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Abstract | We consider the formulation and anal-

ysis of a problem of automatic control: correcting for

the distortion induced in an optical wave front due to

propagation through a turbulent atmosphere. It has

recently been demonstrated that high-resolution opti-

cal wave-front distortion suppression can be achieved

using feedback systems based on high-resolution spa-

tial light modulators and phase-contrast techniques.

We examine the modeling and analysis of such sys-

tems, for the purpose of re�ning their design. The

approach taken here might also be applicable to other

problems involving feedback control of physical �elds,

particularly if the �eld sensing is performed opti-

cally.

I. Introduction

Correcting for the distortion induced in an optical wave front
due to propagation through a turbulent atmosphere can be
formulated as problem of automatic control. Thermal gradi-
ents in the air produce index-of-refraction variations experi-
enced by light which passes through it, leading to wave-front
distortion. Wave-front correction is achieved by applying (e.g.,
using an array of micromirrors) conjugate distortions to pro-
duce net null distortion. Adaptive optics is the discipline con-
cerned with feedback compensation of wave-front distortion in
real-time.

A key criterion for an adaptive optic system is the resolu-
tion required for wave-front control (or conjugation), which in
turn depends on the optical wavelength and on the strength of
the turbulence. Stronger turbulence also requires an adaptive
optic system to have a faster response (i.e., a higher frame
rate). Recent advances in high-resolution liquid-crystal (LC)
and microelectromechanical (MEMS) devices have led to spa-
tial light modulators (SLMs) that meet both the speed and
resolution requirements for high-resolution (> 104 actuators)
adaptive optics [1, 2]. However, in addition to the devices,
there is also a need for control laws which scale appropriately
in this high-resolution, high-speed regime. Suitable control
laws based on high-resolution SLMs and phase-contrast tech-
niques have recently been demonstrated [3, 4]. Our focus here
is on the modeling and analysis of these systems, extending
earlier work [5].

In the next section we brie
y review the high-resolution
wave-front control system architecture and its origins. In Sec-
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Fig. 1: High-resolution wave-front control system block diagram.

tion III, we introduce the mathematical models and analyze
them. In Section IV, we digress from the analysis to clarify
certain practical issues and provide context for the mathe-
matical work. In Section V, we consider the wave-front con-
trol system as a wave-front estimator. Concluding remarks
appear in Section VI.

II. High-resolution wave-front control system

The general system architecture we consider is shown in
�gure 1. The distorted beam enters the wave-front corrector,
which modulates the wave front with the objective of cancel-
ing the distortion. The corrected beam is then �ltered using
a controlled optical two-dimensional spatial Fourier �lter, and
the resulting �ltered beam is used to update the wave-front
corrector. The control system design problem involves choos-
ing the wave-front corrector update law and the Fourier �lter
so as to ensure stability, and convergence to a wave-front-
distortion-free corrected beam in as few iterations as possible.

Both the wave-front corrector and the controlled Fourier
�lter use a high-resolution SLM and a high-resolution imager,
as shown in �gures 2 and 3. The key feature of the system
of �gure 1 is that the subblocks shown in �gures 2 and 3 can
use parallel, distributed processing between the imagers and
SLMs. That is, each SLM pixel is driven by the correspond-
ing camera pixel (with any additional controls being common
to all pixels). This feature, refered to in adaptive optics as
\direct control," enables the resolution to scale without im-
pacting system speed.

The system of �gure 1 has its roots in the phase-contrast
technique developed by Frits Zernike during the 1930s (for
which he was later awarded a Nobel Prize in physics) [6].
Zernike observed that the system of �gure 3 (without the im-
ager and with the SLM replaced by a �xed phase plate hav-
ing a centered phase-shifting dot to shift only the zero-order
Fourier component) is capable of producing an intensity image
related to the input beam wave front [7]. Zernike's technique
has found application in phase-contrast microscopes for many



Fig. 2: Opto-electronically controlled wave-front corrector.

