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Chapter 1: Introduction 
 

Spatial processes can have important consequences for the population dynamics 

of fishes and marine invertebrates.  Therefore, fisheries management should consider 

space in the techniques used to understand population dynamics.  For example, fleet 

dynamics have caused variable exploitation rates on different parts of the pacific salmon 

population in British Columbia (Hilborn and Ledbetter, 1979), which violates the 

common assumption in stock assessments that fishing mortality is evenly distributed 

across the entire population.  Habitat selection can cause clusters of higher density in 

many species of marine fishes (Shepherd and Litvak, 2004), and understanding habitat 

selection can affect habitat conservation decisions.  Finally, larval dispersal is known to 

play a role in the local densities of adult metapopulations, though this role is poorly 

understood (James et al., 2002).  Spatial dynamics often have implications for fisheries 

management and require geographical resolution in data collection as well as spatially-

explicit techniques for analysis. 

Understanding spatial processes can provide important information for fisheries 

ecology and management.  Identifying regions of high productivity or of higher densities 

of fish can help explain observed trends in fish density.  The differences in productivity 

can be due to characteristics inherent in the region, such as better food resources (Harris 

et al., 2004), or external forcing, such as currents that force planktonic larvae into one 

area instead of another (Schwartz, 1964).  Source-sink dynamics, where one or more 

highly productive regions provide new recruits for less productive regions, have been 

useful in understanding the consequences of spatial management strategies (Crowder et 

al., 2000; Kaplan et al., 2009).  The interactions of fish populations when combined with 
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spatial dynamics can help describe fish communities, sometimes better than 

environmental variables (Magnan and Bertolo, 2006).  Identifying these regions can then 

help us identify the factors important in supporting fish communities. 

Incorporating spatial complexity in fishery models can also help managers make 

decisions about marine protected areas (MPAs) to maximize their positive effects on both 

the target species and the community as a whole (Pelletier and Mahevas, 2005).  Several 

authors have considered spatial processes in the placement of MPAs.  To determine the 

spatial arrangement of MPAs that would lead to the greatest conservation and recovery of 

the population, Kaplan et al. (2009) considered the total size of MPA, the distance of 

larval dispersal, depth of the protected area, and habitat suitability.  They found that the 

effectiveness of a chain of MPAs is dependent on the placement of the MPAs in relation 

to suitable habitat (Kaplan et al., 2009).  Neubert (2003) investigated optimal harvesting 

strategies in regions with MPAs in a more general way, viewing the only spatial 

heterogeneity of the population and habitat as that imposed by variable fishing rates.  

Neubert (2003) found that a large central MPA aids both the recovery and fishery yield of 

a population with a low growth rate that lives in a restricted habitat.  These two studies 

are examples of how an MPA or a network of MPAs could aid in improving conservation 

and enhancing economic benefits for fisheries (Neubert, 2003; Kaplan et al., 2009).   

Although MPAs have been increasingly used as management tools, it has been 

suggested that MPAs may hinder our ability to assess populations and provide scientific 

advice for future management using current methods (Field et al., 2006).  Often, the 

models used to evaluate effectiveness of MPAs are often very different from those used 

to assess fish stocks (Punt and Methot, 2004).  The evaluation of the effectiveness of 
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established MPAs may benefit from spatially explicit stock assessment techniques to 

capture the changes in the forces acting on the population, or spatial disaggregation, 

caused by management.  However, Punt and Methot (2004) are among the few studies 

that have incorporated spatial dynamics in stock assessments and other types of stock 

assessments should be explored. 

The objective of my thesis was to investigate spatial dynamics of fish populations 

in Maryland’s coastal bays (Chapter 2) and evaluate effects of spatial management (in the 

form of marine protected areas (MPAs)) on accuracy of estimated population size and 

stock assessment advice (Chapter 3).   Specifically, I employed spatially-explicit 

techniques to identify and assess regions that have different population dynamics.  In 

Chapter 2, I compared trends in relative abundance from survey data across two regions 

in Maryland’s coastal bays, and in Chapter 3 I compared the performances of spatially-

explicit and spatially aggregate stock assessments after an MPA is implemented.   

 In Chapter 2, I developed standardized indices of abundances to estimate trends in 

four common species in Maryland’s coastal bays and compared the trends with those of 

environmental and habitat variables to attempt to identify factors important in population 

dynamics in that region.  The species I included in my analyses were Atlantic menhaden 

(Brevoortia tyrannus), weakfish (Cynoscion regalis), spot (Leiostomus xanthurus), and 

summer flounder (Paralichthys dentatus) and the environmental variables included were 

submerged aquatic vegetation (SAV) coverage, nitrogen to phosphorus ratio, 

temperature, salinity, dissolved oxygen concentrations, and three other factors.  The 

Maryland (MD) DNR survey has been conducted since 1972 and the trawl distance, sites, 

and times of year sampled were standardized in 1989. Data collected before 1989 have 
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not been used in any indices of abundance generated by MD DNR.  I used a generalized 

linear modeling (GLiM) approach to standardize survey data from Maryland DNR to 

capture the earlier 17 years of data.  Inclusion of the earlier years provided valuable 

perspective on the trends in juvenile abundance, but using raw data from the years before 

the survey was standardized would bias the indices of relative abundance derived from 

the data if a GLiM was not used.  In order to contrast the fish density supported by 

different parts of the bays, I compared the indices of abundance in two geographically 

distinct regions to assess whether the regions were also biologically distinct.   

 In Chapter 3, I conducted a simulation study to assess the accuracy of spatially-

explicit and spatially-aggregate surplus production models (SPMs) when an MPA creates 

spatial heterogeneity of fishing mortality within a stock’s range.  I simulated a fish 

population and the corresponding fishery with a data generating model. In the simulation, 

an MPA was implemented when the population was at a low level.  The data generating 

model provided indices of abundance and fishery catch data for the SPMs that were used 

to assess the population.  I tested four different SPMs: a spatially-explicit SPM where 

migration was specified, a spatially-explicit SPM where migration was estimated, a 

spatially-aggregate SPM where indices of abundance were available from both the MPA 

and fished region, and a spatially-aggregate SPM where indices of abundance were only 

available from the fished region.  The biomass estimates from the SPMs were then 

compared to the true biomass from the data-generating model.  I considered effects of the 

size of the MPA, the migration rate of the stock between the MPA and fished areas, the 

variance of the indices of abundance, and absence of indices of abundance from within 

the MPA on the performance of the SPMs.    
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CHAPTER 2 

 

Trends in relative abundance of fishes and the effects of changes in 
habitat on fish densities in Maryland’s coastal bays during 1972-2009 
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Abstract 

 Maryland’s coastal bays provide habitat for juveniles of many commercial and 

recreational species of shellfish and finfish.  The Maryland Coastal Bays Trawl and Seine 

Survey has been conducted by the Maryland Department of Natural Resources since 1972 

to provide a fishery-independent index of abundance of key species.  The survey has 

undergone substantial spatial and methodological changes that affect the accuracy of 

indices of abundance of several fish populations monitored by the survey.  I developed 

generalized linear models to standardize the indices of abundance of four commonly 

caught fish species (Atlantic menhaden Brevoortia tyrannus, weakfish Cynoscion regalis, 

spot Leiostomus xanthurus, and summer flounder Paralichthys dentatus).  Since 1972 

density declined significantly for menhaden and spot, and the northern bays had 

significantly higher densities than the southern bays for all species.  Changes in relative 

abundance of the four species examined were not related to seagrass coverage, 

temperature, salinity, nitrogen to phosphorus ratios, and other habitat variables, but were 

likely caused by stock-wide recruitment patterns. 
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Introduction  

Long term studies are necessary to determine changes in abundance and the 

effects of changes in habitat on marine populations (Peterson et al., 2003).  However, 

sampling methods often change over time, complicating the interpretation of the trends in 

abundance.  Survey catch per unit effort (CPUE) is frequently used as an index of 

abundance (Ricker, 1975; Maunder and Punt, 2004), but certain assumptions inherent in 

using CPUE as an index of abundance can be violated by changes in survey 

methodology.  For example, changing the distribution or amount of effort over time can 

cause misleading indices of abundance.  The critical assumption that is most commonly 

violated is that catchability, the proportion of a population caught by one unit of effort for 

a particular gear type, is constant over time (Arreguín-Sánchez and Pitcher, 1999; 

Wilberg et al., 2010).  This assumption can be violated because the effectiveness of one 

unit of effort changes over time if the survey design changes (Ricker, 1975).   

Habitat quality in coastal environments has significant effects on the density of 

fish those environments can support (Gibson, 1994).  However, identifying the key 

features of habitat that relate to the ability of the habitat to support of fish populations is 

challenging and requires the analysis of multiple biological and physical parameters 

(Imhof et al., 1996; Rose, 2000).  Seagrass, in particular, is thought to be an important 

nursery habitat for many juvenile fishes (Orth et al., 1984; Nagelkerken et al., 2002).  

Fish densities are higher in seagrass bed than over unvegetated areas (Guidetti, 2000; 

Jackson et al., 2001; Orth et al., 2006) because seagrass may serve as a refuge from 

predation or as a source of prey (Harris et al., 2004).  Because of the purported link 
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between juvenile fish and seagrass, the decline in seagrasses around the world has caused 

concern in conservation and fisheries monitoring agencies (e.g. Wazniak, 2004).  

However, in some areas, such as the Chesapeake Bay, relationships between juvenile fish 

abundance and seagrass have not been found, even on small scales within nearby 

vegetated and un-vegetated areas (Heck and Thoman, 1984).  Abiotic factors are also 

important in defining the quality of habitat.  Increased nutrient inputs from agricultural 

practices and urbanization can cause eutrophication, which leads to enhanced algal 

blooms that can prevent light from reaching submerged vegetation and can increase the 

area of hypoxic or anoxic waters when the algae decompose.  In addition to water quality, 

the hydrodynamic regime (e.g. currents) also has a strong impact on how juvenile fish are 

distributed.     

Maryland’s coastal bays support a broad range of both fish and invertebrates and 

provide nursery habitat for many species of young-of-year fish (Bolinger et al., 2007).  

Several of the dominant species in the bays, such as Atlantic menhaden (Brevoortia 

tyrannus) and blue crab (Callinectes sapidus), have been a source of conservation 

concern in the Mid-Atlantic due to declining catch and observed recruitment classess 

(Lipcius and Stockhausen, 2002; ASMFC, 2010a, 2010b).  The Maryland Coastal Bays 

Trawl and Seine Survey (MCBTSS) has been conducted by the Maryland Department of 

Natural Resources (MD DNR) since 1972 to monitor the populations of fishes and 

invertebrates in the Maryland coastal bay estuaries (Figure 1). A particular focus of the 

survey is juvenile fishes that use these areas as nursery habitats (Bolinger et al., 2007).  

The MCBTSS methods and sites were standardized in 1989.  Prior to 1989, the time of 

year, the specific sites sampled and the duration of the trawl tows varied substantially 
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from year to year.  These methodological and spatial changes during the survey time 

series make differentiating changes in abundance from changes in survey design difficult.  

In this study, I estimated trends in relative abundance for four fish species in 

Maryland’s coastal bays, and tested for effects of habitat and on relative abundance of 

four fishes in the northern and southern coastal bays of Maryland during 1972-2009.  My 

specific objectives were to 1) determine the trends in abundance of four fish species in 

Maryland’s coastal bays and 2) determine whether changes in abundance were related to 

changes in habitat.  I used generalized linear models (GLiMs) to standardize abundance 

indices and analysis of covariance (ANCOVA) to test for temporal trends and the effects 

of habitat on relative abundance through time. 

 

Methods 

Data 

 Maryland’s coastal bays are located on the eastern side of the Maryland portion of 

the Delmarva Peninsula and are separated from the Atlantic Ocean by two barrier islands 

(Figure 1).  The largest of the bays, Chincoteague Bay (about 377 km2). is surrounded by 

predominantly forest and agriculture.  The smallest bay is Newport Bay (about 16 km2), 

which is located north of Chincoteague Bay and is also surrounded by mostly forest and 

agriculture.  Sinepuxent Bay is located to the northeast of Chincoteague Bay and is the 

second largest of the coastal bays at 24.1 km2.  It is surrounded by mostly wetlands, 

forest, and urban centers.  North of Sinepuxent Bay is Isle of Wight Bay (surface area- 

21.1 km2) surrounded by forest, residential areas, and more urban centers.  Assawoman 
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Bay (surface area - 20.9 km2) is the northernmost bay and is surrounded by forest, 

agriculture, and wetlands.  The bays are largely well-mixed, with average salinities in all 

bays ranging on average between 27 and 31 ppt.   

