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Automatic intensity-based nonrigid image registration brings significant impact in 

medical applications such as multimodality fusion of images, serial comparison 

for monitoring disease progression or regression, and minimally invasive image-

guided interventions. However, due to memory and compute intensive nature of 

the operations, intensity-based image registration has remained too slow to be 

practical for clinical adoption, with its use limited primarily to as a pre-operative 

too. Efficient registration methods can lead to new possibilities for development 

of improved and interactive intraoperative tools and capabilities.  

In this thesis, we propose an efficient parallel implementation for intensity-based 

three-dimensional nonrigid image registration on a commodity graphics 

processing unit. Optimization techniques are developed to accelerate the compute-

intensive mutual information computation. The study is performed on the 

hierarchical volume subdivision-based algorithm, which is inherently faster than 

other nonrigid registration algorithms and structurally well-suited for data-parallel 



 

computation platforms. The proposed implementation achieves more than 50-fold 

runtime improvement over a standard implementation on a CPU. The execution 

time of nonrigid image registration is reduced from hours to minutes while 

retaining the same level of registration accuracy.  
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Chapter 1: Introduction 

1.1. Introduction and Motivation 

Image registration, the process of spatially aligning two images, is an essential 

need in a number of medical procedures. Medical image registration has 

historically been used for multimodality fusion of images providing 

complementary information; comparison of images from different time points for 

qualifying disease progression or regression; and recently emerging to 

applications in fusion of pre- and intraoperative images in minimally invasive 

image-guided interventions (IGIs). These applications have the potential to 

improve the quality of patient care by improving the efficiency and effectiveness 

of the associated medical procedures.   

 

The success of these novel medical capabilities is critically dependent on accurate 

and precise target identification and localization. Previous research has 

recognized intensity-based registration by maximizing mutual information (MI) 

between two images as the most accurate, robust, versatile and fully automatic 

approach to image registration. Meyer et al. [1] demonstrated the accuracy and 

clinical versatility of MI for automatic multimodality thoracic and abdominal 

image registration. Rueckert et al. [2] developed an MI-based nonrigid 

registration algorithm for deformation correction in three-dimensional (3D) 

magnetic resonance (MR) breast images. Hill et al. [3] applied nonrigid 

registration to pre- and post-resection interventional MR brain images to quantify 

intraoperative brain deformation.   
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Whereas these proven advantages have led to intensity-based registration 

becoming the approach of choice, the lengthy execution of MI computation 

continues to discourage clinical adoption. Fast automatic image registration will 

open new possibilities for development of interactive intraoperative tools.  
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1.2. Contribution of this Thesis 

 The goal of this thesis work is to present a multiprocessor implementation 

for nonrigid image registration applications by utilizing parallelism in MI 

computation. The hierarchical volume subdivision-based algorithm reported by 

Walimbe and Shekhar [4] is the focus in this work. The parallelizable nature of 

this registration algorithm would be exploited.  

 

In this thesis, a complete implementation of the graphics processing unit (GPU)-

based nonrigid image registration algorithm is presented. The implementation is 

scalable for the ever evolving generations of GPU or other massively parallel 

architectures in the future. A warp-aware sort and merge technique is presented to 

target the dominated runtime bottleneck in compiling the mutual histograms for 

MI computation. 

  

The final implementation is validated with five sets of 256 x 256 x 256 computed 

tomography (CT)-CT test cases. A GPU with the latest NVIDIA hardware and 

software architecture is used to benchmark the resulting performance and 

accuracy. The overall performance of rigid and nonrigid registrations 

implementations is compared with a CPU and an FPGA-based implementation.
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1.3. Outline of this Thesis 

The thesis is organized as follows: Chapter 2 provides the background on image 

registration and the associated techniques used within the registration framework. 

The concept of intensity-based image registration, specifically MI-based 

algorithm, are discussed. The latest GPU architecture and recently reported GPU-

based image registration results follow next. In Chapter 3, a GPU-based rigid 

registration implementation is presented. Numbers of critical design 

considerations will be discussed in the content of rigid registration and further 

expanded while discussing nonrigid registration. In Chapter 4, a GPU-based 

nonrigid registration implementation is presented for the hierarchical volume 

subdivision-based image registration algorithm. Chapter 5 describes an optimized 

multiprocessor implementation in detail. Finally, in Chapter 6, conclusions and 

future work are presented. 
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Chapter 2: Background and Related Work 

Three-dimensional (3D) image registration is fundamental to various medical 

procedures, including image-based longitudinal comparison, multimodality image 

fusion, and population based atlas creation. It is a prerequisite when before and 

after images are to be compared (subtracted) in longitudinal comparison studies 

for quantifying disease progression or regression, often in response to a treatment. 

It is also a necessary first step in multimodality image fusion before images from 

one or more modalities with complementary information can be meaningfully 

overlaid. In these intra-patient instances, images are misregistered (misaligned) 

because they are usually acquired at two different times separated by hours to 

months with the patient in different body orientations. In the inter-patient instance 

of population-based atlas creation, images are misaligned also because they come 

from different individuals with different body types and thus necessitate image 

registration. 

 

One of the growing applications of image registration that requires real-time 

performance is image-guided interventions (IGIs). The success of IGIs is 

critically dependent on accurate and precise target identification. Diagnostic-

quality pre-treatment images are often used for treatment and navigation planning, 

while intra-treatment images available to provide accurate spatial information to 

navigate interventional devices are generally lower-resolution and less 

information-rich. Rapidly merging these two types of images with complementary 

strengths (clear target definition and up-to-date patient anatomy) can help clearly 
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visualize targets during an IGI, provide real-time quantitative feedback on organ 

motion and deformation, and permit real-time treatment monitoring. Achieving 

high-speed image registration is a fundamental need in not only interventional 

applications but virtually all applications.  

 

Decades of research has led to significant success in developing accurate, reliable 

and fully automated image registration algorithms and techniques. The most 

recognized technique among these is intensity-based registration by maximizing 

MI (also referred to as MI-based image registration) between the two images to be 

registered [5-12]. However, due to the large size of 3D images and the 

computation intensive nature of this search-based technique, intensity-based 

image registration has remained too slow to be practical for clinical adoption. The 

slow execution has also prevented large-scale validation studies and clinical trials 

evaluating the quality and benefits of image registration. 

 

Image Registration 

Image registration is the iterative process of spatially aligning two or more images 

taken at different times, from different modality, or from different viewing angles. 

Maintz and Viergever [13] and Hill etal. [14] have presented a detailed summary 

of the medical image registration domain. Generally medical image registration 

can be classified into two main categories; extrinsic registration and intrinsic 

registration. Extrinsic methods based on other foreign objects that are not natively 
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a part of the imaged space; whereas intrinsic registration is based purely on the 

image information from the patients.  

 

Extrinsic methods rely on artificial objects which may be attached to the patient 

or placed within the field of view of the image. These objects are specially 

designed to be well visible and accurately detectable in all pertinent modalities. 

The registration of the acquired images involves simply determining the 

corresponding translation between the external objects, which can be computed 

explicitly without the need for complex optimization algorithm. Therefore, this 

type of registration is comparatively easy, fast, and possible to be automated. 

However, extrinsic methods generally require advanced planning; provisions must 

be made at the time of preprocedural imaging. The marker objects are often 

invasive to the patients, while non-invasive marker options are generally less 

accurate. As extrinsic methods do not include patient-related image information, 

the nature of the registration transformation is mostly restricted to rigid 

transformation model only.  

 

Intrinsic methods, on the contrary, rely on patient-generated image content only.  

Registration may be based on a limited set of identified salient points (landmarks), 

the alignment of segmented binary anatomical structures (segmentation based), or 

directly based on the image intensity values (voxel property based).  
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Landmark-based registration uses predefined salient points (landmarks) from the 

different images and determines the spatial transformation of the images with 

these paired points. Landmarks can be anatomical; accurately locatable points of 

the visible anatomy, which are usually identified interactively by the users. 

Landmark-based methods are often used to find rigid or affine transformations. 

Given a large enough set of points, they can also be used for more complex 

nonrigid transformation. The optimization procedure of landmark-based 

registration is relatively fast as the set of identified points is sparse compared with 

the original image content. However, this approach cannot be fully automated as 

user interaction is usually required for the identification of the landmarks.  

 

Segmentation-based image registration methods aligns images based on the same 

anatomical structures (mostly surfaces and curves) extracted from the images to 

be registered. The alignment between the structures can be either rigid model 

based or deformable model based.  The rigid model based approaches are the 

most popular methods in clinical use due to the success of the ‘head-hat’ method 

introduced for multimodal images. The nonrigid model based approaches 

elastically deforms the extracted structure from an image to fit the second image. 

Segmentation-based techniques are computationally efficient and they support 

multi-modal registration. However, the accuracy of registration highly depends on 

the segmentation accuracy. These methods cannot be fully automated as the 

segmentation step is often performed semi-automatically.   
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Voxel property-based methods operate directly on the image grey value without 

prior data reduction by the user or segmentation. The image grey value content is 

either reduced to a representative set of scalars and orientations, or the full image 

content is used. Theoretically, voxel property-based methods using the full image 

content are the most flexible methods which become the most interesting methods 

of current research. Voxel property based methods can be fully automatic, they 

also support multi-modal registration and are proven to be accurate. However, 

these methods are still limited from 3D clinical applications by the considerable 

computational costs. This thesis work will address this aspect through the use of 

the latest graphic processor units.  

 

Intensity-Based Image Registration 

Intensity based image registration is an automatic approach to spatially align two 

images based on their voxel grey levels. This method consists of numbers of 

optimization iterations with the aim to find the transformation parameters Topt   

which optimally aligns the reference image (RI), with the floating image (FI) by 

maximizing the similarity measure. The following equation summaries this 

process, where S is the similarity function to be maximized, T is the 

transformation operator applied to the reference image coordinates. 

 

Topt =argmax S( RI(x,y,z), FI (T(x,y,z)) )   Eq. 2.1 
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Registration starts with an initial transformation T, which can be rigid model or 

nonrigid model, and maps the reference image voxels into the floating image 

space. The similarity measure S quantitatively determines the degree of 

misalignment between the images based on the voxel intensities (without 

considering any abstracted representation of the images). The optimization 

algorithm then updates the parameters of the transformation T based on the 

similarity measure result. This iterative process allows the optimization algorithm 

to search for the best transformation parameters that achieve the most optimal 

align between the two images. The major components of the image registration 

operation are depicted in Figure 2.1. Each component will be discussed in detail 

in the following sections.  

