
ABSTRACT

Title of dissertation: Guided Probabilistic Topic Models
for Agenda-setting and Framing

Viet-An Nguyen, Doctor of Philosophy, 2015

Dissertation directed by: Professor Philip Resnik
Department of Linguistics and
Institute for Advanced Computer Studies

Professor Jordan Boyd-Graber
College of Information Studies
Institute for Advanced Computer Studies

Probabilistic topic models are powerful methods to uncover hidden thematic

structures in text by projecting each document into a low dimensional space spanned

by a set of topics. Given observed text data, topic models infer these hidden struc-

tures and use them for data summarization, exploratory analysis, and predictions,

which have been applied to a broad range of disciplines.

Politics and political conflicts are often captured in text. Traditional ap-

proaches to analyze text in political science and other related fields often require

close reading and manual labeling, which is labor-intensive and hinders the use of

large-scale collections of text. Recent work, both in computer science and political

science, has used automated content analysis methods, especially topic models to

substantially reduce the cost of analyzing text at large scale. In this thesis, we

follow this approach and develop a series of new probabilistic topic models, guided



by additional information associated with the text, to discover and analyze agenda-

setting (i.e., what topics people talk about) and framing (i.e., how people talk about

those topics), a central research problem in political science, communication, public

policy and other related fields.

We first focus on study agendas and agenda control behavior in political de-

bates and other conversations. The model we introduce, Speaker Identity for Topic

Segmentation (SITS), is able to discover what topics that are talked about during

the debates, when these topics change, and a speaker-specific measure of agenda

control. To make the analysis process more effective, we build Argviz , an interac-

tive visualization which leverages SITS’s outputs to allow users to quickly grasp the

conversational topic dynamics, discover when the topic changes and by whom, and

interactively visualize the conversation’s details on demand. We then analyze policy

agendas in a more general setting of political text. We present the Label to Hier-

archy (L2H) model to learn a hierarchy of topics from multi-labeled data, in which

each document is tagged with multiple labels. The model captures the dependencies

among labels using an interpretable tree-structured hierarchy, which helps provide

insights about the political attentions that policymakers focus on, and how these

policy issues relate to each other.

We then go beyond just agenda-setting and expand our focus to framing—the

study of how agenda issues are talked about, which can be viewed as second-level

agenda-setting. To capture this hierarchical views of agendas and frames, we in-

troduce the Supervised Hierarchical Latent Dirichlet Allocation (SHLDA) model,

which jointly captures a collection of documents, each is associated with a contin-



uous response variable such as the ideological position of the document’s author

on a liberal-conservative spectrum. In the topic hierarchy discovered by SHLDA,

higher-level nodes map to more general agenda issues while lower-level nodes map

to issue-specific frames. Although qualitative analysis shows that the topic hier-

archies learned by SHLDA indeed capture the hierarchical view of agenda-setting

and framing motivating the work, interpreting the discovered hierarchy still incurs

moderately high cost due to the complex and abstract nature of framing. Mo-

tivated by improving the hierarchy, we introduce Hierarchical Ideal Point Topic

Model (HIPTM) which jointly models a collection of votes (e.g., congressional roll

call votes) and both the text associated with the voters (e.g., members of Congress)

and the items (e.g., congressional bills). Customized specifically for capturing the

two-level view of agendas and frames, HIPTM learns a two-level hierarchy of topics,

in which first-level nodes map to an interpretable policy issue and second-level nodes

map to issue-specific frames. In addition, instead of using pre-computed response

variable, HIPTM also jointly estimates the ideological positions of voters on multiple

interpretable dimensions.
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Bravo, Hal Daumé III, Wayne McIntosh, and Hanna Wallach, for their insightful

questions and valuable feedbacks, which provide new perspectives and help establish

new connections to improve this thesis. I also like to thank Hal for his helpful com-

ments on my various practice talks and for his excellent Computational Linguistics

I course which introduced me to and got me interested in NLP. I also thank Hanna

for her great dissertation, from which I have learned so much about hierarchical

topic models and slice sampling.

I have been very fortunate to have the opportunities to work with wonderful

ii



coauthors and collaborators. I thank Deborah Cai, Jennifer Midberry, and Yuanxin

Wang for annotating excellent sets of data; Stephen Altschul for his great lectures

and encouragements which allowed me to explore my way in an alien land called

biology; and Kristina Miler for tirelessly providing helpful feedbacks and insights,

without which Chapter 6 would not have been possible.

Various ideas in this thesis were shaped and influenced through the many con-

versations with my colleagues in the CLIP lab. Yuening Hu, Ke Zhai and Mohit

Iyyer deserve a special mention for being such great friends and collaborators. I

cherished my discussions with Amit Goyal, Vlad Eidelman, Ke Wu, Taesun Moon,

Alvin Grissom II, Leonardo Claudino, Naho Orita, Thang Nguyen, Andy Garron,

and Peter Enns. I enjoyed interacting with Eric Hardisty, Chang Hu, Kristy Holling-

shead, Earl Wagner, Greg Sanders, John Morgan, Junhui Li, Jiarong Jiang, He He,

Sudha Rao, Snigdha Chaturvedi, Jagadeesh Jagarlamudi, Ferhan Ture, and Ning

Gao. I also want to especially thank Joe Webster, Janice Perrone, and other UMI-

ACS staffs for their helps and supports.

During my PhD journey, I had the chance to spend two wonderful summers

interning at Facebook. I am extremely grateful to all the people who helped make

my time at Facebook such a blast including Cameron Marlow, Danny Ferrante,

Sofus Macskassy, and other members of the Core Data Science team. My special

thanks go to Jonathan Chang and Carlos Diuk for their guidance and mentorship

and Nicole Gurries for opening up the opportunity for me in the first place.

Of course, my past few years would have been much more difficult and boring

without my dear friends: Bao Nguyen, Chanh Kieu, My Le, Ha Nguyen, Tho Ho,

iii



Toan Ngo, Hien Tran, Hien Nguyen, and Dzung Ta. Thank you all.

Finally, I want to thank my family, although I know there aren’t enough

words to describe my gratitude to them. I thank my parents for their unconditional

love; for always believing in me and teaching me to believe in myself; for having

sacrificed greatly to provide for me an amazing education and let me pursue my

dreams. I thank my sister for her endless support, advice and encouragement. And

most importantly, I thank my beloved wife Yen, who has always been there with

me, sharing every moment, through all the highs and the lows in this adventure. I

know, together, we could overcome any obstacles and accomplish anything.

iv



Table of Contents

List of Tables ix

List of Figures xii

1 Introduction 1
1.1 The Needs for Automated Methods for Analyzing Political Text in

the Big Data Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Importance of Agendas and Frames in Political Science Research 4
1.3 Analyzing Agendas and Frames: Methods and Costs . . . . . . . . . 5

1.3.1 Human Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Automated Content Analysis at Lower Cost . . . . . . . . . . . . . . 12
1.4.1 Analyzing Agendas and Agenda Control in Political Debates . 15
1.4.2 Learning Agenda Hierarchy from Multi-labeled Legislative Text 16
1.4.3 Discovering Agendas and Frames Discovery in Ideologically

Polarized Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.4 Discovering Agendas and Frames from Roll Call Votes and

Congressional Floor Debates . . . . . . . . . . . . . . . . . . . 20
1.5 Main Technical Contributions . . . . . . . . . . . . . . . . . . . . . . 22

2 Probabilistic Topic Modeling Foundations 23
2.1 Latent Dirichlet Allocation: The Basic Topic Model . . . . . . . . . . 24
2.2 Beyond LDA: Topic Modeling Extensions . . . . . . . . . . . . . . . . 27

2.2.1 Using Bayesian Nonparametrics . . . . . . . . . . . . . . . . . 28
2.2.2 Incorporating Metadata . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Adding Hierarchical Structure . . . . . . . . . . . . . . . . . . 37
2.2.4 Other extensions . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 MCMC Inference and the Importance of Averaging . . . . . . . . . . 40
2.3.1 Learning and Predicting with MCMC . . . . . . . . . . . . . . 41
2.3.2 MCMC in Topic Modeling . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Averaging Strategies . . . . . . . . . . . . . . . . . . . . . . . 43

v



2.3.4 Unsupervised Topic Models . . . . . . . . . . . . . . . . . . . 44
2.3.5 Supervised Topic Models . . . . . . . . . . . . . . . . . . . . . 48
2.3.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 52

3 Agenda Control in Political Debates 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Presidential Debates: Unique Setting for Agenda Control . . . 54
3.1.2 Agenda Control to Influence in Multi-party Conversations . . 55
3.1.3 Topic Segmentation to Capture Conversational Structures . . 58
3.1.4 Chapter Structure . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 SITS: Speaker Identity for Topic Segmentation . . . . . . . . . . . . . 60
3.2.1 Overview of our Approach . . . . . . . . . . . . . . . . . . . . 61
3.2.2 Generative Process of SITS . . . . . . . . . . . . . . . . . . . 63
3.2.3 Posterior Inference for SITS . . . . . . . . . . . . . . . . . . . 66

3.3 Data Collections and Annotations . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Evaluating Agenda Control . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.1 2008 Election Debates . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Crossfire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.3 2012 Republican Primary Debates . . . . . . . . . . . . . . . . 85

3.5 Detecting Influencers in Conversations . . . . . . . . . . . . . . . . . 87
3.5.1 Influencer Annotation . . . . . . . . . . . . . . . . . . . . . . 87
3.5.2 Computational Methods for Influencer Detection . . . . . . . . 90
3.5.3 Influencer Detection Problem . . . . . . . . . . . . . . . . . . 92
3.5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Evaluating Topic Segmentation . . . . . . . . . . . . . . . . . . . . . 98
3.6.1 Experiment Setups . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 102

3.7 Argviz : Interactive Visualization of Topic Dynamics in Conversations 103
3.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 106

4 Learning Agenda Hierarchy from Multi-labeled Political Text 108
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.1 Analyzing Agendas in Legislative Text . . . . . . . . . . . . . 109
4.1.2 Topic Models for Multi-labeled Documents . . . . . . . . . . . 114
4.1.3 Chapter Structure . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 L2H: Capturing Label Dependencies using a Tree-structured Hierarchy116
4.2.1 Creating the Label Graph . . . . . . . . . . . . . . . . . . . . 118
4.2.2 Generating Tree-structured Hierarchy . . . . . . . . . . . . . . 119
4.2.3 Generating Documents . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Posterior Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3.2 Sampling Assignments xd,n and zd,n . . . . . . . . . . . . . . . 123
4.3.3 Sampling Topics φ . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



4.3.4 Updating tree structure T . . . . . . . . . . . . . . . . . . . . 125
4.4 Analyzing Political Agendas in U.S. Congresses . . . . . . . . . . . . 127
4.5 Document Modeling and Classification . . . . . . . . . . . . . . . . . 131