I divided the coastal bays into two regions using the inlet to the Atlantic Ocean as 

a divider.  The northern region included Assowoman and Isle of Wight Bays and the 

southern region included Newport, Sinepuxent, and Chincoteague Bays.  The northern 

bays are only connected to the southern bays by the narrow inlet at the north end of 

Sinepuxent Bay.  The land surrounding the northern bays is more developed than the 

southern region, so anthropogenic eutrophication is more prevalent in the northern region 

(Murphy and Secor, 2006).  The northern bays have higher abundances of common fishes 

than the southern bays, possibly because the higher amounts of nutrients in the northern 

systems allow higher fish productivity, and support higher densities of common species, 

although species richness is higher in the southern bays (Murphy and Secor, 2006).   

The MCBTSS samples with a bottom trawl in 20 different sites in the five coastal 

bays (Figure 1).  The trawl survey is conducted in the middle of the coastal bays, in 

waters 0.75 to 2 m deep.  The survey uses a fixed-site design.  Sites were initially chosen 

to represent the range of trawlable sites, but the location of some sites changed over time.   

Since the survey was standardized in 1989, DNR has trawled at each site once a month 

from April to October.  The trawls are conducted with a 4.9 m (16 ft) semi-balloon trawl 

with 3.18 cm (1.25 in) stretch mesh in the outer net, 2.86 cm (1.13 in) stretch mesh in the 

cod end, 1.27 cm (0.5 in) stretch mesh inner liner, and a tickler chain (Bolinger, 2007).  

Before standardization, the trawls varied in tow length and area covered, some samples 

were taken in winter months between November and March, and the sites were not 
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sampled every month during the other times of the year.  In 1989, the deployments were 

standardized to a 6-min tow of the net at a speed of approximately 2.8 knots, for an area 

swept of about 17,040 m2.   

 I examined data for four commonly caught species: Atlantic menhaden, weakfish 

(Cynoscion regalis), spot (Leiostomus xanthurus), and summer flounder (Paralichthys 

dentatus).  The methods I used to standardize the indices required a large amount of data, 

and all four of these species had enough available data.  From the data available it is 

likely that of the other species caught in the survey only bay anchovy (Anchoa mitchilli) 

and blue crab (Callinectes sapidus) would have fulfilled the data requirements of the 

analyses, however I chose not to use these last two species in by analyses.  All of these 

species support important recreational or commercial fisheries and use Maryland’s 

coastal bays as nursery habitat.  These species were also selected because they represent a 

variety of life histories, use the coastal bays at different times of the year, and inhabit 

different areas of the bays. 

 The four species included in the analyses have distinct life histories, but they all 

use Maryland’s coastal bays during their life cycles.  All four species enter the coastal 

bays as larvae or early juveniles (Able and Fahay, 1998), although summer flounder can 

also enter as adults in the summer.  Summer flounder and spot are demersal species, but 

spot prefer muddy bottom while flounder prefer harder sandy bottom (Froese and Luna, 

2010; Luna and Froese, 2010).  Weakfish and menhaden, on the other hand, are pelagic.  

Summer flounder and weakfish are piscivores, menhaden are planktivores, and spot are 

benthivores.  Using species with this range in life histories allowed me to capture a broad 

picture of the types of fish in the coastal bays. 
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 To develop indices of abundance I included data only from months when a 

species was expected to use the coastal bay habitat.  Weakfish are present in the coastal 

bays from late July until November (Able and Fahay, 1998).  Similarly, analyses for spot 

included observations from April to November, and the summer flounder models 

included March through November (Murdy et al., 1997) to reflect their seasonal 

migrations.  The menhaden models included the whole year because some larvae enter 

the estuary in the fall and overwinter there as juveniles while the rest enter in the spring 

and remain throughout the summer and fall (Table 2.1; Murdy et al., 1997; Able and 

Fahey, 1998).  Some sites and years were excluded from the analyses due to the large 

numbers of zero-catches in the dataset that caused year or site effects to not be estimable 

in the standardization model (Deroba and Bence, 2009; Table 2.2).   

 Environmental variables potentially indicative of habitat quality were available 

from a monitoring program conducted during 1993-2004 by the National Parks Service.  

Variables included total suspended solids, total nitrogen to phosphorus ratio, silicate 

concentration, chlorophyll a adjusted for phaeophytin concentrations, and dissolved 

oxygen.  These variables were measured at 16 sites in the southern region but only yearly 

medians were available for my analyses.  None of these variables were available for the 

northern region.  The area of submerged aquatic vegetation (SAV) in each region was 

obtained for each year from 1993 to 2004 (unpublished data, J.J. Orth Virginia Institute 

of Marine Science).  Temperature and salinity were recorded with each trawl tow from 

the MCBTSS.  I calculated the monthly average for surface temperature and salinity for 

the sites in each region and then calculated a yearly average from the monthly averages. 
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Standardizing Indices of Abundance  

 I used generalized linear models with a negative binomial distribution and a log 

link function to standardize yearly indices of abundance for each of the species 

(McCullagh and Nelder, 1989; Maunder and Punt, 2004).  The negative binomial 

distribution allows zero catches, which was necessary for this survey because about two 

thirds of the observations for each species are zeros.  The model was 

)())(log( 5*Re0 EffortCE YeargionMonthSiteYear ββββββ +++++=  

where E(log(C)) is the expected natural logarithm of catch for the given species, and 

year, site, month, a year-by-region interaction, and effort are main effects.  A region 

effect was implicitly included in the model because the sites are nested within the 

regions.  The region effect was the average of the individual site effect estimates within 

each region.  The year effects and year by region interactions provided indices of 

abundance for the northern and southern bays.  The site effects accounted for spatial 

variation across sites. The location of several sites changed over time; sites where the 

location was changed were treated as separate sites.  The categorical month effect 

accounted for variation in catch due to time of year, and the continuous effort effect 

accounted for different lengths of trawls before the survey was standardized.  All factors 

except effort were modeled as categorical.  One unit of effort was 8,520 m2 of area swept.   

 The same procedure described above was carried out for the seine portion of the 

survey.  The trends over time for each species were then compared between the two gear 

types.  The results from the seine survey analyses and the gear comparisons are described 

in Appendix I. 
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Characterizing Trends over Time and Effects of Habitat 

I fitted ANCOVAs using proc glm in SAS 9.2 to estimate trends over time among 

species and differences in density between the northern and southern regions.  The 

ANCOVAs were species-specific and included region as a categorical variable and year 

as a continuous covariate, 

)(1Re0 YearI gion βββ ++= ,where I was the species-specific index was the same as that 

calculated by the GLiM, β0 was the intercept, βRegion was the categorical region effect, 

and β1 was the continuous year effect.
 

Region-specific regressions with year were conducted to estimate trends in 

abundance in each region over time.  I used a Bonferroni correction for multiple 

comparisons to determine the p-value associated with an α level of 0.05:  0.0125 for 

comparing differences between regions and 0.0063 for comparing the slopes of region-

specific trends over time.  Univariate regressions of indices of abundance against each of 

the habitat variables were also conducted for each species, which were region-specific for 

the temperature and salinity data, but only data from the southern region were available 

for the other habitat variables.  A Bonferroni correction was also used for the individual 

region regressions to determine the critical p-value of 0.0013 to correspond to an overall 

α level of 0.05. 

 

Results  

The four species analyzed showed different trends within each region over time 

(Figures 2.5).  The variability of the indices was also different, with Atlantic menhaden 



 15

indices varying by 5 orders of magnitude (10,000 fold difference) over the time series 

and summer flounder varying by only two orders of magnitude (100 fold difference) from 

the smallest estimate to the largest.  All four of the species were alike, however, in that 

they showed significantly  higher densities in the northern bays than the southern bays 

(p<0.0001 for menhaden, flounder, and weakfish; p=0.0105 for spot; Figures 2.2-2.5). 

Both spot and menhaden showed overall declines from the early 1970s in the 

northern region, and only menhaden showed a significant decline in the southern region 

(Figures 2.2 and 2.3; Table 2.3).  Spot declined in both regions, but the decline was only 

significant in the northern region.  The rate of decline in the northern region was 30% 

greater than the southern region (northern bays=-0.103 year-1, southern bays=-0.079 

year-1).  Similarly, while the decline in menhaden was significant in both regions, the 

northern region showed a greater rate of decline than the southern region (northern 

bays=-0.154 year-1, southern bays=-0.134 year-1). The decline in menhaden was largely 

driven by extremely high indices of abundance in the 1970s and early 1980s that were 

absent in the 1990s and 2000s (Figure 2.2).  The decline in spot, on the other hand, was 

steady with periodic spikes in density that also declined over time (Figure 2.3) 

Summer flounder and weakfish did not trend significantly in either region.  Both 

species even had periods of increasing abundances in the 1990s and early 2000s.  

Summer flounder had spikes in density in 1984 and 1986 in the northern region, but 1972 

and 1973 had the highest densities in the southern region (Figure 2.4).  Weakfish had 

highly variable indices of abundance, especially in the northern region.  The highest 

densities occurred in 1995 and 1978 in the northern region and 2005 and 2003 in the 

southern region (Figure 2.5). 



 16

All of the habitat variables showed interannual variation, but the majority of the 

habitat variables did not exhibit significant trends over time (Figure 2.6).  Only seagrass 

cover increased significantly from 1993 through 2004 (p<0.001; Figure 2.6).  There were 

high correlations between the northern and southern regions for salinity (r=0.802) and 

temperature (r=0.837) over time.  Only two habitat variables were highly correlated with 

one another; the nitrogen to phosphorus ratio was highly correlated with silica 

concentration (r=0.632), and dissolved oxygen was highly negatively correlated with 

salinity in the northern region (r=-0.716).  Relative abundance was not significantly 

related to any of the habitat variables for any of the species (Table 2.4).   

 

Discussion 

Long-term surveys that span several generations of fish are necessary to explore 

trends in abundance over time.  I developed statistically standardized indices of 

abundance for four fish species in Maryland's coastal bays that explicitly incorporated 

changes in location of survey sites, times of year sampled, and amount of effort used at 

each site.  These standardized indices indicated significant decreases in spot and 

menhaden abundance during 1972-2008, but no significant trends in abundance for 

weakfish or summer flounder.  The declines in abundance of spot and menhaden would 

not have been detected if I only used data since 1989, the year methods for the MCBTSS 

were standardized.   

It is important to consider all of the available data to reach the best conclusions 

about fishery resources (Myers and Worm, 2003), because the years included to detect 

changes in population size frame our understanding of the magnitude of change.  This has 
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been called the problem of "shifting baselines" (Pauly, 1995).  However, it is also 

important to recognize potential shortcomings in using older data.  There have been 

questions within Maryland DNR about the reliability of the data collected prior to 1989. 

The data have been checked against original field datasheets, examined for entries that 

were questionable, and corrected to the extent possible. Because the data were validated, 

I was confident in using all 38 years of the survey for my analyses.  However, the most 

reliable data are from 1989 onward, and these are the data that have been used to inform 

stock assessments (e.g., ASMFC, 2010b).   

Two of the species examined declined significantly in at least part of the coastal 

bays of Maryland.  The decline in Atlantic menhaden likely reflects a decline across the 

east coast that has caused concern for managers in the last couple of decades (ASMFC, 

2010a).  Regional recruitment indices for Atlantic menhaden have been relatively low 

during the last twenty years (ASMFC, 2010a); the coastal bays indices I developed 

showed the same pattern.  The trend in spot abundance has been punctuated periodically 

by large recruitment events, though the magnitude of the recruitment events has declined 

over time, so that high recruitment events in recent years are not as large as in early 

years.  These spikes and the overall trend are also reflected in stock assessments for 

juveniles across the East Coast of the U.S. (ASMFC, 2010b; Rickabaugh, 2010), 

suggesting that the trends in abundance seen in the coastal bays are consistent with the 

trends seen on a broader scale for spot and menhaden. 

