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ABSTRACT

In this paper a methodology is formulated to study
the dependency between two variables. Statistical correlation
coefficient between two variables is used as a measure
of the degree of dependency. The method of bootstrap technique
is employed to account for the statistical uncertainty
in the correlation coefficient that is estimated from available
data. A computer program entitled correlation coefficient
generator (CCG) is developed to perférm the analysis.
An example is also presented to demonstrate the methodology.
The objective of this example is to determine the dependency
between specific actions of control room operator of a
nuclear power plant. The methodology and the CCG code

are very effective and easy to use.



1. Introduction

Through a close observation of dependent events,
dependent failures, or dependent human actions in engineering
systems, one can envision the magnitude of the complexity
of the problems associated with the analyses of these dependencies
(1,2). Causes of dependencies are often numerous and present
models can not consider and treat them individually. It
is important to consider two factors in the development
of any dependent analysis model:

a. Complexity in mechanisms and causes from which

the dependency originates.
b. Inadequacy of the data base.

Statistical models provide a means of determining
the dependency. An advantage of models based on statistical
analysis is that in these models, identification and enumeration
of the causes of dependencies are not required. Therefore,
in this respect, a statistical model is concerned only
with the available data.

Each statistical model is bound to estimate a number
of parameters. Again, the major consideration is the amount
of data available. With a great deal of data, one can,
in principle, be fairly elaborate. It should be recognized
that any fancy model would require an estimate of a number
of parameters. With only a small amount of data available,
it is necessary to use simple and very direct models.

Having this consideration in mind, the correlation model



which involves the estimate of only one parameter is developed

in this study. The idea here is to obtain statistics which

lump many dependencies together. This estimate is the correlation
coefficient (ie, r). The value of r represents the degree

of dependency between two variables. In the following

sections, a discussion of the correlation model, the developed
computer program (CCG code), and an application of the

model is presented.

2. Notation And Nomenclature

Notation

r linear correlation coefficient

X a random variable which can assume values

of Xy, X2, ..., Xn

Y a random variable which can assume values
of Yir Yyr +--r ¥n

XY X times Y

n sample size

in,fyj, frequency that X, Y, or XY take values of

fxi ¥y Xji, y5 and Xjy4y in the sample

£ bivariate frequency of a case in which X=xj
and Y=yj



Wiy weighting factor of a case in which X=x;
and Y=yji
[Wij] an i-by-j square matrix containing weighting

factors Wj 5

<Xiry5§2 a doublet showing a case in which X=xji,
and Y=y;
m number of bivariate frequency table cells

with nonzero entries m < n

N number of r's to be ordered
Nomenclature
Statistical correlation: Two measureable statistical

characteristics are correlated
when a mathematical relationship
can be found to correspond
these characteristics.
Linear correlation A standard measure of the
coefficient: linear relationship between
two variates.
Dependent variables: Whenever two random variables
have a nonzero correlation

coefficient.

3. Correlation Theory

A method of determing the relation between one variable



and another which is commonly used in statistics is the
regression method. A standardized measure which is commonly
used in regression method is a dimensionless parameter
called "the correlation coefficient". The correlation
coefficient carries information about two aspects of a
relationship: (1) Its strength - measured on a scale from

0 to unity. (2) Its direction - indicated by the presence
or absence of a minus sign. The important point is to
recognize that the strength of a coefficient is entirely
independent of its direction (positive or negative). A
correlation coefficient of 1.0 is not stronger than a correlation
coefficient of -1.0. Mathematically the linear correlation

coefficient between X and Y is given by [2]:

n iz f - (Zf_ X) (Lf Y)
L3 1T 5
r = -
Ve 3 3 3 37 (1)
n JE.X° - (V£ x) £ v° - (£ Y
( £ (Zixi ][n§yj (_ij)]

For example, if a data sample for variables X and Y take

the values listed in Table 1, then r from (1) would be

0.402. This indicates that there is some positive correlation
between X and Y (ie, there exists a moderate tendency for

Y to go up when X goes up, and vice versa).

4. A Computer Based Method to Assess Confidence Limits

of Estimated r.

