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The photoplethysmogram (PPG) is a noninvasive cardiovascular signal related

to the pulsatile volume of blood in tissue. The PPG is user-friendly and has the

potential to be measured remotely in a contactless manner using a regular RGB

camera. In this dissertation, we study the modeling and analytics of PPG signal to

facilitate its applications in both robust and remote cardiovascular sensing.

In the first part of this dissertation, we study the remote photoplethysmogra-

phy (rPPG) and present a robust and efficient rPPG system to extract pulse rate

(PR) and pulse rate variability (PRV) from face videos. Compared with prior art,

our proposed system can achieve accurate PR and PRV estimates even when the

video contains significant subject motion and environmental illumination change.

In the second part of the dissertation, we present a novel frequency tracking

algorithm called Adaptive Multi-Trace Carving (AMTC) to address the micro signal

extraction problems. AMTC enables an accurate detection and estimation of one

or more subtle frequency components in a very low signal-to-noise ratio condition.



In the third part of the dissertation, the relation between electrocardiogram

(ECG) and PPG is studied and the waveform of ECG is inferred via the PPG signals.

In order to address this cardiovascular inverse problem, a transform is proposed to

map the discrete cosine transform coefficients of each PPG cycle to those of the

corresponding ECG cycle. As the first work to address this biomedical inverse

problem, this line of research enables a full utilization of the easy accessibility of

PPG and the clinical authority of ECG for better preventive healthcare.
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Chapter 1: Introduction

1.1 Background

1.1.1 Photoplethysmography and Remote Photoplethysmography

Photoplethysmography (PPG) is a simple, low-cost, and non-invasive optical

technology that detects blood volume changes in the microvascular bed of skin tis-

sue [1,2]. PPG is nearly ubiquitous in clinics and hospitals in the form of finger/toe

clips and oximeters and has increasing popularity in the form of consumer-grade

wearable devices that offer continuous and long-term monitoring capability. The

principle of the PPG is based on the fact that the blood has different optical be-

haviors compared with other skin tissues [3]. The circulation of the blood leads to

the variations of the number of hemoglobin molecules, which causes the variations

of the optical absorption across the light spectrum. As shown in Fig. 1.1, the PPG

measurement requires a light source (e.g., Light Emitting Diode (LED)) to illumi-

nate the skin and a phototransistor to receive the light propagated through the skin

tissue. Based on the geometric location of the LED and the phototransistor, the

working mechanism of PPG can be classified into two modes: transmissive mode or

reflectance mode.
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LED Photo Transistor

(a) Transmissive Mode PPG

LED

Photo Transistor
(b) Reflective Mode PPG (c) Remote PPG

Light Source

Camera 
Sensor

Diffuse 
Reflection

Figure 1.1: Three different operational modes of PPG. The difference between the
setup of the transmissive mode (a) and the reflective mode (b) is the relative place-
ment of the light sensor and the LED. The difference between the first two modes
with the remote PPG is the distance of the sensor and the light source to the subject.

The contactless mode of PPG, also known as remote photoplethysmography

(rPPG) is first introduced in [4], where multiple cardiovascular parameters are suc-

cessfully extracted from face videos with ambient light. By allowing a certain dis-

tance between the sensor and skin surface, rPPG has become a more favorable

pulse monitoring solution compared with the conventional contact-based method,

especially for users with special needs or for certain application scenarios, such as

liveness detection in rescue tasks. In the past decade, much progress has been

made in the rPPG research community in terms of optical system modeling, robust

signal processing, and system adaption for various applications scenarios. These

progress has enabled the measurement of multiple physiological parameters from

rPPG, such as pulse rate (PR) [4, 5], pulse-rate-variability (PRV) [6], respiration

rate (RR) [7], SpO2 [8], and blood pressure [9], in highly challenging scenarios, such

as long-distance between the sensor and subject. Applications of the rPPG include

and are not limited to fitness monitoring [10], atrial fibrillation detection [11], and

face anti-spoofing [12].
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Figure 1.2: A typical ECG waveform of a heart in normal sinus rhythm. Retrieved
from Wikipedia page of ‘Electrocardiography’ [14].

1.1.2 The ECG and PPG Waveforms

The ECG waveform: The ECG records the potential difference between

prescribed sites on the body surface that varies during the cardiac cycle. It re-

flects differences in transmembrane voltages in myocardial cells that occur during

depolarization and repolarization within each cardiac cycle [13].

Fig. 1.2 shows a typical ECG waveform of a heart in normal sinus rhythm. The

cardiac electrical signal is initiated in the sinoatrial (SA) node located in the right

atrium and travels to the left and right atria, causing the atria contraction and blood

pumping into the ventricles. Such an atria depolarization process is represented as

the P wave on the ECG cycle.

The electrical signal then passes from the atria to the ventricles through the

atrioventricular (AV) node. The electrical signal slows down once it passes the AV

node, which allows the blood to fill the ventricles. This process is recorded as the

PR segment, which usually appears as a flat line on the ECG between the end of

3



the P wave and the starting point of the Q wave. The PR segment represents the

electrical conduction through the atria and the delay of the electrical impulse in the

atrioventricular node.

After the signal leaves the AV node, it travels along with the bundle of His and

into the right and left bundle branches. The signal then travels across the heart’s

ventricles, causing them to contract, pumping blood to the lungs and the body. This

signal is recorded as the QRS waves on the ECG.

The ventricles then recover to their normal electrical state, shown as the T

wave. The muscles relax and stop contracting, allowing the atria to fill with blood,

and the entire process repeats with each heartbeat. The ST segment connects the

QRS complex and the T wave and represents the beginning of the electrical recovery

of the ventricles. The QT interval represents the time during which the ventricles

are stimulated and recover after the stimulation.

The PPG waveform: Fig. 1.3 shows a typical PPG waveform and its cor-

respondence with the variations in light attenuation by pulsatile components in

skin tissue. During the systole phase of the cardiac cycle, the oxygenated blood is

pumped to the body from the left ventricle of the heart. This process causes the

increase of the blood volume and oxyhemoglobin that reach to the capillaries in the

skin surface. The variations of the amount of oxyhemoglobin and related protein

in the blood result in the corresponding variation of light absorption and similarly

oscillation of the received light by the PPG sensor in each cardiac cycle.

The PPG signal can be decomposed into ‘AC’ component and ‘quasi-DC’ com-

ponent. The ‘AC’ component is related to the pulsatile component, and its funda-

4
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Figure 1.3: Variation in light attenuation by tissue and the corresponding PPG
measurement (modified from [15]).
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Figure 1.4: Anatomical cross-section structure of human skin tissues and the spec-
ular and diffuse reflections captured by a RGB sensor when the skin is illuminated
by a light source (modified based on [16]).

mental frequency reflects the heart rate. The AC component is synchronized with

each cardiac cycle, and it provides valuable information about the cardiovascular

system. The quasi-DC component, which superimposes onto the AC component, is

influenced by the respiration, vasomotor activity, and vasoconstrictor waves, Traube

Hering Mayer (THM) waves, and also thermoregulation [2].

1.1.3 Skin Reflection Model

We discuss the face skin reflection model that is adopted in this thesis to

facilitate the investigation of the rPPG system design. The discussion of the skin

model allows us to analyze the problem in detail and offer insights on how the

problems can be formulated and addressed.

Consider the situation when a piece of human skin containing pulsatile blood

is illuminated by a light source as shown in Fig. 1.4. The reflected light from the

skin surface can be characterized as the specular and diffuse reflections 1.

1Some literature [17] adopts the terms interface and body reflections rather than the specular
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Approximately 4% to 7% of visible light is reflected from the stratum corneum

in the epidermis layer [18, 19] as the specular reflection. The reflectance geometry

among skin surface, light source, and the camera sensor determines the radiance

of the specular reflection [17]. The spectral distribution of the measured specular

reflection component in a camera is a function of the spectral distribution of the

light source and the spectral response of the camera. Thus for a single light source

with fixed spectral distribution, only the strength of the specular reflection will be

modulated by the subject motion.

The diffuse reflection can be further decomposed into the epidermal reflection

and dermal reflection [18]. The spectral distribution of the epidermal reflection is

mostly determined by the concentration of the melanin in the epidermis layer. The

dermal reflection, on the other hand, carries the blood pulse information. The vari-

ations of the blood volume, especially the amount of oxygenated and deoxygenated

hemoglobin in the dermis layer, influence the color and intensity of the dermal re-

flection. Note that the dermal reflection also contains a part of the reflection, which

exhibits similar spectral activity as the epidermal reflection because the light needs

to pass through the epidermis layer so that it can reach the dermis layer.

Two assumptions about the skin reflection are made in this thesis:

1. Diffuse reflection from the skin surface is isotropic with respect to rotation

about the surface normal;

2. No inter-reflection exists among surface, as we approximately treat head as a

and diffuse reflections. To avoid confusion and maintain the consistency of the terminology used
in the rPPG community, we use the terms specular and diffuse reflections in this paper.
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convex shape.

Based on the analysis and assumptions above, we arrive at the reflection formulation

based on the skin characteristics and the Dichromatic Reflection Model (DRM) [16,

17,20]:

Ck(t) = I(t) · (vs(t) + vd(t)) + vn(t), (1.1)

where Ck(t) indicates the RGB channels of the kth skin pixel; I(t) denotes the

radiance of the light source arrived at the corresponding skin surface, which is a

function of the distance between the light source and the surface; vs(t) and vd(t)

denote the specular and diffuse reflection respectively; vn(t) denotes camera’s sensor

noise and the video or image compression noise.2

Specifically, vs(t) and vd(t) can be decomposed as:

vs(t) = us(s0 + s(t)),

vd(t) = ud · d0 + up · p(t),
(1.2)

where us, ud, and up denote the unit color vector of the light spectrum, the skin

tissue, and the pulse, respectively; s0 and d0 denote the strength of the DC part of

the specular and diffuse refection respectively; s(t) and p(t) denote the strength of

the AC part of the specular reflection and pulse signal respectively. Note that the

variations of both I(t) and s(t) come from subject motion. The difference is that the

variation of I(t) comes from the distance of the light source to the skin surface, while

2For the completeness of this thesis, we briefly reiterate the modeling process, which has been
discussed and detailed in [16,20]. The terminology used in those two papers are propagated in this
thesis paper for consistency considerations.
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s(t) comes from the variation of the surface normal direction. Let I(t) , I0(1+i(t)),

uc · c0 , us · s0 + ud · d0, where i(t) indicates the illumination change. We denote

C(t) as the averaged RGB values over a sufficiently large number of the skin pixels.

We assume that the pulse arrival time is identical for every face skin cite, and that

vn(t) exhibits zero mean white Gaussian distribution. Thus Eq. 1.1 can be rewritten

as:

C(t) ≈I0 (1 + i(t)) · (uc · c0 + us · s(t) + up · p(t))

≈uc · I0 · c0 + uc · I0 · c0 · i(t) + us · I0 · s(t) + up · I0 · p(t),
(1.3)

where the spatial averaging operation alleviates the white Gaussian noise vn(t) in

the first step, and cross products of AC-terms are neglected as the magnitude of

AC-terms are considered as much smaller than the DC-terms.

As pointed in [20], the limitation of the model (1.3) lies at the assumption of a

single light source and that the subject’s motion creates a single specular variation

direction in the RGB space. This is, unfortunately, unrealistic even when one single

illumination source exists in the environment. This is because the skin surface

might receive reflected light from other subjects with non-uniform light spectrum

absorbance in the scene, and the spectrum of such a reflected light differs from that

of the light source. If we include this variant in our model and assume that in total

J light sources exist in the scene, including the reflected light from other subjects
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in the scene, Eq. 1.3 becomes:

C(t) ≈

DC︷ ︸︸ ︷
J∑
j=1

uc,j · I0,j · c0,j +

Intensity︷ ︸︸ ︷
J∑
j=1

uc,j · I0,j · c0,j · ij(t) +

Specular︷ ︸︸ ︷
J∑
j=1

us,j · I0,j · sj(t) +

Pulse︷ ︸︸ ︷(
J∑
j=1

up,j · I0,j

)
· p(t) .

(1.4)

The DC component
∑J

j=1 uc,j · I0,j · c0,j can be estimated and subtracted from (1.4)

using the short term smoothing approach [16, 21] or the detrending method [22].

Since both ij(t) and sj(t) are functions of the subject motion, they can be approx-

imately modeled as different linear combinations of the motion components, i.e.,

ij(t) =
∑K

k=1 aj,k · mk(t), j(t) =
∑K

k=1 bj,k · mk(t), where mk(t) denotes the k-th

motion component. If we denote C̃(t) as the detrended signal after remove the DC

component, we finally arrived at

C̃(t) =

Motion︷ ︸︸ ︷
K∑
k=1

um,k ·mk(t) +

Pulse︷ ︸︸ ︷
u′p · p(t),

(1.5)

where um,k and up
′ represent the strength and color direction of the k-th motion

component and the pulse component, respectively. They are defined as um,k ,∑J
j=1 (aj,k · I0,j · uc,j · c0,j + bj,k · I0,j · us,j) and up

′ ,
∑J

j=1 I0,j · up,j. According to

(1.5), a linear projection of C̃(t) for eliminating the motion component would fail

when up
′ is correlated with

∑K
k=1 um,k · mk(t). This is unfortunately almost al-

ways the case when a subject is performing physical exercises in an uncontrolled

10



environment, as multiple motion components might enter the pulse color direction.

1.2 Related Works on the Micro Signal Analytics of rPPG

In this thesis, we are generally interested in the micro pulse or cardiac signal

extraction problems, where the signals-of-interest often have smaller magnitudes-

typically one order of magnitude or more-than the dominating signals. In [23], the

author has named such a problem as the micro signal extraction problem, and has

discussed several related applications. We extend the discussion from [23] in the

context of rPPG application that is covered in this thesis.

The objective of the rPPG technology is to extract a subject’s physiological

information, such as pulse rate, respiratory rate, or blood pressure, from a remote

optical sensing device in a non-contact manner. This is not a trivial task as the

challenges of this sensing mechanism come from each component of the system,

namely, the camera, the illumination condition, and the subject. In a fitness setup,

the motion-induced intensity and color change on the subject’s skin may very well

dominate over the reflected light from the facial skin, while the pulse-induced color

variation is much subtler. The measurement is also associated with a group of

nuisance signals, such as the sensor and quantization noise. To extract the subtle

pulse signal that may have a much smaller magnitude than the dominating video

components and simultaneously protect it from being corrupted by other nuisance

signals, one usually has to tackle the problem with extra caution.

To exemplify the last-decade efforts in addressing this micro-signal problem,

11



we select 21 prior works and list them in Table 1.1 for an overview and comparison

of the experiment setup (subject’s motion type, lighting condition, video quality,

etc.), claimed best performance, and the color handling method in each work. Note

that the works listed and discussed in this paper can in no means cover all spectral

of the rPPG technology. We extend our investigation below from the perspectives

of ROI selection and Motion robust pulse extraction.

1.2.1 ROI Selection

ROI selection, aiming to locate the ROI consistently in each video frame in

accordance with the subject’s motion, is an indispensable first step to obtain reliable

rPPG signals. The selection of face skin region as the ROI for pulse measurement

is mainly due to the following two facts. First, compared with other parts of the

human body, the face is less likely to be covered by other materials, such as clothes.

Second, owing to the development of the recent computer vision technologies, a

subject’s face can be faithfully located and tracked from a video using off-the-shelf

tools, even when the background is busy, and the video is compressed and noisy. We

summarize the main approaches for ROI selection that are deployed in prior works

below.

1. Manual selection: when the subject is completely motionless in the video, one

may manually select a single ROI from the first frame of the video and extract

face color signal using the same region in the subsequent video frames [4,

41]. This may not be a viable solution even when the subject is instructed
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year
Sensor Type

Datasets

Subject’s

Motion
Lighting Video

Perfor-

mance

Color

Handling

Ref.

Sensor

Verkruysse et al. [4] 2008
RGB

CCD cam
still

daylight,

fluorescent,

surgical lamp

15 fps N/A G

commercial

pressure cuff

with HR

display

Poh et al. [24] 2011
RGB

webcam
still

diffused

sunlight
15 fps

1.24 bpm

(RMSE)
ICA PPG (256 Hz)

Sun et al. [25] 2011
monochrome

CMOS cam

still, stationary

bike

infrared

LED

10 bits

/channel
N/A SCICA PPG sensor

Wu et al. [26] 2012 DC still ambient light N/A N/A EVM ECG sensor

Scully et al. [27] 2012 mobile still N/A 25 fps N/A G ECG sensor

Zhao et al. [28] 2013 near-IR cam
still, minor

head motion

near-IR

LED

8 bits

/channel

3.10 bpm

(RMSE)
SICA OmiPlex

de Haan et al. [29] 2013
RGB

CCD cam

still, stationary

bike, elliptical

machine

controlled

studio light

8 bits

/channel

48%

success rate

(elliptical

machine)

CHROM PPG sensor

Aarts et al. [30] 2013 RGB cam still ambient
8 bits

/channel

high match

with reference
G - R ECG sensor

Li et al. [31] 2014
RGB

webcam

still, minor

head motion

ambient,

screen lighting

8 bits

/channel

1.53 %

(relative error)
G ECG sensor

Stricker et al. [32] 2014 RGB cam
still, controlled

head motion

diffused

sun light
30 fps N/A G/(R+G+B) PPG sensor

Huang et al. [33] 2014 mobile phone still white LED N/A

Tarassenko et al. [34] 2014
High-end

RGB cam
still

well-lit ward

environment,

fluorescent

8 bits

/channel

12 fps

3 bpm (MAE) G PPG sensor

McDuff et al. [35] 2014

DSLR

(RGBCO)

cam

still
indoor light

sun light

16 bits

/channel

30 fps

1.00 (PCC) ICA ECG sensor

Feng et al. [36] 2015 webcam
still,

head rotation

fluorescent

light

8 bits

/channel
0.96 (PCC) G - R PPG sensor

Wang et al. [16] 2016
RGB CCD

cam

still, head

rotation, stationary

bike, elliptical

machine

frontal

fluorescent

light

8 bits/channel

20 fps
5.16 dB (SNR) POS PPG sensor

Zhu et al. [10] 2017 mobile
elliptical machine

treadmill

ceiling lighting

sunlight

8 bits/channel

30 fps

1.10 bpm

(RMSE)
ECG sensor

Wang et al. [20] 2017
RGB CCD

cam
treadmill

ceiling

lighting

8 bits/channel

20 fps
4.78 dB (SNR)

sub-band

POS (SB)
ECG sensor

Chen et al. [37] 2018 RGB cam still, head rotation indoor lighting
8 bits/channel

120 fps

1.50 bpm

(MAE)

spatial-temporal

Neural Network
ECG sensor

Niu et al. [38] 2019 webcam
still, talking, head

rotation
filament bulb uncompressed 7.99 (RMSE)

spatial-temporal

Neural Network
PPG sensor

Song et al. [39] 2019 webcam
still, minor head

motion

stable indoor

lighting

8 bits/channel

30 fps

3.80 bpm

(RMSE)
CHROM ECG sensor

Gudi et al. [40] 2019 RGB cam
still, talking, head

rotation
indoor lighting 25 fps

1.02 bpm

(RMSE)
POS ECG sensor

IR: infrared. RGBCO: red, green, blue, cyan, orange. RMSE: root mean square
error. MAE: mean absolute error. PCC: Pearson’s correlation coefficient. SNR:
signal-to-noise ratio. ICA: independent component analysis. SCICA: single
channel ICA. EVM: Eulerian video magnification.

Table 1.1: A research review of the past-decade technologies for PR estimation using
rPPG.
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to be motionless in the process, as Ballistocardiographic (BCG) motion is

involuntary and may modulate the extracted rPPG signal as a result.

2. Automatic Face detection: clearly, a face detection process is necessary for

automatically selecting the ROI when the video contains substantial subject’s

motion. This can be achieved by either conducting face detection on each video

frame [24] or tracking an initial ROI by estimating the inter-frame transition

matrix from some “good-features-for-tracking” [31,36]. Both these approaches

might not be optimal as the former might lead to discontinuous face localiza-

tion results due to possible false negatives, while the latter might lose track

when the videos contain large motion or complex background.

3. Skin detection: The non-skin facial pixels have little-to-no contribution to the

pulse extraction and might bring additional motion artifacts when the subject

is talking or blinking. It is thus favorable to exclude those non-skin samples in

each frame. The author in [42] proposed an online learning approach to train a

skin pixel detector in the first several frames. This subject- and scene-specific

learning approach is robust to the illumination source and the subject’s skin

tone. However, the system might generate false detection results when the

illumination condition changes along the time.

1.2.2 Motion Robust Pulse Extraction

Green Channel generates the highest pulse signal quality compared with

other color channels. As the oxyhemoglobin and deoxyhemoglobin have much
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greater absorptivity in green light compared with the red or the blue channel, larger

intensity variation in green channel during each cardiac cycle is observed. This ob-

servation laid the foundation for a series of works [4,27,31,34] which used the green

channel for extracting the pulse information.

Blind source separation (BSS) method improves the system robustness by

incorporating information from other color channels. As different components of the

skin tissue have different optical responses in each spectral range (for example, red,

green, and blue), it is possible to separate each component from available color chan-

nels based on proper assumptions on the sources and color channel measurement.

The BSS schemes are applied to factorize the pulse signal from the RGB-signals by

assuming the pairwise source uncorrelation (PCA-based method [43]) or indepen-

dence (ICA-based method [44]). The pulse channel is selected as the most periodic

one after the source separation is performed. Without side information such as the

subject’s motion or the change of the illumination intensity, each BSS algorithm pro-

duces the optimal factorization result when the noise and interference components

exhibit the statistical behavior as assumed. However, in a fitness scenario, when

strong periodic motion artifacts enter the RGB-signal measured from the face, the

statistical assumptions about the source signals might be easily violated, and the

channel selection scheme may mistakenly output motion source as the pulse, consid-

ering that the motion components may exhibit the highest strength in the frequency

domain.

Skin model-based methods are proposed to address this source uncertainty

problem in a line of research [16,20,21,29,42] by investigating the color characteris-
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tics of pulse and other reflected components. With prior knowledge about the skin

tone color vector obtained from a large scale experiments, CHROM algorithm [29]

maps the temporally normalized RGB-signals to a color plane orthogonal to the

specular component, and the pulse signal is obtained via the alpha-tuning opera-

tion. POS algorithm [16] adopts the same skin reflection model but instead maps

the normalized RGB-signals to the color plane orthogonal to the intensity varia-

tion direction, to eliminate the motion artifacts. The pulse color direction is then

searched for within a 90 degree sector, which outputs the highest pulse signal qual-

ity on the color plane. The hue change on the skin is tested by experiments to be

another useful feature for pulse extraction [45]. 2SR [5] exploits such pulse-induced

hue change in a subject-dependent manner by learning the principal direction of

the hue channels. All these color mapping schemes use linear combinations of RGB

color channels to factorize the pulse from other components. The difference concern-

ing the assumptions of the relations of the source signals reflects on the demixing

weights, which are applied on each color channel. For a more detailed discussion

about the strength and weaknesses of the algorithms mentioned above, we referred

the readers to [16].

Learning-based methods leverages the training data to perform PR estima-

tion. Hsu et al. [46] treats the time-frequency representation of the extracted signal

as an image and estimates the PR with a Convolutional Neural Network (CNN). The

end-to-end rPPG learning systems [37, 38], which utilize the temporal and spatial

attention module for automatic channel weighting and signal selection are appealing

and easy-to-use. However, the training and testing of all the learning-based systems
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are based on the same datasets with similar experimental setups in each video. The

adaptation and robustness across different scenes, and the subject’s motion type is

still questionable.

The fundamental limitation of the color linear mapping schemes is a lack

of measurement dimension. Specifically, a regular RGB camera only offers three

degrees-of-freedom in color. A linear color mapping algorithm can thus maximally

exclude two independent interferences from the pulse signal. The extension of

the signal degree-of-freedom thus represents a promising research direction to

address this “lack-of-dimension” problem. Note the possibility of treating each fa-

cial skin pixel as an rPPG sensor. The spatial sensor redundancy of rPPG sensor

could be exploited to increase the measurement degree-of-freedom and thus the ro-

bustness of the algorithm. Such idea can be found in [10, 42, 47, 48], where the

temporal correspondence of each rPPG sensor is estimated either via dense optical

flow alogrithms [49] or estimated facial landmarks [50–52]. Noticeable improvement

of the system performance was reported when multiple rPPG sensors became avail-

able. However, the large computational load for dense pixel alignment operation

makes the system unfriendly to be deployed on a regular device with moderate

computation capacity.

