
An Experiment to Assess the Cost-Bene�ts of Code Inspections inLarge Scale Software DevelopmentA. Porter� C. A. TomanH. Siy L. G. VottaComputer Science Department Software Production Research DepartmentUniversity of Maryland AT&T Bell LaboratoriesCollege Park, Maryland 20742 Naperville, Illinois 60566aporter@cs.umd.edu cat@intgp1.att.comharvey@cs.umd.edu votta@research.att.comAbstractWe conducted a long-term experiment to compare the costs and bene�ts of several di�erent softwareinspection methods. These methods were applied by professional developers to a commercial software productthey were creating. Because the laboratory for this experiment was a live development e�ort, we took specialcare to minimize cost and risk to the project, while maximizing our ability to gather useful data.This article has several goals: (1) to describe the experiment's design and show how we used simula-tion techniques to optimize it, (2) to present our results and discuss their implications for both softwarepractitioners and researchers, and (3) to discuss several new questions raised by our �ndings.For each inspection we randomly assigned 3 independent variables: (1) the number of reviewers on eachinspection team (1, 2 or 4), (2) the number of teams inspecting the code unit (1 or 2), and (3) the requirementthat defects be repaired between the �rst and second team's inspections. The reviewers for each inspectionwere randomly selected without replacement from a pool of 11 experienced software developers. The dependentvariables for each inspection included inspection interval (elapsed time), total e�ort, and the defect detectionrate.Our results are based on the observation of 88 inspections and challenge certain long-held beliefs aboutthe most cost-e�ective ways to conduct inspections and raise some questions about the bene�ts of recentlyproposed methods.1 IntroductionFor almost twenty years, software inspections have been promoted as a cost-e�ective way to improve softwarequality. Although the bene�ts of inspections have been well studied, their costs are often justi�ed by simplyobserving that the longer a defect remains in a system, the more expensive it is to repair, and therefore thefuture cost of �xing defects is greater than the present cost of �nding them. However, this argument is simplistic{ for example, it doesn't consider the powerfully negative e�ect inspections have on schedule.We have observed that a typical release of AT&T's 5ESS R
 switch [16] (� .5M lines of added and changedcode per release on a base of 5M lines) can require roughly 1500 inspections, each with four, �ve or even�This work is supported in part by a National Science Foundation Faculty Early Career Development Award, CCR-9501354. Mr.Siy was also partly supported by AT&T 's Summer Employment Program1

more participants. Besides the obvious labor costs, holding such a large number of meetings can also causedelays which may signi�cantly lengthen the development interval (calendar time to completion).1 Since longdevelopment intervals risk substantial economic penalties, this hidden cost must be considered.We hypothesized that di�erent inspection approaches create di�erent tradeo�s between minimum interval,minimume�ort and maximume�ectiveness. But until now there have been no empirical studies to evaluate thesetradeo�s. We conducted such a study, and our results indicate that the choice of approach signi�cantly a�ectsthe cost-e�ectiveness of the inspection.Below, we review the relevant research literature, describe the various inspection approaches we examined,and present our experimental design, analysis, and conclusions.1.1 Inspection Process Summary and Literature ReviewTo eliminate defects, many organizations use an iterative, three-step inspection procedure: Preparation, Collec-tion, Repair [12] . First, a team of reviewers each reads the artifact separately, detecting as many defects aspossible. Next, these newly discovered defects are collected, usually at a team meeting. They are then sent tothe artifact's author for repair. Under some conditions the entire process may be repeated one or more times.Many articles have been written about inspections. Most, however, are case studies describing their success-ful use [9, 10, 23, 20, 27, 14, 2] . Few critically analyze inspections or rigorously evaluate alternative inspectionapproaches. We believe that additional critical studies are necessary because the cost-e�ectiveness of inspec-tions may well depend on such variables as team size, number of inspection sessions, and the ratio of individualcontributions versus group e�orts.Team Size: Inspections are usually carried out by a team of four to six reviewers. Buck [3] provides data(from an uncontrolled experiment) that showed no di�erence in the e�ectiveness of three, four, and �ve-personteams. However, no studies have measured the e�ect of team size on inspection interval.Single-Session vs. Multiple-Session Inspections: Traditionally, inspections are carried out in a singlesession. Additional sessions occur only if the original artifact or the inspection itself is believed to be seriously1As developer's calendars �ll up, it becomes increasingly di�cult to schedule meetings. This pushes meeting dates farther andfarther into the future, increasing the development interval. [1] 2

awed. But some authors have argued that multiple session inspections might be more e�ective.Tsai et al. [21] developed the N-fold inspection process, in which N teams each carry out independentinspections of the entire artifact. The results of each inspection are collated by a single moderator, who removesduplicate defect reports. N-fold inspections will �nd more defects than regular inspections as long as the teamsdon't completely duplicate each other's work. However, they are far more expensive than a single team inspection.Parnas and Weiss' active design reviews (ADR) [17] and Knight and Myers' phased inspections (PI) [15] arealso multiple-session inspection procedures. Each inspection is divided into several mini-inspections or \phases".ADR phases are independent, while PI phases are executed sequentially and all known defects are repaired aftereach phase. Usually each phase is carried out by one or more reviewers concentrating on a single type of defect.The proponents of multiple-session inspections believe they will be much more e�ective than single-sessioninspections, but they have not shown this empirically, nor have they considered its e�ect on inspection interval.Group-centered vs. Individual-centered Inspections: It is widely believed that most defects are �rstidenti�ed during the collection meeting as a result of group interaction [8] . Consequently, most research hasfocused on streamlining the collection meeting by determining who should attend, what roles they should play,how long the meeting should last, etc.On the other hand, several recent studies have concluded that most defects are actually found by individualsprior to the collection meeting. Humphrey [11] claims that the percentage of defects �rst discovered at thecollection meeting (\meeting gain rate") averages about 25%. In an industrial case study of 50 design inspections,Votta [25] found far lower meeting gain rates (about 5%). Porter et al. [19] conducted a controlled experimentin which graduate students in computer science inspected several requirements speci�cations. Their results showmeeting gain rates consistent with Votta's. They also show that these gains are o�set by "meeting losses" (defects�rst discovered during preparation but never reported at the collection meeting). Again, since this issue clearlya�ects both the research and practice of inspections, additional studies are needed.Defect DetectionMethods. Preparation, the �rst step of the inspection process, is accomplished through theapplication of defect detection methods. These methods are composed of defect detection techniques, individualreviewer responsibilities, and a policy for coordinating responsibilities among the review team.Defect detection techniques range in prescriptiveness from intuitive, nonsystematic procedures (such as ad3

hoc or checklist techniques) to explicit and highly systematic procedures (such as correctness proofs).A reviewer's individual responsibility may be general, to identify as many defects as possible, or speci�c, tofocus on a limited set of issues (such as ensuring appropriate use of hardware interfaces, identifying untestablerequirements, or checking conformity to coding standards).Individual responsibilities may or may not be coordinated among the review team members. When they arenot coordinated, all reviewers have identical responsibilities. In contrast, the reviewers in coordinated teams havedistinct responsibilities.The most frequently used detection methods (Ad Hoc and Checklist) rely on nonsystematic techniques.Reviewer responsibilities are general and identical. Multiple-session inspection approaches normally requirereviewers to carry out speci�c and distinct responsibilities. One reason these approaches are rarely used may bethat many practitioners consider it too risky to remove the redundancy of general and identical responsibilitiesand to focus reviewers on narrow sets of issues that may or may not be present. Clearly, the advantages anddisadvantages of alternative defect detection methods need to be understood before new methods can be safelyapplied.1.2 HypothesesInspection approaches are usually evaluated according to the number of defects they �nd. As a result, someinformation has been collected about the e�ectiveness of di�erent approaches, but very little about their costs. Webelieve that cost is as important as e�ectiveness, and we hypothesize that di�erent approaches have signi�cantlydi�erent tradeo�s between development interval, development e�ort, and detection e�ectiveness. Speci�cally, wehypothesize that� inspections with large teams have longer inspection intervals, but �nd no more defects than smaller teams;� multiple-session inspections are more e�ective than single-session inspections, but signi�cantly increaseinspection interval.� multiple-session inspections with sequential sessions (sessions happen in a speci�c order and all defectsfound at the ith session must be repaired before the i + 1st session begins) have a longer interval, but �ndmore defects than multiple-session inspections with parallel sessions (sessions can happen in any order and4

AUTHOR

REV'S

TIME

1

2

N

•
•

PREPARATION COLLECTION REPAIRCODINGACTIVITY

U
N

D
IS

C
O

V
E

R
E

D
D

E
F

E
C

T
S

 (
%

)