The correlation analysis will be improved by inclusion



of the uncertainty calculation of the estimated r. An
analytical approach is presented and explained in [3] to
determine confidence limits of r. In this analytical method
one should assume a known distribution for example, Gaussian
[4]. Obviously, this assumption may not be valid; additionally,
a large amount of data may be needed to reach any conclusive
results.

It is proposed to use the bootstrap approach [5]
as a means to perform the uncertainty calculation associated
with the estimated r. The bootstrap method is a computer
based technique for the performance of uncertainty calculation
and determination of confidence limits. The bootstrap
method has recently gained widespread applications [6,7].
The idea in bootstrap method is to mimic the process of
selecting many samples of size n from an existing sample
in order to find a probability distribution for r's obtained
for each sample. The bootstrap samples are generated fromA
the data in the original sample. The name bootstrap, which
is derived from the old saying about pulling yourself up
by your own bootstrap, reflects the fact that one available
sample will give rise to many others

In a computer approach, the bootstrap samples are
generated as follows. The data for the first data set
<xl, yl> are copied a large number of times and the data
for each of the other sets {<x4, y3> 3=2,3,...,n}

are copied an egual number of times. The resulting copies



are thoroughly mixed. Samples of size n are then selected
at random, and r is calculated for each sample; variation
among r's provides the basis of estimating confidence limits
of the true r.

The distribution of r calculated from the bootstrap
samples can be treated as if it were a distribution constructed
from real samples: it gives an estimate of the statistical
accuracy of r that was calculated for the original sample.
On a computer, the steps of copying, mixing, and selecting
a new set of data are all carried out by a procedure that
is much faster but are the mathematical equivalent of hand

calculations.

5. Computer Modeling of Bootstrap Method

Let us examine thé model which is developed to perform
the task of copying, mixing, and subsequent sampling of
data. In this model as part of copying and mixing procedure
there is a need to first make use of a uniform random number
generator, and second, make use of a weighting factor.

Lehmer [8] proposes the use of an efficient uniform
random number generator for computers with an available
word length of less than or equal to 36 bits. This efficient
uniform random number generation is used to produce random
numbers between 0 and 1.

The weighting factors are obtained from:



For example, [Wij] for the data shown in Table 1 is presented

below:
& o 0o o 1]
14 14
1 2 0 0 0
12 14
1 10 0 0
4
(5] = 12 1
0 0 o 1 0
14
L0 1 o0 1
| T4 14 1

Assignment of Wij to each cell along with the use
of the uniform random number generator allows one to perform
the bootstrap procedure in a simple fashion. The basic
'steps are summarized below:
1. Form the bivariate frequency table from actual
cbserved data.
2. Determine Wj4 for each cell.
3. Count the number m. For example for Table 1,
m is 10.
4. Store the location of each nonzero cell and

its ij attribute along with its corresponding



left boundary
of the cell

Wjj. For example the first three columns of

Table 2 shows these values for the data in Table

1.

For each nonzero cell, calculate left and right
boundary values by summing up all Wjj4 before

the cell, and including the Wi 5 for the cell,
respectively. Last two colums of Table 2 illustrates
the left and right boundary values.

Generate a uniform random number between 0 and

1, and select a nonzero cell such that:

right boundary

<generated random< of the cell

number

Register one count for each cell when the above
condition is satisfied. Since the length of

a nonzero cell is proportional to the frequency
of the cell, the larger cells tend to capture
proportionally more counts. Repeat this step

n times in order to generate one bootstrap sample.
At this point the value of r is calculated for
each bootstrap sample and recorded. For example,
Table 3 shows one typical bootstrap sample generated.
For this sample xr=0.586.

Step 6 is normally repeated many times (10,000

to 100,000 times) depending on the accuracy

of the desired confidence intervals of estimated

r.



6. Structure of CCG Computer Code

In order to accomplish the formation of bootstrap
samples and calculation of confidence limits of the estimated
r, the CCG code is developed. This program is written
in FORTRAN-V for UNIVAC 1108 computers and consists of
three routines:

1. bootstrap sample generator,

2. correlation coefficient estimato},

3. probability interval evaluator.