In [35], the author extended the signal’s degree-of-freedom using a five-band

RGBCO camera. Even though a performance gain in the estimation of PR/PRV was

claimed, the cost and availability of a five-band camera restrict a wide adoption of

the system. In [31,53], the benefit to include the background information in a rPPG

system was presented. The illumination change on the face was compensated by that
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of the background using an adaptive filter [31] or via a joint blind source separation

scheme [53]. Such a system assumes a high correlation between variations of the

background reflectance with the non-pulse reflectance on the face. This assumption

might be true when the background is stationary and controlled, whereas it might

be violated when the background contains additional illumination sources or moving

objects.

The subjects’ motion information was estimated from the video and exploited.

When the camera sensor is fixed, and the subject exercises on the focal plane of the

camera, the subject’s face motion can be roughly estimated as the face motion

trace appeared in the video [54]. Note the motion signal investigated in [54] is

mainly pulse-induced ballistocardiography (BCG) motion signal. The face motion

signal discussed in this paper contains little pulse component as the BCG component

becomes negligible when the video contains voluntary subject motion. This property

enables the author in [10, 55] to filter the pulse signal from the motion corrupted

rPPG measurement.

A sub-band based approach is proposed in [20], where the essence of the algo-

rithm is to perform a frequency-dependent POS pulse color mapping. Even though

an increase of the measurement degree-of-freedom is claimed in the paper and the

system performance improves in the fitness scenario, there is no gain in terms of the

information level, and the motion residue can still dominate over pulse component

in the processed signal.
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1.3 Main Contributions

In this thesis, we explore the modeling, estimation, and inference problems

with a focus on cardiovascular sensing applications. We first study the robust rPPG

applications in Chs. 2 and 3. We next study the weak multiple frequency traces

tracking problems in Ch. 4. We last study a biomedical inverse problem to recon-

struct the ECG signal from PPG in Ch. 5.

Below we detailed the key contributions of this dissertation research.

1.3.1 Fitness Heart Rate Measurement using Face Videos

Recent studies showed that subtle changes in human face color due to the

heartbeat could be captured by digital video recorders. Most existing work focused

on still/rest cases or those with relatively small motions, while limited art addresses

the large fitness motion scenarios either in a highly constrained setup or obtains

unsatisfactory heart rate estimate. In this work, we propose an end-to-end heart-

rate monitoring method for fitness exercise videos. We focus on designing a highly

precise motion compensation scheme with the help of the localized facial optical

flow and use motion information as a cue to adaptively remove ambiguous frequency

components for improving the heart rate estimates. Experimental results show that

our proposed method can achieve highly precise estimation with an average error of

3.3 beats per minute (BPM) or 1.74% in relative error.
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1.3.2 Robust Pulse Rate and Pulse Rate Variability Measurement

from Face Video

Following our first work focusing on accurate fitness pulse rate estimation from

face video, we present another novel rPPG system that is robust for both pulse rate

and pulse rate variability extraction from face video when the subject is exercising,

and the video contains large subject motions. We focus on designing an online

learning scheme for a precise subject- and scene-specific skin detection and use an

adaptive filter bank system to clean the pulse signal so that the inter-beat-intervals

and pulse rate variability are precisely estimated. The computation complexity is

greatly reduced compared to the optical-flow method, and the system is capable of

running in realtime in devices with just moderate computation power.

1.3.3 Adaptive Multi-Trace Carving based on Dynamic Program-

ming

Many biomedical problems often boil down to the problem of frequency extrac-

tion. Previous works have studied to track the frequency components by incorporat-

ing the temporal correlation of the frequency component in their model. However,

the limitations of prior frequency extraction approach, such as low performance in

noisy conditions, inability to track multiple frequency components, or inefficient real-

time implementation, restrict their deployment in many real-world tasks. To address

this issue and facilitate the micro signal extraction process, we propose AMTC, an
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unified approach for tracking one or more subtle frequency components in very low

signal-to-noise ratio (SNR) conditions. AMTC treats the signal’s time-frequency

representation as an image and identifies all frequency traces with dominating en-

ergy through iterative dynamic programming and adaptive trace compensation. In

addition, AMTC considers a long duration of high trace energy as an indicator of

the presence of a frequency component. The trace detection problem is thus ad-

dressed with a robust test statistic characterizing the trace energy. By doing this,

AMTC is capable of simultaneously detecting and tracking multiple frequency com-

ponents accurately, even from highly-corrupted signals. Extensive experiments using

both synthetic and real-world data reveal that the proposed method outperforms

the state-of-the-art methods under low SNR conditions and can be implemented in

near-realtime settings.

1.3.4 Learning Your Heart Actions From Pulse: ECG Waveform Re-

construction From PPG

We next study the relation between electrocardiogram (ECG) and photo-

plethysmogram (PPG) and infer the waveform of ECG via the PPG signals. In order

to address this inverse problem, a transform is proposed to map the discrete cosine

transform (DCT) coefficients of each PPG cycle to those of the corresponding ECG

cycle. The resulting DCT coefficients of the ECG cycle are inversely transformed

to obtain the reconstructed ECG waveform. The proposed method is evaluated

with the different morphologies of the PPG and ECG signals on three benchmark
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datasets with a variety of combinations of age, weight, and health conditions us-

ing different training modes. Experimental results show that the proposed method

can achieve a high prediction accuracy greater than 0.92 in averaged correlation for

each dataset when the model is trained subject-wise. With a signal processing and

learning system that is designed synergistically, we are able to reconstruct ECG

signal by exploiting the relation of these two types of cardiovascular measurement.

The reconstruction capability of the proposed method may enable low-cost ECG

screening for continuous and long-term monitoring. This work may open up a new

research direction to transfer the understanding of clinical ECG knowledge base to

build a knowledge base for PPG and data from wearable devices.

22



Chapter 2: Fitness Heart Rate Measurement using Face Videos

2.1 Introduction

Optimizing the adaptation and preparedness for enhanced performance is the

goal for the athletic training and recovery [56]. The use of heart rate (HR) measures

in sports represents a non-invasive, time-efficient method to monitor the training

dose and quantify the athletes’ response [56–60]. With the context information of

the training and proper interpretations of the HR measures, such practice has direct

implication for adjusting the training load in order to harness the individual or team

training objectives in a safe and effective manner.

The conventional cardiac monitoring (e.g., electrocardiogram (ECG) [61] and

photoplethysmography (PPG) [62, 63]) are obtrusive and may cause skin irritation

problem or discomfort during prolonged use. Contact-free monitoring of the pulse

rate using videos of human faces is a user-friendly approach compared to conven-

tional contact-based ones such as electrodes, chest belts, and finger clips. Such

monitoring system extracts from a face video a 1-D sinusoid-like face color signal

that has the same frequency as the heartbeat. The ability to measure heart rate

without touch-based sensors is attractive and gives it potentials in such applica-

tions as smart health and sports medicine for the following three reasons. First, it
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brings more comfort to the end-users as no sensor needs to be worn, and free body

movements are allowed during the monitoring process; Second, the data is collected

unobtrusively. Thus invaluable recording will not be lost due to maloperation of the

sensor or loose of contact; Third, the video content has a potential to offer valuable

training context. A video-based solution could provide paired subject’s motion infor-

mation, which may enable a better interpretation for the subject’s cardiac response

with the quantified external load measure [57].

The last decade witnesses a rapidly increasing number of articles (seen Ta-

ble 1.1) that published on rPPG address the pulse rate estimation on still/rest cases

or with relative small motions [24, 26–28, 30–40]. Among a few art [16, 20, 21] ad-

dressing the fitness pulse rate extraction with strenuous subject motion, the pulse

rate estimation result is either not reported [16, 20] or highly deviated from the

reference [29]. It is still attractive to ask and answer the question in this paper as

“Can we accurately estimate a subject’s pulse rate remotely from his/her face video

in a normal fitness setup with sufficient illumination?”.

This is not a trivial question because the challenges of the fitness rPPG sens-

ing come from each component of the rPPG sensing system, namely, the camera,

the illumination conditions, and the subject. In a fitness setup, the motion-induced

intensity and color change may very well dominate over the reflected light from

the facial skin, while the pulse-induced color variation is much subtler. The mea-

surement is also associated with a group of nuisance signals, such as the sensor

and quantization noise. To extract the subtle pulse signal that may have a much

smaller magnitude than the dominating video components and simultaneously pro-
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tect it from being corrupted by other nuisance signals, one usually has to tackle the

problem with extra caution.

The established arts provide solutions to improve the system performance

in terms of the robustness against the sensor noise and the environmental noise,

including the illumination changes and body motions. However, an existing rPPG

system may still fail to estimate the subject’s PR when the signal distortion problems

are improperly addressed. It is thus attractive for the rPPG community if an end-

to-end system provides the capability to accurately estimate the PR.

In this work, we aim to examine the best possible performance for fitness

exercise videos when the registration error is minimized for the color-based heart-

rate monitoring method. A block diagram of our proposed method is shown in

Fig. 2.1. We minimize the registration error using pixel-level optical flow based

motion compensation [64, 65] that is capable of generating almost “frozen” videos

for best extracting the face color signals. We use the subject’s motion information

estimated from the video to reject the motion components in the extracted face

color information by an adaptive least mean square filter. The final pulse rate

estimate is updated in realtime via a frequency tracking algorithm which utilizes

the temporal pulse rate correlation for generating the robust estimation results. We

focus on the fitness scenarios that heart rate often wildly vary at different stages of

fitness exercises, and present our results in widely adopted metrics [31, 66, 67] for

comparison purpose.

25



Input Video

Heart rate
estimate 

,-------------------- ----7 

: Stage 1: Registration : 
I I 

I Face Motion Cheek I 

I detection estimation regions ,___......
I 

I ....__ __ 

...J ( opt. flow) selection 
I 

:
selected regions 1

1 

Spectrogram 
based 

frequency 
tracking 

Motion 
frequency 

compensation 

on aligned faces

Pulse color
mapping 

(POS) Face colo
signal 

Stage 2: Estimation 

Spatial 
averaging 

I 

I 

I 

I 

I 

I 

I 

L-------------------------� 

Figure 2.1: Flowchart for the proposed heart rate monitoring method for fitness
exercise videos.

2.2 Proposed Method

2.2.1 Precise Face Registration via Localized Optical Flow

A highly precise pixel-level motion compensation is a crucial step toward gen-

erating a clean face color signal. Fitness exercise videos may contain large and

periodic motions. Our proposed method focuses on a highly precise motion com-

pensation scheme to allow generating a clean face color signal to facilitate the latter

analysis steps, and uses the resulting motion cue as the guide to adaptively remove

ambiguous frequency components that can be very close to the heart rate.

We use the Viola–Jones face detector [68] to obtain rough estimates of the

location and size of the face. We clip and resize the face region of each frame to 180

pixels in height, effectively generating a prealigned video for the face region.

The prealignment significantly reduces the lengths of motion vectors, which

in turn makes results of optical flow more reliable. In our problem, two face images

are likely have a global color difference due to the heartbeat. In order to conduct
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a precise face alignment, instead of using the illumination consistency assumption

that is widely used, we assume more generally that the intensity I of a point in two

frames are related by an affine model, namely,

I(x+ ∆x, y + ∆y, t+ 1) = (1− ε) I(x, y, t) + b (2.1)

where ε and b control the scaling and bias of the intensities between two frames.

Both of them are usually small.

Based on the model in (2.1), we have the following three remarks aiming to

justify the validness of the optical flow method we adopted for pixel alignment in

an rPPG application.

1. Traditional local-based optical flow techniques tackling the illumination con-

sistency cases such as Taylor expansion and regularization can be similarly

applied for (2.1). Our mathematical analysis showed that omitting the illu-

mination change due to the heartbeat, and applying a standard optical flow

method leads to a bias term that is at the same order magnitude compared to

the intrinsic error (in terms of standard deviation) of the optical flow system.

2. The bias term mentioned above can be alleviated with a global flow estimation

strategy with flow smoothness constraint in the optical flow estimation formu-

lation [64]. In this way, the flow estimation in smooth skin region on face will

be regularized globally by other flow estimates on salient facial features such

as the noise and the eyes.
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Figure 2.2: Face images from a same video segment before and after optical flow
based motion compensation using the same reference face.

3. Even with prior alignment with face detection, the pixel displacement in two

consecutive frames might still be large enough to fail a local method, such

as [69]. A coarse-to-fine hierarchical searching strategy [64,70] provides much

better flow estimation results in presence of large subject motion as large

displacement becomes small in a coarser image scale.

Based on the above discussion, we therefore use Liu’s optical flow implementation

[65] in our work.

We divide each video into small temporal segments with one frame overlap-

ing for successive segments. We use the frame in the middle of the segment as

the reference for optical flow based motion compensation. This would ensure two

frames being aligned do not have significant occlusion due to long separation in

time. Fig. 2.2 shows a couple of face images from a same segment before and after

optical flow based motion compensation using the same reference.

With the precisely aligned face videos in short segments, we can estimate the

face color for each frame by taking a spatial average over pixels of the cheek for R,

G, and B channels, respectively. We call the three resulting 1-D time signals the

face color signals.

When concatenating segments into color signals, the last point of the current
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segment and the first point of the next segment may have different intensities because

they correspond to the same frame whose motion compensation were conducted with

respect to two different references. To address this problem, the difference of the

intensity between the two points is calculated and the resulting value is used to bias

the signal of the next segment in order to maintain the continuity.

To determine the cheek regions for conducting spatial averaging, we construct

two conservative regions that do not contain facial structures and are most upfront

in order to avoid strong motion-induced specular illumination changes. We use facial

landmarks identified by the method proposed in [50] to facilitate the construction

of the cheek regions. Each cheek region is constructed to be a polygon that has a

safe margin to the facial structures protected by the landmarks. One example for

such selected cheek regions and corresponding face landmarks is shown on the face

in Fig. 2.1.

2.2.2 Motion Compensation via joint-channel NLMS

Once the skin pixels are detected in each frame, a temporal RGB sequence

C̃(t) is generated by spatially averaging the RGB values of the detected skin pixels

and temporally normalized in each color channel. C̃(t) is then linearly mapped to

a specific color direction in the RGB space to generate a 1-D pulse signal. The

pulse color mapping schemes have been extensively investigated in [16] and [20]. We

note that the design of the pulse color mapping algorithms discussed in this paper

is not within the contributions of this work, although different pulse color mapping
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approaches [16,20,29,44] are implemented and evaluated in Section 3.4.

Without loss of generosity, we assume that the face color signal C̃(t) is mapped

to the POS direction [16], which is one of the most robust color features representing

the highest relative pulse strength. We denote the projected 1-D processed signal

as cpos(t). According to (1.5), we have

cpos(t) = pᵀ · C̃(t)

=

Pulse︷ ︸︸ ︷
pᵀ · up

′ · p(t) +

Motion Residue︷ ︸︸ ︷
K∑
k=1

pᵀ · um,k ·mk(t),

(2.2)

where p ∈ R3×1 denotes the projection vector of POS algorithm. The motion

residue term in Eq. (3.6) is negligible when the illumination source is single, as the

POS direction is orthogonal to the color direction of the motion-induced intensity

change, and the specular change is suppressed via “alpha tuning” [29]. However, if

the video is captured in an uncontrolled environment, the motion residue term is

often non-negligible, and sometimes can be more significant than the pulse term.

To address this problem, we rely on estimating the motion term in (3.6) using

the estimate of the face motion in both horizontal and vertical directions. Note

that the subject motion and the motion artifact in rPPG signal share the causal

relation and are thus highly correlated. Meanwhile, we assume the pulse signal

is uncorrelated with the subject motion. To capture this signal correlation, we

propose to use the Normalized Least Mean Square (NLMS) filter [71], and the face

motion signals in both horizontal and vertical directions are estimated and deployed
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to approximate and mitigate the motion residue term in (3.6). We denote the

estimated face motion sequence in horizontal and vertical directions as mx(t) and

my(t). The structure of the adaptive filter framework are shown in Fig. 2.3. We

treat cpos(t) as the filter’s desired response at time instant t. We treat the motion

tap vector mᵀ(t) , [mx(t−M + 1),mx(t−M + 2), ...,mx(t),my(t−M + 1),my(t−

M+2), ...,my(t)] as the input and c̃pos as the output of the system and also the error

signal. The estimated tap-weight vector of the transversal filter is denoted as ŵ(t),

and weight control mechanism follows the Normalized Least Mean Square (NLMS)

algorithm [71] as below

c̃pos = cpos − ŵᵀ(t) ·m(t),

ŵ(t+ 1) = ŵ(t) +
µ

‖m(t)‖2m(t) · c̃pos,

(2.3)

where µ denote the adaptation constant, which is normalized by the norm square

of the input vector m(t).

2.2.3 Pulse Rate Tracking via dynamic programming

To this end, the signal quality is improved via precise facial pixel alignment,

robust pulse color mapping, and adaptive motion filtering. As did most of the prior

arts [21,29,44], one might now assume temporal stationarity of the processed pulse

signal and consider to estimate the instantaneous heart rate by mapping the 1-D

processed signal to the frequency domain and searching the spectral peak within

the normal human heart rate range (50-240 bpm). Such highest-peak estimation
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Figure 2.3: (a) Adaptive motion compensation filter framework. Spectrogram of the
POS signal (b), the combined normalized subject motion in horizontal and vertical
directions (c), and the filtered POS signal (d) as the output of (a).

method can give accurate result when the SNR is high, but may frequently generate

outliers when SNR drops.

Note that for a healthy human being, two temporally consecutive heart/pulse

rate measurements may not deviate too much from each other. We exploit this

heart rate continuity property, and track people’s heart rate by searching for the

dominating frequency trace appearing in the signal’s spectrogram image [72]. The

process of the tracking algorithm is briefly described below.

Let Z ∈ RM×N
+ be the magnitude of a processed signal spectrogram image,

which has N discretized bins along the time axis and M bins along the frequency

axis. We model the change of the frequency value between two consecutive bins at

n− 1 and n as a one step discrete-time Markov chain, characterized by a transition

probability matrix P ∈ RM×M , where Pm′m = P (f(n) = m|f(n−1) = m′), ∀m,m′ =
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Figure 2.4: (a) Pulse rate tracking via dynamic programming. (b) Spectrogram of
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33



1, ...,M , and ∀n = 2, ..., N . The regularized single trace frequency tracking problem

is formulated as follows

f∗ = argmax
f

E(f) + λP (f), (2.4)

The regularized tracking problem in (4.3) can be solved efficiently via dynamic

programming. First, we iteratively compute an accumulated regularized maximum

energy map G ∈ RN×M
+ column by column for all entries (m,n) as follows

G(m,n) =Z(m,n) + max
m′=1,...,M

{G(m′, n− 1) + λ logPm′m}. (2.5)

After completing the calculation at column n = N , the maximum value of

the Nth column is denoted as f ∗(N). Second, we find the optimal solution by

backtracking from the maximum entry of the last column of the accumulated map

G. Specifically, we iterate n from N − 1 to 1 to solve for f ∗(n) as follows

f ∗(n) = argmax
f(n)

(f(n), n) + λ logPf(n)f∗(n+1). (2.6)

Note that we can avoid transitions from state m′ to state m by setting Pm′m = 0, as

the regularized term would penalize the total energy to −∞. If we assume uniform

random walk transitions, i.e., Pmm′ = 1
2k+1

, |m′ − m| ≤ k, then problem (4.3) is

degenerated to the seam carving problem defined in [73], and in this case the value

λ does not affect the solution.

This offline dynamic programming solution can be adapted naturally to a
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Figure 2.5: Sample frames in fitness video dataset with different types of motions:
(a) stationary bike, (b) elliptical machine, (c) treadmill. The challenges in the
dataset includes head rotation in (d) yaw and (e) pitch, (f) motion blurred frames,
and (g) significant illumination variation from diffused sunlight.

realtime implementation. Suppose we stand at the time instance n − 1, where

G(n − 1) has been updated based on previous input frames Z(1 : n − 1). At

the arrival of the next innovation spectral frame Z(n), we update G(n) similarly

according to (3.10). The PR estimation can be simultaneously updated by the same

backtracking process describe in (3.11).

2.3 Experiment Setup

Our proposed method was evaluated on a self-collected fitness exercise dataset

to demonstrate the efficacy of the PR estimation on dealing with motions. The

dataset has 25 videos in which 10 contain human motions on an elliptical machine,

10 contain motions on a treadmill, 5 contains motions on a stationary bike. The

experiment setups are detailed as below.
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Figure 2.6: Four qualitative comparison results using different subject motion esti-
mation schemes. (Column 1) The reference HR measured by ECG based chest belt.
(Column 2-8) Spectrograms of the extract pulse signal using the proposed system
with the motion estimation schemes as FD, FSD, GTC, OF-LK, OF-HS, OF-F, and
OF-B, respectively.

Environment In order to test the robustness of the system, the experiment was

conducted in two uncontrolled apartment fitting rooms. The active illumination

sources only involve the existing lighting equipment in the scene. No additional

illumination equipment or backdrop were placed during the recording. Both fit-

ting rooms were well-lit with several over-the-top florescent lights and with diffuse

daylight passing into the gym through glass walls. The presence of other subjects

exercising or entering the scene is possible, and no regulation is placed to restrict

people from entering the room.

Devices and Reference Signal The first 5 stationary bike videos were captured

by the rear camera of a Huawei P9 mobile phone. The rest 20 videos involving

the elliptical machine and treadmill motions were captured by the rear camera of a
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iPhone 6s mobile phone. The shutter speed of both sensors was kept constant and

the face in focus at all time. During the video recording, we obtained the subject’s

reference heart rate by simultaneously acquiring the subject’s electrocardiogram

(ECG) with a chest belt monitor (Model: Polar H7).

Placement of the Sensors The mobile camera was placed on the holder of the

stationary bike, affixed on a tripod, or held by the hands of a person other than

the test subject. The camera is placed in front the subject face at a distance of

about 1 meter away at approximate same height with the subject’s face during the

recording. The ECG chest belt was correctly worn underneath the subject’s cloth,

and the sensor was in direct contact with the subject’s chest skin to maximize the

SNR of the reference ECG signal.

Participants Two male Asian subjects are involved in the experiment. The skin

tone of both subjects is classified as Skin-type III according to the Fitzpatrick skin

scale [74]. Among all the videos in the dataset, 5 treadmill videos and 5 elliptical

machine videos belonged to one subject. The rest 15 belonged to the other. Based

on the most recent medical examination results, none of the subject was diagnosed

with any known CVDs or pulmonary diseases.

Compared Motion Estimation Methods In order to test the efficacy of the

proposed motion estimation method, we compared it with other possible alternatives

listed below for a thorough evaluation.

1. Face detection (FD): the face rectangle region is first estimated, and the two
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check regions are localized according to the facial landmarks estimated by [50].

2. Face and skin detection (FSD): the face ROI is localized by a pixel color based

skin detection algorithm [75] operating in the face detected rectangle region.

3. Geometric transform correction (GTC): we first detect the face ROI in the first

frame in the same way as FD. We then estimate the ROI in the next frame

by projecting each point in the ROI in the previous frame to the next frame

according to the estimated 2D geometric transform. The geometric transform

is estimated in the same way detailed in [31].

4. Proposed optical flow framework using the Lucas-Kanade method (OF-LK) [76],

the Horn and Schunk method (OF-HS) [77], the Farneback method (OF-

F) [70], and the Brox method (OF-B) [64].

Compared Pulse Color Mapping Methods As another comparison study, we

evaluated the state-of-art pulse color mapping algorithms which include the Blind

Source Separation (BSS) based approaches (ICA [24] and PCA and skin model based

approaches (CHROM [29], POS [16], and SB [20]). Each method maps the RGB

face color signal to a specific color direction aiming to provide the highest relative

pulse strength based on different models or source-observation assumptions.

A detailed discussion of these approaches based on the human skin reflection

model can be found in [16] and [20]. However, the evaluations and the conclusions

in both papers are only based on the SNR metric, which may be insufficient in

this fitness scenario. This is because a pulse signal with high interference, such
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as a strong motion frequency component in the normal heart rate range, and low

noise might confuse a frequency estimator or tracker much more significantly than a

signal with only white noise at a same SNR level. In this paper, we re-evaluate these

color mapping approaches using our proposed estimation framework and evaluate

not only the SNR metric but accuracy measure of the pulse rate estimation results.

Compared Frequency Tracking/Estimation Methods In order to single out

the contribution and demonstrate the effectiveness of our proposed frequency estima-

tion method used in this paper, we compared it with three other trending frequency

estimation methods listed below.

1. Maximum energy (ME): the pulse rate in each spectral frame is estimated as

the frequency component with the highest spectral energy. This highest peak

selection scheme yields the maximum likelihood frequency estimate when the

noise component is independent with the source and is temporally indepen-

dent. However, such method would frequent generate biased results when the

measurement is highly corrupted by either noise or interference.