The northern coastal bays had higher densities of all four of the species in my 

study than the southern region, which corresponds to previous results from Murphy and 

Secor (2006).  The cause of higher density in the northern bays than the southern bays 
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could include higher primary production in the northern bays as a result of the extended 

retention time of water in the creeks flowing into the bays (Murphy and Secor, 2006) and 

may indicate a bottom-up effect of production on fish density.  Schwartz (1964) also 

suggested that species composition may differ between the northern and southern bays as 

a result of stronger currents forcing more water, and potentially larvae and juvenile fish, 

into the northern bays.  The differences in density between the two regions was opposite 

of what is expected based on water quality, however.  Two of the southern bays, 

Chincoteague and Sinepuxent, consistently score better in almost every metric of bay 

health than the two northern bays (Franks, 2004; IAN et al., 2010).  Indeed, Franks 

(2004) emphasizes the large amounts of commercial and residential development that has 

occurred along the edges of the northern bays compared to the relatively pristine 

environment of the southern bays has contributed increased eutrophication in the northern 

bays and is detrimental to their health.  However, in spite of the perceived lower quality 

of habitat in Assawoman and Isle of Wight Bays (northern region), they supported 

significantly higher densities of fish, at least for the species considered here.   

Changes in abundance of the four species investigated were not significantly 

related to any of the habitat variables examined.  The habitat variables covered a wide 

range of possible factors, from nitrogen and phosphorus ratios to the abundance of 

seagrass.  In particular, seagrass is often considered “essential fish habitat” for coastal 

species because it is thought to provide refuge and nursery habitat for the young-of-year 

fish that are so prevalent in those regions, though it has been noted that there is some 

ambiguity in the documentation of the nursery role of seagrass (Beck et al., 2001).  

Seagrass may not be as important as overall habitat structure or refuge provided by other 
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sources such as oyster beds or coral reefs (Heck et al., 2003).  In Maryland’s coastal bays 

I did not detect a significant effect of seagrass coverage on the four prevalent species in 

spite of the steady increase of seagrass throughout the 1990s and early 2000s.  While 

none of the other habitat variables significantly affected density, the effect of seagrass 

was often the least significant habitat variable with the smallest slope (Table 2.4).  

The habitat variables tested in this study likely have a localized effect on 

population dynamics of fishes, but the spatial or temporal scales of data collection or 

analysis may not match the effects of habitat forcing on the populations.  The trends in 

fish abundance in Maryland’s coastal bays are most likely driven by forces on a much 

broader scale than trends in local habitat.  Linking habitat variables with trends in 

juvenile abundance can be problematic because the juvenile populations as a whole may 

be more closely linked to stock size than local habitat.  The similarity in trends between 

the juvenile indices on the coastal bay level and the Mid-Atlantic level for both 

menhaden and spot provide evidence that juvenile and adult populations are connected in 

both estuaries and the coast (Whitfield, 1989).  Summer flounder also show the same 

overall trends in the last two decades in both coastal bays indices and in the stock 

assessments conducted for the Mid-Atlantic region (SAW, 2006).  The populations that 

inhabit the coastal bays are mostly composed of single yearclasses that are replaced 

annually.  The similarities of dynamics in the coastal bays combined with the overall 

deficiency of explanatory power that local habitat variables have in explaining changes in 

relative abundance point to the influence of large-scale, stock-wide forces on the 

densities of fish in Maryland’s coastal bays. 
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In conclusion, the standardization of the survey data allowed me to evaluate long-

term trends in relative abundance.  Menhaden declined in density during 1972-2009 in 

both regions, and spot declined in the northern region.  Summer flounder and weakfish 

showed no significant change through time.  The observed declining trend in Atlantic 

menhaden and spot as well as the lack of overall trend in summer flounder matched 

trends in regional assessments conducted on these species.  This is likely due to the 

coupling of coastal bay fish populations with the broader Mid-Atlantic stocks through 

recruitment.  The northern region of Maryland’s coastal bays, which is more eutrophic 

and has longer water retention time, supported higher densities of fish than the more 

pristine southern bays.  However, the effects of habitat degradation may be evident in the 

steeper decline of Atlantic menhaden and spot in the northern region than in the southern 

region.  Finally, because localized habitat variables were not related to relative abundance 

of any of the species, a coast-wide stock-recruitment relationship may explain long-term 

abundance trends better than local habitat variables. 
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Table 2.1. The months of the year included in the models for each species according to 

their expected inhabitation of the estuaries and the literature used to arrive at the included 

periods. 

 

Species Months in model References 

Atlantic Menhaden Jan-Dec Murdy et al., 1997; Able and 

Fahay, 1998; 

Weakfish July-Nov Able and Fahay, 1998; Nemerson 

and Able, 2004 

Summer Flounder Mar-Nov Murdy et al., 1997 

Spot Apr-Dec Murdy et al., 1997 
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Table 2.2. Additional months, years, and sites removed from analyses and the reasons for 

removal. 

Species Region Variable Level 

Removed 

Reason 

All All 1983 1 sample 

Atlantic Menhaden All February None Caught 

Atlantic Menhaden All December None Caught 

Atlantic Menhaden South 1986 None Caught 

Summer Flounder North 1972 None Caught 

Summer Flounder North 1974-1980 None Caught 

Summer Flounder South 1974 None Caught 

Summer Flounder South 1981 None Caught 

Weakfish All Site 9(3rd loc.) 2 samples 

Weakfish All 1974 None Caught 

Weakfish All 1988 None Caught 

Weakfish North 1972 None Caught 

Weakfish North 1980 None Caught 

Weakfish South 1973 None Caught 

Weakfish South 1987 None Caught 
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Table 2.3.  Results of ANCOVAs for trends by species and region over 1972-2009.  Bold 

rows indicate statistically significant trends at α=0.0063, the level that corresponds to 

α=0.05 when corrected for multiple comparisons. 

Species Region Slope p-value 

Atlantic Menhaden North -0.1537 <.0001 

Atlantic Menhaden South -0.1335 <.0001 

Summer Flounder North -0.0009 0.9349 

Summer Flounder South 0.0040 0.7568 

Spot North -0.1030 0.0010 

Spot South -0.0793 0.0086 

Weakfish North 0.0465 0.0698 

Weakfish South 0.0137 0.4979 
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Table 2.4. Results of habitat regressions.  Variable designations are as follows: DO—

Dissolved Oxygen, N:P Ratio—Nitrogen to Phosphorus Ratio, Silica—Silica 

concentration, Temp—Temperature (°C), Salinity—parts per thousand, SS—

concentration of suspended solids, Chl a—Chlorophyll a concentrations.  Temperature 

and salinity are evaluated for both regions; all other habitat variables are only evaluated 

for the southern region.  Bold rows indicate statistical significance at α=0.0013, the level 

that corresponds to α=0.05 when corrected for multiple comparisons. 

Species Region Variable Slope p-value 

Summer Flounder South DO 0.0073 0.1617 

Summer Flounder South Silica -0.0181 0.1791 

Summer Flounder South N:P Ratio -0.1045 0.3105 

Summer Flounder North Temp -0.1656 0.3218 

Summer Flounder South Temp 0.0653 0.6866 

Summer Flounder North Salinity 0.0318 0.7053 

Summer Flounder South SS 0.0116 0.7356 

Summer Flounder South Salinity 0.0146 0.856 

Summer Flounder South Chl a 0.0077 0.9179 

Summer Flounder South SAV -3.41E-07 0.9978 

Atlantic Menhaden South N:P Ratio 0.5509 0.0551 

Atlantic Menhaden North Temp -0.9417 0.1503 

Atlantic Menhaden South DO -0.0181 0.2541 

Atlantic Menhaden South Temp -0.4582 0.3326 
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Atlantic Menhaden South Chl a 0.2089 0.3363 

Atlantic Menhaden South SAV 0.0003 0.4267 

Atlantic Menhaden South SS 0.0753 0.4572 

Atlantic Menhaden South Salinity 0.1313 0.5821 

Atlantic Menhaden North Salinity 0.1507 0.6553 

Atlantic Menhaden South Silica -0.0032 0.9398 

Spot South Silica -0.1082 0.0149 

Spot South Chl a -0.4084 0.1096 

Spot South Temp -0.8003 0.1556 

Spot South Salinity 0.3587 0.2043 

Spot South DO -0.0193 0.323 

Spot North Salinity 0.3158 0.3511 

Spot South SS 0.0632 0.6138 

Spot South SAV 0.0002 0.7095 

Spot South N:P Ratio -0.0910 0.8136 

Spot North Temp -0.0485 0.9452 

Weakfish South DO 0.0214 0.0071 

Weakfish South Chl a 0.2309 0.0481 

Weakfish South Salinity -0.2276 0.077 

Weakfish North Temp -0.3835 0.1233 

Weakfish South Silica 0.0189 0.4303 

Weakfish North Salinity -0.0821 0.523 

Weakfish South N:P Ratio -0.0873 0.6314 
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Weakfish South SS -0.0281 0.6361 

Weakfish South Temp -0.0328 0.9071 

Weakfish South SAV 6.59E-06 0.9749 
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Figure 2.1. Map of Maryland’s Coastal Bays and the trawl and seine sites of the MCBTS 

Survey.  Sites with the prefix “T” indicate trawl sites.  Sites with the prefix “S” indicate 

seine sites. 
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Figure 2.2.  The model estimates of the trawl surveys for menhaden for each region.  The 

missing values are the years where there were not enough data to form a reliable estimate. 
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Figure 2.3.  The model estimates of the trawl surveys for spot for each region.  Missing 

values indicate year where there was not enough data to form a reliable estimate. 
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Figure 2.4.  The model estimates of the trawl surveys for summer flounder for each 

region.  Missing values indicate year where there was not enough data to form a reliable 

estimate. 
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Figure 2.5.  The model estimates of the trawl surveys for weakfish for each region.  

Missing values indicate year where there was not enough data to form a reliable estimate.
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Figure 2.6.  Trends of habitat variables from 1993-2004.  N:P Ratio is the ratio of total 

Nitrogen to total Phosphorus.  Submerged aquatic vegetation (SAV) Area is the 

percentage of bottom area in the southern region that has seagrass.   
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CHAPTER 3 

Surplus Production Model Accuracy in Populations Affected by a No-

Take Marine Protected Area 
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Abstract 

 Marine protected areas (MPAs) are an increasingly common tool used by fisheries 

managers to protect marine organisms from exploitation.  However, implementation of an 

MPA violates commonly used assumptions for fishery stock assessments that are used to 

provide estimates of abundance and fishing mortality for management.  Thus, it is 

important to understand the ability of assessments to incorporate the population dynamic 

and ecological impacts of MPAs on managed fish species.  Age-structured assessments 

have been studied for their accuracy when a stock has an MPA in its range but less 

complex assessment techniques that could be more widely applied have not been 

evaluated.  I conducted a simulation study to determine the effects of MPAs on accuracy 

of surplus production model (SPM) stock assessments.  I simulated the dynamics of a 

population, which had part of its range in an MPA, and assessed that population with 

several surplus production models (SPMs).  I tested the performance of spatially-

aggregated and spatially-explicit SPMs under a range of conditions including different 

sizes of MPAs, different migration rates between MPA and non-MPA regions, and 

scenarios with high and low observation error in the indices of abundance.  I also 

considered a scenario in which no index of abundance was available within the MPA.  I 

used the median of the absolute value of the relative error (MARE) and median relative 

error (MRE) from 200 replicates of each scenario to test the accuracy of the SPMs.  

SPMs showed a consistent pattern in accuracy and bias over time with increasing 

accuracy followed by decreasing accuracy in early years, increasing accuracy before the 

MPA was established, decreased accuracy with large positive bias after MPA 

implementation, and gradually increasing accuracy to the end of the simulation.  The 
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accuracy of the assessments also increased as the MPA size increased except in the 

scenario with no index of abundance within the MPA, which increased in accuracy as the 

MPA size decreased.  Monitoring the stock within the MPA is essential for conducting 

accurate stock assessments in areas with MPAs. 
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Introduction 

Marine Protected Areas (MPAs) have been increasingly used and suggested as a 

fisheries management tool, often instead of or in addition to traditional management 

measures such as regulating the amount of harvest or fishing effort.  While there are 

several types of MPAs, the most conservative is a no-take MPA where no harvest is 

allowed.  One of the benefits of using MPAs in fisheries management is that the 

underlying theory is intuitive; when an area within a population’s range is protected from 

fishing, it should develop a greater biomass of fish than fished areas.  Increased biomass 

within the MPA should result in a "spillover effect" in fished areas where biomass shifts 

from the MPA to the fished area (Crowder et al., 2000; Halpern and Warner, 2002) 

thereby sustaining a fishery while conserving a large proportion of adult biomass.  The 

spillover effect has been largely thought of as a larval subsidy to fished regions from the 

MPA (e.g., Punt and Methot, 2004).  However, adult movement would create the same 

source-sink dynamics between the MPA and fished areas, but many species managed by 

MPAs have low movement rates as adults (e.g. Kaplan et al, 2009; for reasoning see 

Hilborn et al., 2004).  Other benefits of MPAs include protection of habitat, refuge for 

populations that are at very low abundance, and protection for species not targeted by 

surrounding fisheries (Kelleher, 1999). 