    

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Image Registration Flow Diagram 
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Transformation Model 

    T: (x,y,z) -> (x’,y’,z’)    Eq. 2.2 

Transformation model describes the spatial relationship between the reference and 

the floating images. These models are categorized according to their degrees of 

freedom. Rigid transformation includes only translations and rotations. Affine 

transformation advances rigid models by also including scaling and shearing. 

Perspective transformation is similar to affine transformation; however, the 

parallelism of lines need not be preserved [15].   

 

 

 

 

 

 

 

Figure 2.2: Transformation of Reference Image Voxels to Floating Image 
 

Rigid Models  

Translations and rotations suffice to register images of rigid objects, for example, 

bone or brain. For 3D image registration, rigid models can be described using a 

single constant 4x4 transformation matrix (Eq 2.3, 2.4). Where t is an arbitrary 

translation vector and r is a 3x3 rotation matrix. 

y = Trigid x     Eq. 2.3 
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As rigid registration has reported numbers of successes [12], the limited degrees 

of freedom is not sufficient for applications where nonrigid transformations are 

required, such as modeling soft tissue movement and deformation.  

 

Nonrigid (Deformable) Models  

While rigid registration limiting the deformation to rotations and translations, 

nonrigid transformation models offers higher degrees of freedom to represent the 

misalignment between images. This provides the mean to model local 

deformations of the images which results high accuracy in registration result. One 

of the applications is intrasubject registration, when nonrigid transformations are 

required to accommodate any tissue deformation due to interventions or changes 

over time.   

 

One of the well recognized nonrigid transformation models is Free Form 

Deformation (FFD) [2, 16]. FFD deforms an object by manipulating an 

underlying mesh of control points. The resulting deformation controls the shape 

of the 3D object and produces a smooth and continuous transformation. The set of 

control points controls the degree of nonrigid deformation which can be advanced 

by the resolution of the mesh of control points. A large spacing of control points 
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allows modeling of global nonrigid deformations, while a small spacing of control 

points allows modeling of highly local nonrigid deformations. However, this 

modeling approach suffers from high computational complexity. The resolution of 

control point mesh not only controls the finest of the local deformation field, but 

also defines the number of degrees of freedom, consequently, the computational 

complexity. For the case of 5x5x5 mesh of control points, the FFD model yields 

375 degrees of freedom.   

 

Another class of nonrigid registration algorithms is based on the concept of 

hierarchical image subdivision. These algorithms divide the image into numbers 

of sub-images (subvolumes) and perform local rigid (linear) transformation on 

individual subvolumes. Interpolation technique is applied to the result of 

individual transformed subvolumes to obtain the final smooth deformation field. 

Finer the resolution of the subvolumes, finer the local deformable registration can 

be achieved. These algorithms are computationally efficient and inherently suited 

well in the parallel computing framework as each subvolume can be processed 

independently from other subvolumes of the same hierarchical level. In this thesis, 

we have considered one of the hierarchical volume subdivision deformable 

registration algorithms proposed by Walimbe and Shekhar [4]. The details of this 

algorithm will be discussed in the later session.  
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Similarity Measure 

Automatic registration requires a metric for measuring the degrees of similarity 

between the images to be registered at each iteration of the optimization process. 

The metric is used to guide the optimization engine to approach the optimal 

alignment. Ideally, the similarity measure attains its maximum (or minimum) 

when the images are perfectly aligned and deviates as the images are less overlaid. 

Similarity measure for intensity-based registration is computed directly from the 

voxel intensity values of the images rather than from geometrical structures. Some 

of the commonly used metrics are sum of squared difference (SSD), normalized 

cross correlation (NCC), correlation ratio (CR), and mutual information (MI) [17, 

18]. One of the decision factors on selecting the proper similarity measure is the 

use of image modality; whether the images are taken with the same or different 

type of imaging modalities.   

 

For intramodality images, registration is to compare the images of a subject taken 

at different time with the same modality. If there is no change in the subject, or 

the images are properly aligned, the difference image, subtraction of the reference 

image and the transformed image, will result no structural difference except for 

noise. The amount of residue in the difference image corresponds to the amount 

of registration error. The iterative optimization process will calculate the optimal 

transformation T to minimize the residue in the difference image. The 

computation of similarity measure techniques for intramodality images is more 

straightforward and highly parallelizable.  
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For intermodality registration, there is no simple relationship between the 

intensities of the two images to be registered. The registration error cannot be 

quantified simply by deriving a difference image.  Mutual information (MI) based 

approach introduced by Collignon et al. and Wells, et al. provides a sufficient 

similarity metric applicable for both intramodality and intermodality registration.  

 

Mutual Information 

Mutual information (MI) is a basic concept from information theory based on the 

concept of entropy. MI measures the statistical dependency between two random 

variables or the amount of information that one variable contains about the other. 

In the case of intensity-based image registration, the MI of the intensity of the 

voxel pairs is maximal when the two images are properly aligned.  

 

Entropy is a measure of information of message developed from communication 

theory. This concept can be interpreted as a measure of the amount of information 

an event gives, the uncertainty about the outcome of an event, and the dispersion 

of the probabilities. Shannon introduced an entropy measure in 1948 [19], which 

weights the information per outcome by the probability of that outcome. Given 

events e1, ..., em occurring with probabilities p1, ..., pm, the Shannon entropy is 

defined as  

( ) ( )( )∑ ⋅−= xpxpH ln    Eq. 2.5 
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When the concept of entropy applied to images, the distribution of the grey values 

of the image is concerned. The probability distribution of the grey values is the 

number of occurring of each grey value in the image divided by the total number 

of occurrences. An image with small variance in grey values has a low entropy 

value; it contains very little information. Whereas an image contains a lot of 

information, with even distribution of different grey values, the entropy value will 

be high. Entropy also describes the dispersion of a probability distribution. The 

entropy value is low when the distribution has a few dominant peaks and it is 

maximal when all outcomes have an equal chance of occurring.  

 

Image registration adopts this concept as similar measure criterion by measuring 

the information of the joint probability distribution of the images to be registered. 

Woods et al. [20-21] first introduced the idea of using the grey values ratio for 

similarity measure back in the early 1990s. Hill et al. [22] later adapted Woods’ 

measure and proposed the technique of constructing a feature space which is a 

two-dimensional plot showing the combination of grey values in each of the two 

images for all corresponding points. As the alignment of the two images changes, 

the feature space (joint histogram) also changes. When the images are optimally 

registered, the joint histogram will show certain clusters of grey values. As the 

degree of misregistration increases, the joint histogram shows increasing 

dispersion. Figure 2.3 shows an example of a joint histogram of an MR image 

registered with itself. When the images are perfectly registered, the distribution of 

the joint histogram forms on the diagonal as the images are identical (Figure 2.3a). 
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When one of the images rotates, the resulting histogram starts to disperse (Figure 

2.3b). As the degree of rotation increases, the amount of dispersion of the joint 

distribution increases (Figure 2.3c-d).  

 

 

Figure 2.3: Joint Histogram of an MR image with itself  

with different degree of image alignment. [12] 
 

Collignon etal. [23] and Studholme et al. [24] suggested using entropy in image 

registration by measuring the dispersion of the joint probability distribution. 

When the joint distribution has a few dominant peaks (better registered), the 

entropy value is low. As the images deviate away from the proper alignment, the 

entropy of the joint distribution increases. The Shannon entropy definition is 

derived as Eq. 2.6 for a joint distribution. Proper registration of images is 

achieved by obtaining the transformation which minimizes their joint entropy.   

( ) ( )( ).,ln, ,,∑∑ ⋅−= yxpyxpH FIRIFIRI    Eq. 2.6 

 

Shortly after the knowledge of using joint entropy in image registration was 

proposed, Collignon et al. [25,26] and Viola and Wells [27-29] introduced the use 

of mutual information for image registration.  
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The definition of MI is frequently presented in the following forms, where H(.) 

denotes as entropy (Shannon’s entropy).    

MI(RI,FI) = H(RI) – H(RI|FI),    Eq. 2.7 

MI(RI,FI) = H(FI) – H(FI|RI),    Eq. 2.8 

MI(RI,FI) = H(RI) + H(FI) – H(RI,FI),   Eq. 2.9 

where the individual and mutual entropies are calculated as:  

( ) ( )( ),ln)( xpxpRIH RIRI∑ ⋅−=              Eq. 2.10 

( ) ( )( ),ln)( xpxpFIH FIFI∑ ⋅−=              Eq. 2.11 

( ) ( )( ).,ln,),( ,,∑∑ ⋅−= yxpyxpFIRIH FIRIFIRI            Eq. 2.12 

In this thesis, the third definition of MI (Eq. 2.9) is chosen as this definition is 

most closely related to joint entropy and most applicable for image registration 

application. This form of representation consists of the term H(RI,FI), which 

means that maximizing mutual information is related to minimizing joint entropy. 

As recalled in our earlier discussion, the joint histogram of two images’ grey 

values disperses when they are misaligned which result increases of entropy and 

decreases of MI.  

 

To further improve the stability of the measure criterion, Studholme et al. [30] 

proposed a normalized measure of mutual information. The size of overlapping 

part of the images influences the mutual information measures in two ways. As 

the area of overlap decreases and the number of samples decreases, the statistical 

power of the probability distribution estimation is reduced. Also, Studholme et al. 

[9, 30] have shown that the mutual information measure might increase with 
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increasing misregistration. This occurs when the relative areas of object and 

background even out and the sum of the marginal entropies increases, faster than 

the joint entropy. Normalized mutual information (NMI) has addressed these 

issues as it is less sensitive to change in overlap.  

 

( ) ( )

( )FIRIH

FIHRIH
FIRINMI

,
),(

+
=              Eq. 2.13 

 

Mutual information similarity measure enables full automatic registration on a 

large variety of applications as prior segmentation (manual marker identification) 

is not required. It advances other similarity measure particularly in intermodality 

registration, as no assumption is made regarding the nature of relation between 

the image intensities in both modalities.  Holden et al. [31] have demonstrated 

that mutual information-based techniques are, in general, superior to other 

techniques for deformable image registration. A comprehensive survey of MI-

based registration was presented by Pluim et al. [12]. 

 

Interpolation 

The joint image intensity histogram of the image volume is constructed by 

binning the image intensity pairs (RI(x,y,z), FI (T(x,y,z))) for all overlapping 

voxels. In general, T(x,y,z) will not coincide with a grid point (integer coordinate), 

interpolation techniques would be needed to obtain the corresponding image 

intensity value. Nearest neighbor (NN), trilinear (TRI), and partial volume (PV) 
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interpolation schemes have been traditionally used for this purpose. Figure 2.4 

shows the differences of these three schemes.  