4.5.1 Document modeling . . . . . . . . . . . . . . . . . . . . . . . 131
4.5.2 Multi-label Classification . . . . . . . . . . . . . . . . . . . . . 134

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Discovering Agendas and Frames in Ideologically Polarized Text 139
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.1 Framing: Going beyond Agenda-setting to Understand How
Things are Talked About . . . . . . . . . . . . . . . . . . . . . 140

5.1.2 Framing as Second-level Agenda-setting . . . . . . . . . . . . 142
5.1.3 Framing Research: Traditional vs. Data-driven Approach . . . 144
5.1.4 Chapter Structure . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 SHLDA: Capturing Text and Continuous Response using Hierarchical
Topic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.1 Generating Text . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.2 Generating Responses . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Posterior Inference and Optimization . . . . . . . . . . . . . . . . . . 151
5.4 Data: Congress, Products, Films . . . . . . . . . . . . . . . . . . . . 156

5.4.1 U.S. congressional floor debates: . . . . . . . . . . . . . . . . . 156
5.4.2 Amazon product reviews . . . . . . . . . . . . . . . . . . . . . 158
5.4.3 Movie reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5 Qualitative Analysis of Topic Hierarchies . . . . . . . . . . . . . . . . 159
5.6 Quantitative Prediction of Document Responses . . . . . . . . . . . . 161
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.7.2 Discussions and Future Directions . . . . . . . . . . . . . . . . 166

6 Discovering Agendas and Frames from Roll Call Votes and Text 168
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.1.1 A Brief Overview of Ideal Point Models . . . . . . . . . . . . . 170
6.1.2 On the Dimensionality of Ideal Points . . . . . . . . . . . . . . 172
6.1.3 Scaling Multi-dimensional Ideal Points using Votes and Text . 174
6.1.4 Tea Party in the House . . . . . . . . . . . . . . . . . . . . . . 176
6.1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 177

6.2 Hierarchical Ideal Point Topic Model . . . . . . . . . . . . . . . . . . 179
6.2.1 Defining the Topic Hierarchy . . . . . . . . . . . . . . . . . . . 182
6.2.2 Generating Congressional Speeches . . . . . . . . . . . . . . . 184
6.2.3 Generating Bill Text . . . . . . . . . . . . . . . . . . . . . . . 185
6.2.4 Generating Roll Call Votes . . . . . . . . . . . . . . . . . . . . 185

6.3 Posterior Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.3.1 Sampling Issue Assignments for Bill Tokens . . . . . . . . . . 187
6.3.2 Sampling Frame Assignments for Speech Tokens . . . . . . . . 188
6.3.3 Sampling Issue Topics . . . . . . . . . . . . . . . . . . . . . . 189

vii



6.3.4 Sampling Frame Proportions . . . . . . . . . . . . . . . . . . . 189
6.3.5 Optimizing Frame Regression Parameters . . . . . . . . . . . . 190
6.3.6 Updating Ideal Points, Polarity and Popularity . . . . . . . . 190

6.4 Analyzing Tea Party Ideal Points . . . . . . . . . . . . . . . . . . . . 190
6.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.4.2 One-dimensional Ideal Points . . . . . . . . . . . . . . . . . . 191
6.4.3 Multi-dimensional Ideal Points . . . . . . . . . . . . . . . . . . 195

6.5 Agendas and Frames: Analyzing Topic Hierarchy . . . . . . . . . . . 202
6.5.1 Analyzing Agenda Issues . . . . . . . . . . . . . . . . . . . . . 202
6.5.2 Analyzing Issue-specific Frames . . . . . . . . . . . . . . . . . 204

6.6 Predicting Tea Party Caucus Membership . . . . . . . . . . . . . . . 209
6.6.1 Membership Prediction given Votes and Text . . . . . . . . . 210
6.6.2 Membership Prediction given Text Only . . . . . . . . . . . . 211

6.7 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . 213
6.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.7.2 Discussion and Future Directions . . . . . . . . . . . . . . . . 214

7 Conclusion and Future Work 216
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 216
7.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 219

viii



List of Tables

1.1 Summary of four models introduced in this thesis with their estimated
costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Example of ten topics discovered by LDA from a collection of floor
debates in U.S. Congress. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Summary of datasets detailing how many distinct speakers are present,
how many distinct conversations are in the corpus, the annotations
available, and the general content of the dataset. . . . . . . . . . . . . 73

3.2 Example turns from the 2008 election debates annotated by Boydstun
et al. (2013a). Each clause in a turn is manually coded with a Ques-
tion Topic Code (TQ) and a Response Topic Code (TR). The topic
codes (TQ and TR) are from the Policy Agendas Topics Codebook.
In this example, the following topic codes are used: Macroeconomics
(1), Housing & Community Development (14), Government Opera-
tions (20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 List of the 9 Republican Party presidential debates used. . . . . . . . 77
3.4 Example of a Wikipedia discussion in our dataset. . . . . . . . . . . . 78
3.5 Example of turns designated as a topic shift by SITS. We chose turns

to highlight speakers with high topic shift tendency π. Some keywords
are manually italicized to highlight the topics discussed. . . . . . . . . 83

3.6 Top speakers by topic shift tendencies from our Crossfire dataset. We
mark hosts (†) and “speakers” who often (but not always) appeared
in video clips (‡). Announcer makes announcements at the begin-
ning and at the end of each show; Narrator narrates video clips;
Male and Female refer to unidentified male and female respec-
tively; Question collectively refers to questions from the audience
across different shows. Apart from those groups, speakers with the
highest tendency were political moderates. . . . . . . . . . . . . . . . 84

3.7 Statistics of the two datasets Crossfire and Wikipedia discussions
that we annotated influencers. We use these two datasets to evaluate
SITS on influencer detection. . . . . . . . . . . . . . . . . . . . . . . . 96

ix



3.8 Influencer detection results on Crossfire and Wikipedia discussion
pages. For both datasets, topic-change-based methods (?) outperform
structure-based methods (�) by large margins. For all evaluation
measurements, higher is better. . . . . . . . . . . . . . . . . . . . . . 97

3.9 Results on the topic segmentation task. Lower is better. The param-
eter k is the window size of the metrics Pk and WindowDiff chosen
to replicate previous results. . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Major topics with their corresponding codes in the Policy Agendas
Topics codebook. †The major topic “Immigration” was newly added
to the codebook in 2014. . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Examples of bills from the 100th Congress, coded by the Congressional
Bills project. The mapping of the Policy Agenda (PA) major topic
codes are provided in Table 4.1. . . . . . . . . . . . . . . . . . . . . . 111

4.3 Examples of multiple labels provided by the Congressional Research
Service for the three bills shown in Table 4.2 . . . . . . . . . . . . . . 112

5.1 Notation used in this chapter . . . . . . . . . . . . . . . . . . . . . . 152
5.2 Top words based on the global lexical regression coefficient, τ . For

the floor debates, positive τ ’s are Republican-leaning while negative
τ ’s are Democrat-leaning. . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Regression results for Pearson’s correlation coefficient (pcc, higher is bet-

ter (↑)) and mean squared error (mse, lower is better (↓)). Results on

Amazon product reviews and movie reviews are averaged over 5 folds.

Subscripts denote the number of topics for parametric models. For SVM-

LDA-VOC and MLR-LDA-VOC, only best results acrossK ∈ {10, 30, 50}
are reported. Best results are in bold. . . . . . . . . . . . . . . . . . . . 163

6.1 Example voting records of legislators in the 112th House of Represen-
tatives. A legislator might not vote on a bill, which is denoted by ‘-’
in this table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.2 Words with highest weights in the priors φ?k for 19 Policy Agendas
Topics, estimated by using labeled data from the Congressional Bills
Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3 Key votes having “Government operations” as the most probable is-
sue, estimated by our model. The last column shows the estimated
probability ϑb,k. Each key vote is shown with a short description,
the preferred voting position of Freedom Works (Y for Yea, N for
Nay), the number of Republicans whose votes agree and disagree
with Freedom Works (‘All’ denotes all voting Republican legislators,
‘TP’ denotes Tea Party Caucus members, and ‘NTP’ denotes non-
Tea Party Caucus members). Bolded key votes are the ones on which
the majority of the two groups vote differently. . . . . . . . . . . . . . 199

x



6.4 Key votes having “Macroeconomics” as the most probable issue, es-
timated by our model. The last column shows the estimated proba-
bility ϑb,k. Each key vote is shown with a short description, the pre-
ferred voting position of Freedom Works (Y for Yea, N for Nay), the
number of Republicans whose votes agree and disagree with Freedom
Works (‘All’ denotes all voting Republican legislators, ‘TP’ denotes
Tea Party Caucus members, and ‘NTP’ denotes non-Tea Party Cau-
cus members). Bolded key votes are the ones on which the majority
of the two groups vote differently. . . . . . . . . . . . . . . . . . . . . 200

6.5 Key votes having “Transportation” as the most probable issue, esti-
mated by our model. The last column shows the estimated proba-
bility ϑb,k. Each key vote is shown with a short description, the pre-
ferred voting position of Freedom Works (Y for Yea, N for Nay), the
number of Republicans whose votes agree and disagree with Freedom
Works (‘All’ denotes all voting Republican legislators, ‘TP’ denotes
Tea Party Caucus members, and ‘NTP’ denotes non-Tea Party Cau-
cus members). Bolded key votes are the ones on which the majority
of the two groups vote differently. Both of these votes focus on the
federal spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.6 Words with highest probabilities for each first-level issue nodes learned
by HIPTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xi



List of Figures

1.1 Three main classes of text categorization methods and their corre-
sponding costs (Quinn et al., 2010). . . . . . . . . . . . . . . . . . . . 7

2.1 Density plots for four Dirichlet distributions. The densities are over
the triangular simplex that represents multinomial distributions over
three dimensions and demonstrate how different Dirichlet distribu-
tions can accommodate variable concentrations. Darker coloring de-
notes higher probability density. (a) Dirichlet parameters that are all
1.0 yield a uniform density over multinomial distributions. (b) Dirich-
let parameters that are all greater than 1.0 yield a density concen-
trated near the mean distribution p, in this case (0.6250, 0.0625, 0.3125).
(c) and (d) Dirichlet parameters that are all less than 1.0 yield a den-
sity concentrated near the edges and corners of the simplex. Such a
density favors sparse multinomial distributions. . . . . . . . . . . . . 25

2.2 Generative process and the plate diagram representation of LDA.
In the diagram, nodes represent random variables (shaded ones are
observed, clear ones are latent), directed edges are probabilistic de-
pendencies, and plates represents repetition. . . . . . . . . . . . . . . 27

