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Chapter 1: Introduction

Spatial processes can have important consequences for the population dynamics
of fishes and marine invertebrates. Therefore, fisheries management shoudrconsi
space in the techniques used to understand population dynamics. For example, fleet
dynamics have caused variable exploitation rates on different parts otthe gglmon
population in British Columbia (Hilborn and Ledbetter, 1979), which violates the
common assumption in stock assessments that fishing mortality is evenbutkstr
across the entire population. Habitat selection can cause clusters of higitgridens
many species of marine fishes (Shepherd and Litvak, 2004), and understanding habitat
selection can affect habitat conservation decisions. Finally, larval dispeksniown to
play a role in the local densities of adult metapopulations, though this role is poorly
understood (James et al., 2002). Spatial dynamics often have implications foedisheri
management and require geographical resolution in data collection as vpeitiakys
explicit techniques for analysis.

Understanding spatial processes can provide important information for fisheries
ecology and management. Identifying regions of high productivity or of highsitiés
of fish can help explain observed trends in fish density. The differences in pvagucti
can be due to characteristics inherent in the region, such as better food segdéarncs
et al., 2004), or external forcing, such as currents that force planktonic larvae into one
area instead of another (Schwartz, 1964). Source-sink dynamics, where one or more
highly productive regions provide new recruits for less productive regions, have been
useful in understanding the consequences of spatial management str&eyiee( et

al., 2000; Kaplan et al., 2009). The interactions of fish populations when combined with



spatial dynamics can help describe fish communities, sometimes batter t
environmental variables (Magnan and Bertolo, 2006). ldentifying these regiorsenan t
help us identify the factors important in supporting fish communities.

Incorporating spatial complexity in fishery models can also help managkes ma
decisions about marine protected areas (MPAS) to maximize their pefigets on both
the target species and the community as a whole (Pelletier and Mahevas, 200&). Seve
authors have considered spatial processes in the placement of MPAs. To ddtesmine
spatial arrangement of MPAs that would lead to the greatest conservation andyre€ove
the population, Kaplan et al. (2009) considered the total size of MPA, the distance of
larval dispersal, depth of the protected area, and habitat suitability. dinmey that the
effectiveness of a chain of MPAs is dependent on the placement of the MPAsiamrela
to suitable habitat (Kaplan et al., 2009). Neubert (2003) investigated optimal harvestin
strategies in regions with MPAs in a more general way, viewing the onlglspati
heterogeneity of the population and habitat as that imposed by variable fesi@sg r
Neubert (2003) found that a large central MPA aids both the recovery and fishernyfyie
a population with a low growth rate that lives in a restricted habitat. Theséunvess
are examples of how an MPA or a network of MPAs could aid in improving conservation
and enhancing economic benefits for fisheries (Neubert, 2003; Kaplan et al., 2009).

Although MPAs have been increasingly used as management tools, it has been
suggested that MPAs may hinder our ability to assess populations and provitiécscie
advice for future management using current methods (Field et al., 2006). Often, the
models used to evaluate effectiveness of MPAs are often very differentiosmused

to assess fish stocks (Punt and Methot, 2004). The evaluation of the effectiveness of



established MPAs may benefit from spatially explicit stock assessawmtiques to

capture the changes in the forces acting on the population, or spatial disaggregati
caused by management. However, Punt and Methot (2004) are among the few studies
that have incorporated spatial dynamics in stock assessments and othef sypels
assessments should be explored.

The objective of my thesis was to investigate spatial dynamics of fish popslat
in Maryland’s coastal bays (Chapter 2) and evaluate effects of spatiagement (in the
form of marine protected areas (MPAS)) on accuracy of estimated popud&te and
stock assessment advice (Chapter 3). Specifically, | employed Ispatialicit
techniques to identify and assess regions that have different population dynamics.
Chapter 2, | compared trends in relative abundance from survey data acrossan® regi
in Maryland’s coastal bays, and in Chapter 3 | compared the performances diiyspatia
explicit and spatially aggregate stock assessments after an Miaplénented.

In Chapter 2, | developed standardized indices of abundances to estimate trends in
four common species in Maryland’s coastal bays and compared the trends withf those
environmental and habitat variables to attempt to identify factors important iragopul
dynamics in that region. The species | included in my analyses werei@trarthaden
(Brevoortia tyrannus), weakfish Cynoscion regalis), spot {elostomus xanthurus), and
summer flounderHaralichthys dentatus) and the environmental variables included were
submerged aquatic vegetation (SAV) coverage, nitrogen to phosphorus ratio,
temperature, salinity, dissolved oxygen concentrations, and three other factors. The
Maryland (MD) DNR survey has been conducted since 1972 and the trawl distasce, site

and times of year sampled were standardized in 1989. Data collected before 1989 have



not been used in any indices of abundance generated by MD DNR. | used a generalized
linear modeling (GLiM) approach to standardize survey data from MarylaliRitD
capture the earlier 17 years of data. Inclusion of the earlier years pfealdeble
perspective on the trends in juvenile abundance, but using raw data from the farars be
the survey was standardized would bias the indices of relative abundance derived from
the data if a GLIM was not used. In order to contrast the fish density supported by
different parts of the bays, | compared the indices of abundance in two g@aogta
distinct regions to assess whether the regions were also biologicahgtdist

In Chapter 3, | conducted a simulation study to assess the accuracy ofyspatial
explicit and spatially-aggregate surplus production models (SPMs) when an igidtésc
spatial heterogeneity of fishing mortality within a stock’s rangeimulated a fish
population and the corresponding fishery with a data generating model. In the simulation,
an MPA was implemented when the population was at a low level. The data generating
model provided indices of abundance and fishery catch data for the SPMs that were used
to assess the population. | tested four different SPMs: a spatially-expiMiinbere
migration was specified, a spatially-explicit SPM where migratvas estimated, a
spatially-aggregate SPM where indices of abundance were available frorhdoMPA
and fished region, and a spatially-aggregate SPM where indices of abundance yvere onl
available from the fished region. The biomass estimates from the SPMdermere t
compared to the true biomass from the data-generating model. | consideredoéffiee
size of the MPA, the migration rate of the stock between the MPA and fishedtheeas
variance of the indices of abundance, and absence of indices of abundance from within

the MPA on the performance of the SPMs.



CHAPTER 2

Trends in relative abundance of fishes and the eftés of changes in
habitat on fish densities in Maryland’s coastal bag during 1972-2009



Abstract

Maryland’s coastal bays provide habitat for juveniles of many commaruial
recreational species of shellfish and finfish. The Maryland CoastalBayd and Seine
Survey has been conducted by the Maryland Department of Natural Restwreeld3 2
to provide a fishery-independent index of abundance of key species. The survey has
undergone substantial spatial and methodological changes that affect tlaeyaotur
indices of abundance of several fish populations monitored by the survey. | developed
generalized linear models to standardize the indices of abundance of four cgmmonl
caught fish species (Atlantic menhad@evoortia tyrannus, weakfishCynoscion regalis,
spotLeiostomus xanthurus, and summer floundétaralichthys dentatus). Since 1972
density declined significantly for menhaden and spot, and the northern bays had
significantly higher densities than the southern bays for all species. Chamgkdive
abundance of the four species examined were not related to seagrass coverage,
temperature, salinity, nitrogen to phosphorus ratios, and other habitat variables,ebut we

likely caused by stock-wide recruitment patterns.



Introduction

Long term studies are necessary to determine changes in abundance and the
effects of changes in habitat on marine populations (Peterson et al., 2003). However,
sampling methods often change over time, complicating the interpretationtidritie in
abundance. Survey catch per unit effort (CPUE) is frequently used as an index of
abundance (Ricker, 1975; Maunder and Punt, 2004), but certain assumptions inherent in
using CPUE as an index of abundance can be violated by changes in survey
methodology. For example, changing the distribution or amount of effort over tme ca
cause misleading indices of abundance. The critical assumption that is mosirdgm
violated is that catchability, the proportion of a population caught by one unibof feff
a particular gear type, is constant over time (Arreguin-Sanchez teher?1.999;

Wilberg et al., 2010). This assumption can be violated because the effectivieness
unit of effort changes over time if the survey design changes (Ricker,.1975)

Habitat quality in coastal environments has significant effects on theyehsit
fish those environments can support (Gibson, 1994). However, identifying the key
features of habitat that relate to the ability of the habitat to support of fish popsilest
challenging and requires the analysis of multiple biological and physi@hptars
(Imhof et al., 1996; Rose, 2000). Seagrass, in particular, is thought to be an important
nursery habitat for many juvenile fishes (Orth et al., 1984; Nagelkerken et al., 2002)
Fish densities are higher in seagrass bed than over unvegetated areasi, (B100et
Jackson et al., 2001; Orth et al., 2006) because seagrass may serve as anefuge fr

predation or as a source of prey (Harris et al., 2004). Because of the purported link



between juvenile fish and seagrass, the decline in seagrasses arounddiasvoaused
concern in conservation and fisheries monitoring agencies (e.g. Wazniak, 2004).
However, in some areas, such as the Chesapeake Bay, relationships betweenfigivenil
abundance and seagrass have not been found, even on small scales within nearby
vegetated and un-vegetated aigfeck and Thoman, 1984). Abiotic factors are also
important in defining the quality of habitat. Increased nutrient inputs from agraiult
practices and urbanization can cause eutrophication, which leads to enhanced algal
blooms that can prevent light from reaching submerged vegetation and can increase the
area of hypoxic or anoxic waters when the algae decompose. In addition tojureditsy
the hydrodynamic regime (e.g. currents) also has a strong impact on hoviejfigbrare
distributed.

Maryland’s coastal bays support a broad range of both fish and invertebrates and
provide nursery habitat for many species of young-of-year fish (Boletgd., 2007).
Several of the dominant species in the bays, such as Atlantic menBadeoitia
tyrannus) and blue crabCallinectes sapidus), have been a source of conservation
concern in the Mid-Atlantic due to declining catch and observed recruitmesésta
(Lipcius and Stockhausen, 2002; ASMFC, 2010a, 2010b). The Maryland Coastal Bays
Trawl and Seine Survey (MCBTSS) has been conducted by the Maryland Department of
Natural Resources (MD DNR) since 1972 to monitor the populations of fishes and
invertebrates in the Maryland coastal bay estuaries (Figure 1). Aypartiocus of the
survey is juvenile fishes that use these areas as nursery habitats (Batlialge2007).
The MCBTSS methods and sites were standardized in 1989. Prior to 1989, the time of

year, the specific sites sampled and the duration of the trawl tows varieansiatigt



from year to year. These methodological and spatial changes duringvibg taue
series make differentiating changes in abundance from changes iy design difficult.

In this study, | estimated trends in relative abundance for four fish species
Maryland’s coastal bays, and tested for effects of habitadbranelative abundance of
four fishes in the northern and southern coastal bays of Maryland during 1972-2009. My
specific objectives were to 1) determine the trends in abundance of four figfsspec
Maryland’s coastal bays and 2) determine whether changes in abundaacelated to
changes in habitat. | used generalized linear models (GLiMs) to stardabdizdance
indices and analysis of covariance (ANCOVA) to test for temporal trendharedfécts

of habitat on relative abundance through time.