 

Figure 2.4: Different Interpolation Schemes (NN, TRI, PV) [8] 

 

Nearest neighbor interpolation is the most straightforward approach, but it is 

insufficient to guarantee subvoxel accuracy. Trilinear interpolation may introduce 

new intensity values which are originally not present in the floating image. This 

effect would lead to unpredictable changes in the marginal distribution of the 

floating image. Partial Volume interpolation, proposed by Collignon [17], was 

specifically designed for creating joint histograms. Instead of computing a 

weighted intensity value and updating a single histogram entry, it uses the same 

weights of trilinear interpolation for fractional updates of the histogram entries 

corresponding to the neighbors of a transformed point. The contribution of the 
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image intensity R(x,y,z) to the joint histogram is distributed over the intensity 

values of all eight nearest neighbors (for 3D case) of T(x,y,z) on the grid of the 

floating image. PV interpolation creates smoother changes of the joint histogram 

for varying transformations and hence a smoother registration function. This 

scheme has been reported to produce the least interpolation error for MI-based 

registration [8, 32]. 

 

Consequently, PV interpolation scheme increases the number of memory accesses 

of the MH accumulation operation by approximately eight times, and floating 

point implementation is required to represent the fractional updates of the 

histogram entries. These differences of the interpolation schemes have direct 

impact on the performance, therefore, special techniques would be considered to 

ease the burden in memory bandwidth and compute resources.   

 

Optimization Algorithm 

Optimization algorithms are used to navigate the search space of transformation 

parameters. They identify the optimal combination of transformation parameters 

that best aligns a pair of images. In the case of multimodality intensity-based 

image registration, the voxel similarity function of the mutual information is the 

objective function to be optimized. The algorithm chosen in our implementation is 

the downhill simplex method.  
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The downhill simplex method is a multidimensional nonlinear optimization 

technique first introduced by Nelder and Mead [33]. This method uses the concept 

of a simplex, which is a special polytope of N+1 vertices in an N-dimensional 

space. The simplex method places an initial simplex in the solution space and 

takes a series of steps to move the vertices towards the local optimum. Shekhar et 

al. [34, 35] and Walimbe et al. [4, 36] have reported successful use of this 

optimization technique for voxel similarity–based image registration. 

 

Hierarchical Volume Subdivision Based Algorithm  

Hierarchical volume subdivision based nonrigid image registration algorithms are 

inherently faster compared to most of the intensity based nonrigid registration 

algorithms. The framework of these algorithms is well adaptable to the 

architecture of parallel computing, which significantly advances the performance 

in computation. This class of nonrigid registration algorithms involves modeling 

the elastic transformation between images as an interpolation of multiple local 

rigid-body registrations [37]. One or both of the images to be registered are 

divided into subimages (subvolumes) which will be registered independently. The 

final non-linear transformation field is generated from the independent 

registration solutions from the subimages using various interpolation techniques.  

 

Most of the earlier proposed volume subdivision based algorithms allows only 

translation-based model for the subvolumes due to the complexity in direct 

interpolation of 3D rotation. With only three degrees of freedom locally, very 
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small subvolumes are needed in order to recover extremely complex 

misalignment. However, similarity measures like MI lack the statistical power for 

robust registration as the subvolume size decreases. Walimbe and Shekhar [4] 

suggested to enhance this model by using the six-parameter rigid body 

transformation model throughout for registration of individual subvolumes and 

incorporating a quaternion-based scheme for direct interpolation of the resulting 

rigid body transformations for generation of the deformation field.  

 

In the case of 3D image registration between two images, the references image 

(RI) and the floating image (FI), this hierarchical subdivision based algorithm first 

recovers the global mismatch between the two images, followed by a series of 

refinement of the local matching. The reference image is divided by performing 

hierarchical octree-based subdivision. The subvolumes at each hierarchical level 

are registered to the undivided floating image. Localized misalignments are 

captured by using the six-parameter translation and rotation transformation 

models at the global (traditional rigid registration) as well as the local levels. The 

concept of the hierarchical registration scheme is presented in Figure 2.5.  

 

 

Figure 2.5: Hierarchical volume subdivion based nonrigid registration 
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Volume subdivision and subvolume registration steps continue until the voxel 

count of an individual subvolume reaches the predefined limit. The final 

deformation field obtained by quaternion-based interpolation of the individual 

subvolume transformations at the final hierarchical level is used to deform the 

floating image to match the reference image.  

 

Technique in Calculating MI for Subvolumes  

As the voxel count of an individual subvolume decreases, the accumulated mutual 

histogram for similarity measure becomes sparse, thus resulting unreliable mutual 

information for robust registration.  A concept of MHrest (MH-rest) is introduced 

to resolve this issue by taking information from all image voxels into the local 

registration problem of a given subvolume. The mutual histogram is compiled not 

only with the voxels of the given subvolume, but with the sum of two mutual 

histograms; MHsubvlume and MHrest. MHsubvlume is compiled with the voxels of the 

subvolume being registered, and MHrest is calculated with all the remaining voxels 

of the image based on the transformations obtained from the preceding 

hierarchical level. For a given subvolume registration, MHsubvlume will be evolved 

as a function of the subvolume transformation model while MHrest remains 

constant during the iterative optimization process as it is independent from the 

current hierarchical level. The resulting MI from the combined MH is computed 

over the entire image with local variations corresponding to the subvolume under 

optimization. This approach increases the statistical power of the calculated MI 
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and provides additional guidance to the registration process. Eq. 2.14 summarizes 

this process. The contribution of current subvolume p at level i to the MH is 

computed based on the candidate transformation Tp
i. The contribution from the 

rest of the subvolumes to the MH remains constant during the optimization 

process.  

ppp st
i

Subvolume
i

Total
i

MHMHMH Re+=             Eq. 2.14 

( )i

pSubvolume
i

TAccumulateMH
p

=             Eq. 2.15 

( )1
Re

−
=

i

p
st

i
TAccumulateMH

p
            Eq. 2.16 

 

Graphic Processing Unit (GPU) 

A graphics processing unit (GPU) is best known for its compute-intensive and 

high parallel computation capability for computer graphics applications. Fueled 

by the desire for real time, high-definition 3D graphics, GPUs have evolved into a 

highly parallel, multithreaded, multicore processor with tremendous 

computational power and very high memory bandwidth [38]. With the latest 

improvement in floating-point performance and increases in programmability 

flexibility, GPUs have also become the processor of choice for accelerating many 

non-graphics data parallel applications; especially favorable for numerically 

intensive scientific applications. Nieuwpoort and Romein introduce GPUs to radio 

astronomy signals correlation applications [39]. Levine et al [40] expand the GPU 

compute capacity to modular dynamic simulation acceleration applications and 

attain twenty times performance improvement compared to the use of single CPU.  

In this thesis, we focus on the GPUs developed by NVDIA and build our 
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knowledge of CPU-based image registration algorithm on the latest NVDIA GPU 

architecture.  

 

GPU outperforms CPU in compute capability by devoting more transistors to its 

arithmetic logic units (ALUs) for data processing at the expense of reduced data 

caching and flow control (Figure 2.6). This makes the GPU architecture 

especially well suited for addressing problems that can be expressed as data-

parallel programming model. The high arithmetic intensity in data-parallel 

computations can effectively hide the memory access latency even though the 

capacity of data caching is comparatively less sufficient in GPU architecture.   

 

Figure 2.6: The GPU Devotes More Transistors to Data Processing [38] 

 

CUDA Overview 

Compute Unified Device Architecture (CUDA) is a general-purpose parallel 

computing hardware and software architecture developed by NVIDIA. This 

architecture introduces a new parallel programming model and instruction set 

architecture, which leverages the parallel compute engine to solve many complex 

computation problems in a more efficient way on a GPU than on a CPU. CUDA 
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programming model introduces abstractions, such as a hierarchy of thread groups, 

shared memories, and barrier synchronization, to cover fine-grained parallelism 

(thread parallelism) to coarse-grained parallelism (task parallelism). These 

abstractions guide programmers to partition their problems into coarse sub-

problems. Each sub-problem can be solved in parallel by groups of threads 

(thread blocks). Each block of threads can be scheduled on any of the available 

processor cores with no specific constraint on execution sequence. Multiple sub-

problems can be computed in series or in parallel depending on the version of the 

GPU architecture. A CUDA program therefore can be seemingly executed on any 

number of processor cores. This allows applications to transparently scale their 

parallelism to leverage the increasing number of processor cores.  

 

CUDA abstracts the parallel programs to be run on the GPU as kernels. A kernel 

executes in parallel across a set of parallel threads which are organized in a grid 

of user-defined 1D/2D array of thread blocks. A thread block consists of a set of 

concurrently executing threads which can cooperate among themselves through 

per-block shared memory space and barrier synchronization. A grid of thread 

blocks shares results in the global memory space. Figure 2.7 shows the structure 

of the thread hierarchy.  
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Figure 2.7: Thread Hierarchy [38] 

 

The CUDA hardware architecture is built around a scalable array of multithreaded 

Streaming Multiprocessors (SMs). Each SM consists of 8 to 32 Scalar Processors 

(SPs), 2 to 4 special function units (SPU) for transcendental instructions, an 

instruction unit and on-chip shared memory. Each CUDA processor has a fully 

pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU). The 

total number of scalar processors and on-chip shared memory varies among 

generations of GPU architectures. Figure 2.8 illustrates the hardware model of the 

multiprocessor.   
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Figure 2.8: CUDA Hardware Model [38] 

 

Programming Model 

A typical CUDA implementation consists of the following steps (Figure 2.9). 

First, memory is allocated on the GPU (device). The CPU (host) then transfers the 

data from the host to the device and initialized the device memory if required. 

Next, the host determines the execution configure, i.e. the number of thread 

blocks and block size, and invokes the kernels. The device executes the kernels 

and stores the result in the device memory. When the computation is completed, 

the resulting data is transferred from the device to the host. 
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Figure 2.9: CUDA Programming Model 

 

When a CUDA program on the host CPU invokes one or more kernel grids, the 

thread blocks of the kernel grids are distributed to the available streaming 

multiprocessors with sufficient memory resources. The threads of a thread block 

execute concurrently on scalar processors of a single steaming multiprocessor, 

and multiple thread blocks can execute on one multiprocessor if resource is 

available. Figure 2.10 shows the relationship between threads and processors in 

the CUDA architecture.  

