
1

An Application Framework for
Creating Simulation-Based Learning Environments

Anne Rose*, David Eckard** , and Gary W. Rubloff+

Human-Computer Interaction Laboratory*
Institute for Systems Research+

University of Maryland, College Park, MD 20742
North Carolina State University**

Email : rose@cs.umd.edu, david_eckard@usa.net, rubloff@isr.umd.edu

ABSTRACT
While there are numerous types of electronic learning
environments including collaboratories, construction
toolkits, systems with “scaffolding” and simulations, it is
diff icult to find authoring tools to build these systems. We
have developed an application framework for constructing
simulation-based learning environments called SimPLE
(Simulated Processes in a Learning Environment).
Environments developed with SimPLE use dynamic
simulations and visualizations to represent realistic time-
dependent behavior and are coupled with guidance material
and other software aids that facilitate learning. The
software architecture enables independent contributions
from developers representing educational content (e.g.,
simulation models, guidance materials) and software
development (e.g., user interface). We provide a user
interface template and accompanying software aids to
reduce the software development effort.

KEYWORDS: Simulation, education, learning
environments, authoring tool, software engineering

INTRODUCTION
Traditionally, the focus of educational curricula has been
on content and its deli very (i.e., subjects are broken down
into smaller, more manageable subtopics and taught in the
classroom). Today there is a strong movement toward
“learner-centered education” which focuses on the needs of
the learner [10]. While the success of “ learner-centered
education” does not rely on technology, electronic learning
environments serve as a powerful catalyst for change.
These environments include:

• collaboratories that facilitate group communication
[3][12],

• construction toolkits that teach design and modeling
skill s [4][7],

• systems with “scaffolding” that allow learners to start
simple and build complexity [11][13][14], and

• simulations that support “ learning by doing” [2][6][8].

Simulation environments are powerful learning tools that
encourage exploration by allowing learners to manipulate
parameters and visualize results. In academic settings, they
are used to enhance lectures, supplement labs, and engage
students. In the workplace, they are cost-effective training
mechanisms. There are two basic groups of simulators:
inanimate (off-line) and live (on-line, real-time) [9].
Inanimate simulators are used to evaluate complex
equations and models. They do not simulate real-time
operations of physical systems so user interaction is
limited. However, li ve simulators are highly interactive.
They closely resemble the physical system while allowing
learners to explore situations not possible with the actual
system. We have developed an application framework for
constructing li ve simulation-based learning environments
called SimPLE (Simulated Processes in a Learning
Environment).

Most commercial simulation packages (e.g., Excel, Matlab,
and VisSimTM) are built to handle a variety of situations so
they provide generic user interfaces that require modest
training. While these packages are very useful for creating
simulations for a variety of domains, the emphasis of an
effective learning environment must be on the concept
being taught, not on learning how to use another tool.
SimPLE pairs the power and flexibilit y of a generic
simulation package with the advantage of a custom front
end.

Learning environments developed with SimPLE use
dynamic simulations and visualizations to represent
reali stic time-dependent behavior and are coupled with
guidance material and other software aids that facilitate
learning. The software architecture allows independent
contributions by developers representing educational

2

Figure 1. ClusterSim for teaching advanced cluster tool
processing for semiconductor manufacturing

content and software development. This allows the
educational content (e.g., simulation models and guidance
materials) to be developed by the educators who have the
domain knowledge. Using the user interface template
provided and several software aids, SimPLE allows custom
front ends to be created quickly and with minimal coding.

In our initial efforts, three learning environments have been
created: ClusterSim and VacTechSim for learning about
semiconductor manufacturing, and NileSim for learning
about the hydrology of the Nile (all are available for
download from http://www.isr.umd.edu/SimPLE/).

Semiconductor Fabrication Examples
The semiconductor manufacturing and associated
equipment industries face a critical shortage of skill ed
workers and a staggering challenge in the education and
training of new personnel. Using SimPLE, we have
developed two modules with associated guidance material:
ClusterSim, for teaching advanced cluster tool processing
(Figure 1) and VacTechSim, for learning about vacuum and
gas flow technology (Figure 2). Potential users include
graduate students, operators, and practicing engineers.

Learners can open valves, start pumps, and change
temperatures and observe the effects on parameters, like
sili con deposition and chamber pressure. They can also
read guidance material, perform selected exercises,
highlight simulator objects, and send mail to educators.
Advanced learners can view the detailed simulation logic
running in the background. Both systems are currently
being evaluated in academic and industrial settings.