2. Particle filter (PF) [78]: PF first approximates the posterior distribution of

the frequency state via the sequential Monte Carlo method. The pulse rate

is then estimated as the one that maximize the posterior distribution in each

time instance.

3. Yet Another Algorithm for Pitch Tracking (YAAPT) [79]: YAAPT estimate

the frequency component from a set of local spectral peaks in the spectrogram
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using the Viterbi algorithm.

Parameter Settings The following parameters are used in our investigation un-

less otherwise stated:

1. Each video lasts about 3 minutes.

2. The frame rate is 30 frame per second. The resolutions are 1280 × 720. The

averaged bit rate is about 6 MB per second. The video codecs is AVC (H.264).

3. The tap number for joint-channels NLMS is 8, and the NLMS learning rate is

0.1.

4. Each video was divided into segments of 1.5 secs in order to guarantee small

scene changes within each segment for optical flow’s best performance.

5. The spectrum analysis window length was set to 10 secs with 98% overlap.

A Hamming window is applied in each analysis window, and the number of

frequency bins in the normal PR range (50 to 240 bpm) was set as 1024 via

padding zeros at the end of the analysis signal sequence. The transition prob-

ability model used in the frequency tracking algorithm is a uniform random

walk model with the width parameter k = 1 bpm. The number of particles

used in PF is set as 1000.

2.3.1 Metrics of Performance Evaluation

Pulse Signal Quality The same SNR metric used in [20,29,42] is adopted in this

paper. The value of this metric indicated the pulse signal quality using different
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SNR (dB) PCC p-value Ecount (%) Erate (%) ERMSE (bpm)

FD -5.024 (4.019) 0.734 (0.375) 0.000 (0.001) 22.664 (25.426) 6.380 (8.935) 8.988 (16.834)

FSD -1.626 (4.324) 0.855 (0.207) 0.000 (0.000) 14.381 (28.342) 5.273 (12.342) 7.280 (15.750)

GTC -3.081 (2.866) 0.776 (0.325) 0.001 (0.002) 28.398 (34.234) 7.450 (2.985) 12.532 (15.754)

OF-LK -7.638 (3.213) 0.670 (0.420) 0.003 (0.002) 35.962 (40.121) 11.858 (14.872) 12.613 (20.563)

OF-HS -6.629 (3.631) 0.778 (0.341) 0.016 (0.082) 40.285 (46.568) 7.628 (12.957) 18.621 (20.845)

OF-F -1.237 (5.012) 0.817 (0.281) 0.000 (0.001) 15.150 (25.923) 5.128 (12.534) 8.892 (12.355)

OF-B -0.771 (4.823) 0.861 (0.208) 0.000 (0.000) 8.892 (10.235) 1.739 (2.234) 3.273 (6.431)

Table 2.1: The system performance of the pulse rate estimation in terms of sample
mean and standard deviation (in paranthesis) of SNR, PCC, p-value, E(count),
Erate, and ERMSE. Different motion compensation schemes were evaluated. The top
performed item is highlighted in bold in each metric.

SNR (dB) PCC p-value Ecount (%) Erate (%) ERMSE (bpm)

ME -0.771 (4.823) 0.168 (0.375) 0.067 (0.001) 34.157 (25.426) 13.424 (8.935) 33.601 (16.834)

PF -0.771 (4.823) 0.598 (0.207) 0.003 (0.000) 38.564 (28.342) 14.355 (12.342) 22.605 (15.750)

YAAPT -0.771 (4.823) 0.372 (0.325) 0.061 (0.002) 32.610 (34.234) 10.739 (2.985) 18.501 (15.754)

DP -0.771 (4.823) 0.861 (0.208) 0.000 (0.000) 8.892 (10.235) 1.739 (2.234) 3.273 (6.431)

Table 2.2: The system performance of the pulse rate estimation in terms of sample
mean and standard deviation (in paranthesis) of SNR, PCC, p-value, E(count),
Erate, and ERMSE. Different frequency estimation algorithms were evaluated. The
top performed item is highlighted in bold in each metric.

signal processing techniques. The SNR metric is computed on each power spectrum

frame out of the spectrogram. The SNR metric is defined as the ratio between the

energy around the first two harmonics of the reference PR and the remaining energy

of the power spectrum:

SNR = 10 log10

( ∑
f∈F Sn(f)P (f)∑

f∈F(1− St(f))P (f)

)
, (2.7)

where Sn(f) is a defined binary window to select the frequency bins belong to the

two harmonics region; P (f) is the power spectrum of the pulse signal; set F ,

{f |50 bpm ≤ f ≤ 240 bpm}
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PR Estimation Accuracy Three well-adopted metrics for pulse rate estimation

accuracy were adopted in this study. They are specified as below:

1. Root mean squared error:

ERMSE =

√√√√ 1

N

N∑
n=1

(f̂(n)− f(n))2, (2.8)

2. Error rate:

Erate =
1

N

N∑
n=1

∣∣∣f̂(n)− f(n)
∣∣∣/f(n), (2.9)

3. Error count ratio:

Ecount =

∣∣∣{n :
∣∣∣f̂(n)− f(n)

∣∣∣/f(n) > τ}
∣∣∣

N
, (2.10)

4. Pearson’s correlation coefficient:

PCC =

∑N
n=1(f̂(n)− ¯̂

f)(f(n)− f̄)√∑N
n=1(f̂(n)− ¯̂

f)2

√∑N
n=1(f(n)− f̄)2

, (2.11)

where |{·}| denotes the cardinality of a countable set; N denote the total number

of the PR estimate; f̂(n), f(n), f̄ , and
¯̂
f denote the PR estimate at time instant n,

the ground-truth PR at time instant n, the average PR estimate, and the average

reference PR. τ was chosen to be 0.03 empirically, determined from the spread of

the frequency components.
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2.4 Results and Discussion

As our proposed system consists of multiple modules with each focused on

a different estimation and processing task, a holistic end-to-end system test would

fall into insufficient evaluation on the contribution of each individual module. To

address this commonly-seen issue in many prior publications, we discuss in this

section the benchmark experiment result based on a fine-level comparison in terms

of the motion estimation schemes, the pulse color mapping algorithm, the frequency

estimation methods, and the motion adaptive filtering. Considering the presentation

redundancy by expliciting all possible combinations with alternative modules, we

show a marginal comparison on each module degree. For example, when different

motion estimation schemes are evaluated, we choose and fix all other modules as

the best-performed individual, such as POS algorithm for pulse color mapping and

AMTC for pulse frequency tracking.

2.4.1 Comparison Study for Motion Estimation Schemes

In Fig. 2.6, we show four comparison examples with the spectrogram of each

processed pulse signal using different motion estimation schemes. We listed the

SNR estimates of the processed pulse signal and the PR estimation accuracy in

terms of PCC, Ecount, Erate, and ERMSE in Table 3.4.1. Note that OF-B outperforms

all other methods. The SNR improves about 0.5 dB and the estimation accuracy

improves about 2.5% in Erate and about 5 bpm in ERMSE. This is consistent with

the qualitative results depicted in Fig. 2.6, where the pulse trace appeared most
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significant in the spectrograms with OF-B. which shows that a precise alignment is

a crucial step for the video-based heart-rate monitoring method for fitness scenarios.

These results demonstrate that a precise alignment is a crucial step for the video-

based heart-rate monitoring method for fitness scenarios.

Another interesting finding is that OF-LK and OF-HS generate worse perfor-

mance even when compared with the straightforward FD. This may be due to the

following two reasons. First, local optical flow estimation methods, such as OF-LK,

are based on the assumptions of gray value and local flow constancy. Without global

constrains such as the flow smoothness, these methods are sensitive to violations of

the model assumptions and may generate highly biased estimate in smooth face re-

gions. Second, without a coarse-to-fine motion estimation scheme which address the

large motion displacement issue in the fitness scenario, the global flow estimation

methods, such as OF-HS, would still underestimate the motion displacement.

2.4.2 Comparison Study for Pulse Color Mapping Algorithms

We show the system performance in averaged SNR and Erate using different

pulse color mapping schemes in Fig. 2.7(a-b). Notice that the blind source separation

methods (ICA and PCA), in generate output less accurate PR estimate compared

with the model-based methods, such as POS and SB. This is mainly due to the

occasional failure of the pulse source selection out of the three de-mixed source

components when face color measurement contains stronger motion components

with the dominating frequency in the normal human PR range, for example 50-240
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Figure 2.7: The barplots of the system performance using different combinations of
the motion filtering and color mapping schemes (a, b), and with different subject
motion types (c, d). The results are displayed in SNR (a, c) and Erate (b, d).
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bpm. Such violation of the assumption that pulse is the dominating components in

the measurement is unfortunately commonly seen in the fitness scenario.

Notice that NLMS-1Ch has greatly improved the SNR by about 2 dB with al-

most every color mapping schemes. This is mainly due to the contribution of success-

ful motion component removal. Out of the three model-based methods (CHROM,

POS, and SB), SB generates the best performance when the NLMS-1Ch is turned

off, whereas the POS performs slightly better than SB in the NLMS-1Ch mode.

2.4.3 Comparison Study for Frequency Estimation Methods

To study the contribution of the proposed frequency tracking algorithm for

robust PR estimation, we list the performance result of four different frequency es-

timation or tracking methods in Table 2.3.1. The proposed AMTC tracking method

clearly outperforms the other three methods, with a performance gain of more than

8% in relative error and five times better in ERMSE than the second best YAAPT

method.

2.4.4 Impact of the Fitness Motion Type

To study the effect of subject’s exercise motion to the pulse signal and the

PR estimation accuracy, we show the averaged SNR and Erate using bar plots in

Fig. 2.7(c) and (d) respectively. Notice that the highest pulse signal quality and

the PR estimation accuracy is achieved in stationary bike scenario while the PR

estimation in treadmill scenario is overall least accurate. As seen in the sample
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video frames shown in Fig. 2.5(a-c), there is only minor face rigid motion when a

subject is exercising on a stationary bike, especially in a sitting position. On the

other hand, the subject motion is much more significant in the elliptical machine

and the treadmill scenarios. Therefore the experimental results are consistent with

the intuition that the more significant the subject exercising motion is, the more

difficult it becomes to extract precise pulse rate from the face videos.

2.5 Conclusion

In this chapter, we proposed a heart rate monitoring method for fitness exer-

cise videos. We focused on building a highly precise motion compensation scheme

with the help of the localized facial optical flow, and used motion information as a

cue to adaptively remove ambiguous frequency components for improving the heart

rates estimates. Experimental results show that our proposed method can give pre-

cise estimates at an average error of 1.1 bpm in RMSE or 0.58% in relative error.
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Chapter 3: Robust Fitness Pulse Rate and Pulse Rate Variability

Measurement from Face Video

3.1 Introduction

In this chapter, we extend the discussion in the previous chapter and propose

yet another rPPG system for robust fitness PR and PRV estimation.

Instead of densely estimating the displacement for each facial skin pixels, we

proposed a novel unsupervised learning scheme to detect the skin pixels on face. An

ellipsoid-shaped skin classifier is learned from the face pixel samples in the first frame

of the video and is deployed in the subsequent frames to detect facial skins. This

step not only alleviate the computational load for dense optical flow estimation, but

also guarantees the quality of the extracted pulse signal as the skin surface contains

the highest pulse signal-to-noise ratio (SNR). A filter-bank with an adaptive sub-

band modification layer is designed for precise bandpassing operation to reconstruct

the pulse signal and facilitate the estimation of the PRV.

The rest of the chapter is organized as follows. In Section 3.2, we discuss

the challenges of the problem and related works. In Section 3.3, we introduce our

proposed rPPG system. In Section 3.4, we discuss the experimental setup of our self-
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collected benchmark dataset and evaluate the proposed system with the database.

In Section 3.6, we discuss the impact on the system performance of various factors.

In Section 5.6, we conclude the chapter.

3.2 Challenges and Related Work

The past decade has witnessed much progress in the rPPG community to

improve the robustness of the system in challenging scenarios in terms of skin tones,

subject motion, and environmental illumination change. The blind source separation

(BSS) schemes are applied to factorize the pulse signal from the RGB-signals by

assuming the pairwise source uncorrelation (PCA-based [43]) or independence (ICA-

based [44]). The pulse channel is selected as the most periodic one after the source

separation is performed. Each BSS algorithm produces the optimal factorization

result when the noise and interference components exhibit the statistical behavior

as assumed. However, in fitness scenario when strong periodic motion artifacts enter

the RGB-signal measured from the face, the statistical assumptions about the source

signals might be violated, and the channel selection scheme may mistakenly output

motion source as the pulse.

The source uncertainty problem mentioned above is addressed in a line of re-

search [16,20,21,29,42] by investigating the color characteristics of pulse and other

reflected components. With prior knowledge about the skin tone color vector ob-

tained from a large scale experiment, CHROM algorithm [29] maps the temporally

normalized RGB-signals to a color plane orthogonal to the specular component,
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and the pulse signal is obtained via the alpha-tuning operation. POS algorithm [16]

adopts the same skin reflection model. Different from CHROM, POS first maps the

normalized RGB-signals to the color plane orthogonal to the intensity variation di-

rection, to eliminate the motion artifacts in that direction. The pulse color direction

is then searched for within a 90 degree sector, which outputs the highest pulse signal

quality on the plane orthogonal to the skin tone. The hue change on the skin is

tested by experiments to be another useful feature for pulse extraction [45]. 2SR [5]

exploits such pulse-induced hue change in a subject-dependent manner by learning

the principal axes of the hue channels. All these color mapping schemes use linear

combinations of RGB color channels to factorize the pulse from other components.

The difference concerning the assumptions of the relations of the source signals re-

flects on the demixing weights applied on each color channel. For a more detailed

discussion about the strength and weakness of the algorithms mentioned above, we

referred the readers to [16].

The fundamental limitation of the color linear mapping schemes is a lack

of measurement dimension. Specifically, a regular RGB camera only offers three

degrees-of-freedom in color. A linear color mapping algorithm can thus maximally

exclude two independent interferences from the pulse signal. Note the possibility

to treat each facial skin pixel as an rPPG sensor. The spatial sensor redundancy

of rPPG sensor could be exploited to increase the measurement degree-of-freedom

and thus the robustness the algorithm. Such idea can be found in [10, 42, 47, 48],

where the temporal correspondence of each rPPG sensor is estimated either via dense

optical flow alogrithms [49] or estimated facial landmarks [50–52]. Noticeable system
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improvement is seen when multiple rPPG sensors become available. However, the

large computational load for dense pixel alignment operation makes the system

unfriendly to be deployed on a regular device with moderate computation capacity.

In [35], the author extended the signal’s degree-of-freedom using a five-band

RGBCO camera. Even though a performance gain in the estimation of PR/PRV

is claimed, the cost and availability of a five-band camera restrict a wide adoption

of the system. In [31, 53], the benefit to include the background information in a

rPPG system is presented. The illumination change on the face is compensated

by that of the background using an adaptive filter [31] or via a joint blind source

separation scheme [53]. Such a system assumes a high correlation between variations

of the background reflectance with the non-pulse reflectance on the face. This

assumption might be true when the background is stationary and controlled yet

might be violated when the background contains additional illumination sources or

moving objects.

The subjects motion information is estimated from the video and exploited.

When the camera sensor is fixed, and the subject exercises on the focal plane, the

subject’s face motion can be roughly estimated as the face motion trace in the

video [54]. Note the motion signal investigated in [54] are mainly pulse-induced

ballistocardiography (BCG) motion signal. The face motion signal discussed in this

paper contains little pulse component as the BCG component becomes negligible

when the subject motion is voluntary. This property enables the author in [10, 55]

to filter the pulse signal from the motion corrupted rPPG measurement.

A sub-band based approach is proposed in [20], where the essence of the algo-
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rithm is to perform a frequency-dependent POS pulse color mapping. Even though

an increase of the measurement degree-of-freedom is claimed in the paper and the

system performance improves in fitness scenario, there is no gain in terms of the

information level, and the motion residue can still dominate over pulse component

in the processed signal.

3.3 Methodology

3.3.1 Face ROI localization

A highly precise motion compensation is a crucial step toward generating a

clean face color signal. We first use a DNN face detector trained with the Single-

Shot-Multibox detector (SSD) [80] and a ResNet [81] framework to obtain a rect-

angular face detection region. The SSD-ResNet is adopted in our system as it

has better detection result compared with the traditional method, for example, the

Viola-Jones detector [68], especially for face profile. We then use the CSR-DCF

algorithm [82] to track the face region. The implementation of the SSD-ResNet and

CSR-DCF is obtained from the OpenCV library [83]. A facial region of interest is lo-

cated with the facial landmarks estimated with an ensemble of regression trees [51].

We follow the ROI selection principles discussed in [84] to include the cheek and

forehead regions of a face.
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Figure 3.1: Face landmark localization and skin classification result example. (a)
an example cropped video frame. (b) facial landmark localization result (blue dots)
and the estimated face ROI (the transparent blue area). (d) Scatter plot of the skin
pixels in face ROI in their top three dominating principle component directions.
The dots’ color is consistent with its original color in the frame. The scatter plot
is overlaid with the boundary of the skin classifier in (e). (c) the corresponding
detected skin pixels (in their original color) according to the classifier shown in (e).
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3.3.2 Skin Tone Learning and Pruning

The idea of our proposed detection methodology is to learn the probability

distribution of a skin pixel based on the samples collected from the facial ROI in

the first few frames. Assuming the time-invariance of a person’s intrinsic skin color

and the surrounding illumination condition, we devise the skin detection method

based on the learned parameters and the a posteriori (MAP) rule. Enlightened by

the color space selection schemes [85] optimized for skin detection, we first map the

pixel samples to the color space (R−G, R−B, Y−Cr, H), where H denotes the hue

channel. Given a pixel random variable s ∈ R4×1 from the face ROI, we make the

following hypotheses:

Hypothesis H0: s is a skin pixel.

Hypothesis H1: s is a non-skin pixel.

Assume the a priori probability for the two hypotheses is P (H0) = p0 and

P (H1) = 1 − p0. To capture the spatial variation of a subject’s skin color on face,

we model the conditional distribution of s under H0 as a multivariate Gaussian

distribution parameterized by the mean s̄ and covariance matrix Σ. We write the

density function of s under H0 as:

fs|H(si|H0) =
1√

(2π)4|Σ|
exp

(
−1

2
(si − s̄)ᵀΣ−1(si − s̄)

)
(3.1)

We model the conditional distribution of s under H1 as a uniform distribution

assuming that a non-skin pixel in the scene is equally likely to be any specific color.
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The density function of s under H1 is:

fs|H(si|H1) = α, (3.2)

where α is the model parameter satisfying the unitarity rule of probability.

According to the MAP rule [86], the decision is specified as:

P (H1|s = si)
H1

R
H0

P (H0|s = si), (3.3)

which leads to the log likelihood ratio test as:

log

(
fs|H(si|H1)

fs|H(si|H0)

) H1

R
H0

log

(
p0

p1

)
. (3.4)

Substituting the conditional density functions (3.1) and (3.2) into (3.4), we have

(si − s̄)ᵀΣ−1(si − s̄)
H1

R
H0

φ, (3.5)

where φ = 2 log p0 − 2 log
(

(2π)2(1− p0)α
√
|Σ|
)

. We observe from (3.5) that the

skin detection boundary is defined by a hyper-ellipsoid shaped iso-density surface

centered at si. At this end, we introduced the decision rule for the skin detection

based on the statistically modeling of both the skin pixels and non-skin pixels. We

discuss next the estimation of the skin color model parameters s̄ and Σ.
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3.3.2.1 Learning of the Skin Model Parameters

Letting S ∈ R4×N denotes the sample pixels from the face ROI, our learning

objective is to estimate the skin model parameter s̄ and Σ from S. The direct use

of the maximum likelihood estimator, i.e., the data mean and the data variance to

estimate s̄ and Σ generates biases. This is because the non-skin pixels in the sample

collection S does not satisfy the same distribution with the skin pixels.

To address this problem and exclude the negative effect from the non-skin

pixels, we estimate the model parameters by iteratively excluding out a small amount

of non-skin pixels. Specifically, in each iteration, we estimated s̄ and V using the

data mean and data variance. We then compute the conditional density values

according to (3.1) for each sample and discard 5% of the samples with the least

probability values. After several iterations, the non-skin pixels will be all discarded

and the estimates of the skin pixel distribution parameters become unbiased. The

success of the exclusion of the non-skin pixels is based on the fact that most of

the samples in the facial regions are skin pixels, and the initial estimate of s̄ will

be closer to the cluster of the skin pixels rather than sparsely-distributed non-skin

pixels.

In Fig. 3.1, we show one example of the parameter learning and the skin

detection result. We represent Σ via its eigen structure as Σ = EVEᵀ, where V ∈

R4×4 is a diagonal matrix with the descending diagonal entries as the eigen values of

Σ, and E is a unitary matrix with each column as a eigen vector of Σ. We call the

new random variables s̃ , (s− s̄)ᵀ E as the principle components of s. In Fig. 3.1(d),
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we display the pixel samples in terms of the first three components of s̃ for better

visualization. Note that the principle components are mutually independent based

on the property of the multivariate Gaussian distribution, and the eigen vectors in

E represent the principal axes of the ellipsoid {si|(si − s̄)ᵀΣ−1(si − s̄) = φ}, which

is shown in Fig. 3.1(e) in transparent blue. The final skin detection result in face

ROI is visualized in Fig. 3.1(c). Note that the detection process retains most of the

skin pixels and successfully rejects most of the non-skin pixels and the pixels that

are dominated by the specular reflection.

Algorithm 1: Skin Pixel Learning

1: procedure Skin Cluster(S, I) . I: number of iteration.
2: S(1) ← S
3: N (1) ← N . N (i): number of inliers.
4: for i← 1, I do

5: S̄(i) ←
∑N(i)

j=1 S
(i)
j

N(i) , V(i) = (S(i)−S̄(i))(S(i)−S̄(i))ᵀ

N(i)

6: D ← diag((S(i) − S̄(i))ᵀ
(
V(i)

)−1
(S(i) − S̄(i)))

7: N (i+1) ← 95%N (i)

8: D ← sort(D, ascent)
9: thD ← DN(i+1)

10: S(i+1) ← 95% samples from S(i) which are smallest with respect to D.
11: end for
12: return thD, S̄ ← S̄(I), V← V(i)

13: end procedure

3.3.3 Motion Compensation via joint-channels NLMS

Once the skin pixels are detected in each frame, a temporal RGB sequence

C̃(t) is generated by spatially averaging the RGB values of the detected skin pixels

and temporally normalized in each color channel. C̃(t) is then linearly mapped to
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a specific color direction in the RGB space to generate a 1-D pulse signal. The

pulse color mapping schemes have been extensively investigated in [16] and [20]. We

note that the design of the pulse color mapping algorithms discussed in this paper

is not within the contributions of our work, whereas different pulse color mapping

approaches [16,20,29,44] are implemented and compared in the Section 3.4.

Without loss of generosity, we assume the face color signal C̃(t) is mapped

to the POS direction [16]. We denote the projected 1-D processed signal as cpos(t).

According to (1.5), we have

cpos(t) = pᵀ · C̃(t) =

Pulse︷ ︸︸ ︷
pᵀ · up

′ · p(t) +

Motion Residue︷ ︸︸ ︷
K∑
k=1

pᵀ · um,k ·mk(t), (3.6)

where p ∈ R3×1 denotes the mapping vector of POS algorithm. The motion

residue term in Eq. (3.6) is negligible when the illumination source is single, as

the POS direction is orthogonal to the color direction of the motion-induced inten-

sity change, and the specular change is suppressed via “alpha tuning” [29]. How-

ever, if the video is captured in an uncontrolled environment, the motion residue

term is often nonnegligible, and sometimes can be more significant than the pulse

term. To address this problem and further suppress the motion term in (3.6),

two adaptive filter frameworks are deployed and compared, and the face motion

signals in both horizontal and vertical directions are estimated and used to ap-

proximate and mitigate the motion interference component in (3.6). We denote

the estimated face motion sequence in horizontal and vertical directions as mx(t)
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and my(t). The pipelines of the two adaptive filter frameworks are shown in

Fig. 3.2. In the first scheme, we treat cpos(t) as the filter’s desired response at

time instance t; m(t), a 2M -by-1 tap vector at time t as the input, where mᵀ(t) =

[mx(t−M+1),mx(t−M+2), ...,mx(t),my(t−M+1),my(t−M+2), ...,my(t)]; and

c̃pos as the output of the system and also the error signal. The estimated tap-weight

vector of the transversal filter is denoted as ŵ(t), and weight control mechanism

follows the Normalized Least Mean Square (NLMS) algorithm [71] as below

c̃pos = cpos − ŵᵀ(t) ·m(t), (3.7)

ŵ(t+ 1) = ŵ(t) +
µ

‖m(t)‖2m(t) · c̃pos, (3.8)

where µ denote the adaptation constant, which is normalized by the norm square

of the input vector m(t). The NLMS filter model assumes a high linear cor-

relation between the motion residue term
∑K

k=1 p
ᵀ · um,k · mk(t) with the mo-

tion tap vector m(t). Considering such linear relation between the two might

be time variant, the NLMS filter is thus designed to track the system change.