Fig. 3: Opto-electronically controlled spatial Fourier �lter.

years [8]. Recent advances in high-resolution SLMs have led
to renewed interest in phase-contrast techinques for various
applications, including adaptive optics [3, 4, 9, 10].

The system of �gure 1 is a nonlinear feedback system, be-
cause the wave-front phase of the corrected beam enters non-
linearly into the �ltered beam intensity image. The Fourier
�lter operator, i.e., the mapping from the Fourier-domain im-
ager to the Fourier �lter, introduces further nonlinearity, and
this additional source of nonlinearity turns out to be essen-
tial to producing a practical wave-front control system. Ad-
dressing these nonlinear e�ects is the main contribution of the
analysis presented here and in [5].

III. Mathematical models

The key to successful analysis of this type of system is to
capture the underlying physics with su�cient �delity, while
keeping the nonlinear modeling simple enough to extract
qualitative insights beyond what a linearized approximation
to the dynamics can provide. To describe the optical �eld
(for a monochromatic beam), we introduce a complex en-
velope A(x; y; z), describing a single component of the elec-
tric or magnetic �eld. We distinguish the z direction as
the \optical axis," and denote the transverse coordinates as
r = (x; y). The underlying electromagnetic �eld component
that A(r; z) represents is then obtained by taking the real part

of A(r; z)ei(!t�kz), where k = 2�=� and ! = kc (with � the
optical wavelength, and c the speed of light).

The complex envelope A(r; z) can be expressed in polar
form as

A(r; z) = a(r; z)ei�(r;z); (1)

where [a(r; z)]2 is the intensity and �(r; z) is the phase (the
quantity we are interested in measuring and controlling). The
intensity is what a camera would measure at the point z along
the optical axis.

In the wave-front control setting, we are interested in how
the phase at a particular point z0 along the optical axis evolves
in time. Therefore, we drop the argument z from equation (1),
and we allow � to depend on a time variable t. (This time vari-
able corresponds to quasi-static changes in the complex enve-
lope, not the time scale of electromagnetic �eld oscillations.)
Because we assume that a(r) = 0 outside of a bounded region,
we can use a Fourier series representation:

A(r; t) =
X
p

ap(t)e
i 2�


p�r;

ap(t) =
1


2

Z
A(r; t)e

�i 2�


p�r

dr; (2)

where p is an ordered pair of integers (i.e., p takes values in
the integer lattice in the plane), and 
 is a beam-size param-
eter determining the spectral resolution (assumed su�ciently
�ne to avoid aliasing). Without loss of generality, we assume
a(r) = 0 outside of a square region 
 with sides of length 
.
The integral in equation (2) can then be considered an integral
over 
, and A(r; t) can be intepreted as a spatially periodic
function satisfying

A(x+mx
; y +my
; t) = A(x; y; t); (3)

where mx and my are arbitrary integers. This interpreta-
tion of the Fourier series representation gives rise to periodic
boundary conditions for the PDE systems introduced below.

A. Single-pixel Fourier phase �lter

Suppose only the zero-order Fourier component is phase-
shifted by the SLM in �gure 3. Let the distorted beam com-
plex envelope in �gure 1 be represented as a(r)ei�(r), and let
the wave-front-correcting SLM impose a phase distribution
u(r; t) on the distorted beam. The corrected beam is then
represented by a(r)ei[u(r;t)+�(r)]. We denote the �ltered im-
age by [f(u + �)](r; t) to emphasize that it is a functional of
the phase of the corrected wave front. The evolution equation
we assume for u is

@u

@t
= �

�
l2�u � f(u+ �)

�
; (4)

where the gain function � sati�es �(r; t) > 0, 8r; t. The dif-
fusion term can be considered strictly as an aid to analysis,
with the di�usion length l > 0 being arbitrary small.

