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UAV Placement for Enhanced Connectivity in
Wireless Ad-hoc Networks

Magjid Raissi-Dehkordi
Institute for Systems Research
University of Maryland
College Park, Maryland 20742
Email: majid@isr.umd.edu

Abstract—In this paper we address the problem of
providing full connectivity in large (wide area) ad hoc
networks by placing advantaged nodes like UAVs (as relay
nodes) in appropriate places. We provide a formulation
where we can treat the connectivity problem as a clustering
problem with a summation-form distortion function. We
then adapt the Deterministic Annealing clustering algo-
rithm to our formulation and using that we find the mini-
mum number of UAVs required to provide connectivity and
their locations. Furthermore, we describe enhancements
that can be used to extend the basic connectivity problem
to support notions of reliable connectivity that can lead to
improved network performance. We establish the validity
of our algorithm and compare its performance with
optimal (exhaustive search) as well as non-opitmal (hard
clustering) algorithms. We show that our algorithm is near-
optimal both for the basic connectivity problem as well as
extended notions of connectivity.
Keywords: Mathematical Programming,
Combinatorics

Optimization,

I. INTRODUCTION

Recent emphasis in ad hoc network research has been
on the study of connectivity, coverage and capacity
issues for large ad hoc networks. These networks could
be spatially large (wide area deployed) or large in
terms of the number of nodes deployed (node density).
Connectivity isakey issue especially in wide area critical
ad hoc networks (battlefield networks). It is desirable in
such networks that any pair of nodes should be able to
communicate, albeit multihop using intermediate nodes
as relays. More precisely, if the network is represented
by a graph, with an edge between two nodes showing
direct connectivity between them, complete connectivity
is equal to having a connected graph. Connectivity
amongst the nodes depends on a number of factors. The
transmission range of the nodes determines the distance
based connectivity. The nature of the terrain determines
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the propagation loss and therefore connectivity, thus two
nodes which are within communication range may still
not be able to communicate with each other due to
the terrain induced path loss. Node movement in such
networks is reflective of the tasks assigned to these nodes
and therefore will result in mobility related connectivity
changes. Widely dispersed networks may also result in
the formation of independent groups where the nodes in
each group may be connected but two groups may be
disconnected. It is then reasonable to expect, and is in
fact the case, that the network will not be fully connected
at al times. Also, it might be important to ensure that
certain high priority nodes in the network always remain
connected.
One way to eliminate such disconnections is to de-
ploy advantaged nodes with increased range (implies
increased ground coverage) and improved capabilities so
as to provide connectivity, reliability and improve QOS.
Aerial platforms such as Unmanned Aerial Vehicles
(UAVS) are ideal advantaged nodes for this purpose and
the critical nature of the network justifies the use of such
platforms. A group of UAVs can hover over the network
and perform as relays to provide connectivity for the
network. The role of UAVsiisin fact not limited only to
connectivity establishment, these devices have aso been
proposed for providing capacity, scalability and coverage
[1]-5] in different networks. In this paper, we address
the problem of providing basic connectivity and other
notions of connectivity that result in improved reliability
and QOS for several disconnected ground sub-groups by
placing a number of UAV's at the appropriate positions.
It is obvious that the minimum requirement for
full connectivity of the network is for each sub-group
to have at least one node communicating with an
UAV (assuming the inter-UAV communication range
is arbitrarily large). Since the UAVs are scarce and
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Fig. 1. Network with three partitions and two connecting UAVs.

expensive resources, the goa is to find the minimum
number of required UAV's and their locations to have a
fully connected network ( Figure 1).

It is not difficult to see the similarities between the
above problem and the Facility Location problems [6],
[7] in the field of operations research. In particular,
with the assumption of constant UAV adltitude and
communication range, our problem is similar to the
continuous p-center problem [6], [8] and is in fact an
extension of it. It is therefore easy to show that our
placement problem is NP-hard using the NP-hardness
results of the p-center problem [9], [10].