100

0

Undiscovered Defects

Engaged in
Inspection
Discretionary UseUNFILLED

Interval Committed to
Other Activities

Figure 1: This �gure depicts how inspection participants use time during the inspection process. The �gure'slower panel summarizes the inspection's time usage. Speci�cally, it shows the inspection's participants (anauthor and several reviewers), the activities they perform (coding, preparation, collection, repair, and other),the subinterval devoted to each activity (denoted by the shaded areas), and the total inspection interval (endof coding to completion of repair). It also shows that in a software development organization, inspections mustcompete with other processes for limited time and resources. The upper portion of the �gure shows when and towhat extent inspections remove defects from the code.defects are not repaired in between sessions).2 The ExperimentTo evaluate these hypotheses we designed and conducted a controlled experiment. Our purpose was to com-pare the tradeo�s between minimum interval, minimum e�ort, and maximum e�ectiveness of several inspectionapproaches.2.1 Experimental SettingWe ran this experiment at AT&T on a project that was developing a compiler and environment to supportdevelopers of the AT&T 5ESS R
 telephone switching system. The �nished system contains over 45K new linesof C++ code, plus 8K which was reused from a prototype.Our inspector pool consisted of 11 experienced developers, each of which had received inspection trainingin the last 5 years. The experiment ran for 18 months (June, 1994 to December 1995), during which the team5

performed 88 code inspections.The �rst code units were inspected from July, 1994 to September, 1994, at which time the �rst integrationbuild delivered the compiler's front end. After this there were few inspections as the development team testedand modi�ed the front end and continued designing the back end. By Jan 1995, the back end code becameavailable and there was a steady of inspections throughout 1995.2.2 Operational ModelTo test our hypotheses we needed to measure the e�ort, interval and e�ectiveness of every inspection. To dothis we constructed two models; one for calculating inspection interval and e�ort, and another for estimating thenumber of defects in a code unit. These models are depicted in Figure 1.2.2.1 Modeling the Inspection IntervalThe inspection process begins when a code unit is ready for inspection and ends when the author �nishes repairingthe defects found in the code. The elapsed time between these events is called the inspection interval.The length of this interval depends on the time spent working (preparing, attending collection meetings, andrepairing defects) and the time spent waiting (time during which the inspection does not progress due to processdependencies, higher priority work, scheduling con
icts, etc).In order to measure inspection interval and its various subintervals, we devised an inspection time modelbased on visible inspection events [26] . Whenever one of these events occurred it was timestamped and theevent's participants were recorded. (In most cases this information was manually recorded on the forms describedin Section 2.4.1.) These events occurred, for example, when code was ready for inspection, or when a reviewerstarted or �nished his or her preparation. This information was entered into a database, and inspection intervalswere reconstructed by performing queries against the database.Inspection e�ort was calculated by summing the appropriate subintervals.2.2.2 Modeling the Defect Detection RatioOne important measure of an inspection's e�ectiveness is its defect detection ratio { the number of defects foundduring the inspection divided by the total number of defects in the code. Because we never know exactly how6

many defects an artifact contains, it was impossible to make this measurement directly, and therefore we wereforced to approximate it.The estimation procedure needed be (a) as accurate as possible and (b) available throughout the study becausewe were experimenting with a live project and needed to identify and eliminate dangerously ine�ective approachesas soon as possible.We found no single approximation that met both criteria. Therefore we used three methods.� Observed detection ratio: We assumed that total defect density is constant for all code units and thatwe could compare the number of defects found per KNCSL. This was always available, but may be veryinaccurate.� Partial estimation of detection ratio: We used capture-recapture methods to estimate pre-inspectiondefect content. This estimation can be performed when there are at least two reviewers and they discoversome defects in common. Under these conditions this method is more accurate than the observed detectionratio and is available immediately after every inspection. Since capture-recapture techniques make thatstrong statistical assumptions, we tested our data to see whether or not this technique would be appropriate.We found that this method was inappropriate for our study and therefore we did not use it in our analysis.For example, inspectors often found completely disjoint sets of defects. (We've included the method herefor completeness only. See Appendix A for more details.)� Complete estimation of detection ratio: We can track the code through testing and �eld deployment,recording new defects as they are found. This is the most accurate method, but is not available until wellafter the project is completed. We are currently instrumenting the development process to capture thisdata, but it will not be available for some time.2.3 Experimental Design2.3.1 VariablesThe experiment manipulated 3 independent variables:1. the number of reviewers per team (1, 2, or 4 reviewers, in addition to the author),2. the number of inspection sessions (1-session or 2-sessions),7

Number of Sessions Totals1 2Reviewers With Repair No Repair1 19 19 19 132 19 19 19 134 13 0 0 13Totals 59 29 29 1Table 1: This table gives the proportion of inspections originally allocated to each treatment. These proportionschanged during the experiment's execution because several poorly performing treatments were discontinued.3. the coordination between sessions (in 2-session inspections the author was either required to or prohibitedfrom repairing known defects between sessions).These variables re
ect many (but not all) of the di�erences between Fagan inspections, N-Fold inspections,Active Design Reviews, and Phased Inspections. One very important di�erence that is not captured in ourexperiment is the choice of defect detection methods. The methods used in Active Design Reviews and PhasedInspections involve systematic techniques, with speci�c and distinct responsibilities, while Fagan and N-foldinspection normally use nonsystematic techniques with general and identical responsibilities.The treatments are arrived at by selecting a value for each of the independent variables and are denoted [1,or2] sessions X [1,2, or 4] persons [No-repair,Repair], so, for example, the label 2sX1pN indicates a two-session,one-person, without-repair inspection. These distributions changed during the experiment because some of thepoorly performing or excessively expensive treatments were discontinued.For each inspection we measured 5 dependent variables:1. inspection interval,2. inspection e�ort,3. estimated defect detection ratio,4. the percentage of defects �rst identi�ed at the collection meeting (meeting gain rate),5. the percentage of potential defects reported by an individual, that were determined not to be defects duringthe collection meeting (meeting suppression rate).We also captured repair statistics for every defect (See Section 2.4.2). This information was used to discardcertain defect reports from the analysis { i.e., those regarding defects that required no changes to �x them or8

concerned coding style rather than incorrect functionality.2.3.2 DesignThis experiment used a 22� 3 partial factorial design to compare the interval, e�ort, and e�ectiveness of inspec-tions with di�erent team sizes, number of inspection sessions, and coordination strategies. We chose a partialfactorial design because some treatment combinations were considered too expensive (e.g., two-session-four-personinspections with and without repair).2.3.3 Professional Developers as SubjectsWe took special care to insure that the experimental design did not inadvertently in
uence subject behavior(professional developers and inspectors). Each study participant was given a simple "bill of rights", remindingthem of their right to withdraw from the study at anytime with no recriminations from the researchers or his/hermanagement [13] . Each participant acknowledged this right at the beginning of the experiment by signing arelease form. No subject used this right during the experiment.2.3.4 Discontinuing Ine�ective TreatmentsIn our initial brie�ngs with the development team, we were asked, "What happens if a treatment cost too muchor takes too long?" They were concerned that the experiment could jeopardize the budget or schedule of theproduct.We took this concern seriously and realized that if a treatment was jeopardizing the project's budget, schedule,or quality, we would have to discontinue the treatment. However, the professional developers also realized thatthey were gaining some valuable knowledge from the study. So our compromise was to discontinue any treatmentafter enough inspections had been done, and we could convince ourselves that nothing "unlucky" had happen.(See Appendix B for more details.)This speci�c problem of knowing when to stop experimenting is important for software engineer researchers.Because experiments that use professional developers creating professional products can have very strong validity,but can put the participated project at risk. A similar problem confronts medical researchers when assessing thee�cacy of drug treatments for diseases [13] . They solve the problem like we did through an agreement withtheir subjects in the study. 9

2.3.5 Threats to Internal ValidityThreats to internal validity are in
uences that can a�ect the dependent variable without the researcher's knowl-edge. We considered three such in
uences: (1) selection e�ects, (2) maturation e�ects, and (3) instrumentatione�ects.Selection e�ects are due to natural variation in human performance. For example, if one-person inspectionsare done only by highly experienced people, then their greater than average skill can be mistaken for a di�erencein the e�ectiveness of the treatments. We limited this e�ect by randomly assigning team members for eachinspection. This way individual di�erences were spread across all treatments.Maturation e�ects result from the participants' skills improving with experience. Again we randomly assignedthe treatment for each inspection to spread any performance improvements across all treatments.Instrumentation e�ects are caused by the code to be inspected, by di�erences in the data collection forms,or by other experimental materials. In this study, one set of data collection forms was used for all treatments.Since we could not control code quality or code size, we randomly assigned the treatment for each inspection.2.3.6 Threats to External ValidityThreats to external validity are conditions that limit our ability to generalize the results of our experiment to in-dustrial practice. We considered three sources of such threats: (1) experimental scale, (2) subject generalizability,and (3) subject and artifact representativeness.Experimental scale is a threat when the experimental setting or the materials are not representative ofindustrial practice. We avoided this threat by conducting the experiment on a live software project.A threat to subject generalizability may exist when the subject population is not drawn from the industrialpopulation. This is not a concern here because our subjects are software professionals.Threats regarding subject and artifact representativeness arise when the subject and artifact population isnot representative of the industrial population. This may endanger our study because our subjects are membersof a development team, not a random sample of the entire development population and our artifacts are notrepresentative of every type of software professional developers write.10