The dynamics are thus determined by f , which captures
the e�ects of the Fourier phase �ltering of the corrected beam.
Besides the phase-shift of the zero-order Fourier component,
there is also an intensity measurement included in f . Letting �
represent the phase-shift of the zero-order Fourier component,
we thus obtain the following conventional Zernike wave-front
sensor model:

[fconv (u+ �)](r; t)

=

����a(r)ei[u(r;t)+�(r)] + (ei��1)
1


2

Z
a(r)ei[u(r;t)+�(r)]dr

����
2

: (5)



(We have ignored �nite aperature e�ects by failing to truncate
the Fourier series at some �nite frequency.)

Some of the undesirable nonlinearities present in fconv can
be cancelled by taking the di�erence of two such images, cor-
responding to oppositely-directed Fourier phase-shifts [3, 4, 5]
(a related idea can be found in [11]). The resulting \di�eren-
tial" Zernike wave-front sensor model is

[fdi� (u+ �)] (r; t)

=

����a(r)ei[u(r;t)+�(r)] + (ei� � 1)
1


2

Z
a(r)ei[u(r;t)+�(r)]dr

����
2

�

����a(r)ei[u(r;t)+�(r)] + (e�i��1)
1


2

Z
a(r)ei[u(r;t)+�(r)]dr

����
2

=�4 sin � Im

�
a(r)e�i[u(r;t)+�(r)] 1


2

Z
a(r)ei[u(r;t)+�(r)]dr

�
: (6)

The image subtraction required for the di�erential wave-front
sensor can potentially be incorporated into the circuitry of
the imager in �gure 2 [12]. The di�erential Zernike wave-
front sensor image given by equation (6) is straightforward
to interpret. At each point r (and for �xed t), the value of
the operator fdi� is a periodic function of the corrected beam
phase. However, there is also global coupling through the
zero-order Fourier component 1


2

R
a(r)ei[u(r;t)+�(r)]dr.

The dynamics given by equation (4), with l = 0 and f
given by equation (6), are (formally) gradient dynamics with
respect to the energy functional

[V (u)](t) = �2
2 sin �

���� 1
2
Z

a(r)ei[u(r;t)+�(r)]dr

����
2

; (7)

which is proportional to (the negative of) the intensity in the
zero-order Fourier component of the corrected beam [4, 5].

Remark on notation: We will generally drop the r and t argu-
ments of u and f(u + �), as well as the r argument of a and
�, in the remainder of the development. The equations are
then more compact and easy to read, but a; �, and u must be
interpreted as functions, and f as an operator.

Using variational calculus, for equation (4) with l = 0, we
obtain

dV

dt
=
�V

�u
�
@u

@t

=�4 sin � Re

�Z
a(r)e�i(u+�)dr

1


2

Z
iaei(u+�) @u

@t
dr

�

=�

Z �
4 sin � Im

�
ae�i(u+�) 1


2

Z
aei(u+�)dr̂

��
@u

@t
dr

=�

Z
1

�

�
@u

@t

�2

dr; (8)

where (�V=�u) � v = lim�!0[V (u + �v) � V (u)]=�. Observe
that dV=dt � 0, and dV=dt = 0 only at equilibria of the
dynamics. The feedback system thus evolves to maximize the
power in the zero-order Fourier component of the corrected
beam. It is clear that u(r; t) = ��(r) minimizes V (u), so that
phase correction (or phase conjugation) corresponds to energy
functional minimization. A standard performance metric for
adaptive optic systems is the Strehl ratio, St, which is the

normalized zero-order Fourier component intensity,

[St(u)](t) =

��� 1

2

R
a(r)ei[u(r;t)+�(r)]dr

���2�
1

2

R
a(r)dr

�2
: (9)

The Lyapunov functional for the single-pixel Fourier �lter is
thus proportional to the Strehl ratio [4, 5].