2.3 Illustration of the stick breaking process π ∼ GEM(α0), in which
πk = π′k

∏k−1
i=1 (1−π′l) is defined based on the fraction π′k ∼ Beta(1, α0)

that is taken from the remainder of the stick after each break. . . . . 31
2.4 Illustration of the Chinese restaurant process metaphor in which there

are seven customers currently occupying three tables. A new cus-
tomer coming in will sit at (1) an existing table with a probability
proportional to the number of customers currently sitting at the table
or (2) a new table with a probability proportional to α. The exact
probabilities are shown inside each table. . . . . . . . . . . . . . . . . 32

2.5 Generative process and the plate diagram representation of HDP. . . 33
2.6 Generative process and the plate diagram of Labeled LDA. . . . . . . 34
2.7 Generative process and the plate diagram representation of sLDA. . . 36

xii



2.8 Illustration of training and test chains in MCMC, showing samples
used in four prediction strategies studied in this section: Single Final
(sf), Single Average (sa), Multiple Final (mf), and Multiple Average
(ma). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Perplexity of LDA using different averaging strategies with different
number of training iterations Ttr. Perplexity generally decreases with
additional training iterations, but the drop is more pronounced with
multiple test chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Performance of sLDA using different averaging strategies computed
at each training iteration. . . . . . . . . . . . . . . . . . . . . . . . . 48

2.11 Performance of sLDA using different averaging strategies computed
at the final training iteration Ttr, compared with two baselines MLR
and SVR. Methods using multiple test chains (mf and ma) perform
as well as or better than the two baselines, whereas methods using a
single test chain (sf and sa) perform significantly worse. . . . . . . . 49

3.1 Plate diagrams of our proposed models: (a) nonparametric SITS; (b)
parametric SITS. Nodes represent random variables (shaded nodes
are observed); lines are probabilistic dependencies. Plates represent
repetition. The innermost plates are turns, grouped in conversations. 63

3.2 Diagram of notation for topic shift indicators and conversation seg-
ments: Each turn is associated with a latent binary variable topic
shift indicator l specifying whether the topic of the turn is shifted.
In this example, topic shifts occur in turns τ and τ ′ + 1. As a result,
the topic shift indicators of turn τ and τ ′ + 1 are equal to 1 (i.e.
lc,τ = lc,τ ′+1 = 1) and the topic shift indicators of all turns in between
are 0 (i.e. lc,t = 0,∀t ∈ [τ + 1, τ ′]). Turns [τ, τ ′] form a segment s in
which all topic distributions Gc,τ , Gc,τ+1, · · · , Gc,τ ′ are the same and
are denoted collectively as Gc,s. . . . . . . . . . . . . . . . . . . . . . 65

3.3 Illustration of topic assignments in our inference algorithm. Each
solid rectangle represents a restaurant (i.e., a topic distribution) and
each circle represents a table (i.e., a topic). To assign token n of
turn t in conversation c to a table zc,t,n in the corpus-level restaurant,
we need to sample a path assigning the token to a segment-level
table, the segment-level table to a conversation-level table and the
conversation-level table to a globally shared corpus-level table. . . . . 67

xiii



3.4 Illustration of minimal path assumption. This figure shows an exam-
ple of the seating assignments in a hierarchy of Chinese restaurants
of a higher-level restaurant and a lower-level restaurant. Each table
in the lower restaurant is assigned to a table in the higher restaurant
and tables on the same path serve the same dish k. When sampling
the assignment for table ψL2 in the lower restaurant, given that dish
k = 2 is assigned to this table, there are two options for how the ta-
ble in the higher restaurant could be selected. It could be an existing
table ψH2 or a new table ψHnew, both serving dish k = 2. Under the
minimal path assumption, it is always assigned to an existing table
(if possible) and only assigned to a new table if there is no table with
the given dish. In this case, the minimal path assumption will assign
ψL2 to ψH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Topic shift tendency π of speakers in the 2008 Presidential Election
Debates (larger means greater tendency). Ifill was the moderator
in the vice presidential debate between Biden and Palin; Brokaw,
Lehrer and Schieffer were the moderators in the three presiden-
tial debates between Obama and McCain; Question collectively
refers to questions from the audiences. Colors denote Republicans,
Democrats, Moderators, and Audiences. . . . . . . . . . . . . . . . . 80

3.6 Topic shift tendency π of speakers in the 2012 Republican Primary
Debates (larger means greater tendency). King, Blitzer and Cooper
are moderators in these debates; the rest are candidates. . . . . . . . 86

3.7 The Argviz user interface consists of speaker panel (A), transcript
panel (B), heatmap (C), topic shift column (D), topic cloud panel
(E), selected topic panel (F). . . . . . . . . . . . . . . . . . . . . . . . 103

4.1 Generative process and the plate diagram notation of L2H. . . . . . . 118
4.2 Example of the weighted directed graph G and a spanning tree T

generated from G, created from a set of multi-labeled data having
three unique labels: health care, health care coverage and
access, and medicare. The thickness of an directed edge represents
its weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Illustration of the candidate set and the complementary set of a doc-
ument tagged with two labels: higher education and medicare.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Example of different ways to define the candidate set L1 (shaded
nodes) and the complementary set L0 (white nodes) for a document
tagged with two labels (double-circled nodes). . . . . . . . . . . . . . 122

4.5 Number of bills and unique labels in our dataset after pre-processing
for each Congress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 A subtree rooted at international affairs in the hierarchy learned
by L2H using data from the 112th Congress. . . . . . . . . . . . . . . 129

xiv



4.7 A subtree rooted at environmental assessment, monitoring,
research in the hierarchy learned by L2H using data from the 112th

Congress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.8 A subtree rooted at health in the hierarchy learned by L2H using

data from the 112th Congress. . . . . . . . . . . . . . . . . . . . . . . 130
4.9 Perplexity on held-out documents, averaged over 5 folds (lower is

better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.10 Multi-label classification results. The results are averaged over 5 folds.136

5.1 Example hierarchy with ideologically polarized topics that SHLDA
learns. First-level nodes map to agenda issues, while second-level
nodes map to issue-specific frames. Each node is associated with a
topic (i.e., a multinomial distribution over words) and an ideological
score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Plate notation diagram of our SHLDA model. . . . . . . . . . . . . . 146
5.3 Illustration of SHLDA’s restaurant franchise metaphor. . . . . . . . . 149
5.4 Distributions of the response variables in the three datasets. . . . . . 157
5.5 Topics discovered from Congressional floor debates. Many first-level

topics are bipartisan (purple), while lower level topics are associated
with specific ideologies (Democrats blue, Republicans red). For ex-
ample, the “tax” topic (B) is bipartisan, but its Democratic-leaning
child (D) focuses on social goals supported by taxes (“children”, “ed-
ucation”, “health care”), while its Republican-leaning child (C) fo-
cuses on business implications (“death tax”, “jobs”, “businesses”).
The number below each topic denotes the magnitude of the learned
regression parameter associated with that topic. Colors and the num-
bers beneath each topic show the regression parameter η associated
with the topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.6 Topics discovered from Amazon reviews. Higher topics are general,
while lower topics are more specific. The polarity of the review is en-
coded in the color: red (negative) to blue (positive). Many of the first-
level topics have no specific polarity and are associated with a broad
class of products such as “routers” (Node D). However, the lowest
topics in the hierarchy are often polarized; one child topic of “router”
focuses on upgradable firmware such as “tomato” and “ddwrt” (Node
E, positive) while another focuses on poor “tech support” and “cus-
tomer service” (Node F, negative). The number below each topic is
the regression parameter learned with that topic. . . . . . . . . . . . 161

6.1 Overview of HIPTM’s outputs: (1) first-level nodes map to policy is-
sues, each of which corresponds to a major topic in the Policy Agendas
Topics codebook, (2) second-level nodes map to issue-specific frames,
and (3) each frame node and each lawmaker are associated with an
issue-specific ideological position. . . . . . . . . . . . . . . . . . . . . 179

6.2 Plate notation diagram of our HIPTM model. . . . . . . . . . . . . . 181

xv



6.3 Box plots of the estimated one-dimensional Tea Party ideal points for
members and non-members of the Tea Party Caucus among Republi-
can Representatives in the 112th U.S. House. The median of members’
ideal points is significantly higher than that of non-members’ ideal
points, though there are a lot of overlaps between the two distributions.192

6.4 Republican legislators having the (a) lowest and (b) highest estimated
one-dimensional ideal points. . . . . . . . . . . . . . . . . . . . . . . . 193

6.5 Boxplots of ideal points on 19 dimensions, each of which corresponds
to a major topic in the Policy Agendas Codebook estimated by our
model. On most issues the ideal point distributions over the two Re-
publican groups (member vs. non-member of the Tea Party Caucus)
overlap significantly. The most polarized issues are ‘Government Op-
erations’ and ‘Macroeconomics’, which align well with the agenda of
the Tea Party movement supporting small government and lower taxes.196

6.6 Subtree on “Macroeconomics” learned by our model. . . . . . . . . . 205
6.7 Subtree on “Health” issue in the topic hierarchy learned by our model.206
6.8 Subtree on the “Labor, Employment and Immigration” issue in the

topic hierarchy learned by our model. . . . . . . . . . . . . . . . . . . 207
6.9 Tea Party Caucus membership prediction results over five folds using

AUC-ROC (higher is better, random baseline achieves 0.5). The fea-
tures extracted from our model are estimated using both the votes
and the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.10 Tea Party Caucus membership prediction results over five folds using
AUC-ROC (higher is better, random baseline achieves 0.5). The fea-
tures extracted from our model for unseen legislators are estimated
using their text only. . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

xvi



Chapter 1: Introduction

1.1 The Needs for Automated Methods for Analyzing Political Text

in the Big Data Era

To open up the report in response to President Barack Obama’s request for

a 90-day review on how technologies affect our lives in May 2014, Counselor to the

President John Podesta and other senior government officials wrote:

“We are living in the midst of a social, economic, and technological rev-

olution. How we communicate, socialize, spend leisure time, and conduct

business has moved onto the Internet. The Internet has in turn moved into

our phones, into devices spreading around our homes and cities, and into

the factories that power the industrial economy. The resulting explosion of

data and discovery is changing our world.” (Podesta et al., 2014).

We are indeed living in an era of big data, in which the proliferation of data from

both digital and analog sources, together with ever-faster computing machines and

ever-larger data storage, have brought researchers unique opportunities to study

problems in computational social science at an unprecedented scale and granular-

ity (Watts, 2007; Lazer et al., 2009; Giles, 2012; Wallach, 2014). For example, the
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availability of large social networks over time allows us to study in detail their struc-

tural properties and patterns (Leskovec, 2008). Online social networks, in which

individuals are able to share information with their peers, enable work to study

how information diffuses, propagates and influences through the networks (Bakshy

et al., 2012; Bond et al., 2012; Weng, 2014). Fine-grained human behavioral data

provide invaluable opportunities to analyze and predict human traits (Vespignani,

2009; Kosinski et al., 2013), infer relational dynamics of individuals (Eagle et al.,

2009) and uncover opinions and sentiments (Pang and Lee, 2008; Liu, 2012).