In order to avoid the computational complexity and
difficulties of the minimax problems, in this work we
follow a clustering approach for finding near-optimal
solutions to our problem. We will show that with
careful definitions, the problem can be treated as a
clustering problem with a summation-form distortion
function and clustering algorithms can be used to
address the problem. However, since the particular form
of our formulation results in a non-convex optimization
problem, we look for the clustering algorithms that
avoid the loca minima and result into near-optimal
solutions. We use the Deterministic Annealing [11]
algorithm for solving the above problem and also use
a modification of this method to address a constrained
version of the problem. Our results show that this
approach performs very close to optimal and provides a
flexible framework for addressing various forms of the
UAV placement problem.

A. Related Work

To our knowledge, the problem of UAV placement in
cooperation with multi-hop connectivity of the ground
nodes has not been addressed before and we believe our
formulation and results can motivate future work on this
subject. There are, however, a number of similar works
that have addressed other aspects of UAV placement
when enough number of UAV's are placed in the network
to provide direct coverage for al nodes as a backbone
regardless of the node-to-node communication capability
of the network. In [3] and [12], a novel architecture
with ground nodes, UAV's and also unmanned ground
vehicles isintroduced and the performance of the overall
network is evaluated by simulation studies. However, the
UAV placement is with respect to the full coverage of
the nodes which resembles the classic p-center problem
and some other variations of it. [5] mainly deas with
the implications of the UAVs on the routing protocol
and its performance. The main source of related work
on similar problems is the literature about the Facility
Location problem and specifically the p-center problem.
It is shown in [10] and [9] that the p-center problem
is NP-Hard. Exact solutions are provided by [8], [13]—
[15] all address the Euclidean distance p-center problem
but involve rather inefficient schemes that do not scale to
larger problems. There are also several heuristic methods
for the p-center problem that are based on the assumption
that the single facility location problem can be efficiently
solved. All of those methods quickly find locally optimal
solutions though. As mentioned before, our problem
is an extension of the p-center problem and most of
the methods mentioned above are either not efficient
or not applicable to our problem. However, we used
the placement idea based on the solution to the single
facility location problem and proposed a low-complexity
algorithm in [16]. Other constrained forms of the p-
center problem have been studied in a number of papers

(e.g. [17], [18)]).
B. Our contribution

In this work we present methods which address the
specific placement problems defined in the paper in
such a way that the agorithm is scalable and aso
capable of avoiding local minima to some degree. We
will show that our proposed method is flexible enough
to address a number of extensions to the initial problem
and provide solutions to them as well. We believe our
results are also of value for the original p-center problem
and operations research community since our general
formulation contains that problem as a special case and



we have not found any such approach to that problem
in the literature.

This paper is organized as follows. Section Il ex-
plains our assumptions and the exact formulation of our
problem as a clustering problem. Section Il presents a
brief review of the Deterministic Annealing algorithm
and explains how it is adapted to our problem. The
results of the algorithm are presented in section IV where
we compare the results with those obtained from an
exhaustive search algorithm, as a benchmark, and also
when using another well-known clustering algorithm. In
section V, we present a number of extensions to the
original problem and discuss how they can be accommo-
dated in the algorithm and present some of the related
results. Finally, section VI is dedicated to the concluding
remarks.

[I. FORMULATION OF THE PROBLEM
A. Assumptions

In this paper, we make the simplifying assumption
that al of the ground nodes have the same altitude.
This assumption is only for having a better graphic
representation of the results and is not a requirement
of the algorithm. We also assume that the graph of the
network is fully defined. In other words, the nodes are
capable of detecting their neighbors via some type of
neighborhood discovery protocol and also the locations
of the nodes are known to the algorithm. In battlefield
scenarios where the nodes are soldiers or vehicles, their
locations are measured with GPS devices and are trans-
mitted to their associated centers as part of the periodic
health signals. Although the connectivity of the ground
nodes heavily depends on the terrain, the relatively
higher altitude of the UAV provides line-of-sight links to
al the ground nodes regardless of the terrain structure.
In other words, as long as a node is inside the geometric
footprint of a UAV, it can communicate with the UAV.
We also do not enforce any restrictions on the UAV-UAV
communication range. We call each separate subgraph of
the network a cluster. A cluster is therefore a collection
of nodes that can all communicate with each other via
single- or multi-hop paths and cannot communicate with
any other nodes in the network.