Figure 2. VacTechSim for
learning the basic principles
of vacuum pump technology
as needed for semiconductor
manufacturing

3

Nile Example
Based on 200 years of river records, NileSim was
developed to help explain complex river behavior and
management (Figure 3). NileSim is used in a large,
multidisciplinary freshman course on the 5000 years of
hydraulic civilization in the Nile Valley of Egypt. This
course comprises both technical and non-technical majors,
and faculty from engineering, biology, and government and
politi cs. Teams of students use NileSim to study how
different schemes for managing the scarce water resources
of the basin affect the natural environment of the Nile and
the economics of riparian countries. The reaction to
NileSim has been so positi ve that it has been proposed as
the central focus for the class in the future.

Figure 3. NileSim for learning about the hydrology of
the Nile river

APPLICATION FRAMEWORK
Application frameworks must provide appropriate
modularization of function and separation of concerns, just
as database management systems and user interface tools
promote dialog independence [1][5]. In creating SimPLE,
we felt i t was very important to allow independent
contributions by user interface designers and educators.
The architecture of SimPLE uses the common strategy of
separating the graphical user interface from the application,
in our case a simulation engine, by using a separate dialog
component to handle communication between the two
(Figure 4). The guidance material, another part of the

educational content, is also separated from the user
interface. In the current implementation, the user interface
is in Delphi, the dialog component is a dynamic linked
library (DLL), the simulation engine is VisSimTM, and the
guidance material is in HTML.

Figure 4. SimPLE software architecture

Using SimPLE, educators can quickly create simulation-
based learning environments for a variety of educational
domains. The two main steps involve creating the
educational content and designing the user interface.
Educators start by creating the simulation engine and the
guidance material using existing tools. Good guidance
material includes a system overview, exercises to perform,
a glossary of terms, and additional references. The user
interface for the educational content is developed using a
template and several “plug-in” software aids that reduce the
development effort by providing a rich array of learning
tools.

Simulation Engine
Educators start by creating a simulation model and
specifying the inputs and outputs that wil l be available to
the learner. We chose VisSimTM to create the simulations
because it is a commercial product commonly used in
engineering education. However, substituting a different
simulator or a different type of software package would
only require modifications to the dialog component since
the user interface is separated from the application. The
only requirement is that the application used must be able
to accept inputs and return outputs.

Figure 5 shows the VisSimTM model for VacTechSim. The
dark gray boxes are compound blocks that contain multiple
layers of detailed logic. For simplicity, only the top layer is
shown here. The only requirement imposed by SimPLE is
that the model must specify the input and output variables
available to the learner. In our example, these variables are
specified in the VSin and VSout sections.

Because the simulation engine is not tightly coupled with
the user interface, educators have found it useful to create
their models so they can be controlled both via the user
interface (“remote”) and by direct manipulation of the
simulator (“ local”). This allows the content author to
operate and modify the simulator in a completely
standalone mode. This is especially useful during the

4

Figure 5. VisSim model overview for VacTechSim

development and debugging stage, since a change in the
simulation logic should not change the user interface
(unless inputs or outputs are added/removed).

Dialog
The key to linking the user interface and the educational
content is the dialog component. Currently implemented as
a C++ DLL that uses continuous poll ing, the dialog
component handles all communication regarding user
inputs and simulator outputs between the user interface and
the simulation engine. For example, when a user clicks on
a valve in VacTechSim, the dialog component notifies the
simulator, which opens the valve in its internal model. It
then passes the simulator outputs (which might show a
change in pressure) back to the user interface for display to
the user. In this way, the learner “runs” the physical
system depicted as a dynamic model on the user interface,
with response and feedback to their actions determined by
the underlying, physically realistic dynamic simulator.

Adding error messages and warnings increases the
educational benefit to the learner but also makes the
communication more complex. Rather than simply
performing a user action, the user interface must “request”
(via the dialog component) that an action be performed.
The user interface then waits for the simulator response. If
the action is approved, the action is performed. Otherwise,

the user interface conveys a useful message to the learner
indicating why the action could not be performed.

User Interface
Without adequate authoring tools, developing custom front
ends can be very time consuming and diff icult. When
surveyed, most educators site lack of time as the reason for
not using new technology in their classrooms. Because of
limited time and software expertise, authoring tools that
minimize creation time but still allow customization are
critical to the wide spread success of learning
environments.

Using a template and several “plug-in” software aids,
custom user interfaces can be developed very quickly in
SimPLE. The user interface template is a Delphi project
that consists of three main areas: an empty simulation
panel, a control bar, and a tabbed notebook (Figure 6).
Customizing the simulator panel involves three steps:
making a background image (which can be drawn with any
image editor), positioning the user interface controls, and
mapping the user interface controls to the simulation
variables. General functionality, li ke starting and stopping
the simulation and printing the guidance material, is
provided in the control bar. The guidance material will be
displayed automaticall y in the notebook area along with
any simulation design parameters. The notebook area also

5

Figure 6. User interface template provided by SimPLE
for creating custom front ends for simulation-based
learning environments

contains a developer kit that allows educators to further
customize the system.