Among those available data, text is arguably one of the most pervasive and

persistent sources of information for social science research. Content analysis of text

has been a major approach for social scientists to study human behaviors for cen-

turies: from at least as early as the late 1600s when the Church examined printed

text to detect non-religious materials which were considered a threat to its authority,

until today when, for example, close reading of textual contents such as open-ended

survey responses provides invaluable insights into respondent’s own thinking (Krip-

pendorff, 2012). However, with the availability of voluminous amount of text today,

traditional content analysis methods such as close reading and manual coding be-

come infeasible. This problem raises the need for automated content analysis of text,

which draws on techniques from natural language processing, machine learning, data

mining and information retrieval to analyze text data at large scale (Grimmer and

Stewart, 2013; O’Connor, 2014). The outputs of automated methods can poten-

tially (1) provide insights that might not be possible to achieve by close reading, (2)

improve the coding schemes created manually by domain experts, and (3) support
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rigorous methods for prediction and forecasting.

Within political science, there have recently been significant efforts to bring

together researchers from political science, computer science, linguistics and other

related fields to develop computer-assisted approaches to analyze political text. For

example, the Special Issue on Text Annotation for Political Science Research of the

Journal of Information Technology & Politics “solicits and publishes papers that

provide a clear view of the state-of-the-art in text annotation and evaluation, es-

pecially for political science” (Cardie and Wilkerson, 2008). The Political Analysis

journal’s Special Issue on The Statistical Analysis of Political Text publishes work

on automated methods that are “directed toward specific applications in the study

of politics, such as determining ideological position from texts, coding political in-

teractions, and identifying the content of political conflict” (Monroe and Schrodt,

2008). The annual conference on New Directions in Analyzing Text as Data, jointly

sponsored by the Ford Center for Global Citizenship at Northwestern University, the

Department of Methodology at the London School of Economics, and the Institute

for Quantitative Social Science at Harvard University, has provided an unique venue

for researchers in multi-disciplinary fields to present and exchange latest work on

applying automated content analysis methods to a diverse set of applications and

problems in political science.1

1Work done in this dissertation has contributed to talks in this conference including: Interactive
Modeling of Large Datasets and Discovering Topic Influencers (2011), “I Want to Talk About,
Again, My Record On Energy...”: Modeling Control of the Topic in Political Debates and Other
Conversations (2012) and Identifying Media Frames and Frame Dynamics within and across Policy
Issues (2013).
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1.2 The Importance of Agendas and Frames in Political Science Re-

search

In this thesis, we focus on developing novel automated content analysis tech-

niques for studying agendas and frames in political text—a central research area

in political science for decades (Schattschneider, 1960; McCombs and Shaw, 1972;

Baumgartner and Jones, 1993b; Wolfe et al., 2013). Political agenda, as defined by

Baumgartner (2001), “is the set of issues that are the subject of decision making

and debate within a given political system at any one time”. Examples of political

agenda issues include economy, education, health, defense, foreign affairs and trans-

portation. Political agenda-setting, or the ability to influence the salient topics or

issues, has been the focus of much research in both political communication and

policy studies (Wolfe et al., 2013). Studying political agendas helps shed light on

key questions about political systems such as: What are the issues that get more

attention by the policymakers, the media and the public? How do these attentions

change over time, and why?

Scholars in political communication have mainly focused on how the media

influence public agenda (McCombs and Shaw, 1993; McCombs, 2005). In his book

The Press and Foreign Policy, Cohen (1963) argued that “the press may not be

successful much of the time in telling people what to think, but it is stunningly

successful in telling its readers what to think about”. Another seminal work on this

subject is the 1968 Chapel Hill study, in which McCombs and Shaw (1972) showed
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that there was a very strong correlation between what 100 residents of Chapel Hill,

North Carolina thought was the most important election issue and what the local

and national news reported was the most important issue. Researchers in policy

studies, on the other hand, focus on policy agenda-setting, which emphasizes the

political attention of government elites and policymakers (Rogers and Dearing, 1988;

Baumgartner and Jones, 1993b; Rogers et al., 1993; Jones and Baumgartner, 2005).

If agenda-setting emphasizes on what issues are talked about, the question of

how things are talked about concerns framing. “To frame is to select some aspects

of a perceived reality and make them more salient in a communicating text, in such a

way as to promote a particular problem definition, causal interpretation, moral eval-

uation, and/or treatment recommendation for the item described” (Entman, 1993).

By highlighting a particular perspective or interpretation and deemphasizing others,

it is widely accepted that framing can have significant influence on public opinions

towards important policy issues (Chong and Druckman, 2007; Nelson et al., 1997;

Boydstun et al., 2013c). For example, the rise of the “innocence frame” in the death

penalty debate, emphasizing the irreversible consequence of mistaken convictions,

has led to a sharp decline in the use of capital punishment in the U.S. (Baumgartner

et al., 2008).

1.3 Analyzing Agendas and Frames: Methods and Costs

One central step in analyzing agendas in political text is to understand the

political attention mentioned in the text, or in other words, to uncover what topics
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are talked about. A popular approach to tackle this question is text categorization—

classifying the text of interest into one or more discrete topical categories, each of

which maps to an agenda issue. Various methods for text categorization have been

introduced in the literature, each one has its own costs and benefits. Following Quinn

et al. (2010), we discuss three main classes of text categorization methods (human

coding, supervised learning, and topic modeling), differentiated by three types of

costs that can incur at three stages of the analysis:2

• Pre-analysis cost is the cost incurred before the actual categorization happens

where “conceptualization and operationalization are dealt with”. Methods

with high pre-analysis cost are the ones that require human with substantive

knowledge to prepare the data for the text categorization to happen.

• Analysis cost is the cost incurred during the categorization of the text of

interest happens. Methods with high analysis cost are the ones that require

humans to spend more time per text unit to categorize.

• Post-analysis cost is the cost incurred after the categorization where the results

are assessed and interpreted. Methods with high post-analysis cost are the

ones that require humans to spend more time analyzing the results. Results

that are incoherent and uninterpretable also increase this cost.

2Quinn et al. (2010) further split each cost type into (1) domain knowledge required and (2)
human time taken. We simplify our analysis by considering only an overall cost for each cost type.
They also discuss five text categorization methods with reading-based method and dictionary-based
method being the additional two. We do not discuss these two methods since reading-based method
is inarguably impractical for large-scale corpus and dictionary-based method has very similar costs
with supervised learning method. An additional dimension considered in (Quinn et al., 2010) is
the set of assumptions each method makes, which is not the focus of our analysis here.
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Figure 1.1: Three main classes of text categorization methods and their correspond-
ing costs (Quinn et al., 2010).

Figure 1.1 illustrates the three methods with their corresponding costs, which are

evaluated using a three-level rating scheme: High, Moderate, and Low.

If analyzing agendas concerns what topics are talked about, analyzing frames

concerns how these topics are talked about. Identifying and categorizing frames is,

however, a much more challenging task. The major reason is because framing is

abstract. Boydstun et al. (2013c) assert that “the very definition of framing has

been notoriously slippery”, for which Entman (1993) called framing a “fractured

paradigm”. Interestingly, one line of political communication theory seeks to unify

agenda-setting and framing by viewing frames as second-level agendas (McCombs

et al., 1997; Ghanem, 1997): just as agenda-setting is about which issues (or topics)

of discussion are salient, framing is about the salience of aspects (or subtopics) of

those issues. This two-level view leads naturally to the idea of using a hierarchical

categorization of topics, which we use in this thesis to discover and analyze frames

and framing.
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In the remainder of this section, we review the three existing text categoriza-

tion methods for political text and their corresponding costs.

1.3.1 Human Coding

Human coding is a standard manual content analysis method applied to the

problem of identifying issues or topics in political text. It usually consists of (1)

defining a coding system by domain experts (e.g., a set of diverse, well-defined

political issues), (2) training human coders, and (3) coding the documents of interest

manually. In practice, defining the codebook often involves an iterative process

where coding issues are conceptualized and repeatedly refined through several pilot

studies until a final coding system is achieved. Since the codebook needs to be

defined and human coders need to be trained before the actual human coding can

happen, the costs in both pre-analysis and analysis phases of this approach are high.

However, this approach often provides highly interpretable coding systems, together

with a very high quality set of coded documents, which makes its post-analysis cost

relatively low (Figure 1.1a).

One of the most successful work following this approach is arguably the Policy

Agendas Project led by Baumgartner and Jones (1993a), which defines a codebook of

19 major topics and 225 subtopics.3 The codebook has been used extensively to code

and study policy agendas in documents from Congress, Supreme Court, news media

like the New York Times and various Public Opinion and Interest Groups (John,

3http://www.policyagendas.org/
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2006).4 Specifically built for the U.S. Congress, the Congressional Bill Project, led

by Adler and Wilkerson (2006) provides an extensive set of more than 400,000 bills

coded using the Policy Agendas Topics codebook. In addition, following its success

in studying the U.S. political system, the Policy Agendas Project has also been

extended and built upon for the European Union (EU Policy Agendas Project)5

and individual European countries (Comparative Agendas Project).6

Identifying and coding frames is, as argued above, much more challenging

due to the abstract nature of framing. Despite the challenges, Boydstun et al.

(2013c) have worked on an ambitious project to define a Policy Frames Codebook,

which consists of 14 categories of frames and an “Other” category. Examples of

the frame categories in the codebook include “Economic”, “Capacity & Resources”,

“Morality & Ethics” and “Fairness & Equality”. These frame categories are intended

to be applicable across multiple policy issues (e.g., abortion, immigration, tobacco,

marriage equality etc), just as the Policy Agendas Codebook provides a consistent

system for categorizing topics across policy agendas.

1.3.2 Supervised Learning

With the increasing availability of political text, however, the cost of manually

coding documents has become impractical. Many recent efforts focus on using auto-

mated content analysis approach to reduce the analysis cost and trade off between

4See http://www.policyagendas.org/page/datasets-codebook for examples of datasets
coded using the Policy Agendas Topic codebook. The number of books and papers from research
programs using this codebook are “too numerous to cite here” (Quinn et al., 2010, p. 210).

5http://www.policyagendas.eu/
6http://www.comparativeagendas.info/
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the pre-analysis and post-analysis costs.

One relatively straightforward approach to automation for this type of prob-

lem is supervised learning—leveraging existing supervised learning techniques from

machine learning, data mining and related fields. For example, Purpura and Hillard

(2006) and Hillard et al. (2008) describe the automated classification system used

in the Congressional Bills Project, in which Support Vector Machines (SVMs) and

other machine learning techniques are used to classify legislative text into one of

the 226 subtopics in the Policy Agendas Topics codebook. Kwon et al. (2007) also

use standard supervised learning methods to classify political claims into one of the

predefined classes of opinion. A similar approach has also been used to classify Ger-

man online political news (Scharkow, 2013) and Dutch election manifestos (Verberne

et al., 2014).