B. Formulation

Let us denote by N the total number of ground nodes,
M the number of subgraphs(clusters) in the network
and by C;; i = 1,..., M each of those clusters. We
assume that the UAVs fly at a constant altitude h.
The maximum node-to-UAV communication range is R
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Fig. 2. Five clusters covered by three circles.

which, together with h, defines the maximum coverage
radius MaxRadius = +R%? — h? on the ground for
each UAV which is greater than the maximum range
for ground-ground communications. By definition, as
long as at least one node from a cluster is within the
communication range of a UAV, al nodes of that cluster
can connect to the UAV via that node. The problem is
therefore to find the minimum number of circles with
radius MaxRadius and their centers in such a way
that at least one node from each cluster is within one
circle. Figure 2 presents a graphical representation of
our definitions.

If we denote by K the number of UAVs and by
Y1, .-,y their locations on the ground, the problem
can be written as

D)

Minimize K

subject to
min  max min ||z — ;|| < MaxRadius
Yi,--¥k jE{1,...M} x€C;
ie{l,...,K}

where ||z —y|| isthe I2 —norm or the Euclidean distance
between the points « and y on the ground. Finding the
exact solution of this problem involves an exhaustive
search on the different ways the nodes can be selected
from each cluster and the ways clusters can be grouped
together for coverage by single UAVSs. It is not difficult
to show that the problem is NP-hard, particularly, when
we consider it as an extended version of the p-center
problem [6], [7], [19]. The p-center problem in its
optimization form tries to find the minimum number of



circles with a fixed radius and their locations to cover a
given set of points. Our problem involves another degree
of complexity for choosing the best nodes from each
cluster. Thus, it seems, a natural approach would be to
extend existing methods for solving the p-center problem
and apply them to our problem. However, most of the
existing works provide either complicated and inefficient
methods (e.g. [8], [20], [21]), or heuristic methods (e.g.
[14], [16], [22]{24]) that are not necessarily extendable
to other variants of the problem including our problem.
Due to these difficulties, we propose a clustering ap-
proach for addressing our problem as follows:

Let's define the cluster-to-center distance function
1(Cyy): (N xR?))xR?> - R as

UCj,vi) gelg{Hx vill 2

J

Problem 1 can then be written as

3

Minimize K
subject to

min  max min (C},y;) < MaxRadius

Yi,yx je{1,.. .M} ie{l,... . K}

From a clustering point of view, this is a clustering
problem with a maximum distortion constraint which
for every fixed K tries to find the optimal y1,...,yx
locations to minimize the maximum value of distortion
and increases K if it can’'t be smaller than M ax Radius.
In other words, if each cluster is considered as a single
entity, the goa is to find the best locations of the K
centers(codewords) to minimize a worst-case distortion
function. Using the approximation

max(zi,...,Tyn) = /2 + ...+ 2% forlarge o,

and the fact that minimizing a fixed power « of the
distortion function instead of the function itself will not
change the results, we can approximate problem 3 with

(4)

Minimize K
subject to

yllir}.ifle E]Ail D(Cj, yu(j)) < MazRadius

where

()

and u(j) : {1,...,M} — {1,...,K} is the function
that assigns a center to every cluster C. It is well-known
that the clustering problems of the above form are non-
convex optimization problems except in special cases.
In this work, we have used the Deterministic Annealing

D(Cjyi) = min [l — il

J

(DA) [11], [25] method to solve the clustering problem
for near-optimal solutions. An advantage of the DA
method, among others, is that it allows soft assignment
of clustersto UAV's, which will be useful for addressing
more general coverage problems, as we will see later,
and also provides a better chance of converging to near-
optimal solutions. In the following, we will first present
abrief review of the DA method and then present how it
has been used in the current work. To our knowledge, the
use of the DA agorithm even for the traditional forms
of the facility location problems is not studied before
and our resultsintroduce another approach for addressing
those problems.