B. General Fourier phase �lter with common phase shift

If instead of a single Fourier component, multiple Fourier
components experience a common phase shift, the (di�eren-
tial) wave-front sensor image (in the absence of any correction)
becomes

[fcommon(�)](r)

=

�����aei� + �ei��1�
X
p2I

�
1


2

Z
aei�e

�i 2�


p�r

dr

�
e
i 2�


p�r

�����
2

�

�����aei�+�e�i��1�
X
p2I

�
1


2

Z
aei�e�i

2�



p�rdr

�
ei

2�



p�r

�����
2

= �4 sin �
X
p2I

Im

�
ae�i(��

2�



p�r) 1


2

Z
aei(��

2�



p�r)dr

�
; (10)

where I is a �nite index set that may or may not contain 0.
To state rigorous results for the system of �gure 1, we make

the following hypotheses:

� periodic boundary conditions on 
, a square region with
sides of length 
;

� initial conditions u(r; 0); Du(r; 0); �(r); D�(r) 2 L2(
);

� � = �(r) > 0 and 1
�
2 L2(
);

� 0 < � < � and l > 0;

� I is a �nite set;

�
R
[a(r)]2dr is bounded; and

� all integrals are understood to be integrals over 
.

Proposition 1. Weak solutions for equation (4), with f given
by equation (10), exist and are unique.

Proof: Straightforward application of methods in [14].

Proposition 2 (from [5]): System (4), with f(�) be given by
equation (10), is a gradient system with respect to the energy
functional

V =

Z
l2

2
jruj2dr

�2
2 sin �
X
p2I

���� 1
2
Z

a(r)e
i(u(r;t)+�(r)� 2�



p�r)

dr

����
2

: (11)

Speci�cally, @u=@t = �ruV (with respect to the inner prod-
uct < g; h >=

R
1

�(r)
g(r)h(r)dr on L2(
)), and

dV

dt
= �

Z
1

�

�
@u

@t

�2
dr: (12)

Thus, V also serves as a Lyapunov functional for the dynam-
ics; i.e., dV=dt � 0, with dV=dt = 0 only at equilibria.

Proof: See [5]. 2



The interpretation of the energy functional (11) is analo-
gous to that of equation (7) for the single-pixel Fourier �l-
ter. The second term of equation (11) represents the sum of
the intensities within the Fourier components of the corrected
beam that are phase-shifted by the Fourier �lter. The system
therefore evolves to maximize the total intensity within the
collection of phase-shifted pixels.

C. General Fourier phase �lter with arbitrary phase shifts

The (di�erential) wave-front sensor image for arbitrary
Fourier component phase shifts is given by

farb(�)

=

�����aei�+
X
p2I

�
ei�p � 1

�� 1


2

Z
aei�e

�i 2�


p�r

dr

�
e
i 2�


p�r

�����
2

�

�����aei�+
X
p2I

�
e�i�p�1

�� 1


2

Z
aei�e�i

2�



p�rdr

�
ei

2�



p�r

�����
2

= �4
X
p2I

sin �pIm

�
ae�i(��

2�



p�r) 1


2

Z
aei(��

2�



p�r)dr

�

+g(�); (13)

where the operator g(�) is given by

g(�)=

�����
X
p2I

�
ei�p � 1

�� 1


2

Z
aei�e

�i 2�


p�r

dr

�
e
i 2�


p�r

�����
2

�

�����
X
p2I

�
e�i�p�1

�� 1


2

Z
aei�e�i

2�



p�rdr

�
ei

2�



p�r

�����
2

:(14)

By taking g(�) � 0 in equation (13), we obtain a nonlinear
approximation to the wave-front sensor image. Simulation and
experimental work suggest that this nonlinear approximation
adequately captures the system's qualitative behavior [4].

Proposition 3: Under the same hypotheses as Proposition
2, system (4), with f = farb � g, is a gradient system with
respect to the energy functional

V =

Z
l2

2
jruj2dr

� 2
2
X
p2I

sin �p

���� 1
2
Z

a(r)e
i(u(r;t)+�(r)� 2�



p�r)

dr

����
2

: (15)

Also, V serves as a Lyapunov functional for the dynamics.