The supervised learning techniques still require labeled data for training. Thus,

similar to the human coding, the supervised learning method still has high pre-

analysis cost. However, after the training phase, the learned classifier can be used

to automatically label new data, which reduces the analysis cost significantly (Fig-

ure 1.1b). A promising approach to reduce the pre-analysis cost of labeling training

data is active learning, which requires human to label only a subset of the data while

still achieving comparable classification accuracy (Hillard et al., 2007; Purpura et al.,

2008).
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1.3.3 Topic Modeling

Topic modeling is also an automated content analysis method which has gained

exponential popularity in analyzing political text in particular, and in discovering

thematic structure of large-scale text corpus in general (Blei, 2012). Introduced

by Blei et al. (2003b), Latent Dirichlet allocation (LDA)—the original unsupervised

topic model—extends previous latent variable models including LSA (Deerwester

et al., 1990), LSI (Papadimitriou et al., 1998), and PLSA (Hofmann, 1999) and

assumes that words in each documents are generated from a mixture of topics, each

of which is a multinomial distribution over a fixed vocabulary of words. Inferred

from the word co-occurrence in documents, each learned topic typically represents

a coherent theme which often maps to an issue when studying political agendas.

Recent work following this approach include applying topic models to examine the

agenda in the U.S. Senate from 1997 to 2004 (Quinn et al., 2010), estimating category

proportions in opinions about the U.S. presidency (Hopkins and King, 2010), and

measuring the expressed agendas in the Senate press releases (Grimmer, 2010).

LDA and other unsupervised extensions require no training data and thus

have a low pre-analysis cost. However, each topic is just a multinomial distribution

over the vocabulary, which is often represented by a list of words with highest

probabilities. If this word list is incoherent, which is not uncommon (Chang et al.,

2009b; Mimno et al., 2011; Lau et al., 2014a), the resulting categorized text might

be hard to interpret. This difficulty, therefore, raises the cost of the post-analysis

phase (Figure 1.1c).
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1.4 Automated Content Analysis at Lower Cost

In this thesis, following the automated content analysis approach, we introduce

novel topic models, which are guided by additional information associated with the

text and designed to discover and analyze agendas and frames in political discourses

at a lower cost. We extend existing topic models, an active research area that we

will review in Chapter 2, to improve the models’ interpretability, which as a result

reduces the post-analysis cost, by

• modeling jointly the text and some metadata of interest which are readily avail-

able at no additional cost and can guide the model to learn more interpretable

topics. Examples of these metadata include speaker identity in Chapter 3,

authors’ ideological score in Chapter 5, and roll call votes in Chapter 6.

• using labeled data that incur a lower pre-analysis cost than the traditional

approach of creating well-defined coding systems by domain expert, training

human coders and coding document manually as described in Section 1.3.1.

Examples include using multi-labeled data in Chapter 4 and using existing

coded data as prior in Chapter 6.

Table 1.1 summarizes the four models introduced in this thesis together with their

estimated costs.

We first focus on discovering and analyzing agendas in two settings: political

debates in Chapter 3 and Congressional bill text in Chapter 4. For political de-

bates, we present an unsupervised nonparametric topic model which incorporates
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Without agenda labels With agenda labels
SITS (Chapter 3) L2H (Chapter 4)

Agendas
only

High
Moderate
Low

Pre-analysis
Cost

Analysis Cost

Post-analysis
Cost

High
Moderate
Low

Pre-analysis
Cost

Analysis Cost

Post-analysis
Cost

SHLDA (Chapter 5) HIPTM (Chapter 6)

Agendas
&

Frames

YEA

NAY

YEA

NAY

YEA

NAY

YEA

NAY

High
Moderate
Low

Pre-analysis
Cost

Analysis Cost

Post-analysis
Cost

High
Moderate
Low

Pre-analysis
Cost

Analysis Cost

Post-analysis
Cost

Table 1.1: Summary of four models introduced in this thesis with their estimated
costs.
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the speaker identity to analyze agendas and agenda control behaviors of partic-

ipating individuals. For Congressional bill text, we leverage multi-labeled data,

which arguably can be obtained at a lower cost than traditional human coded data,

to learn a label hierarchy capturing the dependencies among agenda issues. The

learned hierarchy is highly interpretable which helps reduce the post-analysis cost.

Next, we introduce two nonparametric Bayesian hierarchical topic models to

study agendas and frames in Congressional floor debates in Chapters 5 and 6. As

discussed in Section 1.3, we follow the line of political communication theory that

views framing as second-level agenda-setting and discover a hierarchy of topics to

analyze agendas and frames. In these learned topic hierarchies, first-level topics

map to agenda issues while second-level topics map to issue-specific frames. More

specifically, in Chapter 5 we learn the topic hierarchy by jointly modeling the text

with their authors’ ideological scores. The model uses the metadata ideological

scores to guide the discovery of issue-specific frames that are ideologically polarized.

However, since no agenda or frame labels are used, the model is still subject to the

limitation of unsupervised topic models: the interpretability of the learned topics.

Since the topics are organized hierarchically, we estimate that incoherent and unin-

terpretable topics incur even more post-analysis cost compared with flat-structured

unsupervised topics. In Chapter 6, we learn the topic hierarchy from text and roll

call votes. By leveraging existing agenda-labeled data as priors, we learn a more

interpretable topic hierarchy which, by design, reduces the post-analysis cost.

In the remainder of this chapter, we briefly introduce the four models we will

present in subsequent chapters. For each model, we will give an overview of the

14



problems and applications that the model tries to tackle, how we evaluate it and

what its analysis costs are qualitatively. Although using the the cost-based

analysis as a guiding framework across the thesis, our focus in this thesis

is not explicitly quantifying the cost but actually developing and applying

the models on analyzing agenda-setting and framing in various settings.

Measuring the actual analysis cost of the models developed in this thesis and other

automated content analysis methods is an interesting direction for future work which

we will discuss in Chapter 7.

1.4.1 Analyzing Agendas and Agenda Control in Political Debates

We first focus on studying agendas in political debates. Political debates, espe-

cially presidential debates, play a central role in U.S. politics. A key question that

has attracted much research in political science on presidential debates is: How do

candidates control the agenda of the debates? In Chapter 3, we introduce SITS—

Speaker Identity for Topic Segmentation—a nonparametric Bayesian model that

takes into account the speaker identity to discover (1) what topics that are talked

about during the debate, (2) when these topics change, and (3) a speaker-specific

measure of “agenda control”. We apply our model SITS to qualitatively analyze the

agendas and agenda control behaviors of candidates in 2008 election debates and

2012 Republican primary debates.

Being an unsupervised topic model, SITS enjoys low pre-analysis cost, but is

subject to a moderately high post-analysis cost due to the interpretability of the
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learned topics. To mitigate this problem, we build an interactive visualization,

Argviz , which help analysts better access and interpret the outputs of SITS. Using

Argviz to visualize SITS’s output, domain experts can quickly examine the topi-

cal dynamics of the debates, discern when the topic changes and by whom, and

interactively visualize the debate’s details on demand.

Although motivated by studying political debates, SITS is also applicable to a

much broader setting, turn-taking multi-party conversations. In addition to political

debates, we also use SITS to analyze business meetings (ICSI meeting transcripts),

online discussions (Wikipedia discussion pages) and TV political talk show (CNN’s

Crossfire). To quantitatively evaluate our model, we conduct extensive experiments

on two tasks: topic segmentation and influencer detection. For topic segmentation,

the task to divide conversations into smaller and topically coherent segments, SITS

outperforms previous models which does not explicitly capture the speaker identity.

For the second task, we manually annotate influencers in two datasets: Crossfire and

Wikipedia. Empirical results show that features extracted from SITS outperforms

traditional methods to detect influencer significantly.

1.4.2 Learning Agenda Hierarchy from Multi-labeled Legislative Text

We then transition from studying agendas in the conversational setting to

legislative text in the U.S. Congress, the focus of much political science research

including the Congressional Bills project and other related research programs.7 In

7See http://www.congressionalbills.org/research.html for some research related to the
Congressional Bills project.
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the Congressional Bills project, each bill, based on its title of the introduced version,

is manually coded with a major topic and a subtopic in the Policy Agendas Topics

codebook. Although coding in this way has several advantages such as achiev-

ing high inter-annotator reliability and enabling comparisons with other forms of

policymaking activity (hearings, laws, executive orders etc) coded using the same

codebook, it also incurs a high pre-analysis cost. In Chapter 4, we study agendas

in legislative text using the set of labels provided by the Congressional Research

Service, in which each bill is coded with multiple agenda issues.8 The motivations

for using this type of multi-labeled data include

• First, each bill can be about more than one issue. In the descriptions about its

coded data, the Congressional Bills project notes that “researchers should not

assume that every bill relating to ‘air pollution’ (for example) will be found

among the ‘705’ bills. A bill could address air pollution but be primarily

among something else”.9,10

• Second, it is relatively cheaper to code the data using multiple labels since it

allows a more flexible coding system: the list of labels needs not to be very well

defined beforehand by domain experts and can be accumulatively extended as

new labels might be used by human coders.

One drawback of this labeling approach is that the label space can be relatively

large, which makes learning the model, predicting labels for new documents and

8http://thomas.loc.gov/help/terms-subjects.html
9http://www.congressionalbills.org/codebooks.html

10In the Policy Agendas Topics codebook, ‘705’ is the code for the subtopic ‘Air pollution, Global
Warming, and Noise Pollution’.
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interpreting results more difficult. To tackle these problems, we propose L2H—Label

to Hierarchy—a hierarchical topic model that captures the dependencies among

labels by using a tree-based topic hierarchy. By associating each label with a topic

(i.e., a multinomial distribution over the vocabulary), L2H learns an interpretable

topic hierarchy which provides a natural mechanism for integrating user knowledge

and data-driven summaries in a single, consistent structure. We apply L2H to

analyze policy agendas in legislative texts in four U.S. Congresses (109th–112th). By

using multi-labeled data, we reduce the pre-analysis cost of traditional supervised

learning method described in Section 1.3.2, while enjoying its low post-analysis cost,

especially with the aid of the learned hierarchy. Moreover, our empirical experiments

also show that, using the topic hierarchy can improve the prediction performance

in two quantitative tasks: predicting words in held-out documents and predicting

multiple labels for unseen text.

