient descent approach has approximately 10% higher probability of

converging to the true position.

7.2.4.2 Coordinated attacks

Fig. 7.6(a) shows the localization error under coordinated attack by 30% of

the nodes. The x-axis represents the distance da between the true location of the

sensor and the point Pmal chosen by the malicious nodes at random. From the

figure, we observe that when the fraction of malicious nodes is 30%, the localization

accuracy for all the methods except LS is almost the same. We obtained similar

results when the fraction of malicious nodes is 35%. The localization error for the

proposed gradient descent method is slightly higher than the other techniques under

this setting. The reason for this behavior is that as the percentage of malicious nodes
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Figure 7.6: Performance of the secure localization schemes under coordinated at-

tacks by 30% of the nodes: (a) Average localization error and (b) Probability of

correctly identifying the true position for da = 22m.

increases, even a few uncompromised anchor nodes whose distances from malicious

position and true position are approximately the same can cause received data from

anchor nodes to be more consistent with malicious positions. This phenomenon will

be discussed in detail in Section 7.2.5.

Fig. 7.6(b) compares the probability of converging to the true location for

various algorithms under coordinated attacks when da = 22m. From this figure, we

see that all the secure localization schemes have similar performance and converge to

the correct estimate about 90% of the time for coordinated attacks by less than 30%

of the nodes. For attacks by a larger fraction of nodes, the probability of converging

to the true position is slightly lower for the gradient descent algorithm with variable

step size when compared to the LMdS algorithm. This is again due to the honest

nodes that are at approximately the same distance from both the true position and

174



the position reported by the malicious nodes.

Measurement noise also has a major impact on the performance of localization

algorithms. In our simulations, we observed that the localization error is approxi-

mately same for a fixed σ, and increases linearly with an increase in σ for all three

secure localization methods considered in this paper.

7.2.5 Discussions

In the first stage of our algorithm, we find the LS estimate of the location in an

iterative manner. After convergence in the first stage, our algorithm switches to the

second stage to prune outliers. Modeling the secure localization problem in such an

iterative framework helps us see similarities between our proposed algorithm and the

iterative LTS algorithm, and understand the robustness of our proposed algorithm.

In particular, our pruning stage can be modeled similar to the iterative approach

used to solve the LTS problem proposed in the literature for robust estimation of

the parameters of observations containing outliers [62].

To demonstrate this similarity, each term inside the summation in Eq. (7.5)

can be considered as the residual error in estimating the true location P. We can

rewrite Eq. (7.5) in the following form,

P̂ = argmin
P

N∑

k=1

r2k (7.11)

where rk = (‖Pk −P‖ − dk) denotes the residual in estimating the true location.

Let (r2)1:n ≤ (r2)2:n ≤ . . . ≤ (r2)n:n be the ordered squared residuals of the set
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{r1, r2, . . . , rn}. The LTS method seeks to minimize the following cost function,

h∑

i=1

(r2)i:n (7.12)

where h is the number of residues used to evaluate the LTS cost function. An ef-

ficient iterative method to solve the LTS problem was proposed in [62]. In this

iterative approach, parameters estimated in the (i − 1)th iteration are used to cal-

culate the residues, rk’s in the ith iteration. The residues are then arranged in an

ascending order of their magnitudes and an estimate of parameters is obtained for

the ith iteration by finding the LS estimate using the h smallest residue points. Our

proposed method is similar to this general statistics approach, and the magnitude

of our force vectors, gk(i), i = 1, 2, . . . , n, reflect the magnitude of the residues,

rk, k = 1, 2, . . . , n. However, in the iterative LTS method, an LS estimate is ob-

tained at each iteration, which requires rather high computation power. Instead

of following the conventional iterative LTS method [62], we iteratively update the

location estimate by a step size in the direction of the decreasing cost function. We

see from experiments that our algorithm converges even after relaxing the parameter

update criteria of the conventional iterative LTS algorithm.

The breakdown point of the iterative LTS algorithm, i.e., the number of out-

liers that the algorithm is guaranteed to tolerate, is shown in the literature to be

approximately 50%, which is the same as that of the LMdS method. As the proposed

algorithm shares the spirit of the iterative LTS algorithm, the proposed algorithm

has the same breakdown point. However, in non-coordinated attack case, our al-

gorithm can tolerate more than 50% malicious nodes because of the statistically
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Figure 7.7: Geometry for the bound on the maximum number of colluding nodes.

canceling nature of the attacks as discussed in Section 7.2.4.1. In coordinated at-

tacks, depending on the topology of the sensor nodes, the breakdown point can be

slightly less than 50% as discussed next.