2.3.7 Analysis StrategyOur strategy for analyzing the experiment has three steps: resolution analysis, calibration, and hypothesis testing.Resolution Analysis. An experiment's resolution is the minimum di�erence in the e�ectiveness of two treat-ments that can be reliably detected.We performed the resolution analysis using a Monte Carlo simulation. The simulation indicates that with asfew as 5 observations per treatment the experiment can reliably detect a di�erence as small as .075 in the defectdetection rate of any two treatments. The strongest in
uence on the experiment's resolution is the standarddeviation of the code units' defect content { the smaller the standard deviation the �ner the resolution. (SeeAppendix B for more details.)Calibration. We continuously calibrated the experiment by monitoring the sample mean and variance of eachtreatment's detection ratio and inspection interval, and the number of observed inspections. Based on thisinformation and the resolution analysis we discontinued some treatments because their e�ectiveness was so lowor their interval was so long that it put the project at risk. We also monitored the experiment to ensure that thedistribution of treatments did not produce too few data points to identify statistically signi�cant performancedi�erences2.Hypothesis Testing. Once the data was collected we analyzed the combined e�ect of the independent variableson the dependent variables to evaluate our hypotheses. Once the signi�cant explanatory variables were discoveredand their magnitude estimated, we examined subsets of the data to study speci�c hypotheses.2.4 Experimental InstrumentationWe designed several instruments for this experiment: preparation and meeting forms, author repair forms, andparticipant reference cards.2.4.1 Data Collection FormsWe designed two data collection forms, one for preparation and another for the collection meeting.2For example, if two treatments have little within-treatment variance and very di�erent mean performance, then few data pointsare needed to statistically establish the di�erence. Otherwise, more observations are necessary.11

The meeting form was �lled in at the collection meeting. When completed, it gives the time during whichthe meeting was held, and a page number, a line number, and an ID for each defect.The preparation form was �lled in during both preparation and collection. During preparation, the reviewerrecorded the times during which he or she reviewed, and the page and line number of each issue (\suspected"defect). During the collection meeting the team decided which of the reviewer's issues were, in fact, real defects.At that time, real defects were recorded on the meeting form and given an ID. If a reviewer had discovered thisdefect during preparation then they record this ID on their preparation form.2.4.2 Author Repair FormsThe author repair form captured information about each defect identi�ed during the inspection. This informationincluded Defect Disposition (no change required, repaired, deferred); Repair E�ort (� 1hr , � 4hr , � 8hr, or> 8hr), Repair Locality (whether the repair was isolated to the inspected code unit), Repair Responsibility(whether the repair required other developers to change their code), Related Defect Flag (whether the repairtriggered the detection of new defects), and Defect Characteristics (whether the defect required any change in thecode, was changed to improve readability or to conform to coding standards, was changed to correct violationsof requirements or design, or was changed to improve e�ciency).2.4.3 Participant Reference CardsEach participant received a set of reference cards containing a concise description of the experimental proceduresand the responsibilities of the authors and reviewers.2.5 Conducting the ExperimentTo support the experiment, Mr. Harvey Siy, a doctoral student working with Dr. Porter at the University ofMaryland, joined the development team in the role of inspection quality engineer (IQE). The IQE was responsiblefor tracking the experiment's progress, capturing and validating data, and observing all inspections. The IQEalso attended the development team's meetings, but had no development responsibilities.When a code unit was ready for inspection, its author sent an inspection request to the IQE. The IQE thenrandomly assigned a treatment (based on the treatment distributions given in Table 1) and randomly drew the12

review team from the reviewer pool.3 These names were then given to the author, who scheduled the collectionmeeting. Once the meeting was scheduled, the IQE put together the team's inspection packets.4The inspection process used in this environment is similar to a Fagan inspection, but there are some di�erences.During preparation, reviewers analyze the code in order to �nd defects, not just to acquaint themselves withthe code. During preparation reviewers have no speci�c technical roles (i.e., tester, or end-user) and haveno checklists or other defect detection aids. All suspected defects are recorded on the preparation form. Theexperiment places no time limit on preparation, but a organizational limit of 300 LOC over a maximum of 2hours is generally observed.For the collection meeting one reviewer is selected to be the reader. This reviewer paraphrases the code.(Often this involves reading several lines of code at a time and emphasizing their function or purpose. Duringthis activity, reviewers may bring up any issues found during preparation or discuss new issues. One revieweracts as the the moderator. This person runs the meeting and makes sure all required changes are made. Thecode unit's author compiles the master list of all defects and no other reviewer has a prede�ned role.The IQE attended every collection meeting to ensure that all the procedures were followed correctly. He alsoanswered questions about how to �ll out the forms and took extensive �eld notes. After the collection meetinghe gave the preparation forms to the author, who then repaired the defects, �lled out the author repair form,and returned all forms to the IQE. After the forms were returned, the IQE interviewed the author to validateany questionable data.3 Data and AnalysisFour sets of data are important for this study: the team defect summaries, the individual defect summaries, theinterval summaries, and the author repair summaries. This information is captured on the preparation, meeting,and repair forms.The team defect summary forms show all the defects discovered by each team. This form is �lled out by theauthor during the collection meeting and is used to assess the e�ectiveness of each treatment. It is also used tomeasure the added bene�ts of a second inspection session by comparing the meeting reports from both halves of3We did not allow any single reviewer to be assigned to both teams in a two-session inspection.4The inspection packet contains the code to be inspected, all required data collection forms and instructions, and a notice givingthe time and location of the collection meeting. 13

two-session inspections with no repair.The individual defect summary forms show whether or not a reviewer discovered a particular defect. Thisform is �lled out during preparation to record all suspected defects. The data is gathered from the preparationform and is compiled during the collection meeting when reviewers cross-reference their suspected defects withthose that are recorded on the meeting form. This information, together with the team summaries, is used tocalculate the capture-recapture estimates and to measure the bene�ts of collection meetings.The interval summaries describe the amount of calendar time that was needed to complete the inspectionprocess. This information is used to compare the average inspection interval and the distribution of subintervalsfor each treatment.The author repair summaries characterize all the defects and provide information about the e�ort requiredto repair them.3.1 Data ReductionData reduction is the manipulation of data after its collection. We have reduced our data in order to (1) removedata that is not pertinent to our study, and to (2) adjust for systematic measurement errors.3.1.1 Reducing the Defect DataThe preparation and meeting forms capture the set of issues that were raised during each inspection. Thereduction we made was to remove duplicate reports from 2-session-without-repair inspections. This task isperformed by the IQE and the code unit's author.Another reduction was made because, in practice, many issues, even if they went unrepaired, would not leadto incorrect system behavior, and they are therefore of no interest to our analysis.Although defect classi�cations are usually made during the collection meeting, we feel that authors understandthe issues better after they have attempted to repair them, and therefore, can make more reliable classi�cations.consequently, we use information in the repair form and interviews with each author to classify the issues intoone of three categories:� False Positives (issues for which no changes were made),� Soft Maintenance (issues for which changes were made only to improve readability or enforce coding stan-14

TREATMENT

R
E

P
A

IR
 D

IS
P

O
S

IT
IO

N
 F

O
R

 IS
S

U
E

S
R

E
C

O
R

D
E

D
 A

T
 M

E
E

T
IN

G
 (

pe
rc

en
t)

0
20

40
60

80
10

0

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

False Positives
Soft Maintenance
True DefectsFigure 2: Disposition of Issues Recorded at the Collection Meeting. For each treatment, the barchartshows the percentage of the issues recorded at collection meetings that turn out to be false positives, softmaintenance, or true defects. Across all treatments, only 18% of the issues are true defects.dards),� True Defects (issues for which changes were made to �x requirements or design violations, or to improvesystem e�ciency).The distribution of defect classi�cations for each treatment appears in Figure 2. Across all inspections, 22%of the issues are False Positives, 60% involve Soft Maintenance, and 18% are True Defects. We consider onlyTrue Defects in our analysis of estimated defect detection ratio (a dependent variable).53.1.2 Reducing the Interval DataThe preparation, meeting, and repair forms show the dates on which important inspection events occur. Thisdata is used to compute the inspection intervals.We made two reductions to this data. First, we observed that some authors did not repair defects immediatelyfollowing the collection meeting. Instead, they preferred to concentrate on other development activities, and �xthe defects later, during slow work periods. To remove these cases from the analysis, we use only the pre-meetinginterval (the calendar period between the submission of an inspection request and the completion of the collection5We observed that most of the soft maintenance issues are caused by con
icts between di�erent reviewers about the coding styleor conventions used. Since, in and of themselves, these are not true defects some authors never reported them, others always did.15

0
20

40
60

Pre-Meeting Repair Total

PHASE

W
O

R
K

IN
G

 D
A

Y
S

Figure 3: Pre-meeting Inspection Interval. These boxplots show all the interval data divided into two parts:time before the meeting and time after the meeting. The median inspection interval is 21 days, 50% of which isbefore the meeting.meeting) as our initial measure of inspection interval.When this reduction is made, two-session inspections have two inspection subintervals { one for each session.The interval for a two-session inspection is the longer of its two subintervals, since both of them begin at thesame time.Next, we removed all non-working days from the interval. Non-working days are de�ned as either (1) weekenddays during which no inspection activities occur, or (2) days during which the author is on vacation and noreviewer performs any inspection activities. We use these reduced intervals as our measure of inspection interval.Figure 3 is a boxplot6 showing the number of working days from the issuance of the inspection request to thecollection meeting (Pre-Meeting) , from the collection meeting to the completion of repair (Repair), and the total(Total). The total inspection interval has a median of 21 working days, 10.5 before and 10.5 after the collectionmeeting.3.2 Overview of Data6In this paper we have made extensive use of boxplots to represent data distributions. Each data set is represented by a box whoseheight spans the central 50% of the data. The upper and lower ends of the box marks the upper and lower quartiles. The data'smedian is denoted by a bold line within the box. The dashed vertical lines attached to the box indicate the tails of the distribution;they extend to the standard range of the data (1.5 times the inter-quartile range). All other detached points are "outliers". [5]16

