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ABSTRACT

In many execution environments software components cannot interoperate easily because of dif-
ferences in their interfaces and implementations. Additional software is often required to inte-
grate such components and implement the interfacing decisions between them. For example, a
procedure call across architectures may require extensive software to relocate data and coerce
parameters. Even when powerful integration facilities are available, application programs need
some additional software — often called ‘stubs’ — so they can access the available communi-
cation media. Interface software can be more expensive to program that other software, since
its creation requires knowledge of the machine architectures and communication mechanisms.
Moreover, it must be rewritten whenever components are reused in different configurations.

This paper describes a way to automatically generate custom interface software for heterogeneous
configurations. Whereas previous research focused on ‘stub generation’ alone, our approach
generates stubs as well as the configuration methods needed to integrate an application. Using this
approach, developers may build support tools that hide the details of how software configurations
are ‘packaged’ into executables. This approach is implemented within the Unix environment in
a system called Polygen, which we have used for evaluation and demonstration.
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1 INTRODUCTION

In an era of escalating software costs, reuse of software components is an economic necessity.
Equally acute is the need to integrate components in the presence of heterogeneity, whether in
source languages, architectures, or communication media. Unfortunately, additional software
must be developed to implement interfacing decisions for each heterogeneous configuration. Ap-
plication programs must be adapted to use the desired architecture and communication media,
or they must be extended to do so. Interface software can be expensive to create, and must be
rewritten whenever components are reused in different configurations.

One way to increase the potential for software reuse is to limit the growth of dependencies be-
tween components. For example, module interconnection languages (MILs) have been effective
in managing structural dependencies, i.e., those concerning visibility or compatibility of variables
and interface names [5]. However, the availability of heterogeneous systems increases the likeli-
hood for geometric coupling, which are dependencies due to the relation between components and
where they execute in the underlying architecture. To minimize these dependencies, program-
mers typically organize their programs so that calls to an underlying communication system are
as isolated as possible. They hope that stubs will localize the impact of subsequent changes in
the communication system, therefore reduce the cost of reusing the component. This approach
is generally successful, but there is still the manual tasks of identifying the remote interfaces,
creating the stub code, and determining how the stub should be integrated with the application.

When programmers must adapt their components for each new application, some economic ben-
efits of reuse are lost. In order to regain them, we must turn to automatic techniques, from which
several questions arise. How do we generate the interface software needed for one application
component to interoperate with another? How are the components and interface software pack-
aged together into executable objects? How do we analyze source programs to discover potential
dependencies in the first place? These are problems we focus on in this paper.

We will describe a method for automating the generation of custom interface software for hetero-
geneous configurations. Whereas previous research has focused on ‘stub generation’ alone, our
approach generates stubs as well as the configuration methods needed to integrate an application.
Using this approach, developers may build support tools that hide the details of how software
configurations are ‘packaged’ into executables.

This method is implemented in a system called Polygen within the Unix environment. Polygen
integrates heterogeneous components by generating the interface software needed to integrate
and transform (for instance, compile and link) a configuration into a set of executable objects.
Programmers provide only the source code for application components plus an abstract charac-
terization of their decisions concerning the desired geometry of a configuration. Polygen then
acts as a ‘linker’ to analyze the information and generate the necessary interface software. The
process is guided by a set of abstract composition rules that characterize the integration capa-
bilities of an environment. In this manner, components can be composed and reused in different
applications without being modified explicitly by the software developer.



2 MOTIVATION

Software is partitioned for many reasons into modules — identifiable and homogeneous (but
possibly divisible) units of computation. Consider a simple application implemented in Figure 1.
The two modules are implemented in different programming languages (C and Common Lisp) and
may be configured to execute either on a single processor, on two processors in a shared-memory
multiprocessor, or on two different machines in a distributed system. In each case, they must be
modified to use a common interface mechanism. As comparison, the integration task is trivial
if both modules were implemented in the same programming language and configured to run on
a single processor — both modules would be integrated into a single executable object without
the use of interface software except as implemented by the native linker/loader (e.g., using stack
and jump instructions). In many cases, however, the integration task is not as trivial.