Proof: Analogous to the proof of Proposition 2. 2

IV. Practical implementation issues

For a single-pixel Fourier �lter, image contrast su�ers when
the beam is highly aberrated, a problem that can be overcome
by using a multi-pixel Fourier �lter. The theoretical work
presented here and in [5] indicates that even for a multi-pixel
Fourier �lter, a gradient dynamics property can hold, so that
phase-shifting multiple Fourier components need not upset the
convergence behavior of the system of �gure 1.

A. Thresholding Fourier �lter operator

An example of a Fourier �lter operator that would give
rise to Fourier �lters of the type described by equation (10) is
to compare the Fourier-domain intensity, on a pixel-by-pixel
basis, to a threshold, and phase-shift the pixel by � if that
threshold is exceeded. This type of wave-front sensor has been
studied numerically and found to yield a higher-contrast image
than a single-pixel Fourier �lter for highly aberrated beams
[3]. However, when incorporated into the feedback system
of �gure 1, this thresholding wave-front sensor fails to evolve
into a single-pixel sensor as wave-front correction proceeds.
Instead, the system generally approaches an equilibrium with
the corrected beam intensity distributed among a number of
Fourier components.

B. Proportional Fourier �lter operator

A simple Fourier �lter operator which is observed to pro-
duce wave-front correction is the proportional Fourier �lter
operator, in which Fourier components are phase-shifted in
proportion to their power [3]. Since di�erent Fourier com-
ponents experience di�erent phase shifts, for a given Fourier
intensity distribution, the wave-front sensor image can be de-
scribed by equation (13).

Comparing equations (11) and (15) suggests why the sys-
tem with a proportional Fourier �lter operator outperforms
the system with the thresholding operator. For the (approxi-
mate) proportional Fourier �lter operator, the Lyapunov func-
tional is minimized by concentrating all of the intensity in the
Fourier component (or components) with the greatest phase

shift (provided �p � �=2; 8p). However, for the thresholding
Fourier �lter operator, there is no preference (in terms of Lya-
punov functional minimization) for any particular distribution
of intensity among the Fourier components phase-shifted by
�.

Note that Propositions 2 and 3 apply to systems with
�xed Fourier �lters, even though in the system of �gure 1,
the Fourier �lter evolves in time as phase correction proceeds.
We are inferring how the system with an evolving Fourier �lter
will behave from the analysis for �xed Fourier �lters.

V. Wave-front estimator analysis

The analysis of Section III demonstrates that high-
resolution wave-front control is feasible, in the sense that there
exists a parallel, distributed feedback control approach which
(with some simpli�cations and approximations) tends to con-
verge to an equilibrium representing wave-front correction.
Furthmore, the analysis is nonlinear and global, but is de-
terministic. To properly design and assess the performance
of an adaptive optic system for atmospheric turbulence com-
pensation, it is imperative to consider the statistical nature of
atmospheric turbulence and photodetector noise.

General problem formulation: Subject to constraints of
realizability, how can atmospheric turbulence compensation
be performed optimally, given stochastic models for the wave-
front distortion and photodetector noise?

Instead of this general problem, we consider the following.

Weaker problem formulation: Subject to constraints of
realizability, how can atmospheric turbulence compensation
be performed nearly optimally when the residual distortion
is small, and adequately when the residual distortion is large,



given simpli�ed stochastic models for the wave-front distortion
and photodetector noise?

To investigate this weaker formulation, we discretize both
the time and spatial variables, and consider the system of
�gure 1 to be a nonlinear estimator: based on noisy, nonlinear
measurements of the corrected beam wave front, the system
attempts to estimate the (conjugate of the) input beam wave
front.

A. Modeling wave-front distortion and photon noise

Very detailed statistical models of atmospheric turbulence
and photon noise can be found in the literature, and have been
used to study and design adaptive optic systems [13]. Statis-
tical models for atmospheric turbulence generally assume par-
ticular forms for the spatial power spectra, with origins in the
study of thermal energy transfer and 
uid motion across vari-
ous length scales. Motion of the turbulent structures produces
the temporal dependence of the wave-front distortion.