Fundamentally under coordinated attacks, it is impossible for any scheme to

perform secure localization using only the location and the distance information

if the number of coordinating malicious nodes is more than the number of honest

nodes. In these cases, there are more consistent equations satisfied by the location

(Pmal) reported by the malicious nodes than those satisfied by the true node location

(P). Hence, without any additional information to authenticate, it is impossible to

distinguish between these two locations, and robustness against coordinated attacks

should be focused on the situation when less than 50% of the nodes are compromised.

This scenario was analyzed in [67] and it was shown that if the total number of nodes,

N , in the network is more than 2L+ 2, where L is the number of malicious nodes,
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then the position of the localizing node can be computed with a bounded error.

In practical scenarios, adversaries can create more consistent measurements

for the malicious location even when they are unable to compromise a majority

of the nodes, by carefully choosing the distance measurement to report, as shown

in Fig. 7.7. In this figure, P denotes the location of the localizing node, while P′

denotes the position chosen by malicious nodes to shift the estimate. Each circle is

drawn with position reported by anchor nodes as center and distance measured by

localizing node from corresponding anchor node as radius. The circles intersecting

at both locations P and P′ correspond to the collinear anchor nodes as centers

and are shown using the dashed line. The colluding nodes can take advantage of

the fact that the measurements reported by the collinear honest nodes are also

consistent with their second point of intersection P′. When nodes are randomly

deployed, the probability that three or more nodes are exactly collinear is negligible.

As such, in the absence of measurement noise, we then require that N > 2L + 2

for secure localization. In practice, however, the presence of measurement noise

requires a localization algorithm to equip with some tolerance capability. Therefore,

being merely close to collinear in the noisy case can have the inevitable effect to

aid the adversary in the same way as what the exact collinear situation does for

the noise-free case. Since the probability of nodes being close to collinear is non-

trivial, the required lower bound on N is considerably larger than 2L + 2. In our

experiments, we have observed that such occurrences of almost collinear nodes with

an intersection point close to Pmal account for a large fraction of the cases where

the secure localization algorithms do not correctly identify the true position of the
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node. Because of increase in the probability of nodes that are collinear, the proposed

scheme can tolerate fewer malicious nodes - about 40% in our study as shown in

Fig. 7.6(b), for coordinated attack case. Beyond that, the probability of correctly

identifying the location drops sharply.

In LMdS, localization is performed using multiple subsets of four nodes and

the estimated location will be correct as long as one of these M1 subsets contains all

innocent nodes. Therefore, the LMdS algorithm performs moderately better than

the gradient descent and voting algorithms when the percentage of malicious nodes

is higher, although this gain is achieved at the cost of much higher computational

resources. The difference in localization error between the voting based scheme

and our scheme can be attributed to resolution accuracy of grid used in voting

scheme and to the step size in the gradient descent based scheme. Overall, we

see a tradeoff between the localization accuracy and resource use. Our gradient

descent based algorithm requires a significantly less amount of computational and

memory resources, at a cost of slightly higher localization error for coordinated

attacks launched by a high percentage of colluding malicious nodes.

7.3 Gradient Descent Approach Applied to TDoA

Measurements

In the previous section, we showed that the proposed gradient descent al-

gorithm with selective pruning can be used to securely localize nodes in hostile
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scenarios. We assumed that a direct measurement of the distance between the lo-

calizing node and the anchor nodes is available. This distance measurement may be

obtained using ToA of the beacon signals, and requires synchronization between the

transmitter and the receiver. A small synchronization error can cause a large error

in the spatial localization as time is multiplied by the speed of light or sound. Time

difference of Arrival (TDoA) is used as one way to mitigate these synchronization

issues [68] [69].

The setting for obtaining one TDoA measurement is shown in Fig. 7.8. In this

example, the localizing node wants to obtain a TDoA measurement with the help

of anchor nodes 1 and 2, which already know their position. Node 2 transmits its

position coordinates and a timestamp to node 1 and the localizing node. Node 1

receives the signal from node 2 and forwards it to the localizing node after including

node 1’s own position coordinates. The forwarding delay in this process is assumed

to be known in advance, as it depends on the processing speed at the node and

may be known a priori. In order to take account of possible minor variations,

we model the forwarding delay to be normally distributed around a known mean

value. In practical applications, additional delays associated with queueing may

be introduced depending on the routing protocols. These additional delays can be

taken into account by incorporating the queueing delay distribution into the cost

function. The localizing node receives the signal from nodes 1 and 2 and finds the

difference in the time of arrival of the signal after subtracting the known mean value

of processing time at the forwarding node.