 

A multiprocessor is designed to execute hundreds of threads concurrently. To 

manage such a large number of threads running several different programs, the 

multiprocessor employs a new architecture called SIMT (Single-Instruction, 

Multiple-Thread) architecture. The multiprocessor maps each thread to one scalar 

processor, and each thread executes independently with its own instruction 

address and register state. SIMT enables programmers to write thread-level 

CPU (Host) 

Host 

Memory 

GPU (Device) 

Global 

Memory 
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parallel code for independent, scalar threads, as well as data-parallel code for 

coordinated threads. 

 

Figure 2.10: CUDA Software and Hardware Architecture Relationship 

 

The multiprocessor manages, schedules, and executes threads in groups of 32 

parallel threads called warps. A half-warp refers either to the first or the second 

half of a warp. When one or more thread blocks are assigned to a multiprocessor, 

the processor partitions the threads into warps, which will be scheduled by the 

warp scheduler for execution. A warp executes one common instruction at a time; 

therefore it reaches the most efficient performance when all 32 threads of a warp 

follow the same execution path and access memory in nearby addresses. When 

some of the threads of a warp diverge at a conditional branch, the warp serially 
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executes the different branch paths, then converges back to the same execution 

path when all the paths complete.  

 

The number of blocks and warps that can reside and be processed together on the 

multiprocessor depends on the number of registers and shared memory available 

on the multiprocessor and the amount of registers and shared memory used by the 

kernel. The multiprocessor also has a limit on the number of resident blocks and 

the number of resident warps. These limitations and the amount of memory 

resources vary among generations of CUDA architecture. In this thesis, our 

discussion will focus on the latest CUDA compute architecture code named 

Fermi
TM.  

 

Fermi Architecture  

The Fermi architecture is NVIDIA’s latest generation of CUDA architecture. 

Building upon the knowledge from the prior generations of processors, the new 

architecture has taken new approaches in design and achieved significant 

improvement in compute power through architectural innovations. With the 

increases in programmability and compute efficiency, the Fermi architecture is 

known to be the world’s first computational GPU [41]. 
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To target the performance in programmability and compute efficiency, Fermi 

architecture introduces the third generation streaming multiprocessor. The Fermi 

based GPUs consist of up to 16 Streaming Multiprocessors (SMs). Each SM 

consists of 32 Scalar Processors (SPs); four fold increases compared to the prior 

generation, and 4 special function units (SFU). This features a total of 512 SPs per 

GPU (Figure 2.11). To achieve near peak hardware performance, two warp 

schedulers and two instruction dispatch units are introduced to allow two warps to 

 

 
 

Figure 2.11: Fermi Streaming Multiprocessor [41] 
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be issued and executed concurrently. Double precision floating point arithmetic 

performances have also advanced up to 16 double precision multiply-add 

operations per SM, per clock, translated to 8x performance over the previous 

generation.  64KB of RAM with configurable partitioning of shared memory and 

L1 cache further extends the data sharing capacity among threads of the same 

thread block to greatly reduce off-chip traffic.  

 

Memory subsystem of the Fermi architecture also demonstrates major 

improvements on memory hierarchy, called Parallel DataCache hierarchy, and 

atomic memory operation performance. The Parallel DataCache hierarchy, which 

consists of per-SM configurable L1 caches and unified L2 cache, provides a 

single unified memory request path for loads and stores and greatly improves 

performance over direct access to DRAM. Atomic memory operations allows 

concurrent threads to correctly perform read-modify-write operations on shared 

data structure which is one of the important elements in parallel programming. In 

the new architecture, more atomic units are available in hardware. Along with the 

addition of the L2 cache, atomic operations performance is up to 20x faster 

compared to the prior generation architecture.  

 

In this thesis, our implementation and analysis result is based on the NVIDIA 

GeForce GTX 480 device. Table 2.1 highlights the hardware specification of this 

device along with the previous generation of GTX 285.  
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GeForce GTX 285 GeForce GTX 480 

Transistor count 1.4B 3.0B 

Process node 55 nm @ TSMC 40 nm @ TSMC 

Core clock 648 MHz 700 MHz 

Memory clock 1300 MHz 924 MHz 

Memory transfer rate 2600 MT/s 3696 MT/s 

Memory bus width 512 bits 384 bits 

Memory bandwidth 166.4 GB/s 177.4 GB/s 

CUDA processors 240 480 

SM count 30 15 

Special Function Units (per SM) 2 4 

Shared Memory (per SM) 16 KB 

Configurable 48 KB or 

16 KB 

L1 Cache (per SM) None 

Configurable 16 KB or 

48 KB 

L2 Cache None 768 KB 

Global Memory 1024 MB 1536 MB 

Peak single-precision FLOPS 0.708 Tflops 1.35 Tflops 

Peak double-precision FLOPS 88.5 Gflops 168 Gflops 

 

Table 2.1: GeForce GTX285 and GTX480 Hardware Specification 

 

Related Work 

The increasing programmability and compute efficiency of the GPU architecture 

has attracted many researchers in adapting this computing model to registration 

algorithms. Earlier work in this area was restricted in mapping the programs (non-

graphic applications) to graphics processing pipeline in terms of vertex and 

fragment shaders. This approach suffers from substantial programming overhead 

and results in modest performance improvements over CPU-based 

implementations.  
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Latest software platforms for GPU programming, NVIDIA’s CUDA and 

AMD/ATI’s Brook+, have drastically changed the programming paradigm to 

resolve this limitation by increasing the programmability. The programming 

environment is C/C++-like and it is easy to be upgraded for future generations of 

hardware. These programming model and architectural changes enable GPUs to 

general-purpose programming for various non-graphic applications. As 

NVIDIA’s CUDA has been exclusively adopted by the research community, the 

papers referenced in this thesis are all developed based on CUDA.  

 

GPUs are equipped for speeding up geometric transformations part of the image 

registration process, so the computation efficiency of similarity measures 

becomes a critical knob of the overall performance. For single-modality similarity 

measure implementation, the algorithm falls naturally onto the parallel 

architectures and the entire registration process can be efficiently parallelized. 

The input data can be processed independently, ideal for the SIMT architecture, 

with only a final reduction step to generate the result. Plishker et al. [42] have 

reported a CUDA implementation of SSD based rigid and nonrigid registration. 

Muyan-Ozcelik et al. [43] have reported a CUDA implementation of Demons 

deformable registration algorithm.  

 

Compared to single modality image registration, similarity measures for multi-

modality image registration require statistical measure like mutual information 
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(MI) is not a trivial translation on GPUs. Efficient mutual histogram compilation 

scheme on GPUs previously proposed have involved special handling on data 

distribution, data alignment, subsampling, memory/cache hierarchy, etc.. 

However, performance improvement usually comes in the cost of reduced 

accuracy by using smaller sample size (image voxels subsampling) or fewer 

histogram bins (less precise image intensity). Lin and Medioni [44] presented an 

implementation of Viola’s [18] MI approximation method based on stochastic 

sampling of image intensities and Parzen windowing. Shams et al. proposed an 

approximate histogram computation method to speed up MI computation [45]. 

Without tolerating the lost in registration accuracy, Sham et al [46] later presented 

the ‘sort and count’ method for histogram computation on the entire data set. This 

method sorts blocks of data with a parallel sort algorithm before writing to the 

memory to ease the need for synchronization or atomic operations.  

 

A comprehensive survey of MI-based registration on GPU was presented by 

Shams et al. [37]. Table 2.2 highlights the recently reported results of rigid and 

nonrigid MI-based image registration implementations. As the GPU architecture 

has been rapidly evolving in the past few years, inter-architecture performance 

comparison of reported results becomes challenging. Research groups generally 

benchmark their implementations with the latest available GPU architecture 

compared with the CPU implementation, but rarely compared across GPU 

platforms. Hardware, software, and compiler improvement in different versions of 

the GPU architectures would significantly alter the performance results. Besides, 
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most groups report their speedups for the entire registration algorithm and for 

specific data sets. Comparison of different results is further complicated as other 

techniques might have been implemented for further speed up; for example multi-

resolution scheme, specific convergence criteria for optimization algorithm, etc.. 

To better present the performance results, normalized results are given in terms of 

average execution time in milliseconds per mega-voxel per iteration of the 

optimization algorithm (ms/MVoxel/itr).  

Group Hardware Pref. Techniques 

SHAMS [45] 

GTX 8800  

(16 MP/ 128 CORES)  6.17  MI ESTIMATED BY BIN SAMPLING 

LIN [44] 

GTX 8800  

(16 MP/ 128 CORES)  – MI ESTIMATED BY SAMPLING  

SHAMS [46] 

GTX 280  

(30 MP/ 240 CORES)  4.06 

MI COMPUTED USING BITONIC SORT 

AND COUNT 

(a) 

 

Group Hardward Pref Technique 

VETTER [48] GTX 7800  2860 

COMBINED MI AND KULLBACK-LEIBLER 

MEASURE  

FAN[49] 

GTX 8800 ULTRA  

(16 MP/128 CORES)  324 

COMBINED MI AND KULLBACK-LEIBLER 

MEASURE  

(b) 

 

Table 2.2: Summary of Recently Reported GPU/MI-based Image Registration  

 (a) Rigid (b) Nonrigid Image Registration [47] 

 

For rigid image registration, the sort and count technique proposed by Sham et al 

has presented the most significant performance improvement. While it performs 

well on registrations with nearest-neighbor interpolation (each input data point 

results in one output data), the performance gains degrades for registrations with 
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partial volume interpolation (each input data point results in eight output data) 

which is a crucial component for MI-based nonrigid registration. The execution 

time of the sort and count operation on the larger output data set dominates the 

overall registration runtime. For nonrigid registration, the solutions proposed by 

Vetter et al [48] and Fan et al [49] reported noticeable speedup over the CPU 

implements, however, the performances is still far from acceptable for real-time 

applications. 

 

In addition, the latest GPU architecture, for example NIVIDA Fermi, continues to 

report improvements in both hardware and software critical for general purpose 

computing. The new memory hierarchy in particular allows efficient data caching 

which shows significant performance improvement in atomic update operations.   

These technological improvements do not only scaling the throughput of the 

existing implementations; they also give researchers the flexibility in exploring 

innovative approaches for better designs and implementations of parallel image 

registration algorithms.  

 

Validation 

The GPU-based implementation presented in this thesis will be compared with a 

CPU and a FPGA implementation in terms of execution time and registration 

accuracy. Table 2.3 shows the hardware used for validation. To better present the 

speedup without the dependence on the size of images involved and the number 
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of optimization iterations, the execution time is normalized and averaged in 

milliseconds for a single iteration for processing 1,000,000 voxel pairs 

(ms/MVoxel/itr).  