A standard approach for modeling photon noise is the semi-
classical model [13]. Electromagnetic �eld theory is used to
describe the system up to the plane where the intensity mea-
surement is made. The intensity measurement is then taken
to be a Poisson process with its rate function determined by
the classical electromagnetic �eld irradiance. (Integrating the
rate function over the area of a single photodetector gives the
average number of photons incident on the detector per unit
time.) The electromagnetic �eld irradiance depends on both
the deterministic optical system (i.e., the operator f of Section
III), and the random atmospheric turbulence.

Rather than use the detailed, realistic models for turbu-
lence and photon noise, we instead use simple models with
parameters derived from the more detailed models. These are
the simplifying assumptions we make:

� The phase-correcting SLM spatial discretization is
matched to the smallest feature size present in the dis-
tortion, so that the wave front can be approximated
as piecewise constant (i.e., constant over the area of a
phase-correcting SLM pixel). The Fried parameter, de-
pendent on wavelength and the strength of turbulence,
is proportional to this smallest feature size [13].

� For each phase-correcting SLM pixel, the change in in-
put beam wave front from one time step to the next is
independent and normally distributed.

� The input beam intensity distribution is quasi-static,
so that for purposes of the analysis it is taken to be
constant, although it may vary spatially.

� The Poisson distribution for photon noise is approxi-
mated as a Gaussian distribution with the same mean
and variance (a reasonable approximation as long as
the intensity is not too low), so that the photon noise
process is modeled as independent and normally dis-
tributed.

B. Nonlinear estimator

We let k denote the discrete time variable, and we let s, a
two-dimensional vector of integers, denote the discrete trans-
verse coordinates. For the wave-front estimation problem we
use a discrete Fourier transform:

As =
X
p

ape
i 2�
n
p�s;

ap =
1

n2

X
s

Ase
�i 2�

n
p�s; (16)

where the ap now represent discrete Fourier transform coe�-
cients. The total number of grid points (in both the spatial
and Fourier domains) is n2.

The state of the distortion (speci�cally, the e�ect of the at-
mospheric turbulence on input beam phase) is denoted �s(k).
We assume that the update equation for the atmosphere is

�s(k + 1) = �s(k) +ws(k); (17)

where the ws(k) are independent and normally distributed,
with (scalar) covariances qs(k) (which are reasonable to as-
sume are equal for all s).

The estimate of the state of the distortion at time k (given
information up to time k � 1) is denoted �̂s(kjk � 1). The
error signal,

"s(k) = �s(k)� �̂s(kjk � 1); (18)

is produced by the phase-correcting SLM, and is what we
would like the wave-front control system to minimize (in an
appropriately weighted mean-square sense). We let "(k) de-
note the matrix f"s(k)g. In the absense of measurement
noise, the image measured by, e.g., the single-pixel di�erential
Zernike wave-front sensor can then be expressed as

[f(")]s(k) = �4 sin � Im

(
ase

�i"s(k) 1

n2

X
�s

a�se
i"�s(k)

)
: (19)

The measured image including photon noise is then
[f(")]s(k)+vs(k), where we assume the vs(k) are independent
and normally distributed, with (scalar) covariances rs(k).

A natural update equation for the estimator is

�̂s(k + 1jk) = �̂s(kjk � 1) + cs(k) ([f(")]s(k) + vs(k)) ; (20)

where fcsg is a gain matrix (replacing the gain function �(r; t)
of Section III). Equation (20) is a discrete-time (and spatially
discretized) version of the deterministic gradient 
ow (4), with
l = 0, and with additional noise terms. The evolution equation
for the error is

"s(k + 1) = "s(k)� cs(k) ([f(")]s(k) + vs(k)) +ws(k): (21)

We thus have a nonlinear update equation for the estima-
tion error, involving both process and measurement noise. We
would like to analyze the stability and convergence properties
of equation (21).