Number of Sessions Totals1 2Team Size With Repair No Repair1 7 5 18 302 26 4 15 454 13 0 0 13Totals 46 9 33 88Table 2: This table shows the number of inspections allocated to each treatment.Table 2 shows the number of observations for each treatment. Figure 4 is a contrast plot showing the interval,e�ort, and e�ectiveness of all inspections and for every setting of each independent variable. This information isused to determine the amount of the variation in the dependent variables that is explained by each independentvariable. We also show another variable, total number of reviewers (the number of reviewers per session multipliedby the number of sessions). This variable provides information about the relative in
uence of team size vs. numberof sessions.3.3 Defect Discovery by Inspection PhaseDuring preparation, reviewers analyze the code units to discover defects. After all reviewers are �nished preparing,a collection meeting is held. These meetings are believed to serve at least two important functions: (1) suppressingunimportant or incorrect defect reports, and (2) �nding new defects. In this section we analyze how defectdiscovery is distributed across the preparation and collection meeting activities.Analysis of Preparation Reports. One input to the collection meeting is the list of defects found by eachreviewer during his or her preparation. Figure 5 shows the percentage of defects reported by each reviewer thatare eventually determined to be true defects. Across all 233 preparation reports, only 13% of all issues turnout to be true defects. We can �nd no clear relationship between the independent variables and preparatione�ectiveness.Analysis of Suppression. It is generally assumed that collection meetings suppress unimportant or incorrectdefect reports, and that without these meetings, authors would have to process many spurious reports duringrepair. As we deduce from the previous section an average of 87% of reviewer reports (100% - 13%) do notinvolve true defects. 17

All Data Repair Team

Sessions Reviewers

D
E

F
E

C
T

 D
E

N
S

IT
Y

 (
de

fe
ct

s/
K

N
C

S
L)

0

20

40

60

80

-

-

-

-

-

-

--

-

-

-

-
-

-

-
-

-

-

-

-

-

-

--
-

--

-

-

--

-

-

-
-

-

-

--

-

--

-
-
--

-

-

--

--

-

-

-

-

-

-

-

-

-

-

-

-

--

-

--

--
-

--

-

-

-

-

-

-

-

-

-

-
1

2
NR

R

1

2

4

1

2
4

All Data Repair Team

Sessions Reviewers

IN
T

E
R

V
A

L
(w

or
ki

ng
 d

ay
s)

0

5

10

15

20

25

30

35

40

-

-

-

--

-
-

-

-
-

-

-
-

-

-

-

-
-

-
-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-
-

-
-
--

-
-

-

-
-
-

-
--

-

-

-

-

-
-
-
-
-
-

-

-

-

-
-

-

-

-

-
-

-

-

-

-

-

-

-

-
-

-
-

-

-

-

-

-

-

-

1
2

NR

R

12

4

1
24

All Data Repair Team

Sessions Reviewers

E
F

F
O

R
T

 (
m

an
-h

ou
rs

 p
er

 K
N

C
S

L)

0

10

20

30

40

50

60

70

80

-

-

-

-
-

-

-

-

-
-

-

-

-

-

--
-
-

-

-

-

-

-
-

-

-

-

-

-

-

-

-
-

-

-

-

-
-

-

-

-

--

-

-

-

-

-

-

-
-

-

-
-

-

-

-

-

-

--

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-
--
-
-

-

-

-

-

-

1

2 NR
R

1

2

4

1

2

4

Figure 4: E�ectiveness, Interval, and E�ort by Independent Variables. The dashes in the far left columnof the �rst plot show the defect detection rates for all inspections. The dotted horizontal line marks the averagedefect detection rate. The other four columns indicate factors that may in
uence this dependent variable. Theplot demonstrates the ability of each factor to explain variations in the dependent variable. For the Repair factor,the vertical locations of the symbols "N" and "NR are determined by averaging the defect detection rates for allcode inspections using 2-sessions with repair and 2-sessions without-repair. The bracket at each factor representsone standard error of di�erence. If the actual di�erence is longer than the bracket, then that factor is statisticallysigni�cant. The middle and right panels show similar information for inspection interval and e�ort.Figure 6 shows the suppression rates for all 233 reviewer reports. Across all inspections about 26% of issuesare suppressed. This appears to be independent of the treatment.Analysis of Meeting Gains Another function of the collection meeting is to �nd new defects in addition tothose discovered by the individual reviewers. Defects that are �rst discovered at the collection meeting are calledmeeting gains.Figure 7 shows the meeting gain rates for all 131 collection meetings. Across all inspections, 30% of all defectsdiscovered are meeting gains. The data suggests meeting gains are independent of treatment.3.4 Analysis of E�ort Data 18

0.
0

0.
2

0.
4

0.
6

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

T
R

U
E

 D
E

F
E

C
T

 R
A

T
E

 P
E

R
 R

E
V

IE
W

E
R

Figure 5: True Defect Rate per Reviewer Preparation Report by Treatment. This boxplot shows therate at which defects found during preparation are eventually considered to be true defects. Across all treatments,only 13% of the reports turn out to be true defects.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

D
E

F
E

C
T

 S
U

P
P

R
E

S
S

IO
N

 R
A

T
E

 P
E

R
 R

E
V

IE
W

E
R

Figure 6: Meeting Suppression Rate by Treatment. These boxplots show the suppression rate for eachreviewer by treatment. The suppression rate for a reviewer is the number of defects detected during preparationbut not included in the collection meeting defect report, divided by the total number of defects recorded by thereviewer in his/her preparation. Across all inspections, 26% of the preparation reports are suppressed.The common measure of inspection cost is total e�ort { the number of hours spent in preparation and meetingby each reviewer and author. Figure 8 shows the e�ort spent per KNCSL for each inspection by treatment andfor all treatments. Across all treatments, the median e�ort is about 22 person-hours per KNCSL.19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

M
E

E
T

IN
G

 G
A

IN
 R

A
T

E

Figure 7: Meeting Gain Rate by Treatment. These boxplots shows the meeting gain rates for all inspectionsand for each treatment. The average rate was 30%.
20

40
60

80

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

E
F

F
O

R
T

 R
A

T
E

 (
pe

rs
on

-h
ou

rs
 p

er
 K

N
C

S
L)

Figure 8: Total Inspection E�ort by Treatment. This plot shows the total inspection e�ort per KNCSL foreach treatment. Across all treatments, the median e�ort is 22 person-hours per KNCSL.The data suggest that e�ort increases in direct proportion with the total number of reviewers while thenumber of sessions and the repair between sessions have no e�ect 7. That is, inspections involving 4 reviewers(1sX4p, 2sX2pN, and 2sX2pR) required signi�cantly more e�ort than inspections involving 2 reviewers. Likewise,7In this article, we consider two data distributions to be signi�cantly di�erent only if the Wilcoxon rank sum test rejects the nullhypothesis that the observations are drawn from the same population with a con�dence level � :9.20

0
10

20
30

40

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

P
R

E
M

E
E

T
IN

G
 IN

T
E

R
V

A
L

(w
or

ki
ng

 d
ay

s)

Figure 9: Pre-meeting Interval by Treatment. This plot shows the observed pre-meeting interval for eachinspection treatment. Across all treatments, the median interval is 10.5 days.inspections involving 2 reviewers (1sX2p, 2sX1pN, and 2sX1pR) required signi�cantly more e�ort than inspectionsinvolving 1 reviewer.3.5 Analysis of Interval DataInspection interval is another important, but often overlooked cost. Figure 9 shows the inspection interval(pre-meeting only) by treatment and for all treatments.The cost of increasing team size is suggested by comparing 1-session inspections (1sX1p, 1sX2p, and 1sX4p).Since there is no di�erence between the intervals, team size alone did not a�ect interval.The additional cost of multiple inspection sessions can be seen by comparing 1-session inspections with 2-session inspections (1sX2p and 1sX1p with 2sX2p and 2sX1p inspections). We �nd that 2sX1p inspections didn'ttake longer to conduct than 1sX1p inspections, but that 2sX2p inspections took longer to complete than 1sX2pinspections. (This e�ect is caused solely by the 2sX2pR treatment, since there was no di�erence between 1sX2pand 2sX2pN inspections.)The cost of serializing two inspection sessions is suggested by comparing 2-session-with-repair inspections to2-session-without-repair inspections (2sX2pN and 2sX1pN with 2sX2pR and 2sX1pR inspections). When theteams had only 1 reviewer we found no di�erence in interval, however, we did see a di�erence for 2-reviewer21

0
20

40
60

80
10

0

1sX1p 1sX2p 1sX4p 2sX1pN 2sX1pR 2sX2pN 2sX2pR All

TREATMENT

O
B

S
E

R
V

E
D

 T
R

U
E

D
E

F
E

C
T

 D
E

N
S

IT
Y

 (
de

fe
ct

s/
K

N
C

S
L)