The way we adapt these modules for integration in more general cases depends in part on their
source languages, their execution location in the available hardware configuration, and the inter-
process communication (IPC) facilities available in an environment. Figure 2 gives an example
of module adaptations for one execution environment. The extra code in both cases is necessary
because the modules reside in separate executable objects that are integrated by communication
mechanisms. A connection between them is established at run time by the environment through
RENDEZVOUS functions. The call to a BYTESWAP function may be necessary if the processes runs
on two hosts with differing representations of an integer. For the lisp function, a dispatcher
routine becomes the new ‘main’ program — the typical ‘read, eval and print’ operation of lisp
must be replaced in order for the process to act as as server in support of other modules. In
general, we might place the extra code in a separate module to gain procedural transparency.
Such a module, called a stub, would be linked in or loaded separately.

Source language, execution location, and IPC properties as shown in this example are some of the
implementation differences that increase coupling and decrease reuse by requiring programmers to
adapt modules through the use of interface software. We would like to reuse modules in as many
different configurations and environments as possible without manually creating or modifying
source code. To achieve this goal, we need to adapt modules automatically by generating interface
software from abstract specifications of applications. Such a capability would reduce coupling and
increase the possibilities for reuse by isolating architectural and communication dependencies.

Programmers also need assistance with more than just the generation of stubs themselves. Each
desired configuration requires different communication mechanisms and integration strategies.
Once the stubs have been generated and the commands needed to integrate the new files have
been enumerated, tools such as makefiles [7] can help programmers obtain executables reliably
— the problem is identifying the program units and generating the appropriate commands (e.g.,
generating the makefile for mixed language programs) in the first place. This can be a tedious
task that no programmer is interested in performing manually. Existing stub generation systems
often replace the manual adaptation of source programs with the manual task of establishing
configuration control over the application.



#include ‘‘client.h’’

main()

{
char key[256];
int retval;

printf("Name? ");
while(gets(key) !'= NULL) {
if((retval = lookup(key)) !'= 0)

printf("%s at ext. %d", key, retval);

else
printf("%s not found.'",key);

printf("Hame? ");

(setq TABLE ’(
(Jim 2706)
(Dave 1234)
(John 5678)

)]

(defun lookup (name)
(table-lookup name TABLE)
)

(defun table-lookup (name list)
(cond
((null list) 0)
((equal name (caar list)) (cadar list))
(t (table-lookup name (cdr list)))

Figure 1: Module ‘main’ (left) and function ‘lookup’ (right) for a simple application.

The client and server modules (above) can be integrated in our execution environment through the use
of interprocess communication primitives. Each source module, however, must be modified (below)
to use these facilities. Integration methods are different for each environment, but most will require
such adaptations depending on the capabilities of local compilers, linkers, and interpreters.

#include ‘‘client.h’’

main()
{
char key[256], buffer[1024];
int retval;
int fd, ip;
if ((fd = RENDEZVOUS (LOOKUP)) < 0)
exit(1);
printf("Name? '");
while(gets(key) !'= NULL) {
if (SEND(fd, key) < 0) exit(2);
if (RECEIVE(fd, buffer) < 0) exit(3);
if (buffer[0] !'= (char)0) {
ip = &(buffer[strlen(buffer)+2]);
retval = BYTESWAP(*ip);
printf("%s at ext. %d", key,retval);

} else {

printf("%s not found.'",key);

printf("Hame? ");

(setq TABLE ’(
(Jim 2706)
(Dave 1234)
(John 5678)

)]

(defun lookup (name)
(table-lookup name TABLE)
)

(defun table-lookup (name list)
(cond
((null list) 0)
((equal name (caar list)) (cadar list))
(t (table-lookup name (cdr list)))

(defun dispatcher (h)
(do* ((desc (RECEIVE h) (RECEIVE h)))
(SEND (sender desc) (invoke desc))

Figure 2: How the two modules must be modified for integration.