MPAs can have a substantial effect on the accuracy of stock assessment models 

that are used to provide estimates of abundance and fishing mortality for fishery 

management (Punt and Methot, 2004; Field et al. 2006).  Stock assessments typically 

assume that each individual within a size or age class in a population is equally 

vulnerable, on average, to the fishery.  Often the purpose of an MPA is to change the 
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vulnerability of a portion of the population to fishing by protecting it from fishing 

pressure.  Thus, commonly used stock assessment techniques may not accurately portray 

a population that has an MPA within its range, which may result in biased estimates of 

fishing mortality rates and available biomass (Field et al., 2006).  

Punt and Methot (2004) investigated the ability of spatially-explicit and spatially 

aggregated statistical-catch-at-age (SCAA) stock assessments to estimate biomass and 

fishing mortality rates of stocks whose spatial dynamics included an MPA.  They found 

that spatially-explicit SCAAs are more accurate than spatially-aggregated SCAAs in 

predicting total biomass.  In particular, spatially-aggregated SCAAs had very poor 

estimation performance, and spatially-explicit models were necessary to provide accurate 

estimates of fishing mortality and biomass.  The characteristics of the MPA and 

population also affected assessment model performance.  Larger MPAs, lower migration 

rates, and surveys with low observation error led to more accurate estimates of biomass 

from the stock assessment (Punt and Methot, 2004). 

SCAAs are often impractical or impossible for stocks with incomplete or 

unavailable age data, but the performance of non-age-structured assessments has not been 

tested in scenarios that include use of MPAs in management.  Surplus production models 

(SPMs) are a common method of assessing stocks where age-structured data are either 

incomplete or impractical to obtain (Prager, 1994).  SPMs require less data than age-

structured models and have fewer estimated parameters (Laloë, 1995).  They include 

many aspects of population dynamics in a simple model, and they produce predictions 

that are easily translated into common reference points used to inform management such 

as maximum sustainable yield (MSY) or the equilibrium biomass that would produce 
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MSY (BMSY; Jacobson et al., 2002).  Although age-structured methods are often 

preferred, SPMs are still commonly used in assessing fish stocks in tropical regions 

where age-structured methods are impractical due to difficulties with accurately aging 

fish (Pauly, 1987). 

The objective of my study was to examine the accuracy of SPMs for assessing 

stocks managed with MPAs.  Specifically, the goal of this paper is to examine the 

accuracy of SPM estimates when part of the stock's range includes an MPA and the 

spatial resolution of the available data is confined to one region inside the MPA and one 

region outside the MPA.  I also examined effects of size of MPA, migration rate, level of 

observation error in the index of abundance, and spatial aggregation of the data on 

estimates from spatially-explicit and spatially aggregated SPMs using simulations. 

 

Methods 

I conducted numerical experiments in which I simulated the dynamics of 

populations using a data-generating model (Figure 3.1).  These populations were based 

on a stylized fish stock and followed a deterministic logistic growth pattern.  I then 

produced time series of indices abundance such as might be available from fishery-

independent surveys.  Finally, I used several SPMs to estimate population biomass and 

other parameters of interest and compared the resulting estimates to the true values from 

the data-generating model to determine the performance (accuracy, precision and bias) of 

the assessment model estimates.   

The data-generating model described the population dynamics for a range of 

MPA sizes and migration rates and produced data sets of catch and indices of abundance.  
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The assessment models were spatially-explicit or spatially-aggregated versions of SPMs 

and were fitted to the indices of abundance using a maximum likelihood approach.  The 

SPMs were challenged with scenarios of different MPA sizes, migration rates, and data 

availability and quality.  Each SPM was fitted to 200 replicate data sets for each scenario 

that differed in their random observation errors.  All of the models were written in AD 

Model Builder (ADMB Project, 2010).  The full model code is provided in Appendix II.    

 

Data-Generating Model 

 The data-generating model was spatially explicit and tracked the population in 

two regions:  one that became an MPA and one that remained open to fishing throughout 

the simulation.  The type of MPA that is described here and assumed by the simulation is 

a “no take” or “no access” MPA, where no fishing is allowed (U.S. Dept. of 

Commerce/NOAA, 2010).  Because the model required an informative pattern of fishing 

mortality over time, I created a scenario with a large amount of contrast in fishing 

mortality and biomass of the population over time.  The simulation continued for 50 

years, with the first year of the simulation also being the first year of the fishery.  Fishing 

effort rapidly increased until the population was largely depleted and an MPA was 

established, at which point fishing effort gradually decreased in the fished region to the 

fishing mortality rate that would achieve MSY (FMSY) due to concurrent regulations on 

the fishery in addition to the MPA (Figure 3.2).  This pattern of fishing mortality was 

used to provide the models an informative data set, and to avoid the well known problem 

of uninformative "one way trip" data sets (Hilborn and Walters 1992).  Spawning, 
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mortality, fishing, and the fishery-independent survey occurred sequentially at the end of 

each year.  

 The data generating model calculated the true total biomass at the end of each 

year, the observed index of abundance (observation error included), and the fishery catch 

in each region.  The data generating model followed a discrete-time Schaefer (1954) 

production model with logistic growth, migration between two regions, and fishing 

(Hanneson, 1998; see Table 3.1 for definitions of variables): 
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Population parameters, r, K, z, and m, were constant across simulations within a 

scenario.  Initial biomasses in each region were set at 90% of carrying capacity to 

represent a population that was only lightly exploited prior to the advent of a targeted 

fishery.  The value for K was a generic maximum total biomass (Table 3.1) and r was 

similar to estimates of the maximum growth rates for the barndoor skate (Dipturus laevis; 

Gedamke et al., 2009) and South Atlantic albacore (Thunnus alalunga; Polacheck et al., 

1993), but this level may be considered relatively high (Shepherd and Litvak, 2004).  The 

migration rate (z) was defined as the probability that an individual will move from one 

region to the other within a year (Hannesson, 1998).  The migration rate parameter 

represents a combination of a fish’s propensity for movement and the size or arrangement 

of an MPA or complex of MPAs.  For example, low z may represent a stock with a 

moderate movement with a single large MPA within its range, while a high z may 
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represent a stock with a low migration rate and a network of small MPAs within its 

range. 

The index of biomass produced within the data generating model was the product 

of biomass, survey catchability, and a random lognormal observation error with a mean 

of zero and a standard deviation determined by the scenario, 

)(*)()( t
sAreaArea eqtBtS δσ⋅⋅= . 

The random observation error was the only variable that changed in each replication of 

each scenario.  Fishery catch in each region was calculated as the product of biomass and 

fishing mortality, 

)(*)()( tFtBtC AreaAreaArea = . 

 Scenarios differed in the size of MPAs, migration rates between the MPA and 

non-MPA regions, and the level of observation error in the indices of biomass.  Sizes of 

MPAs considered were 5, 10, 20, and 40% of the stock area.  The two largest MPA sizes 

were based on the methods in Punt and Methot (2004) as well as MPA sizes 

recommended or evaluated by several authors (Boersma and Parrish, 1999; Crowder et 

al., 2000; Jones, 2002).  The two smallest MPA sizes were included to better represent 

actual MPA sizes implemented in current fisheries (United States Dept. of 

Commerce/NOAA, 2010).  In order to simulate different types of populations and 

surveys I considered four levels of migration rate, 0.2, 0.3, 0.4, and 0.5 per year, and two 

levels of observation error, low (0.2 log-scale standard deviation (SD)) and high (1.0 log-

scale SD).  Figure 3.3 shows the true biomass of the simulated population over time for 

each combination of MPA size and migration rate.  I also simulated one scenario in 
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which no index of biomass was available from within the MPA to model a situation 

where only fishery dependent data were available.   

 

Estimation models 

 Data sets were fitted with spatially-explicit and spatially-aggregated SPMs.  

Spatially-explicit SPMs had the same form as the data-generating model, except that 

catch was subtracted each year.  The migration rate parameters were assumed to be 

known at their true values in one version of the spatially-explicit SPM and were 

estimated in another.  The dynamics of the spatially-aggregated model followed a simple 

Schaefer SPM (Hilborn and Walters, 1992), 
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The estimated parameters of the model were carrying capacity, the intrinsic rate 

of increase, the initial biomass as a proportion of carrying capacity, and survey 

catchability.  Estimation models were provided the correct parameter values as starting 

values for the estimation to avoid potential problems caused by poor starting values.  

While analysts in the field would not have the correct values, the models were relatively 

insensitive to starting values.  The parameters were estimated by minimizing the 

concentrated negative log likelihood functions.   For the spatially-explicit scenarios the 

concentrated negative log likelihood function included components for the indices of 

biomass within and outside the MPA, 

( )22
max ))log()ˆ(log())log()ˆ(log(log*5.0* MPAMPAFF IIIItLL −Σ+−Σ=− . 
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For the spatially-aggregated SPMs, the concentrated negative log likelihood function 

included a spatially aggregated index of biomass,  

( )2
max ))log()ˆ(log(log*5.0* IItLL −Σ=− . 

Assessment Evaluation 

 I evaluated the accuracy of SPMs by calculating the relative error of estimated 

biomass from the 200 simulated data sets for each estimation model, 

100∗
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I summarized bias and accuracy of the models using the median of the relative error 

(MRE) or the median of the absolute value of the relative error (MARE) for each model 

under each MPA size, migration rate, and observation error scenario.  I used the median 

instead of the mean because medians are not as susceptible to the influence of large 

outliers, which were present in the results. I used accuracy of estimated biomass in the 

last year of the simulation, or 30 years after the establishment of the MPA, to indicate 

overall accuracy of the model for most of the evaluations.  I also estimated the relative 

error for the year the MPA was established, as well as five, ten, fifteen, twenty, and 

twenty-five years after establishment of the MPA.  

I used analysis of variance (ANOVA) with absolute relative error (ARE) in the 

last year of the simulation as the dependent variable, and model, MPA size, migration 

rate, and observation error scenario as independent variables to compare the performance 

of the estimation models.  Paired t-tests were also performed to determine the point at 

which the average error in estimated biomass was statistically similar to the last year of 

the simulation in each model and scenario.   
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Results 

The populations in all of the scenarios began at 90% of carrying capacity and then 

declined rapidly for 20 years until they reached slightly less than 10% of carrying 

capacity (Figure 3.3).  After the MPA was established at year 20, the populations slowly 

increased for 25-27 years until reaching equilibrium.  This equilibrium varied with 

different MPA sizes.  When only 5% of the total area was included in the MPA the 

populations recovered to about 51.7% of carrying capacity.  When the MPA included 

40% of the total area the populations recovered to around 71.9% of carrying capacity.  

Differences in migration rate affected the final equilibrium biomass by ~0.5%. 

The general pattern of MARE in the assessment models changed over time 

(Figure 3.4).  In the spatially-explicit model with low observation error and the scenario 

with 10% MPA and a migration rate of 0.3, after an initial slight decline MARE 

increased steadily before the establishment of the MPA until year fifteen of the 

simulation.  The MARE then declined until three years after the MPA was established, at 

which point it sharply increased more than four-fold until seven years after the MPA was 

established.  The error then slowly decreased until reaching a low equilibrium at about 20 

years after the establishment of the MPA.  The MRE also had a clear change from 

negative bias before the MPA was established to positive bias afterwards (Figures 3.4 and 

3.5).  The spatially-explicit and spatially-aggregated estimation models generally showed 

this same pattern of error, but the magnitude of the error was different among model and 

scenario combinations.  The MARE of biomass in the last year was two to seven times 

less than the MARE five to ten years after the MPA was established on average.  The 
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highest median errors were above 30% in the low-observation error scenarios (Table 3.3, 

Figure 3.5).  Most of the highest errors were in the five and ten years after the 

establishment of the MPA, and the errors declined gradually so that the assessment at 

thirty years after the establishment of the MPA usually had the lowest errors, even 

compared to before the MPA was established.  The t-tests showed that on average the 

MARE of the last year of the simulation was significantly lower (p<0.05) than the 23 to 

28 years after the MPA was established. 

The spatially-explicit SPMs produced more accurate estimates of biomass in the 

last year than spatially-aggregated SPMs (p<0.0001).  For the scenarios with low 

observation error, the range of MAREs for spatially-explicit SPMs was 0.7 - 4.2% 

(Figure 3.6a and 3.6b; Table 3.4).  In contrast, the spatially-aggregated SPMs had 

MAREs of biomass in the last year 2-4 times larger (range 2.5 - 8.8%) than the spatially-

explicit SPMs in the low observation error scenario (Figure 3.6d).  MAREs were higher 

in the scenarios with high observation error, as expected, but the relative difference 

between spatially-explicit and spatially-aggregated models was substantially smaller.  