I11. DETERMINISTIC ANNEALING AND THE UAV
PLACEMENT PROBLEM

A. Deterministic Annealing algorithm

Deterministic Annealing [11] is a stochastic method
for clustering, compression, classification and similar
problems where a large number of data points(nodes)
need to be assigned to a smal number of centers
such that distortion function is minimized or bounded.
The distortion function is usually an average over the
distances of the nodes from their associated centers
with the distance function defined based on the spe-
cific requirements of the problem at hand. Almost all
distortion functions are non-convex and with multiple
local minima [26] excluding the case with squared-
Euclidean distance function. The clustering methods
(e.q. [27], [28]) therefore lead to locally optimal results
in the general case. The Deterministic Annealing(DA)
approach tries to improve the clustering by turning a
hard clustering problem into a soft clustering problem.
The typical clustering problems are usually of the " hard”
type where each data point has to be assigned to only one
center. The distortion function for this type of problems
can be written as

D=3 ple)d(z,y(x))

where z’s are the data points, y(x) is the center to which
x is assigned to and, d(.,.) is the appropriate distance
function. DA defines the distortion function as

D=3 p@) S plyle)d(,y)

where p(y|z) is the association probability relating data
point x to center y. Adding an entropy term H to the
objective function and minimizing the new objective
function

F=D-TH



will result into a joint optimization problem over y
and p(y|z) values and will naturally lead to the Gibbs
distribution for the p(y|x)

exp <_ d(f;?J))

Ly

p(ylz) = (6)

with

Z,=Y exp (-d@;y))

Y

being the normalization factor that plays the role of the
partition function of statistical physics. The optimal y
values are aso given by

Zp(x,y)vyd(x,y) = Ovy (7)

xT

or
> p(yle)Vyd(z,y) = 0Vy.

xT

(8)

when al p(z) are equal which is the case in our problem.
The gradient is with respect to both elements of the y
point and equation (8) is actually two equations. Param-
eter T in the above formulation controls the randomness
level of the problem. For 7' = 0 the problem reduces to
the hard clustering problem while for T' = oo al centers
will collapse to asingle location and every = will equally
belong to all centers. The DA agorithm then suggests
that by starting from large values of T" and updating the y
and p(y|z) while decreasing T' gradually, a near-optimal
solution can be achieved. It is shown in [11], that we
can start with a single center and gradually add more
centers during the cooling process as needed. Moreover,
there exists a recipe for calculating the times when
additional centers need to be introduced. This property
is one of the advantages of this approach over the
Simulated Annealing algorithm [29]-{31] that may come
in mind due to the similarities between the two methods.
However this calculation is not always straightforward
and can become very complicated depending on the
nature of the problem. Another advantage of the DA
method, which is the source of the term " deterministic”,
is the deterministic nature of calculations of p(y|xz) and
y values for fixed T's as opposed to the ”random pertur-
bation” approach of the Simulated Annealing. This will
generally result into faster convergence of the algorithm
and the execution time being more predictable.

B. UAV placement using Deterministic Annealing

The UAV Placement algorithm is shown in algorithm
1. We used the mass constrained [11] version of the
DA which is computationally more efficient. We follow
the steps shown in the algorithm to progressively update
the center locations y; and increase their number when
necessary until every cluster is covered by at least one
center. This criteriais checked by calculating the K x M
Euclidean distance matrix L between every center and
every cluster such that L;; = I(C}, y;).

A number of comments to clarify different stages of
the above algorithm are in order. For simplicity we will
refer to our agorithm as the UAV Placement algorithm
from this point on.