Remote procedure call specification compilers have existed for many years, but few have been
coupled with configuration management tools. The Matchmaker [9], Courier [21], SunRPC [19],
and XDR [18] RPC compilers, for example, are stub generators. Such compilers must be ported
manually in some cases to handle environment-specific details. The HRPC [4] and HORUS RPC
compilers [8] are notable exceptions. The HORUS stub generator is parameterized with system
and language schema files, while the HRPC project extends this parameterization to include
RPC protocols. The Interface Description Language (IDL) [15] project also implements a stub
generator. In all cases, integration of stubs, source components, and existing servers is left to the
designer.

As an alternative to static generation of stubs, some projects have designed efficient remote
evaluation mechanisms for heterogeneous applications. Distributed applications gain substantial
performance improvements through the use of customized interface mechanisms like RPC or
REV stubs [3, 14, 17, 6]. Stubs in these projects are often handwritten or rewritten from those
generated automatically because their performance is critical in many systems and their design
if often dependent upon the context of use in a configuration.

In comparison, Polygen accommodates many of these approaches by further parameterizing the
stub generation process, as will be shown. Stubs between components can be customized for
software configurations as well as environments. If modules are implemented in the same language
and execute on the same host, stubs may not be necessary. Efficient interface mechanisms can be
created without sacrificing interconnection abstractions. This is the advantage of coordinating
stub production with configuration management tools.

Polygen also relies upon technology from the module interconnection language community. In
the past, MIL projects have focused primarily upon issues of interface and module compatibility.
More recently, the Polylith system showed how MILs could be employed to control communi-
cation issues in a distributed network [13]. Polylith introduced a software bus organization to
encapsulate interfacing decisions, and, in this way, software components that do not interface
directly can interoperate efficiently. This is the particular communication system we have chosen
to generate stubs for within Polygen, since Polylith simplifies many of the data coercion and
relocation requirements.

The Inscape project [11] is an alternate MIL approach, which primarily focuses on the seman-
tics of module composition processes. Also, the Conic [10] and Durra [2] projects have recently
addressed the same problems as Polylith with a similar “toolkit” approach, but without the aid
of composition abstractions like the software bus. A number of rule-based software composition
models have been constructed for specific programming languages and environments [1]. They
establish rules for composing objects and producing the infrastructure needed to construct appli-
cations in particular environments. The XCON-in-RIME project [16], for example, also addresses
software reuse problems by describing components and composition methods using assertions and
rules. OQur method, however, unites this approach with methods for handling heterogeneity and
the application of local tools — compilers, linkers, stub generators, and configuration manage-
ment programs.



3 THE PACKAGING PROCESS

We have created a packaging system to meet the integration needs motivated in the last section.
Our system, called Polygen, allows designers to reuse modules in many different environments
by separating the logical design of an application from the geometry implementing that design.
The system is a collection of tools used to build executable objects from source modules. The
tools transform MIL specifications of modules into the interfacing mechanisms and integration
methods needed to interconnect modules in a particular environment. The interfacing mecha-
nisms (sometimes called ‘wrappers’, usually just thought of as stubs) come in many forms — they
may specify macro substitutions, perform source transformations, or implement stub procedures.
In general, interfacing mechanisms must consist of a set of modules along with all commands
necessary to prepare them for interoperation with other resources in a configuration.

3.1 DEFINITIONS

A module specification is an abstract description of a software component. Its most important
role is to describe the interfaces defined by the module, as well as interfaces to resources that
the module uses. A module specification also describes the properties of a component. In this
project, the Polylith MIL is used to support integration activities, so properties are organized
as name-value pairs. A name may be a keyword or a user-defined identifier. A value is either a
primitive type (integer, string, boolean, float), a constructed type (structure, array), a predicate
expression, a sequence of values, or a set of values. The interfaces of a module are defined similarly
with the interface name and its properties separated by “:” characters. Module specifications
that simply describe the properties and interfaces of a component are called primitive modules.
Figure 3 contains the module specifications for the components shown in Figure 1. In this
example, the pattern property is used to describe the ‘interface pattern’, that is, the order and
type of parameters on the interface.