The spatially explicit SPMs still performed significantly better than the spatially-

aggregated versions (p<0.0001), with an MARE range of 4.9 - 17.1% (Figure 3.6c) 

compared to 5.7% - 19.4% in the spatially-aggregated SPMs (Figure 3.6f).   

 The spatially-explicit SPMs with migration rate as an estimated parameter had 

approximately the same MAREs as the SPMs where migration was assumed known at 

the correct value for the three lowest migration rates.  Interestingly, in the highest 

migration rate scenario, the SPM that estimated migration rate had a significantly lower 

MARE of biomass in the last year than the scenario that specified migration rate 
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(p<0.0001).  However, as this difference was only about 0.5%, the two were about equal 

in their accuracy. 

Most of the scenarios showed significant trends of decreasing error as MPA size 

increased (p<0.0001).  However, when no indices of abundance were available within the 

MPA error increased with increasing MPA size regardless of migration rate (Figure 3.6e).  

Only the spatially-aggregated model under the low observation error scenarios showed 

diverging trends in MAREs across levels of MPA sizes and migration rates (Figure 3.6d).  

In these scenarios estimated biomass had higher MAREs under lower migration rates and 

the MAREs generally increased with increasing MPA size. In the spatially-explicit SPMs 

with low observation error the highest migration rate had significantly higher MAREs 

than the lower migration rates (p<0.0001) when MPA size was 10, 20, or 40%.  Finally, 

MAREs of estimated biomass increased with increasing MPA size and decreased with 

increasing migration rates in spatially-aggregated SPMs with no index of abundance in 

the MPA.  The accuracy of the other models and scenarios were not affected by migration 

rate (p>0.05).   

  

Discussion 

MPAs have a negative effect on the accuracy of spatially aggregated SPM stock 

assessments.  Modifications must be made to the traditional single stock model to account 

for differences in population dynamics between MPA and non-MPA areas.  The 

spatially-explicit SPM was still relatively simple compared with spatially explicit age-

structured approaches, and the parameters were estimable given informative data.  The 
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complexity of the model was not greatly increased from a traditional spatially aggregated 

SPM, but the accuracy of estimated biomass was markedly improved.   

Despite improvements in accuracy with spatially-explicit SPMs, there were 

unexpected patterns in both the MAREs and MREs even with the correctly specified 

model.  Spatially-explicit and spatially-aggregated SPMs had large positive bias in 

estimated biomass soon after the establishment of the MPA.  The pattern of error caused 

by MPA implementation persisted for about twenty years, even when data were available 

from within the MPA (Figure 3.4).  However, accuracy during the later years of the 

assessment depended on a relatively accurate index of abundance before and after the 

establishment of the MPA.   

Some authors have suggested that MPAs must occupy at least 20% and up to 40% 

of a population’s habitat in order to be effective conservation measures (Jones, 2002; 

Boersma and Parrish, 1999).  However, most actual MPAs occupy a much lower 

percentage of the total habitat, and less than 1% of marine resources are considered to be 

fully protected from fishing (Boersma and Parrish, 1999).  Many of the modeling studies 

in the past have recommended and focused on large MPAs occupying between 20% and 

70% of the population’s range (e.g., Sumaila, 2002; Punt and Methot, 2004; ), though 

some have explored the effects of smaller reserves (10-15% of the range) (e.g., Watson et 

al., 2000).  Specifically, these studies have focused on the recommendations that 

emphasize large, “no-take” reserves (e.g., Pauly et al., 1997), which are different from 

other forms of MPAs that vary widely in the level of protection afforded to them.  The 

results from this study suggest that large MPAs that are monitored can provide better 
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information about a population and improve the accuracy of analyses of stocks in the 

MPA by managers.   

In my study, larger MPAs usually produced a more accurate stock assessment.  

Punt and Methot (2004) report similar results for SCAAs.  The only assessment model in 

my study that had increasing errors with increasing MPA sizes was the spatially 

aggregate model with no indices of abundance from within the MPA.  The trend in 

performance of models without information from within the MPA was expected because 

the assumptions of the assessment are violated to a lesser degree with a small MPA than a 

larger MPA.  Thus, with large MPAs, indices of abundance from within the MPA are 

extremely important for accurate assessments. 

Migration rates can also affect accuracy of stock assessments when an MPA is 

part of the management for a fishery.  Punt and Methot (2004) found a decrease in 

accuracy of stock assessments with increasing migration rates.  In my study migration did 

not have as much of an effect on accuracy as MPA size.   When there was an effect of 

migration rate, increased migration rates increased the accuracy of the assessment, which 

was the opposite pattern from that in age-structured methods (Punt and Methot 2004).      

My results, and the results from Punt and Methot (2004), tested a single large 

MPA, but they may be able to be extrapolated to a network of smaller MPAs (Field et al., 

2006).  This is important because of the SLOSS (Single Large Or Several Small) debate 

among ecologists (McNeill and Fairweather, 1993; Roberts and Hawkins, 1997; Walters, 

2000).  Because MPA size in the data-generating and estimation models in my study was 

in terms of proportion of carrying capacity biomass protected by the MPA, the results 

may be interpreted as the effects of several different kinds of MPAs on the accuracy of a 
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SPM.  For example, a scenario that involves a large MPA could have the same proportion 

of carrying capacity protected as a series of smaller MPAs, but the migration rate would 

be higher for a network of smaller MPAs.  However, my study assumes a closed 

population, so the results are not applicable to a subpopulation with extensive migration 

from outside the modeled area. 

Information on trends in abundance within the MPA substantially improved total 

biomass estimates.  The lack of information from within the MPA forces any assessment 

to be spatially aggregate and assume that dynamics within the MPA are the same as those 

outside of the MPA.  The estimated biomass from scenarios without indices of abundance 

in the MPA was negatively biased, and the bias increased with larger MPAs and higher 

migration rates.  The SPMs without indices from within the MPA were less accurate than 

those from the spatially-aggregated models that had data from within the MPA.  Thus, 

survey information on relative abundance or biomass within the MPA is essential for 

accurate SPM assessments, especially in situations with large MPAs.  Only 29% of 

MPAs, however, have sufficient information available to evaluate progress against their 

management objectives (Jones, 2002), and presumably to develop indices of abundance.   

My study likely provides a best-case scenario for how well SPM assessments will 

perform when MPAs are implemented because, in most cases, the assessment model was 

exactly the same as the data generating model.  My simulations assumed no error in the 

catch and deterministic population dynamics.  My assessments also assumed that MPA 

size was known.  MPA size is likely to be known, but the spatially-explicit SPM requires 

an assumption about the proportion of carrying capacity within the MPA, which may 

differ from the spatial extent of the MPA because limiting resources for the population 
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may not be evenly distributed.  Other requirements for a successful SPM in this study 

were an informative fishing mortality scenario and indices that were actually proportional 

to population size.  The results may be less accurate if fishing mortality is assumed to be 

constant or if there are flaws in the survey that make the indices disproportional to 

population size. 

In spite of the potential benefits of MPAs, few MPAs have shown sufficiently 

good management to have substantial improvement in the biomass of fish they were 

established to protect (Kelleher, 1996; Hilborn et al., 2004).  Positive effects on fish 

stocks from an MPA are highly dependent on variables other than MPA size such as the 

characteristics of the area, the behavior and life-history traits of the fish (Holland, 2002), 

and the success of management in actually protecting the area.  Larger MPAs have a 

greater positive effect on fish populations than smaller MPAs, provided that the protected 

regions are of similar quality (Pelletier and Magal, 1996; Nowlis and Roberts, 1999).  

However, an MPA with higher quality habitat can lead to better results than a larger 

protected area of low quality (Lundberg and Jonzen, 1999; Rodwell et al., 2003) because 

higher-quality areas can support greater densities of fish.  Moreover, the timing of 

dispersal behaviors also have a substantial effect on the regions where the majority of 

recruitment occurs, and therefore on the efficacy of an MPA (Morgan and Botsford, 

2001; Pelletier and Mahevas, 2005).   

In conclusion, accuracy of estimates from SPM stock assessments, like age-

structured assessments, can be substantially affected by inclusion of an MPA within the 

stock's range.  However, substantial improvements in accuracy can be made by collecting 

indices of abundance within the MPA and using a spatially-explicit SPM to model the 
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population.  The movement rate of the species only seemed to matter when very large 

MPAs were present, and large MPAs usually provided the most accurate biomass 

estimates in spatially explicit models.  SPMs where the migration rate was estimated 

produced as accurate or more accurate results than models where migration was specified 

at its correct value and should be preferably used over SPMs where the migration rate is 

assumed known.  A substantial period is necessary for biomass estimates to become 

unbiased after MPA implementation.  However, the SPMs modeled here performed well 

in a broad range of circumstances and could be useful in stock assessments where an 

MPA is involved. 
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Table 3.1.  Definitions of the symbols used in data-generating and assessment models. 

Symbol Definition 

gionI Re  Biomass in one of the regions, Fish and MPA 
denote fished and MPA regions 

gionI Re
ˆ  Predicted biomass in one of the regions, Fish 

and MPA denote fished and MPA regions 
r Intrinsic rate of increase: 0.4 
K Carrying capacity of the entire population: 

1000 units 
m Proportion of the total area in the MPA 
z Migration rate 
σ Standard deviation of observation error 

δ Normally distributed observation error 

FArea Annual fishing mortality rate 
qs Catchability of the survey: 0.005 
tmax Number of years in simulation: 50  
C Total annual catch 
B Biomass 
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Table 3.2.  Description of the six versions of the surplus production models. 

Model & 
Scenario 

Set 

Spatial 
Structure 

Migration 
Estimated? 

Survey 
Within 
MPA? 

Observation 
Error log-
scale SD 

A Spatially 
Explicit 

no yes 0.2 

B Spatially 
Explicit 

yes yes 0.2 

C Spatially 
Explicit 

no yes 1 

D Aggregate no yes 0.2 
E Aggregate no no 0.2 
F Aggregate no yes 1 
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Table 3.3. Overall error of all MPA sizes and migration rates from each model and 

scenario.  The first row is the percent of the median of the absolute value of the relative 

error (% MARE) from each model and set of scenarios through time, beginning with the 

year the MPA was established.  The numbers in bold are the two highest errors for that 

set of scenarios.  The second, italicized row is the upper bound of the 95% confidence 

interval. 

    MARE    

Model, Scenarios 
Year 
20 

Year 
25 

Year 
30 

Year 
35 

Year 
40 

Year 
45 

Year 
50 

Explicit, low error 14.8 13.0 13.9 7.1 3.5 2.5 2.0 
 23.5 30.7 30.0 21.9 16.3 13.7 11.9 
Explicit, migration 
estimated 14.5 14.6 15.7 7.6 3.3 2.3 1.9 
 21.8 33.2 32.3 22.0 14.5 12.4 11.0 
Explicit, high error 20.9 21.9 21.9 19.4 15.7 12.3 9.9 
 51.0 113.7 102.3 75.0 51.0 47.6 64.8 
Aggregate, low error 11.5 18.3 18.2 10.2 5.9 4.8 4.5 
 20.8 40.6 36.5 27.2 19.6 14.6 11.9 
Aggregate, no IA in MPA 23.7 16.0 18.7 24.4 25.5 22.2 16.2 
 35.5 46.3 56.8 63.3 63.3 58.2 47.5 
Aggregate, high error 22.7 32.5 32.1 24.2 17.3 14.0 10.9 
 65.9 140.5 116.4 84.3 61.1 57.4 67.3 
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Table 3.4. Median relative error (MRE) of total biomass and bounds of the 95% 

confidence intervals from each combination of MPA size, migration rate, and SPM 

version. 