1) The allcovered flag is an indicator of the case
where every cluster is inside the coverage circle of
at least one UAV (lines 2 and 5 of the algorithm),
this condition is verified by checking whether
every column of matrix L has at least one element
smaller than the M ax Radius value.

2) Addition of the new centersin line 6 in practice is
done by adding a small perturbation to the current
location of one of the existing centers and dividing
the probabilities associated with the current center
equally between that and the new center. In other
words, if center i is picked for perturbation

p(yi) = p(yi)/2
p(yr+1) = p(yi)
K=K-+1.

If the introduction of a new center is really needed
at the current time step, the two circles move apart
from each other. Otherwise, they will merge again
after a few steps. Therefore, a few steps after
each perturbation, the distance between the old
and the new center is checked and if it is less
than a threshold, the new center is removed and
its probability is added back to the old center.
Otherwise, the perturbation becomes permanent.
The next perturbation attempt occurs after certain
number of steps are passed since the decision
about the previous perturbation was made. In [11]
an exact condition for adding a new center is
discussed. However, that method is not used here
due to its computational complexity.

3) A large number of tests showed that the centers
with farthest associated clusters are among the
best choices for adding a new center based on
perturbation.



Dat

a : MaxRadius: coverage radius of each UAV,
N: number of nodes,
X;;i=1,...,N: node locations,
N x N connectivity matrix of the nodes

Result : K: number of UAVS,

yi; 1 =1,..., K: UAV locations

begin

- Calculate the N x N connectivity matrix

- Find the number of clusters M and their nodes
- allcovered =0, T =T, K =1

-p(y1|C'i) =1li= 1,...,M

- Calculate the location of y; from equation(s)

Zp(yl\C)Vle(C, yl) =0 (9)
C

- Calculate the L matrix and the allcovered flag

while T' > T,,,;,, and allcovered =0 do

- Cdculatefori=1,..., K

Pl = = S plilC)
C

repeat
fori=1,...,K

Ze,

M
) = 37 3 2
j=1

K
where Zg, = Zp(yl)e_D(C"’y’)/T
=1

until All p(y;)s are stabilized
- Update p(y;|C;) values for all i and j

p(yi)efD(ijyi)/T

Zc.

J

p(yilCj) =

- Update y; values from equation 9
- Update the L matrix and the allcovered flag
if allcovered = 0 then

| - Add a new center if needed

end
-T=0T (<)
end
end
Algorithm 1: Finding the number and locations of the

required UAV's

4) The recursion in line 3 of the algorithm has a
unique solution and converges to the solution of
that equation as the recursion goes on. A proof of
this fact can be found in [32] where the Blahut's
method for calculating the rate-distortion curve is
explained.

5) Equation 9 is in fact the two following simultane-
ous eguations in the z and y coordinates

_ ZC P(y\C)x(C, y) [D(:C(C7 y)7 y)]l—Q/a

10
>-cpy|C) [D(x(C,y), Y)Y (10)
(11)
or
_ > py|C)x(CLy)||z(C,y) — y|[o—2 2
Yo pW|O)|z(C,y) — yl|o—2
(13)

where the x and y represent points on the plane as
before. Also, notation x(C, y) is used to represent
the node in cluster C that is closest to center y.
Solving the above equations in general involves
finding the x(C,y) node for every choice of v,
and calculating the derivative based on that point.
However, in situations where the the cluster diame-
ters are small compared to the M ax Radius value,
taking the derivative with respect to the current
x € C savesalot of computation cost and does not
have a considerable effect on the overall conver-
gence speed of the algorithm. General convergence
properties of this equation is currently under study.

6) Findly, the choice of the initial temperature de-
pends on the range of values the distance func-
tion takes which itself depends on the form of
the distance function and the width of the area.
Our choice of the initial temperature was directly
proportional to the average distance of the clusters
from the center of mass of all clusters calculated
via equations (10).