GPU GTX480, 1GB Memory, 15 SMs, 480 SPs, 48KB 

CPU (host) Intel Xeon 2.33GHz, 4GB RAM 

FPGA Altera Stratix II FPGA 200MHz , 1GB RAM 

 

Table 2.3: Hardware Specification 

 

Five artificially deformed CT-CT image pairs are used as test cases. The known 

deformation fields of these testsets are used as reference. The RMS of the 

resulting deformation fields from different implementations will be computed 

against the reference data. 
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Chapter 3: MI-based Image Registration on GPU 

This chapter presents a GPU-based implementation for mutual information based 

rigid image registration. First, we discuss previously reported works and their 

limitations. Next, we present various considerations of our implementation to 

show how our implementation maps rigid registration algorithm in general to the 

GPU architecture. This implementation approach not only can fully exercise the 

GPU compute capacity, but also retain the scalability. Finally, we compare the 

performance of this implementation with earlier reported result.   

 

Motivation  

The maximization of mutual information is the core computation in both rigid and 

nonrigid intensity-based image registration. The most common approach to 

computing MI is mutual histogram-based approach. The mutual histogram 

accumulation process requires intensive computation power and excessive 

memory accesses. Various multiprocessor solutions (multicore processor, CPU 

cluster and GPU) have been proposed over the years to accelerate the 

parallelizable computation; however, these solutions have not fully addressed the 

limitations on memory access and thus provide moderate acceleration at best.  

 

Mutual information measures the similarity in a pair of images by first 

constructing the mutual (joint) histogram and then determining the joint and 

individual probability distribution functions (pdfs) and entropies. In the 

maximization process, the result forms the input to the optimization engine that 
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computes the next set of candidate registration parameters. The process repeats 

until the maximum of mutual information is reached.  

 

In every iteration of the optimization algorithm, every voxel in the reference 

image is mapped to one voxel or a group of voxels, depending on the 

interpolation scheme, in the floating image. Based on the intensity of voxels, one 

or several bins of the mutual histogram are updated. For an image of size n, the 

computation time is on the order of O(n), which is also the order of the number of 

memory accesses. 

 

Previous multiprocessor solutions, CPU cluster in particular, accelerate this 

process by dividing the images into a number of subimages (subvolumes) and 

distributing the data across the cluster (Figure 3.1). Each processor is responsible 

for processing one part of the image while managing its own partial mutual 

histogram. These individual partial mutual histograms are sent back to the host 

machine at the end of the process and combined into a single mutual histogram. 

The speedup of this approach is generally limited by the number of processors in 

the cluster as the number of parallelizable subimages is constrained by the number 

of processors and each processor processes the subvolumes voxels in series. As 

the number of subvolumes goes up, the number of partial mutual histograms, 

which needed to be consolidated at the end of the process, also goes up.  
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Figure 3.1: Block distribution scheme for CPU cluster implementation with 

distributed partial mutual histograms 
 

With the parallel nature of the voxel coordinate transformation computation, GPU, 

which offers massive parallel compute power, appears to be a suitable platform 

for the MI problem. Ideally, with the GPU architecture, thread blocks can be 

visualized as CPUs in the cluster. The image is again divided into a number of 

subvolumes and each thread block is assigned a specific subvolume (Figure 3.2). 

Voxels in each subvolume are processed in parallel by the threads of the assigned 

thread block. Depending on the number of threads available in each block, each 

thread processes one or more voxels until all voxel in the subvolume are covered. 

Results are updated onto the partial mutual histogram residing at each block 

(shared memory). The partial mutual histograms will eventually be combined into 

a single mutual histogram in the main memory (global memory).  
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Figure 3.2: Block assignment scheme for GPU implementation with  

distributed partial mutual histograms in shared memory 

 

Although the number of threads available is virtually unlimited, the amount of 

shared memory available for each thread block is constrained by the current 

technology. Medical images are either natively 8-bit or converted down to 8 bits 

for intensity-based image registration. This translates to a mutual histogram size 

of 256 x 256 bins, which far exceeds the available shared memory size offered by 

the current GPU architecture for accumulating partial mutual histogram in a 

thread block, regardless of the data type.  

 

An obvious alternative is to store the partial histograms directly in the global 

memory instead of the shared memory (Figure 3.3). The drawback is the global 

memory access latency penalty ranges from 200 to 300 cycles. Besides, every 

block has a dedicated partial mutual histogram in the global memory; the number 

of blocks is now limited by the global memory size which hinders the scalability 

of this approach.  
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Figure 3.3: Block assignment scheme for GPU implementation with  

partial mutual histograms in global memory 

 

Depending on the GPU architecture, atomic update can be a feasible solution for 

easing the constraint caused by the global memory size. Instead of assigning a 

dedicated partial mutual histogram for each thread block, all thread blocks would 

update a single histogram in the global memory. Atomic update operations 

generally exhibit longer latency. The latest GPU architecture has attempted to 

resolve this performance bottleneck by introducing true cache hierarchy. 

Significant speedup in atomic update operations is reported compared to the 

previous generation of the architecture. With proper interleaving of compute and 

memory access operations, the memory access latency can be hidden from the 

overall execution time.  

  

Some applications have sacrificed registration accuracy for performance by either 

decreasing the number of bins of the mutual histograms to fit a smaller version of 

the partial mutual histograms in the shared memory, or decreasing the number of 

samples (image voxels) in order to decrease the number of mutual histogram 
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accesses to the global memory. These alternatives might seem applicable for some 

applications, but are not practical for MI-based nonrigid image registration and 

are not considered in this work as a high degree of accuracy is crucial for eventual 

clinical use.   

 

Philip [50] proposed a bit-slicing solution, which subdivides the images by voxel 

intensity, and consequently subdivides the mutual histogram. With this approach, 

each thread block is assigned to reference image voxels of the same intensities; 

therefore, only one “slice” of the mutual histogram (256 bins in the case of 8-bit 

intensity images) is needed to be maintained in the shared memory. The bit-

slicing solution addresses the limitation in shared memory and the time overhead 

in the mutual histogram combination step; however, it requires fast preprocessing 

and load balancing support. When the intensity distribution is unbalanced, 

multiple blocks would be required to process voxels of a single intensity and 

mutual histogram combination step still cannot be avoided.  

 

These proposed solutions addressed some of the issues in the lengthy MI 

computation process but have not yet fully exploited the compute capability of the 

GPU, which is architecturally different from the traditional CPU or CPU-cluster 

architecture, and integrated that into their algorithms. The constraints in the 

number and the size of the thread blocks drafted in these solutions limited the 

scalability of these algorithms. As a result, only moderate acceleration was 

achieved with the growing trend of multicore architectures.  
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GPU Implementation of Rigid Registration 

We have first explored the fundamental design considerations based on the basic 

rigid image registration problem. In rigid registration, the entire 3D image is 

transformed with the same transformation matrix and the computation of each 

element is totally independent from other elements. If unlimited number of 

threads and compute capacity are available, all voxels could potentially be 

processed concurrently. This observation leads to the following proposed solution. 

 

Voxel-to-Thread Approach  

To better utilize the GPU capacity for computation acceleration problem, 

maximization of parallelism and minimization of memory access are the two 

fundamental goals we want to achieve. One of the crucial decisions in achieving 

these goals is to determine the proper image subdivision and thread block 

allocation schemes to better balance the throughput and memory usage.  

 

As discussed previously, designers typically approach this problem taking the 

global memory limitation of fitting the mutual histograms as priority. As a result, 

only small number of blocks is initialized with the maximum number of threads 

allowable to iterate through the assigned portion of the subdivided image. We 

approach this problem from the opposite direction by taking the benefit of the 

enhanced atomic update operations in the latest architecture. Instead of limiting 
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Figure 3.4: Voxel-to-Thread based thread block assignment scheme 

ourselves by the memory usage of storing the mutual histograms, we maximize 

the parallelism of the algorithm by launching as many threads as the number of 

voxels in the image. Each thread is dedicated to process only one voxel in the 

reference image. Instead of maintaining a partial mutual histogram of any form in 

each block and having each thread to immediately update the result onto its local 

histogram, each thread will simply write the resulting bin index to an array 

(Figure 3.4). Therefore, the size of the thread blocks is solely determined by the 

number of registers and shared memory used by each thread for reading the image 

voxel intensities and storing the resulting bin indices. The size of the thread 

 

 

 

 

 
Figure 3.5: Voxel-to-Thread based blocks assignment scheme 

Bin Index Array in Shared Memory 
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blocks is equivalent to the size of the subimage blocks in this approach (Figure 

3.5). Therefore, the larger the thread block size, the fewer is the total number of 

thread blocks.  

 

Although it seems reasonable to define the thread block size simply based on the 

maximum technology limits (1024 threads for Fermi) and memory usage, the 

balance between the number of threads per block and the overall number of 

blocks should be considered. Larger block size might not result in optimal 

performance. We have examined the effect in performance with various block 

sizes ranging from 32 threads (one warp) to 1024 threads. For rigid registration 

with nearest-neighbor interpolation, specifying 128-threads per block results in 

optimal performance (Table 3.1). Thread block dimensions also slightly alter the 

overall performance. As GPU memory access is warp-based, better block 

dimension definition could lower the number of memory accesses. Table 3.2 

shows four different block dimension definitions and the associated registration 

runtime. Blocks of 8 x 4 x 4 show slight performance gain in runtime.  

 

Number of 

Threads Case 1  Case 2  

(sec) 

Case 3 Case 4  Case 5 

32 6.66 5.36 6.56 6.94 8.37 

64 4.97 3.99 4.90 5.17 6.22 

128 4.83 3.86 4.75 5.02 6.01 

256 4.93 3.95 4.86 5.13 6.15 

512 5.06 4.05 4.98 5.26 6.32 

1024 5.39 4.33 5.33 5.62 6.75 

 

Table 3.1: Thread Block Size vs Registration Runtime (sec) 
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x Y z Case 1  Case 2  

(sec) 

Case 3 Case 4  Case 5 

8 4 4 4.76 3.81 4.67 4.95 5.94 

16 4 2 4.86 3.87 4.79 5.05 6.05 

16 8 1 4.82 3.84 4.75 5.01 6 

32 4 1 4.92 3.93 4.84 5.11 6.09 

 

Table 3.2: Thread Block Dimension vs Registration Runtime (sec) 
 

Warp Level Global Memory Access Reduction 

The resulting bin indices from each thread block will then be updated to the 

mutual histogram residing in the global memory. If we were to follow the naïve 

approach and let every thread accumulate its bin index onto the global histogram, 

the number of memory accesses will be on the order of O(n). Since the resulting 

bin index of each thread is totally random, and the threads access the global 

memory in warp base, the naïve approach will also cause memory update conflict 

(Figure 3.6). As a result, memory latency dominates the overall runtime and 

significantly impairs the performance.  