Let the positions of nodes 1, 2, and the localizing node be P1, P2, and P,
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Figure 7.8: Diagram representing the basic TDoA protocol.

respectively. Denote the distances between the nodes by d′12, d
′
1, and d′2, respec-

tively, as shown in Fig 7.8. Let the time at which the node 2 transmits its position

coordinates to localizing node and node 1 be t0. Localizing node receives the signal

transmitted directly from node 2 at time t2 and the forwarded signal through node

1 at time t21. Then we have:

d′2 = c (t2 − t0)

d′12 + d′1 = c (t21 − t0)

⇒ d′1 − d′2 = c(t21 − t2)− d′12 , ∆21, (7.13)

where c is the speed of the signal in the medium. This can be the speed of light

for radio signals or the speed of sound for ultra-sonic signals. Thus, given the time

difference of arrival t21 − t2, the localizing node position lies on a hyperbola with

foci at P1 and P2.
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7.3.1 Secure Localization Problem for TDoA

With this background on TDoA, we can now set up the secure localization

problem when TDoA measurements are available. Suppose that we have N anchor

nodes with known position coordinates, out of which L nodes are malicious and

launch coordinated attacks. We need to determine the position of an unknown

node using the time difference of arrival method to estimate the distance between

the localizing node and the anchor nodes. Each pair of anchor nodes gives rise

to one equation of a hyperbola. If we assume that every pair of anchor nodes is

used to obtain one TDoA measurement, we have
(
N
2

)
measurements to determine

the position of the localizing node, which increases as O(N2). In practical resource

constrained networks, obtaining such a large number of measurements and solving

the corresponding equations can consume a lot of resources.

To simplify the problem, we assume that there is one tamper-proof trusted

anchor node in the network (say node 1) that will be used to help localize the

other nodes. Each of the remaining anchor nodes transmit the beacon signal with

the timestamp to the localizing node. Upon receiving the signal, the trusted node

1 forwards it to the localizing node, which thus obtains one TDoA measurement.

Under this assumption, we have a manageable number of N − 1 equations for the

node location, which may be solved in practical resource constrained networks. Let

Pk denote the location of the kth anchor node. We need to determine the point P

that satisfies:

‖P−P1‖ − ‖P−Pk‖ = ∆k1, k = 2, 3, . . . , N, (7.14)
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Figure 7.9: Intersection of three hyperbolas gives the location of a node when TDoA

is used.

where ∆k1 is the TDoA measurement obtained through anchor node k and the

trusted node 1 as described in Eq. (7.13). Fig. 7.9 shows an example where four

anchor nodes are located at P1,P2,P3, and P4, and there are no malicious nodes or

measurement noise. The hyperbolas correspond to the loci of points that are con-

sistent with one TDoA measurement. The common intersection of the hyperbolas,

denoted by point P, is the position of the localizing node.

In the presence of measurement noise alone, Eq. (7.14) can be solved in the

least squares sense by finding the solution to the following LS equation:

P̂ = argmin
P

N∑

k=2

(‖P−P1‖ − ‖P−Pk‖ −∆k1)
2

= argmin
P

ftd(P). (7.15)

In the presence of malicious nodes, this LS solution may not be accurate. The

malicious node may collude together to prevent the accurate localization of other
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nodes. Based on our assumption that a tamper-proof trusted node is used to help

localize the node, the attacker cannot successfully launch an attack by modifying

the timestamp alone. Any changes in the timestamp corresponding to the time of

transmission will not affect the distance measurement, which only depends on the

difference in the time of arrival of the two signals. Instead, the strategy of attacker

will be to modify the transmitted position coordinates of kth node to P′
k in an

intelligent way. Suppose that the attacker knows the position P1 of the trusted node

1 and the position P of the localizing node. Based on this knowledge, the attacker

can estimate the tk and tk1-time instants at which the localizing node receives the

direct beacon signal from kth node and forwarded the beacon signal from node 1.

Denote by Pmal the position where the attacker wants to shift the estimate. We

then have the following relations:

ctk = ‖Pmal −Pk
′‖ (7.16)

ctk1 = d′1k + ‖Pmal −P1‖ (7.17)

where d′1k = ‖P1−P′
k‖. The attackers can determine a suitable value of Pmal and P ′

k

for the nodes that are compromised such that Eq. (7.15) and Eq. (7.16) are satisfied.