V. EXPERIMENT SETUP AND RESULTS

We evaluate and compare the performance of the
UAV Placement algorithm with the results of an optimal
exhaustive search (Grid) agorithm as well as a well-
known hard-clustering agorithm (K-means using the
distance function (5)). These results provide us with an
understanding of how close to optimal the algorithm
performs and of its advantages over other clustering
algorithms.



A. Validity of the distance approximation

Before evaluating the performance of the UAV Place-
ment algorithm, we evaluate the validity of our distance
approximation (4) and our choice of &« = 10 in the
experiments. To do this, we design a simple scenario
where 6 clusters are close to each other on one side
of a hypothetical circle with radius MaxRadius and
another cluster is located on the other side of that circle
(Figure 4). The nodes in the clusters are placed such
that every cluster has just one node barely inside the
circle. With this setting, only a circle aligned with our
hypothetical circle can provide coverage to al clusters.
We test our algorithm for two values of the exponent
a =2 and a = 10. With o = 2, the distance function
is the Euclidean distance and the update equations (10)
reduce to finding the center of mass of the points.
Figure 3 shows this case and we see that we need 2
UAVs to cover the network. On the other hand when
« = 10 our approximation for the max function is more
precise and we need only one UAV as shown by Figure 4.

B. Performance evaluation and comparison

We generate a scenario with 170 nodes divided into
17 equally sized clusters. Furthermore we force the
placement of nodes such that no two clusters are within
communication range of each other, i.e,, nodes can
communicate (single/multi-hop) only to other nodes in
the same cluster. The nodes are placed in an area of
1 x 1. The inter-node communication distance is 0.1 and
the MaxRadius is set to 0.2. In the Grid agorithm we
divide the area into grid points with a granularity of
.01 i.e. the area is covered by a total of 10000 equally
spaced points. We then perform an exhaustive search
over the grid points to determine the minimum number
of UAVs required to connect the network. Obvioudly,
this procedure is not scalable and is only used in our
relatively small scenarios to provide some benchmarks
for our results. Figure 5 shows the output of the UAV
Placement algorithm, we see that we need to place 5
UAVs to ensure that the network is fully connected. The
algorithm converges in 76 iterations. Figure 6 shows the
output of the Grid agorithm. The number of UAVs is
again 5 indicating that the UAV placement agorithm
performs well. Figure 7 shows the output of a hard-
clustering algorithm that iteratively finds centers and
assigns clusters to centers based on our distance function
(5). Clearly the hard clustering algorithm will converge
to a local minima and this is reflected in the output as
now we need 6 UAVs to connect the network.

step=8 T =0.0000898663
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Fig. 3. Number of centers required when o = 2
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Fig. 4. Number of centers required when oo = 10

C. Dynamic scenarios

Ultimately, the goal would be to use the UAV Place-
ment algorithm in a scenario where the ground nodes
are moving. In this case we assume that the algorithm
will be called periodicaly depending on ground node
movement to determine the new number of UAVs and
their locations to connect the network. It is then desirable
that the algorithm converges as quickly as possible. In
such situations we can take advantage of the fact that
the new node locations will not be drastically different
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Fig. 6. Grid Algorithm: Number and location of centers

from their previous values. We can start the algorithm
with alower temperature T and the previous |locations of
UAVs as the new starting centers so that the convergence
time is reduced. Figure 8 shows the new locations of
the UAVs after displacing the nodes. We see that the
number of iterations required is only 15. This represents
a significant reduction in convergence time and implies
that the algorithm when called periodically can be started
at a lower temperature and then once in a while it can
be run from a high temperature to ensure that the output
is close to the global optimal.

step = 57

12r q

0.8

0.6

0.4

Fig. 7. Modified K-means: Number and location of centers

A simplified analysis shows the complexity of the algo-
rithm to be O(T' K (N + (B +3)M)). In this calculation
we have not included the complexity in determining
the clusters and their members which is of complexity
O(N?3). This information can be typically obtained from
the routing (eg. OLSR routing) and other protocol infor-
mation in the network and be used by the agorithm.
T is the number of iterations of the DA agorithm.
B is the number of repetitions in Blahut's method for
calculating p(y;). From our experiments we found that
E[B], the average number of repetitions to be around
5. B however clearly depends on K and M. Thus the
agorithm performs at most O(T'BK N) operations. 7'
reduces significantly when the algorithm is started from
a lower temperature and with the previous locations of
the UAVs (figure Figure 8).