Methods

Data

Maryland’s coastal bays are located on the eastern side of the Maryl&éod pbr
the Delmarva Peninsula and are separated from the Atlantic Ocean by tepiblands
(Figure 1). The largest of the bays, Chincoteague Bay (about 3J7i&surrounded by
predominantly forest and agriculture. The smallest bay is Newport Bayt(26 kn?),
which is located north of Chincoteague Bay and is also surrounded by mostyaimide
agriculture. Sinepuxent Bay is located to the northeast of Chincoteague Bayrend is t
second largest of the coastal bays at 24.1 Kiris surrounded by mostly wetlands,
forest, and urban centers. North of Sinepuxent Bay is Isle of Wight Baydgs arfea-

21.1 knf) surrounded by forest, residential areas, and more urban centers. Assawoman



Bay (surface area - 20.9 Kis the northernmost bay and is surrounded by forest,
agriculture, and wetlands. The bays are largely well-mixed, with averagéeslin all
bays ranging on average between 27 and 31 ppt.

| divided the coastal bays into two regions using the inlet to the Atlantin@sea
a divider. The northern region included Assowoman and Isle of Wight Bays and the
southern region included Newport, Sinepuxent, and Chincoteague Bays. The northern
bays are only connected to the southern bays by the narrow inlet at the north end of
Sinepuxent Bay. The land surrounding the northern bays is more developed than the
southern region, so anthropogenic eutrophication is more prevalent in the northern region
(Murphy and Secor, 2006). The northern bays have higher abundances of common fishes
than the southern bays, possibly because the higher amounts of nutrients in the northern
systems allow higher fish productivity, and support higher densities of commonsspecie
although species richness is higher in the southern bays (Murphy and Secor, 2006).

The MCBTSS samples with a bottom trawl in 20 different sites in the fiveatoast
bays (Figure 1). The trawl survey is conducted in the middle of the coastal bays, in
waters 0.75 to 2 m deep. The survey uses a fixed-site design. Sites welecdhiisen
to represent the range of trawlable sites, but the location of some sitgedloaer time.

Since the survey was standardized in 1989, DNR has trawled at each site once a month
from April to October. The trawls are conducted with a 4.9 m (16 ft) semi-ballooh traw
with 3.18 cm (1.25 in) stretch mesh in the outer net, 2.86 cm (1.13 in) stretch mesh in the
cod end, 1.27 cm (0.5 in) stretch mesh inner liner, and a tickler chain (Bolinger, 2007).
Before standardization, the trawls varied in tow length and area covered,auopless

were taken in winter months between November and March, and the sites were not

10



sampled every month during the other times of the year. In 1989, the deployments were
standardized to a 6-min tow of the net at a speed of approximately 2.8 knots, for an area
swept of about 17,040

| examined data for four commonly caught species: Atlantic menhaden, steakfi
(Cynoscion regalis), spot {elostomus xanthurus), and summer floundePéralichthys
dentatus). The methods | used to standardize the indices required a large amount of data,
and all four of these species had enough available data. From the data avadable i
likely that of the other species caught in the survey only bay ancAoakdga mitchilli)
and blue crabQallinectes sapidus) would have fulfilled the data requirements of the
analyses, however | chose not to use these last two species in by anallyséthesé
species support important recreational or commercial fisheries and udaria
coastal bays as nursery habitat. These species were also selecteel thegatepresent a
variety of life histories, use the coastal bays at different times gkedue and inhabit
different areas of the bays.

The four species included in the analyses have distinct life histories, batlthey
use Maryland’s coastal bays during their life cycles. All four spexiesr the coastal
bays as larvae or early juveniles (Able and Fahay, 1998), although summer flcamder
also enter as adults in the summer. Summer flounder and spot are demersal species, but
spot prefer muddy bottom while flounder prefer harder sandy bottom (Froese and Luna
2010; Luna and Froese, 2010). Weakfish and menhaden, on the other hand, are pelagic.
Summer flounder and weakfish are piscivores, menhaden are planktivores, and spot are
benthivores. Using species with this range in life histories allowed me toeaghuoad

picture of the types of fish in the coastal bays.
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To develop indices of abundance | included data only from months when a
species was expected to use the coastal bay habitat. Weakfish are préseobdastal
bays from late July until November (Able and Fahay, 1998). Similarly, asdiysspot
included observations from April to November, and the summer flounder models
included March through November (Murdy et al., 1997) to reflect their seasonal
migrations. The menhaden models included the whole year because some larvae ent
the estuary in the fall and overwinter there as juveniles while the resirettierspring
and remain throughout the summer and fall (Table 2.1; Murdy et al., 1997; Able and
Fahey, 1998). Some sites and years were excluded from the analyses duege the lar
numbers of zero-catches in the dataset that caused year or siteteffent be estimable
in the standardization model (Deroba and Bence, 2009; Table 2.2).

Environmental variables potentially indicative of habitat quality werdadlta
from a monitoring program conducted during 1993-2004 by the National Parks Service.
Variables included total suspended solids, total nitrogen to phosphorus ratio, silicate
concentration, chlorophyll a adjusted for phaeophytin concentrations, and dissolved
oxygen. These variables were measured at 16 sites in the southern region pedayly
medians were available for my analyses. None of these variables wdablavar the
northern region. The area of submerged aquatic vegetation (SAV) in each region was
obtained for each year from 1993 to 2004 (unpublished data, J.J. Orth Virginia Institute
of Marine Science). Temperature and salinity were recorded with eadhdvafrom
the MCBTSS. | calculated the monthly average for surface temperaturaliaitg for

the sites in each region and then calculated a yearly average from the ragathlyes.
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Standardizing Indices of Abundance

| used generalized linear models with a negative binomial distribution and a log
link function to standardize yearly indices of abundance for each of the species
(McCullagh and Nelder, 1989; Maunder and Punt, 2004). The negative binomial
distribution allows zero catches, which was necessary for this survey bedrug two
thirds of the observations for each species are zeros. The model was
E(109(C)) = fo + Byewr + Psie + Prionin + Pregionrvear + P (EffOrt)
where E(log(C)) is the expected natural logarithm of catch for the giverespand
year, site, month, a year-by-region interaction, and effort are maatseffa region
effect was implicitly included in the model because the sites are neshaal thi
regions. The region effect was the average of the individual site effecatiwithin
each region. The year effects and year by region interactions provideskinélic
abundance for the northern and southern bays. The site effects accounted for spatial
variation across sites. The location of several sites changed over tesayisere the
location was changed were treated as separate sites. The categonitaeffect
accounted for variation in catch due to time of year, and the continuous effort effect
accounted for different lengths of trawls before the survey was standardilt éact@xs
except effort were modeled as categorical. One unit of effort was 8 5@0amea swept.

The same procedure described above was carried out for the seine portion of the
survey. The trends over time for each species were then compared between the two gear
types. The results from the seine survey analyses and the gear compagisazebed

in Appendix I.
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Characterizing Trends over Time and Effects of Habitat

| fitted ANCOVASs using proc glm in SAS 9.2 to estimate trends over time among
species and differences in density between the northern and southern regions. The
ANCOVAs were species-specific and included region as a categaaicable and year
as a continuous covariate,

| = By + Pregon + Br(YeQr) wherel was the species-specific index was the same as that

calculated by the GLiMBo was the intercepfregionWas the categorical region effect,
andp; was the continuous year effect.

Region-specific regressions with year were conducted to estiraatks tin
abundance in each region over time. | used a Bonferroni correction for multiple
comparisons to determine the p-value associated wiihearel of 0.05: 0.0125 for
comparing differences between regions and 0.0063 for comparing the slopesmof regi
specific trends over time. Univariate regressions of indices of abundgaiostaeach of
the habitat variables were also conducted for each species, which weresgaggdit for
the temperature and salinity data, but only data from the southern region wiklavai
for the other habitat variables. A Bonferroni correction was also used for thieliradi
region regressions to determine the critical p-value of 0.0013 to correspond to an overall

o level of 0.05.

Results

The four species analyzed showed different trends within each region over time

(Figures 2.5). The variability of the indices was also different, withnfidanenhaden
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indices varying by 5 orders of magnitude (10,000 fold difference) over the timg serie
and summer flounder varying by only two orders of magnitude (100 fold differenoe) f
the smallest estimate to the largest. All four of the species wkeg latiwever, in that
they showed significantly higher densities in the northern bays than the soutrsern bay
(p<0.0001 for menhaden, flounder, and weakfish; p=0.0105 for spot; Figures 2.2-2.5).

Both spot and menhaden showed overall declines from the early 1970s in the
northern region, and only menhaden showed a significant decline in the southern region
(Figures 2.2 and 2.3; Table 2.3). Spot declined in both regions, but the decline was only
significant in the northern region. The rate of decline in the northern region was 30%
greater than the southern region (northern bays=-0.103,ysmrthern bays=-0.079
year'). Similarly, while the decline in menhaden was significant in both regions, the
northern region showed a greater rate of decline than the southern region (northern
bays=-0.154 yedr southern bays=-0.134 y&ar The decline in menhaden was largely
driven by extremely high indices of abundance in the 1970s and early 1980s that were
absent in the 1990s and 2000s (Figure 2.2). The decline in spot, on the other hand, was
steady with periodic spikes in density that also declined over time (Figure 2.3)

Summer flounder and weakfish did not trend significantly in either region. Both
species even had periods of increasing abundances in the 1990s and early 2000s.
Summer flounder had spikes in density in 1984 and 1986 in the northern region, but 1972
and 1973 had the highest densities in the southern region (Figure 2.4). Weakfish had
highly variable indices of abundance, especially in the northern region. The highest
densities occurred in 1995 and 1978 in the northern region and 2005 and 2003 in the

southern region (Figure 2.5).
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All of the habitat variables showed interannual variation, but the majority of the
habitat variables did not exhibit significant trends over time (Figure 2.6). S@alyrass
cover increased significantly from 1993 through 2004 (p<0.001; Figure 2.6). There were
high correlations between the northern and southern regions for salinity (r=0.802) and
temperature (r=0.837) over time. Only two habitat variables were highlyatedetith
one another; the nitrogen to phosphorus ratio was highly correlated with silica
concentration (r=0.632), and dissolved oxygen was highly negatively correlated wit
salinity in the northern region (r=-0.716). Relative abundance was not sigmyficant

related to any of the habitat variables for any of the species (Table 2.4).

Discussion

Long-term surveys that span several generations of fish are necessqpjore
trends in abundance over time. | developed statistically standardized indices of
abundance for four fish species in Maryland's coastal bays that expiiclyporated
changes in location of survey sites, times of year sampled, and amount of effat use
each site. These standardized indices indicated significant decreasesamdspot
menhaden abundance during 1972-2008, but no significant trends in abundance for
weakfish or summer flounder. The declines in abundance of spot and menhaden would
not have been detected if | only used data since 1989, the year methods for thE$/1CBT
were standardized.

It is important to consider all of the available data to reach the best conclusions
about fishery resources (Myers and Worm, 2003), because the years includedto detec

changes in population size frame our understanding of the magnitude of change. This has
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been called the problem of "shifting baselines” (Pauly, 1995). However, ibis als
important to recognize potential shortcomings in using older data. There have bee
guestions within Maryland DNR about the reliability of the data collected rit®89.

The data have been checked against original field datasheets, examinedd®ieartr
were guestionable, and corrected to the extent possible. Because the datdidates,

| was confident in using all 38 years of the survey for my analyses. Howlesenost
reliable data are from 1989 onward, and these are the data that have been used to inf
stock assessments (e.g., ASMFC, 2010b).

Two of the species examined declined significantly in at least part of éiséato
bays of Maryland. The decline in Atlantic menhaden likely reflects a dexdioss the
east coast that has caused concern for managers in the last couple e (&S8AMFC,
2010a). Regional recruitment indices for Atlantic menhaden have been relaiwely |
during the last twenty years (ASMFC, 2010a); the coastal bays indices | delvelope
showed the same pattern. The trend in spot abundance has been punctuated periodically
by large recruitment events, though the magnitude of the recruitment eventslhmeside
over time, so that high recruitment events in recent years are not as largadyg i
years. These spikes and the overall trend are also reflected in stock astseksme
juveniles across the East Coast of the U.S. (ASMFC, 2010b; Rickabaugh, 2010),
suggesting that the trends in abundance seen in the coastal bays are consistent with t
trends seen on a broader scale for spot and menhaden.