   Spatially-explicit  Spatially-aggregated 

Model 
Version 

Migration 
Rate 

MPA 
Size Median 

Lower 
95%  

Upper 
95% 

Model 
Version Median 

Lower 
95%  

Upper 
95% 

A 0.2 5% -0.7% -12.5% 10.6% D 1.5% -10.3% 14.6% 
A 0.2 10% -0.3% -10.5% 7.9% D 4.2% -5.5% 13.0% 
A 0.2 20% -0.3% -7.3% 3.3% D 7.9% 2.4% 11.5% 
A 0.2 40% -0.1% -2.0% 1.8% D 8.8% 4.9% 11.2% 
A 0.3 5% -0.7% -12.6% 10.3% D 0.4% -11.4% 13.5% 
A 0.3 10% -0.3% -11.2% 7.7% D 2.3% -7.5% 11.0% 
A 0.3 20% -0.3% -7.1% 3.0% D 5.0% -0.4% 8.4% 
A 0.3 40% 0.0% -2.3% 1.7% D 5.8% 2.4% 8.0% 
A 0.4 5% -0.7% -13.0% 10.2% D -0.2% -12.1% 12.9% 
A 0.4 10% -0.4% -11.0% 7.4% D 1.3% -8.6% 10.1% 
A 0.4 20% -0.3% -6.7% 3.0% D 3.4% -2.2% 6.7% 
A 0.4 40% 0.1% -2.5% 1.8% D 4.2% 0.8% 6.2% 
A 0.5 5% -0.8% -12.8% 10.1% D -0.5% -12.4% 12.7% 
A 0.5 10% -2.3% -13.9% 9.2% D 0.7% -9.3% 9.7% 
A 0.5 20% -1.3% -14.5% 4.0% D 2.4% -3.4% 5.9% 
A 0.5 40% 1.5% -20.5% 3.7% D 3.2% -0.1% 5.1% 
B 0.2 5% -0.7% -13.4% 10.6% E -7.6% -22.2% 7.5% 
B 0.2 10% -0.4% -11.3% 7.7% E -12.6% -26.8% 2.3% 
B 0.2 20% -0.3% -7.4% 4.0% E -18.9% -35.0% -1.6% 
B 0.2 40% -0.2% -3.9% 2.8% E -38.1% -54.1% -12.7% 
B 0.3 5% -0.7% -13.1% 10.4% E -7.5% -21.9% 7.5% 
B 0.3 10% -0.4% -11.3% 7.4% E -12.4% -26.3% 2.3% 
B 0.3 20% -0.4% -7.2% 3.4% E -19.6% -34.0% -4.2% 
B 0.3 40% -0.2% -3.2% 2.3% E -36.9% -52.6% -17.0% 
B 0.4 5% -0.7% -12.9% 10.3% E -7.4% -21.7% 7.6% 
B 0.4 10% -0.4% -11.3% 7.3% E -12.2% -25.9% 2.5% 
B 0.4 20% -0.3% -7.0% 3.3% E -19.3% -33.5% -4.6% 
B 0.4 40% -0.2% -3.1% 2.0% E -33.5% -53.0% -7.9% 
B 0.5 5% -0.7% -12.8% 10.2% E -7.3% -21.5% 7.7% 
B 0.5 10% -0.6% -11.2% 7.3% E -12.0% -25.6% 2.5% 
B 0.5 20% -0.2% -6.9% 3.4% E -19.1% -33.4% -4.5% 
B 0.5 40% -0.1% -3.1% 1.8% E -30.2% -50.3% -6.1% 
C 0.2 5% -5.6% -70.1% 24.7% F -3.1% -71.7% 38.4% 
C 0.2 10% -5.4% -64.4% 19.7% F 2.0% -63.8% 33.1% 
C 0.2 20% -4.9% -52.7% 13.8% F 4.5% -44.3% 28.3% 
C 0.2 40% -2.5% -33.5% 13.1% F 6.8% -26.7% 40.0% 
C 0.3 5% -6.5% -72.1% 25.3% F -4.6% -73.0% 36.0% 
C 0.3 10% -5.9% -65.9% 18.6% F -0.8% -66.5% 30.3% 
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C 0.3 20% -4.4% -57.6% 13.9% F 0.8% -48.6% 30.0% 
C 0.3 40% -2.3% -31.6% 13.0% F 3.4% -30.3% 34.8% 
C 0.4 5% -6.2% -73.3% 24.2% F -5.9% -73.7% 34.7% 
C 0.4 10% -5.5% -69.1% 18.4% F -2.1% -67.5% 28.9% 
C 0.4 20% -4.5% -61.1% 13.6% F -0.7% -52.7% 27.9% 
C 0.4 40% -2.4% -31.6% 13.5% F 1.9% -32.5% 30.6% 
C 0.5 5% -6.3% -71.6% 24.5% F -6.5% -74.1% 34.2% 
C 0.5 10% -6.3% -72.6% 18.9% F -3.7% -67.8% 28.1% 
C 0.5 20% -5.3% -61.8% 13.2% F -1.4% -54.8% 26.0% 
C 0.5 40% -2.1% -29.6% 13.4% F 0.7% -33.5% 27.6% 
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Figure 3.1.  Flow chart of the models and datasets created in the simulation. 
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Figure 3.2.  Pattern of annual fishing mortality in the fished region of the simulation.  The 

first twenty years of the simulation also apply to the region that becomes the MPA. 
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Figure 3.3.  Biomass in both regions from every combination of MPA size and migration 

rate.  Columns from left to right are in order of increasing MPA size and rows from top to 

bottom are in order of increasing migration rate. 
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Figure 3.4.  Median of the absolute value of the relative error (MARE, panel A) and the 

median of the relative error (MRE, panel B) for each year of the spatially explicit model 

where the MPA size was 10%, migration rate was 0.3, and observation error was 0.2.
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Figure 3.5.  Boxplots showing the error in total biomass in the low observation error 

scenarios for both spatially explicit and aggregate assessment models through time.  

Migration rate is 0.4 in every case shown.  Boxes show interquartile range, dark line is 

the median, and whiskers are 95% confidence interval.
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Figure 3.6.  Median of the absolute value (MARE) of the relative error in biomass in the 

last year of the simulation from all models and scenarios.  The letter in the top right 

corner of each panel corresponds to the model and scenario set defined in Table 2.  Z 

indicates migration rate. 
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Chapter 4: Results and Summary 

 The objective of my thesis was to employ spatially-explicit techniques to identify 

regions that have different population dynamics and develop and compare assessment 

methods for stocks with spatial patterns of exploitation.  The specific objectives of 

Chapter 2 were to develop indices of abundance of four common species caught in the 

Maryland Coastal Bays Trawl and Seine Survey (MCBTSS) and compare trends in 

abundance of four fish species across two regions within the Maryland's coastal bays.  To 

achieve these objectives, I developed generalized linear models (GLiMs) to develop 

statistically standardized indices of abundance that accounted for changes in survey 

methodology and used the models to generate indices of abundance for 17 years of data 

prior to the standardization of the survey.  I compared trends in indices of abundance for 

each species between the two regions and tested for effects of habitat on changes in 

abundance.  My objectives in Chapter 3 were to assess the accuracy of surplus production 

models (SPMs) on a population with a spatially heterogeneous exploitation pattern 

because of a no-take marine protected area (MPA).  I conducted a simulation study to 

evaluate the performance of SPMs when part of the range included an MPA.  I tested 

several versions of SPMs under a range of conditions including proportion of the range 

protected by an MPA, migration rate between MPA and non-MPA regions, and quality 

and availability if indices of abundance. 

 In Chapter 2, I showed that GLiMs could be used to account for spatial, temporal, 

and methodological changes in the MCBTSS.  Since 1972 juvenile populations of 

Atlantic menhaden (Brevoortia tyrannus) and spot (Leiostomus xanthurus) have declined 

in Maryland’s coastal bays, while summer flounder (Paralichthys dentatus) and weakfish 
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(Cynoscion regalis) did not have a significant trend over time.  I also found that bays in 

the northern region, north of the inlet to the ocean, had significantly higher densities of 

these fishes than the southern region.  However, none of the environmental variables, 

including seagrass area, were related to changes in relative abundance of any of the 

species through time.  This is likely due to the coupling of coastal bay fish populations 

with the broader Mid-Atlantic stocks through yearly recruitment.  The northern region of 

Maryland’s coastal bays, which is more eutrophied and has longer water retention time, 

supported higher densities of fish than the more pristine southern bays.  However, the 

effects of habitat degradation may have been reflected in the steeper decline of Atlantic 

menhaden and spot in the northern region relative to the southern region.  Finally, 

because localized habitat variables were not related to relative abundance of any of the 

species, a coast-wide stock recruitment relationship may explain long-term trends better 

local habitat variables. 

In Chapter 3, I showed that SPMs were able to be used as an accurate method of 

assessing the biomass of a stock where an MPA is involved.  However, perhaps the most 

interesting result was that accuracy of the assessments changed substantially in the years 

immediately after the MPA was established.  Up to twenty years was necessary for the 

error in the SPMs to return to more accurate levels.  Spatially explicit assessments 

performed far better than spatially aggregate methods.  Also, having indices of abundance 

from within the MPA was crucial to estimate the biomass of the total population 

accurately, and GLiM models from Chapter 2 could be used to develop spatially-explicit 

indices for populations with an MPA.  The movement rate of the species only seemed to 

matter when very large MPAs were present, and large MPAs usually provided the most 
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accurate biomass estimates in spatially explicit models.  SPMs where the migration rate 

was estimated produced as accurate or more accurate results than models where 

migration was specified at its correct value and should be preferably used over SPMs 

where the migration rate is assumed known.  SPMs performed well in a broad range of 

circumstances and could be useful in stock assessments where an MPA is involved. 
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Appendix I: Trawl and Seine Survey Comparisons 

Introduction 

In addition to analyzing the trawl survey data as described in Chapter 2 of this 

thesis, I also analyzed the seine survey data in a similar manner and compared the two 

gear types.  I also compared the indices of abundance from the generalized linear models 

I developed with the indices of abundance currently used by the Maryland Department of 

Natural Resources (MDNR) in their reports.  The results of those analyses are described 

in this appendix.  

 

Methods 

 The seine portion of the MCBTSS samples 19 different sites in the same five bays 

as the trawl survey (Figure 2.1).  Since the survey was standardized in 1989, MDNR has 

seined at each site in June and September (July and September for 1989-1992).  The seine 

survey was conducted with a 30.8 m X 1.8 m seine (100ft X 6ft) with 0.63 cm mesh 

(0.25in) (Bolinger et al., 2007).  The seine survey is conducted adjacent to the edges of 

the bays, mostly in depths of less than one meter.  The seine survey was not fully 

standardized spatially until 1993.  The seine samples are not standardized by time, but 

rather the seine is pulled across a specific length of shore that varies among sites 

depending on the amount of exposed shoreline.  

As with the trawl survey, I excluded some sites and years from the analyses. Site 

S19 was excluded because it has a very different salinity regime and other physical 
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properties from the other sites and can only be sampled at high tide.  Other exclusions are 

detailed in Table I.1.  The generalized linear model used to calculate the indices of 

abundance was the same as the trawl models (See Methods section in Chapter 2) but with 

no effort term, as one seine pull was considered one unit of effort.  Weakfish were not 

caught enough in the seine survey to be able to calculate indices of abundance using the 

generalized linear model, so only menhaden, flounder, and spot were analyzed.  Trends 

over time were analyzed by region with ANCOVAs as with the trawl models.  A 

Bonferroni correction was used so that a significant p-value is reduced to 0.00833. 

Index and Gear Comparisons 

MDNR currently uses a simple catch per seine or catch per trawl averaged over 

all sites and samples within a year to arrive at one index per year for each species and 

gear type.  I conducted correlations to compare the indices estimated by the 

standardization models with the indices used by MDNR.  I compared the generalized 

linear model-based indices to the log-transformed yearly mean CPUEs for each species, 

gear type, region, and period (all years of the survey, years before standardization, and 

years after standardization).  If the factors included in the model are important, the mean 

CPUE indices and the model estimates will have a higher correlation in the post-

standardized years of the survey than the pre-standardized years.   

  I also compared the trawl and seine survey indices for each species to see if they 

provided consistent trends over time.  If both gears are highly and positively correlated, 

they provide consistent indices of abundance.  If they are not well correlated then one or 

both gear types show inaccurate indices of abundance.  I used correlations between the 

regional year effect estimates of the models to assess the similarities in trends between 
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the year-effect results of the trawl and seine models.  If both regions are highly and 

positively correlated, they are equally suitable for the species used in the analyses and 

can be considered one large region.   

Results  

 The indices of abundance from the seine survey showed very different trends than 

the indices from the trawl survey for summer flounder and spot.  Menhaden still showed 

a decreasing trend as in the trawl survey (only significant in the southern region, Table 

I.2, Figure I.1), but flounder showed a significant increase in the southern region (Figure 

I.2).  Spot, which showed a significant decrease in the northern region and no overall 

increase or decrease in the southern region in the trawl survey, showed an increase in the 

southern region in the seine survey (Figure I.3). 

The correlations between the trawl and the seine models varied greatly among 

species.  A total of six gear correlations were performed, one for each region in the 

flounder, spot, and menhaden models (Table I.3).  They ranged from -0.330 to 0.611 with 

menhaden being the most similar of the three species.   