A module specification can also be used to compose other modules into an application. A com-
posite specification describes a collection of modules and the bindings between their interfaces.
(An example composite specification that uses the components of Figure 3 is shown in Figure 5,
as will be described.) In this sense, an application can be represented by a directed graph. Each
node of the graph corresponds to an instance of a module. Each edge of the graph corresponds
to a connected pair of interfaces — a use to a definition.

Module specifications may have many possible implementations, written in a variety of source
languages and associated with the specification as another form of module property. Once the user
develops a composite specification, the source programs must be united with appropriate program
stubs, then transformed into executables (which may span several files, due to heterogeneity in the
system.) This collection of source programs, generated stubs and commands to build executables
is called a package. Packagingis the activity of analyzing source program interfaces, determining
compatibility of source with available communication media, generating stubs and creating all
the necessary configuration commands.



module client { module server {

language = ’C’ language = ’KCL’

gource = ’/u/callahan/client.c’ gsource = ’/u/callahan/server.lsp’

extract = ’/u/callahan/client.x’ extract = ’/u/callahan/server.x’

} define interface lookup

use interface printf : pattern = { str }
pattern = { str } : returns = { int }
pattern = { str str } define interface table-lookup
pattern = { str str int } : pattern = { str list }
accepts = { int } : returns = { int }

use interface gets }

pattern = { str }
accepts = { int }
use interface lookup
pattern = { str }
accepts = { int }

Figure 3: Module specification for client component (left) and server component (right).

3.2 POLYGEN

The distinct phases of packaging are shown in Figure 4. Polygen’s utility in this process is based
upon having primitive module specifications for the available source programs. (In the case
that no specifications are available for the source, then the system provides users with a tool to
extract the interface descriptions in the first place; this is done by techniques discussed later in
Section 3.2.4.)

3.21 COMPOSITION. The first phase is a design activity is composition. Developers create
a composite specification of their application in terms of primitive module specifications. This
expression of the application’s modular structure should represent a design for meeting functional
requirements. Ideally, it should not contain extensive information concerning geometry (that
is, which architectures each module should execute on and what communication mechanisms
would bind modules together) since this information should be added separately. Of course,
having the ability to separately annotate a logically-correct design with geometric information
is where the leverage of our approach is found, since programmers are then free to vary those
annotations quickly in order to experiment with different configurations rapidly. Geometric
properties are attached to both modules and bindings, and their values can either guide the
packager to build executables for some desired architecture, or they can represent constraints
concerning what configurations are not feasible. Polygen provides an editing tool for programmers
to add annotations without changing the design specifications.

The composite specification in Figure 5 describes an application composed of two unique modules
and a description of the bindings between their interfaces. In this case, the interfaces are bound
implicitly by name. A sample annotated design is shown in Figure 6, where desired LOCATIONs



for execution of each module are declared, and a the method for all inter-module communication
is constrained to be TCP/IP via a Polylith network bus.

3.2.2 GENERATION. This is the key phase in packaging. A composite specification may
be realized in many ways, depending upon both the application and available execution en-
vironments. To implement an application in a given environment, Polygen must analyze the
constraints affecting compatibility, select interconnection options between interfaces, generate all
necessary stubs and enumerate the configuration commands needed to integrate all components.
This resulting package is specific to the application and a target execution environment.

Polygen creates a package by partitioning configurations into sets of components that are com-
patible for integration into the same executable image according to the constraints of the given
environment. (We often refer to these sets as partitions.) Once partitions are determined, the
commands for creating executables from for are generated. For example, multiple source files
written in the same programming language (call it X) may be compiled using the X compiler
and linked into a single executable using the X link editor. Such a compatibility is encoded as a
composition rule and used by Polygen to partition configurations. If a partitioning is possible for
a configuration, then Polygen generates the package needed to create the application’s executa-
bles. Otherwise, the target environment does not support the desired integration, and Polygen
reports the error. A detailed description of the partitioning algorithm is given in Section 4.