Figure 10: Observed Defect Density by Treatment. This plot shows the observed defect density for eachinspection treatment. Across all inspections, the median defect detection rate was 12 defects per KNCSL.teams. This indicates that requiring repair between sessions only increases interval as the team size grows.Another interesting observation in that the median interval for the 2sX2pR treatment is extremely long (20days), while all others have a median of only 10 days. Since this treatment took twice as long to completethan did the others we discontinued it early in the experiment. Consequently, we conducted only four of theseinspections. Nevertheless, we are convinced that this �nding warrants further study, because it suggests thatrelatively straightforward changes to a process can have dramatic, negative e�ects on interval.3.6 Analysis of E�ectiveness DataThe primary bene�t of inspections is that they �nd defects. This bene�t varied with di�erent inspection treat-ments. Figure 10 shows the observed defect density for all inspections and for each treatment separately.The e�ect of increasing team size is suggested by comparing the e�ectiveness of all 1-session inspections(1sX1p, 1sX2p, and 1sX4p inspections). There was no di�erence between 2- and 4-person inspections, but bothperformed better than 1-person inspections.The e�ect of multiple sessions is suggested by comparing 1-session inspections with 2-session inspections.When team size is held constant (1sX2p vs. 2sX2p and 1sX1p vs. 2sX1p inspections), 2-session inspections weremore e�ective than 1-session inspection only for 1-person teams. However, when total number of reviewers is22

held constant (1sX2p vs. 2sX1p and 1sX4p vs. 2sX2p) there were no di�erences in e�ectiveness.The e�ect of serializing multiple sessions is suggested by comparing 2-session-with-repair inspections to 2-session-without-repair inspections (2sX2pN and 2sX1pN with 2sX2pR and 2sX1pR inspections). The data showthat repairing defects between multiple sessions didn't increase e�ectiveness when the team size was one, but didwhen the team size was two. This result should be viewed with caution, however, because there are only four2sX2pR and �ve 2sX1pR inspections, respectively. Also, during the time in which the with-repair treatmentswere used they performed no di�erently than did without-repair treatments, and furthermore the overall meandropped steadily as the experiment progressed possibly exaggerating the di�erences between the 2sX2pR and2sX2pN treatments. (See Appendix C for more details.)We draw several observations from this data: (1) increasing the number of reviewers did not necessarily leadto increased defect discovery, (2) splitting one large team into two smaller teams did not increase e�ectiveness,and (3) repairing defects in between 2-session inspections doesn't guarantee increased e�ectiveness.4 Low Level AnalysisSeveral software inspection researchers have proposed changes to the structure of the process, hoping to improveits performance. For example, originally researchers claimed that large teams would bring a wide diversity ofexpertise to an inspection, and, therefore �nd more defects than would smaller teams. But later authors believedthat smaller teams would be better because they would minimize the ine�ciencies of large team meetings. Someauthors argued further that multiple sessions with small teams would be more e�ective than a single session witha larger team because the small teams would be nearly as e�ective as large ones, wouldn't duplicate each other'se�ort and would have more e�ective collection meetings. defects. Finally, some authors told us that repairingdefects in between multiple sessions would be more e�ective than two sessions without repair because repairwould improve the ability of the second team to �nd defects.Our initial analysis suggests, however, that many of these changes have little or no e�ect on observed defectdensity. For example,� increasing team size doesn't always improve performance. (1sX1p < 1sX2p, but 1sX2p = 1sX4p),� creating two smaller teams isn't an e�ective way to reorganize a large group. (2sX2p = 1sX4p and 2sX1p23

= 1sX2p), and� repairing defects between sessions doesn't guarantee improved inspection performance. (2sX2pR = 2sX2pN8and 2sX1pR = 2sX1pN).One possible explanation is that the assumptions driving inspection process changes didn't hold in practice.(e.g., that repairing defects between multiple sessions didn't improve the ability of the second team to �nddefects.) Another possible explanation is that the treatments had unintended, negative side e�ects (i.e., thetreatment improved some aspect of the inspection while degrading another).To evaluate these potential explanations we examined the e�ect of each treatment on several inspectionsub-activities.4.1 Modeling Defect Detection in an Inspection ArtifactFirst, we have developed a model to measure defect discovery in each inspection subtask. The model, shown inFigure 11, assumes that the inspection artifact contains N undiscovered defects. Each reviewer, Ri, �nds somenumber of defects, pi, during preparation. Some number of these, common, may be found by more than onereviewers so the number of unique defects found in preparation, P , may be less than P pi. Some number ofadditional defects, M , may found at the meeting. During the meeting some of the defects found in preparationmay be suppressed (determined not to be defects). These are called meeting losses.Although we don't know howmany true defects are suppressed, we will assume the number to be small and will,therefore, ignore meeting losses for now. Given this assumption, the number of defects found in one inspection,D, is just P +M and the observed defect density is DNCSL , where NCSL is the number of noncommentary linesof code in the artifact.Using this model and the data from our experiment we can calculate several statistics.1. the average number of defects found by individual reviewers during preparation: �pi,2. the number of unique preparation defects: P ,3. the number of defects found by more than one reviewer during preparation: common,8Comparing only the inspections that occurred while the 2sX2pR treatment was being used.24

Defect ID 1 2 3 4 5 6 7 8 9 10 : : : N Number FoundR1 p p p : : : p1R2 p p X p : : : p2R3 p : : : p p3... ...Rn p p : : : p pnPreparation p p p p p p : : : p PMeeting p p : : : MTotalDefects p p p p p p p p : : : p D = P +MFigure 11: A Defect Detection Model. During preparation, reviewer Ri �nds pi defects. Each p mark inrow Ri indicates one of these defects. Each X mark indicates a defect that was found by Ri, but was suppressedat the meeting. The row labeled Preparation contains one p mark for each defect that found by at least onereviewer during preparation and theM defects found at the meeting are indicated by a p mark in the row labeledMeeting. Finally, the row labelled TotalDefects contains a p mark for each of the D defects that are known tothe artifact's author at the end of the inspection.4. the overlap in preparation defects: commonP , and5. meeting gains { M .Our goal in this analysis is to determine whether treatments with similar inspection performances showsigni�cant di�erences in these lower-level activities. For example, if one treatment has higher preparation defectdensities (PNCSL) than another, but the same observed defect densities, then we'd expect to �nd worse performancein some other subtasks, (e.g., lower meeting gain densities (MNCSL)).4.2 Large Teams vs. Small TeamsAs long as additional reviewers �nd some new defects and don't negatively a�ect collection meeting performance,we would expect larger teams to �nd more defects than smaller teams, yet we found that 1sX2p inspectionsperformed the same as 1sX4p inspections. Somewhere the supposed advantage of having more reviewers didn'tmaterialize, so we investigated how team size a�ected both preparation and meeting performance.First, we investigated two aspects of preparation performance: individual preparation and amount of overlapin the defects found by the reviewers.Figure12(b) shows the number of defects per NCSL found in preparation by reviewers in 1sX2p and 1sX4pinspections, piNCSL . There was no di�erence between the two treatments.Then we examined the amount of overlap in the reviewer's defect reports. This is the number of defects found25

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

1sX2p 1sX4p

(a)

M
E

E
T

IN
G

 G
A

IN
S

 P
E

R
 N

C
S

L

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

1sX2p 1sX4p

(b)

D
E

F
E

C
T

S
 F

O
U

N
D

 IN
D

IV
ID

U
A

LL
Y

 IN
 P

R
E

P
A

R
A

T
IO

N
 (

pe
r

N
C

S
L)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1sX2p 1sX4p

(c)

O
V

E
R

LA
P

 IN
 P

R
E

P
A

R
A

T
IO

N

Figure 12: E�ect of Team Size on Inspection Subtasks. (a) meeting gains, (b) mean individual preparationperformance, and (c) overlap of defects found in preparation.by more than one reviewer divided by the total number found in preparation, commonP . There was no di�erencein overlap between 1sX2p and 1sX4p inspections and both distributions had a median of 0. (See Figure 12(c)).Next we examined two aspects of meeting performance: defect suppression and meeting gains. We found thatdefect suppression rates were higher for 1sX4p than for 1sX2p inspections. (See Figure 6).Finally, Figure 12(a)) shows that there is no di�erence in the meeting gains per NCSL, MNCSL , for 1sX2p and1sX4p inspections.One interpretation of these results is that larger teams don't improve inspection performance because meetinggains do not increase as the number of reviewers increases, and because larger teams may suppress a large numberof (possibly true?) defects.4.3 One Large Team vs. Two Small TeamsAnother recommendation that has appeared in the literature is to substitute several small (1- or 2-person) teamsfor one larger team. This approach should be more e�fective if the combined defect detection of the smallerteams is greater than that of the single larger team, and if the small teams don't signi�cantly duplicate eachother's e�orts.Nevertheless we saw that 2sX2p (2sX1p) inspections did not perform better than 1sX4p (1sX2p) inspections.26

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

2sX1pN 2sX1pN 1sX2p

(a)

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
IE

S

(No Dups) (With Dups)

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

2sX2pN 2sX2pN 1sX4p

(b)