The second adaptive filter scheme is inspired by the framework in [87]. This

time, two NLMS filters ran in parallel with the same desired signal cpos and dif-

ferent input signals as mx(t) = [mx(t − M + 1),mx(t − M + 2), ...,mx(t)] and

my(t) = [my(t −M + 1),my(t −M + 2), ...,my(t)], respectively. The two output

filtered signals c̃pos,x and c̃pos,y are then fused when transformed into the frequency

domain. We evaluate the system performance with arbitrary pulse color mapping

and adpative motion filtering schemes in Section 3.4.
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Figure 3.2: Two adaptive motion compensation filter frameworks: (a) NLMS-1Ch,
(b) NLMS-2Ch.
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3.3.4 Pulse Rate Tracking via Dynamic Programming

To this end, the signal quality is improved via precise face tracking, skin detec-

tion, pulse color mapping, and adaptive motion filtering. As did most of the prior

arts [21,29,44], one might now assume temporal stationarity of the processed pulse

signal and consider to estimate the instantaneous heart rate by mapping the 1-D

processed signal to the frequency domain and searching the spectral peak within

the normal human heart rate range (50-240 bpm). Such highest-peak estimation

method can output accurate result when the SNR is high, but may frequently gen-

erate outliers when SNR drops.

Note that for a healthy human being, two consecutive heart/pulse rate mea-

surements may not deviate too much from each other. We exploit this heart rate

continuity property, and track people’s heart rate by searching for the dominating

frequency trace appearing in the signal’s spectrogram image. The process of the

tracking algorithm is briefly described below.

Let Z ∈ RM×N
+ be the magnitude of a processed signal spectrogram image,

which has N discretized bins along the time axis and M bins along the frequency

axis. We model the change of the frequency value between two consecutive bins at

n− 1 and n as a one step discrete-time Markov chain, characterized by a transition

probability matrix P ∈ RM×M , where Pm′m = P (f(n) = m|f(n−1) = m′), ∀m,m′ =

1, ...,M , and ∀n = 2, ..., N . The regularized single trace frequency tracking problem

is formulated as follows
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f∗ = argmax
f

E(f) + λP (f), (3.9)

The regularized tracking problem in (4.3) can be solved efficiently via dynamic

programming. First, we iteratively compute an accumulated regularized maximum

energy map G ∈ RN×M
+ column by column for all entries (m,n) as follows

G(m,n) =Z(m,n) + max
m′=1,...,M

{G(m′, n− 1) + λ logPm′m}. (3.10)

After completing the calculation at column n = N , the maximum value of

the Nth column is denoted as f ∗(N). Second, we find the optimal solution by

backtracking from the maximum entry of the last column of the accumulated map

G. Specifically, we iterate n from N − 1 to 1 to solve for f ∗(n) as follows

f ∗(n) = argmax
f(n)

(f(n), n) + λ logPf(n)f∗(n+1). (3.11)

Note that we can avoid transitions from state m′ to state m by setting Pm′m = 0, as

the regularized term would penalize the total energy to −∞. If we assume uniform

random walk transitions, i.e., Pmm′ = 1
2k+1

, |m′ − m| ≤ k, then problem (4.3) is

degenerated to the seam carving problem defined in [73], and in this case the value

λ does not affect the solution.
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Figure 3.3: Adaptive filter bank design diagram for the pulse signal filtering.
The modification layer rejects the frequency bands which are beyond a small fre-
quency scope centered at the instaneous pulse rate tracking result at time instance
t. Without the modification layer, the system perfectly reconstructs P (t) when∑N−1

i=0 w(i) = 1 [88].

3.3.5 Adaptive Filter Bank Modification and PRV Analysis

The analysis of the PRV requires clean pulse signal so that the temporal peak

features are distinguishable along time to estimate the inter beat intervals. An LTI

bandpass filter which rejects the frequency component outside the normal heart rate

range may fail the task as noise power may be still significant within the pass band.

This problem is address in [42] with a design of the adaptive bandpass filter.

A refined narrow passband is selected around the highest peak within the range

of normal heart rate, and the final filtering result is obtained via the overlap add

method [89]. This adaptive filter design improve the system performance, but it

might suffers from the following three problems: First, the number of the frequency

bins inside the heart rate range is relatively sparse, and the low frequency resolution

makes the frequency selection ineffective; Second, in a low SNR scenario, the highest

peak appears in the spectral might not represent the true pulse rate. A bandpass
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filter based on a biased heart rate estimate generates completely adverse effect to

amplify the noise and suppress the pulse component. Third, the rectangle analysis

window is considered as less effective in terms of the band pass effect in the filter

bank structure.

To address these problems, we exploit the heart rate estimates in Section 3.3.4

to precisely filter out all possible noise and interference existing in the processed

pulse signal in a perfect reconstruction filter bank framework as discussed in [88].

The proposed filter bank system is shown in Fig. 3.3. Assume the processed 1-D

pulse signal is p(t). At the time instant t, the m-th (m = 0, ...,M − 1) sub-band

response is

Pt(m) =
t∑

τ=t−(T−1)

w(t− τ)p(τ)e−j2πm(τ−M+1)/M , (3.12)

where the w(t) denotes a causal Hamming window, i.e.,

w(t) =


0.54− 0.46 cos (2πt/T ), 0 ≤ t ≤ T − 1

0, otherwise.

(3.13)

Note that in Eq. 3.12 and in Fig. 3.3, we pad a sequence of zeros at the end of

the windowed time sequence pt(τ) = p(τ)w(t − τ) to increase the number of the

subbands. The number of appended zeros, and thus the DFT length M must be

large enough to accommodate the spectrum modification which is to be made. Note

that the zeros padding operation will not bring additional information to the system,

and the perfect reconstruction property is maintained.

To achieve the bandpass filtering goal, we add a spectrum modification layer
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Figure 3.4: Sample frames in fitness video dataset with different types of motions:
(a) elliptical machine, (b) treadmill, (c) rowing machine, (d) head rotation and
talking motion.

in between the analysis and the synthesis filter bank to suppress the noise outside

the pulse rate frequency range. The modification is described as follows:

P ′t(e
m) = Pt(e

m) ·Ht(m), m = 0, ...,M − 1, (3.14)

where Ht(m) is a normalized Gaussian-shaped function with mean set as the current

PR estimate. For a fixed value of t, Pt(e
jωm) can be viewed as the normal Fourier

transform of the modified sequence pt(τ).

3.4 Experimental Results

3.4.1 Experiment Setups

Our proposed method was evaluated on a self-collected fitness exercise dataset

to demonstrate the efficacy of the PR(V) estimation on dealing with motions. The
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dataset has 25 videos in which 10 contain human motions on an elliptical machine,

10 contain motions on a treadmill, 1 contains motions on a rowing machine, and 4

videos contains rigid head motions and non-rigid face motions, for example, talking.

The experiment setups are detailed as below.

Environment In order to test the robustness of the system, the experiment was

conducted in three uncontrolled rooms. The active illumination sources only involve

the existing lighting equipment in the scene. No additional illumination equipment

or backdrop were placed during the recording. The presence of other subjects exer-

cising or entering the scene is possible, as no regulation is placed to restrict people

from entering the room.

The first 20 videos involving elliptical machine and treadmill motions were

captured in a regular apartment gym room. The room was well-lit with several over-

the-top florescent lights and with diffuse daylight passing into the gym through glass

walls. The video containing rowing motions was captured in an athletic training

room, with only over-the-top florescent lights. The videos with no body motions

was captured in a regular lab with two over-the-top and one frontal florescent lights.

Devices and Reference Signal The first 20 videos, the rowing video, and the

videos containing no body motions were captured by the rear camera of a iPhone

6s mobile camera, the rear camera of a iPhone X mobile camera, and a webcam

(Model: Logitech C922x Pro Stream), respectively. The shutter speed was kept

constant and the face was kept in focus at all time. During the recording of the first
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20 videos and the rowing video, the heart rate of the subjects was simultaneously

monitored by an electrocardiogram (ECG)-based chest belt (Model: Polar H7) for

reference. The reference pulse signals of the last 4 videos were recorded with a pulse

oximeter (Model: Contec CMS50E). Note that the raw PPG waveform is available

with the pulse oximeter, but only the HR data is provided by the ECG chest belt.

Placement of the Sensors The mobile camera was affixed on a tripod or held

by the hands of a person other than the test subject. The camera is placed in front

the subject face at a distance of about 1 meter away at approximate same height

with the subject’s face during the recording of the first 20 video. The camera is

placed in front of the subject face at a 45 degree angle when the rowing video was

captured. The webcam was place in front of the subject in a distance of about

half meter away. The ECG chest belt was correctly worn underneath the subject’s

cloth, and the sensor was in direct contact with the subject’s chest skin. The pulse

oximeter was worn at the subject’s index finger of the right hand.
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(a) (b)

(c) (d)

Figure 3.5: The boxplots of the system performance using different skin pruning
schemes in terms of SNR (a), ERMSE (b), Ecount (c), and PCC (d). The pulse color
mapping and motion compensation schemes are PCA and NLMS-1Ch, respectively.
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Participants Two male Asian subjects are involved in the experiment. The skin

tone of both subjects is classified as Skin-type III according to the Fitzpatrick skin

scale [42,74]. Among all the videos in the dataset, 5 treadmill videos and 5 elliptical

machine videos belong to one subject. The rest 15 belong to the other. Based on the

most recent medical examination results, none of the subject was diagnosed with

any known CVDs or pulmonary diseases.

Parameter Settings The following parameters are used unless otherwise stated:

1. Each video lasts about 3 minutes.

2. The frame rates for the videos captured by iPhone 6s, iPhone X, and Logitech

webcam are about 30Hz, 30Hz, and 24Hz, respectively. The resolutions are

1280 × 720, 1920 × 1080, and 1920 × 1080. The averaged bit rates are 6MB,

8MB, and 13MB per second. The video codecs are AVC (H.264), HEVC

(H.265), and AVC (H.264) respectively.

3. The threshold for the likelihood of the face DNN face detector is set as 0.5.

The number of iterations during the skin tone learning is set as 4. The tap

number for joint-channels NLMS is 8, and the NLMS learning rate is 0.1.

4. The spectrum analysis window length was set to 10 secs with 98% overlap.

A Hamming window is applied in each analysis window, and the number of

frequency bins in the normal PR range (50 to 240 bpm) was set as 1024 via

padding zeros at the end of the analysis signal sequence. The transition prob-

ability model used in the frequency tracking algorithm is a uniform random
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Figure 3.8: Correlation plots of the reference HR and the estimated PR using
POS+No motion filtering (a), POS+NLMS-2Ch (b), and POS+NLMS-1Ch (c).
In each subplot, a linear model y x + 1 is fitted according to the samples. Statis-
tics about the correlation are listed in the left top corner of each subplot, where n
denotes the number of the estimates; r2 denotes the r-square statistics of the linear
model; PCC denote the Pearson’s correlation coefficient of the reference HR and the
estimated PR.
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walk model with k = 1 bpm.

5. In the Adaptive filter bank system, N is selected such that the effective signal

length is about 7 secs. The length of the padded zeros sequence is selected so

that the number of frequency channel is 1024 for a 30 Hz frame rate video.

The standard deviation for the modification kernel is set as 1 bpm.

3.4.2 Metrics of Performance Evaluation

SNR of the processed rPPG pulse signal The same SNR metric used in [20,

29, 42] is adopted in this paper. The value of this metric indicated the pulse signal

quality using difference signal processing techniques. The SNR metric is computed

on each power spectrum frame out of the spectrogram. The SNR metric is defined

as the ratio between the energy around the first two harmonics of the reference PR

and the remaining energy of the power spectrum:

SNR = 10 log10

( ∑
f∈F Sn(f)P (f)∑

f∈F(1− St(f))P (f)

)
, (3.15)

where Sn(f) is a defined binary window to select the frequency bins belong to the

two harmonics region; P (f) is the power spectrum of the pulse signal; set F ,

{f |50bpm ≤ f ≤ 240bpm}

PR Estimation Accuracy Three well-adopted metrics for pulse rate estimation

accuracy were adopted in this study. They are specified as below:
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1. Root mean squared error:

ERMSE =

√√√√ 1

N

N∑
n=1

(f̂(n)− f(n))2, (3.16)

2. Error rate:

Erate =
1

N

N∑
n=1

∣∣∣f̂(n)− f(n)
∣∣∣/f(n), (3.17)

3. Error count ratio:

Ecount =

∣∣∣{n :
∣∣∣f̂(n)− f(n)

∣∣∣/f(n) > τ}
∣∣∣

N
, (3.18)

4. Pearson’s correlation coefficient:

PCC =

∑N
n=1(f̂(n)− ¯̂

f)(f(n)− f̄)√∑N
n=1(f̂(n)− ¯̂

f)2

√∑N
n=1(f(n)− f̄)2

, (3.19)

where |{·}| denotes the cardinality of a countable set; N denote the total number of

the PR estimate; f̂(n), f(n), f̄ , and
¯̂
f denote the PR estimate at time instance n,

the ground-truth PR at time instance n, the average PR estimate, and the average

reference PR. τ was chosen to be 0.03 empirically, determined from the spread of

the frequency components.

PRV Estimation Accuracy Three PRV parameters estimated from the face

videos were evaluated in this experiment using the reference finger-tip PPG signal1.

1Minor difference between the PRV parameters measured from two different body cites is possi-
ble, as the the variability of the pulse transit time might be different. In this study, such difference
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They are

1. normal to normal interval (NN): the time length between adjacent systolic

pulse peaks of the (r)PPG signal. NN reflects the instaneous pulse rate. Al-

most all other PRV parameters are derived from NN.

2. Standard deviation of NN intervals (SDNN): a moving standard deviation

calculation with the NN sequence. Each standard deviation window covers 60

consecutive NN intervals, and the window overlap is 10 NN intervals. SDNN

is a time domain PRV parameter. It captures the variation of the NN around

the mean statistic [90].

3. Low frequency to high frequency ratio (LF/HF): The NN intervals are first

transformed to frequency domain via the fast Fourier transform. The ratio be-

tween the power of LF (0.04 0.15 Hz) to HF (0.15 0.4 Hz) was then estimated.

LF/HF is a frequency domain PRV parameter to evaluate the sympatho-vagal

balance controlling the HR [91].

All three PRV parameters are estimated from the rPPG signal and the reference

PPG signal. The mean absolution difference is computed to measure the accuracy

of the PRV estimation.

3.4.3 Performance of PR Estimation

Considering that the rPPG system consists of several layers of modules includ-

ing the skin detection, color space mapping, NLMS-based motion compensation, we

is ignored.
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perform a module-wise comparison to test the efficacy of each individual scheme.

Comparison of the Skin Pruning Schemes We first test the efficacy of the proposed

skin pruning schemes by fixing the other modules of the system as discussed in 3.3

and evaluating the performance. We compared the proposed skin pruning scheme

with the following two schemes:

1. No skin pruning. namely, no skin detection is performed and the face RGB

value of certain frame is obtained via averaging on face ROI shown in Fig. 3.1(b).

2. Naive skin pruning [92]. A pixel is classified as a skin pixel if it lies inside a

universal linear skin classifier.

The performance results in terms of the SNR, ERMSE, Ecount, and PCC is summarized

in Fig. 3.5. We can see from the boxplots that the adaptive skin pruning scheme

gives the best performance over the other two schemes.

Comparison of the Motion Compensation and Color Space Mapping Schemes We

compare the system performance when different combinations of motion compen-

sation and pulse color space mapping schemes are deployed. The compared adap-

tive filter based motion compensation schemes are no motion filtering, NLMS-1Ch,

and NLMS-2Ch. The compared pulse color space mapping schemes are ICA [24],

PCA [43], CHROM [29], SB [20], and POS [16]. Before performing the PCA or ICA

pulse blind demixing, the face color signals are first detrended using the method

introduced in [22], where the trend smooth regulator is set as λ = 10 for a 30 Hz

frame rate video. Rather than selecting the demixed channel which outputs the
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most “significant pulse peak” in frequency domain as the pulse channel, we select

the one which generates the highest SNR when compared with the reference heart

rate. This is because the assumption made in [43,44] that the dominating frequency

components in the face color signal is pulse fails in a fitness scenario. Therefore, the

result shown in this paper about the PCA and ICA algorithm is the best possible

in terms of the channel selection.

A qualitative comparison result in the form of the spectrograms of the pro-

cessed signals is visualized in Fig. 3.6. Compared with the reference HR traces de-

picted in the first column, we can observe that one or two motion frequency traces

may present or even overshadow the pulse traces in the spectrograms if no adap-

tive motion compensation filtering operation is deployed (Column 2-6), whereas the

NLMS-1Ch (Column 8) or NLMS-2Ch (Column 7) can effectively mitigate the mo-

tion interferences. In the last column, we show the spectrograms of the filtered POS

signals using the adaptive filter bank system introduced in Section 3.3.5. Following

the filtering instruction from the pulse rate estimates using the POS+NLMS-1Ch,

the adaptive filter bank system is able to effectively filter out almost all the noise

components, and the only trace stands out in the spectrogram belong to the pulse

signal.

A quantitative comparison result is summarized in Table 3.4.1, where 15 com-

binations of the pulse color mapping and the motion compensation schemes are

evaluated with five different metrics. The same statistics are also visualized in part

using the boxplots in Fig. 3.7, and the correlation plots in Fig. 3.8. The key obser-

vations are summarized as follows:
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Methods NN SDNN LF/HF

LTI-BP [7] 0.028 (0.083) 0.031 (0.063) 0.511 (0.035)

ABP [42] 0.025 (0.038) 0.010 (0.009) 0.476 (0.038)

AFB (proposed) 0.014 (0.026) 0.005 (0.007) 0.298 (0.117)

Table 3.2: The PRV estimation performance in terms of the sample mean and
standard deviation (in parathesis) of the absolute error of NN, SDNN, and LF/HF
using LTI-BP, ABP, and AFP (proposed), respectively.

• NLMS-2Ch scheme outputs the highest SNR, followed by NLMS-1Ch and no

motion compensation. The NLMS-2Ch improves more than 5 dB in aver-

aged SNR compared with no motion compensation using each best algorithm

combination.

• The accuracy in term of the PR estimation is greatly improved when NLMS-

2Ch or NLMS-1Ch is deployed. It is also interesting to note that the algorithm

combination with the highest SNR does not lead to the highest accuracy of PR

estimation. From Table 3.4.1, the NLMS-1Ch improves the POS algorithm by

more than 50% in terms of Ecount and the SB algorithm by more than 26%.

• Without motion compensation filtering, the SB algorithm outputs the best

performance. This observation is consistent with the one in [20] that SB

gives better result than other pulse color mapping algorithms in terms of the

suppression of the motion components.

• The best PR estimation result comes from a combination of POS and NLMS-

1Ch. In this system setup, the average RMSE can be as low as 1.8 bpm.
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Figure 3.9: A qualitative comparison of the filtering results between LTI-BP [7]
(a), ABP [42] (b), and AFB (proposed) (c). In each subplot, the black line denotes
the filtered rPPG waveform, and the red line denotes the aligned reference finger-tip
PPG signal waveform. Both signals are normalized according to their upper envelop
for better visualization.
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Figure 3.10: The instaneous inter beat intervals (IBI) estimated from the filtered
rPPG signal (black line) versus the ones estimated from the finger-tip PPG signal.
The three subplots differ in the rPPG filtering methods: LTI-BP (a), ABP (b), AFB
(c).
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3.4.4 Performance of PRV Estimation

In this subsection, the effectiveness of the AFB algorithm in estimating the

PRV is evaluated. Four videos where the subject is sitting in front of a webcam and

a fluorescent light in a lab environment are used in this subsection. Before shooting

each video, the subject performed 40 push ups to mimic the exercise process and to

evaluate the post-exercise cardiovascular dynamics.

Two bandpass filtering operations are tested and served as the comparison

groups. They are

• Linear time invariant bandpass filter (LTI-BP) [7]: A post-processed IIR band-

pass filter with the passband set from the minimum pulse rate to the highest

pulse rate.

• Adaptive bandpass filter (ABP) [42]: A FFT-based adaptive bandpass fil-

ter which passed the frequency components around the highest spectral peak

within the normal human pulse rate range.

A qualitative comparison is visualized in terms of the waveform (Fig. 3.9) and the

instaneous NN intervals (Fig. 3.10) using one of the face video. We summarize the

quantative comparison results in Table 3.2. We observe that the proposed algorithm

outperforms the other two state-of-the-art filtering schemes, and peaks are almost

unbiased with the reference.
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(a) (b)

Figure 3.11: Boxplots of the system response in terms of the pulse SNR when the
image quality (a) and frame rate (b) is respectively changed.

3.5 Impact of Various Factors

3.5.1 Impact of Image Compression and Frame Rate

Image compression brings additional compression artifacts to the image and

thus skin pixels, which distorts the pulse signal. The impact of the compression can

be negligible when the compression rate is low, whereas the system performance

may drop significantly when the image is highly compressed. To test the impact

to the rPPG system when the source images of the face videos are compressed, an

experiment is performed with one of a face video with elliptical machine motion.

Without compression, the SNR is around −3.5 dB and the Ecount = 0%. We then

applied different level of JPEG compression to the video by tuning the image quality

parameter from 100 (no compression) to 10 (highly compressed).

The system performance in terms of the pulse SNR is shown in Fig. 3.11(a)

using boxplots. A decreasing trend in the median SNR is observed when the image

quality drops, which is consistent with our conjecture that a higher image compres-

sion leads to a lower pulse quality. Another observation is that the pulse SNR drops
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only about 3 dB from 100 image quality to 30, while, in return, the compression

operation saves more than 60% storage. A similar amount of pulse quality drop

happens after the image quality is tuned from 30 to 10, which significantly distort

the pulse signal.

3.5.2 Impact of Frame Rate

According to the Nyquist-Shannon sampling theorem, a minimum 8 Hz frame

rate video is require to measure a person’s PR via rPPG, if a person’s maximum

PR is 240 bpm (i.e., 4 Hz). From a statistical point of view, a higher frame rate

reduces the estimation variance of a signal’s power spectral density, thus improves

the performance when PR is estimated.

An experiment is performed on the same video tested in Section 3.5.1 to eval-

uate the system response when we down-sampled the skin color sequence so that

the frame rate equivalently drops to 1/2, 1/3, 1/42 of the original frame rate 30

Hz. The system performance in terms of the pulse SNR is shown in Fig. 3.11(b).

Even though a system drop in terms of the median pulse SNR is observed when

the frame rate decreases, we notice a SNR degradation of less than 2 dB from the

original frame rate to only one fourth of the frame rate. The performance is compa-

rable when half of the storage is saved by lower the frame rate by half, suggesting a

possible temporal sampling redundancy for PR measurement.

2Note that the highest pulse rate in this experiment is lower than 200 bpm. Therefore the base
pulse frequency component would not alias to a lower frequency even when the frame rate is 7.5
Hz (which is lower than the 8 Hz sampling requirement).
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3.6 Discussion

3.6.1 The Detection of the Exercise

To this end, the exercise level of the subject is assumed to be known, and

the motion compensation module (e.g., NLMS-1Ch) is turned on and off according

to the algorithm needs. An accurate exercise detection method is thus needed to

automatize the system and to avoid deploy the motion compensation module when

the subject is in a rest condition as the head motion contains mostly BCG signal.

This detection task can be accomplished via thresholding a statistics (e.g., standard

deviation) of the subject’s motion trace estimated from the video. When the distance

between the subject and the camera sensor maintains, a rise in standard deviation

of the motion suggests an increase of the intense level of the exercise.

3.6.2 The Evaluation of the Pulse Signal Quality

Even though we present extraordinary system performance in this paper, the

pulse quality can still be poor due to various reasons. For a rPPG system aimed

for commercialization, the evaluation of the pulse signal quality is necessary to

demonstrate the estimation confidence to the users. The SNR statistic described in

Section 3.4.2 offers a natural measure for this purpose, and the quality evaluation

can be performed once the pulse rate is tracked.
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3.7 Conclusion

In this chapter, we present another novel rPPG system that is robust for pulse

rate and pulse rate variability extraction from fitness face video when the subject is

exercising and the video contains large subject motions. We focus on designing an

online learning scheme for precise subject- and scene-specific skin detection, and use

motion information as a cue to adaptively remove the motion-induced artifacts in

the corrupt rPPG signal. The computation complexity is greatly reduced compared

with the optical-flow method, and the system is capable to run in realtime. An

adaptive filter bank system is proposed to further clean the pulse signal so that the

inter beat intervals and pulse rate variability are precisely estimated.
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Chapter 4: Adaptive Multi-Trace Carving based on Dynamic Pro-

gramming

4.1 Introduction

Many vital signs estimation problems often boil down to the problem of fre-

quency extraction, such as PR estimation problem in the rPPG applications we

discussed in Chs. 2 and 3. The problem becomes trivial when the SNR level is

high, yet challenging in a low SNR condition, such as −10 dB.