The northern coastal bays had higher densities of all four of the species in my
study than the southern region, which corresponds to previous results from Murphy and

Secor (2006). The cause of higher density in the northern bays than the southern bays
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could include higher primary production in the northern bays as a result of the extended
retention time of water in the creeks flowing into the bays (Murphy and Secor, 2006) and
may indicate a bottom-up effect of production on fish density. Schwartz (1964) also
suggested that species composition may differ between the northern andnsbatiseas
a result of stronger currents forcing more water, and potentially larvge\endle fish,
into the northern bays. The differences in density between the two regions waseopposit
of what is expected based on water quality, however. Two of the southern bays,
Chincoteague and Sinepuxent, consistently score better in almost evecyofiedry
health than the two northern bays (Franks, 2004; IAN et al., 2010). Indeed, Franks
(2004) emphasizes the large amounts of commercial and residential developmerst that ha
occurred along the edges of the northern bays compared to the relativahe pristi
environment of the southern bays has contributed increased eutrophication in the northern
bays and is detrimental to their health. However, in spite of the perceived lowsr qua
of habitat in Assawoman and Isle of Wight Bays (northern region), they supported
significantly higher densities of fish, at least for the species carsidere.

Changes in abundance of the four species investigated were not significantly
related to any of the habitat variables examined. The habitat variablesccaweide
range of possible factors, from nitrogen and phosphorus ratios to the abundance of
seagrass. In particular, seagrass is often considered “essentiabftalt’ iar coastal
species because it is thought to provide refuge and nursery habitat for the fxyeag-o
fish that are so prevalent in those regions, though it has been noted that there is some
ambiguity in the documentation of the nursery role of seagrass (Beck et al., 2001).

Seagrass may not be as important as overall habitat structure or refugedpbgvadieer
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sources such as oyster beds or coral reefs (Heck et al., 2003). In Marylantikbznass

| did not detect a significant effect of seagrass coverage on the fourgortesadcies in
spite of the steady increase of seagrass throughout the 1990s and early 2000s. While
none of the other habitat variables significantly affected density, the effeeagrass

was often the least significant habitat variable with the smallest STajpée(2.4).

The habitat variables tested in this study likely have a localized effect on
population dynamics of fishes, but the spatial or temporal scales of datdi@oltec
analysis may not match the effects of habitat forcing on the populations. The trends in
fish abundance in Maryland’s coastal bays are most likely driven by forces echa m
broader scale than trends in local habitat. Linking habitat variables witlstie
juvenile abundance can be problematic because the juvenile populations as a whole may
be more closely linked to stock size than local habitat. The similarity in tbetaeen
the juvenile indices on the coastal bay level and the Mid-Atlantic level for both
menhaden and spot provide evidence that juvenile and adult populations are connected in
both estuaries and the coast (Whitfield, 1989). Summer flounder also show the same
overall trends in the last two decades in both coastal bays indices and in the stock
assessments conducted for the Mid-Atlantic region (SAW, 2006). The populations that
inhabit the coastal bays are mostly composed of single yearclasseg tieqiaced
annually. The similarities of dynamics in the coastal bays combined witvénall
deficiency of explanatory power that local habitat variables have in exgahanges in
relative abundance point to the influence of large-scale, stock-wide tordbe

densities of fish in Maryland’s coastal bays.
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In conclusion, the standardization of the survey data allowed me to evaluate long-
term trends in relative abundance. Menhaden declined in density during 1972-2009 in
both regions, and spot declined in the northern region. Summer flounder and weakfish
showed no significant change through time. The observed declining trend in Atlantic
menhaden and spot as well as the lack of overall trend in summer flounder matched
trends in regional assessments conducted on these species. This is likely due to the
coupling of coastal bay fish populations with the broader Mid-Atlantic stocks through
recruitment. The northern region of Maryland’s coastal bays, which is more eutrophic
and has longer water retention time, supported higher densities of fish than the more
pristine southern bays. However, the effects of habitat degradation mayleet éwvithe
steeper decline of Atlantic menhaden and spot in the northern region than in the southern
region. Finally, because localized habitat variables were not relatedtieeralaundance
of any of the species, a coast-wide stock-recruitment relationship mpyrebong-term

abundance trends better than local habitat variables.
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Table 2.1. The months of the year included in the models for each species according to

their expected inhabitation of the estuaries and the literature used tcaatheencluded

periods.

Species Months in model References
Atlantic Menhaden Jan-Dec Murdy et al., 1997; Able and

Fahay, 1998;
Weakfish July-Nov Able and Fahay, 1998; Nemerson
and Able, 2004
Summer Flounder Mar-Nov Murdy et al., 1997
Spot Apr-Dec Murdy et al., 1997
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Table 2.2. Additional months, years, and sites removed from analyses and the reasons for

removal.
Species Region Variable Level Reason
Removed
All All 1983 1 sample
Atlantic Menhaden All February None Caught
Atlantic Menhaden All December None Caught
Atlantic Menhaden  South 1986 None Caught
Summer Flounder North 1972 None Caught
Summer Flounder North 1974-1980 None Caught
Summer Flounder South 1974 None Caught
Summer Flounder South 1981 None Caught
Weakfish All Site 9(3rd loc.) 2 samples
Weakfish All 1974 None Caught
Weakfish All 1988 None Caught
Weakfish North 1972 None Caught
Weakfish North 1980 None Caught
Weakfish South 1973 None Caught
Weakfish South 1987 None Caught
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Table 2.3. Results of ANCOVAs for trends by species and region over 1972-2009. Bold

rows indicate statistically significant trendsua0.0063, the level that corresponds to

a=0.05 when corrected for multiple comparisons.

Species Region Slope p-value
Atlantic Menhaden  North  -0.1537  <.0001
Atlantic Menhaden  South  -0.1335 <.0001

Summer Flounder North  -0.0009  0.9349
Summer Flounder South  0.0040  0.7568
Spot North  -0.1030 0.0010
Spot South  -0.0793  0.0086
Weakfish North  0.0465  0.0698
Weakfish South  0.0137  0.4979
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Table 2.4. Results of habitat regressions. Variable designations are as: fDi@ws
Dissolved Oxygen, N:P Ratio—Nitrogen to Phosphorus Ratio, Silica—Silica
concentration, Temp—Temperature (°C), Salinity—parts per thousand, SS—
concentration of suspended solids, Chl a—Chlorophyll a concentrations. Temperature
and salinity are evaluated for both regions; all other habitat variableslgrevaluated

for the southern region. Bold rows indicate statistical significanee(0013, the level

that corresponds @=0.05 when corrected for multiple comparisons.

Species Region  Variable Slope p-value
Summer Flounder  South DO 0.0073 0.1617
Summer Flounder  South Silica -0.0181 0.1791
Summer Flounder  South  N:P Ratio -0.1045 0.3105
Summer Flounder  North Temp -0.1656 0.3218
Summer Flounder  South Temp 0.0653 0.6866
Summer Flounder  North Salinity 0.0318 0.7053
Summer Flounder  South SS 0.0116 0.7356
Summer Flounder  South Salinity 0.0146 0.856
Summer Flounder  South Chla 0.0077 0.9179
Summer Flounder  South SAV -3.41E-07 0.9978
Atlantic Menhaden  South  N:P Ratio 0.5509 0.0551
Atlantic Menhaden  North Temp -0.9417 0.1503
Atlantic Menhaden  South DO -0.0181 0.2541
Atlantic Menhaden  South Temp -0.4582 0.3326
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Atlantic Menhaden
Atlantic Menhaden
Atlantic Menhaden
Atlantic Menhaden
Atlantic Menhaden
Atlantic Menhaden
Spot
Spot
Spot
Spot
Spot
Spot
Spot
Spot
Spot
Spot
Weakfish
Weakfish
Weakfish
Weakfish
Weakfish
Weakfish

Weakfish

South

South

South

South

North

South

South

South

South

South

South

North

South

South

South

North

South

South

South

North

South

North

South

Chl a
SAV
SS
Salinity
Salinity
Silica
Silica
Chl a
Temp
Salinity
DO
Salinity
SS
SAV
N:P Ratio
Temp
DO
Chl a
Salinity
Temp
Silica
Salinity

N:P Ratio
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0.2089

0.0003

0.0753

0.1313

0.1507

-0.0032

-0.1082

-0.4084

-0.8003

0.3587

-0.0193

0.3158

0.0632

0.0002

-0.0910

-0.0485

0.0214

0.2309

-0.2276

-0.3835

0.0189

-0.0821

-0.0873

0.3363

0.4267

0.4572

0.5821

0.6553

0.9398

0.0149

0.1096

0.1556

0.2043

0.323

0.3511

0.6138

0.7095

0.8136

0.9452

0.0071

0.0481

0.077

0.1233

0.4303

0.523

0.6314



Weakfish South SS -0.0281 0.6361
Weakfish South Temp -0.0328 0.9071

Weakfish South SAV 6.59E-06 0.9749
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Figure 2.6. Trends of habitat variables from 1993-2004. N:P Ratio is the ratio of total

Nitrogen to total Phosphorus. Submerged aquatic vegetation (SAV) Area is the

Total Suspended

N:P Ratio

Silica

Oxygen

1994

1996

1998

2000

2002

2004

1992

40 4
30 4
20 4
10 A

1994

1996

1998

2000

2002

2004

1992
75
7.0
6.5
6.0

1994

1996

1998

2000

2002

2004

5.5 +
1992

1994

1996

1998

2000

2002

2004

SAV Area (%) Salinity Temperature (T)

o N A~ O ©

Chlorophyll a

N
w
I

N
N
I

21 ~

20 ~

\J\/\/ 4v’

—— Northern Region

19
19

32 4
30 -
28 A
26 -
24 A
22

Southern Region

92 1994 1996 1998 2000 2002 2004

\/\/7

19

92 1994 1996 1998 2000 2002 2004

1992

3+ T T T

1994 1996 1998 2000 2002 2004

1992

1994 1996 1998 2000 2002 2004

percentage of bottom area in the southern region that has seagrass.

32



CHAPTER 3

Surplus Production Model Accuracy in Populations Afected by a No-

Take Marine Protected Area
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Abstract

Marine protected areas (MPAS) are an increasingly common tool usesheyds
managers to protect marine organisms from exploitation. However, impleroprabtin
MPA violates commonly used assumptions for fishery stock assessments thatlae us
provide estimates of abundance and fishing mortality for management. Thbus, it i
important to understand the ability of assessments to incorporate the populatioicdynam
and ecological impacts of MPAs on managed fish species. Age-structsesgrasnts
have been studied for their accuracy when a stock has an MPA in its range but less
complex assessment techniques that could be more widely applied have not been
evaluated. | conducted a simulation study to determine the effects of MPAsunacyc
of surplus production model (SPM) stock assessments. | simulated the dynamics of a
population, which had part of its range in an MPA, and assessed that population with
several surplus production models (SPMs). | tested the performance ofgpatiall
aggregated and spatially-explicit SPMs under a range of conditions includirrgrmtiffe
sizes of MPAs, different migration rates between MPA and non-MPA regions, and
scenarios with high and low observation error in the indices of abundance. 1 also
considered a scenario in which no index of abundance was available within the MPA. |
used the median of the absolute value of the relative error (MARE) and medime rela
error (MRE) from 200 replicates of each scenario to test the accuracySP e
SPMs showed a consistent pattern in accuracy and bias over time with imgreasi
accuracy followed by decreasing accuracy in early years, siogeaccuracy before the
MPA was established, decreased accuracy with large positive bias Bffer M

implementation, and gradually increasing accuracy to the end of the simulaien. T
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accuracy of the assessments also increased as the MPA size therezsg# in the
scenario with no index of abundance within the MPA, which increased in accuracy as the
MPA size decreased. Monitoring the stock within the MPA is essential for corgluctin

accurate stock assessments in areas with MPAs.
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Introduction

Marine Protected Areas (MPASs) have been increasingly used and suggested as a
fisheries management tool, often instead of or in addition to traditional management
measures such as regulating the amount of harvest or fishing effort. Wielatbe
several types of MPAs, the most conservative is a no-take MPA where no harvest i
allowed. One of the benefits of using MPAs in fisheries management is that the
underlying theory is intuitive; when an area within a population’s range iscprdtiFom
fishing, it should develop a greater biomass of fish than fished areas. Incressadsbi
within the MPA should result in a "spillover effect” in fished areas where si®stafts
from the MPA to the fished area (Crowder et al., 2000; Halpern and Warner, 2002)
thereby sustaining a fishery while conserving a large proportion of adult $sorthe
spillover effect has been largely thought of as a larval subsidy to fished régionthe
MPA (e.g., Punt and Methot, 2004). However, adult movement would create the same
source-sink dynamics between the MPA and fished areas, but many specigedigna
MPAs have low movement rates as adults (e.g. Kaplan et al, 2009; for reasoning see
Hilborn et al., 2004). Other benefits of MPAs include protection of habitat, refuge for
populations that are at very low abundance, and protection for species not targeted by
surrounding fisheries (Kelleher, 1999).