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
IE

S

(No Dups) (With Dups)Figure 13: The E�ect of Splitting One Large Team. This �gure compares the distribution of observeddefect densities of 2-session inspections before (Dups) and after (No Dups) accounting for overlap with that of1-session inspections.To investigate this result, we extended our defect discovery model to include inspections with 2 sessions.To evaluate this explanation we compared the distribution of observed defect densities for 1-session inspectionswith the sum of the defect densities found in both sessions of the 2-session inspections (defects found by bothteams are counted twice). We found that combined defect densities of 2sX1p (2sX2p) inspections are not greaterthan the defect denisities of 1sX1p (1sX2p) inspections. We also found that there was e�ectively no overlap inthe defects found by the two sessions (see Figure 13).This data suggests that for our experimental setting overlap among reviewers is a rare occurrence, but thatsplitting teams did not improve performance because the two smaller teams found no more defects than the onelarger team.4.4 Repair vs. No RepairRepairing defects between sessions of a multiple session inspection should result in greater defect detection thannot repairing if (1) the teams in the with-repair inspections perform as well as the teams in the without-repairinspections, (2) there are signi�cantly more defects than one team can �nd alone, and (3) the teams doingwithout-repair inspection �nd many of the same defects.However, we saw that during the period in which with-repair inspections were conducted they did not perform27

Defect ID 1 2 3 4 5 6 7 8 9 10 : : : N Number FoundR11 p p p : : : p11... ...R1m p p X p : : : p1mPreparation1 p p p p p : : : P1Meeting1 p p : : : M1Defects1 p p p p p p p : : : D1 = P1 +M1Defect ID 1 2 3 4 5 6 7 8 9 10 : : : NR21 - - - - p - - - : : : p p21... ...R2m - - - - p - - - : : : p p2mPreparation2 - - - - p p - - - : : : p P2Meeting2 - - - - - - p - : : : M2Defects2 - - - - p p - - p - : : : p D2 = P2 +M2Defects1 p p p p p p p : : : D1Defects2 - - - - p p - - p - : : : p D2TotalDefects p p p p p p p p p p : : : p DFigure 14: Repairing in Between Sessions. The - indicates defects that have been �xed and are no longervisible in the second session.
0.

0
0.

02
0.

04
0.

06
0.

08
0.

10

2sX1pN 2sX1pR

(a)

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
Y

 P
E

R
 S

E
S

S
IO

N

•

•

•

•

•

(b)

D
IF

F
E

R
E

N
C

E
 IN

 D
E

F
E

C
T

S
 F

O
U

N
D

 B
E

F
O

R
E

 R
E

P
A

IR
 A

N
D

 A
F

T
E

R
 R

E
P

A
IR

1 2 3 4 5

-1
0

-5
0

5
10

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

No Dups With Dups

(c)

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
IE

S

Figure 15: E�ect of Repairing In Between Sessions for 1-Reviewer Teams. (a) comparing sessionperformance with same team size, (b) drop-o� in number of defects found, and (c) counting the duplicates for2sX1pN inspections.better than without-repair inspections. One or more of the assumptions may have been violated. To investigatethis, we extended our inspection model to account for two sessions, with and without repair after the �rst session(See Figure 14). 28

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

2sX2pN 2sX2pR

(a)

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
Y

 P
E

R
 S

E
S

S
IO

N

•

•

•

•

(b)

D
IF

F
E

R
E

N
C

E
 IN

 D
E

F
E

C
T

S
 F

O
U

N
D

 B
E

F
O

R
E

 R
E

P
A

IR
 A

N
D

 A
F

T
E

R
 R

E
P

A
IR

1.0 2.0 3.0 4.0
-1

0
-5

0
5

10

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

No Dups With Dups

(c)

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
IE

S

Figure 16: E�ect of Repairing In Between Sessions for 2-Reviewer Teams. (a) comparing sessionperformance with same team size, (b) drop-o� in number of defects found, and (c) counting the duplicates for2sX2pN inspections.To test whether with-repair teams perform as well as without-repair teams we compared defect densities persession, D1 and D2, of with-repair inspections with those of without-repair inspections. We found no di�erencesin the performances (see Figures 15(a) and 16(a)), suggesting that the with-repair teams perform no di�erentlythan without-repair teams.To test whether there are enough defects to warrant two inspection teams we compared the performance ofwith-repair teams inspecting the same unit. If the second team (inspecting after the repair) consistently foundfewer defects than the �rst team, (i.e., D1 � D2 is signi�cantly higher than 0), then the �rst team may havefound most of the defects that can be found with current inspection techniques. If not, this suggests that thatthere are more than enough defects to be found by two teams, and that on the average, one team is as good asthe other. We found some drop-o� defect density for the second team of 2sX1pR inspections (see Figure 15(b)),but none for the second team of 2sX2pR inspections (see Figure 16(b)).To test whether overlap has a signi�cant in
uence on without-repair inspections we �rst calculated the numberof defects identi�ed by the �rst team that were subsequently rediscovered by the second team. If we assume thatan equal number of new defects would have been found had repair been done prior to the second inspection,then an approximation for the total number of defects that would have been found by the two sessions wouldbe D1 +D2. We found that this approximate defect density was not di�erent than defect density of the actual29

without-repair inspections (see Figures 15(c) and 16(c)).These results are based on a very small number of observations and should be viewed with considerablecaution. Tentatively, it suggests that multiple sessions inspections will improve performance only when there isan excess of defects to be found, and that repairing defects in between multiple sessions may not improve theperformance of a second inspection team.5 ConclusionsWe have run an 18-month experiment in which we applied di�erent software inspection methods to all the codeunits produced during a professional software development. We assessed the methods by randomly assigningdi�erent team sizes, numbers of inspection sessions, author repair activities, and reviewers to each code unit.Our results challenge certain long-held beliefs about the most cost-e�ective ways to conduct inspections andraise some questions about the feasibility of recently proposed methods.In particular, two of our major �ndings are that:� Although a signi�cant amount of software inspection research has focused on making structural changes(team size, number of sessions, etc.) to the process, these changes had little or no e�ect in our experi-ment. Consequently, we believe that signi�cant improvements to the inspection process will depend on thedevelopment of new defect detection techniques.� The 2sX2pR treatment had an interval twice that of the other treatments. Although we were able to gatheronly four observations, the magnitude of this di�erence surprises us. Furthermore, it highlights the fact thatalthough researchers frequently argue for changes to software development processes, we have no reliablemethods for predicting the e�ect of these changes on development interval.In the following Section we summarize our speci�c results and discuss their implications from points of viewof both practitioners and researchers.Individual Preparation. Our data indicate that about one-half of the issues reported during preparation turnout to be false positives, Approximately 35{40% pertain to nonfunctional style and maintenance issues. Finally,only 13% concern defects that will compromise the functionality of the delivered system.30

For practitioners this suggests that a good deal of e�ort is currently being expended on issues that mightbetter be handled by automated tools or standards.For researchers this suggests that developing better defect detection techniques may be much more importantthan any of the organizational issues discussed in this article [19] .Meeting Gains. Only 30% of defects were meeting gains. One implication of this result is that it may beworthwhile to explore meeting-less inspections. For example, 2sX2pN inspections are about 33% more e�ectivethan 1sX4p inspections. Without a collection meeting 2sX2pN inspections would still be more e�ective, butmight require less total e�ort and have a shorter interval.These meeting gain rates are higher than those reported by Votta [25] (5%). Since meetings without meetinggains are a large, unnecessary expense, it's important for researchers to better understand this issue. Also, it isextremely important that contradictory �ndings be examined and resolved. Some possible explanations for thisare (1) Votta's study focused on design inspections rather than code inspections, (2) the average team size fora design inspection is considerably larger than for code inspections (so more defects are found in preparation),or (3) design reviewers may prepare much more thoroughly since design defects are likely to be more damagingthan code defects. We are currently conducting another experiment to help resolve these discrepancies.Team Size. We found no di�erence in the interval or e�ectiveness of inspections of 2-, or 4-person teams. Thee�ectiveness of 1-reviewer teams was poorer than both of the others.For practitioners this suggests that reducing the default number of reviewers from 4 to 2 may signi�cantlyreduce e�ort without increasing interval or reducing e�ectiveness.The implications of this result for researchers is unclear. We need to develop a better understanding of why4-reviewer teams weren't more e�ective than 2-reviewer teams. Maybe better inspection techniques would havefound more defects, maybe the code was relatively bug-free, or maybe problems with group interaction becomemore pronounced as team size grows. We will explore this issue further be tracking the system as it is tested anddeployed in the �eld.Multiple Sessions. We found that two, 2-person teams weren't more e�ective than 1, 2-person team. Wefound that two, 2-person (1-person) teams were not more e�ective than one, 4-person (2-person) team. We also31

found that 2-session inspections without repair have the same interval as 1-session inspections.In practice this indicates that 2-session inspections aren't worth their extra e�ort.These results are signi�cant for researchers as well. Multiple session methods such as active design reviews(ADR) and phased inspections (PI) rely on the assumption that several one person teams using specially developeddefect detection techniques can be more e�ective than a single large team without special techniques. Some ofour experimental treatments mimic the ADR and PI methods (without special defect detection techniques). Thissuggests that any improvement o�ered by these techniques will not come just from the structural organizationof the inspection, but will depend heavily on the development of defect detection techniques.SerializingMultiple Sessions. We found that repairing defects in between multiple sessions had no e�ect ondefect detection rate, but in some cases increased interval dramatically.In practice, we see no reason to repair defects between multiple sessions. Furthermore, some of the developersin our study felt that the 2-session-with-repair treatments caused the greatest disruption in their schedule. Forexample, they had to explicitly schedule their repairs although they would normally have used repair to �ll slowwork periods.This result raises several research questions as well. In particular, why did one treatment have such a longinterval? And why weren't we able to predict this e�ect?This result also provides some information about the recently proposed phased inspection method. Thismethod requires small teams each specially defect detection techniques to perform several inspections in serial,repairing defects between each session. Our data shows no improvement due solely to the presence of repair.Consequently, without special defect detection techniques the approach in unlikely to be e�ective.6 Future WorkOur continuing work will focus on deepening our analysis in several areas. Some of the questions we will beaddressing include:� How much variation in the observed performance did our experimental design successfully control?� How much variation in the observed performance can be explained by natural variation in factors outsideour control like inspector skill, code quality and author skill?32