In order to reason about modules and their compatibility, Polygen requires a characterization of
the interconnection capabilities of target execution environments, plus an abstract description of
the compatibility of various programming languages within those environments. (This informa-
tion is given in terms of rules created by a site administrator, as discussed in Section 4.) Polygen
applies these rules to produce the interface software needed to implement a composition in a
particular environment. The package includes source programs and stubs, plus all the configura-
tion commands needed to compile, link, invoke and interconnect the programs at execution time.
The configuration commands are given in terms of a Unix makefile. For example, the source
programs in Figure 2 would be part of the package for our demonstration problem, as would be
the makefile necessary to translate and integrate the modified source programs.

3.2.3 CONSTRUCTION. Finally, the construction phase consists of applying the configura-
tion commands to actually obtain all executables. In Polygen, this means the makefile is executed.
Most of the construction tools are provided by the host execution environments in the form of
compilers, linkers, loaders, and other configuration management tools.

A number of executable objects may be produced from a generated implementation. Executable
objects come in many forms: binary images, scripts, and other types of interpreted programs.
They may execute as processes on separate hosts and interoperate via a run-time instance of the
software bus — the stubs and the interprocess communication facilities available in an execution
environment.
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module test {
bus : ’polylithtcpip’ ::
tool client ::
tool server ::
bindall

Figure 5: A design for the phone application.

module test {
tool client : LOCATION
tool server : LOCATION
bindall

}

¢¢‘flubber.cs.umd.edu’’ ::

‘‘konky.cs.umd.edu’’ ::

Figure 6: An annotated design for the phone application.

3.24 EXTRACTION. Extraction tools are used when an existing module has no MIL spec-
ification in the first place, or when we wish to verify that an implementation is consistent with
its specification. An extraction tool transforms source code into abstract structural descriptions,
a collection of assertions about the properties and interfaces of a module. This signature can
be created automatically by compilers, parsing tools [12], or manually in cases where extraction
tools are unavailable.

In Polygen, the scan tool is used to extract such information from source modules. The results
contain declarations about the properties and interfaces of a module, and specifications based
on them are useful when integrating old implementations into new environments or managing
the consistency of implementations and their specifications during development. Thus, we can
create MIL representatives for existing libraries and gain the leverage of reusing them in as many
configurations as permitted by their implementations. While extraction is a straightforward task,
it is a necessary phase of our system and is one of the ways that our research is distinct from
other efforts that only provide stub generation from user-defined interface descriptions. Currently,
extraction tools are provided for C, Pascal, Ada and Lisp.

3.3 AN EXAMPLE

An implementation is characterized by a set of modules, their stubs, and a configuration program.
In our execution environment (a UNIX environment on a local area network), these correspond
to the source files, stubs, and commands needed to build executable objects. The commands are
part of a configuration program — a UNIX makefile [7]. It is produced by the package tool along
with the interface descriptions.

We wish to create an executable application given the code shown in Figure 1. The script of
the entire process, which includes both user commands and the execution of the configuration



Initially the wser only has source code. So ...

% scan -o client.cl client.c create a module specification for the client component

% scan -o server.cl server.lsp create a module specification for the server component

% edit test.cl client.cl server.cl Newt the user creates a design from his specs (see Figure 5)
% polygen -m test.cl Finally, the user has polygen create the package.

The -m option asks that the executables be constructed too. Hence,
the following output is from commands called from the makefile
created automatically by polygen.

csc test.cl compiles the application specification into test.co
csc client.cl compiles the client specification into client.co
csc server.cl compiles the server specification into server.co
csl test.co client.co server.co -o test creates a root evecutable that executes al and a2
wrapgen al.w creates the client.h and al.c wrappers

cc -c client.c compiles the client component into client.o

cc -c al.c compiles the al.c wrapper into al.o

cc -o al client.o al.o -1lith creates the first exvecutable object (a binary image)
wrapgen a2.w creates the a2.lsp wrapper

echo ‘‘#!/bin/csh -f’’ > a2 creates the second ewecutable object (a shell script)

echo ‘‘kcl server.lsp a2.1lsp’’ >> a2.out
chmod +x a2
% test The user may run the application.