As the extraction of frequency traces often plays a key role in the aforemen-

tioned applications, one needs to carefully answer the following questions before

deploying a frequency estimator:

1. Can the frequency components be detected from the digital recording?

2. If a frequency component is detected, can the frequency be accurately esti-

mated, especially in low signal-to-noise ratio (SNR) conditions?

Solving the above problems can be nontrivial due to the relatively low signal strength

of the components-of-interest compared with those of other sources in the record-

ings. To successfully estimate the frequency of interest within the noisy signal, an

algorithm must be robust under strong noise and has the capability to exclude strong
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(a) (b)

(c) (d)

Figure 4.1: (a) Spectrogram image of a synthetic −10dB signal with three frequency
components and (c) the same image overlaid with ground truth frequency compo-
nents (white dashed line) and the frequency estimates using AMTC (blue line). (b)
Spectrogram image of a remote-photoplethysmogram signal with weak heart pulse
trace embedded in a strong trace induced by subject motion running on a elliptical
machine [93] and (d) the same image overlaid with heart rate estimate (blue line)
after compensating first trace estimate (magenta line) using AMTC. The estimation
result is compared with the heart rate (white dashed line) simultaneously measured
by a electrocardiogram based sensor.
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Figure 4.2: Example for offline AMTC estimation process: (a) spectrogram of a
synthetic −8 dB signal with two frequency components. The unvoiced segment
is from 1.5 to 2.5 min (white dots: ground truth); (b) first and (c) second trace
estimates in voiced decision regions (white line) and unvoiced decision regions (black
line) by AMTC; (e)–(f) test statistic RER and the corresponding voiced decision;
(d) final trace estimates.

interference.

In this chapter, we exploit the signal’s time-frequency feature map, such as

spectrogram, to perform the frequency estimation. We propose a multiple frequency

traces tracking and detection method based on iterative dynamic programming and

adaptive trace compensation. Inspired by the seam carving algorithm for content-

based aspect ratio adaptation of images [94], we treat finding a smooth frequency

trace as finding the maximum energy trace in a spectrogram, with an additional reg-

ularization term that favors close frequency estimates in consecutive time bins. Such

problem is efficiently solved using dynamic programming. In many applications, the

presence of multiple traces within the frequency range of interest is possible. We

propose an iterative frequency tracking method named Adaptive Multi-Trace Carv-

ing (AMTC) to track all candidate traces. We apply the proposed single frequency
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tracking method to obtain the dominating frequency. We then compensate the pre-

vious trace energy at the end of each iteration to facilitate the estimation of the

next trace. After several iterations, all traces within the frequency range of interest

will be obtained. An efficient quasi-realtime algorithm is also proposed by utilizing

the Markovian property of traces and introducing a bidirectional time window. We

call it the online-AMTC. Note that we mainly consider spectrogram in this paper,

while our proposed techniques can be applied to other visualizations for the signal

for which the temporal tracking of signal traces is needed.

The contributions of this work are summarized as follows:

1. For the task of the frequency-based micro-signal parameter estimation, we pro-

posed a robust frequency tracking and detection approach which could track

multiple frequency traces in a very low (usually ≤ −10 dB) SNR condition

accurately and efficiently. This method works in general for different levels of

frequency variation and does not assume the availability of training data to

learn prior knowledge of the signal characteristics.

2. We adapt the offline-AMTC algorithm into an efficient near-realtime imple-

mentation. We reduce the computational complexity with a queue data struc-

ture and maintain the performance compared with the offline version.

3. We conduct extensive experiments using challenging synthetic and real-world

data. Several estimation methods initially proposed for other applications

(e.g., the pitch estimation) are implemented, re-trained (the factorial hidden

Markov model based method [95]), and compared. The results demonstrate
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that our approach outperforms other existing arts in terms of accuracy and

efficiency.

4. We present a novel detection method based on the AMTC framework to ac-

curately test the presence of trace and discuss other considerations using the

approach, such as estimation of the number of frequency components and the

benefit from human-in-the-loop involvement.

The rest of the chapter is organized as follows. In Section 4.2, the related

work about the frequency tracking problems are discussed. In Section 4.3, we for-

mulate the problem of single trace tracking and solve it using dynamic programming.

In Section 4.4.1, we propose the offline multi-trace tracking method or the offline

AMTC, based on a greedy search strategy. In Section 4.4.2, we present the on-

line AMTC. In Section 4.5, we show that AMTC outperforms the state-of-the-art

methods on both synthetic and real-world data. In Section 4.6, we evaluate the

performance of AMTC in response to various factors. In Section 4.7, we discuss

common problems which can be addressed with AMTC and the limitations of this

algorithm. In Section 4.8, we conclude the paper.

4.2 Related Works on Frequency Tracking

Traditional frequency estimation algorithms are often applied individually to

each temporal segment, assuming segment-wise signal stationarity. Subspace meth-

ods such as multiple signal classification (MUSIC) [96] and estimation of signal

parameters via rotational invariance technique (ESPIRIT) [97] build pseudo power
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spectra using parametric models of pure sinusoids. These frame-wise estimation al-

gorithms cannot explicitly exploit the temporal correlation of neighboring segments

and become less accurate as the SNR drops and frequently generate outliers.

The problem of tracking a single frequency component has been extensively

studied. In [78], a sequential Monte Carlo method was proposed, and importance

sampling was used to approximate the posterior distribution of each frequency state.

However, without a backward smoothing procedure, the output tracking results

tend to be inaccurate when substantial interference exists, and the resampling stage

makes the algorithm time-consuming. In [98], a prior knowledge of trace dynamic

was utilized, and the problem was formulated as a hidden Markov model (HMM)

problem. The maximum a posteriori probability estimate was efficiently calculated

by running a Viterbi solver. However, HMM requires both the modeling and cal-

ibration of a key building block, the emission probability. Such a pre-calibration

requirement often makes this method hard to be deployed in real-world tasks, espe-

cially when the training data is unavailable. The recently developed Yet Another

Algorithm for Pitch Tracking (YAAPT) [99] focused on single pitch estimation of

speech signal based on both spectrogram and correlogram. The authors proposed

using dynamic programming to estimate the fundamental frequency trace from a

set of candidate peaks of proposed harmonic spectral features. A similar tracking

method can be found in [100]. Such local-peak based methods guarantee excel-

lent performance in high SNR cases, but often generate biased estimates under low

SNR, as the probability that a local peak represents the actual signal frequency

drops significantly.
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The problem of tracking multiple frequency components from the spectrogram

image has also been investigated. Image processing techniques such as morpholog-

ical operators [101], active contour [102] methods have been applied to this area,

but these methods may be difficult to be adapted to realtime tracking algorithms.

Wohlmayr et al. [95] modeled the probability of pitch using Gaussian mixture models

(GMMs), and then used the junction tree algorithm to decode a speaker-dependent

factorial HMM (fHMM). A similar approach can be found in [103], where the emis-

sion probability was modeled by a deep neural network (DNN). Although both

methods provide excellent performance in terms of accuracy, it is sometimes impos-

sible to fit into real-world needs for the following two reasons. First, the training

phase requires a large amount of real-world data, which is often unavailable for most

tasks. Second, it is relatively time-consuming to compute the frame-wise joint emis-

sion probability and to decode the fHMM with the junction tree algorithm. The

more recent studies [104, 105] proposed to use linear programming to find the best

connection path of the frequency peaks on the spectrogram. These two methods

first obtain all frequency peaks in the spectrogram as candidates and then find the

best path from the candidates via linear programming. For low SNR scenarios, such

approaches may find a large number of frequency peaks as the candidates, leading

to huge memory and computational cost that is not scalable.
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4.3 Track a Single Frequency Trace

4.3.1 Problem Formulation

We first formulate a frequency tracking problem for the scenarios that only a

single trace exists in a frequency range of interest. Let Z ∈ RM×N
+ be the magnitude

of a signal spectrogram image, which has N discretized bins along the time axis and

M bins along the frequency axis. We define a frequency trace as

f = {(f(n), n)}Nn=1, (4.1)

where f : [1, N ] → [1,M ] is a function. Given the spectrogram Z and a candidate

trace f , we define an energy function for the trace as E(f) =
∑N

n=1 Z(f(n), n). A

reasonable estimate of the frequency trace for the given signal is the trace f̂ that

maximizes the energy function shown as follows

f̂ = argmax
f

E(f). (4.2)

Problem (4.2) is equivalent to the peak finding method [106, 107] where f̂(n) =

argmax
f(n)

Z(f(n), n), ∀n ∈ [1, N ]. It also shares similar spirit as the weighted average

approach [107].

To take into consideration the smoothness assumption of the trace along the

time, we add a regularization term that penalizes jumps in the frequency value.

We model the change of the frequency value between two consecutive bins at n− 1
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and n as a one step discrete-time Markov chain, characterized by the prior dis-

tribution function Pm and the transition probability matrix P ∈ RM×M , where

Pm = P (f(1) = m) and Pm′m = P (f(n) = m|f(n − 1) = m′), ∀m,m′ = 1, ...,M ,

and ∀n = 2, ..., N . Note that we assume Pm to be uniformly distributed through-

out this paper to treat the initial presence of each frequency state equally. The

regularized single trace frequency tracking problem is formulated as follows

f̂ = argmax
f

E(f) + λP (f), (4.3)

where P (f) , logP (f(1))+
∑N

n=2 logP (f(n)|f(n−1)), and λ > 0 is a regularization

parameter that controls the smoothness of the resulting trace.

4.3.2 Efficient Tracking via Dynamic Programming

The regularized tracking problem in (4.3) can be solved efficiently via dynamic

programming. First, we iteratively compute an accumulated regularized maximum

energy map G ∈ RM×N
+ column by column for all entries (m,n) as follows

G(m,n) =


Z(m,n) + λ logPm n = 1;

Z(m,n) + max
m′
{G(m′, n− 1) + λ logPm′m} n > 1.

(4.4)

After completing the calculation at column n = N , the maximum value of the Nth

column is denoted as f̂(N). Second, we find the optimal solution by backtracking

from the maximum entry of the last column of the accumulated map G. Specifically,
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we iterate n from N − 1 to 1 to solve for f̂(n) as follows

f̂(n) = argmax
f(n)

G(f(n), n) + λ logPf(n)f̂(n+1). (4.5)

Note that we can avoid transitions from state m′ to state m by setting Pm′m = 0, as

the regularized term would penalize the total energy to −∞. If we assume uniform

random walk transitions, i.e., Pmm′ = 1
2k+1

, |m′ − m| ≤ k, then problem (4.3) is

degenerated to the seam carving problem defined in [94], and in this case the value

λ does not affect the solution.

4.3.3 Trace Existence Detection for a Given Time Window

To determine the existence of a frequency component in a specific time inter-

val, we first make independent decisions for every frame within the time interval on

the existence of the frequency component and then refine the decisions by taking

neighborhood correlations into consideration. We refer to those frames with a fre-

quency component as voiced frames, or otherwise as unvoiced frames. We propose

to test the existence of a frequency component by evaluating the relative energy

of the detected trace. The test statistic called the Relative Energy Ratio (RER) is

defined as follows:

RER(n) =
|F(n)| · Z(f̂(n), n)∑

m∈F(n) Z(m,n)
, (4.6)
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where F(n) , [1,M ]\[max(1, f̂(n)− δf ),min(M, f̂(n) + δf )] is a conservative set of

frequency indices that does not contain the frequency indices around the estimated

frequency; δf is a predetermined parameter, and | · | is the cardinality of a set. It

is evident that the higher RER(n) is, the more probable that nth frame is voiced.

The decision is made by comparing the test statistic RER(n) with an empirically

determined threshold ∆RER. A discussion about the optimal selection of ∆RER will

be presented later in Section 4.5.1.3.

In case when the length of the shortest possible unvoiced segment and voiced

segment, i.e., ∆1 and ∆2, are known, a post-process to smooth the initial detection

result could further improve the detection accuracy. Specifically, we propose to

group consecutive unvoiced frames into a segment when the length is greater than

∆1, and then group consecutive unvoiced segments into one segment if the distance

between the two is smaller than ∆2. Figs. 4.2(e) and (f) illustrate two such decision

making processes. Note that the final decisions can exclude all short segments, and

the result is more robust compared to that of the initial decision.

4.4 Track Multiple Traces via Iterative Frequency Compensation

In the previous section, we have introduced a single frequency trace track-

ing and detection method using dynamic programming and trace existence testing,

respectively. For some tasks such as extracting pulse rate from the face video con-

taining subject’s motion, as shown in Fig. 4.1(c), the existence of multiple traces

1DetectExistence(·) refers to the trace existence detection algorithm described in Section 4.3.3.
v̂(l) ∈ {0, 1}N is the trace existence decision with 0 as unvoiced and 1 as voiced.

97



Algorithm 2: Offline Adaptive Multi-Trace Carving (offline-AMTC)

1: procedure AMTC(Z, L) . L: number of output traces
2: Z(1) ← Z

3: f̂(1) ← argmax
f

EZ(1)
(f) + λP (f)

4: v̂(1) ← DetectExistence(Z(1), f̂(1),∆RER,∆1,∆2)1

5: for l← 2 to L do
6: Update Z(l) according to (4.7)

7: f̂(l) ← argmax
f

EZ(l)
(f) + λP (f)

8: v̂(l) ← DetectExistence(Z(l), f̂(l),∆RER,∆1,∆2)
9: end for

10: return f̂(1:L), v̂(1:L)

11: end procedure

in the frequency range of interest is possible, and the dominating trace in the spec-

trogram might not be the one of interest. A crude deployment of any single trace

tracking method on such tasks would generate completely wrong answers. To ad-

dress this problem, we strategically extend the single trace tracking method to be

able to track multiple traces by extracting trace iteratively to find all candidates.

We name this method the Adaptive Multi-Trace Carving (AMTC). In the rest part

of this section, we first present the offline version of AMTC (offline-AMTC), when

the trace estimate is optimized according to the entire available signal. We next

adapt the offline-AMTC to an efficient online version (online-AMTC), which runs

in quasi-realtime with low delay.

4.4.1 Offline-AMTC

Similar to the iterative nature of the seam carving algorithm [94], multiple

traces can be greedily searched for by iteratively running the single trace tracker
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Figure 4.3: Illustrations for the trace compensation process: (a) the spectrogram of
a synthetic −8 dB signal with two frequency components; (b) first trace estimate
by AMTC; (c) the spectrogram after the first trace compensation; (d) the sampled
spectral distribution centered at f̂(1)(n) (n = 400, vertical line in (b)); (e) the
first-order difference of the spectral function in (d); (f) the generated point-wise
compensation weights. The value of σ̂2

(1) is determined by the values within the

green region in (d).

proposed in Section 4.3. However, as frequency energy is diffused around the center

of each trace due to the windowing effect and violation of the signal stationary

assumption, multiple consecutive trace estimates may belong to a single frequency

component without compensating the diffused spectral energy.

To solve this problem, we attenuate the diffused energy around the estimated

frequency trace at the end of each iteration once we obtain the estimated frequency

trace. Specifically, suppose f̂(l) is the estimated frequency trace at the lth iteration.

For each time frame of the spectrogram, i.e., Z(l)(1 : M,n), we search for a left

boundary point m1(l)(n) from f̂(l)(n) to its left side. We set m1(l)(n) = m, if m

is the first point that is either a local minimum point in Z(l)(1 : M,n) or a local

minimum point in the first-order difference of Z(l)(1 : M,n). The search of the right
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boundary point m2(l)(n) works similarly except it considers the local maximum point

in the first-order difference of Z(l)(1 : M,n). In this paper, we call Z(l)(m1(l)(n) :

m2(l)(n), n) the energy bump of f̂(l)(n).

One example of the trace compensation process is shown in Fig. 4.3. The

plot in (d) shows the spectral energy distribution centered at f̂(1)(n), which corre-

sponds to the white vertical line in (b). In this case, m1(1)(n) is selected as the first

local minimum point, and m2(1)(n) as the local maximum point in the first-order

difference of Z(l)(1 : M,n). Based on m1(l)(n) and m2(l)(n), we propose to use a

reverse Gaussian-shaped function to compensate the energy of the estimated fre-

quency component. The updated equation for the compensated power spectrum at

the (l + 1)st iteration is as follows

Z(l+1)(m,n)←

1− exp
−
(
m− f̂(l)(n)

)2

2σ̂2
(l)(n)

 · Z(l)(m,n), (4.7)

where σ̂2
(l)(n) =

∑m2(l)(n)

m=m1(l)(n)
Z(l)(m,n)(m−f̂(l)(n))2∑m2(l)(n)

m=m1(l)(n)
Z(l)(m,n)

is used to quantify the width of the

energy bump at the lth iteration. The pseudo code of the offline-AMTC is shown in

Algorithm 2. In Fig. 4.2, we give an example of two-trace estimation process on a

synthetic heart beat signal. The final estimate is almost identical with the ground

truth, and the unvoiced segments are successfully detected.

If we define L as the number of traces to track, the computational complexity

for offline-AMTC is O(NLM2). To compare, the fHMM methods [95, 103] requires

O(NLML+1) without considering operations for computing emission probability.
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Figure 4.4: A flowchart for online-AMTC algorithm for three traces estimation
process at tth iteration. (·) above arrows indicates the index of the equation being
used.

The efficiency of offline-AMTC is mostly explained by the idea of the introduced

iterative search. We will later show in Section 4.5 that the demonstrated efficiency

is not achieved at the expense of performance drop.

4.4.2 Online-AMTC with Low Delay

The offline-AMTC algorithm minimizes the adverse effect of noise by making

use of full-length signals. In a delay-sensitive scenario that a fixed-length delay

k is allowed, the tracking objective at the time instant n is to estimate f̂(1:L)(n)

based on the available spectrogram information Z(1)(1 : n + k)2. A simple ap-

proach runs offline-AMTC from the time instant 1 to n + k at each time instant

n, costing O(nLM2) in time. If the total length of the frame is N , this approach

takes O(NM) in space and
∑N

n=1O(nLM2) = O(N2LM2) in time. Space and time

complexities increase quadratically and linearly in N , respectively. This increasing

2For concise representation, we use G(n1 : n2) and Z(n1 : n2) as a shorthand for G(1 : M,n1 :
n2) and Z(1 : M,n1 : n2), respectively.
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Algorithm 3: Online-AMTC at time n

1: procedure AMTC(Z(1:L)(τ1 : τ2 − 1), G(1:L)(τ1 : τ2 − 1), f̂pre
(1:L)(τ1 : τ2 − 1),

Z(1)(τ2)) . τ1 , n− k1, τ2 , n+ k2.
2: Z(1)(τ1 : τ2)← concatenate Z(1)(τ1 : τ2 − 1) and Z(1)(τ2)
3: Update G(1)(τ2) according to (4.4) using G(1)(τ2 − 1) and Z(1)(τ2)
4: Te ← τ2 − 1
5: for l← 1 to L do
6: Estimate f̂(l)(Te + 1 : τ2) according to (4.5) using G(l)(Te + 1 : τ2)
7: if l < L then
8: Update Z(l+1)(Te + 1 : τ2) according to (4.7) using Z(l)(Te + 1 : τ2)

and f̂(l)(Te + 1 : τ2)
9: end if

10: for i← Te to τ1 do
11: Estimate f̂(l)(i) according to (4.5) using f̂(l)(i+ 1) and G(l)(i)
12: if l < L then
13: Update Z(l+1)(i) according to (4.7) using Z(l)(i) and f̂(l)(i)
14: end if
15: if f̂(l)(i) == f̂pre

(l) (i) then

16: Update G(l+1)(i+ 1 : τ2) according to (4.4) using Z(l+1)(i+ 1 : τ2)
and G(l+1)(i)

17: f̂(l)(τ1 : i)← f̂pre
(l) (τ1 : i)

18: Te ← i
19: break
20: else if i == τ1 then
21: Update G(l+1)(τ1 : τ2) according to (4.4) using Z(l+1)(i : τ2)
22: Te ← i
23: end if
24: end for
25: v̂(l)(τ1 : τ2) = DetectExistence(Z(l)(τ1 : τ2), f̂(l)(τ1 : τ2),∆RER,∆1,∆2)
26: end for
27: return f̂(1:L)(n), v̂(1:L)(n), Z(1:L)(τ1 + 1 : τ2), G(1:L)(τ1 + 1 : τ2), f̂(1:L)(τ1 + 1 :

τ2)
28: end procedure

102



trend of workload will eventually lead to either memory overflow or CPU overload,

especially when we expect to run the system in days or even months.

An efficient, quasi-realtime algorithm called the online-AMTC is developed to

address the storage and computational issues mentioned above. We propose to use a

fixed-length queue buffer for storing and updating the intermediate result of Z(1:L),

G(1:L), and f̂(1:L). As a result, the running time and the memory requirement are

greatly reduced and are independent of time n.

We introduce the algorithm by first discussing online iterations for the estima-

tion process of the first trace. The processing flow of the online-AMTC algorithm

at the instant n is illustrated in Fig. 4.4. Suppose the allowed delay length is k2 and

f̂(1)(n − 1) has been computed by backtracking from the accumulated regularized

maximum energy map G(1)(n−1 : n+k2−1). At the arrival of the next innovation

frame Z(1)(n + k2) (the orange frame in Fig. 4.4), our goal is to estimate f̂(1)(n).

From the forward update rule of G in (4.4), it is clear that G(1)(n : n+k2−1) would

remain unchanged compared to the output in the previous time instant n− 1. We

therefore only need to update the right most frame G(1)(n+k2) given G(1)(n+k2−1)

and the innovation frame Z(1)(n + k2) as shown in the middle box of the first row

of Fig 4.4. f̂(1)(n) is then obtained via backtracking from G1(n : n + k2) accord-

ing to (4.5). Now, we define the previous backtracking result at time n − 1 as

f̂pre
(1) (n − 1 : n + k2 − 1). During the backtracking process for f̂(1)(n), if f̂(1) = f̂pre

(1)

at the time instant index Te ∈ [n, n + k2), we have f̂(1)(n : Te) = f̂pre
(1) (n : Te). This

claim holds because G(1)(n : Te) remains the same during the process. In this re-

gard, we consider storing and updating f̂pre
(1) (n− 1 : n+ k2− 1) in a buffer, whereby
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the update process of f̂pre
(1) stops at the instant Te if f̂(1)(Te) = f̂pre

(1) (Te), as shown in

the right box of the first row of Fig. 4.4. In this way, the computation complexity

is further reduced.

Different from the estimation process for the first trace, any change from pre-

vious trace estimation f̂(1:l−1) would have influence on the formation of Z(l), G(l),

and therefore f̂(l). In order to obtain a robust estimate for f̂(l), l > 1, we introduce

a look-back length, k1 > 0 in this process. As demonstrated from second and third

rows in Fig. 4.4, for lth trace estimation at time instant n, we utilize the previous

trace estimates f̂(l−1)(n − k1 : n + k2) and Z(l−1)(n − k1 : n + k2) to obtain new

Z(l)(n−k1 : n+k2) and G(l)(n−k1 : n+k2), and thus f̂(l)(n−k1 : n+k2). Efficient

backtracking can also be achieved using the previous backtracking result, same as

the case in estimating the first trace. The details of online-AMTC algorithm at nth

iteration is shown in Algorithm 3.

The worst-case computational complexity for online-AMTC isO(N(k1+k2)LM2),

which appears to be (k1 + k2) times slower than offline version. In the statistical

sense, we argue that the expected complexity of the online-AMTC is much less than

the worst-case analysis result because the probability that an entire trace estimate

changed from the previous one is low at each time instant. To demonstrate this,

we will compare the average computation time running offline and online-AMTC in

Section 4.5.1.2.
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Figure 4.5: From top to bottom: Spectrogram of a synthetic −10 dB signal with one
frequency component; Trace tracking results (red line) by YAAPT, particle filter,
and offline-AMTC, respectively. The ground truth trace is shown in black line in
each plot.
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Figure 4.6: First row: Comparison of the performance of single trace tracking by the
proposed offline-AMTC, particle filter, and YAAPT methods at different levels of
SNR. Statistics of the Rmse, the ERate, and ECount of frequency estimates are
summarized using box plots. Second row: Rmse, ERate, and ECount for trace
estimation by online-AMTC with different levels of look-ahead window length and
SNR. The result using offline-AMTC is shown in the plots for comparison purposes.