Our gradient descent based approach with selective pruning described in the

previous section can be extended to perform secure localization in this case. The

algorithm starts by randomly initializing the LS estimate P̂(0). At the ith step

of the iteration, the gradient of the cost function ftd(P) is evaluated at the current

estimate P̂(i−1), and the estimate is updated by moving it one step in the direction
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of the negative of the gradient, denoted by gtd(i):

gtd(i) = − ∇Pftd(P)|P=P̂(i−1) ,

The geometric interpretation of the gradient descent for TDoA is similar to the

previous case for ToA, where at each iteration, a step in the direction of the negative

of the gradient moves the current estimate of the location towards the intersection

of the hyperbolas. At every iteration, we compute the gradient corresponding to

each term in Eq. (7.15) and then sum them up to find the overall gradient. In the

pruning stage, we discard a fraction of the terms with large gradient magnitude and

sum up the remaining terms to obtain the gradient direction.

We perform simulations using the same settings as before. A total of N = 30

nodes are distributed uniformly in a grid of size 60m × 60m. The measurement

noise is assumed to be Gaussian with zero mean and σ = 2m. Fig. 7.10 shows

the localization error under coordinated attacks by 30% of the nodes. The x-axis

represents the distance da between the position reported by the malicious nodes

and the true location. The dashed line represents the localization accuracy using

the proposed method, while the solid line represents the localization accuracy using

the least squares solution. From the figure, we see that the localization error using

our gradient descent algorithm is less than the error obtained using the least square

method under coordinated attacks, although the localization error increases with an

increase in attack distance, da, for both approaches. The reason for this behavior

can be explained by examining the probability of identifying the true location as a

function of the percentage of malicious nodes. From the results shown in Fig. 7.11 for
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Figure 7.10: Localization accuracy for coordinated attacks by 30% of the nodes

using TDoA measurements.

da = 22m, we see that the probability of converging to the true estimate under TDoA

for our scheme is approximately 10% lower than that of the ToA case of Fig. 7.6(b).

When the algorithm does not converge to the correct estimate, it converges close to

the position reported by the malicious nodes, which corresponds to local minimum of

the cost function and incurs an error that grows with the strength of the attack. As

a result, the average error increases as the distance of attack, da, increases. However,

as compared to using the baseline LS solution, the probability of converging to the

correct position is 20-30% higher for the gradient descent algorithm.

7.4 Chapter Summery

In this chapter, we have described a localization algorithm which takes dis-

tance estimates between a localizing entity and anchor nodes as its input. The

186



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Percentage of malicious nodes

P
ro

ba
bi

lit
y 

of
 id

en
tif

yi
ng

  t
he

 tr
ue

 lo
ca

tio
n

 

 

Gradient Descent
Least Squares

Figure 7.11: Probability of converging to the correct estimate under coordinated

attacks for TDoA, da = 22m.

proposed algorithm is applicable to general settings in wireless sensor networks, in

which the input data may be malicious due to the presence of adversaries. We pro-

posed an iterative computationally efficient method for localization in adversarial

scenarios which automatically prunes out the malicious measurements. The local-

ization accuracy of the proposed method is better than or comparable to that of

existing algorithms for secure localization in static sensor networks.
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Chapter 8

Conclusions & Future Perspectives

In this dissertation, we have introduced a novel multimedia forensics frame-

work and a series of techniques based on ENF signals, which can determine the time

and the location of a given recording.

We have investigated mechanisms to capture ENF fluctuations in indoor light-

ing using optical sensors and video cameras and have demonstrated the presence of

ENF signals in indoor video surveillance recordings. Recorded optical and video

signals have been shown to possess a high correlation with ENF signals captured

directly from power mains. The estimated time-of-recordings for sensor signals have

been shown to be accurate up to a time resolution of two seconds for high signal-

to-noise-ratio (SNR) optical sensors ENF signals, and that of four seconds for noisy

video-ENF signals. Results from our investigations suggest that ENF signals can

be used as an inherent timestamp for optical sensors and video surveillance record-

ings in an indoor environment. ENF signals from video clips have been shown to

be robust against compression up to a bit rate of 250Kbps for standard definition
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videos. ENF signals can also be used to facilitate the authentication of sensor and

video data by identifying the discontinuities or alterations in ENF signals or by

comparing the video-ENF signal with the reference power-ENF signal. ENF traces

are also shown to provide a forensic binding of audio and visual tracks to verify their

temporal synchronization and integrity.