� What factors outside of our experimental control a�ected inspection interval? For example, the number ofinspections in which each reviewer was already participating, proximity to project deadlines, etc.Finally, we feel it is important that others attempt to replicate our work, and we are preparing materials tofacilitate this. Although we have rigorously de�ned our experiment and tried to remove the external threats tovalidity, it is only through replication that we can be sure all of them have been addressed.AcknowledgmentsWe would like to recognize the e�orts of the experimental participants { an excellent job is being done by all. Ourspecial thanks to Nancy Staudenmayer for her many helpful comments on the experimental design. Our thanksto Dave Weiss and Mary Zajac who did much to ensure we had all the necessary resources and to Clive Loaderand Scott VanderWiel for their valuable technical comments. Finally, Art Caso's editing is greatly appreciated.

33

References[1] Karla Ballman and Lawrence G. Votta. Organizational congestion in large scale software development. InThird International Conference on Software Process, pages 123{134, October 1994.[2] Barry Boehm. Verifying and validating software requirements and design speci�cations. IEEE Software,1(1):75{88, January 1984.[3] F. O. Buck. Indicators of quality inspections. Technical Report 21.802, IBM Systems Products Division,Kingston, NY, September 1981.[4] K P Burnham and W S Overton. Estimation of the size of a closed population when capture probabilitiesvary among animals. Biometrika, 65:625{633, 1978.[5] John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey. Graphical Methods for DataAnalysis. Wadsworth International Group, Belmont, California, 1983.[6] Stephen G. Eick, Clive R. Loader, M. David Long, Scott A. Vander Wiel, and Lawrence G. Votta. Estimat-ing software fault content before coding. In Proceedings of the 14th International Conference on SoftwareEngineering, pages 59{65, May 1992.[7] Stephen G Eick, Clive R Loader, M. David Long, Scott A Vander Wiel, and Lawrence G Votta. Capture-recapture and other statistical methods for software inspection data. In Computing Science and Statistics:Proceedings of the 25th Symposium on the Interface, San Diego, California, March 1993. Interface Foundationof North America.[8] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM Systems Journal,15(3):216{245, 1976.[9] P. J. Fowler. In-process inspections of work products at at&t. AT&T Technical Journal, March-April 1986.[10] D. P. Freeman and G. M. Weinberg. Handbook of Walkthroughs, Inspections and Technical Reviews. Little,Brown, Boston, MA, 1982.[11] Watts Humphrey. Managing the Software Process. Addison-Wesley, New York, 1989.[12] IEEE Standard for software reviews and audits. Soft. Eng. Tech. Comm. of the IEEE Computer Society,1989. IEEE Std 1028-1988.[13] Charles M. Judd, Eliot R. Smith, and Louise H. Kidder. Research Methods in Social Relations. Holt,Rinehart and Winston, Inc., Fort Worth, TX, sixth edition, 1991.[14] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An analysis of defect densities found during softwareinspecitons. In SEL Workshop Number 15, Goddard Space Flight Center, Greenbelt, MD, nov 1990.[15] John C. Knight and E. Ann Myers. An improved inspection technique. Communications of the ACM,36(11):51{61, November 1993.[16] K.E. Martersteck and A.E. Spencer. Introduction to the 5ESS(TM) switching system. AT&T TechnicalJournal, 64(6 part 2):1305{1314, July-August 1985.[17] Dave L. Parnas and David M. Weiss. Active design reviews: principles and practices. In Proceedings of the8th International Conference on Software Engineering, pages 215{222, Aug. 1985.[18] Kenneth H. Pollock. Modeling capture, recapture, and removal statistics for estimation of demographicparameters for �sh and wildlife populations: Past, present, and future. Journal of the American StatisticalAssociation, 86(413):225{238, March 1991.[19] Adam A. Porter and Lawrence G. Votta. An experiment to assess di�erent defect detection methods forsoftware requirements inspections. In Sixteenth International Conference on Software Engineering, Sorrento,Italy, May 1994. 34

[20] Glen W. Russel. Experience with inspections in ultralarge-scale developments. IEEE Software, 8(1):25{31,January 1991.[21] G. Michael Schnieder, Johnny Martin, and W. T. Tsai. An experimental study of fault detection in userrequirements. ACM Trans. on Software Engineering and Methodology, 1(2):188{204, April 1992.[22] Sidney Siegel and Jr. N. John Castellan. Nonparametric Statistics For the Behavioral Sciences. McGraw-HillInc., New York, NY, second edition, 1988.[23] T. A. Thayer, M. Lipow, and E. C. Nelson. Software reliability, a study of large project reality, volume 2 ofTRW series of Software Technology. North-Holland, Amsterdam, 1978.[24] Scott A. Vander Wiel and Lawrence G. Votta. Assessing software design using capture-recapture methods.IEEE Trans. Software Eng., SE-19:1045{1054, November 1993.[25] Lawrence G. Votta. Does every inspection need a meeting? In Proceedings of ACM SIGSOFT '93 Symposiumon Foundations of Software Engineering, pages 107{114. Association for Computing Machinery, December1993.[26] Alexander L. Wolf and David S. Rosenblum. A study in software process data capture and analysis. InProceedings of the Second International Conference on Software Process, pages 115{124, February 1993.[27] E. Yourdon. Structured Walkthroughs. Prentice-Hall, Englewood, NJ, 1979.

35

A Capture-Recapture MethodsCapture-recapture (CRC) methods are sampling, resampling schemes for estimating the size of a population [18]{ in our case the total number of defects in the artifact (which we denote by N). The idea is to compare thedefect reports of several reviewers. Assuming reviewers are independent and that defects have identical detectionprobabilities, if several reviewers �nd many of the same defects then we conclude that most of the defects havebeen found. On the other hand, if every reviewer �nds many defects which were not found by the other reviewers,we conclude that many undiscovered defects remain. Capture-recapture methods translate these intuitive ideasinto statistical estimation procedures.From the preparation, collection meeting, and author repair we gather enough information to support a largenumber of CRC methods [6] . Our choice of a speci�c capture-recapture method will depend on how well ourspeci�c application conforms to the assumptions underlying several available methods.Three assumptions are made when deriving the simplest estimators: (A) reviewer performances are statis-tically independent, (B) all reviewers are equally e�ective at �nding defects, and (C) all defects have the sameprobability of being found.If assumption (A) is violated, it will not be possible to derive a reliable estimator. Assumption (A) may beviolated because of collusion (reviewers working together, causing N to be underestimated) and/or specialization(reviewers looking for disjoint sets of defects, causing N to be overestimated). We will use a statistical testconstructed by Steve Eick et al. [7] to establish whether or not assumption (A) holds for our data.If assumption (B) holds, we can use a jackknife estimator for N . This allows us to ignore assumption (C),since it does not enter into the estimator's derivation. The jackknife estimator for N of order k (k <= m) hasthe form N̂ = maxf0; a1f1 + � � �+ akfkg+ n (1)where m is the number of reviewers, n is the total number of defects found by all reviewers during their prepa-ration, and fj denotes the number of defects discovered by exactly j reviewers (j = 0; : : : ;m). The constantsa1; : : : ; ak depend on m and k. Full details as well as a method for selecting k are given in Burnham andOverton [4] .If assumption (B) is violated, but assumption (C) holds, we can compute a maximum likelihood estimation,36

N̂ , for N . This will be the value of X that maximizes the following equation:Lc(X) = ln�Xn�+ mXj=1nj ln(nj) + mXj=1(X � nj) ln(X � nj) �Xm ln(X) (2)where nj is the number of defects found by the jth reviewer in his or her preparation.When neither assumption (B) nor assumption (C) hold, then an estimator cannot always be derived. However,Scott Vander Wiel et al. [24] found that if the defects can be partitioned into a small number of groups, wherethe defects in each group have similar detection probabilities, then Equation 2 can be applied to each groupseparately and the results added together to calculate an estimate for N .An analysis of our data indicates that assumption (A) holds, but assumptions (B) and (C) do not. However,the data can be partitioned as suggested by Vander Wiel. Therefore, we will use Equation 2 to estimate the sizeof each subpopulation and combine them to estimate the total population.