 

 

 

 

 

 

 

Figure 3.6: Thread blocks Update Mutual Histogram in Global Memory 

Mutual Histogram in Global Memory 

Thread Block 

Bin Index Array in  

Shared Memory 

Threads 



51 

 

Shams et. al [46] have proposed the ‘sort and count’ algorithm to address this 

issue (Figure 3.7). This algorithm suggested sorting the elements of the resulting 

array of bin indices and further consolidating by counting the number of same 

appearances in the shared memory before updating the values to the global 

memory. Table 3.3 shows the execution time with and without applying the sort 

and count technique. The result shows a factor of 3.3x improvement with the sort 

and count technique.  

 

 

 

 

 

 

Figure 3.7: Thread blocks Update Mutual Histogram in Global Memory  

with the Sort and Court Technique 
 

 

Case 1  Case 2  

(sec) 

Case 3 Case 4  Case 5 

(ms/MVoxel/iter) 

Normalized 

with S&C 21.71 16.84 21.37 22.29 26.93 9.24736 

without S&C 6.49 5.24 6.4 6.78 8.18 2.80607 

 

Table 3.3: Execution with and without ‘sort and count’ (sec),  

and average normalized result (ms/MegaVoxel/iter) 
 

This approach significantly reduces the number of global memory accesses if the 

distribution of the mutual histogram is dense, which would have caused server 

update conflicts without reducing the number of accesses. However, in the case of 

sparse mutual histogram distribution, the sort and count algorithm will result in 

Mutual Histogram in Global Memory 

Bin Index Array  

in Shared Memory 
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very minimal improvement in performance. In addition, the runtime of the sort 

and count operation is not unnoticeable given the most optimal parallel sort 

algorithm (e.g., bitonic sort which runs in O(log
2
(n)) time). The timing trade-off 

between the sort and count operation and global memory access latency has to be 

properly addressed.  

 

Sort Group 

In our implementation, we have considered the warp nature of the GPU  

architecture and suggested the concept of sort group (Figure 3.8). While GPU 

memory access  

is executed in warp based, we suggest applying warp based data reduction (as 

opposed to thread block based) and only consolidating the elements in the 

resulting array in a group size of 16 (half warp) or 32 (full warp). This approach 

guarantees that the runtime of the sorting operation is quick (16 as opposed to 

1024, the maximum number of allowable threads per block) and at the same time 

the memory access latency is reduced by a significant magnitude.  

 

 

 

 

 

Figure 3.8: Thread blocks Update Mutual Histogram in Global Memory  

with Sort Groups 
 

Mutual Histogram in Global Memory 

Bin Index Array in Shared Memory 

Sort Group 1 Sort Group 2 
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This hypothesis has been proven by the experimental result showed in Table 3.4 

and Figure 3.9. In this experiment, a block size of 128 threads was defined. 

Without any consolidation preformed on the bin index array, rigid registration 

takes 16.84 to 26.93 seconds depending on the number of optimization iterations., 

normalized to 9.25ms/MVoxel/itr. With small degree of consolidation, sort group 

size of 2, the runtime reduced by 40%. Sorting the entire thread block as the ‘sort 

and count’ technique suggested, 128 threads in this case, is shown not to be 

optimal as the time taken by the sorting operation dominates and exceeds the 

memory access latency. With the group size of 16, the size of a half warp, the 

registration process exhibits the shortest runtime of 2.04542ms/MVoxel/itr.  

 

Sort group  

size Case 1  Case 2  

(sec) 

Case 3 Case 4  Case 5 

(ms/MVoxel/iter) 

Normalized  

1 21.71 16.84 21.37 22.29 26.93 9.24736 

2 12.38 9.65 12.17 12.73 15.38 5.28009 

4 7.86 6.18 7.74 8.1 9.77 3.36103 

8 5.72 4.53 5.62 5.92 7.13 2.4518 

16 4.76 3.8 4.68 4.94 5.94 2.04542 

32 4.8 3.86 4.73 5.01 6.03 2.07166 

64 5.13 4.15 5.06 5.35 6.46 2.21785 

128 6.49 5.24 6.4 6.78 8.18 2.80607 

 

Table 3.4: Sort and count experiment with different group size (sec),  

and average normalized result (ms/MegaVoxel/iter) 
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Figure 3.9: Sort and count experiment with different group size 

 

Quick Sort and Merge 

The sort and count technique combined with the concept of sort group 

significantly reduces global memory access conflict. With the proper selection of 

the sort group size, the runtime performance achieves a fact of 4.5x speedup. 

However, the performance improvement is scaled down almost linearly when it is 

applied to registration with partial volume interpolation.  

 

In nearest-neighbor interpolation, every image voxel in the reference image voxel 

is mapped to one nearest-neighbor in the floating image which results at most one 

intensity value. However, in partial volume interpolation, each image voxel, 

which is mapped to eight nearest neighbors (for 3D image), contribute 8x times 

the number of entries to the histogram (Figure 3.10). As the size of the bin index 

array is 8 times larger than the NN interpolation implementation, the overall 

runtime scaled almost linearly. Table 3.5 shows the execution time for the same 
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set of case images registered with partial volume interpolation. Note that 

registration with different interpolation scheme will alter the convergence path 

during optimization which will result in different number of iterations and total 

runtime. 

 

 

 

 

 

Figure 3.10: Update PV-Rigid Registration Mutual Histogram entries in Global 

Memory with Data Consolidation 
 

 Interpolation Case 1 Case 2 

(sec) 

Case 3 Case 4 Case 5 

(ms/MVoxel/iter) 

Normalized 

NN 4.76 3.8 4.68 4.94 5.94 2.04542 

PV 29.28 36.39 21.37 26.99 25.59 10.58965 

 

Table 3.5: Registration Runtime with NN and PV interpolation (sec), 

and average normalized result (ms/MegaVoxel/iter) 
 

Here we propose a more efficient solution to consolidate the data in the shared 

memory based on the distribution of the data generated in partial volume 

interpolation. As mentioned before, each image voxel in the reference will map to 

eight voxels in the floating image translated to eight entries to the mutual 

histogram. Since these eight entries are generated from the same reference image 

voxel, by construction, they belong to the same 256-bin sub-histogram and can be 

easily consolidated before being sorted with other entries in the bin index array. A 

quick serial sorting algorithm can be used to efficiently sort eight entries in the 

Mutual Histogram in Global Memory 

Bin Index Array in Shared Memory 

8-NN of Voxel 1 8-NN of Voxel 2 
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registers before being written to the shared memory. Figure 3.11 illustrates the 

idea pictorially. Table 3.6 shows the execution time improvement compared with 

the shared memory level sort and count technique. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Update PV-Rigid Registration Mutual Histogram entries in Global 

Memory with Register-level Data Consolidation 
 

  Case 1 Case 2 

(sec) 

Case 3 Case 4 Case 5 

(ms/MVoxel/iter) 

Normalized 

S&C 29.28 36.39 21.37 26.99 25.59 10.58965 

Reg-level Sort 14.51 18.07 10.58 13.4 12.68 5.250762 

 

Table 3.6: Comparison of Registration Runtime with ‘Sort and Count’ and 

Register-level Sort Technique (sec), and average normalized result 

(ms/MegaVoxel/iter) 
 

Multiple partial histograms  

When the distribution of the mutual histogram is dense, threads from multiple 

blocks try to update the same group of elements in the histogram at the same time. 

Mutual Histogram in Global Memory 

Thread Registers 

8-NN of Voxel 1 

 

Thread Registers 

8-NN of Voxel 2 

Register level 

consolidation 

Bin Index Array  

in Shared Memory 
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The overall performance would be impaired when the histogram is updated 

through atomic add. To further reduce the memory delay caused by atomic update 

in specific, multiple partial mutual histograms are allocated in the global memory 

space to distribute the burden in memory bandwidth. The blocks are randomly 

assigned to one of the partial mutual histogram. The final mutual histogram is 

produced at the end by combining these partial mutual histograms using parallel 

reduction algorithm. Table 3.7 shows the impact on resulting NN-based 

registration runtime with allocating different number of partial histograms. As the 

size of the dataset increases in the PV-based registration, allocating multiple 

partial mutual histograms shows significant improvement of about 35% in the 

best case. Table 3.8 shows that using 8 partial mutual histograms presents a 

desirable balance between the performance gain and memory usage.  

 

Number of  

Partial Histogram Case 1  Case 2  

(sec) 

Case 3 Case 4  Case 5 

(ms/MVoxel/iter) 

Normalized 

1 4.76 3.82 4.68 4.94 5.94 2.04757 

2 4.4 3.57 4.37 4.62 5.58 1.91129 

4 4.35 3.51 4.29 4.54 5.48 1.88004 

8 4.32 3.49 4.26 4.52 5.44 1.86828 

16 4.32 3.5 4.27 4.52 5.44 1.87023 

32 4.37 3.52 4.31 4.57 5.49 1.88777 

64 4.44 3.6 4.4 4.65 5.61 1.92514 

 

Table 3.7: Number of Partial histograms vs. Runtime of Rigid Registration with 

NN-interpolation (sec), and average normalized result (ms/MegaVoxel/iter) 
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Number of  

Partial Histogram Case 1 Case 2 

(sec) 

Case 3 Case 4 Case 5 

(ms/MVoxel/iter) 

Normalized 

1 24.77 31.18 18.08 22.89 21.6 8.982152 

2 16.98 21.26 12.39 15.69 14.85 6.153763 

4 14.78 18.43 10.78 13.66 12.93 5.352159 

8 14.51 18.07 10.58 13.4 12.68 5.250762 

16 14.48 18.01 10.54 13.36 12.64 5.234684 

32 14.57 18.1 10.6 13.43 12.71 5.263665 

64 14.37 17.87 10.46 13.25 12.56 5.195398 

 

Table 3.8: Number of Partial histograms vs. Runtime of Rigid Registration with 

PV-interpolation (sec), and average normalized result (ms/MegaVoxel/iter) 

 

Discussion  

In this chapter, we have discussed several design considerations to efficiently 

translate the compute intensive image registration problem onto the GPU 

architecture. Our implementation maps the image voxel space to the GPU thread 

block space to maximize the number of threads and thread blocks. With a large 

number of blocks in GPU implementation, part of the memory access latency 

would be hidden from the compute operation resulting better overall performance. 