MPAs can have a substantial effect on the accuracy of stock assessment models
that are used to provide estimates of abundance and fishing mortality for fishery
management (Punt and Methot, 2004; Field et al. 2006). Stock assessments typically
assume that each individual within a size or age class in a population is equally

vulnerable, on average, to the fishery. Often the purpose of an MPA is to change the
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vulnerability of a portion of the population to fishing by protecting it from fishing
pressure. Thus, commonly used stock assessment techniques may not accutragly por
a population that has an MPA within its range, which may result in biased estiofiat
fishing mortality rates and available biomass (Field et al., 2006).

Punt and Methot (2004) investigated the ability of spatially-explicit and #patia
aggregated statistical-catch-at-age (SCAA) stock assessm@stamate biomass and
fishing mortality rates of stocks whose spatial dynamics included an MRAy found
that spatially-explicit SCAAs are more accurate than spatigllyegated SCAAs in
predicting total biomass. In particular, spatially-aggregated SGés/ery poor
estimation performance, and spatially-explicit models were nagdassarovide accurate
estimates of fishing mortality and biomass. The characteristics of tAeavid®
population also affected assessment model performance. Larger MPAsignagtion
rates, and surveys with low observation error led to more accurate estimat@sasgdi
from the stock assessment (Punt and Methot, 2004).

SCAAs are often impractical or impossible for stocks with incomplete or
unavailable age data, but the performance of non-age-structured assessmentsdeas not
tested in scenarios that include use of MPAs in management. Surplus production models
(SPMs) are a common method of assessing stocks where age-structaae e@gher
incomplete or impractical to obtain (Prager, 1994). SPMs require less data than age
structured models and have fewer estimated parameters (Lalog&, 1995)ncbey i
many aspects of population dynamics in a simple model, and they produce predictions
that are easily translated into common reference points used to inform manag@chent

as maximum sustainable yield (MSY) or the equilibrium biomass that would produce
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MSY (Bwmsy; Jacobson et al., 2002). Although age-structured methods are often
preferred, SPMs are still commonly used in assessing fish stocks in trogioakre
where age-structured methods are impractical due to difficulties eathrately aging
fish (Pauly, 1987).

The objective of my study was to examine the accuracy of SPMs for assessing
stocks managed with MPAs. Specifically, the goal of this paper is to examine the
accuracy of SPM estimates when part of the stock's range includes anndfea
spatial resolution of the available data is confined to one region inside the MPA and one
region outside the MPA. | also examined effects of size of MPA, migradtenlevel of
observation error in the index of abundance, and spatial aggregation of the data on

estimates from spatially-explicit and spatially aggregated SPMg ssnulations.

Methods

| conducted numerical experiments in which | simulated the dynamics of
populations using a data-generating model (Figure 3.1). These populations were base
on a stylized fish stock and followed a deterministic logistic growth patternn | the
produced time series of indices abundance such as might be available from fishery-
independent surveys. Finally, | used several SPMs to estimate population biomass and
other parameters of interest and compared the resulting estimates to traduesdrom
the data-generating model to determine the performance (accuracyopracdibias) of
the assessment model estimates.

The data-generating model described the population dynamics for a range of

MPA sizes and migration rates and produced data sets of catch and indices afiedunda
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The assessment models were spatially-explicit or spatially-gaftge: versions of SPMs

and were fitted to the indices of abundance using a maximum likelihood approach. The
SPMs were challenged with scenarios of different MPA sizes, migraties) end data
availability and quality. Each SPM was fitted to 200 replicate data sesadbrscenario

that differed in their random observation errors. All of the models wereewint AD

Model Builder (ADMB Project, 2010). The full model code is provided in Appendix II.

Data-Generating Model

The data-generating model was spatially explicit and tracked the population in
two regions: one that became an MPA and one that remained open to fishing throughout
the simulation. The type of MPA that is described here and assumed by theisimsilat
a “no take” or “no access” MPA, where no fishing is allowed (U.S. Dept. of
Commerce/NOAA, 2010). Because the model required an informative patternimd fis
mortality over time, | created a scenario with a large amount of contristing
mortality and biomass of the population over time. The simulation continued for 50
years, with the first year of the simulation also being the first yetdwedishery. Fishing
effort rapidly increased until the population was largely depleted and an MPA wa
established, at which point fishing effort gradually decreased in the fisgexuh to the
fishing mortality rate that would achieve MSY\{dy) due to concurrent regulations on
the fishery in addition to the MPA (Figure 3.2). This pattern of fishing moriafty
used to provide the models an informative data set, and to avoid the well known problem

of uninformative "one way trip" data sets (Hilborn and Walters 1992). Spawning,
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mortality, fishing, and the fishery-independent survey occurred sequeatiétlg end of
each year.
The data generating model calculated the true total biomass at the eold of ea
year, the observed index of abundance (observation error included), and the fishery catch
in each region. The data generating model followed a discrete-time Sqi&&i4)
production model with logistic growth, migration between two regions, and fishing

(Hanneson, 1998; see Table 3.1 for definitions of variables):

B, (t-+1) = B, (t)+ rB, (t)(l— B () j+ zrr{[l‘—mj Byyon (1) — B (t)}— F. (OB, (1
K@-m) m

Buypa (t+1) = Bypa (1) + Byes (t)(l_ B'\/Il(P—':T?)j +
2(1- m){(ﬂj B (1)~ Bues (t)} ~FueaOBura (0
1-m

Population parameters, r, K, z, and m, were constansgsimulations within a
scenario. Initial biomasses in each region were €%tof carrying capacity to
represent a population that was only lightly exgldiprior to the advent of a targeted
fishery. The value for K was a generic maximum totaiiass (Table 3.1) and r was
similar to estimates of the maximum growth rates for thedwar skateipturus laevis;
Gedamke et al., 2009) and South Atlantic albactnar(hus alalunga; Polacheck et al.,
1993), but this level may be considered relativelnt{ghepherd and Litvak, 2004). The
migration rate (z) was defined as the probability #raindividual will move from one
region to the other within a year (Hannesson, 1998 migration rate parameter
represents a combination of a fish’s propensity for mowiged the size or arrangement
of an MPA or complex of MPAs. For example, low z magresent a stock with a

moderate movement with a single large MPA within itgearwhile a high z may
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represent a stock with a low migration rate and eowt of small MPAs within its
range.

The index of biomass produced within the data gemgyatiodel was the product
of biomass, survey catchability, and a random lognoripséiwvation error with a mean

of zero and a standard deviation determined by theasice

Sprea(t) = Buea (1) -0 -€77.

The random observation error was the only variabledhanged in each replication of
each scenario. Fishery catch in each region waslatdduas the product of biomass and
fishing mortality,

Caea(t) = Buea (1) * Faea(t) -

Scenarios differed in the size of MPAS, migrationgdtetween the MPA and
non-MPA regions, and the level of observation emahe indices of biomass. Sizes of
MPAs considered were 5, 10, 20, and 40% of the sioek. The two largest MPA sizes
were based on the methods in Punt and Methot (2004¢laas MPA sizes
recommended or evaluated by several authors (BoersnRRaansh, 1999; Crowder et
al., 2000; Jones, 2002). The two smallest MPA sizes wel@ded to better represent
actual MPA sizes implemented in current fisheries (UrBdes Dept. of
Commerce/NOAA, 2010). In order to simulate differgmiets of populations and
surveys | considered four levels of migration rate, 0.2, 0.4, and 0.5 per year, and two
levels of observation error, low (0.2 log-scale statidviation (SD)) and high (1.0 log-
scale SD). Figure 3.3 shows the true biomass of the sedyp@pulation over time for

each combination of MPA size and migration rate.sd @imulated one scenario in
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which no index of biomass was available from withinMf@A to model a situation

where only fishery dependent data were available.

Estimation models

Data sets were fitted with spatially-explicit and sgbtaggregated SPMs.
Spatially-explicit SPMs had the same form as the datargéing model, except that
catch was subtracted each year. The migration rasengders were assumed to be
known at their true values in one version of the sfigtexplicit SPM and were
estimated in another. The dynamics of the spatiallyegded model followed a simple

Schaefer SPM (Hilborn and Walters, 1992),

B(t+1) = B(t) + rB(t)(l—%j _c().

The estimated parameters of the model were carryingitgpide intrinsic rate
of increase, the initial biomass as a proportion ofygagrcapacity, and survey
catchability. Estimation models were provided theexrparameter values as starting
values for the estimation to avoid potential problemsed by poor starting values.
While analysts in the field would not have the carkedues, the models were relatively
insensitive to starting values. The parameters were éstirbgt minimizing the
concentrated negative log likelihood functions. r fhe spatially-explicit scenarios the
concentrated negative log likelihood function irt#d components for the indices of

biomass within and outside the MPA,

—-LL= tmax* 0.5* Iog(Z(Iog(fF ) - |Og(l F ))2 + Z(lOQ(IAMPA) - Iog(l MPA))Z)-
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For the spatially-aggregated SPMs, the concentraggdtive log likelihood function

included a spatially aggregated index of biomass,

—LL =t,,* 05* log(=(log(1) — log(1))?).

Assessment Evaluation

| evaluated the accuracy of SPMs by calculating¢heive error of estimated

biomass from the 200 simulated data sets for each estinmatidel,

B, = [Mj %100,

true
| summarized bias and accuracy of the models usingéugan of the relative error
(MRE) or the median of the absolute value of the relatika ¢MARE) for each model
under each MPA size, migration rate, and observation scagrario. | used the median
instead of the mean because medians are not as susdeptit@enfluence of large
outliers, which were present in the results. | used accufaestimated biomass in the
last year of the simulation, or 30 years after the establishohéime MPA, to indicate
overall accuracy of the model for most of the evaluatidradso estimated the relative
error for the year the MPA was established, as well astbwe fifteen, twenty, and
twenty-five years after establishment of the MPA.

| used analysis of variance (ANOVA) with absolute relagwer (ARE) in the
last year of the simulation as the dependent variable, andlnMiéA size, migration
rate, and observation error scenario as independenblegriam compare the performance
of the estimation models. Paired t-tests were also perfairggtermine the point at
which the average error in estimated biomass was statissaaiiar to the last year of

the simulation in each model and scenatrio.
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Results

The populations in all of the scenarios began at 90%rpofing capacity and then
declined rapidly for 20 years until they reached slightlg tean 10% of carrying
capacity (Figure 3.3). After the MPA was establishegkat 20, the populations slowly
increased for 25-27 years until reaching equilibrium. Thisldrium varied with
different MPA sizes. When only 5% of the total area wakided in the MPA the
populations recovered to about 51.7% of carrying capavditigen the MPA included
40% of the total area the populations recovered to arouB&o/df carrying capacity.
Differences in migration rate affected the final equilibriunmiss by ~0.5%.