37

B Resolution AnalysisThe simulation involves just two treatments, Ta and Tb, whose defect detection probabilities are pa and pb.The simulation comprises three distinct steps:1. Creation of code units. We create a number of code units with known size and defect density. Thedefect density is randomly drawn from a normal distribution with mean � and standard deviation �. Thenumber of defects in the code, N , is just the defect density multiplied by the code size.2. Application of treatments. We apply treatments Ta and Tb to di�erent groups of code units. Eachgroup contains sets of 5, 10, and 15 code units. The number of defects found, na, by applying Ta to a codeunit containing N defects, is determined by a random draw from a Binomial distribution with parametersN and pa (pb when applying treatment Tb �nds nb defects).3. Comparison of results. We use the Wilcoxon rank sum test [22] to determine the probability that thena's are drawn from the same population as the nb's.9This process is repeated a hundred times for each experimental setting. Even though the two treatments havedi�erent detection probabilities, under some conditions the test may fail to recognize the di�erence. Running thesimulation in a wide variety of experimental settings helps us to determine when and how con�dently we can saythat two treatments are di�erent.We created 600 experimental settings consisting of 25 di�erent combinations of means (53,67,80,93,107) andstandard deviations (3,7,13,27,40) to generate defect densities, and 24 di�erent pairs of pa(:2; :4; :6; :8) and pb(pb = pa + :0; :025; :05; :075; :1; :15).Figure 17 shows some (108 out of 600 settings) of the simulation results. The x-axis shows the true di�erencebetween pa and pb and the y-axis shows the probability that the null hypothesis (pa = pb) will be rejected. Eachcombination of a symbol and a line segment represents the outcomes of 100 simulation runs of one experimentalsetting. The symbol indicates the median, and the line segment through the symbol spans the :25 through the:75 quantiles.We de�ne the experimental resolution as the value when more than 50% of the 100 outcomes have a signi�cance9Although the Wilcoxon rank sum test is not as powerful as a t distribution test, the Wilcoxon rank sum test does not requirethe na's and nb's to be normally distributed { an assumption that is di�cult to test with small samples of data.38

.000 .025 .050 .075 .100 .150

True Difference Between Treatments

.00

.25

.50

.75

1.00

.00

.25

.50

.75

1.00

.00

.25

.50

.75

1.00

P
ro

ba
bi

lit
y

of
 R

ej
ec

tin
g

th
e

N
ul

l H
yp

ot
he

si
s

Mean Defect Density of 53 (53) defects/KNCSL,
Standard Deviation of 7 (26) defects/KNCSL
for Unfilled (Filled) Symbols

Mean Defect Density of 80 (80) defects/KNCSL,
Standard Deviation of 7 (26) defects/KNCSL
for Unfilled (Filled) Symbols

Mean Defect Density of 107 (107) defects/KNCSL,
Standard Deviation of 7 (26) defects/KNCSL
for Unfilled (Filled) Symbols

Resolution Limit

Resolution Limit

Resolution Limit

Figure 17: Resolution of the Experiment. This plot shows the results of applying treatments Ta and Tbto sets of 5, 10, or 15 code units (marked by the square, circle, and triangle). Each simulated unit has 300NCSL and a mean defect density of 53, 80, or 107 defects per 1000 NCSL, with a standard deviation of 7 or 26defects per 1000 NCSL. pa is set to .6. The x-axis shows the true di�erence between pa and pb and the y-axisshows the probability that the null hypothesis (i.e., that all the treatments have the same e�ectiveness) will berejected. Each combination of a symbol and a line segment represents the outcome of 100 simulation runs for oneexperimental setting. The symbol indicates the median and the line segment runs from the lower to the upperquartile. Symbols plotted above the dotted horizontal line in each panel indicate experimental situations wheretrue di�erences in treatment e�ectiveness can be reliably detected. The simulation results indicate a resolution as�ne as .05. The resolution does not become substantially �ner as the number of observations increases; however,it does become �ner as the standard deviation decreases.greater than .9 (the symbol in Figure 17 lies above the resolution line), and the next smaller true di�erence valuehas the symbol with less than 50% of the 100 outcomes greater than .9 (the symbol in Figure 17 lies below theresolution line). 39

Inspections

D
ef

ec
t D

en
si

ty
 (

de
fe

ct
/K

N
C

S
L)

0
20

40
60

80
10

0

1

4

1
2

2

2

2

2

1

2

2

2
2

4

2

2

1

2

2

4

1

1
1 4

1

2
1

1 1

1

2 1

2

1

2

1

1

1

4

1
1

2

2

1

2

4 2

1

1

4

4

2

2 2

4

2

2

1

2

1 2

2 1 4

2

2

2 2

2

4
2

4

1

2 1

2
2

2

2
1

2

2

1

1 4

2

2

2

No Repair
With Repair

Ju
l 9

4

Sep
 9

4

Dec
 9

4

M
ar

 9
5

Ju
n

95

Sep
 9

5

Nov
 9

5Figure 18: Inspection Performance Over Time. This is a time series plot showing the trends in observeddefect densities of inspections as time passed. The vertical lines partition the plot into quarters. Within eachquarter, the solid horizontal line marks the mean of that quarter's distribution. The dashed lines mark onestandard deviation above and below the mean. The treatment used by the inspection is encoded in the plottingsymbol. The plotted numbers represent the team size of the inspection. The open ones are 1-session inspections,the circled ones are 2-session inspections with repair and the square ones are 2-session inspections with no repair.C Inspection Performance over TimeC.1 Chronological OverviewInitially, the experiment involved seven treatments. At the beginning of 1995, we evaluated the existing resultsand discussed them with the project's management. Although we would have preferred to gather more data, itwould have been risky for the project to continue performing expensive or ine�ective treatments. Therefore, wediscontinued three treatments: 1sX1p, 2sX1pR, and 2sX2pR.The 1sX1p treatment was the least e�ective, while the two with-repair treatments (2sX1pR and 2sX2pR)were no more e�ective than the without-repair treatments. In addition, the 2sX2pR treatment was, by far, themost expensive treatment in terms of interval. Figure 18 con�rms that the last instances of these discontinuedtreatments were held in the �rst quarter of 1995.Our primary concern is that discontinuing treatments may compromise the experiment's internal validity (i.e.,factors that a�ected all treatments early in the experiment, will a�ect only the remaining treatments later in theexperiment). Consequently, we must be careful when we compare treatments that were discontinued with those40

that were not.Figures 18 and refinttimeseq show inspection e�ectiveness and interval over time, with observations sortedaccording to the time at which the code unit became available for inspection.C.2 Analysis of Inspection Performance Over TimeThe data presented in Figure 18 suggests that there are two distinct performance distributions. That is, thatthe �rst quarter (July - September, 1994) { during which about one-third of the inspections occurred { has asigni�cantly higher mean and variance than the remaining quarters (October, 1994 { December, 1995).One reason for this may be that the end of the �rst quarter coincides with the system's �rst integration build.Our records show that with the compiler's front end in place, the developers were able to do more thorough unittesting for the back end code than they did for front end code itself.Other factors may be that the reviewers had become more familiar with the programming language as theproject progressed, that the requirements for the front-end (language de�nition, parsing, and intermediate codegeneration) was more prone to misinterpretation than the �nal code generation and optimizationIn particular, this suggests to us that had we continued using the 2sX2pR treatment its e�ectiveness wouldhave dropped in a manner consistent with the other treatments.C.3 Analysis of Inspection Interval Over TimeFigure 20 is a time series plot showing inspection interval as project progressed. We see that the mean inspectioninterval did not vary signi�cantly throughout the project, although there is a gradual increase as the projectnears completion.Although there were only four 2sX2pR inspections, the stability of the interval for the other treatmentssuggests that had we continued the treatment, its interval would not have changed signi�cantly.
41

0
20

40
60

80
10

0

TREATMENT

1sX1p 1sX4p 2sX1pR 2sX2pR
1sX2p 2sX1pN 2sX2pN All

P
H

A
S

E
 1

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
Y

 (
de

fe
ct

/K
N

C
S

L)

0
20

40
60

80
10

0

TREATMENT

1sX1p 1sX4p 2sX1pR 2sX2pR
1sX2p 2sX1pN 2sX2pN All

P
H

A
S

E
 2

O
B

S
E

R
V

E
D

 D
E

F
E

C
T

 D
E

N
S

IT
Y

 (
de

fe
ct

/K
N

C
S

L)

Figure 19: Observed Defect Density by Treatment and Phase. These two plots show the observed defectdensity for each inspection treatment during the �rst and second phase of the project. Across all inspections,the median observed defect density was 18 defects per KNCSL for the �rst phase and 10 defects per KNCSL forthe second phase.
Inspection

P
re

-M
ee

tin
g

In
te

rv
al

 (
w

or
ki

ng
 d

ay
s)

0
10

20
30

40

1

4
1

2

2

2

2

2

1

2

2

2

2
4

2

2

1

2

2

4

1

1

1

4

1

2

1

1

1

1

2 1

2

1
2

1

1

1
4

1

1
2

2

1

2

4

2

1

1
4

4

2

2

2

4

2

2

1
2 1

2

2

1
4

2

2

2

2

2

4

2

4

1

2

1

2 2

2

2

1

2

2

1
1

4

2

2

2

No Repair
With Repair

Ju
l 9

4

Sep
 9

4

Dec
 9

4

M
ar

 9
5

Ju
n

95

Sep
 9

5

Nov
 9

5Figure 20: Inspection Intervals Over Time. This is a time series plot showing the trends in inspectionintervals as time passed. 42