A total of 14 sets of correlations (42 total correlations, 40 were significant) were 

performed between the simple mean catch and the generalized linear model indices of 

abundance, and 12 of them were higher in the post-standardized years than the pre-

standardized years (Tables I.4 and I.5).  The full models changed the index of abundance 

estimates more during the period when sampling was inconsistent than when the survey 

was standardized in 11 of the 14 sets of correlations.  The correlations ranged from 0.363 

to 0.981 (Tables I.4 and I.5).  The majority of the generalized linear models followed the 

same trends as the simple catch per trawl or seine.  
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Discussion 

The wide differences between the trawl and the seine surveys are an indication of 

the importance of gear choice in developing indices of abundance.  The seine is limited to 

shallow near-shore areas.  In the coastal bays, the trawl is limited to channels deep 

enough for the boat to pass, an important limitation in the coastal bays where the average 

depth is only about one meter.  There are often large areas in between sites that cannot be 

reached by either the trawl or the seine.  This combined with the very low correlations in 

trends between the trawl and seine (Table I.3) make it probable that the two gears are 

sampling somewhat different portions of the fish populations, or that one gear is sampling 

sub-optimal habitat for a species causing the trends to be different.   

Because of the differing trends in the trawl and seine surveys, one gear must be 

used over the other to provide indices of abundance in the coastal bays.  For the purposes 

of this thesis, I have made the assumption that the trawl provides a more accurate view of 

the trends in young-of-year fish of the species I studied, both because of the behaviors of 

the species and the range of the gear.  The parallels between the trends seen in the trawl 

surveys and the mid-Atlantic stock assessments provide more support for the premise that 

the trawl survey provides more accurate indices of abundance.  In spite of this decision, 

however, it may be useful to describe the trends seen in the seine survey. 

Unlike the trawl survey, the northern region of the coastal bays did not have 

significantly greater densities of fish in the seine survey.  There was also only one 

instance of significant decline in a species as opposed to the three instances in the trawl 

survey.  Only menhaden in the southern region declined significantly during 1972-2009.  
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However, both flounder and spot showed significant increases in the southern region 

during the same time period (Table I.2, Figures I.2 and I.3).  No significant changes were 

seen in any of the three species in the northern region. 

Standardizing the survey in 1989 should have allowed a simple catch per trawl or 

seine to be an accurate index of abundance.  If the full models developed in this project 

can produce a more accurate index of abundance, one would expect the models to change 

the estimates for the years before standardization more than the years after 

standardization.  This hypothesis was substantiated by the correlations performed 

between the indices of abundance from the two methods (Tables I.4 and I.5).  The 

generalized linear models were more correlated with the years in the survey post-

standardization in 12 of the 14 species, gear, and region combinations, suggesting that the 

survey standardization improved the accuracy of the CPUE as an index of abundance and 

that the generalized linear models improved the accuracy of the indices of abundance 

prior to survey standardization. 

Many of the overall increases or decreases in abundance were only apparent if the 

time series had more than ten or fifteen years, and more were necessary to ascertain 

whether the trend continued.  For example, the time period for which the habitat data 

used in Chapter 2 was available (1990-2004) showed a significant increase in weakfish 

abundance, but when the entire time series from MCBTSS (1972-2009) is used no 

significant upward or downward trend is apparent.  During 1990-2004 there was also no 

significant trend in menhaden or spot, but when the entire time series is taken into 

account both showed significant declines in the trawl portion of the survey.  Thus, 

including the earlier data revealed trends that we would otherwise not have seen. 
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Table I.1. The years, months, and sites excluded from the seine survey analyses and the 

reasons for excluding them. 

Species Region Variable 
Level 

Removed 

Reason 

All All 1983-1986 <6 samples 

Menhaden North 1980 None 
Caught 

Menhaden All October None 
Caught 

Flounder All May None 
Caught 

Flounder All October None 
Caught 

Flounder All 1973 None 
Caught 

Flounder All 1977 None 
Caught 

Flounder South Site S14 None 
Caught 

Flounder All 1979 None 
Caught 
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Table I.2.  The slopes and p-values of the trends for each species and region evaluated 

from the seine portion of the survey.  Bold rows are statistically significant at α=0.008, 

the level that corresponds to α=0.05 when corrected for multiple comparisons. 

Species Region Slope p-value 

Menhaden North -0.0615 0.2346 

Menhaden  South  -0.0837 0.0034 

Flounder North -0.046 0.0427 

Flounder  South  0.0574 0.0051 

Spot North 0.0564 0.0196 

Spot  South  0.0957 <0.0001 

 



 73

Table I.3. The gear comparisons between the trawl and seine full models for each species 

in two regions where the models for both gears converged.   

Flounder Menhaden Spot 

North South North South North South 

-0.330 0.367 0.487 0.611 0.071 -0.031 
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Table I.4. The trawl survey correlations between the full generalized linear model and the 

simple average catch per trawl.  Correlations are by region and species for all years 

(1972-2009), pre-standardization (1972-1988), and post-standardization (1989-2009).  

Stars indicate statistical significance at α=0.05. 

Species Region All 

Years 

Pre-

Standardization 

Post-

Standardization 

Spot North 0.9794** 0.9719** 0.9812** 

Spot South 0.9667** 0.9126** 0.9896** 

Menhaden North 0.9102** 0.8258** 0.8425** 

Mendahen South 0.8370** 0.4921 0.9273** 

Flounder North 0.9287** 0.9520** 0.9613** 

Flounder South 0.9213** 0.8845** 0.9814** 

Weakfish North 0.8174** 0.7821** 0.8632** 

Weakfish South 0.6932** 0.3630 0.9510** 
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Table I.5. The seine survey correlations between the full generalized linear model and the 

simple average catch per seine.  Correlations are by region and species for all years 

(1972-2009), pre-standardization (1972-1992), and post-standardization (1993-2009).  

Stars indicate statistical significance at α=0.05. 

Species Region All 

Years 

Pre-

Standardization 

Post-

Standardization 

Spot North 0.9507** 0.9746** 0.9658** 

Spot South 0.9686** 0.9607** 0.9323** 

Menhaden North 0.8353** 0.8664** 0.8734** 

Menhaden South 0.7671** 0.5447** 0.8110** 

Flounder North 0.9305** 0.9318** 0.9596** 

Flounder South 0.8503** 0.7838** 0.9768** 
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Figure I.1. The model estimates of the seine survey for menhaden for each region.  The 

missing values are the years where there was not enough data to form a reliable estimate. 
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Figure I.2. The model estimates of the seine surveys for flounder for each region.  The 

missing values are the years where there was not enough data to form a reliable estimate.
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Figure I.3.  The model estimates of the seine surveys for spot for each region.  The 

missing values are the years where there was not enough data to form a reliable estimate.
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Appendix II: Surplus Production Model Code 

Data Generating Model  

//Jennifer Barkman 
//Chapter 2 2-Area Simulation Surplus Production Model 
//Created June 30, 2010 
// Last edited July 15, 2010 
 
DATA_SECTION 
  init_int tmax           //# of years in model 
  init_vector F1(1,tmax)  //Fishing pressure in non-MPA area 
  init_vector F2(1,tmax)  //Fishing pressure in MPA area 
  init_number r           //intrinsic rate of growth 
  init_vector m(1,4)      //proportion of area that is MPA 
  init_number K           //Carrying capacity 
  init_number sq          //survey catchability 
  init_vector z(1,4)      //migration rate 
  init_number sigma  //st dev of observation error on log scale for survey data 
  init_int nsims     //number of sumulations to run 
  init_int seedi     //random number generator seed 
  init_vector test(1,3) 
 
  vector S1(1,tmax) //Survey catch in non-MPA 
  vector S2(1,tmax) //Survey catch in MPA 
  vector ST(1,tmax) //Survey catch in total area 
  vector N1(1,tmax) //Abundance for non-MPA region  
  vector N2(1,tmax) //Abundance for MPA region  
  vector NT(1,tmax) //Abundance for total area 
  vector C1(1,tmax) //Catch in non-MPA  
  vector C2(1,tmax) //Catch in MPA 
  vector CT(1,tmax) //Catch in total area 
 
  int i  //year counter 
  int j  //migration counter 
  int k  //sim counter 
  int n  //MPA size counter 
  int seed 
 
  vector S1_err(1,tmax) 
  vector S2_err(1,tmax) 
 
 LOCAL_CALCS 
  //cout << test << endl; 
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  //cout << m << endl; 
  //exit(2); 
 END_CALCS 
   
PARAMETER_SECTION 
  objective_function_value f 
 
 LOCAL_CALCS 
 
  //create random number generator seed 
  seed=seedi; 
  random_number_generator rng(seed); 
 
  //run entire program and estimation model multiple times 
  for(k=1;k<=nsims;k++) 
  { 
    //change rndnumbseed to create diff values 
    seed+=2; 
    S1_err.fill_randn(rng); 
    S2_err.fill_randn(rng); 
     //loop over migration rates 
    for(j=1;j<=4;j++) 
    {  
      for(n=1;n<=4;n++) 
      { 
        //I output counters so I could see how far along the program was while it was 
running 
        cout << k << " " << z(j) << " " << m(n) << endl; 
        //inital biomass 
        N1(1)=(1.-m(n))*0.9*K; 
        N2(1)=m(n)*0.9*K; 
        NT(1)=N1(1)+N2(1); 
        //fill in N vectors 
        get_numbers(); 
         
        //create data file for 2-area est model 
        ofstream ofs("estmodel.dat"); 
        { 
          ofs << "#tmax" << endl; 
          ofs << tmax << endl; 
          ofs << "#proportion of area that is MPA" << endl; 
          ofs << m(n) << endl; 
          ofs << "#migration rate" << endl; 
          ofs << z(j) << endl; 
          ofs << "#Abundance in total area" << endl; 
          ofs << NT << endl; 
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          ofs << "#Catch in non-MPA area" << endl; 
          ofs << C1 << endl; 
          ofs << "#Catch in MPA area" << endl; 
          ofs << C2 << endl; 
          ofs << "#Abundance in non-MPA area" << endl; 
          ofs << N1 << endl; 
          ofs << "#Abundance in MPA area" << endl; 
          ofs << N2 << endl; 
          ofs << "#survey catch in non-MPA area" << endl; 
          ofs << S1 << endl; 
          ofs << "#survey catch in MPA area" << endl; 
          ofs << S2 << endl; 
          ofs << "#test" << endl; 
          ofs << "1 2 3" << endl; 
        } 
         
        //create data file for one-area model 
        ofstream one("oneareamodel.dat"); 
        { 
          one <<  "#tmax" << endl; 
          one << tmax << endl; 
          one << "#proportion of area that is MPA" << endl; 
          one << m(n) << endl; 
          one << "#migration rate" << endl; 
          one << z(j) << endl; 
          one << "#Abundance in total area" << endl; 
          one << NT << endl; 
          one << "#Catch in total area" << endl; 
          one << CT << endl; 
          one << "#survey catch in total area" << endl; 
          one << ST << endl; 
          one << "#test" << endl; 
          one << "1 2 3" << endl; 
        } 
         
        //create file to display population dynamics of the two areas 
        //the ios::app appends data to the file in every iteration instead of deleting and 
rewriting it 
        ofstream bio("popdy.txt",ios::app); 
        { 
          bio << z(j) << m(n) << endl; 
          bio << N1 << endl; 
          bio << N2 << endl; 
          bio << NT << endl; 
        } 
         



 82

        /* 
        //output seed numbers 
        ofstream out("rndnumseed.txt",ios::app); 
        { 
          out << seed << "  " << endl; 
          out << N1 << endl; 
        } 
        */ 
 
        //call estimation model 2-area and 1-area 
         
        system("estmodel.exe"); 
         
        system("oneareamodel.exe"); 
         
      } 
    } 
     
  } 
 
  cout << "model finished" << endl; 
  exit(0); 
 END_CALCS 
   
PROCEDURE_SECTION 
 
 
FUNCTION get_numbers 
  //Fill in N matrices 
  for (i=1;i<tmax;i++) 
  { 
    N1(i+1)=N1(i)+r*N1(i)*(1.-(N1(i)/(K*(1.-m(n)))))+z(j)*m(n)*((((1.-
m(n))/m(n))*N2(i))-N1(i))-F1(i)*N1(i); 
    N2(i+1)=N2(i)+r*N2(i)*(1.-(N2(i)/(K*m(n))))+z(j)*(1.-m(n))*((m(n)/(1.-
m(n)))*N1(i)-N2(i))-F2(i)*N2(i); 
    NT(i+1)=N1(i)+N2(i); 
   