The general pattern of MARE in the assessment models ethavgr time
(Figure 3.4). In the spatially-explicit model with low obssion error and the scenario
with 10% MPA and a migration rate of 0.3, after an initial slagcline MARE
increased steadily before the establishment of the MPA uatilfifeeen of the
simulation. The MARE then declined until three years afteMRA was established, at
which point it sharply increased more than four-fold umven years after the MPA was
established. The error then slowly decreased until igehlow equilibrium at about 20
years after the establishment of the MPA. The MRE aldal@dear change from
negative bias before the MPA was established to positive figas/ards (Figures 3.4 and
3.5). The spatially-explicit and spatially-aggregated estimatiodels generally showed
this same pattern of error, but the magnitude of the emerdi¥ferent among model and
scenario combinations. The MARE of biomass in the lastwaartwo to seven times

less than the MARE five to ten years after the MPA was kestell on average. The
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highest median errors were above 30% in the low-observationscenarios (Table 3.3,
Figure 3.5). Most of the highest errors were in the finekten years after the
establishment of the MPA, and the errors declined gradsaltiiat the assessment at
thirty years after the establishment of the MPA usuallythadowest errors, even
compared to before the MPA was established. The t-testgeshthat on average the
MARE of the last year of the simulation was significantly logper0.05) than the 23 to
28 years after the MPA was established.

The spatially-explicit SPMs produced more accurate estimai@sroass in the
last year than spatially-aggregated SPMs (p<0.0001)thE@cenarios with low
observation error, the range of MARES for spatially-exp8tVis was 0.7 - 4.2%
(Figure 3.6a and 3.6b; Table 3.4). In contrast, theadlyaaggregated SPMs had
MAREs of biomass in the last year 2-4 times larger (rarfge 8 8%) than the spatially-
explicit SPMs in the low observation error scenario (Figuéel). MAREs were higher
in the scenarios with high observation error, as expeotedhe relative difference
between spatially-explicit and spatially-aggregated modelsulastantially smaller.
The spatially explicit SPMs still performed significantly better ttrenspatially-
aggregated versions (p<0.0001), with an MARE range®f 17.1% (Figure 3.6c¢)
compared to 5.7% - 19.4% in the spatially-aggregated SPiggre 3.6f).

The spatially-explicit SPMs with migration rate as an estimatethpeter had
approximately the same MARESs as the SPMs where migratisrassumed known at
the correct value for the three lowest migration rateteréstingly, in the highest
migration rate scenario, the SPM that estimated migration rdta gnificantly lower

MARE of biomass in the last year than the scenario thatfigazemigration rate
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(p<0.0001). However, as this difference was only abdifb, the two were about equal
in their accuracy.

Most of the scenarios showed significant trends of deicigasror as MPA size
increased (p<0.0001). However, when no indices of@ddce were available within the
MPA error increased with increasing MPA size regardlessigfation rate (Figure 3.6e).
Only the spatially-aggregated model under the low observatior scenarios showed
diverging trends in MARES across levels of MPA sizesraigtation rates (Figure 3.6d).
In these scenarios estimated biomass had higher MARES loma migration rates and
the MARESs generally increased with increasing MPA sizéhdrspatially-explicit SPMs
with low observation error the highest migration rate had sogmifly higher MARES
than the lower migration rates (p<0.0001) when MPA size1@a 20, or 40%. Finally,
MAREs of estimated biomass increased with increasing MPAasidelecreased with
increasing migration rates in spatially-aggregated SPMs withdex of abundance in
the MPA. The accuracy of the other models and scenagos not affected by migration

rate (p>0.05).

Discussion

MPAs have a negative effect on the accuracy of spatigliyegated SPM stock
assessments. Modifications must be made to the traditionbd stogk model to account
for differences in population dynamics between MPA andM®A areas. The
spatially-explicit SPM was still relatively simple compared withtigfig explicit age-

structured approaches, and the parameters were estignabienformative data. The
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complexity of the model was not greatly increased fromadittonal spatially aggregated
SPM, but the accuracy of estimated biomass was markephpwed.

Despite improvements in accuracy with spatially-explicit SRNEre were
unexpected patterns in both the MAREs and MREs evernthéthorrectly specified
model. Spatially-explicit and spatially-aggregated SPMs hge laositive bias in
estimated biomass soon after the establishment of the MR& pattern of error caused
by MPA implementation persisted for about twenty years, edem data were available
from within the MPA (Figure 3.4). However, accuracyidg the later years of the
assessment depended on a relatively accurate indexrafaimne before and after the
establishment of the MPA.

Some authors have suggested that MPAs must occupy a208astnd up to 40%
of a population’s habitat in order to be effective consermatieasures (Jones, 2002;
Boersma and Parrish, 1999). However, most actual Me&spy a much lower
percentage of the total habitat, and less than 1% of masoences are considered to be
fully protected from fishing (Boersma and Parrish, 199@any of the modeling studies
in the past have recommended and focused on large gApying between 20% and
70% of the population’s range (e.g., Sumaila, 2002; PuhMaethot, 2004; ), though
some have explored the effects of smaller reserve$§%eof the range) (e.g., Watson et
al., 2000). Specifically, these studies have focuseéti@nrecommendations that
emphasize large, “no-take” reserves (e.g., Pauly,et37), which are different from
other forms of MPAs that vary widely in the level of protectasforded to them. The

results from this study suggest that large MPAs that are medit@n provide better
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information about a population and improve the accuracpaliyaes of stocks in the
MPA by managers.

In my study, larger MPAs usually produced a more atewstock assessment.
Punt and Methot (2004) report similar results for SCAAse dhly assessment model in
my study that had increasing errors with increasing MPA siaasthe spatially
aggregate model with no indices of abundance from withiivifea. The trend in
performance of models without information from within the MRAs expected because
the assumptions of the assessment are violated to a legese daéth a small MPA than a
larger MPA. Thus, with large MPAs, indices of abundanoe within the MPA are
extremely important for accurate assessments.

Migration rates can also affect accuracy of stock assessmwaen an MPA is
part of the management for a fishery. Punt and Meth@4({2@und a decrease in
accuracy of stock assessments with increasing migration fatesy study migration did
not have as much of an effect on accuracy as MPA sV¥ben there was an effect of
migration rate, increased migration rates increased the agafrthe assessment, which
was the opposite pattern from that in age-structured metRods$ &nd Methot 2004).

My results, and the results from Punt and Methot (2G@4)ed a single large
MPA, but they may be able to be extrapolated to a netwasknafler MPAs (Field et al.,
2006). This is important because of the SLOSS (Singleel@rgSeveral Small) debate
among ecologists (McNeill and Fairweather, 1993; Robert$Hamckins, 1997; Walters,
2000). Because MPA size in the data-generating and estimmatidels in my study was
in terms of proportion of carrying capacity biomass ptettby the MPA, the results

may be interpreted as the effects of several differenslofdlPAs on the accuracy of a

48



SPM. For example, a scenario that involves a large MRWd d@ve the same proportion
of carrying capacity protected as a series of smaller $Bat the migration rate would
be higher for a network of smaller MPAs. However, tuglg assumes a closed
population, so the results are not applicable to a subpopugtioextensive migration
from outside the modeled area.

Information on trends in abundance within the MPA substayiralbroved total
biomass estimates. The lack of information from within the Mdtées any assessment
to be spatially aggregate and assume that dynamics withiiRAeare the same as those
outside of the MPA. The estimated biomass from scenartbewt indices of abundance
in the MPA was negatively biased, and the bias increasedasgier MPAs and higher
migration rates. The SPMs without indices from within the MReness accurate than
those from the spatially-aggregated models that had datawrhin the MPA. Thus,
survey information on relative abundance or biomass witl@MRA is essential for
accurate SPM assessments, especially in situations with |&gs.MOnly 29% of
MPAs, however, have sufficient information available to estdyrogress against their
management objectives (Jones, 2002), and presumatidyébop indices of abundance.

My study likely provides a best-case scenario for ha M assessments will
perform when MPAs are implemented because, in most,dhsesssessment model was
exactly the same as the data generating model. My simndagsumed no error in the
catch and deterministic population dynamics. My assessnisatassumed that MPA
size was known. MPA size is likely to be known, but thetiafly-explicit SPM requires
an assumption about the proportion of carrying capacity witldrMPA, which may

differ from the spatial extent of the MPA because limitingueses for the population
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may not be evenly distributed. Other requirements foceessful SPM in this study
were an informative fishing mortality scenario and indiceswieae actually proportional
to population size. The results may be less accurateiifdishortality is assumed to be
constant or if there are flaws in the survey that makenttiees disproportional to
population size.

In spite of the potential benefits of MPAs, few MPAs éahown sufficiently
good management to have substantial improvement in the bioféssthey were
established to protect (Kelleher, 1996; Hilborn et al., 20@4sitive effects on fish
stocks from an MPA are highly dependent on variablesrdalfan MPA size such as the
characteristics of the area, the behavior and life-histaitg ththe fish (Holland, 2002),
and the success of management in actually protecting the baeger MPAs have a
greater positive effect on fish populations than smaller MpPAwjded that the protected
regions are of similar quality (Pelletier and Magal, 1996; Noanid Roberts, 1999).
However, an MPA with higher quality habitat can lead to be#tsults than a larger
protected area of low quality (Lundberg and Jonzen, ;]1R88well et al., 2003) because
higher-quality areas can support greater densities of i&ireover, the timing of
dispersal behaviors also have a substantial effect on tiemseghere the majority of
recruitment occurs, and therefore on the efficacy dfiBA (Morgan and Botsford,
2001; Pelletier and Mahevas, 2005).

In conclusion, accuracy of estimates from SPM stock sissas, like age-
structured assessments, can be substantially affectedlbbgiam of an MPA within the
stock's range. However, substantial improvements in ancaesm be made by collecting

indices of abundance within the MPA and using a spatiaiji@xSPM to model the
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population. The movement rate of the species only setmedtter when very large
MPAs were present, and large MPAs usually provided tb&t accurate biomass
estimates in spatially explicit models. SPMs where the migredienwvas estimated
produced as accurate or more accurate results tharlswdtkre migration was specified
at its correct value and should be preferably used d®®IsSvhere the migration rate is
assumed known. A substantial period is necessary fordsie estimates to become
unbiased after MPA implementation. However, the SPMs mddelee performed well
in a broad range of circumstances and could be usedtbak assessments where an

MPA is involved.
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Table 3.1. Definitions of the symbols used in data-gengratid assessment models.

Symbol  Definition

| Region Biomass in one of the regions, Fish and MPA
denote fished and MPA regions
_ Predicted biomass in one of the regions, Fish
Regon  and MPA denote fished and MPA regions

~

r Intrinsic rate of increase: 0.4

K Carrying capacity of the entire population:
1000 units

m Proportion of the total area in the MPA

z Migration rate

o Standard deviation of observation error

0 Normally distributed observation error

Farea Annual fishing mortality rate

s Catchability of the survey: 0.005

tmax Number of years in simulation: 50

C Total annual catch

B Biomass
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Table 3.2. Description of the six versions of the surptadyction models.