4.5 Performance Analysis of AMTC

4.5.1 Simulation Results and Comparison with Known Ground Truth

4.5.1.1 Single Trace

We first evaluated the performance of the AMTC algorithm using simulated

data. For each test signal, we generated a time-varying pulse rate trace present

from the beginning to the end of the timeline. More specifically, denote s[n] as

the temporal measurement of the corrupted frequency signal, s[n] = sin Φ[n] + ε[n],

where Φ[n] = Φ[n−1]+2πf [n]/fs, f [n] is the time-varying synthesis frequency, fs is

the sampling rate set to 30 Hz, and ε[n] is the noise quantified by a zero-mean white
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Gaussian process. The variance of ε[n] is an adjustable parameter for achieving

different SNR levels. To generate frequency signals f [n] that behave similarly as

real-world pulse rate signals, we trained a 9-tap autoregressive model using heart

rate signals collected by a Polar H7 chest belt in both exercise mode and still mode.

We use beat per minute (bpm) as the frequency unit. The duration of each test signal

was 3 minutes. The spectrograms were generated by short-time Fourier transform

(STFT) with window length 10 secs and 98% overlap between adjacent frames. We

padded zeros to the end of each frame to make neighboring frequency bins 0.17 bpm

apart.

We then compared our algorithm with the Particle filter method [78] and the

local peak based YAAPT method [99] using a large scale synthetic dataset. The

number of particles was set to 1024. We generated 500 trials under each of the

five SNR conditions, or 250 for each mode (namely, the exercise and the still cases)

using the estimated parameters of the autoregressive models. We used three metrics.

Namely, the root mean squared error (Rmse), the error rate (ERate), and the error

count (ECount) defined as follows to evaluate the performance:

• Rmse =
√

1
T

∑T
t=1(f̂t − ft)2 ,

• ERate = 1
T

∑T
t=1

∣∣∣f̂t − ft∣∣∣/ft ,

• ECount =
∣∣∣{t ∈ [1, T ] :

∣∣∣f̂t − ft∣∣∣/ft > τ}
∣∣∣/T ,

where |{·}| denotes the cardinality of a countable set, f̂t and ft are the frequency

estimate and the ground-truth frequency at tth time frame respectively, and τ was
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chosen to be 0.03 empirically determined from the spread of the frequency com-

ponents. Fig. 4.5 shows tracking results of a −10 dB synthetic signal with one

frequency component using AMTC, YAAPT, particle filter, respectively. In this

example, AMTC outputs the best trace estimate among the three without much

deviation from the ground truth. The results of overall performance are shown in

the first row of Fig. 4.6 in terms of box plots that each box compactly shows the

median, upper, and lower quantiles, and the max and min values of a dataset. It is

evident from the box plots that, under all SNR levels, AMTC generally outperforms

the particle filter method and the YAAPT not only in terms of the average but also

in the variance of the error statistics.

Next, we tested the online-AMTC algorithm using different look-ahead time

lengths. The evaluation was conducted using the same setting mentioned above,

and the averaged behavior of each look-ahead length is plotted in the second row

of Fig. 4.6. The numbers in the legends indicate the lengths of look-ahead (l.a.)

window lengths represented by the number of time bins in the spectrogram. We

have two observations from these plots. First, a performance jump from no-look-

ahead versus 100-bin look-ahead length is observed, but the performance saturates

after further increasing the length. This observation coincides with the intuition

that a small look-ahead length would cause the online trace estimator to find a

locally optimum solution. Second, given the shape of the curve, the performance

starts to converge from SNR = −10 dB and is almost identical among different

levels of look-ahead length. This trend of convergence is also expected as the signal

quality is high enough for AMTC to track the correct trace.
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Figure 4.7: (a): spectrogram of one test instance with SNR = −8 dB; (d) same
spectrogram overlaid by ground truth traces. SD-fHMM (b), SI-fHMM (e), offline-
AMTC (c), and online-AMTC (f) tracking results.

E01 E02 E10 E12 E20 E21 EGross ETotal Efine

SD-fHMM 4.14% 1.62% 0.36% 15.39% 0.28% 1.78% 0.02% 23.59% 1.79%

SI-fHMM 3.48% 1.52% 0.61% 14.37% 0.29% 2.38% 0.03% 22.68% 1.82%

offline-AMTC 1.77% 0.28% 3.57% 2.16% 0.45% 9.99% 0.03% 18.27% 1.76%

online-AMTC 1.75% 0.38% 3.17% 2.65% 0.48% 8.41% 0.03% 16.87% 1.80%

Table 4.1: Averaged Performance of fHMM and AMTC on multi-trace tracking test

mixmax likelihood (sec) Tracking (sec)

SD-fHMM 39.47 3.96

SI-fHMM 195.86 4.30

offline-AMTC N/A 0.10

online-AMTC N/A 0.44

Table 4.2: Average computation time in seconds per 100 frames
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SD FHMM SI FHMM offline-AMTConline-AMTC

Figure 4.8: Box plots of Efine (top) and ETotal (bottom) of two traces tracking using
SD-fHMM, SI-fHMM, offline-AMTC, and online-AMTC on different levels of SNR.

(a) (b)

Figure 4.9: (a) Ground truth frequency traces at −10 dB in spectrogram of a syn-
thetic signal. (b) Three trace estimates by AMTC.
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Figure 4.10: (a) ROC curve of the proposed trace detection method in different SNR
conditions. (b) the zoomed plot of the shaded area in (a) with optimal operating
points (black circle) and operating points using fixed threshold (∆RER = 2.41, dark
red plus sign).

4.5.1.2 Multiple Traces

In this section, we evaluate the performance of the offline- and online-AMTC

using simulated data in the presence of multiple traces and compare them with the

fHMM method. To allow a fair comparison of our methods with fHMM, we adopt

the performance measure proposed in [108] with a slight change. We give details on

our experiment setup as well as the error measure below.

To test both algorithms, we generated a corrupted frequency signal s[n] with

two frequency traces, i.e., s[n] =
∑2

l=1 sin Φ(l)[n]+ε[n]. The variance of ε[n] is tuned

to achieve six SNR levels from 0 to −10 dB. To cope with the high computational

cost associated with running fHMM at a full scale, we cut signals to 1 minute, set the

number of frequency bins to 64, and made neighboring frequency bins 1 bpm apart.

The cardinality of frequency state was set to 169 so that it uniformly covers the

whole frequency range of interest. For each trace, we also introduced a 20 seconds
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unvoiced segment.

We estimate the GMM parameters of the fHMM framework using the EM

algorithm [109]. For each SNR level, we generated 6000 spectrum frames with a

single frequency component for each 169 frequency states (where the first state

encodes unvoiced decision). We set the maximum number of components per GMM

to 20 and used MDL [95] to determine the number of components automatically.

The parameters were trained in an SNR-dependent (SD) and an SNR-independent

(SI) fashion (i.e., each SD model was trained only with samples of the corresponding

SNR, and the SI model was trained with all samples). We adopted the mixture-

maximization interaction model proposed in [95], and set the prior distribution

for both fHMM and AMTC uniformly as P (f(l)(1) = m) = 1/169, ∀m, and the

transition probability follows a uniform distribution with width parameter k = 2.

Moreover, the voiced to unvoiced transition probability for fHMM was empirically

selected as P (voiced|unvoiced) = 0.2, and P (unvoiced|voiced) = 0.1.

To compare the tracking performance, we use the well-adopted error measure

proposed in [108] as described below:

• Eij: the percentage of time frames where i frequency components are misclas-

sified as j.

• EGross: the percentage of frames where ∃l, s.t. ∆f(l) > 20%. We define

the relative frequency deviation ∆f(l) , min
i

|f̂i−f(l)|
f(l)

, and f(l) is the reference

frequency for lth component.

• El
fine: the average relative frequency deviation from the reference of the lth
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frequency component for those frames where ∀l, ∆f(l) ≤ 20%.

Note that both Eij and EGross represent a frame counting measure. We therefore

group them together to form the total gross error: ETotal = E01 +E02 +E10 +E12 +

E20 + E21 + EGross, and define Efine = E1
fine + E2

fine.

To test the performance, we generated 30 tested signal for each SNR level using

the same setting mentioned above. We compared the performance of SD-fHMM, SI-

fHMM, offline-AMTC and online-AMTC using the aforementioned error measures

and the results are listed in Table 4.1. We depict the distribution of ETotal and Efine

specifically in Fig. 4.8. All methods have a similar performance in terms of the fine

detection error Efine, while AMTC slightly outperforms fHMM in terms of ETotal,

the main contributors of which are E12 and E21. Table 4.2 shows the average compu-

tation time for the mixmax likelihood estimation procedure [95], together with the

tracking time requirement tested on a 2014 MacBook pro with a 2.3 GHz Intel Core

i5 processor. Note that the preprocessing stage of fHMM to compute the emission

probability also consumes almost 0.4 sec/frame for the SD and 2.0 sec/frame for the

SI model, which makes the real-time implementation almost impossible for a usual

hardware setting. AMTC, on the other hand, is much more computationally effi-

cient than fHMM even without considering the mixmax likelihood computing. For

this task, online-AMTC reported a similar performance compared with the offline

version at 4.4 msec/frame. It guarantees real-time adaptation with almost no per-

formance drop. Fig. 4.7 shows the experimental results of the proposed algorithm

and fHMM on a test signal with SNR = −8 dB. We can observe that in a low SNR
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environment, the performance of online and offline-AMTC are better than fHMM

algorithm in terms of accuracy and false-positive detections.

Fig. 4.9(b) shows an example of the tracking result of offline-AMTC when

SNR is −10 dB and three traces are presented. We can see three traces have been

accurately estimated as compared to the ground truth on the left when two weak

traces with different levels of strength intersect.

4.5.1.3 Trace Detection

In this part, we evaluate the trace detection performance and the optimal

selection of ∆RER using the synthetic data in five levels of SNR conditions. We

generated 100 trials for each level of SNR with the generative model described in

Section VA-1. An unvoiced segment was selected in each test signal. The length of

the selected segment ranged from 25% to 75% of the signal length, and the overall

number of voiced spectral frames equaled the number of unvoiced frames. In this

experiment, the voiced detection is treated as the positive case, and the detection

result (without the post-processing operation using ∆1 and ∆2) is summarized using

the Receiver-Operating Characteristic (ROC) plot in Fig. 4.10(a). From the plot,

we observe highly accurate detection result in each SNR condition with the Area

Under the Curve (AUC) higher than 0.9.

In Fig. 4.10(b), we show the zoomed plot of the shaded area in Fig. 4.10(a).

The optimal operating points (black circles) were found by minimizing the sum of

false positive rate and the false negative rate. The operating point corresponding
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to a fixed ∆RER selection is also shown in each SNR level. Note that the detection

result using a fixed threshold value is highly accurate and is close to that with the

optimal choice in every SNR level, demonstrating the insensitivity of the threshold

parameter ∆RER.

4.5.2 Experimental Results on rPPG Data

We evaluated the performance of the proposed method on a real-world dataset

from the problem of the pulse rate estimation from facial videos. We show by

experiment that AMTC can successfully extract the subtle pulse trace even when

the trace is dominated by another frequency component. To test the robustness of

the algorithm in a challenging situation, we use the dataset where the video contains

significant subject motion [93]. In total, the dataset contains 20 videos in which 10

contain human motions on an elliptical machine, and the other 10 contain motions

on a treadmill. Each video is about 3 minutes long in order to cover various stages

of fitness exercise. Each video was captured in front of the subject’s face by a

commodity mobile camera (iPhone 6s) affixed on a tripod or held by the hands of a

person other than the subject. The heart rate of the test subject was simultaneously

monitored by an electrocardiogram (ECG)-based chest belt (Polar H7) for reference.

The spectrogram of the preprocessed face color feature was estimated using the same

set of parameters as in Section 4.5.1.

Fig. 4.11 gives an example of the tracking result using AMTC with a uniform

Markov transition probability model with k = 60 for first motion-induced trace
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Rmse (bpm) ERate (%) ECount (%)

µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

MN+PF 5.29 5.51 9.41 14.13 2.20 2.24

offline-AMTC 2.21 1.11 3.16 6.04 1.02 2.24

online-AMTC 2.78 1.20 4.01 6.42 1.25 2.42

Table 4.3: Performance of proposed method and particle filter method on rPPG
data

estimate and with k = 2 for second pulse-induced trace estimate. More freedom of

trace dynamic (k = 60) was assigned to the first estimate as the variation of motion

frequency can be much greater than the heart rate. We noticed for each spectrogram,

the traces induced by subject motions dominate over the heart rate trace. Compared

to the particle filter-based method that utilizes additional information to compensate

for the motion trace [93], AMTC can faithfully track the dominating motion trace

and recognize the PR trace as the second trace. Notice that the trace estimate

from the particle filter would occasionally deviate to the vertical motion trace. We

summarize the mean µ̂ and standard deviation σ̂ of the error measures for all of

our videos, and the results are listed in Table 4.3. The average error for AMTC

is 2.21 bpm in offline mode and 2.78 bpm in online mode in Rmse and 3.16% in

offline mode and 4.01% in online mode in relative error. The performance of AMTC

is more than twice as good against the state-of-the-art motion notching + particle

filter.
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Figure 4.11: (a) Weak heart pulse embedded in a strong trace induced by verti-
cal motion of the person running on an elliptical machine. The estimated pulse
SNR equaled −4.5 dB. (b) Heart rate estimation after compensating the first trace
estimate using offline-AMTC. (c) Heart rate estimation using motion spectrogram
notching and particle filter method.
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Figure 4.12: (a) Spectrogram for a sample ENF audio signal. The estimated ENF
SNR equaled -8.2 dB. Trace estimates (red line) returned by Quadratic Interpolation
(b), Particle Filter (c), YAAPT (d), and offline-AMTC (e). The reference ENF trace
is shown in black line in plots (b)–(e).
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Rmse (Hz) Pearson’s ρ

µ̂ σ̂ µ̂ σ̂

QI 0.24 0.18 0.18 0.26

Particle Filter 0.04 0.07 0.55 0.37

YAAPT 0.16 0.12 0.23 0.28

offline-AMTC 0.01 0.01 0.85 0.18

online-AMTC 0.03 0.02 0.81 0.20

Table 4.4: Performance of various methods on ENF data

4.5.3 Experimental Results on ENF Data

In this subsection, we tested the performance of the proposed algorithm on a

real-world ENF dataset. In total, 27 pairs of one-hour power grid signal and audio

signal from a variety of locations in North America were collected and tested. Each

pair of signals were simultaneously recorded using a battery-powered Olympus Voice

Recorder WS-700M at a sampling rate of 44.1 kHz in MP3 format at 256 kbps. We

recorded the reference ENF signal directly from the power mains of the electrical

supply. To limit the voltage to the safe range of the input of a sound card or a digital

recorder, we used a step-down transformer to convert the power supply voltage level

to 5V and then used a voltage divider to obtain an input of 5 mV [107].

We downsampled the signals to 1 kHz to reduce the computational load, and

applied harmonic combining method [110] to obtain robust frequency strips around

the nominal frequency, i.e., 60 Hz in North America. The harmonic combining

method approach exploits different ENF components appearing in a signal, and

adaptively combines them based on the local signal-to-noise ratio to achieve a more

118



robust and accurate estimate than that by using only one component. We obtained

the ground truth from the corresponding power grid signals using Quadratic Interpo-

lation (QI) [111], as the SNR is high and frame-wise highest peak method is proved

to be the maximum likelihood estimator of signal frequency [106]. We use Rmse and

Pearson correlation coefficient ρ of the estimated versus the ground-truth sequence

of frequency variations as two performance indices. They are two well-adopted error

measures for ENF estimation.

Fig. 4.12 gives a tracking example using a piece of the audio signal captured

from 03:03 am to 04:03 am PT, Oct. 31st, 2012, San Diego, CA. Note that the

ENF trace becomes weak after 15 mins, which we define as a checkpoint. AMTC

can identify the trace from the noisy harmonic combined spectrum feature. Particle

filter gives comparable results before the checkpoint but deviates from the true

trace occasionally due to nearby interference. Local peak based tracking method

YAAPT and frame-wise frequency estimator QI completely lost the target after the

checkpoint as the peak information alone is not able to guarantee a good estimate.

The performance of various methods is summarized in Table 4.4. We calculated

the mean and standard deviation of the error measures for 27 pieces of audio ENF

signals. For this very noisy dataset, AMTC can achieve 0.01 Hz in offline mode

and 0.03 Hz in online mode in average Rmse and 0.85 in offline mode and 0.81 in

online mode in average correlation with ground truth, which outperforms all other

tracking methods substantially both in average and variance of the error statistics.
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Figure 4.13: Spectrogram examples of clean signals with five trace variation levels.
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Figure 4.14: Impact evaluation of three factors: Rmse (first column), ERate (sec-
ond column), and ECount (last column) of the trace estimates by offline-AMTC
with different combinations of TRD and SNR levels (first row), with different trace
variation levels and selections of k (second row), and with different TRD and SNR
levels (last row).
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4.6 Impact of Various Factors

In this section, we further investigate the performance of AMTC in respond

to multiple factors. First, we study the performance when the signal length varies.

Then, we discuss the effect of the trace variation level. Finally, we evaluate the im-

pact of the distance between two traces to the estimation accuracy. The parameters

are configured to be the same as introduced in Section 4.5.1 unless otherwise stated.

4.6.1 Impact of Signal Length

In this part, we show by experiment that more accurate tracking results are

achieved when the signal length or the number of frames in the spectrogram in-

creases. We quantitatively analyze the system performance concerning different

levels of the signal length and argue that a minimum of 300 spectral frames is ex-

pected for the performance level demonstrated in the paper for SNR ranging from

−8 dB to −14 dB.

The evaluation was conducted with the same signal synthetic setting described

in Section 4.5.1.1. We generated 200 trials under each of the five SNR conditions

ranging from −8 dB to −16 dB. The duration of the test signal was set as three

and a half minutes, which is equivalent to 1000 spectral frames in the spectrogram.

The 1000 spectral frames were then segmented uniformly based on the five levels

of evaluated signal length, and the offline-AMTC was performed independently on

each segment. The mean performance results with respect to different combinations

of the signal length and SNR is shown in the first row of Fig. 4.14. Note that

121



when the spectrogram only contains one frame, the tracking result using AMTC

is equivalent to that using the highest peak method. We can observe from the

plots that the system performance gains significantly when the signal length exceeds

10 frames. More frames are needed in a lower SNR condition for converging to the

best performance level, but overall the performance starts to converge when the

number of frames equals 300 under all SNR levels except −16 dB.

4.6.2 Impact of Trace Variation

During the formulation process of the frequency trace tracking problem, we

have assumed the change of the frequency value between two consecutive bins as a

one-step discrete-time Markov chain, characterized by a transition probability ma-

trix P. With a training dataset of sufficient size available to the user, one may learn

the model parameters of P to make a more precise tracking estimation. However,

the training set is often unavailable in a real-world setting, and the user has to make

their own choice of the P before deploying the algorithm. It is therefore important

for a robust frequency tracker to successfully track the frequency components even

when the variation of the frequency traces is at different levels.

We thus evaluated the system performance with respect to five different trace

variation levels, and assumed the transition probability follows the uniform distribu-

tion parameterized by k. 200 trials were generated for each level of trace variation

by tuning the variance of f [n] in the generative signal model described in Sec-

tion 4.5.1.1. Specifically, the five levels of the trace variation correspond to 0.001,

122



0.005, 0.01, 0.02, and 0.04 bpm as the standard deviation of f [n]. One example of

the signal spectrogram for each level of trace variance is shown in Fig. 4.13 for com-

parison purposes. Note that a higher frequency energy diffusion is observed when

the trace variation increases, as the signal within each analysis window becomes less

stationary.

We show the averaged system performance in terms of Rmse, ERate, and

ECount with respect to different combinations of the trace variation level and

the selection of k in the second row of Fig. 4.14. The SNR was fixed as −10 dB.

From the plots, we observe that the performance decreases when the trace variation

level gets higher, especially above level III. Even though the optimal selection of k

increases along with the trace variation level, ERate are controlled below 5% when

k is fixed as 4 or 6 with trace variation level lower than V, suggesting the robustness

of AMTC again the trace variation levels with a proper selection of the transitional

probability parameter.

4.6.3 Impact of Trace Distance

It is challenging for any frequency tracker to accurately distinguish and track

two frequency traces that run close to each other. To quantify the distance be-

tween two frequency components in a meaningful manner, we first defined a metric

called Trace Relative Distance (TRD) as the ratio of the distance of two frequency

components in the frequency domain to the mean width of their energy bumps. In

Fig. 4.15(a)-(e), we show examples of the spectral distribution when TRD = 0.2,
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(a) (b) (c) (d) (e)

Figure 4.15: Examples of the spectral frame when the Trace Relative Distance
(TRD) equals 0.2, 0.4, 0.6, 0.8, and 1, respectively from (a) to (e). Only part of the
frame is displayed for better visualization.

0.4, 0.8, and 1, respectively.

We generated 200 trials for each level of TRD using the same generative signal

model described in Section 4.5.1.2. No “unvoiced” segment was added to the tested

signal and the TRD of two frequency traces was identical over time within each

tested signal. We show the averaged system performance with respect to different

levels of TRD and SNR in the last row of Fig. 4.14. From the plots, we know that

AMTC is capable to track the frequency traces with ERate lower than 3% when

SNR ≤ −8 dB, and TRD >= 0.4. The estimation result when TRD = 0.2 is highly

deviated from the ground truth. In this level of TRF, more information or prior

knowledge about the frequency components is expected to be incorporated for an

improved estimation.

4.7 Discussions

4.7.1 Estimation of the Number of Traces

In previous sections, we presented both the offline and the online-AMTC al-

gorithms with the assumption that the number of traces L is known. In some cases,

L is unknown and needs to be estimated. Note that the process of estimating L in

124



the proposed AMTC system is equivalent to determining the number of iterations

AMTC needs to take. The problem is then converted to deciding at which iteration

should the AMTC stop. This problem can be solved by testing the hypothesis of

the trace existence in the compensated spectrogram image Z(l) at each iteration l.

In Section 4.3.3, we propose to use the RER measure to detect the existence

of a frequency component in each frame. We are motivated by the fact that a

low RER measure of a certain frame suggests low probability of the presence of a

trace in that frame. Similarly, to test globally the trace existence at lth iteration

of AMTC, we propose to evaluate the average of the statistics RER(l), namely,

RER(l) = 1
N

∑N
n=1 RER(l)(n). As one example shown in Fig. 4.16, the ground truth

number of traces in the spectrogram image is 3. We observe a significant drop in

RER(l) from l = 3 to l = 4 in Fig. 4.16(c), when we run the offline-AMTC with four

iterations. This observation coincides with the actual absence of the fourth trace.

We therefore propose to estimate L as l− 1 if at lth iteration, RER(l) is less than a

preset threshold. The selection of the threshold value may follow similarly with the

optimal selection of ∆RER that is discussed in Section 4.5.1.3.

4.7.2 Signals with Multiple Harmonics

In situations when multiple harmonic traces appear in the spectrogram (e.g.,

audio signals, Electrocardiography (ECG) signals), AMTC might extract several

harmonic traces that originated from one single source. Take the human speech

signal as an example. The fundamental frequency range of interest, 85 Hz to 255
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Figure 4.16: (a) Spectrogram image of a synthetic -8dB signal with three frequency
components and (b) the same image overlaid with ground truth frequency compo-
nents (white dashed line), the corresponding frequency estimates f̂(1:3)(blue line) and

one additional trace estimate f̂(4) (green line) using AMTC. (c) the corresponding
RER of all four trace estimates in (b).

Hz [112,113], may cover both fundamental frequency components as well as second-

order harmonics. For example, a peak in 200 Hz can be considered as the fun-

damental frequency component of a female speaker, or it can also represent the

second-order harmonic of a male speaker. In this regard, the STFT spectrum fea-

ture might not be considered as a proper input of a robust fundamental frequency

tracker. Instead, this problem can be addressed by introducing several alternative

robust spectral features, e.g., the subharmonic summation method [114], the discrete

logarithmic Fourier transform [115], and the frequency autocorrelation function [99].

Similar to the idea of harmonic combining algorithm [110] used for ENF case, these

methods are capable of combining harmonic spectral features and improving the

SNR of the fundamental frequency. The tracking performance is therefore expected

to be better by feeding in any of these three features rather than the STFT spec-
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Figure 4.17: (a) Spectrogram of a synthesised signal with ground truth frequency
around 95 bpm and strong nearby interference from 0–0.4 min. (b) Overlaid with
user input constraint (in filled white circle). (c) Unconstrained trace estimate. (d)
Constrained trace estimate.

trogram.