C. Relationship between Strehl ratio and error covariance

A natural performance metric for wave-front estimation is
the weighted sample error covariance

'(") =
1
n2

P
s
as("s � �")2

1
n2

P
s
as

; (22)

where

�" =
1
n2

P
s
as"s

1
n2

P
s
as

: (23)

The relationship between the Strehl ratio and the wave-front
error covariance is well-known in the optics literature [13]. For
concreteness, we outline a derivation.



The zero-order Fourier component intensity is

i0(") = (a0)
2 =

����� 1n2

X
s

ase
i"s

�����
2

: (24)

The Strehl ratio, St(") = i0(")=i0(�"), can be shown to satisfy

St(") = 1� '(") + h.o.t. (25)

To see this relationship between Strehl ratio and error covari-
ance, simply take the Taylor series expansion of i0(") around
�",

i0(") = i0(�")+
@i0
@"

����
�"

�("��")+
1

2

@

@"

�
@i0
@"

�����
�"

�[("��"); ("��")]+� � � ;

(26)
where �" denotes the n � n matrix whose elements are all �".
Computing the partial derivatives in equation (26) gives

i0(") = i0(�") (1� '(")) + h.o.t. (27)

There is thus a straightforward relationship between Strehl
ratio maximization for the deterministic wave-front control
problem and error covariance minimization for the wave-front
estimation problem. The Strehl ratio can be measured us-
ing the Fourier-domain imager in �gure 3, which raises the
possibility of adapting the gain matrix on-line.

D. Implications for system design

Our general strategy for system design is then to start with
the basic architecture of �gure 1, and make good choices for
the Fourier �lter operator and the gain matrix. We have seen
from the deterministic analysis that the proportional Fourier
�lter operator (with the peak phase shift constrained to be at
most �=2) has favorable properties. For the stochastic system,
it is critical that the Fourier �lter provide a �ltered image
with good signal-to-noise ratio (i.e., good constrast), so that
the system can start compensating phase distortion even when
the initial distortion is severe.

The deterministic analysis of Section III places no con-
straints on the gain function (other than a sign condition and
the L2(
) property of 1=�). However, in the discrete-time
setting, the dynamical equation (4) is replaced by a forward-
Euler method, and it is evident that there is an upper limit on
each element of the gain matrix. For linear estimation prob-
lems, the gains start out large, and decrease as the estimate is
re�ned. A similar behavior is expected for the nonlinear esti-
mator described above. Our strategy is then to make sure the
gain matrix elements stay bounded appropriately (to ensure
stability of the nonlinear system) when the estimation error
is large, and to reduce the gain matrix (e.g., using a common
scale factor) as the estimation error decreases. In the small-
estimation-error regime, a linear approximation to the nonlin-
ear estimator may be useful. By scaling the gain matrix based
on the measured Strehl ratio, the system can transition nat-
urally on its own from the nonlinear, large-distortion regime
to the linear, small-distortion regime.

VI. Summary and conclusions

Large arrays of sensors and actuators are becoming feasi-
ble to build. However, using such arrays for feedback control
of physical �elds depends critically on our ability to devise
control schemes for such systems. Optics is a natural context

in which to investigate such control schemes, because there
has been considerable experimental work in adaptive optics
to draw upon, and because optics can be useful for measure-
ment in other engineering contexts, as well.

However, in considering optical wave-front measurement
and control, nonlinearity enters in an intrinsic way. We need
to be able to deal with the nonlinearity, as well as with the
constraints arising from having to use a parallel, distributed
control scheme rather than a centralized control law. The
strategy of identifying a nonlinear approximation to the dy-
namics which captures its essential features even far from equi-
librium can be simpler to carry out, and more revealing, than
a linearized analysis about the equilibrium. Furthermore, the
results can be used to guide design.
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