Model & Spatial Migration  Survey Observation
Scenario Structure Estimated? Within Error log-
Set MPA? scale SD
A Spatially no yes 0.2
Explicit
B Spatially yes yes 0.2
Explicit
C Spatially no yes 1
Explicit
D Aggregate no yes 0.2
E Aggregate no no 0.2
F Aggregate no yes 1
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Table 3.3. Overall error of all MPA sizes and migration r&atms each model and
scenario. The first row is the percent of the median oéliselute value of the relative
error (% MARE) from each model and set of scenariasutyin time, beginning with the
year the MPA was established. The numbers in boltharevo highest errors for that

set of scenarios. The second, italicized row is the upperdoof the 95% confidence

interval.
MARE
Year Year Year Year Year Year Year
Model, Scenarios 20 25 30 35 40 45 50
Explicit, low error 14.8 13.0 13.9 7.1 35 2.5 2.0

23.5 30.7 30.0 21.9 16.3 13.7 11.9
Explicit, migration

estimated 14.5 14.6 15.7 7.6 3.3 2.3 1.9
21.8 33.2 32.3 22.0 14.5 12.4 11.0
Explicit, high error 20.9 21.9 21.9 194 15.7 12.3 9.9
51.0 113.7 102.3 75.0 51.0 47.6 64.8
Aggregate, low error 115 18.3 18.2 10.2 5.9 4.8 4.5

20.8 40.6 36.5 27.2 19.6 14.6 11.9
Aggregate, no 1A in MPA 23.7 16.0 18.7 24.4 255 22.2 16.2
35.5 46.3 56.8 63.3 63.3 58.2 47.5

Aggregate, high error 22.7 325 32.1 24.2 17.3 14.0 10.9
65.9 1405 1164 84.3 61.1 57.4 67.3
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Table 3.4. Median relative error (MRE) of total biomass lamghds of the 95%

confidence intervals from each combination of MPA size, atign rate, and SPM

version.
Spatially-explicit Spatially-aggregated

Model  Migration MPA Lower Upper Model Lower  Upper

Version Rate Size Median 95% 95%  Version Median 95% 95%
A 0.2 5% -0.7% -12.5% 10.6% D 1.5% -10.3% 14.6%
A 0.2 10% -0.3% -10.5% 7.9% D 4.2% -55% 13.0%
A 0.2 20% -0.3% -7.3% 3.3% D 7.9% 2.4% 11.5%
A 0.2 40% -0.1% -2.0% 1.8% D 8.8% 4.9% 11.2%
A 0.3 5% -0.7% -12.6% 10.3% D 0.4% -11.4% 13.5%
A 0.3 10% -0.3% -11.2% 7.7% D 2.3% -75% 11.0%
A 0.3 20% -0.3% -7.1% 3.0% D 5.0% -0.4% 8.4%
A 0.3 40% 0.0% -2.3% 1.7% D 5.8% 2.4% 8.0%
A 0.4 5% -0.7% -13.0% 10.2% D -02% -12.1% 12.9%
A 0.4 10% -0.4% -11.0% 7.4% D 1.3% -8.6% 10.1%
A 0.4 20% -0.3% -6.7% 3.0% D 3.4% -2.2% 6.7%
A 0.4 40% 0.1% -2.5% 1.8% D 4.2% 0.8% 6.2%
A 0.5 5% -0.8% -12.8% 10.1% D -05% -124% 12.7%
A 0.5 10% -2.3% -13.9% 9.2% D 0.7% -9.3% 9.7%
A 0.5 20% -1.3% -145% 4.0% D 2.4% -3.4% 5.9%
A 0.5 40% 1.5% -205% 3.7% D 3.2% -0.1% 5.1%
B 0.2 5% -0.7% -13.4% 10.6% E 76% -222% 7.5%
B 0.2 10% -0.4% -11.3% 7.7% E -12.6% -26.8% 2.3%
B 0.2 20% -0.3% -7.4% 4.0% E -18.9% -35.0% -1.6%
B 0.2 40% -0.2% -3.9% 2.8% E -38.1% -54.1% -12.7%
B 0.3 5% -0.7% -13.1% 10.4% E 75% -21.9% 7.5%
B 0.3 10% -0.4% -11.3% 7.4% E -12.4% -26.3% 2.3%
B 0.3 20% -04% -7.2% 3.4% E -19.6% -34.0% -4.2%
B 0.3 40% -0.2% -3.2% 2.3% E -36.9% -52.6% -17.0%
B 0.4 5% -0.7% -12.9% 10.3% E 74% -21.7% 7.6%
B 0.4 10% -0.4% -11.3% 7.3% E -12.2% -25.9% 2.5%
B 0.4 20% -0.3% -7.0% 3.3% E -19.3% -33.5% -4.6%
B 0.4 40% -0.2% -3.1% 2.0% E -33.5% -53.0% -7.9%
B 0.5 5% -0.7% -12.8% 10.2% E 7.3% -215% 7.7%
B 0.5 10% -0.6% -11.2% 7.3% E -12.0% -25.6% 2.5%
B 0.5 20% -0.2% -6.9% 3.4% E -19.1% -33.4% -4.5%
B 0.5 40% -01% -3.1% 1.8% E -30.2% -50.3% -6.1%
C 0.2 5% -5.6% -70.1% 24.7% F -3.1% -71.7% 38.4%
C 0.2 10% -5.4% -64.4% 19.7% F 2.0% -63.8% 33.1%
C 0.2 20% -4.9% -52.7% 13.8% F 45% -443% 28.3%
C 0.2 40% -25% -33.5% 13.1% F 6.8% -26.7% 40.0%
C 0.3 5% -6.5% -72.1% 25.3% F -46% -73.0% 36.0%
C 0.3 10% -5.9% -65.9% 18.6% F -0.8% -66.5% 30.3%
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Figure 3.1. Flow chart of the models and datasets creathd simulation.
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Figure 3.3. Biomass in both regions from every combinaifdPA size and migration

rate. Columns from left to right are in order of increadtiRA size and rows from top to

bottom are in order of increasing migration rate.
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the median, and whiskers are 95% confidence interval.
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corner of each panel corresponds to the model andrgzeeadefined in Table 2. Z

indicates migration rate.
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Chapter 4: Results and Summary

The objective of my thesis was to employ spatially-explicitriegkes to identify
regions that have different population dynamics and develdg@mpare assessment
methods for stocks with spatial patterns of exploitation. Theifp objectives of
Chapter 2 were to develop indices of abundance of fmarnen species caught in the
Maryland Coastal Bays Trawl and Seine Survey (MCBT®8)campare trends in
abundance of four fish species across two regions withivtryland's coastal bays. To
achieve these objectives, | developed generalized linearlsn@laMs) to develop
statistically standardized indices of abundance that accofomtedanges in survey
methodology and used the models to generate indices afafeenfor 17 years of data
prior to the standardization of the survey. | comparedlgén indices of abundance for
each species between the two regions and tested for effdéztbitat on changes in
abundance. My objectives in Chapter 3 were to asseastheacy of surplus production
models (SPMs) on a population with a spatially heterogersqlsitation pattern
because of a no-take marine protected area (MPA)nduxrted a simulation study to
evaluate the performance of SPMs when part of the riacfygled an MPA. | tested
several versions of SPMs under a range of conditionsdimgyproportion of the range
protected by an MPA, migration rate between MPA and n&#&lvegions, and quality
and availability if indices of abundance.

In Chapter 2, | showed that GLiMs could be used towuicfor spatial, temporal,
and methodological changes in the MCBTSS. Since 1972ijayaopulations of
Atlantic menhadenBrevoortia tyrannus) and spotl{eiostomus xanthurus) have declined

in Maryland’s coastal bays, while summer floundearélichthys dentatus) and weakfish
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(Cynoscion regalis) did not have a significant trend over time. | also tbtirat bays in
the northern region, north of the inlet to the ocean, haniffisigntly higher densities of
these fishes than the southern region. However, nathe @nvironmental variables,
including seagrass area, were related to changes in redbtimelance of any of the
species through time. This is likely due to the couplingbastal bay fish populations
with the broader Mid-Atlantic stocks through yearly recruitméltie northern region of
Maryland’s coastal bays, which is more eutrophied andomggr water retention time,
supported higher densities of fish than the more pristine souliays. However, the
effects of habitat degradation may have been reflecte@ istéieper decline of Atlantic
menhaden and spot in the northern region relative to titbesm region. Finally,
because localized habitat variables were not related to reddtiredance of any of the
species, a coast-wide stock recruitment relationship mdgiexpng-term trends better
local habitat variables.

In Chapter 3, | showed that SPMs were able to be sad accurate method of
assessing the biomass of a stock where an MPA is involediever, perhaps the most
interesting result was that accuracy of the assessmengechsumbstantially in the years
immediately after the MPA was established. Up to twentysy@as necessary for the
error in the SPMs to return to more accurate levelstiglyaexplicit assessments
performed far better than spatially aggregate method®, A#ving indices of abundance
from within the MPA was crucial to estimate the biomass of tta population
accurately, and GLiM models from Chapter 2 could be tse@velop spatially-explicit
indices for populations with an MPA. The movement rate @&ghecies only seemed to

matter when very large MPAs were present, and large MBAally provided the most
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accurate biomass estimates in spatially explicit models. SRMevthe migration rate
was estimated produced as accurate or more accurdts tean models where
migration was specified at its correct value and shoulddfenably used over SPMs
where the migration rate is assumed known. SPMs peefbrvell in a broad range of

circumstances and could be useful in stock assessments avh®PA is involved.
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Appendix I: Trawl and Seine Survey Comparisons

Introduction

In addition to analyzing the trawl survey data as desciib&hapter 2 of this
thesis, | also analyzed the seine survey data in a siméian@n and compared the two
gear types. | also compared the indices of abundamethe generalized linear models
| developed with the indices of abundance currently byatie Maryland Department of
Natural Resources (MDNR) in their reports. The resultbade analyses are described

in this appendix.

Methods

The seine portion of the MCBTSS samples 19 different sitdge same five bays
as the trawl survey (Figure 2.1). Since the survey teaslardized in 1989, MDNR has
seined at each site in June and September (July andrbepter 1989-1992). The seine
survey was conducted with a 30.8 m X 1.8 m seine {206ft) with 0.63 cm mesh
(0.25in) (Bolinger et al., 2007). The seine survey igoated adjacent to the edges of
the bays, mostly in depths of less than one meter.sd@ine survey was not fully
standardized spatially until 1993. The seine samplesoagandardized by time, but
rather the seine is pulled across a specific length of shatgaries among sites
depending on the amount of exposed shoreline.

As with the trawl survey, | excluded some sites and yfeans the analyses. Site

S19 was excluded because it has a very different salegtsne and other physical
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properties from the other sites and can only be samptedtatide. Other exclusions are
detailed in Table I.1. The generalized linear model useditalate the indices of
abundance was the same as the trawl models (See Megutids $n Chapter 2) but with
no effort term, as one seine pull was considered oneieifort. Weakfish were not
caught enough in the seine survey to be able to calculatesmaf abundance using the
generalized linear model, so only menhaden, flounderspotwere analyzed. Trends
over time were analyzed by region with ANCOVAs as withttae/l models. A

Bonferroni correction was used so that a significant p-vialeeduced to 0.00833.

Index and Gear Comparisons

MDNR currently uses a simple catch per seine or catctrgsl averaged over
all sites and samples within a year to arrive at one indeyeaerfor each species and
gear type. | conducted correlations to compare the in@isttmated by the
standardization models with the indices used by MDNR. Ipewed the generalized
linear model-based indices to the log-transformed yeargni® UESs for each species,
gear type, region, and period (all years of the suryesrs before standardization, and
years after standardization). If the factors included inrtbdel are important, the mean
CPUE indices and the model estimates will have a higher dioreia the post-
standardized years of the survey than the pre-standarcizesl

| also compared the trawl and seine survey indicesafdr species to see if they
provided consistent trends over time. If both gearsigidy and positively correlated,
they provide consistent indices of abundance. If theyat well correlated then one or
both gear types show inaccurate indices of abunddnesed correlations between the

regional year effect estimates of the models to assess tigisies in trends between
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the year-effect results of the trawl and seine modelsotlf kegions are highly and
positively correlated, they are equally suitable for theispacsed in the analyses and

can be considered one large region.