  //This checks to make sure biomass is positive 
  /* 
  if (NT(i)<0.) 
  { 
    cout << N1 << endl; 
    cout << N2 << endl; 
    cout << NT << endl; 
    exit(3); 
  } 
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  */ 
  } 
 
  //Fill in Catch matrix and survey catch matrix with the random error 
  for (i=1;i<=tmax;i++) 
  { 
    C1(i)=N1(i)*F1(i); 
    C2(i)=N2(i)*F2(i); 
    CT(i)=C1(i)+C2(i); 
    S1(i)=N1(i)*sq*exp(sigma*S1_err(i)); 
    S2(i)=N2(i)*sq*exp(sigma*S2_err(i)); 
    ST(i)=S1(i)+S2(i); 
  } 
 
  //This was for a version where no data was available in the MPA for the last 30 years of 
the simulation 
  /* 
  for (i=1;i<=20;i++) 
  { 
    S2(i)=N2(i)*sq*exp(sigma*S2_err(i)); 
    ST(i)=S1(i)+S2(i); 
  } 
  */ 
  //cout << S1 << S2 << endl; 
  //cout << C2 << endl; 
  //cout << CT << endl; 
  //exit(2); 
 
REPORT_SECTION 
 

Spatially-Explicit Estimating Model 

//Jennifer Barkman 
//Chapter 2 2-Area Estimation Surplus Production Model 
//Created June 30, 2010 
// Last edited July 15, 2010 
 
DATA_SECTION 
  init_int tmax               //number of years of data 
  init_number m               //proportion of area that is MPA 
  init_number z               //migration rate 
  init_vector BTtrue(1,tmax)  //Biomass in total area 
  init_vector C1obs(1,tmax)   //Catch in non-MPA area 
  init_vector C2obs(1,tmax)   //Catch in MPA area 
  init_vector B1true(1,tmax)  //non-MPA area 
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  init_vector B2true(1,tmax)  //MPA area 
  init_vector S1(1,tmax)  //survey catch from non-MPA 
  init_vector S2(1,tmax)  //survey catch from MPA 
  init_vector test(1,3) 
 
   //I needed a 2nd catch vector that was not from the .dat file for the program to work, 
though I don't remember why 
  vector S1obs(1,tmax)  //survey catch for non-MPA area 
  vector S2obs(1,tmax)  //survey catch for MPA area 
  vector C1(1,tmax)     
  vector C2(1,tmax) 
 
  //counters 
  int i  
  int j 
 
 LOCAL_CALCS 
  //cout << test << endl; 
  //exit(2); 
 
  for(i=1;i<=tmax;i++) 
  { 
    S1obs(i)=S1(i); 
    S2obs(i)=S2(i); 
    C1(i)=C1obs(i); 
    C2(i)=C2obs(i); 
  } 
 END_CALCS 
 
PARAMETER_SECTION 
 
  init_number log_sq(1) //survey catchability 
  init_number log_K     //carrying capacity 
  init_number log_r(1)  //growth coefficient 
  init_number log_prop_B0 //B0 as a proportion of K (one less parameter) 
  //init_number log_B0(1) //initial biomass 
  init_number log_zest(1) //estimated value of migration rate 
   
  vector B1(1,tmax)      //predicted biomass in non-MPA area 
  vector B2(1,tmax)      //Predicted biomass in MPA area 
  vector BT(1,tmax)      //Predicted biomass of 2 areas combined 
  vector S1_pred(1,tmax) //Predicted survey catch in non-MPA 
  vector S2_pred(1,tmax) //Predicted survey catch in MPA 
  vector F1(1,tmax)      //Annual fishing rate in non-MPA 
  vector F2(1,tmax)      //Annual fishing rate in MPA 
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  number sq     //survey catchability 
  number K      //carrying capacity 
  number r      //growth coefficient 
  number B0     //initial biomass 
  number Bpen   //penalty on negative biomass 
  number zest   //estimated value of migration rate 
 
  number SS     //sum of squares used in objective function 
 
  objective_function_value f 
 
 LOCAL_CALCS 
   
  //starting values are correct from the data-generating model 
  log_sq=log(0.005); 
  log_K=log(1000.); 
  log_r=log(0.2); 
  log_prop_B0=log(0.9); 
  log_zest=log(z); 
  //log_B0=log(900.); 
   
 
PROCEDURE_SECTION 
 
  //convert all parameters back from log scale 
  sq=exp(log_sq); 
  K=exp(log_K); 
  r=exp(log_r); 
  B0=exp(log_prop_B0)*K; 
  zest=exp(log_zest); 
   
 
  //cout << B0 << " " << m << endl; 
  //exit(2); 
 
  //fill in first year of biomass vector 
  B1(1)=B0*(1.-m); 
  B2(1)=B0*m; 
  BT(1)=B1(1)+B2(1); 
  Bpen=0.; 
 
  //cout << " " << B2(1) << endl; 
  //exit(2); 
 
  //fill in rest of biomass vectors 
  for(i=1;i<tmax;i++) 
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  { 
    B1(i+1)=B1(i)+(r*B1(i)*(1.-(B1(i)/(K*(1.-m)))))+(zest*m*(((1.-m)/m)*B2(i)-B1(i)))-
C1(i); 
    B2(i+1)=B2(i)+r*B2(i)*(1.-(B2(i)/(K*m)))+zest*(1.-m)*((m/(1.-m))*B1(i)-B2(i))-
C2(i);   
    BT(i+1)=B1(i+1)+B2(i+1); 
 
    //cout << "biomass vectors" << endl; 
    //exit(2); 
 
    //penalty so biomass will not go negative in the final estimation 
    if(B1(i+1)<0.) 
    { 
      Bpen+=square(B1(i+1)); 
      B1(i+1)=0.1; 
    } 
    if(B2(i+1)<0.) 
    { 
      Bpen+=square(B2(i+1)); 
      B2(i+1)=0.1; 
    } 
     
    //cout << "B penalty" << endl; 
    //exit(2); 
  } 
 
  //cout << B1 << endl; 
  //cout << B2 << endl; 
  //exit(2); 
 
  //fill in survey index values 
  S1_pred=B1*sq; 
  S2_pred=B2*sq; 
 
  //calculate exploitation rate 
  F1=elem_div(C1,B1); 
  F2=elem_div(C2,B2); 
 
  //likelihood function 
  SS=norm2(log(S1_pred)-log(S1obs))+norm2(log(S2_pred)-log(S2obs)); 
  f=double(tmax)*0.5*log(SS)+Bpen; 
   
  /* 
  cout << "B1true B1 B1diff B2true B2 B2diff" << endl; 
  for(i=1;i<=tmax;i++) 
  { 
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    cout << B1true(i) << " " << B1(i) << " " << B1(i)-B1true(i) << " " << B2true(i) << " " 
<< B2(i) << " " << B2(i)-B2true(i) << endl; 
  } 
  cout << f << " " << SS << endl; 
  exit(3); 
  */ 
 
FUNCTION write_output 
 
  //error in total biomass 
  ofstream ofs("2areaerr.txt",ios::app); 
  { 
    ofs << z << " " << m << " " << elem_div(BT-BTtrue,BTtrue) << endl; 
  } 
 
  //estimated biomass in both areas, not error 
  ofstream bio("2areabiomass.txt",ios::app); 
  { 
     bio << z << " " << m << " " << B1 << " " << B2 << endl; 
  } 
 
  //error in the estimated parameters 
  ofstream res("2arearesult.txt",ios::app); 
  { 
    res << z << " " << m << " " << (r-0.4)/0.4 << " " << (K-1000)/1000 << " " << (sq-
0.005)/0.005 << endl; 
  } 
 
REPORT_SECTION 
 
  write_output(); 
 
  /* 
  report << "B1true B1 B1diff B2true B2 B2diff" << endl; 
  for(i=1;i<=tmax;i++) 
  { 
    report << B1true(i) << " " << B1(i) << " " << B1(i)-B1true(i) << " " << B2true(i) << " 
" << B2(i) << " " << B2(i)-B2true(i) << endl; 
  } 
  */ 
 

Spatially-Aggregate Estimating Model 

//Jennifer Barkman 
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//Chapter 2 1-Area Estimation Surplus Production Model 
//Created June 30, 2010 
// Last edited August 4, 2010 
 
DATA_SECTION 
  init_int tmax               //number of years of data 
  init_number m               //proportion of area that is MPA 
  init_number z               //migration rate 
  init_vector BTtrue(1,tmax)  //Biomass in total area 
  init_vector CTobs(1,tmax)   //Catch in total area 
  init_vector ST(1,tmax)      //survey catch from total area 
  init_vector test(1,3) 
 
  vector STobs(1,tmax)  //survey catch for total area 
  vector CT(1,tmax)     //Total Catch for total area 
  int i  
  int j 
 
 LOCAL_CALCS 
  //cout << test << endl; 
  //exit(2); 
 
  for(i=1;i<=tmax;i++) 
  { 
    STobs(i)=ST(i); 
    CT(i)=CTobs(i); 
  } 
 
    //cout << CTobs << endl; 
    //cout << CT << endl; 
    //exit(2); 
 
 END_CALCS 
 
PARAMETER_SECTION 
 
  init_number log_sq(1) //survey catchability 
  init_number log_K(1)     //carrying capacity 
  init_number log_r(1)  //growth coefficient 
  //init_number log_B0(-1) //initial biomass 
  init_number log_prop_B0(1)  //B0 as a proportion of K 
   
  vector BT(1,tmax) 
  vector ST_pred(1,tmax) 
  vector FT(1,tmax) 
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  number sq     //survey catchability 
  number K      //carrying capacity 
  number r      //growth coefficient 
  number B0     //initial biomass 
  number Bpen   //penalty on negative biomass 
 
  number SS 
 
  objective_function_value f 
 
 LOCAL_CALCS 
   
  log_sq=log(0.005); 
  log_K=log(1000.); 
  log_r=log(0.2); 
  log_prop_B0=log(0.9); 
  //log_B0=log(0.9*exp(log_K)); 
   
 
PROCEDURE_SECTION 
 
  //convert all parameters back from log scale 
  sq=exp(log_sq); 
  K=exp(log_K); 
  r=exp(log_r); 
  B0=K*exp(log_prop_B0); 
 
  //cout << B0 << " " << m << endl; 
  //exit(2); 
 
  //fill in first year of biomass vector 
  BT(1)=B0; 
  Bpen=0.; 
 
  //cout << " " << BT(1) << endl; 
  //exit(2); 
 
  //fill in rest of biomass vectors 
  for(i=1;i<tmax;i++) 
  { 
    BT(i+1)=BT(i)+r*BT(i)*(1.-(BT(i)/K))-CT(i); 
 
    if(BT(i+1)<0.) 
    { 
      Bpen+=square(BT(i+1)); 
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      BT(i+1)=0.1; 
    } 
    //cout << "B penalty" << endl; 
    //exit(2); 
  } 
 
  //fill in survey index values 
  ST_pred=BT*sq; 
 
  //calculate exploitation rate 
  FT=elem_div(CT,BT); 
 
  //likelihood function 
  SS=norm2(log(ST_pred)-log(STobs)); 
  f=double(tmax)*0.5*log(SS)+Bpen; 
   
  /* 
  cout << "BTtrue BT" << endl; 
  for(i=1;i<=tmax;i++) 
  { 
    cout << BTtrue(i) << " " << BT(i) << " " << BT(i)-BTtrue(i) << endl; 
  } 
  cout << f << " " << SS << endl; 
  exit(3); 
  */ 
 
FUNCTION write_output 
 
  ofstream ofs("1areaerr.txt",ios::app); 
  { 
    ofs << z << " " << m << " " << elem_div(BT-BTtrue,BTtrue) << " " << endl; 
  } 
 
  ofstream bio("1areabiomass.txt",ios::app); 
  { 
     bio << z << " " << m << " " << " " << BT << endl; 
  } 
 
  ofstream res("1arearesult.txt",ios::app); 
  { 
    res << z << " " << m << " " << (r-0.4)/0.4 << " " << (K-1000)/1000 << " " << (sq-
0.005)/0.005 << endl; 
  } 
 
REPORT_SECTION 
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  write_output(); 
 
  /* 
  report << "B1true B1 B1diff B2true B2 B2diff" << endl; 
  for(i=1;i<=tmax;i++) 
  { 
    report << BTtrue(i) << " " << BT(i) << " " << BT(i)-BTtrue(i) << " " << endl; 
  } 
  */ 
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