To help developers create rich learning environments, the
user interface template is coupled with several software
aids, implemented as Delphi components. These
components include:

• TDLLConnect, for mapping the user interface controls
to the simulation variables,

• TDesignParameters, for creating simulation design
parameter controls on-the-fly,

• TActionLinks, for enhancing the guidance material to
support actions, like highlighting simulator panel
objects, and

• TCommunication, for allowing students and instructors
to communicate via email and attach simulation files.

A library of fli cker-free user interface controls (including
valves, switches, and pressure) has also been created to
support the semiconductor manufacturing domain.

TDLLConnect. TDLLConnect makes it simple to map user
interface controls to simulation variables. Specificall y,
TDLLConnect generates two events that are raised when
input data is requested and when output data is received.
Developers simply create callback procedures that map the
user interface controls to the simulation variables. Figure 7
shows an example procedure that maps user interface
controls to simulator inputs. To make this simpler,
SimPLE might allow developers to cli ck on a control and
select the value to send or update.

procedure TMainForm.BeforeVisSimCall(Sender: TObject);
begin

with DLLConnect1 do begin
DatatoVisSim[1] := integer(VB.Value = Opened)
DatatoVisSim[2] := integer(VV.Value = Opened);
DatatoVisSim[3]:= integer(TurboPumpSwitch.Down = True);
DatatoVisSim[4] := integer(V2.IsOpen());
DatatoVisSim[5] := integer(MechPumpSwitch.Down = True);
DatatoVisSim[6] := integer(V1.Value = Opened);

end;
end;

Figure 7. Example callback procedure that maps user
interface controls to simulator inputs

TDesignParameters. Manipulating simulation design
parameters is one way to help learners further explore how
a system works. Creating a custom dialog box that allows
learners to specify design parameters such as chamber
volume and turbo pump speed would be very tedious and
time consuming, especiall y when there are several design
parameters. With SimPLE, educators can use
TDesignParameters, accessible from the developer kit
notebook page, to create design parameters controls on-the-
fly simply by specifying the parameter name, default value,
and VisSimTM variable number (Figure 8). The parameter
controls will appear automatically on the simulation
parameters page, along with a comment area, and a log that
records any changes made by learners (Figure 9). A logical
extension would be to allow multiple parameter settings to
be saved and loaded.

Figure 8. TDesignParameters dialog box for creating
simulation design parameter controls

TActionLinks. Many simulation-based learning
environments do not provide any guidance material and
when it is provided there is normally no coupling between
the simulation and the guidance material. The result feels
li ke two independent systems. We wanted our learners to
have the benefits of a tight coupling between the simulation
and guidance material while still maintaining the separation
that benefited developers. TActionLinks links the guidance
material to the simulation panel while still maintaining the

6

desired separation. Specificall y, TActionLinks extends the
HTML syntax used to create the guidance material to
support simulation actions. The actions are processed as
the result of an error being raised when an unknown URL
is encountered. For example, the HTML link “Highlight
[object1 object2 …]” is used to highlight multiple objects
and “PlaySound [filename]” is used to play audio files.
This simple notation can be extended to include a variety of
other actions, such as playing video or controlling a
stopwatch.

Since the objects are different for each simulation,
TActionLinks automaticall y generates the list of object
names, along with instructions and samples of each. This
information is automatically displayed on the developer kit
page for educators to consult when creating the guidance
material (Figure 10).

TCommunication. Communication and collaboration is
another important aspect that learning environments must
support. Learners need to be able to communicate with
other learners, with their instructors when they have
problems, and even with other domain experts.
TCommunication builds on a commercial Delphi email
component to provide a basic facil ity for communicating
about the system. It allows learners to easil y attach files,

li ke the simulation model and parameter log, to their
messages with the click of a button. It also provides a
setup dialog box that educators can use to create a default
li st of email addresses for the learners (e.g., class list).
Educators are also interested in how TCommunication
might help them manage the email they receive. For
example, one suggestion is to automaticall y annotate the
messages with a few words specified by the instructor that
would make it easier to sort messages by class or project.

FUTURE WORK AND CONCLUSIONS
We are in the process of selecting different application
domains and identifying educators interested in building
SimPLE learning environments that will further test our
framework. Until now the environments have been
developed by graduate students at the university. For
example, a civil engineering graduate student with no
Delphi or VisSim experience (but with computer
experience) created the NileSim environment in only two
months (without many of the tools described since they
were still under development). While SimPLE makes it
possible for educators with limited software development
experience to build simulation-based learning
environments, we believe the primary role of the educators
will be as content authors, with user interface development
delegated to those with more computer experience.