Results

The indices of abundance from the seine survey shoemdifferent trends than
the indices from the trawl survey for summer flounderspwt. Menhaden still showed
a decreasing trend as in the trawl survey (only significathitdrsouthern region, Table
1.2, Figure 1.1), but flounder showed a significant imsein the southern region (Figure
1.2). Spot, which showed a significant decrease in thinem region and no overall
increase or decrease in the southern region in the traveysishowed an increase in the
southern region in the seine survey (Figure 1.3).

The correlations between the trawl and the seine models maatly among
species. A total of six gear correlations were performee for each region in the
flounder, spot, and menhaden models (Table 1.3). Témyed from -0.330 to 0.611 with
menhaden being the most similar of the three species.

A total of 14 sets of correlations (42 total correlations, éBevgignificant) were
performed between the simple mean catch and the geedrilizar model indices of
abundance, and 12 of them were higher in the postat@dindd years than the pre-
standardized years (Tables 1.4 and 1.5). The full nsoclganged the index of abundance
estimates more during the period when sampling was incorigiséenwhen the survey
was standardized in 11 of the 14 sets of correlations.cdimelations ranged from 0.363
to 0.981 (Tables 1.4 and 1.5). The majority of the galwed linear models followed the

same trends as the simple catch per trawl or seine.
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Discussion

The wide differences between the trawl and the seineysiare an indication of
the importance of gear choice in developing indices of amo®l The seine is limited to
shallow near-shore areas. In the coastal bays, the trimitesd to channels deep
enough for the boat to pass, an important limitation in theadasys where the average
depth is only about one meter. There are often laggsan between sites that cannot be
reached by either the trawl or the seine. This combinedtetliery low correlations in
trends between the trawl and seine (Table 1.3) make iaptelthat the two gears are
sampling somewhat different portions of the fish populationthai one gear is sampling
sub-optimal habitat for a species causing the trends tofleeed.

Because of the differing trends in the trawl and seineeysnone gear must be
used over the other to provide indices of abundance icot&al bays. For the purposes
of this thesis, | have made the assumption that the trawl gwaidnore accurate view of
the trends in young-of-year fish of the species | studieth because of the behaviors of
the species and the range of the gear. The parallelsdietive trends seen in the trawl
surveys and the mid-Atlantic stock assessments providesuppert for the premise that
the trawl survey provides more accurate indices of almagdaln spite of this decision,
however, it may be useful to describe the trends seen seihe survey.

Unlike the trawl survey, the northern region of the coastgs ldid not have
significantly greater densities of fish in the seine survihere was also only one
instance of significant decline in a species as opposee thrike instances in the trawl

survey. Only menhaden in the southern region declinedisantly during 1972-2009.
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However, both flounder and spot showed significant irs@g@n the southern region
during the same time period (Table 1.2, Figures 1.218)d No significant changes were
seen in any of the three species in the northern region.

Standardizing the survey in 1989 should have allowed desicapch per trawl or
seine to be an accurate index of abundance. If the édeta developed in this project
can produce a more accurate index of abundanceyauld expect the models to change
the estimates for the years before standardization morghtbaears after
standardization. This hypothesis was substantiated by tredatmns performed
between the indices of abundance from the two methodseslah and 1.5). The
generalized linear models were more correlated with the ye#rs survey post-
standardization in 12 of the 14 species, gear, and regimbinations, suggesting that the
survey standardization improved the accuracy of the C&#h index of abundance and
that the generalized linear models improved the accurace afidices of abundance
prior to survey standardization.

Many of the overall increases or decreases in abund&reconly apparent if the
time series had more than ten or fifteen years, and menewecessary to ascertain
whether the trend continued. For example, the time periadifich the habitat data
used in Chapter 2 was available (1990-2004) showegh#isant increase in weakfish
abundance, but when the entire time series from MCBTSE&(2009) is used no
significant upward or downward trend is apparent. Duti®@0-2004 there was also no
significant trend in menhaden or spot, but when the entiresmes is taken into
account both showed significant declines in the trawl portigheourvey. Thus,

including the earlier data revealed trends that we wouldwitenot have seen.
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Table 1.1. The years, months, and sites excluded frorseiine survey analyses and the

reasons for excluding them.

Species Region Variable Reason
Level
Removed
All All 1983-1986 <6 samples

Menhaden North 1980 None
Caught

Menhaden All October None
Caught

Flounder All May None
Caught

Flounder All October None
Caught

Flounder All 1973 None
Caught

Flounder All 1977 None
Caught

Flounder South Site S14 None
Caught

Flounder All 1979 None
Caught
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Table 1.2. The slopes and p-values of the trends fdr sgecies and region evaluated
from the seine portion of the survey. Bold rows are stadlftisignificant ain=0.008,

the level that correspondsds0.05 when corrected for multiple comparisons.

Species Region Slope p-value

Menhaden North -0.0615 0.2346
Menhaden South -0.0837  0.0034
Flounder North -0.046 0.0427
Flounder South 0.0574  0.0051

Spot North 0.0564  0.0196

Spot South 0.0957 <0.0001
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Table 1.3. The gear comparisons between the trawl and &él models for each species

in two regions where the models for both gears converged

Flounder Menhaden Spot
North South North South North South
-0.330 0.367 0.487 0.611 0.071 -0.031
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Table 1.4. The trawl survey correlations between the fulegaized linear model and the
simple average catch per trawl. Correlations are by regidrspecies for all years
(1972-2009), pre-standardization (1972-1988), and stasidardization (1989-2009).

Stars indicate statistical significancena0.05.

Species  Region All Pre- Post-
Years Standardization Standardization

Spot North  0.9794** 0.9719* 0.9812**
Spot South  0.9667** 0.9126** 0.9896**
Menhaden North  0.9102** 0.8258** 0.8425**
Mendahen South  0.8370** 0.4921 0.9273**
Flounder  North  0.9287** 0.9520** 0.9613*
Flounder  South  0.9213** 0.8845** 0.9814**
Weakfish ~ North  0.8174** 0.7821** 0.8632**
Weakfish ~ South  0.6932** 0.3630 0.9510**
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Table I.5. The seine survey correlations between the forgéized linear model and the
simple average catch per seine. Correlations are by ragispecies for all years
(1972-2009), pre-standardization (1972-1992), and stasidardization (1993-2009).

Stars indicate statistical significancena0.05.

Species  Region All Pre- Post-
Years Standardization Standardization

Spot North  0.9507** 0.9746** 0.9658**
Spot South  0.9686** 0.9607** 0.9323**
Menhaden North  0.8353** 0.8664** 0.8734**
Menhaden South 0.7671** 0.5447** 0.8110**
Flounder  North  0.9305** 0.9318** 0.9596**
Flounder  South  0.8503** 0.7838** 0.9768**
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Figure I.1. The model estimates of the seine survey éhaden for each region. The

missing values are the years where there was not edatgho form a reliable estimate.
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Figure 1.2. The model estimates of the seine surveyiofander for each region. The

missing values are the years where there was not edatgho form a reliable estimate.
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Figure 1.3. The model estimates of the seine surveyspfarfor each region. The

missing values are the years where there was not edatgho form a reliable estimate.
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Appendix II: Surplus Production Model Code

Data Generating Model

/[Jennifer Barkman

/IChapter 2 2-Area Simulation Surplus Production Model
/[Created June 30, 2010

/I Last edited July 15, 2010

DATA_SECTION
init_int tmax [[# of years in model
init_vector F1(1,tmax) //Fishing pressure in non-MPA area
init_vector F2(1,tmax) //Fishing pressure in MPA area

init_number r /lintrinsic rate of growth
init_vector m(1,4)  //proportion of area that is MPA
init_number K /ICarrying capacity

init_number sq /[survey catchability

init_vector z(1,4)  //migration rate

init_number sigma //st dev of observation error on logdoasurvey data
init_int nsims  //number of sumulations to run

init_int seedi  //frandom number generator seed

init_vector test(1,3)

vector S1(1,tmax) //Survey catch in non-MPA
vector S2(1,tmax) //Survey catch in MPA

vector ST(1,tmax) //Survey catch in total area
vector N1(1,tmax) //Abundance for non-MPA region
vector N2(1,tmax) //Abundance for MPA region
vector NT(1,tmax) //Abundance for total area
vector C1(1,tmax) //Catch in non-MPA

vector C2(1,tmax) //Catch in MPA

vector CT(1,tmax) //Catch in total area

inti /lyear counter

int j //migration counter
int k //sim counter

int n //MPA size counter
int seed

vector S1_err(1,tmax)
vector S2_err(1,tmax)

LOCAL_CALCS
/lcout << test << endl;
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/lcout << m << endl;
llexit(2);
END_CALCS

PARAMETER_SECTION
objective_function_value f

LOCAL_CALCS

/[create random number generator seed
seed=seed;;
random_number_generator rng(seed);

/lrun entire program and estimation model multiple times
for(k=1;k<=nsims;k++)
{

//change rndnumbseed to create diff values

seed+=2;

S1_err.fill_randn(rng);

S2_err.fill_randn(rng);

/lloop over migration rates

for(j=1;j<=4;j++)

for(n=1;n<=4;n++)
{
/1 output counters so | could see how far atbegorogram was while it was
running
cout <<k <<""<<z(j) <<""<<m(n) << dh
/linital biomass
N1(1)=(1.-m(n))*0.9*K;
N2(1)=m(n)*0.9*K;
NT(1)=N1(1)+N2(1);
/ffill in N vectors
get_numbers();

/Icreate data file for 2-area est model
ofstream ofs("estmodel.dat");
{
ofs << "#tmax" << endl;
ofs << tmax << endl;
ofs << "#proportion of area that is MPA" <<kn
ofs << m(n) << endl;
ofs << "#migration rate" << endl;
ofs << z(j) << endl,
ofs << "#Abundance in total area" << endl;
ofs << NT << endl;
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ofs << "#Catch in non-MPA area" << endl;
ofs << C1 << endl;

ofs << "#Catch in MPA area" << end!l;

ofs << C2 << endl;

ofs << "#Abundance in non-MPA area" <<lend
ofs << N1 << endl;

ofs << "#Abundance in MPA area" << end!I;
ofs << N2 << endl;

ofs << "#survey catch in non-MPA area" «dle
ofs << S1 << endl;

ofs << "#survey catch in MPA area" << endl,
ofs << S2 << endl;

ofs << "#test" << endl;

ofs << "1 2 3" << endl;

}

/Icreate data file for one-area model
ofstream one("oneareamodel.dat”);
{
one << "#tmax" << endl;
one << tmax << endl;
one << "#proportion of area that is MPA" <dlen
one << m(n) << endl;
one << "#migration rate" << endl;
one << z(j) << endl;
one << "#Abundance in total area" << endl;
one << NT << endl;
one << "#Catch in total area" << endl;
one << CT << endl;
one << "#survey catch in total area" << endl;
one << ST << endl;
one << "#test" << endl;
one << "1 2 3" << endl;

}

/[create file to display population dynamics of thedveas
/lthe ios::app appends data to the file in every iteretsdead of deleting and
rewriting it
ofstream bio("popdy.txt",ios::app);
{
bio << z(j) << m(n) << endl;
bio << N1 << end|;
bio << N2 << endl;
bio << NT << endl;