Figure 7: Script for the design (user commands prefixed by a “%” prompt).

program, is shown in Figure 7. Using the extraction tools, we first create the specifications shown
in Figure 3. Next, we construct the system specification shown in Figure 5. We then invoke the
package tool to create an implementation — a UNIX makefile and the interface description files
al.wand a2.w. The makefile contains the configuration program needed to create the necessary
stubs and integrate them with modules into executable objects. Finally, the makefile is itself
executed, which (according to rules specific to our environment) creates two separate executable
objects because the modules cannot be linked together by a conventional linker — i.e., they are
incompatible in this execution environment. The generated stubs (client.h, al.c, and a2.1lsp)
are shown in Figure 8.

This example involves a difference between the source languages of the two modules. The gen-
erated implementation is designed to integrate the two modules despite this difference. The
packaging system determines whether or not the two modules can be loaded into a single exe-
cutable object or the methods by which they can be linked together. In this way, a developer
can ignore the details of a composition and concentrate on the description of the interconnections
and geometry of an application. The packager system uses this description as a set of constraints
to produce an appropriate implementation.

3.4 INTERCONNECTION SUBSYSTEM

Polygen does not replace existing forms of communication and interconnection systems, but rather
assists users in utilizing those resources. Polygen currently relies upon the Polylith software in-

10



client.h a2.lsp

#define main client main (defun mh-dispatcher ()
extern int lookup(); (do* (

(message (mh-readselect) (mh-readselect))
al.c (interface (car message) (car message))
e, e )

#include <polylith.h> (nil ’neverreturned)
main(argc,argv) (cond
{ ((equal interface ¢‘lookup’’)
int r = 0K; (mh-write ¢‘lookup’’
mh_init(&argc,&argv,NULL,NULL) ; (lookup (car (cadr message)))
r = clientmain(argc,argv); )
mh_shutdown (ALL,r ,NULL) ; )
} (t (mh-error message))
)
lookup(argl) )
char *argl; )
{ (mh-initialize)
int r; (mh-dispatcher)

mh_write("lookup", "S$", NULL, NULL, argl);
mh_read("lookup", "i", NULL, NULL, &r);
return r;

Figure 8: Wrappers for the client (left) and server (right) instances.

terconnection system for its communication and mixed-language programming requirements [13].
However, our inference capability is not limited to only Polylith. Polygen can generate packages
for other execution environments if the compatibility rules and methods for them are expressed
to our inference engine. Polylith and Polygen have an important difference in responsibilities:
the former provides interconnection services to programmers, and the latter helps them reason
about how to access those services.

Our experience is that any pair of modules can be declared compatible only with respect to a cited
execution environment and communication system. Two modules might be ‘load-compatible’ in
Polylith (that is, a Polylith link editor can build the two modules” object code into the same
process image), but they might not be able to interoperate if an alternate communication system
is used. As Polygen is enriched with information on how modules can be interconnected using new
communication resources, users will gain flexibility in how their applications can be configured.

Key properties that affect compatibility of program units are the type and the representation of
data in an interface. Polygen does not attempt to infer coercion mechanisms for heterogeneous
data directly, but rather inherits transformation capabilities from whatever communication sys-
tem has been characterized in its rule base (that is described in Section 4.) Our choice of Polylith
as the principle interconnection subsystem within Polygen greatly simplified these issues for our
initial experiments with the system, since the software bus organization elides from the program-
mer all representation issues for primitive and record data types. Hence, Polygen users may
base their design decisions (in the composition phase) upon a single type system (the Polylith

11



test: polylith_tcpip

al: c_executable a2: kcl _executable
il: c_instance i 2: kcl _instance
client: c_source server: kcl _source

Figure 9: A partitioning for the complete example.

MIL), using techniques described in [13]. An ability to transmit abstract data types across
Polygen-created interfaces is similarly dependent upon what interconnection rules to characterize
compatibility have been installed in the underlying inference engine.

4 THE PARTITIONING METHOD

A package depends upon the integration capabilities of an environment. In the earlier example,
two modules were configured into separate executable objects because they were incompatible
to some degree — they could be composed only if the appropriate stubs were generated. In
other environments, it might be possible to load and execute heterogeneous components within a
single address space. Polygen must have enough inference capability to distinguish between the
cases, and then, having determined a target configuration, it must generate both the stub source
programs and the methods for integrating the final application. This section describes a method
for determining the contents of a package.