V. EXTENSIONS TO THE UAV PLACEMENT

ALGORITHM

Having shown that the algorithm finds a near-optimal
solution to the basic connectivity problem, we can also
extend the algorithm to solve more constrained defini-
tions of connectivity to address key issues like reliability,
redundancy and some notion of quality of service. In
critical ad hoc networks where the ground topology is
continuously changing we would like to have several of
the nodes in a cluster to be able to reach the UAV in a
single-hop rather than just one node being able to reach



Placemen t of 5 UAVs using the results of the previous time step
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the UAV (as required for the connectivity problem).
Furthermore, it may be reasonable to provide multiple
UAV support to clusters containing high priority nodes
or nodes in need of more bandwidth. We discuss these
two enhancements in detail in the ensuing sections.

A. UAVs covering multiple nodes in each cluster

As described above, covering multiple nodes in a
cluster can have several benefits. First, the connectivity
of the whole cluster to the UAV is more resilient to node
mobility and ground conditions. Also, having multiple
nodes in a cluster connected single-hop to the UAV can
improve the overall capacity for the nodes in the cluster
and also reduce congestion and routing overhead within
the cluster that would result if there was only one node
connected to an UAV.

We achieve the goa of covering multiple nodes in
a cluster by modifying the distance function (5) and
redefining it as:

D(Cja yz) = Orderxeoj (da (.’1}‘, yl)a n) (14)

where the function order(d, n) orders the nodes (x € C)
according to their distance from the center y; and returns
the distance of the nthclosest node d®(min(n, |C|),y)
where, n is the number of nodes required to be covered
in each cluster and |C| is the number of nodes in that
cluster. n = 1 takes us back to the previous definition
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of distance. The algorithm using this modified distance
function will find the minimum number of UAVs and
their locations such that N nodes in each cluster are
directly covered by the UAV. Figure 9 illustrates the
results for the scenario where we require at least 6 nodes
in each cluster to be directly connected to a UAV. We see
that 6 UAV's are needed to provide network connectivity
with the modified distance function. This enhancement
emphasizes the flexibility of the algorithm in incorporat-
ing various network connectivity constraints.

B. Multiple UAVs covering each cluster

Another form of providing reliability and improving
capacity for certain high traffic generating priority nodes
would beto cover such clusters with multiple UAVs. This
would aso ensure some reliability through redundancy
as the disappearance of one UAV does not result in the
cluster being isolated.

In order to achieve this goa we make a fundamental
change to the update procedure of the Deterministic
Annealing agorithm. As described in Section I11-A,
the basic Deterministic Algorithm involves repetition
of two steps. Finding the set of ys and updating the
association probabilities p(y|x) for the data points z. The
association probability p(y;|z;) indicates the influence
of data point z; in determining the center location
y;. The association probabilities start from an uniform



distribution at high temperatures and converge to 0 or
1 value at low temperatures (hard clustering), where,
each data point affects only one code word. We argue
that for a cluster to be connected by L. UAVs, at low
temperatures the association probability of this cluster
to the L centers should be large enough to determine
(influence) the location of the L centers. This can be
achieved by adjusting the association probabilities once
they are calculated such that the first L probabilities
for each cluster (ordered from max to min) are made
equal. For example, let's assume that the calculated
association probabilities for a cluster C' ordered from
max probability to min probability be p(y|C)

p(y|C) = [p1p2 ... PK]

where k is the number of centers. The adjusted associa-
tion probabilities for C' would be