4.7.3 Benefits From Human-in-the-Loop Interactions

AMTC has its limitations in some specific cases. Due to the greedy nature

of the searching strategy in each iteration, the algorithm may find incorrect traces

when nearby strong interference is presented, or two traces with similar energies

running closely in time. We show in Fig. 4.17(b) one such example that AMTC

got confused when strong interference is presented near the ground truth frequency

trace. Note that without extra information, even humans can make mistakes in this

scenario. For some applications when the analysis is performed offline, and people

have prior knowledge about the trace shape or part of the trace frequency range, it

is beneficial to allow users to input high-level cues [94, 116] to guide our proposed

estimator’s priority to find the correct trace. As an example, Fig. 4.17(c) shows

the user input constraint in the filled white circle for the estimated trace to pass

through. Fig. 4.17(d) shows the constrained estimate, which was achieved by scaling

up the spectrum entries in the constraint region until the estimated trace passed
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through the region. The constrained tracking result reveals that AMTC correctly

captured the true trace by shifting its attention from interference to the user-defined

region.

4.8 Conclusion and Future Work

In this chapter, we addressed the problem of estimating and tracking of multi-

ple weak frequency components from spectrogram image and proposed both offline

and online versions of AMTC algorithm. By using iterative forward and back-

ward dynamic trace estimation and adaptively trace carving, AMTC can provide

accurate estimate even for weak frequency traces. Compared to the state-of-the-

art spectrogram tracking methods, our method shows robustness and consistency

on both synthetic and real-world data with different levels of noise in an efficient

manner.
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Chapter 5: Learning Your Heart Actions From Pulse: ECG Wave-

form Reconstruction From PPG

5.1 Introduction

Cardiovascular disease (CVD) has become the leading cause of human death –

about 32% of all deaths worldwide in 2017 according to the Global Burden of Disease

results [117]. Statistics also reveal that young people, especially athletes, are more

prone to sudden cardiac arrests than before [118]. Those life-threatening cardiovas-

cular diseases often happen outside hospitals, and the patients are recommended by

cardiologists to be monitored in a long-term continuous manner [119].

The electrocardiogram (ECG) has become the most commonly used cardio-

vascular diagnostic procedure and is a fundamental tool of clinical practice [13,120].

Many modern wearable ECG systems have been developed in recent decades. They

are simpler and more reliable than before, weighing only a fraction of a pound. How-

ever, the material used to provide good signal quality with the electrode may cause

skin irratation and discomfort during prolonged use, which restricts the long-term

use of the devices.

The photoplethysmogram (PPG) is a noninvasive circulatory signal related to
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reference PPG

Figure 5.1: Upper: a five-second reconstructed ECG signal in test set (black
line) vs. the reference ECG signal (red line) using the data from the MIMIC-III
database [122]. Lower: the corresponding PPG signal used to reconstructed the
ECG signal.

the pulsatile volume of blood in tissue [121]. In common PPG modalities, tissue

is irradiated by a light-emitting diode, and the light intensity is measured by a

photodetector on the same or other side of the tissue. A pulse of blood modulates

the light intensity at the photodetector and by convention the PPG is inverted to

correlate positively with blood volume [121]. Compared with ECG, PPG is easier

to set up, more convenient, and more economical. PPG is nearly ubiquitous in

clinics and hospitals in the form of finger/toe clips and oximeters and has increasing

popularity in the form of consumer-grade wearable devices that offer continuous and

long-term monitoring capability and do not cause skin irritations.

The PPG and ECG signals are intrinsically correlated, considering that the

variation of the peripheral blood volume is influenced by the left ventricular myocar-

dial activities, and these activities are controlled by the electrical signals originating

from the sinoatrial (SA) node. The timing, amplitude, and shape characteristics
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of the PPG waveform contain information about the interaction between the heart

and connective vasculature. These features have been translated to measure heart

rate, heart rate variability, respiration rate [123,124], blood oxygen saturation [125],

blood pressure [126], and to assess vascular function [127–129]. As the prevailing

use of wearable device capturing users’ PPG signal on a daily basis, we are inspired

to utilize this correlation to not only infer the ECG parameters but also reconstruct

the ECG waveform from the PPG measurement. This exploration, if successful,

can provide a low-cost ECG screening for continuous and long-term monitoring and

take advantage of both the rich clinical knowledge base of ECG signal and the easy

accessibility of the PPG signal.

There is a very limited amount of prior art addressing the ECG reconstruc-

tion/inference problem mentioned above. In [130], the authors trained several clas-

sifiers to infer the quantized level of RR, PR, QRS, and QT interval parameters,

respectively, from selected time domain and frequency domain features of PPG.

Even though the system yields 90% accuracy on a benchmark hospital dataset,

the capability confined to only inferring ECG parameters may restrict the broad

adoption of the prior art.

In this paper, we propose to estimate the waveform of the ECG signal using

PPG measurement by learning a signal model that relates the two time series. We

first preprocess the ECG and PPG signal pairs to obtain temporally aligned and

normalized sets of signals. We then segment the signals into pairs of cycles and

train a linear transform that maps the discrete cosine transform (DCT) coefficients

of the PPG cycle to those of the corresponding ECG cycle. The ECG waveform is
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then obtained via the inverse DCT. We evaluate our methodology on two publicly

available datasets as well as a self-collected datasets which in total contains 147

subjects with a wide variety of age, weight, and health conditions. Experiment

results show that the proposed method can achieve a high accuracy greater than

0.92 in averaged correlation in each datasets when the model is trained in a subject

specified manner. Fig. 5.1 shows a five-second reconstructed ECG signal in test

set with the proposed method. Note that the reconstructed ECG signal is almost

identical with the reference one.

The significance of this work is threefold. First, the statistics of the system

performance metrics evaluated on three databases show that our proposed system

can reconstruct the ECG signal accurately. Second, to the best of our knowledge,

this is the first work which addresses the problem of inferring ECG signal from

the PPG signal. It may open up a new direction for cardiac medical practitioners,

wearable technologists, and data scientists to leverage a rich body of clinical ECG

knowledge and transfer the understanding to build a knowledge base for PPG and

adta from wearable devices. Third, the technology may enable a more user-friendly,

low-cost, continuous and long-term cardiac monitoring that support and promotes

public health, especially for people with special needs.

The rest of this chapter is organized as follows. In Section 5.2, we first mathe-

matically model the relationship between the ECG and PPG signals. In Section 5.3,

we introduce the proposed system based on the proposed signal model in Section 5.2.

We test the system and report the experimental results in Section 5.4, and discuss

the possible extension and the limitations of the proposed method in Section 5.5.
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Figure 5.2: A visualization of the relationship between the ECG, the aortic pressure,
and the PPG.

The conclusion is drawn in Section 5.6.

5.2 A Cycle-wise Signal Model of PPG and ECG

As shown in Fig. 5.2, during each cardiac cycle, the atrioventricular (AV)

node receives the electrical signals originated from the SA node. The AV node then

transmits this bio-electrical signals through the bundle of His, left bundle branches,

and Purkinje fibers to the left ventricular myocardium, causing the depolarization

and contraction of the left ventricle. As a result of this process, the pressure of the

left ventricle rises and exceeds the aortic pressure, causing the opening of the aortic

valves, bloodflow from the left ventricle into the aorta, and the corresponding rise

of the aortic pressure. Upon closure of the aortic valves, the generated pulse wave

transmits the blood to the peripheral parts of our body, such as finger tips or toes,

through a network of blood vessels.

133



5.2.1 The ECG Signal and the Aortic Pressure

Consider one specific cardiac cycle. We denote the uniformly sampled cardiac

electrical activity as e(t), t ∈ [1, L], where L is the total number of samples within

the cycle. We denote the electrocardiogram measurement recording the potential

difference between two electrodes placed on the surface of the skin as cy(t). Taking

into account the human body electrical resistance and the sensor noise, we model

the ECG signal as:

cy(t) = αe(t) + vy(t), (5.1)

where α is a subject-specific modulus reflecting the resistance of the electrical path

between the heart and the skin surface. vy(t) denotes the ECG sensor noise, which

is modeled as a zero-mean white Gaussian process.

The contraction and relaxation of the heart muscles follow the bio-electrical

activities of the heart. These biomechanical activities further modulate the aortic

pressure via the opening and closing of the aortic valves. The aortic pressure,

denoted as pa(t), is thus highly correlated with the cardiac electrical activities e(t).

To model this correlation, we first map both e(t) and pa(t) to their frequency domain

via type II DCT, as DCT has the potential to provide a compact and effective

representation of the signals [131]. We then model the relationship of the two signals

with a linear transform from the DCT domain of e(t) to that of pa(t) as:

Pa = HE, (5.2)
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where E, Pa ∈ RL×1 are the DCT-II coefficients of e(t) and the aortic pressure pa(t)

respectively. H ∈ RL×L is the transition matrix.

5.2.2 The Pulse Wave and the PPG Signal

When the pulse wave and blood flow travel through our body from the aorta

to a peripheral site, it might experience different interactions with the blood vessels,

for instance splitting and pushing. Assuming the structure of the blood vessel path

of a specific person is time-invariant, we can model this channel from the aorta to

the peripheral site as a linear-time-invariant system. We denote the peripheral pulse

signal at a specific body site as pp(t). We write pp(t) according to the prior channel

assumption as:

pp(t) = b(t) ~ pa(t) + vb(t), (5.3)

where b(t) denotes the impulse response of the channel of blood vessels, and ~

denotes a symmetric convolution process. vb(t) is the zero-mean white Gaussian

noise, capturing the variance of this model.

Without loss of generosity, we assume the PPG sensor attached to the same

peripheral site works in the transmission mode. It means that the photodetector

of the PPG sensor is on the other side of the tissue with the light-emitting diode.

We assume the light source has a constant intensity I on the spectral range of the

receiver side. We further assume no relative motion between the attached skin and

the photodetector is not influenced by the possible environmental illuminations. We
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write the PPG measurement, denoted as cx(t), as:

cx(t) = I [τ0 + τ1pp(t)] + vx(t), (5.4)

where τ0 and τ1 denote the stationary tissue transmission strength and relative

pulsatile strength in the PPG light receiver side, respectively. vx(t) denotes the

PPG sensor noise, which is modeled as a zero-mean white Gaussian process. We

can rewrite (5.4) as:

cx(t) = I1pp(t) + I0 + vx(t), (5.5)

where I1 = Iτ1 and I1 = Iτ0.

5.2.3 The Inverse Model from PPG to ECG

According to the property of the symmetric convolution [132], we can rewrite

(5.3) as:

Pp = BPa + Vb, (5.6)

where Pp, Pa, and Vb are the DCT-II coefficients of pp(t), pa(t), and vb(t) respec-

tively. B , diag(B1, B2, ..., BL) ∈ RL×L, where Bk denotes the kth DCT-I coefficient

of b(t). We next apply a type II DCT on both sides of (5.1) and (5.5) and we arrive

at:

Cy = αE + Vy (5.7)

Cx = I1Pp + I0 + Vx (5.8)
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where Cy, Vy, Cx, I0 and Vx denotes the DCT-II coefficients of cy(t), vy(t), cx(t),

constant function I0 and vx(t) respectively. Assuming the nonsingularity of the

matrix B and H and according to (5.2), (5.6), (5.7), and (5.8), we have:

Cy = FCx + C0 + V (5.9)

where F , αH−1B−1

I1
, C0 , −αH−1B−1

I1
I0, and V , Vy−αH−1B−1

(
Vx

I1
+ Vb

)
. When

we look individually at each element of Cy, we have:

Cy(k) = F(k)Cx + C0(k) + V (k), k ∈ [1, L], (5.10)

where F(k) is the kth row of matrix F; C0(k) and V (k) denote the kth element of C0

and V respectively. We know V (k) is a zero-mean Gaussian random variable, as it

is a linear combination of zero-mean Gaussian random variables from vy, vb, and vx.

From the model listed in (5.10), we are motivated to explore the linear relationships

between the DCT coefficients of PPG signal and those of the ECG signals.

5.3 Methodology
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According to the signal model we discussed in the previous section, we propose

a system which learns the linear transform F. The pipeline of the system is shown

in Fig. 5.3. The pair of PPG and ECG signals are first preprocessed into pairs of

synchronized cycles. The cycle pairs are then fed into the training system to learn

the transform matrix. We discuss further the details of the system as follows.

5.3.1 Preprocessing: Cycle-Wise Segmentation

The goal of preprocessing ECG and PPG signals is to obtain temporally

aligned and normalized pair of signals, so that the critical temporal features of both

waveforms are synchronized to facilitate our investigation. As shown in Fig. 5.3, the

preprocessing phase contains data alignment, signal detrending, cycle-wise segmen-

tation, temporal scaling, and normalization stages that be explained as follows.

Data alignment Considering possible misalignment of the signal pair in each trial,

we perform a two-level signal alignment to obtain physically aligned signal pairs.

We first estimate the signal delay in the cycle level using the peak features as they

are the most distinguishable features within the cycle. We then align the signals to

the sample level based on their physical correspondence.

Suppose we have a pair of almost simultaneously recorded PPG and ECG

signals, denoted as x ∈ RT and y ∈ RT respectively. We name the coordinate

of the systolic peak in the ith cycle of PPG as tsp(i) and the R peak of ECG

as trp(i). The cycle delay ndelay is searched for in a set D , [−k, k], where the

search radius k = 5 as we expect the cycle delay to be small. For each evaluated
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n ∈ D, we first preliminarily align the signal with respect to tsp(1−n ·1(n < 0)), and

trp(1−n·1(n > 0)). The aligned coordinates of PPG and ECG peaks are {t′sp(n)} and

{t′rp(n)}. We then estimate the cycle delay n̂delay by solving the following problem:

n̂delay = argmin
n∈D

i=N−k∑
i=1

∣∣t′sp(i− n · 1(n < 0))− t′rp(i+ n · 1(n > 0))
∣∣, (5.11)

where N is total number of cycles, 1 is the indicator function. We align the signals

by shifting PPG signal so that the systolic peaks of PPG and the R peaks of ECG

are temporally matched.

Next, we align the signal to the sample level according to the R peak of the

ECG and the onset point of PPG in the same cycle (the local minimum point before

the systolic peak), considering that the R peak corresponds approximately to the

opening of the aortic valve, and the onset point of PPG indicates the arrival of the

pulse wave [121]. In this way, we eliminate the pulse transit time and align the

signals.

Detrending The non-stationary trend in both signals can be problematic for tem-

poral pattern analysis. Such slowing-varying trend can be estimated and then sub-

tracted from the original signals. The trend is assumed to be a smooth, unknown

version of x and y with a property that its accumulated convexity measured for

every point on the signal is as small as possible, namely,

x̂trend = argmin
x̂

‖x− x̂‖2
2 + λ ‖D2x̂‖2

2 , (5.12)
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where x is the original signal, x̂trend is the estimated trend in x, λ is a regularization

parameter controlling the smoothness of the estimated trend, and D2 ∈ RT×T is

a Toeplitz matrix that acts as a second-order difference operator. The closed-form

solution of (5.12) is x̂trend = (I+λDᵀ
2D2)−1x, where I is the identity matrix, Hence,

the detrended signal is x̃ = x− x̂trend, and similarly, ỹ = y − ŷtrend.

Segmentation & Normalization After the signal alignment and detrending, we seg-

ment each cycle of the signal x̃ and ỹ to prepare for the learning phase. In our

experiment, we introduce the following two cycle segmentation schemes: SR and

R2R.

• SR: we segment the signal according to the points which are 1/3 of the cycle

length to the left of the R peaks of the ECG signal. We call this scheme SR

as it approximately captures the standard shape of sinus rhythm.

• R2R: we segment the signal according to the location of the R peak of the

ECG signal to mitigate the reconstruction error in the QRS complex.

After the segmentation, we temporally scale each cycle sample via linear interpo-

lation to make it of length L in order to mitigate the influence of the heart rate

variation. We then normalize each cycle by subtracting the sample mean and divid-

ing by the sample standard deviation. We denote the normalized PPG and ECG

cycle samples as Cx, Cy ∈ RN×L.
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5.3.2 Learning a Linear Transform for DCT Coeffients

The right part of Fig. 5.3 shows our proposed learning framework. In the

training phase, we build and train a linear transform to model the relation between

the DCT coefficients of PPG and ECG cycles. We then use the trained matrix to

reconstruct the ECG waveform in the test phase.

Specifically, we first perform cycle-wise DCT on Cx and Cy, which yields X,

Y ∈ RN×L. Then the first Lx, Ly DCT coefficients of X,Y are selected to represent

the corresponding waveform as the signal energy is concentrated mostly on the lower

frequency components per our observation. We denote them as X̃ ∈ RN×Lx and Ỹ ∈

RN×Ly . We next separate X̃ and Ỹ into training and test sets as Xtrain ∈ RNtrain×Lx ,

Ytrain ∈ RNtrain×Ly and Xtest ∈ RNtest×Lx , Ytest ∈ RNtest×Ly , where Ntrain +Ntest = N .

In the training process, a linear transform matrix f ∗ ∈ RLx×Ly that maps

from PPG to ECG DCT coefficients is learned through ridge regression as described

below:

f ∗ = argmin
f
‖Xtrain f −Ytrain‖2

F + γ ‖f‖2
F , (5.13)

where ‖·‖F denotes the Frobenius norm of a matrix, and γ > 0 is a complexity

parameter that controls the shrinkage of f toward zero. The idea of penalizing the

sum-of-squares of f is to reduce the variance of the predictions and to avoid overfit-

ting [133]. The analytic solution to (5.13) is f ∗ = (Xᵀ
trainXtrain + γI)−1Xᵀ

trainYtrain,

where I is the identity matrix.

In the test phase, we apply the optimal linear transform f ∗ learned in training
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Figure 5.4: Scatter plot of the age vs. weight of all the subjects in the database [124].
The bar plot on each x and y axis shows the histogram of subject’s weight and age,
respectively.

stage on Xtest and estimate the corresponding DCT coefficients of ECG cycles. We

denote the estimate as ˆ̃Ytest , Xtest f
∗. To reconstruct ECG, we first augment each

row of ˆ̃Ytest to be in the same dimension as L (by padding zeros). We denote the

zero-padded matrix as Ŷtest ∈ RNtest×L. We then apply inverse DCT to each row of

Ŷtest, interpolate the resulted matrix row by row to its original temporal scale, and

concatenate the inversely scaled pieces of cycles to obtain the reconstructed ECG

signal ŷtest.

5.4 Experiments

5.4.1 Experiment I: TBME-RR database

We first use the Capnobase TBME-RR [124] to evaluate the performance of

the proposed system. The dataset contains 42 eight-min sessions of simultaneously
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recorded PPG and ECG measurements from 29 pediatric and 13 adults 1, sampled at

300 Hz. The 42 cases were randomly selected from a larger collection of physiological

signals collected during elective surgery and routine anesthesia for the purpose of

development of monitoring algorithms in adults and children. Each recorded session

corresponds to a unique subject. The PPG signal was acquired on subjects’ finger-

tips via a pulse oximeter. As shown in Fig. 5.4, the dataset has a wide variety of

patient’s age and weight and is thus a favorable dataset for testing the performance

of our proposed system.

We first pruned the signals according to the human-labeled artifact segments

and processed the pairs of ECG and PPG signal using the method introduced in

Section 5.3.1 to obtain aligned and normalized pairs of the signal cycles. We set

L = 300 and Ly = 100, as most of the diagnostic information of ECG is contained

below 100 Hz [13]. We set λ = 500 and γ = 10 empirically as they offer the best

regularization results in the tasks. In order to test the consistency of the system, we

selected the first 80% of each session as the training set and the rest for testing. We

use the following two metrics to evaluate the system performance in the test set:

• Relative root mean squared error:

rRmse =
‖ytest − ŷtest‖2

‖ytest‖2

, (5.14)

1Note that the recording in this database is of high signal quality. In cases when the signal is
corrupted by noise or subject’s motion artifacts, a denoising process is needed to clean the signal
before the preprocessing stage.
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• Pearson’s correlation coefficient:

ρ =
(ytest − ȳtest)

ᵀ(ŷtest − ¯̂ytest)

‖ytest − ȳtest‖2

∥∥ŷtest − ¯̂ytest

∥∥
2

, (5.15)

where ytest, ¯̂ytest, and ȳtest denote the ECG signal in test set, the average of all

coordinates of the vectors ŷtest and ytest respectively.

In this study, we evaluate the system in the following two training modes:

• Subject Independent (SI) mode: we trained a single linear transform f ∗ using

all the training data, i.e., the trained model is independent with each subject

in the dataset.

• Subject Dependent (SD) mode: a linear transform f ∗ is trained and tested

in each session. In this way, we obtain subject dependent model for each

individual.

We first cross-validated the number of DCT coefficients of the PPG signal Lx

used in the learning system. It is clear that the more variables as predictors, i.e.,

more PPG DCT coefficients are used in the linear system, the better the perfor-

mance can be achieved in training. However, we can observe from Fig. 5.5 that

the performance of our system in the test set using either SR and R2R becomes

saturated as Lx gets larger from approximate 18 and 12 in SI and SD mode respec-

tively. The trends of convergence in both mode suggest potential model overfitting.

Another observation is the convergence rate is slower in SI mode compared with SD

mode. This is expected because the data diversity is much higher in SI mode than
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Figure 5.5: The line plots give the average of rRmse in (a), (c), (e), and (g) and ρ
in (b), (d), (f), and (h) of all sessions in the test set for different choices of number
of PPG DCT coefficient m1 using SR (a), (b), (e), and (h) and R2R (c), (d), (g),
(h) segmentation scheme and SI (a)–(d) and SD (e)-(h) model respectively. The
vertical bars at each data point shows 3% standard deviation above and below the
sample mean.
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P

QRS

T P PT T

QRS QRS

Figure 5.6: An example of the ECG segmentation result on three cycles of the signal
in the 1st session of TBME-RR database. The green, red, and blue areas in the plot
denote the estimated P waves, the QRS waves, and the T waves, respectively. For
each cycle, the ratio between the duration of the QRST wave is 3/2 of the duration
of the T wave.

that in SD mode, and more variables are needed to capture the additional variance

in SI mode. Lx = 18 in SI mode and Lx = 12 in SD mode are thus favorable to

us as the system has comparable performance and the model is simpler than those

with larger Lx.

The norm of one cycle of ECG signal is dominated by that of the QRS complex.

This condition might lead to insufficient evaluation on P wave and T wave of the

ECG signal. To address this problem, we further separate the ECG cycle into

segments of P wave, QRS wave, and T wave. The evaluation is performed in terms

of rRMSE and ρ on each segment as well as the whole length of signal. Specifically,

we adopted the QRS detection algorithm introduced in [134] to locate the onset and

end point of the QRS complex. We empirically select the 60% point between the

onset points of two adjacent QRS complexes as the separating point for the P and

T wave. Fig. 5.6 shows one example of the ECG segmentation result on three cycles

sampled from the first subject in the database. Note that the onset and end point

of all waves in each cycle are accurately estimated.
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(a)
ECG
(SD)

(b)
ECG
(SI)

(c)

(d)
PPG

Figure 5.7: The reconstructed ECG (black line) in (a) SD and (b) SI and the
reference ECG (orange dashed line) waveform of the last 5 seconds of the first
session (age: 4 years old, weight: 18 kg) in TBME-RR database. Zoomed-in version
of the shaded cycle in each mode is shown in (c). The corresponding PPG waveform
is shown in (d).

148



SD, R2R SD, SR
SI, R2R SI, SR

(a)

(b)

Figure 5.8: Comparison of the performance of the proposed method in test set of
the TBME-RR database in different combinations of the SR or R2R segmentation
schemes and SD or SI test modes evaluated at P, QRS, T, and all waves. Statistics
of the (a) rRmse and (b) ρ are summarized using the box plots.
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We listed the average performance using R2R and SR cycle segmentation

schemes in different training modes in Table 5.1 and plotted the results using the

box plots in Fig. 5.8. In Table 5.1, the performance is characterized by the sample

mean and standard deviation of rRMSE and ρ on P, QRS, T, and all waves, where

all wave denotes the whole length of the signal including every wave. From the

statistics, we learn that overall R2R gives better performance than SR, and model

trained in SD mode gives better performance compared with that trained in SI

mode in this dataset as possible subject differences in terms of H in (5.2) and b(t)

in (5.3) are expected. In general, R2R outputs comparable results on P and T

waves compared with SR, whereas R2R outperforms SR on QRS and all waves. In

SD mode, the average performance in ρ on T wave is about 0.92 using R2R and

0.90 using SR, much higher values than those on P wave. There are two possible

reasons that explain this result. First, compared with the QRS and T waves, the

amplitude of P wave is much smaller. As a result, the P wave becomes more sensitive

to the noise compared with the T wave. Second, the shape of T wave signifies the

repolarization of the ventricles, and the ventricular repolarization is correlated with

the shape of dichrotic notch in PPG signal. This is because during the ventricular

repolarization process, the closure of the aortic valve is associated with a small

backflow of blood into the ventricle and a characteristic notch in the aortic pressure

tracings. This connection between the P wave of ECG and the dichrotic notch of

PPG may facilitate the system performance on P wave.
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(a) (b)

(c) (d)

Figure 5.9: Scatter plots of (a) rRmse and (b) ρ vs. subjects’ weight and age using
R2R scheme. Each sample corresponds to one of 42 sessions. The surface mesh on
each plot shows the regressed linear model: rRmse or ρ ∼ intercept+age+weight+
age× weight. The R2 and the p-value of F -test is shown on each plot.