}
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/*
/loutput seed numbers
ofstream out("rndnumseed.txt",ios::app);
{
out << seed << " " << endl;
out << N1 << endl;

}
*

/Icall estimation model 2-area and 1-area
system("estmodel.exe");

system("oneareamodel.exe");

}
}

}

cout << "model finished" << endl;
exit(0);
END_CALCS

PROCEDURE_SECTION

FUNCTION get_numbers
/IFill in N matrices
for (i=1;i<tmax;i++)
{
NL(i+1)=N21()+r*N21(i)*(1.-(NL1()/(K*(1.-m(n)))))+z§)*m(n)*((((1.-
m(n))/m(n))*N2(i))-N1(i))-F1(i))*N21(i);
N2(i+1)=N2(i)+r*N2(i)*(1.-(N2(i)/(K*m(n))))+z(j)*(1.-m(n))*((m(n)/(1.-
m(n)))*N1(i)-N2(i))-F2(i)*N2(i);
NT(i+1)=N21(i)+N2(i);

/[This checks to make sure biomass is positive
/*
if (NT(i)<0.)

cout << N1 << endl;
cout << N2 << endl;
cout << NT << endl;
exit(3);

}
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*/
}

/[Fill in Catch matrix and survey catch matrix with the randwror
for (i=1;i<=tmax;i++)
{
CL1()=N1(>)*F1(i);
C2(i)=N2(i)*F2(i);
CT(@i)=C1()+C2(i);
S1(i)=N1(i)*sg*exp(sigma*S1_err(i));
S2(i)=N2(i)*sg*exp(sigma*S2_err(i));
ST(i)=S1(i)+S2(i);
}

/[This was for a version where no data was available iM& for the last 30 years of

the simulation

/*

for (i=1;i<=20;i++)

{
S2(i)=N2(i)*sg*exp(sigma*S2_err(i));
ST()=S1(i)+S2(i);

}

*/

llcout << S1 << S2 << endl;

llcout << C2 << endl;

/lcout << CT << endl;

llexit(2);

REPORT_SECTION

Spatially-Explicit Estimating Model

/lJennifer Barkman

/IChapter 2 2-Area Estimation Surplus Production Model
/[Created June 30, 2010

/I Last edited July 15, 2010

DATA_SECTION

init_int tmax /Inumber of years of data
init_number m /lproportion of area that isAVIP
init_number z /Imigration rate

init_vector BTtrue(1,tmax) //Biomass in total area
init_vector Clobs(1,tmax) //Catch in non-MPA area
init_vector C2o0bs(1,tmax) //Catch in MPA area
init_vector Bltrue(1,tmax) //non-MPA area
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init_vector B2true(1,tmax) //MPA area

init_vector S1(1,tmax) //survey catch from non-MPA
init_vector S2(1,tmax) //survey catch from MPA
init_vector test(1,3)

/ll needed a 2nd catch vector that was not from thdilelor the program to work,
though | don't remember why

vector S1obs(1,tmax) //survey catch for non-MPAare

vector S2obs(1,tmax) //survey catch for MPA area

vector C1(1,tmax)

vector C2(1,tmax)

/lcounters
inti
int |

LOCAL_CALCS
/lcout << test << endl;
Ilexit(2);

for(i=1;i<=tmax;i++)

{
Slobs(i)=S1(i);
S20bs(i)=S2(i);
C1()=Clobs(i);
C2(i)=C20bs(i);

}

END_CALCS

PARAMETER_SECTION

init_number log_sq(1) //survey catchability

init_number log_K //carrying capacity

init_number log_r(1) //growth coefficient

init_number log_prop_BO //BO as a proportion of K (one [eameter)
/linit_number log_BO0(1) //initial biomass

init_number log_zest(1) //estimated value of migration rate

vector B1(1,tmax) //predicted biomass in non-MPA are
vector B2(1,tmax) //Predicted biomass in MPA area
vector BT(1,tmax) //Predicted biomass of 2 areatowed
vector S1_pred(1,tmax) //Predicted survey catch in noA-MP
vector S2_pred(1,tmax) //Predicted survey catch in MPA
vector F1(1,tmax)  //Annual fishing rate in non-MPA
vector F2(1,tmax)  //Annual fishing rate in MPA
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number sq  //survey catchability

number K //carrying capacity

numberr  //growth coefficient

number BO  //initial biomass

number Bpen //penalty on negative biomass
number zest //estimated value of migration rate

number SS  //sum of squares used in objective function
objective_function_value f
LOCAL_CALCS

//starting values are correct from the data-generatinglmode
log_sqg=log(0.005);

log_K=log(1000.);

log_r=log(0.2);

log_prop_B0=log(0.9);

log_zest=log(z);

/llog_BO0=log(900.);

PROCEDURE_SECTION

/llconvert all parameters back from log scale
sq=exp(log_sq);

K=exp(log_K);

r=exp(log_r);

BO=exp(log_prop_BO0)*K;
zest=exp(log_zest);

/lcout << BO << " " << m << endl;
Illexit(2);

/ffill in first year of biomass vector
B1(1)=B0*(1.-m);

B2(1)=B0*m;

BT(1)=B1(1)+B2(2);

Bpen=0.;

llcout << " " << B2(1) << endl;
llexit(2);

//fill in rest of biomass vectors
for(i=1;i<tmax;i++)

85



{
B1(i+1)=B1(i)+(r*B1(i)*(1.-(B1(i)/(K*(1.-m)))))+(zes*m*(((1.-m)/m)*B2(i)-B1(i)))-
C1(i);
B2(i+1)=B2(i)+r*B2(i)*(1.-(B2(i)/(K*m)))+zest*(1.-m¥((m/(1.-m))*B1(i)-B2(i))-
C2(i);
BT(i+1)=B1(i+1)+B2(i+1);

/lcout << "biomass vectors" << endl;
llexit(2);

/Ipenalty so biomass will not go negative in the final estimation
if(B1(i+1)<0.)
{

Bpen+=square(B1(i+1));
B1(i+1)=0.1;

}
if(B2(i+1)<0.)

Bpen+=square(B2(i+1));
B2(i+1)=0.1;
}

/lcout << "B penalty" << endl;
llexit(2);
}

/Icout << B1 << endl;
/lcout << B2 << endl;
llexit(2);

/ffill in survey index values
S1 pred=Bl*sq;
S2_pred=B2*sq;

/lcalculate exploitation rate
Fl=elem_div(C1,B1);
F2=elem_div(C2,B2);

/Nlikelihood function
SS=norm2(log(S1_pred)-log(S1lobs))+norm2(log(S2_pieg{520bs));
f=double(tmax)*0.5*log(SS)+Bpen;

/*
cout << "Bltrue B1 B1diff B2true B2 B2diff" << endl;
for(i=1;i<=tmax;i++)

{
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cout << Bltrue(i) << " " << B1(i) << " " << B1(i)-Brue(i) << " " << B2true(i) << " "
<< B2(i) << " " << B2(i)-B2true(i) << endl;
}

cout << f<<"" << SS << endl;
exit(3);
*/

FUNCTION write_output

/lerror in total biomass
ofstream ofs("2areaerr.txt",ios::app);

{

ofs <<z <<""<<m<<"" << elem_div(BT-BTtri&Ttrue) << endl;

}

/lestimated biomass in both areas, not error
ofstream bio("2areabiomass.txt",ios::app);

{

bio<<z<<""<<m<<""<<Bl<<"" << B&< endl;

}

/lerror in the estimated parameters
ofstream res("2arearesult.txt",ios::app);

{
res <<z <<""<<m<<""<<(r-0.4)/0.4 <<''<< (K-1000)/1000 << " " << (sQ-

0.005)/0.005 << endl;
}

REPORT_SECTION
write_output();

/*
report << "Bltrue B1 B1diff B2true B2 B2diff* << endl;
for(i=1;i<=tmax;i++)
{
report << Bltrue(i) << " " << B1(i) << " " << B1{B1ltrue(i) << " " << B2true(i) << "
" << B2(i) << " " << B2(i)-B2true(i) << endl;

}
*

Spatially-Aggregate Estimating Model

/IJennifer Barkman
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/IChapter 2 1-Area Estimation Surplus Production Model
/[Created June 30, 2010
/I Last edited August 4, 2010

DATA_SECTION

init_int tmax /Inumber of years of data
init_number m /lproportion of area that isAVIP
init_number z //migration rate

init_vector BTtrue(1,tmax) //Biomass in total area
init_vector CTobs(1,tmax) //Catch in total area
init_vector ST(1,tmax)  //survey catch from total area
init_vector test(1,3)

vector STobs(1,tmax) //survey catch for total area
vector CT(1,tmax) //Total Catch for total area
int i

int |

LOCAL_CALCS
/lcout << test << endl;
Ilexit(2);

for(i=1;i<=tmax;i++)
{
STobs(i))=ST(i);
CT(i)=CTobs(i);
}

/lcout << CTobs << endl;
/lcout << CT << endl;
llexit(2);

END_CALCS
PARAMETER_SECTION

init_number log_sq(1) //survey catchability
init_number log_K(1) //carrying capacity
init_number log_r(1) //growth coefficient
/linit_number log_BO(-1) //initial biomass

init_number log_prop_BO(1) //BO as a proportion of K

vector BT(1,tmax)

vector ST_pred(1,tmax)
vector FT(1,tmax)
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number sq //survey catchability

number K //carrying capacity

numberr  //growth coefficient

number BO  //initial biomass

number Bpen //penalty on negative biomass

number SS
objective_function_value f
LOCAL_CALCS

log_sqg=log(0.005);
log_K=log(1000.);
log_r=log(0.2);
log_prop_B0=log(0.9);
/Nlog_BO0=log(0.9*exp(log_K));

PROCEDURE_SECTION

/lconvert all parameters back from log scale
sq=exp(log_sq);

K=exp(log_K);

r=exp(log_r);

BO=K*exp(log_prop_BO0);

/lcout << BO << " " << m << endl;
llexit(2);

/ffill in first year of biomass vector
BT(1)=BO0;
Bpen=0.;

llcout << " " << BT(1) << endl;
Ilexit(2);

[/fill in rest of biomass vectors
for(i=1;i<tmax;i++)

BT(i+1)=BT(i)+r*BT(i)*(1.-(BT(i)/K))-CT(i);
if(BT(i+1)<0.)

{
Bpen+=square(BT(i+1));
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BT(i+1)=0.1;
}
/lcout << "B penalty" << endl;
llexit(2);
}

/ffill in survey index values
ST _pred=BT*sq;

/[calculate exploitation rate
FT=elem_div(CT,BT);

/likelihood function
SS=norm2(log(ST_pred)-log(STobs));
f=double(tmax)*0.5*log(SS)+Bpen;

/*
cout << "BTtrue BT" << endl;
for(i=1;i<=tmax;i++)

{
cout << BTtrue(i) << " " << BT(i) << " " << BT(i)-Bffue(i) << endl;
}
cout << f<<""<< SS << endl
exit(3);
*/

FUNCTION write_output

ofstream ofs("lareaerr.txt",ios::app);

{

ofs <<z <<""<<m<<""<<elem_div(BT-BTtriTtrue) << " " << endl;

}

ofstream bio("lareabiomass.txt",ios::app);

{
bio<<z<<""<<m<<""<<""<< BT << efid
}
ofstream res("larearesult.txt",ios::app);
{

res <<z <<""<<m<<""<<(r-0.4)/0.4 <<''<< (K-1000)/1000 << " " << (sQ-
0.005)/0.005 << endl;

}
REPORT_SECTION
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write_output();

/*
report << "Bltrue B1 B1diff B2true B2 B2diff* << endl;
for(i=1;i<=tmax;i++)
{
report << BTtrue(i) << " " << BT(i) << " " << BT(iBTtrue(i) << " " << endl;

}
*/
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