=" | i=L
p(y|C) = [f ;pi zzlpi PLt1s- -5 PK]
1= 1=

Intuitively, the system can now be thought of one

where for each cluster, the temperature reduction affects
only the K — L centersthat are not part of the adjustment
process. For the L centers part of the adjustment process,
reduction in temperature has no impact as they are
equally influenced by the cluster through the adjusted
association probabilities.
The modified algorithm using the adjustment to p(y|x)
will find the minimum number of UAVs and their lo-
cations such that each cluster is connected to L UAVSs.
Clearly, each cluster need not be covered by the same
number of UAVs (L), depending on the requirement
for additional connectivity, clusters can have different
number of UAVs covering them. This follows directly
from the above discussion as the association probabilities
are adjusted per cluster.

Figure 10 shows the output of our enhanced algorithm
when clusters 1,2 and 5 need to be covered by 2 UAVS.
We see from Figure 5 that these clusters aready have 2
UAV's covering them (though cluster 5 is covered by 1
UAV we can observe that it will covered by a minor
perturbation of center 5) therefore the new agorithm
should not require more UAV'S. The output is consistent
with this observation and the number of required UAV's
is still 5. Figure 11 shows the output when clusters
3, 4 and 7 need to be covered by 2 UAVs. Clusters
3 and 4 in Figure 5 were covered by one UAV each
and cluster 7 is already covered by 2 UAVs. The output
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shows that we need 6 UAVs to cover each of these
clusters with 2 UAVs and the rest with one UAV. We
now extend the test to consider the case where clusters
4 and 7 need to be covered by 2 UAVS, cluster 3 needs
to be covered by 3 UAVs and the rest require basic
connectivity. Figure 12 shows the output for thistest. We
see that we need 6 UAV's to provide connectivity based
on the given constraints. The correctness of this result
can be checked from visual observation from Figure 11
, Where we see that cluster 3 is already covered by 3
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UAVs. Unfortunately, the grid approach even for these
small scale examples is not computationally feasible.
This enhanced UAV Placement agorithm can thus find
the minimum number of UAVs to provide constrained
connectivity. This enhancement can be used to allocate
resources (capacity, improved connectivity) to clusters
based on their requirement and priority.

V1. CONCLUSION

Ensuring that the nodes in awide area ad hoc network
are always connected is very important especially in
critical ad hoc networks (battlefield networks, rescue
scenarios ...). We have shown that by formulating the
connectivity problem as a clustering problem we can
utilize existing well defined clustering solutions. The
Deterministic Annealing algorithm as the clustering al-
gorithm is a good choice as it can be adapted easily to
the connectivity problem and its extensions, reaches the
global optimum and has less execution time than other
search algorithms.

Our approximation for the 'max’ function holds for an
exponent value of o« = 10. We establish the validity
of the approximation through a simple simulation. The
modified algorithm generates the optimal number of
UAVs required to establish connectivity. This is estab-
lished by comparison with the result of the exhaustive
grid-search algorithm. We also show that a non-optimal
algorithm (modified K-means) would in fact require
more UAVs to establish connectivity due to its conver-

gence to local minima. Successive runs of the algorithm
starting from lower temperatures and the previous centers
would converge faster. The algorithm can therefore be
used in dynamic scenarios.

The algorithm and the distance function can be modified
to support extended notions of connectivity like multiple
nodes in each cluster being directly connected to the
UAV and multiple UAV's covering each cluster. These
enhanced connectivity constraints in fact mirror some
of the current issues in ad hoc networks like capacity
enhancement, resource allocation, reliable networks etc.
Results show that the enhanced algorithm does in fact
generate the minimum number of centers and their
locations satisfying the imposed constraints.

The enhanced agorithm is capable of handling a wide
range of connectivity constraints and the fact that the
algorithm is suitable for dynamic scenarios make it a
useful tool for network planning and resource allocation.
Further extensions to the agorithm are currently be-
ing pursued, our current focus is on the capacitated-
connectivity problem where the bandwidth constraints
of the UAVs are aso taken into account.
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