As an example, we show a five-second segment of the reconstructed ECG wave-

form in the test set of the first subject in Fig. 5.7 using the R2R cycle segmentation

scheme with Lx = 18 in SI mode and Lx = 12 in SD mode. We choose the first

subject to be the example as the system performance evaluated on this subject ap-

proximates the average performance over the database. We see from the plot that

the system retains most of the shape of the original ECG waveform except for the S

152



peaks in SI mode and almost perfectly reconstructs the shape of the ECG waveform

and maintains the location of each PQRST peaks in SD mode.

In Fig. 5.9, we plot the rRmse and ρ of each session with respect to subjects’

age and weight respectively in two 3-D plots in SI and SD mode. We then fitted a

linear model with an interaction term for each combination of training mode and

evaluation metric according to the least squares criterion. An F -test is performed

to test whether subjects’ profile, i.e., age and weight, can significantly affect the

performance of the algorithm in each metric and training mode combination. F -

tests results of high p-values shown in Fig. 5.9(c) and 5.9(d) reveal the independent

relationship between the performance of the algorithm and the subject’s age and

weight in SD mode, whereas the test results of low p-values shown in Fig. 5.9(a) and

5.9(b) indicate the dependent relationship in SI mode. Moreover, we notice that

the performance tends to be lower as the subject’s weight gets larger. This trend of

performance degradation might be due to the bias of the training sample that the

number of new-borns is much larger than the number of other groups of subjects in

the database.

5.4.2 Experiment 2: MIMIC-III database
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Figure 5.10: Distribution of subjects collected from the MIMIC-III database in
five age groups and eleven disease type. Within each age group, the cardiac-related
diseases are colored as different shades of blue on the left, and the noncardiac-related
diseases are colored as different shades of red on the right.
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Medical Information Mart for Intensive Care III (MIMIC-III) [122] is a large,

freely available database comprising vital sign measurements at the bedside doc-

umented in MIMIC-III waveform database and part of the patients’ profile in the

MIMIC-III clinical database. The database is publicly available and encompasses

a large population of ICU patients. In this experiment, the MIMIC-III database is

used to evaluate the system’s performance when the subjects are with various car-

diac or non-cardiac malfunctions. In order to collect the required signals from the

raw database to facilitate the evaluation, we developed a data collector procedure

that be detailed as follows.

First, we selected waveforms that contain both lead II ECG and PPG sig-

nals from folder 35 in MIMIC-III waveform database. Then we linked the selected

waveforms with the MIMIC-III clinical database by subject ID to match with the

corresponding patient profile. Among the patients, we selected those with specific

cardiac/non-cardiac diseases and removed low signal quality PPG/ECG pairs. [se-

lecting patients with specific cardiac/non-cardiac diseases and removing low signal

quality PPG/ECG pairs]

The resulting collected database consists of 53 patients with six typical cardiac

diseases and 50 patients with five types of non-cardiac diseases. Each patient has

three sessions of 5-min ECG and PPG recordings collected within several hours.

Cardiac diseases in the resulting database include atrial fibrillation, myocardial

infraction, cardiac arrest, congestive heart failure, hypotension, hypertension and

coronary artery disease, while non-cardiac diseases are composed of sepsis, pneumo-

nia, gastrointestinal bleed, diabetic ketoacidosis and altered mental status. Fig.5.10
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SD, Card. SD, Non-Card. SI, Card. SI, Non-Card.

(a)

(b)

Figure 5.12: Comparison of the performance of the proposed method in test set of
the MIMIC-III database in different combinations of the disease types and Sub.D
test modes. Statistics of the (a) rRmse and (b) ρ are summarized using the box
plots.
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shows the distribution of the collected dataset with respect to age and disease.

In this part of experiment, we evaluate our proposed system in the following

two training modes (both under R2R segmentation scheme):

• Subject Independent (SI) mode: we trained one linear transform f ∗ using

training data from patients with cardiac diseases and another linear transform

f ∗ from non-cardiac disease patients, i.e., the trained model is independent

with each subject in terms of disease type.

• Subject Dependent (SD) mode: a linear transform f ∗ is trained and tested

in each session. In this way, we obtain subject dependent model for each

individual.

In addition to quantitative analysis of the reconstruction performance by Pear-

son correlation and rRMSE, we also execute a disease classification experiment on

the reconstructed ECG signals to show the potential of our proposed method in

applications within biomedical health informatics.

First, from the collected MIMIC-III database, we select 28 patients with five

types of cardiac diseases, including congestive heart failure, ST-segment elevated

myocardial infraction, non-ST segment elevated myocardial infraction, hypotension,

and coronary artery disease. For each patient, we perform the SD mode ECG

reconstruction experiment to obtain the reconstructed ECG signals. To simulate the

diagnosis process of cardiologists, we connect the cycle-wise ECG signals into pieces

of 30-cycle length for training and classification. The training data is composed of

70 % from the original ECG signals, and the testing data constitutes of the rest 30

159



DiseaseNumber
of pa-
tients

Number
of train-
ing
data

Number
of test
data

Number
of test
data

(original
ECG)

(reconstructed
ECG)

CHF 7 163
(23.6%)

65
(25.8%)

67
(23.9%)

STMI 7 171
(24.7%)

59
(23.4%)

68
(24.3%)

NSTMI5 114
(16.5%)

40
(15.9%)

46
(16.4%)

HYPO5 158
(22.8%)

57
(22.6%)

64
(22.9%)

CAD 4 86
(12.4%)

31
(12.3%)

35
(12.5%)

Total 28 692
(100%)

252
(100%)

280
(100%)

CHF: congestive heart failure
STMI: ST-segment elevated Myocardial infraction
NSTMI: non-ST segment elevated Myocardial infraction
HYPO: hypotension
CAD: coronary artery disease

Table 5.3: Distribution of training and testing data for disease classification in the
MIMIC-III dataset

160



% from original ECG signals and all of the reconstructed ECG signals. The detailed

distribution of training and testing data with respect to disease types are shown in

table 5.4.2.

We applied PCA for dimension reduction and SVM classifier with polynomial

kernel from SVM library [135]. The confusion matrices for classification are illus-

trated in figure 5.13 with the reduced dimension equals to 100. Comparing figure

5.17(a) and 5.17(b), we conclude that our reconstructed ECG has a comparable clas-

sification performance as the original ECG signals. We also include the confusion

matrix for original PPG classification in figure 5.13(c) for reference. The superior

performance of classification from the reconstructed ECG signals compared to that

of the original PPG signal indicates the fidelity of the reconstructed ECG recordings

in the presence of cardiac pathologies.

5.4.3 Experiment 3: Self-collected data
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(a) (b)

(c)

Figure 5.13: Confusion matrices of SVM with polynomial kernel on three types of
data: original ECG, inferred ECG and original PPG
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Figure 5.14: This figure shows how the signals were collected in the self-collected
database. The subject was asked to wear a PPG sensor and an ECG sensor to cap-
ture her fingertip PPG and Lead I ECG signal simultaneously in a sitting position.

We next test our system with the self-collected data using commercially avail-

able sensors to test the temporal consistency of the system. Two subjects partici-

pated in this two-weeks long experiment. One subject is male, 31 years old. The

other is female, 23 years old. Both of them are Asian. According to the most-recent

medical examinations received by both subjects, none of them has been diagnosed

with any known CVDs or mental illness. As shown in Table 5.4.3, we recorded six

5-min trials for the first subject and seven trials for the second subject in differ-

ent times of two consecutive weeks. In each trial, the subject was asked to wear

1. EMAY FDA-clear handheld single-lead ECG monitor (Model: EMG-10) and 2.

CONTEC pulse oximeter (Model: CMS50E) to record their lead I bipolar ECG

signals2 and finger-tip PPG signals simultaneously. As shown in Fig. 5.14, we asked

the subject to wear the PPG sensor on his/her index finger of the right hand, and

2We measure the lead I ECG signal in this experiment considering the easiest accessibility
among all leads using the handheld ECG sensor.
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(a) 
ECG

(SessD)

(b) 
ECG

(SessI)

(d) 
PPG

(c) 
ECG
(SubI)

Figure 5.15: A qualitative comparison among the reconstructed ECG signals tested
in (a) SessD, (b) SessI, and (c) SubI modes respectively, from the 6th session of
the first subject in self-collected database. In (a-c), the black line indicates the
reconstructed ECG and the orange dashed line refers to the reference ECG. The
Pearson’s correlation coefficients for these three cases are 0.937 in SessD, 0.917 in
SessI, and 0.869 in SubI. (d): the corresponding PPG waveform.

165



(a) 

(b) 

Figure 5.16: Comparison of the performance of the proposed method in test set
of the self-collected database in SessD, SessI, and SubI mode. Statistics of the (a)
rRmse and (b) ρ are summarized using the box plots.
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attach the electrodes of the ECG sensor to the palm of left hand and the back of

the right hand. The subjects were asked to sit in front of a table and put their arms

on the table as motionless and peacefully as possible to reduce the motion-induced

artifacts during the recording time. The sampling rates of the ECG and PPG sen-

sors are 150 and 60 Hz respectively. We up-sampled both signals to 300 Hz via the

bilinear interpolation for consistency consideration, and aligned the pair of signals

by the USB protocol.

We evaluate the system performance in the following three training modes:

• Session Dependent (SessD) mode: Same to SD mode we investigated in Sec-

tion 5.4.1. f ∗ is trained and tested separately in each session.

• Session Independent (SessI) mode: The sessions of each subject are first listed

chronologically. f ∗ is trained on the first 80% of the sessions and is tested on

the rest of the sessions in order to maximize the temporal difference of the

training and test set.

• Subject Independent (SubI) mode: We combined the subject dependent train-

ing sets used in SessI mode and trained a subject independent model to test

on the same test set in SessI mode.

In this experiment, we use the R2R segmentation scheme and set Lx = 12 in

SessD and SessI mode and Lx = 18 in SubI mode. The cycle segmentation process

is guided by the peak detection algorithms introduced in [134] and [136]. The two

algorithms are deployed to detect the R peak of ECG and the onset point of PPG

signal respectively. Fig. 5.15 shows one example of the reconstructed waveforms
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Session Time Session Time

Subject 1 Subject 2
1 2019-01-07, 10:04 1 2019-01-07, 10:12
2 2019-01-07, 11:11 2 2019-01-07, 11:18
3 2019-01-07, 14:08 3 2019-01-07, 13:29
4 2019-01-09, 19:42 4 2019-01-09, 19:54
5 2019-01-10, 19:14 5 2019-01-09, 22:12
6 2019-01-18, 09:49 6 2019-01-09, 23:21

7 2019-01-10, 10:00

Table 5.5: The date and time of each session in self-collected database.

from the 6th session of the first subject. Note that this session is recorded more

than one-week after the other sessions. From the qualitative result in 2nd and 3rd

rows of Fig. 5.15, we notice that the reconstructed signals match well with the

reference ECG in all waves in the condition of long temporal separation from the

training set.

Similar to the previous two experiments, we summarize the average perfor-

mance in different combinations of training modes and regression methods and eval-

uate each combination in terms of rRMSE and ρ in P, QRS, T waves respectively.

In Fig. 5.16, we use the box-plots to visualize the more detailed statistics of the

evaluation metrics. Notice that in general, the system perform best in SessD mode,

followed by SessI and SubI. Again, this difference may suggest possible subject-wise

difference of the model parameter b(t), H, or α. Consistent observations in this

dataset also include better performance in T wave than P wave, and our conjecture

remains with the one claimed in Section 5.4.1.
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Segmentation rRmse (SD) ρ (SD) rRmse (SI) ρ (SI)

O2O 0.553 0.823 0.689 0.717

R2R 0.324 0.940 0.599 0.790

Table 5.6: Performance comparison using O2O and R2R cycle segmentation schemes
on the MIMIC-III test dataset.

5.5 Discussion and Extensions

5.5.1 Cycle Segmentation via PPG

We have evaluated the system in Section 5.4 assuming the availability of the

ground truth cardiac cycle information obtained from the ECG signal. We now

examine a more practical setting when the cycles are estimated solely from the

PPG signal, thereby accounting for the real-world constraint that the reference

cycle information is unavailable.

The MIMIC-III database introduced in Section 5.4.2 was adopted in this ex-

periment. We segmented the signal according to the onset points of the PPG signal,

considering the onset point represents one of the most distinct features within the

PPG cycle. We name this segmentation scheme O2O.

To single out the contribution to the reconstruction error due to the discrep-

ancy in the waveform shape rather than the misalignment of the ECG peaks, we

evaluate O2O after each reconstructed cycle was post-processed to align with the

original ECG signal. This was done by shifting each reconstructed ECG cycle in

time so that the original and reconstructed ECG signals were matched according

to their R peaks. We list the performance metrics in the SD and SI modes and
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(a) (b)

Figure 5.17: Confusion matrices for classification results using kernel SVM on three
types of data: (a) inferred ECG (O2O) (b) inferred ECG (R2R).

compare the results with the R2R segmentation in Table 5.6. Note that ρ = 0.510

when using O2O segmentation without the peak alignment in the SD mode, and ρ

increases to 0.823 once the peak is aligned. The performance statistics reveal that

the shape of the waveform is inferred well, and increased error in reconstruction by

O2O compared with R2R is mainly due to the misalignment of the signal that has

a sample mean and standard deviation of 0.38% and 3.98% in relative cycle length,

respectively. This observation is consistent across the SI and SD training modes.

The disease classification experiment was conducted using the O2O segmenta-

tion without the peak alignment. We observed a comparable classification accuracy

of the reconstructed ECG signal compared with the result when the model was

trained with the R2R segmentation. This observation indicates that the ECG re-

construction deviation does not affect the diagnostic power of the reconstructed

ECG signal.

The confusion matrices for the disease classification using the O2O scheme
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without the shifting operation are illustrated in Fig. 5.17. Note that the classification

accuracy is comparable with the result we had before where the model is trained

using R2R. This observation indicated that the ECG reconstruction deviation does

not affect the diagnostic power of the signal.

5.5.2 Extensions of the Proposed Methodology Using Joint Dictio-

nary Learning

In this chapter, a linear transform in the DCT domain has been designed

to reconstruct the ECG signal from the PPG signal. The use of this universal

orthogonal DCT basis offers an efficient and compact representation for both signals

and enables a robust system with less concerns on overfitting the model even when

the data size is relatively small.

As the growing size of our available dataset, we would like to explore the

possibilities of a more complicated model as an extension of the current system. For

the sake of this problem, we have asked therefore the following questions before we

started to design the extended learning mechanism:

• Universal v.s. Signal-specific Basis : instead of using an universal basis which

is optimized for a broader range of signals, can we learn a PPG- and a ECG-

specific set of dictionary atoms which is optimized for representing the signal

in the sensing of signal transformation?

• Complete v.s. Overcomplete Basis : in order to effectively capture the varia-

tions of the signal that is possible in a large population and in different health
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conditions, can we instead learn an overcomplete basis for sparse and precise

signal representation without restricting ourselves in the design constraint of

the completeness of the functions?

• Individual Learning v.s. Joint Learning Strategy : if we could address the first

two questions we asked, can we design a joint learning objective to globally

optimize the representation of PPG, the representation of ECG, and the trans-

form in between the two sparse representation domain instead of marginally

tuning each part individually?

The three questions we asked naturally lead us to a joint dictionary learning

method, whose block diagram is shown in Fig. 5.18. In the training phase, a dic-

tionary pair for ECG and PPG signal representation is learned, meanwhile, a linear

transform is acquired which maps from the sparse space of PPG to that of ECG.

Different from [137, 138], this learning system is designed to optimize the capabil-

ity of the obtained dictionaries for both signal representation as well as the signal

transform via a joint problem formulation. We briefly present below the formulation

of the objective of the learning task.

Let P = [Xp,Tp] ∈ Rd×(n+m) and E = [Xe,Te] ∈ Rd×(n+m) be PPG and

ECG data sets respectively. Each column of P and E is denoted as pi ∈ Rd×1

and ei ∈ Rd×1, representing one PPG/ECG cycle during the same cardiac cycle.

The objective of ECG waveform reconstruction from PPG is to utilize the training

PPG/ECG cycles from Xp and Xe to learn some patterns (dictionaries, mappings,

etc.) that can be applied to the testing PPG dataset Tp ∈ Rd×m for accurate
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Figure 5.18: Block diagram of the proposed joint dictionary learning framework.
The ECG and PPG signals are first preprocessed to obtain temporally aligned and
normalized pairs of cycles. 80% pairs of ECG and PPG signal cycles are used for
training paired dictionaries Dp, De and a linear transform W which will be applied
in the test phase to reconstruct the ECG signals.

approximation and inference of testing ECG dataset Te ∈ Rd×m.

We formulate our learning objective as:

min
De,Ae,Dp,

Ap,W

‖Xe −DeAe‖2
F + α ‖Xp −DpAp‖2

F + β ‖Ae −WAp‖2
F

s.t. ‖ap,j‖0 ≤ tp, j = 1, ..., n.

‖ae,j‖0 ≤ te, j = 1, ..., n.

(5.16)

where Dp ∈ Rd×kp ,De ∈ Rd×ke are dictionaries learned for Xp,Xe respectively.

Ap ∈ Rkp×n,Ae ∈ Rke×n are the corresponding sparse coding matrices related with

the data matrices Xp,Xe when Dp,De are the current dictionaries. Each column of

Ap,Ae is denoted as ap,j, ae,j with the sparsity upper bounded by tp, te, respectively.

‖Xe −DeAe‖2
F and ‖Xp −DpAp‖2

F are the data fidelity terms for ECG and PPG

cycle sets, respectively.

The problem in (5.16) can be solved using a variant of the well-known K-

SVD algorithm, where the dictionary atoms and the linear transforms are updated
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iteratively. We skip the details of the optimization process for the conciseness of this

thesis. In Fig. 5.19, we show one preliminary result reconstructing the ECG signal.

The result looks promising in this case compared with the DCT-based system in the

SI mode.s

(a)

(b)

(e)

(c) (d)

Figure 5.19: Qualitative comparison between the reconstructed ECG signals from
(a) DCT based method and (b) Joint dictionary learning method. (c)(d) are the
zoomed-in version of the 4th cycle from (a)(b). (e) shows the PPG signal along the
time.

5.6 Conclusion

This chapter presents a learning-based approach to reconstruct ECG signal

from PPG. The algorithm is successfully evaluated in both subject-dependent and
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subject-independent fashions on two widely-adopted databases as well as a self-

collected database. We cross-validate the system hyper-parameters, test the CVD

diagnosis performance using the reconstructed ECG signal, and justify the algo-

rithm’s accuracy and consistency in a fine ECG wave level. As a pilot study, this

work demonstrates that with a signal processing and learning system that is justified

in each design step, we are able to precisely reconstruct ECG signal by exploiting

the relation of the two measurements.
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Chapter 6: Conclusion

In this dissertation, we study the modeling and analytics of PPG signal to

facilitate its applications in both robust and remote cardiovascular sensing.

In the first part of this dissertation (Ch. 2 and Ch. 3), we studied the remote

photoplethysmography (rPPG) sensing and presented a robust and efficient rPPG

system to extract pulse rate (PR) and pulse rate variability (PRV) from face videos.

Compared with prior art, our proposed system achieves accurate PR and PRV

estimates even when the video contains significant subject motion and illumination

change. We have implemented a robust rPPG system using Python to achieve

the state-of-the-art performance with just a regular web-cam running in realtime.

We optimistically look forward to the coming era of wide deployment of the rPPG

technology into everyone’s life for better preventable health care.

In the second part of the dissertation (Ch. 4), we presented a novel frequency

tracking algorithm called Adaptive Multi-Trace Carving (AMTC) as an unified tool

to address the micro signal extraction problems that can be applied to multiple appli-

cation scenarios including physiological measurement and media forensics. AMTC

enables an accurate detection and estimation of one or more subtle frequency com-

ponents in a very low signal-to-noise ratio condition.
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In the third part of the dissertation (Ch. 5), the relation between electrocar-

diogram (ECG) and PPG have been studied and the waveform of ECG was inferred

via the PPG signals. In order to address this cardiovascular inverse problem, a lin-

ear transform was proposed to map the discrete cosine transform coefficients of each

PPG cycle to those of the corresponding ECG cycle. As the first work to address

this biomedical inverse problem, this line of research enables a full utilization of the

easy accessibility of PPG and the clinical authority of ECG for better preventive

healthcare.

As we finalize this dissertation, the COVID-19 pandemic is hitting many re-

gions in the world and changing many practices in unprecedented ways. We are

seeing rapidly rising needs in remote healthcare. We hope the research in this thesis

can help advance the technology development toward continuous health monitoring,

remote triage, and remote rehabilitation to address the needs of the current and

future management of public health.
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[43] M. Lewandowska, J. Rumiński, T. Kocejko, and J. Nowak. Measuring pulse
rate with a webcam – a non-contact method for evaluating cardiac activity. In

181



Federated Conference on Computer Science and Information Systems (FedC-
SIS), pages 405–410, Szczecin, Poland, September 2011.

[44] Ming-Zher Poh, Daniel J McDuff, and Rosalind W Picard. Non-contact, au-
tomated cardiac pulse measurements using video imaging and blind source
separation. Optics express, 18(10):10762–74, May 2010.

[45] Gill R Tsouri and Zheng Li. On the benefits of alternative color spaces for
noncontact heart rate measurements using standard red-green-blue cameras.
Journal of biomedical optics, 20(4):048002, April 2015.

[46] Gee-Sern Hsu, ArulMurugan Ambikapathi, and Ming-Shiang Chen. Deep
learning with time-frequency representation for pulse estimation from facial
videos. In 2017 IEEE International Joint Conference on Biometrics (IJCB),
pages 383–389. IEEE, 2017.

[47] Zhenyu Guo, Z Jane Wang, and Zhiqi Shen. Physiological parameter monitor-
ing of drivers based on video data and independent vector analysis. In 2014
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4374–4378, Florence, Italy, 2014. IEEE.

[48] Sergey Tulyakov, Xavier Alameda-Pineda, Elisa Ricci, Lijun Yin, Jeffrey F
Cohn, and Nicu Sebe. Self-adaptive matrix completion for heart rate estima-
tion from face videos under realistic conditions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2396–2404,
Las Vegas, NV, 2016.

[49] Ce Liu et al. Beyond pixels: exploring new representations and applications
for motion analysis. PhD thesis, Massachusetts Institute of Technology, 2009.

[50] Xiang Yu, Junzhou Huang, Shaoting Zhang, Wang Yan, and Dimitris N
Metaxas. Pose-free facial landmark fitting via optimized part mixtures and
cascaded deformable shape model. In IEEE International Conference on Com-
puter Vision (ICCV), pages 1944–1951, Sydney, Australia, December 2013.

[51] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with
an ensemble of regression trees. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1867–1874, 2014.

[52] Brais Martinez, Michel F Valstar, Xavier Binefa, and Maja Pantic. Local ev-
idence aggregation for regression-based facial point detection. IEEE transac-
tions on pattern analysis and machine intelligence, 35(5):1149–1163, Septem-
ber 2012.

[53] Juan Cheng, Xun Chen, Lingxi Xu, and Z Jane Wang. Illumination variation-
resistant video-based heart rate measurement using joint blind source separa-
tion and ensemble empirical mode decomposition. IEEE journal of biomedical
and health informatics, 21(5):1422–1433, October 2016.

182



[54] Guha Balakrishnan, Fredo Durand, and John Guttag. Detecting pulse from
head motions in video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3430–3437, Portland,Oregon, 2013.

[55] W. Wang, B. Balmaekers, and G. de Haan. Quality metric for camera-based
pulse rate monitoring in fitness exercise. In IEEE International Conference
on Image Processing (ICIP), pages 2430–2434, Phoenix, AZ, September 2016.

[56] Christoph Schneider, Florian Hanakam, Thimo Wiewelhove, Alexander
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