To understand the statistical properties of ENF signals, we have proposed an

autoregressive (AR) process based analytical model for these signals. We have val-

idated the proposed model using the Box-Jenkins method and have demonstrated

that the proposed model fits the ENF signals into an AR(2) model. We have used

the proposed model to predict the performance of an ENF-signal based timestamp

verification application for a given value of the SNR and query duration under a

binary hypothesis detection framework. The trends in the receiver operating char-

acteristics of the analytical model for different segment sizes used for matching are

similar to those obtained from the experimental data. Based on the proposed model,

a decorrelation based innovation process matching approach is adopted to improve

the performance of the timestamp verification under the proposed framework. The

experimental results with audio data demonstrated an improvement in the detection

performance from 92% to 95% for a false alarm probability of 1% for 256-second

long query segment, when decorrelated innovation sequences are used for matching

as compared with direct matching of ENF sequences.

We have also demonstrated that the proposed AR(2) model can be used to

characterize different grids. We use this property to determine the grid-region of

creation of the ENF influenced recordings. We have used the AR(2) process param-
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eters as features to train a classifier, which can provide 70% classification accuracy

on power-ENF data and 44% accuracy for audio-ENF data on a database of record-

ings from seven grid regions. We have also demonstrated that the noisy nature of

audio-ENF signal can cause a low classification accuracy, and it can be improved by

using a noise adaptation approach based on a Bayesian multi-conditional learning

framework. The audio-ENF classification improves to 64% with the proposed noise

adaptation approach, as compared to 44% when no noise adaptation is performed.

We have also explored intra-grid localization capabilities of ENF signals to

determine the location of a recording within the same grid-region. We have demon-

strated that such location specific signatures can be extracted using a high-pass

filtering mechanism from power-ENF signals. For multi-location data, we have

proposed a half-plane intersection method to estimate the location of an unknown

recordings. The localization accuracy from this method can be improved by adding

more locations as anchor nodes. The number of constraints to estimate the feasible

region increases on the order of O(K2) with the number of anchor cities K. We have

also used a quantized correlation coefficient based trilateration method for localiza-

tion. A combination of the half-plane intersection and the correlation quantization

provides better localization accuracy as compared with using each method sepa-

rately. We have also proposed a localization method for the case of general sensor

networks when distance estimated between the node in question and the anchors

are available. The proposed localization method is designed to be robust against

adversaries injecting malicious distance information. We have demonstrated that

the proposed localization approach can provide a comparable or better localization
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accuracy in the presence of malicious adversaries at a much lower computational

cost, as compared to the existing schemes for secure localization under malicious

users.

Based on the study of this dissertation, several aspects of ENF signal analysis

can be explored for multimedia forensics. As this dissertation is the first study

explicating the intra-grid and reference-free grid-level localization capabilities of the

ENF signal, substantial room exists for improvement in the localization capabilities

of ENF signals from multimedia recordings within grid-region and at a grid-region

level. To classify a recording to determine the grid-region of recording, we considered

only the features obtained from the AR modeling. Other useful signal information,

such as the range of deviations or sub-band decomposition, could be used for better

feature representation. In addition, the grid-region location capabilities can be

evaluated with a large-scale database comprising of recordings from different grid-

regions. For intra-grid localization, two directions can be pursued. First, devising

better ENF signal estimation techniques may further improve the SNR of the signal,

which could be useful in enhancing localization capabilities. Second, different time-

frequency bands of the signal can be analyzed to study their localization capabilities.

This study may help in devising a better location specific feature extraction scheme.

For time-of-recording estimation tasks, the ENF signal database can be large,

so it may not be feasible to correlate a given query with every possible segment of

a huge database. In such cases, it is desirable to query the database by narrowing

the search space using certain traits. The fundamental problem is to find a suitable

representation of ENF signals by transforming them to another domain followed
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by a suitable indexing mechanism. The indexing mechanism can be addressed, for

example, using clustering approaches. Such an approach may make ENF querying

an efficient and practical task. One related problem that needs to be addressed

for large scale ENF databases is that of storage. Potential forensics and security

application of the ENF analysis could require continuous recording of ENF signals

for many years, meaning an efficient storage mechanism need to be devised. A

study of applying lossy vs. lossless compression schemes to ENF signal storage,

and the performance for applications such as timestamp estimation/verification,

may provide an understanding for the tolerable amount of compression before a

significant degradation in the matching performance occurs.
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