1.4.3 Discovering Agendas and Frames Discovery in Ideologically Po-

larized Text

Going beyond agenda-setting (i.e., what topics people talk about), we expand

our focus to framing (i.e., how they talk about differen issues). In its concern

with the subjects or issues under discussion in political discourse, agenda-setting

maps neatly to topic modeling as a means of discovering and characterizing those

issues (Grimmer, 2010; Quinn et al., 2010). Interestingly, one line of political com-

munication theory seeks to unify agenda setting and framing by viewing frames as a
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second-level agenda-setting (McCombs et al., 1997; Ghanem, 1997): just as agenda

setting is about which objects of discussion are salient, framing is about the salience

of attributes of those objects. The key is that what communications theorists con-

sider an attribute in a discussion can itself be an object, as well. For example,

mistaken convictions is one attribute of the death penalty discussion, but it can also

be viewed as an object of discussion in its own right.

This two-level view leads naturally to the idea of using a hierarchical topic

model to formalize both agendas and frames within a uniform setting. In Chapter 5,

we present SHLDA—Supervised Hierarchical latent Dirichlet allocation—to do ex-

actly that. SHLDA discovers a hierarchy of topics from text, in which the first-level

topics map to agenda issues while second-level topics map to issue-specific frames.

Using no agenda or frame labels, SHLDA requires low pre-analysis cost, but is also

subject to the limitation of unsupervised topic models: the interpretability of the

learned topics (Section 1.3.3). Since the topics are organized hierarchically, incoher-

ent and uninterpretable topics might incur even more post-analysis cost compared

to flat-structured unsupervised topics. To mitigate this problem, SHLDA jointly

models the text—transcribed from Congressional floor debates and the authors’

ideological scores—estimated using legislators’ roll call votes.11 By incorporating

these metadata, we can discover ideologically polarized frames, which helps improve

the interpretability of the learned topic hierarchy, and thus reduce the post-analysis

cost.

11The ideological score is the DW-NOMINATE scores obtained from http://voteview.com/

dwnomin_joint_house_and_senate.htm.
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In addition, the model is predictive: it represents the idea of alternative or

competing perspectives via a continuous-valued response variable. Although inspired

by the study of political discourse, associating texts with “perspectives” is more

general and has been studied in various settings such as sentiment analysis (Paul

and Girju, 2010; Jo and Oh, 2011) and discovery of regional variation (Ahmed and

Xing, 2010a; Eisenstein et al., 2011). We show that the learned hierarchical structure

improves prediction of perspective in both a political domain and on sentiment

analysis tasks, and we argue that the topic hierarchies exposed by the model are

indeed capturing structure in line with the theory that motivated the work.

1.4.4 Discovering Agendas and Frames from Roll Call Votes and Con-

gressional Floor Debates

Similar to SITS, SHLDA learns the set of topics (but organized in a tree-based

hierarchy instead) without any topic labels. This provides an exploratory tool to

discover agendas and frames jointly without the high pre-analysis cost of manual

coding, but still suffers from the high post-analysis cost of interpreting the results.

To mitigate the problem, we design SHLDA to capture jointly the text and some

continuous response of interest associated with each document. Particularly, in

the setting of analyzing agenda-setting and framing from political text, we discover

agendas and frames which are polarized on the liberal-conservative spectrum by

using DW-NOMINATE—a commonly used score estimated from voting records of

lawmakers to approximate their positions, or often called ideal points, on a single
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dimension of ideology.

In Chapter 6, we introduce HIPTM—a Hierarchical Ideal Point Topic Model to

discover agendas and frames by jointly modeling a set of votes in the U.S. Congress

and the text associated with both the legislators (e.g., congressional speeches) and

the bills (e.g., the bill text). HIPTM is different from SHLDA in the following

ways. First, we specifically design HIPTM with a two-level hierarchical structure in

which first-level nodes map to agenda issues and second-level nodes map to issue-

specific frames. Second, we leverage existing labeled data from the Congressional

Bills Project to build topic priors (i.e., multinomial distributions over words) for the

issue nodes in the hierarchy, each of which maps to one of the 19 major topics in

the Policy Agendas Topics Codebook. Third, instead of using pre-computed ideal

point like DW-NOMINATE, HIPTM jointly estimate multi-dimensional ideal points

of legislators, in which each dimension maps to one of the 19 interpretable topics

mentioned above.

We apply HIPTM to analyze how legislators vote and talk similarly or dif-

ferently in the U.S. Congress with respect to the Tea Party movement, a recent

American political movement which has attracted much attentions from both pub-

lic media as well as academic scholars. Using HIPTM, we analyze the difference in

language uses (via discovered issue-specific frames) and voting behaviors (via esti-

mated multi-dimensional ideal points) on various policy agenda issues of members

of the Tea Party Caucus—the first institutional organization to the Tea Party move-

ment, in comparison with other Republican legislators with no membership with the

caucus.
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1.5 Main Technical Contributions

Even though all models introduced in this thesis are motivated by specific

problems in political science, the models themselves are typically applicable to other

more general settings. Besides providing new computational tools for identifying

and analyzing policy agendas and issue frames in large-scale political text, this

thesis makes the following technical contributions to machine learning and natural

language processing:

• Study and empirically compare different sample combination strategies when

using MCMC inference for topic models for predictions (Chapter 2)

• Introduce a new nonparametric Bayesian topic model which incorporates speaker

identity to capture topics, topic changes, and agenda control behavior in multi-

party conversations (Chapter 3)

• Extend current state-of-the-art topic models for multi-labeled documents to

learn an interpretable topic hierarchy when the label space is large (Chapter 4)

• Add novel extensions to state-of-the-art nonparametric hierarchical topic mod-

els to learn topic hierarchies jointly from text and other metadata of interest

including continuous response variables such as the ideal points capturing the

position of lawmakers on the liberal-conservative spectrum (Chapter 5) and

binary matrices such as the voting records in the U.S. Congress (Chapter 6)

We also summarize in more detail the contributions of this thesis including both the

technical contributions of each model introduced and their applications in Chapter 7.
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Chapter 2: Probabilistic Topic Modeling Foundations

Probabilistic topic models are powerful methods to uncover hidden thematic

structures in text by projecting each document into a low dimensional space spanned

by a set of topics, each of which is a distribution over words. Given the observed

data, topic models discover these hidden structures through posterior inference, and

use them for a wide range of applications including data summarization, exploratory

analysis, and predictions (Blei, 2012, 2014). In this thesis, as motivated in Chapter 1,

we follow this line of research and introduce novel topic models to study agendas

and frames in political discourses as well as other related applications. This chapter

provides relevant background on this active research area.

In Section 2.1, we first review Latent Dirichlet Allocation (Blei et al., 2003b,

LDA), the basic topic model which provides the foundation for topic modeling re-

search. Since its introduction in 2003, LDA has become the building block of nu-

merous extensions, many of which motivate the models we introduce in this thesis.

We survey these extensions in Section 2.2. In Section 2.3, we review Markov chain

Monte Carlo (MCMC)—a popular posterior inference technique for topic models,

and discuss the importance of averaging over multiple samples when using MCMC

for predictions, which is theoretically motivated but often glossed over in practice.
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The discussion in Section 2.3 goes beyond reviewing background to include experi-

mentation that makes a new empirical contribution.

Parts of this chapter are based on the materials originally published in Nguyen

et al. (2013a, 2014a).

2.1 Latent Dirichlet Allocation: The Basic Topic Model

Introduced by Blei et al. (2003b), Latent Dirichlet Allocation (LDA) is a proba-

bilistic model whose goal is to find a lower dimensional representation of a collections

of documents that is useful for various tasks including classification, summarization

and exploratory analysis. Following and extending previous latent variable mod-

els such as LSA (Deerwester et al., 1990), LSI (Papadimitriou et al., 1998), and

PLSA (Hofmann, 1999), the intuition behind LDA is that each document exhibits

multiple topics. LDA captures this intuition by assuming that each document is

a mixture over a finite number of latent topics, each of which is a probabilistic

distribution over a vocabulary.

Before describing LDA in detail, we first review the Dirichlet distribution, a

central concept used in LDA and many of its extensions.

Dirichlet distribution is a distribution over finite discrete probability distributions.

A Dirichlet distribution, denoted by Dirichlet(α), is parameterized by a vector

α = (α1, · · · , αK) of non-negative real numbers. The density of Dirichlet(α) over a
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(a) (1, 1, 1) (b) (1000, 100, 500) (c) (0.1, 0.1, 0.1)
(d) (0.1, 0.01,
0.001)

Figure 2.1: Density plots for four Dirichlet distributions. The densities are over the
triangular simplex that represents multinomial distributions over three dimensions
and demonstrate how different Dirichlet distributions can accommodate variable
concentrations. Darker coloring denotes higher probability density. (a) Dirichlet
parameters that are all 1.0 yield a uniform density over multinomial distributions.
(b) Dirichlet parameters that are all greater than 1.0 yield a density concentrated
near the mean distribution p, in this case (0.6250, 0.0625, 0.3125). (c) and (d)
Dirichlet parameters that are all less than 1.0 yield a density concentrated near
the edges and corners of the simplex. Such a density favors sparse multinomial
distributions.

probability distribution x = (x1, · · · , xK) is

p(x |α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

xαk−1
k (2.1)

A Dirichlet distribution can also be parameterized by a concentration parame-

ter α > 0 and a mean probability distribution p. This two-parameter Dirichlet

distribution, denoted by Dirichlet(α,p), is equivalent to Dirichlet(α) if we define

α =
∑K

k=1 αk and p = α/α. When the mean distribution p is a uniform distribution,

the Dirichlet distribution is called symmetric and often denoted by Dirichlet(α). Fig-

ure 2.1 illustrates examples of the probability densities defined by different Dirichlet

distributions.
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Latent Dirichlet allocation (LDA) takes as input a set of D documents, in which

word tokens {wd}Dd=1 are from a vocabulary of V unique word types. LDA posits

that there are K shared topics, each of which is a multinomial distribution over

the vocabulary drawn from a Dirichlet distribution prior. Figure 2.2 shows the

generative process of LDA and its plate notation diagram.

More specifically, the multinomial φk of topic k is a distribution over words

p(φk | β) =
Γ(
∑V

v=1)βv∏V
v=1 Γ(βv)

V∏
v=1

φβv−1
k,v (2.2)

In addition, each document d is modeled as a multinomial distribution θd over the

K topics, also drawn from a Dirichlet prior

p(θd |α) =
Γ(
∑K

k=1)αk∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
d,k (2.3)

To generate a token in document d, first we draw a topic assignment zd,n from the

document-specific multinomial θzd,n . Given the chosen topic, we draw the word

token wd,n from the corresponding multinomial φzd,n .