 

We have compared the GPU-based rigid registration implementation with the 

CPU and the FPGA implementations. Table 3.9 shows the registration timing 

performance of the five CT-CT test cases on three different platforms. The GPU 

implementation outperforms the CPU implementation and the FPGA 

implementation by about 30 times and 3 times respectively. The GPU solution 

converged to the exact result as the CPU implementation as the GPU used double-

precision arithmetic. The FPGA implementation, however, uses a pseudo-double 

precision solution and 7-bit image intensity due to hardware limitation, the 
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resulting registered images are slightly different from those of the other two 

implementations. 

Platform Case 1  Case 2  

(sec) 

Case 3 Case 4  Case 5 

(ms/MVoxel/iter) 

Normalized 

CPU 416.73 519.17 303.21 381.72 362.43 150.36 

FPGA 45.93 54.54 55.03 38.74 45.37 16.6338 

GPU 14.51 18.07 10.58 13.4 12.68 5.25076 

 

Table 3.9: Rigid Registration Timing Result with CPU, FPGA, and GPU (sec), 

and average normalized result (ms/MegaVoxel/iter) 

 

 

Figure 3.12: Rigid Registration Timing Result with CPU, FPGA, and GPU (sec) 
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Figure 3.13: Average Normalized Rigid Registration Timing Result 

(ms/MVoxel/iter) 

 

The registration accuracy is measured based on the RMS of the resulting 

deformation fields from different implementations and the reference. Table 3.10 

shows the rigid registration result of the five test sets with three different 

implementations. The GPU implementation matches the accuracy as the CPU 

implementation. As we can see from the accuracy result, rigid registration alone is 

not sufficient to recover local deformation which leans our discussion to GPU-

based nonrigid registration implementation.  

Platform Case 1 Case 2 

(Voxel) 

Case 3 Case 4 Case 5 

CPU 4.911486 4.180068 3.478706 5.148131 3.761118 

FPGA 4.450058 4.313598 3.231499 4.220689 3.713284 

GPU 4.911486 4.180068 3.478706 5.148131 3.761118 

 

Table 3.10: Rigid Registration Accuracy Result with  

CPU, FPGA, and GPU (Voxel) 
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Figure 3.14: Case 1 Rigid Registration Result with Three Platforms 

CPU (left), FPGA (center), GPU (right) 
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Chapter 4: Parallelization of Hierarchical Volume 

Subdivision-based Registration Algorithm on GPU 

This chapter further extends our discussion on GPU-based rigid image registration 

implementation to nonrigid registration application and explores the parallelizable 

nature of a selected nonrigid registration algorithm. Our discussion will focus on 

the hierarchical volume subdivision-based registration algorithm [4] which has 

been proven to be accurate and structurally favorable for parallel implementation. 

First, we show how our rigid image registration implementation maps to the 

hierarchical volume subdivision algorithm. Then, we discuss the limitations 

encountered specifically in nonrigid registration and their associated solutions. 

Finally, we compare the performance of our GPU implementation with our single-

processor implementation and other reported results.   

 

Hierarchical Volume Subdivision-based Nonrigid Image Registration 

While most nonrigid image registration algorithms exhibit fundamental 

limitations in parallelizability for efficient parallel implementation, the 

hierarchical volume subdivision-based registration algorithm presents a favorable 

framework for adopting the GPU implementation presented in the last session to 

the nonrigid registration applications.  

 

Subvolume-based MI Optimization  

Instead of computing the MI of the entire image, the volume subdivision-based 

algorithm subdivides the image in half in all three dimensions stepping down each 

hierarchical level, resulting eight times the number of subvolumes compared to 
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those at the upper level. All subvolumes of the same parent subvolume inherit the 

same global transformation from the upper level. Each subvolume then exercises 

its own independent iterative optimization path similar to the rigid registration 

problem. This means each subvolume performs transformation, computes MI, and 

updates the registration parameters independently from other subvolumes at the 

same hierarchical level.   

 

GPU-based Implementation 

We first approach this problem based upon the framework developed from the 

rigid registration implementation. We first perform rigid registration (Level 0) on 

the two input images. The reference image is then subdivided into a number of 

subvolumes and the registration result from Level 0 is pushed down to the next 

intermediate level immediately below it. Each subvolume will be processed one 

by one in the same fashion as in rigid registration with only one eighth of the total 

voxels being processed at a time (Figure 4.1).  

 

 

 

 

 

 

 

 

Figure 4.1: Hierarchical Volume Subdivision-based Nonrigid Registration 

 



64 

 

After all subvolumes in the current hierarchical level have completed individual 

local rigid registration, the deformation field of the entire image is obtained 

through interpolation. If applicable, the image can be further subdivided into 

smaller subvolumes. The same scheme is applied to the lower level.  

 

Image Blocks vs GPU Blocks 

Similar to the solution for rigid registration, the image voxels are spatially 

mapped to the GPU thread blocks. The same Voxel-to-Thread approach for thread 

block allocation is taken in nonrigid registration. This presents a straightforward 

translation of the rigid implementation to the nonrigid problem. Figure 4.2 shows 

the pseudo code of this nonrigid image registration implementation. 

1. Global rigid image registration (as discussed in previous chapter) 

2. Hierarchical volume subdivision-based algorithm begins  

2.1. While (subvolume dimension / 2) > (smallest allowable dimension) 

2.1.1.  Perform octree-based subdivision on the reference image 

2.1.2. Compile initial mutual histogram (MHTotal) of the entire image with the 

transformation model obtained from the previous hierarchical level 

2.1.3. For each subvolume  

2.1.3.1. Compile the mutual histogram of the subvolume (MHsubvolume) with 

the inherited transformation model  

2.1.3.2. Compute MHRest by subtracting MHTotal by MHsubvolume 

2.1.3.3. Define an initial transformation model and set optimization 

termination condition to false 

2.1.3.4. While MI maximization termination condition is false 

2.1.3.4.1. Compile the mutual histogram of the subvolume MHsubvolume 

with the revised transformation model 

2.1.3.4.2. Compute the MH by adding MHRest and MHsubvolume 

2.1.3.4.3. Compute MI from MH  

2.1.3.4.4. Determine optimization algorithm termination condition 

based on the resulting MI 

2.1.3.4.5. Update transformation model  

Figure 4.2: Pseudo code of Nonrigid Image Registration 
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The five CT-CT testcases are again used to benchmark the nonrigid 

implementation. Given the smallest allowable subvolume dimension to be 16 x 16 

x 16, the hierarchical volume subdivision algorithm registered the images through 

four nonrigid registration levels (Level 1-4) plus the initial rigid registration 

(Level 0). Table 4.1 and 4.2 show the execution time and relative speedup of each 

level compared with the result generated by the CPU implementation and Table 

4.3 shows the final nonrigid registration accuracy result. This implementation 

shows a factor of 6x speedup.  

 

 CPU Case 1 Case 2 

(sec) 

Case 3 Case 4 Case 5 

L0 414.66 517.71 303 381.54 362.41 

L1 538.96 539.6 535.19 536.95 539.1 

L2 612.64 611.01 600.23 610.96 604.57 

L3 1295.01 1301.99 1288.84 1295.86 1292.18 

L4 6560.45 6593.54 6572.82 6577.72 6576.02 

Total  9421.72 9563.85 9300.08 9403.03 9374.28 

 

 GPU Case 1 Case 2 

(sec) 

Case 3 Case 4 Case 5 

L0 14.51 18.07 10.58 13.4 12.68 

L1 33.14 33.21 32.81 33.05 33.13 

L2 53.81 53.51 52.16 53.64 52.59 

L3 190.51 190.11 192.15 189.73 188.69 

 L4 1270.18 1269.56 1269.9 1271.11 1268.1 

Total 1562.15 1564.46 1557.6 1560.93 1555.19 

 

Table 4.1: Nonrigid Registration Runtime (sec) CPU (top), GPU (bottom) 
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  Case 1 Case 2 Case 3 Case 4 Case 5 

L0 28.57753 28.65025 28.63894 28.47313 28.58123 

L1 16.26313 16.24812 16.3118 16.2466 16.27226 

L2 11.38524 11.41861 11.50748 11.39001 11.49591 

L3 6.797596 6.848614 6.707468 6.830022 6.848164 

L4 5.164977 5.193563 5.175856 5.174784 5.185727 

Total 6.031252 6.113196 5.970776 6.023992 6.027739 

 

Table 4.2: GPU-based Nonrigid Registration Execution Time Speedup 

Compared to CPU Implementation  
 

Platform Case 1 Case 2 

(Voxel) 

Case 3 Case 4 Case 5 

CPU 1.256712 0.86262 0.682862 1.506372 0.781162 

GPU 1.264021 0.866931 0.696836 1.506045 0.793361 

 

Table 4.3: Nonrigid Registration Accuracy Result with CPU and GPU (Voxel) 

 

Discussion  

As the number of subvolumes goes up at the lower hierarchical levels, the number 

of GPU kernel calls goes up proportionately. Although the total number of 

processed voxels remains the same, the number of voxels being processed in each 

GPU kernel call (in each subvolume) decreases. As a result, the number of threads 

being exercised in each call decreases and eventually the GPU compute capacity 

is no longer fully utilized. As the memory access latency remains constant, even 

with the decreased number of possible update conflicts, the memory latency 

dominates the overall execution time. In addition, as the number of subvolumes 

goes up, the number of independent mutual histograms goes up. The time spent in 

calculating MI for each subvolume per iteration increases linearly as well.  
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As subvolumes in the same hierarchical level are independent from all other 

subvolumes, all subvolumes could be processed in parallel if compute and 

memory resources are sufficient. Efficiently scheduling compute operations and 

allocating memory resources will further improve the performance by a great 

magnitude.  
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Chapter 5: Optimal Solution  

In this chapter, a fully optimized GPU-based hierarchical volume subdivision 

based nonrigid image registration solution is presented. Our discussion will focus 

on the bottlenecks previously identified and discuss the proposed solutions. 

Finally, we will present the optimal performance and accuracy achieved with this 

implementation.   

 

Lessons Learnt  

Previous result (Table 4.1) has shown that our GPU implementation provides a 

significant performance speedup in rigid and upper levels of nonrigid registration. 

As the number of subvolumes goes up, the speedup plateaus and eventually starts 

to exhibit linear growth (Table 4.2). Primarily, this problem is caused by the 

decrease in parallelism while the number of voxels in each subvolumes decreases. 

The MI computation time and the memory access latency remain constant for 

each subvolume while the mutual histogram accumulation time becomes 

increasingly unnoticeable. If this trend is continued, the GPU implementation 

starts behaving as a single processor implementation.  