An environment’s interconnection capabilities constrain what types of integrations are possible.
Given such constraints, one can determine whether it is possible to describe an application in
terms of sets of compatible components. In Polygen, these sets are called partitions and are
represented by directed, acyclic graphs whose internal nodes represent integration methods and
terminal nodes represent source components. The partitioning for the example in Section 3.3
is shown in Figure 9. In this case, the partitioning is a tree because all modules are based
on distinct source components and there exists a single composition method at the root (i.e.,
the polylith_tcpip bus). A partitioning with a single root is called a valid partitioning, and a
package may be created for a configuration if and only if the configuration has a valid partitioning.

Depending on the integration capabilities available in an environment, several valid partitionings
may be constructed for a single configuration. A valid partition is created in a bottom-up fashion.
First, we identify the types of components in the configuration. Next, we determine the methods
for integrating them into larger objects (i.e., partitions). The integration activity continues

12



module client { z ?- [’/usr/polygen/package.pl’].

/* see Figure 3 */ } pmodule(client).
language(client,’C’).
module server { source(client,’client.c’).
/* see Figure 3 */ } include(client,’client.h’).
main(client).
module test { import(client,lookup,[int], [str]).
bus : ’polylith tcpip’ :: pmodule (server)
tool client :: language (server, ’KCL’) .
tool server :: source(server, ’server.lsp’).
bindall export (server,lookup, [int], [str]).
} instanceof (il,client,test).

location(il,’flubber.cs.umd.edu’).
instanceof(i2,server,test).
location(i2,’flubber.cs.umd.edu’).
bind(il,lookup,i2,lookup,test).

?- package(test,polylith_tcpip).

Figure 10: Module specifications converted to Prolog assertions.

iteratively until a single method is found that integrates all of the objects of the previous iteration.
The final method represents the root of a valid partitioning and includes all the components of
a configuration.

Polygen implements this method in Prolog. A site administrator — not each programmer —
describes the interconnection capabilities of an environment in terms of rules that constrain the
satisfaction of partitioning goals. To construct a package, Polygen first reads in the given module
specifications for an application. These are converted into a set of Prolog assertions (Figure 10)
that encode facts about the modules and bindings in a configuration. After reading the assertions
in Figure 10, Polygen attempts to satisfy the goal

? — package(test,polylith tcpip). (1)

which asks the question, “Is it possible to create at least one package for the configuration named
test using the Polylith TCP /IP-based bus in this environment?” If this goal can be satisfied, at
least one package will be created for the given configuration. The Prolog inferencing mechanism
searches the rule base and attempts to satisfy the package rule

package(N,T) :-
modules(N,M),
instances(N,I),
partition(I,[[N,T,P]]),
createpackage(M,I, [N,T,P]).

Prolog assigns the variable N the name “test” and the variable T the name polylith tcpip
and attempts to satisfy the sub-goals. The first two subgoals determine that the modules M =
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[client,server] and module instances T = [i11,i2] are used in the “test” configuration. Next,
a possible partitioning on the instances in I is found and placed in the list P. In this case, the
partition goal is of the form

? — partition([il, i2],[[test,polylith tcpip,P]]). (2)

The partition predicate asks “Does there exist a partitioning of the modules in this execution
environment?” A partitioning is a list of the forms

[label;method, [ty ..., 1,]]

where #1,...,%, is a list of module instances (i.e., implementations) and partitionings. At the
leaves of a partitioning are the instances in the list I. The method is the name of the composition
method used to integrate the objects in #1,...,¢,. The label is the symbolic name assigned to a
partition. For example, goal (2) asks “Does there exist a valid partitioning on the instances i1
and 12 such that they can be integrated on a TCP/IP-based bus?” In our environment, this goal
would be satisfied if

P = [[al,c_executable, [i1]],[a2,kc]l executable, [12]]]. (3)

This partitioning states that a composition can be created using a TCP/IP-based bus if two
separate objects are created for each instance.