Figure 9. Simulation parameter controls created as the result of TDesignParameters

Figure 10: Developer Kit page showing automatically generated guidance link instructions

7

Initial feedback from both learners and educators has been
very positi ve. We are in the process of conducting a pilot
study comparing the use of SimPLE (VisSim + front end)
to VisSim only to teach students about a vacuum pump
system. Our initial pilot results show a strong preference
for the SimPLE version.

We are expanding SimPLE to make developing simulation-
based learning environments easier to build. Specificall y,
we plan to create more software aids, to enhance the
existing ones, and to investigate the use of other simulation
engines, like Excel. One software aid we have started to
explore creates learning histories. At the simplest level,
learning histories would capture the sequence of user
actions and allow them to be played back. These histories
could then be used by learners when posing questions (e.g.
why did this happen?), or created by educators and
replayed in the guidance material, or they might even be
turned in as homework (e.g., demonstrate the quickest way
to create the lowest pressure in the chamber).

While there are numerous examples showing the benefits of
learning environments, we believe that authoring tools, like
SimPLE, that support their creation will be critical to their
wide spread success. While our framework is still
rudimentary, it is a key step in making simulation-based
authoring tools accessible to educators.

ACKNOWLEDGMENTS
We thank Catherine Plaisant and Ben Shneiderman for
thoughtful reviews and Yatin Sankholkar for
implementation help. We also thank Ben Levy and
Gregory Baecher for creating NileSim. This work is
supported by the National Science Foundation under grant
EEC 96-96212.

REFERENCES
[1] Ackerman, M. (1995) Social Activity Indicators:
Interface Components for CSCW Systems, Proceedings of
UIST ’95, ACM, New York, 159-168.

[2] Cole, R. and Tooker, S. (1996). Physics to Go: Web-
based tutorials for CoLoS physics simulations, Proceedings
of Frontiers in Education ’96, IEEE, 681-683.

[3] Edelson, D., Pea, R., and Gomez, L. (1996).
Constructivism in the Collaboratory. In B. G. Wilson (Ed.),
Constructivist learning environments: Case studies in
instructional design, Educational Technology Publications,
Englewood Cli ffs, NJ, 151-164.

[4] Eden, H., Eisenberg, M., Fischer, G., and Repenning, A.
(1996). Making Learning a Part of Life. Communications
of the ACM 39, 4, 40-42.

[5] Hudson, S. and Smith, I. (1997). Supporting Dynamic
Downloadable Appearances in an Extensible User Interface
Toolkit, Proceedings of UIST ’97, ACM, New York, 159-
168..

[6] Jones, P. M. and Schneider, K. J. (1996). Learning
environment for magnetic resonance spectroscopy
(LEMRS): Supporting apprenticeships learning in
operational environments. Journal of Educational
Multimedia and Hypermedia 5, 2, 151-177.

[7] Kafai, Y., and Resnick, M., eds. (1996).
Constructionism in Practice: Designing, Thinking, and
Learning in a Digital World. Mahwah, NJ: Lawrence
Erlbaum.

[8] Lu, G. B., Oveissi, M., Eckard, D., and Rubloff, G.
(1996). Education in semiconductor manufacturing
processes through physicall y-based dynamic simulation.
Proceedings of Frontiers in Education ’96, IEEE, 250-253.

[9] Nahvi, M. (1996). Dynamics of student-computer
interaction in a simulation environment: Reflections on
curricular issues. Proceedings of Frontiers in Education
’96, IEEE, 1383-1386.

[10] Norman, D. and Spohrer, J. (1996). Learner-Centered
Education, Communications of the ACM 39, 4, 24-27.

[11] Rosson, M. and Carroll, J. (1996). Scaffolded
examples for learning object-oriented design.
Communications of the ACM 39, 4, 46-47.

[12] Sebrechts, M., Silverman, B., Boehm-Davis, D., and
Norman, K. (1995). Establi shing an electronic
collaborative learning environment in a university
consortium: The CIRCLE project. Computers in Education
25, 215-225.

[13] Soloway, E., Jackson, S., Klein, J., Quintana, C., Reed,
J., Spitulnik, J., Stratford, S., Studer, S., Jul, S., Eng, J., and
Scala, N. (1996). Learning theory in practice: Case studies
of learner-centered design. Proceedings of CHI ’96, ACM,
New York, 189-196.

[14] Woolf, B. and Hall, W. (1995). Multimedia
pedagogues: Interactive systems for teaching and learning.
IEEE Computer, May 1995, 74-80.