 

Subvolume Group (svGrp) 

To achieve the highest efficiency in GPU implementations, it is better to have 

more threads and thread blocks running on the GPU to better utilize the compute 

resource so as to hide the memory access latency. Based on the hierarchical 

volume subdivision algorithm framework, each voxel determines the 
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corresponding floating image voxel and the resulting bin index independently 

from all other elements in the image in both rigid and nonrigid levels. There is no 

data dependency among subvolumes thus all subvolumes could be processed 

simultaneously if compute and memory resources are sufficient. With one 

dedicated thread per voxel, the full image can be processed by the GPU in parallel 

without separate kernel call for each subvolume. The critical implementation 

element is to ensure that each voxel gets the correct transformation matrix 

associated with its subvolume and updates the corresponding mutual histogram 

accordingly.  

 

This modification in the implementation once again raises concern in the global 

memory limitation. All voxels in all subvolumes are essentially being processed at 

the same time (in the same kernel call). Therefore, multiple groups of mutual 

histograms are allocated in the global memory: at least one mutual histogram per 

subvolume but, ideally, multiple mutual histograms for each subvolume to avoid 

update conflict. The global memory size now limits the number of mutual 

histograms allocated, thus constrains the number of possible subvolumes being 

processed in parallel.  

 

We have introduced subvolume group (svGrp) in our implementation which 

defines the number of subvolumes being processed in parallel for each 

hierarchical level (Figure 5.1). Figure 5.2 shows the pseudo code of this 

implementation.  
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Figure 5.1: Hierarchical Volume Subdivision-based Nonrigid Registration with 

the Subvolume Groups of 8 
 

1. Global rigid image registration (as discussed in previous chapter) 

2. Hierarchical volume subdivision based algorithm begins  

2.1. While (subvolume dimension / 2) > (smallest allowable dimension) 

2.1.1.   Perform octree-based subdivision on the reference image 

2.1.2. Compile initial mutual histogram (MHTotal) of the entire image with 

the transformation model obtained from the previous hierarchical 

level 

2.1.3. For each subvolume group (svGrp) 

2.1.3.1. Compile the mutual histograms of the subvolumes within the 

svGrp (MHsubvolume) with the inherited transformation model  

2.1.3.2. Compute MHRest(s)by subtracting MHTotal by MHsubvolume(s) 

2.1.3.3. Define an initial transformation model and set optimization 

termination condition to false for each subvolumn in the svGrp 

2.1.3.4. While MI maximization termination condition is false 

2.1.3.4.1. Compile the mutual histogram of the each subvolume in 

the svGrp MHsubvolume with the revised transformation 

model 

2.1.3.4.2. Compute the MH(s) by adding MHRest(s) and MHsubvolume(s) 

2.1.3.4.3. Compute MI(s) from MH(s) 

2.1.3.4.4. Determine optimization algorithm termination condition 

for each subvolume based on the corresponding MI(s) 

2.1.3.4.5. Independently Update transformation models for the 

subvolumes 

 

Figure 5.2: Pseudo code of GPU-based Nonrigid Registration  

with the Concept of Subvolume Groups. 
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Table 5.1 shows the registration timing results of Case 1 with subvolume group 

size of 8, 64, and 512 subvolumes per subvolume group. The goal is to process as 

many subvolumes as possible on each hierarchical level. The subvolume group 

size under tested ranges from 8 to 512, the number of subvolumes in Level 1 to 

Level 3. The maximum group size of 512 is limited by the size of global memory. 

The result below shows the degree of performance improvement with higher 

parallelization across subvolumes.  

 

Subvolume Group L0 L1 

(sec) 

L2 L3 L4 

8 14.52 25.48 26.23 42.94 194.15 

64 14.51 25.48 24.92 31.8 104.8 

512 14.51 25.47 24.93 29.93 90.62 

 

Table 5.1: Subvolume Group Size vs Registration Runtime (sec) 

 

Partial Histogram per subVolume  

As the number of the voxels per subvolume decreases going down the subdivision 

hierarchy, the probability of memory update conflict on the mutual histogram 

goes down. The concept of allocating multiple mutual histograms in the global 

memory space is not as essential for the lower hierarchical level. The time spent 

in consolidating partial histograms can be reduced. As more global memory 

resource is freed up, more subvolumes can be processed in parallel. Table 5.2 

shows the experimental result on how the number of partial histograms affects the 

total runtime for each hierarchical level. The subvolume group size is set to 8 

across all nonrigid hierarchical levels (L1-L4). For the upper hierarchical level 
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(L1), utilizing eight partial mutual histograms shows the best performance while 

using use one partial mutual histogram in the lowest level (L4) performs better. 

Based on the result in Table 5.2, using 8-8-4-2-1 partial mutual histograms for 

L0-L4 shows the best execution time performance. 

 
# of Partial 

Histograms L0 L1 L2 L3 L4 Total  

1 14.52 25.48 26.23 42.94 194.07 304.66 

2 14.52 21.02 23.16 42.51 199.02 301.64 

4 14.52 19.37 21.78 42.82 210.9 310.79 

8 14.51 18.93 21.86 46.29 237.87 340.86 

 

Table 5.2: Number of Partial Histograms vs Registration Runtime (sec) 

 

Optimal Solution  

To summarize the results from the previous discussion, we present here an 

optimal GPU/MI-based nonrigid image registration implementation. The 

hierarchical volume subdivision algorithm is efficiently ported to the GPU 

architecture to maximize the parallelized capacity. Various implementation 

aspects have been explored and the optimized solutions were proposed and 

tailored for each hierarchical level. A thread block size of 8 x 4 x 4 is defined for 

all hierarchical levels; register-based data consolidated is applied, subvolume 

group size of 512 is maximized to global memory capacity, different numbers of 

partial mutual histograms are allocated for different hierarchical levels as 

suggested in Table 5.2. 

 

Table 5.3 shows the total registration runtime of the five test cases along with the 

timing breakdown for each hierarchical level. Table 5.4 shows the improvement 
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in registration accuracy of nonrigid registration compared with rigid registration. 

The registered images of Case 1 are presented in Figure 5.3. The left shows the 

axial/coronal fusion images and the right shows the axial/coronal different 

(subtracted) images between the reference image and the registered image. The 

registration error is nearly visually unnoticeable. Figure 5.4 shows effect in 

registration by the fusion and subtracted images before registration, after rigid 

registration and after nonrigid registration. 

 

  Case 1 Case 2 Case 3 Case 4 Case 5 Normalized 

L0 14.51 18.07 10.58 13.4 12.68 5.25076 

L1 18.94 18.93 18.89 18.92 18.89 5.63681 

L2 20.54 20.54 20.48 20.51 20.49 6.11305 

L3 29.94 29.95 29.99 29.79 29.73 8.90493 

L4 90.62 90.78 91.05 90.73 90.79 27.0587 

Total 175.98 179.68 172.4 174.76 173.99 52.96428 

 

Table 5.3: Optimal Nonrigid Image Registration Timing Result (sec), 

and average normalized result (ms/MegaVoxel/iter) 
 

  Case 1 Case 2 Case 3 Case 4 Case 5 

Rigid 4.911486 4.180068 3.478706 5.148131 3.761118 

Nonrigid 1.264021 0.866931 0.696836 1.506045 0.793361 

 

Table 5.4: Optimal Rigid and Nonrigid Image Registration Accuracy Result 

(voxel) 
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Figure 5.3: Optimal Nonrigid Image Registration Result of Case 1 

Fusion Image (left), Different Image (right)  

 

 

Figure 5.4: GPU-based Nonrigid Image Registration Result of Case 1 

with No-Registration, Rigid Registration, Nonrigid Registration (Left-to-Right)  
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Chapter 6: Conclusions and Future Work  

Automatic intensity based nonrigid rigid registration has found wide usage in 

medical image processing applications. One of the most accurate, reliable and 

fully automatic approaches to 3D image registration is maximization of mutual 

information (MI) between two images. However, long execution time continues to 

limit MI-based registration to be practical.   

 

Driven by the 3D graphics market demand, modern GPUs have evolved into a 

highly parallel, multithreaded, multicore processor with tremendous 

computational horsepower and high memory bandwidth. The increased flexibility 

of the most recent generation of GPU hardware and programming model has 

unlocked the computational power of the GPU and made accessible to 

numerically intensive general purpose applications. With effective utilization of 

the GPUs compute capacity, numerically intensive applications will achieve 

significant performance gains. Therefore, development of efficient data-parallel 

algorithms and implementation is crucial for performance improvement.  

 

Adaptation of MI-based image registration onto GPU architecture is an interesting 

multivariable problem. We have presented an efficient parallel implementation for 

nonrigid registration based on the parallelizable hierarchical volume subdivision 

based algorithm. Several optimization techniques are discussed; including block 

size optimization for hiding memory access latency, warp based data reduction to 

reduce memory access conflict, and the use of multiple partial histograms to 
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reduce memory conflict. To achieve the optimal performance, the optimization 

techniques are applied with different parameters to different hierarchical level 

based on the number and size of the subvolumes.  

 

The optimal GPU/MI-based image registration solution was tested with five CT-

CT datasets. Accuracy and performance of this implementation were compared 

with a single-CPU and 3-FPGA implementations. A summary of the result of 

Case 1 is presented below (Table 6.1). Table 6.2 shows the nonrigid registration 

accuracy of the three implementations. Results of the CPU and the GPU 

implementations match closely as the result of the FPGA implementation differs 

slightly due to the difference in input image intensity accuracy (Figure 6.1). 

 

Case 1 L0 L1 

(sec) 

L2 L3 L4 Total  

(ms/MVoxel/iter) 

Normalized  

CPU 414.66 538.96 612.64 1295.01 6560.45 9421.72 2834.853 

3FPGA 45.936 21.972 20.964 29.248 102.146 220.266 68.54616 

GPU 14.51 18.94 20.54 29.94 90.62 174.55 52.93723 

 

Table 6.1: Nonrigid Registration Timing Result of Case 1 with  

CPU, 3-FPGA, and GPU Implementations (sec),  

and average normalized result (ms/MegaVoxel/iter) 

 

 

Platform Case 1 Case 2 

(Voxel) 

Case 3 Case 4 Case 5 

CPU 1.256712 0.86262 0.682862 1.506372 0.781162 

FPGA 1.208796 1.189339 0.91128 1.482676 0.998999 

GPU 1.264021 0.866931 0.696836 1.506045 0.793361 

 

Table 6.2: Nonrigid Registration Accuracy Result  

with CPU, 3-FPGA, and GPU Implementations (Voxel) 
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Figure 6.1: Nonrigid Registration Result with CPU, 3-FPGA, and GPU 

Implementations (Top-to-bottom) 
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