The joint probability distribution of a set of documents w and their topic

assignments z is

p(w, z | θ, φ;α, β) =
K∏
k=1

p(φk | β)
D∏
d=1

p(θd |α)

Nd∏
n=1

p(zd,n | θd) p(wd,n |φzd,n) (2.4)

Given the observable documents, through posterior inference, LDA estimates

the global topics {φ̂k} capturing what are talked about globally in the whole corpus,
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1. For each topic k ∈ [1,K]

• Draw word distribution φk ∼ Dirichlet(β)

2. For each document d ∈ [1, D]

• Draw topic distribution θd ∼ Dirichlet(α)

• For each token n ∈ [1, Nd]

– Draw topic zd,n ∼ Multinomial(θd)

– Draw word wd,n ∼ Multinomial(φzd,n)

Figure 2.2: Generative process and the plate diagram representation of LDA. In
the diagram, nodes represent random variables (shaded ones are observed, clear
ones are latent), directed edges are probabilistic dependencies, and plates represents
repetition.

and the document-specific topic proportions {θ̂d} capture what salient topics are

talked about locally in each document. Table 2.1 shows, as an example, ten topics

learned by LDA from a set of floor debates in the 109th U.S. Congress. Here, each

topic is represented by a list of words which have the highest probabilities in that

topic. As we can see, each word list provides a relatively coherent theme, which

can be mapped to a policy agenda issue, e.g., “Immigration” (Topic 1), “Economic”

(Topic 2), “Foreign Trade” (Topic 3) etc.

2.2 Beyond LDA: Topic Modeling Extensions

Since its introduction, LDA has become the building block for numerous topic

modeling extensions (Blei et al., 2010a; Blei, 2012, 2014). Surveying all probabilistic

models that extend and adapt LDA goes beyond the scope of this chapter, but in

this section, we provide a brief survey on several directions for extending LDA that

motivates various parts of the models presented in this thesis.
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Topics Words with highest probabilities

Topic 1
immigration; illegal immigration; border patrol; border security; agent;
alien; illegal alien; deport; southern border; visa; citizenship

Topic 2
tax relief; revenue; tax cut; economic growth; trillion; raising tax;
tax increase; tax policiy; cut tax; american family; fiscal; tax revenue

Topic 3
china; trade; free trade; export; wto; cafta; trade agreement; chinese; man-
ufacture; world trade; counterfeit; central america; tariff

Topic 4
drug; traffick; local law; murder; penalty; prosecute; police; sentence;
mandatory minimum; task force; gang; deal; sheriff; attorney

Topic 5
cell; embryo; patient; stem cell; disease; embryonic stem; doctor; physician;
medicine; cure; nih; adult stem; stage; drug; ethic

Topic 6
agriculture; animal; farmer; usda; horse; label; manufacture; food safety;
meat; rancher; farm; eat; plant; livestock; slaughter

Topic 7
oil; coal; drill; gasoline; ethanol; electric; gallon; car; peak; pump; plant;
burn; crude oil; shelf; gulf; refinery

Topic 8
teacher; head start; charter school; catholic school; workforce; math; teach;
academic; classroom; technical education; enroll; public school; commu-
nity college

Topic 9
army; air force; veteran; guard; enemy; nation guard; navy; wound; dod;
active duty; mobile; deploy; marine corp; hero

Topic 10
port; amtrak; port security; highway; route; cargo; airport; rail; custom;
aircraft; ship; traffic; plane; pilot

Table 2.1: Example of ten topics discovered by LDA from a collection of floor debates
in U.S. Congress.

2.2.1 Using Bayesian Nonparametrics

One major challenge for practitioners when applying LDA on a text corpus

is choosing the number of topics, which is required to be fixed in advance. This

is usually done by running LDA with different numbers of topics and choosing the

one that gives the best performance on some predefined objectives (e.g., likelihood

of held-out documents). Bayesian nonparametrics provide an elegant solution to

this problem. Essentially, Bayesian nonparametric methods provide priors over an

infinite-dimensional space of probability distributions and let the observed data

decide the actual dimensionality of the posterior distribution.
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In this section, we first review Dirichlet process (DP)—a nonparametric prior

over infinite discrete distributions. We then discuss how LDA can be extended

to learn an unbounded number of topics using the Hierarchical Dirichlet processes

(HDP) (Teh et al., 2006). More details on DP and HDP can be found in Sudderth

(2006, Chapter 2) and Teh and Jordan (2010).

Dirichlet process (DP) like the Dirichlet distribution, is a distribution over dis-

tributions. A Dirichlet process, denoted by DP(α,G0), is parameterized by (1) a

concentration parameter α > 0 and (2) a base distribution G0 over a space Ω. A

draw from a Dirichlet process, G ∼ DP(α,G0) is a distribution over the same space

Ω, such that for any finite measurable partition (A1, A2, · · · , AK) of Ω, the following

holds

(G(A1), G(A2), · · · , G(AK)) ∼ Dir(αG0(A1), αG0(A2), · · · , αG0(AK)) (2.5)

This means that if we draw a random distribution from DP(α,G0), there will be

on average G0(Ak) probability mass at Ak ∈ Ω, and the concentration parame-

ter α controls how tightly G(Ak) concentrates around G0(Ak) defined by the base

distribution.

The existence of the Dirichlet process was established by Ferguson (1973).

There are two concepts related to the Dirichlet process: the stick-breaking process

(SBP) and the Chinese restaurant process (CRP).

• The stick-breaking process provides an explicit way to construct a Dirichlet
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process. Sethuraman (1994) shows that a random distribution G drawn from

DP(α,G0) can be defined as

G =
∞∑
k=1

πkδφk (2.6)

where δφk is a probability distribution concentrated at φk which are iid draws

from the based distribution G0

φk |∞k=1 ∼ G0 (2.7)

and πk is defined based on iid draws from Beta(1, α0)

πk = π′k

k−1∏
i=1

(1− π′l) π′k |∞k=1 ∼ Beta(1, α0) (2.8)

Equation 2.6 shows that G is discrete with probability 1. Intuitively, a draw G

from the DP(α,G0) can be seen as a distribution over infinite discrete “atoms”,

each has a weight πk and a value φk drawn from the base distribution. The

sequence of weights π = (πk)
∞
k=1 satisfies

∑∞
k=1 πk = 1, which makes π a

probability distribution and usually denoted by π ∼ GEM(α0).

• The Chinese restaurant process shows the clustering property of random draws

from the distribution G drawn from DP(α,G0), in which G is marginalized

out (Blackwell and MacQueen, 1973). Let θ1, θ2, · · · , θn be a sequence of n

random draws from G, the next draw θn+1 is distributed according to the
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Figure 2.3: Illustration of the stick breaking process π ∼ GEM(α0), in which πk =
π′k
∏k−1

i=1 (1− π′l) is defined based on the fraction π′k ∼ Beta(1, α0) that is taken from
the remainder of the stick after each break.

following conditional distribution

θn+1 | θ1, · · · , θn;α,G0 ∼
K∑
k=1

Nk

n+ α
δφk +

α

n+ α
G0 (2.9)

where φ1, · · · , φK are K distinct atom values that the first n draws θ1, · · · , θn

take on, and Nk is the number of draws θi that take on φk.

Equation 2.9 illustrates the Chinese restaurant metaphor: There is a Chinese

restaurant with infinite number of tables (i.e., atoms). Each customer (i.e., θi)

comes in and chooses a table to sit. The customer sits at table k (i.e., atom k)

with probability proportional to the number of customers already seated there

(i.e., Nk) and enjoys the table’s existing dish (i.e., φk) . With probability α,

the customer sits at a new table and order a new dish (i.e., new draw from

the base distribution G).
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Figure 2.4: Illustration of the Chinese restaurant process metaphor in which there
are seven customers currently occupying three tables. A new customer coming
in will sit at (1) an existing table with a probability proportional to the number
of customers currently sitting at the table or (2) a new table with a probability
proportional to α. The exact probabilities are shown inside each table.

Hierarchical Dirichlet processes (HDP) uses the Dirichlet process to extend LDA

to capture an infinite number of topics (Teh et al., 2006). In LDA, each document d

has a topic proportion θd drawn from a finite Dirichlet(α) prior. To handle infinite

number of topics, HDP instead draws the topic proportion Gd for each document

d from a Dirichlet process DP(α,G0). Given the per-document distribution over

topics Gd, the generative process for each token is then similar to that of LDA.

All that is left now to fully define the generative process of HDP is specifying

the base distribution G0. One straightforward way is to use a Dirichlet distribution

to define G0. However, there is a major disadvantage in doing so: since a Dirich-

let distribution is a continuous distribution over topics, words within documents

will share the same set of topics (i.e., draws from Gd) but words across different

documents will not. To address this problem, the HDP draws G0 from another

Dirichlet process DP(γ,H) with the base distribution H being a Dirichlet distri-

bution Dirichlet(β). Figure 2.5 shows the generative process and plate notation

diagram of HDP.
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1. Draw the base distribution over topics G0 ∼
DP(γ,H) where H ≡ Dirichlet(β)

2. For each document d ∈ [1, D]

(a) Draw the per-document distribution over
topics Gd ∼ DP(α,G0)

(b) For each word n ∈ Nd

i. Draw topic φd,n ∼ Gd
ii. Draw word wd,n ∼ Multinomial(φd,n)

Figure 2.5: Generative process and the plate diagram representation of HDP.

2.2.2 Incorporating Metadata

In many settings, each document in the corpus contains additional information

called metadata such as author, geographic location, published venue, timestamp

etc. The availability of these metadata has motivated various models to jointly

capture both the text and the metadata. Accounting for such additional information

can not only result in better topics discovered, but also improve the prediction results

of documents’ unseen metadata given their text. Following Mimno and McCallum

(2008), we consider two broad categories of such models: upstream models and

downstream models.

Upstream models are topic models in which metadata directly or indirectly gen-

erate the latent topic variables. We will first review Labeled LDA—a popular up-

stream topic model for multi-labeled data, which is also the basis of L2H, the model

we introduce in Chapter 4.

Proposed by Ramage et al. (2009), Labeled LDA (L-LDA) models multi-

labeled documents in which each document is tagged with multiple labels. More

specifically, L-LDA takes as input a set of D documents wd, where each is tagged
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with ld labels. Labeled LDA associates each of its L unique labels with a topic (i.e.,

a multinomial over the vocabulary as in standard LDA). Like LDA, L-LDA models

each document d as mixture over topics. However, given the set of observable labels

ld, L-LDA only allows tokens in d to be generated from topics that are associated

with ld. Figure 2.6 shows the generative process of L-LDA. With similar goal to

model multi-labeled data, Partially Labeled LDA (Ramage et al., 2011, PLDA),

Prior-LDA and Dependency-LDA (Rubin et al., 2012) are proposed to capture the

dependencies among the labels by projecting them onto a lower-dimensional latent

space.
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1. For each topic k ∈ [1, L]

• Draw word distribution φk ∼ Dirichlet(β)

2. For each document d ∈ [1, D] with labels ld

• Generate αd by masking out α using ld

• Draw topic distribution θd ∼ Dirichlet(αd)

• For each token n ∈ [1, Nd]

– Draw topic zd,n ∼ Multinomial(θd)

– Draw word wd,n ∼ Multinomial(φzd,n)

Figure 2.6: Generative process and the plate diagram of Labeled LDA.