The basic modeling principles related to the first
two routines are outlined in section 5. The third routine
basically deals with ordering of r's generated from the
bootstrap samples. This task is performed in the CCG via
a sorting scheme suggested by Shell [9]. Ordering of r
is the most time consuming part of this algorithm. However,
the shell ordering routine has an empirical computer time
requirement directly proportional to N1.226  pollowing
the ordering process statistical confidence limits are

determined for various confidence intervals.

7. Application of the CCG Code

As an application of this method lets consider the
auxiliary feedwater system (AUXFEED) which is used in pressurized
water reactors to cool their steam generators during certain
emergencies. This system has two different trains, each

capable of independently cooling the steam generators.
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In all reported complete failures of AUXFEED system (ie,
loss of both trains) in the 10 years period of 1969-1979
as reported to the Nuclear Requlatory Commission [10],
some were potentially recoverable by the operator. Under
the stated condition, and for all these reported failures,
the likelihood that each (AUXFEED) train could have recovered
by the operator is determined in [11]. As reported in
[11], the likelihood of operator success (or failure) to
recover each train is determined to have discrete values;
these discrete values are proportional to the severity
of the train failures and/or the time available to the
operator to act. These discrete values and the frequency
of AUXFEED train failures corresponding to each discrete
value for the period of 1969-1979 are tabulated in Table
4. 1If the likelihood of operator failure for each train
of AUXFEED is taken as variables X and Y, then r and its
confidence limits can be determined by using the CCG.
In this case the value of r shows the statistical correlation
between an operator's likelihood of failure to recover
the two trains of an AUXFEED System.

The output from CCG for 20,000 bootstrap samples
shows a point estimate of r=0.84 and 80% confidence interval
of 0.68<r< 0.93. This clearly suggests a strong dependency
between operator's likelihood of failure to recover each
AUXFEED train. 1In other words as the likelihood of operator's
failure to recover one of the AUXFEED trains goes up, the
likelihood of operator's failure to recover the other train

would also goes up.
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TABLE 1

An Example of A Bivariate Frequency Table
(A 25 Cell Table)

X
xl x2 x3 x4 x5 Total
yl 4 0 0 0 1 5
y2 1 2 0 0 0 3
y3 1 1 0 4] 0 2
Yy4 0 0 0 1 0 1
y5 1 0 1 0 1 3
TOTAL 7 3 1 1 2 14
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TABLE 2

Determination of Boundary Values For
Each Nonzero Cell

Nonzero Cell Weighting Left Right

No. <ijYj> Factor (Wij) 3Z§32ary sggggary
1 <X Yy 4/14 0 4/14
2 <xl,y5> 1/14 4/14 5/14
3 <x2,yl> 2/14 5/14 7/14
4 <Xy 1¥y> 1/14 7/14 8/14
5 <x3,yl> 1/14 8/14 9/14
6 <X31¥y> 1/14 9/14 10/14
7 <x4,y4> 1/14 10/14 11/14
8 <x5,y1> 1/14 11/14 12/14
9 Xeryy> 1/14 | 12/14 13/14
10 <x5,y5> 1/14 13/14 14/14
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Table 3
Assignment of Random Numbers To Various Cells

Nonzero
Cell NoT’> 1 2 3 4 5 6

Random
Numbers

.4856 v/
.1366 v

.4486 4
.8751
.1459 Y .

.6508 /
.7308
. 2966 /
.9738
.8602
.1376 /

.7049 v
.8909
.04084 Y

Total
Counts
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TABLE 4

The Bivariate Frequency Table For the AUXFEED Example

(A 36 Cell Table)

X
X1=1.0 Xp=0.75 X3=0.50 X4=0.25 X5=0.05 X=0,0| TOTAL
¥;=1.0 2 6 2 0 0 0 10
Y5=0.75 | O 0 0 3 0 0 3
¥3=0.5 0 0 0 0 0 0 0
Y4=0.25 | 0 0 0 0 0 0 0
¥5=0.05 | 0 0 0 0 0 0 0
Yg=0.0 0 0 0 0 0 0 0
TOTAL 2 6 2 3 0 0 13
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