The Prolog inference engine attempts to satisfy partition goals using the composition rules for
the current environment. These rules are authored by system administrators and kept in a read-
only system file. The composition rules shown in Figure 11, for example, are used to determine
whether or not a set of instances can be composed into a single executable object. According to
the rules in Figure 11, a set of instances are composed using the c_executable method if all the
components are instances of modules written in C, execute on the same host, and as a set have
no more than one main entry point.

Once a set of valid partitionings is determined for the instances in a configuration, the goal called
createpackage acts as a code generator. The composition methods in (3) — c_executable and
kcl_executable — are invoked while satisfying this goal. These methods generate the package.
Since a partitioning is simply a tree whose leaves are module instances, the interface software can
be generated by traversing the partition from the root and invoking the composition method at
each node.

The current Polygen driver code is implemented by 50 Prolog rules. Fach composition method
consists of about 50 rules including the compatibility rules and the rules for generating stubs and
makefile rules. To add a new composition method, one must write new compatibility rules and
code generation rules. The compatibility predicate is of the form
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type(X,cinstance) :- instanceof(X,M,), language(M,’C’).

samelocation(_,[]).

samelocation(X,L) :-
location(X,S),
applist(location,[S],L).

compatible([X],c_executable) :- type(X,cinstance).
compatible([X|L],c_executable) :-
type(X,cinstance),
countmain([X|L],M),
M=<1,
samelocation(X,L),
compatible(L,c_executable).

Figure 11: Some compatibility rules used in the package tool.

compatible(L,T)

where L is a list of partitions or instances and T is the name of the composition method. There
are two types of code generation rules for each composition method in an environment: makefile
rules and stub rules. Both types are invoked while satisfying the createpackage sub-goal of a
package goal on a partitioning.

The root composition method need not be given explicitly in the package goal — it may be
determined from the composition rules using the deductive capabilities of Prolog. The composite
specification in Figure 6, for example, does not require the use of a particular bus implementation.
In this case, the package goal would be of the form

? — package(test,B). (4)

The subsequent partition goal would be of the form

? — partition([il, i2],[[test,B,P]]). (5)

The bus implementation B is determined during the attempt to satisfy the partition goal. In our
environment, goal (5) is satisfied by the variable assignments

B = polylith xns,P = [[al, c_executable, [i1]],[a2,kcl executable, [12]]].

based on the properties of instances i1 and i2. As specified in Figure 6, the instance i2 (the
server) is located on the host machine konky.cs.umd.edu. In our environment, this host does
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not implement the Polylith TCP/IP-based bus, but it does implement an XNS-based version.
Luckily, the host flubber.cs.umd.edu on which il resides implements both bus versions. The
developer is unaware that the generated stubs and configuration file in this case look very different
as a result of location annotations in the composite specification.

5 CONCLUSION

We have described a packaging system that allows diverse software components to be easily
interconnected within heterogeneous programming environments. Interface software and stubs
can be generated for programmers automatically once they express their application’s geometry in
a few simple rules and MIL attributes. By generating custom interface code for each application
(based on analysis and extraction of interfacing requirements), our approach is able to produce
executables whose run-time performance is comparable to manually-integrated applications.

An important feature of this approach is how easy it is for system managers to add a new language
or execution environment to Polygen. Fach time a new rule declaring compatibility is added,
so too does the manager provide a set of possible commands that would make two components
compatible according to that rule. An example of this (that if done manually would entail writing
more source code than can be reasonably given here in its entirety — certainly more source than
a programmer would want to generate manually without need) is the ease by which one can
tailor application programs for use on workstations. The addition of a small set of rules yields a
packager that can layer network RPC stubs underneath wrapper codes needed to integrate the
application into a powerful window system. As a result, not only can the simple example used
throughout this paper be run as a distributed application, but each component can be set up to
interact with users via its own window on the local host workstation. Should the user elect to
run under a different window system, then, once again, all the source components can be adapted
automatically for use on the new platform.

The availability of early stub generation systems relieved programmers having to create interface
software manually. Polygen also relieves programmers of having to identify and extract the
interfaces in the first place, and of having to tell their configuration management system how the
stub programs should incorporated into the application.
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