Besides multiple labels, various upstream models have been proposed to cap-

ture other types of metadata. For example, to include authorship information,

Rosen-Zvi et al. (2004) introduce the Author-Topic model and Mimno and McCal-

lum (2007) present the Author-Persona-Topic (APT) model. Lacoste-Julien et al.

(2008) introduce Discriminative LDA (DiscLDA) to incorporate single discrete class

and use it to modify the document-specific topic proportion by applying a class-

dependent linear transformation. Boyd-Graber and Blei (2009) present the Multilin-
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gual Topic Model (MuTo) to incorporate language information to analyze unaligned

multilingual text. Mimno and McCallum (2008) propose the Dirichlet-multinomial

Regression (DMR) model, which can take into account different types of metadata.

Downstream models are topic models in which both the words and the metadata

are generated from latent topic variables. In LDA, there are two types of latent

topic variables: (1) document-specific topic proportion θd and (2) token-specific

topic assignment zd,n, which provides two general ways to generate metadata in

downstream models.

The most straightforward way is arguably to generate both the words and the

metadata simultaneously given the latent topic proportions. In this type of models,

words and metadata can be considered exchangeable, in which each topic, besides a

multinomial over words as in standard LDA, also has additional distributions over

metadata values. Examples include models that jointly capture text and metadata

such as references (Erosheva et al., 2004), timestamps (Wang and McCallum, 2006,

TOT), named entities (e.g., persons, organizations, locations) (Newman et al., 2006),

and citations (Nallapati et al., 2008). Polylingual topic model (Mimno et al., 2009,

PLTM) also falls under this family of models if we consider aligned text in other

languages the metadata.

In the second type of downstream models, the metadata are generated from the

empirical topic assignments. Falling under this type of models is Supervised LDA

(sLDA)—a flexible downstream topic model that jointly captures text and contin-

uous responses. sLDA has become the foundation for various downstream topic
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models, including SHLDA—the model we present in Chapter 5. Proposed by Blei

and McAuliffe (2007), sLDA is designed to jointly model a set of D documents wd,

each of which is associated with a continuous response yd. Examples of this type

of data include product reviews associated with their ratings, online status updates

associated with their geographical locations, and legislative text accompanied by

their author’s ideological score. sLDA captures the relationship between latent top-

ics and metadata by modeling each document’s continuous response variable using

a normal linear model, whose covariates are the document’s empirical distribution

of topics: yd ∼ N (ηT z̄d, ρ) where η is the regression parameter vector and z̄d is the

empirical distribution over topics of document d. The generative process of sLDA

is shown in Figure 2.7.
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1. For each topic k ∈ [1,K]

(a) Draw word distribution φk ∼ Dir(β)
(b) Draw parameter ηk ∼ N (µ, σ)

2. For each document d ∈ [1, D]

(a) Draw topic distribution θd ∼ Dir(α)
(b) For each word n ∈ [1, Nd]

i. Draw topic zd,n ∼ Mult(θd)
ii. Draw word wd,n ∼ Mult(φzd,n)

(c) Draw response yd ∼ N (ηT z̄d, ρ) where z̄d,k =
1
Nd

∑Nd
n=1 I [zd,n = k] and I [x] = 1 if x is true, and

0 otherwise.

Figure 2.7: Generative process and the plate diagram representation of sLDA.

Since its introduction, sLDA has been extended in many ways. Wang et al.

(2009) extend sLDA for multi-class responses. Chang et al. (2010) propose the

Relational Topic Model (RTM) to jointly capture text and the links between doc-

uments. Boyd-Graber and Resnik (2010) introduce Multilingual Supervised LDA
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(or MLSLDA) which simultaneously models multilingual text and their accompa-

nied continuous responses. Zhu et al. (2012, MedLDA) improves sLDA by using the

discriminative max-margin principle.

2.2.3 Adding Hierarchical Structure

Another active research direction in extending LDA is to use a hierarchical

structure to capture the correlations among different topics. One early work on this

topic is by Blei et al. (2003a, 2010b) who introduce the nested Chinese restaurant

process (nCRP) as a flexible prior over an infinitely deep, infinitely branching tree-

structured hierarchy. A tree can be seen as a nested sequence of partitions. nCRP

defines a distribution on trees by putting a probability on each of such sequences.

In a nCRP, each node in the tree is a CRP defining a distribution over its infinitely

many children. A tree is generated from an nCRP by traversing from the root

downward by repeatedly drawing a child node from its parent’s CRP.

Due to its capability to define flexible tree-structured hierarchies, nCRP has

been used in many hierarchical topic models to capture the relationships among

the latent topics. Blei et al. (2003a, 2010b) use nCRP to define Hierarchical LDA

(hLDA) in which each node in the tree is associated with a topic. A document in

hLDA is generated by (1) drawing a path in the tree, (2) drawing a node on the

chosen path for each document’s token, and (3) using the topic associated with the

chosen node to generate the token. Since higher-level nodes are accessible by more

documents, this generative process makes the posterior place more general topics
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near the root of the tree and more specialized topics further down in the tree.

One major drawback of hLDA, however, is that each document is restricted

to only a single path in the tree. Since each path is designed to capture a consis-

tent theme, from more general (i.e., at higher-level nodes) to more specific (i.e., at

lower-level nodes), restricting a document to be about a theme is a relatively strong

assumption, especially when modeling long documents. Recent work relaxes this re-

striction by using different priors: tree-structured stick breaking (Adams et al., 2010,

TSSB), recursive Chinese restaurant processes (Kim et al., 2012, rCRP), nested Chi-

nese restaurant franchises (Ahmed et al., 2013a,b, nCRF), and nested hierarchical

Dirichlet processes (Paisley et al., 2014, nHDP).

Besides trees, other hierarchical structures have also been used to model the

topic space. Li and McCallum (2006) use a directed acyclic graph (DAG) to propose

the Pachinko allocation model (PAM), which captures arbitrary, nested correlations

between topics. Li et al. (2007) use a nonparametric prior for PAM to learn both

the number of topics and how the topics are correlated. To add the nested nature

of topic hierarchies of hLDA to PAM’s ability to mix topics, Mimno et al. (2007)

propose HPAM. Chambers et al. (2010) use a general graph to model topics in

GraphLDA.

Combining hierarchical structure with metadata has also attracted much topic

modeling research. For example, Slutsky et al. (2013a) introduce Tree Labeled

LDA, which extends Labeled LDA for the case where labels are organized in a

known tree. Semi-supervised Hierarchical LDA, introduced by (Mao et al., 2012a,

SSHLDA), generalizes hLLDA by allowing the document hierarchy labels to be
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partially observed, with unobserved labels and topic tree structure then inferred

from the data. In addition to these upstream models, Perotte et al. (2011) propose

a downstream model called Hierarchically Supervised LDA (HSLDA) which treats

documents’ hierarchical labels as the response. Ho et al. (2012) propose TopicBlock

to learn the topic hierarchy from text with relational links.

2.2.4 Other extensions

So far, we have provided an overview on three directions of extending LDA to

use nonparametric priors, incorporate metadata, and capture topic correlation using

hierarchical structure. These are a part of a much larger body of topic modeling

research which includes other important directions such as

• Relaxation of LDA’s assumptions including the bag-of-word assumption (Grif-

fiths et al., 2004; Wallach, 2006; Boyd-Graber and Blei, 2008a) and the doc-

ument exchangeability assumption (Teh et al., 2006; Blei and Lafferty, 2006;

Wang et al., 2008; Ren et al., 2008; Fox et al., 2008; Ahmed and Xing, 2008,

2010b; Du et al., 2010; Blei and Frazier, 2011)

• Visualization and user interfaces (Gardner et al., 2010; Gretarsson et al., 2012;

Chaney and Blei, 2012; Eisenstein et al., 2012; Chuang et al., 2012; Dou et al.,

2013)

• Evaluation of topic quality (Chang et al., 2009b; Newman et al., 2010; Mimno

et al., 2011; Stevens et al., 2012; Aletras and Stevenson, 2013a; Lau et al.,

2014b; Röder et al., 2015)
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• Automatic topic labeling (Mei et al., 2007; Magatti et al., 2009; Lau et al.,

2010, 2011; Mao et al., 2012b; Aletras and Stevenson, 2013b, 2014)

• Large-scale topic models (Smola and Narayanamurthy, 2010; Zhai et al., 2012;

Hoffman et al., 2013; Li et al., 2014)

2.3 MCMC Inference and the Importance of Averaging

In the previous two sections, we have provided an overview of probabilistic

topic models and their uses in a wide range of applications. One important aspect

of topic models that we have yet to cover is posterior inference—estimating the

posterior distribution over the latent variables given the observed variables. Exact

computation of the posterior is often intractable, which motivates approximate in-

ference techniques (Asuncion et al., 2009). One popular approach is Markov chain

Monte Carlo (MCMC), a class of inference algorithms to approximate the target

posterior distribution by drawing a set of samples using a Markov chain (Andrieu

et al., 2003). In general, given a density f(x) which is hard to compute exactly,

MCMC algorithms draw a set of T samples and average over these samples to es-

timate f(x). The theory behind MCMC—what ensures that we have the correct

estimated density—relies on taking the limit as T goes to infinity, which we approx-

imate by only using a large but finite T .

To make predictions, MCMC algorithms generate samples on training data to

estimate corpus-level latent variables, and use them to generate samples to estimate

document-level latent variables for test data. The underlying theory requires aver-
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aging on both training and test samples, but in practice it is often convenient to cut

corners: either skip averaging entirely by using just the values of the last sample or

use a single training sample and average over test samples.

In this section, we systematically study non-averaging and averaging strategies

when performing predictions using MCMC in topic modeling. We review some key

concepts about MCMC in general in Section 2.3.1 and specifically for topic models

in Section 2.3.2. In Section 2.3.3, we describe different strategies to obtain the final

prediction values in topic model using MCMC. Using popular unsupervised (LDA

in Section 2.3.4) and supervised (sLDA in Section 2.3.5) topic models via thorough

experimentation, we show empirically that cutting corners on averaging leads to

consistently poorer prediction.

2.3.1 Learning and Predicting with MCMC

While reviewing all of MCMC is beyond the scope of this section, we need to

briefly review key concepts.1 To estimate a target density p(x) in a high-dimensional

space X , MCMC generates samples {xt}Tt=1 while exploring X using the Markov

assumption. Under this assumption, sample xt+1 depends on sample xt only, forming

a Markov chain, which allows the sampler to spend more time in the most important

regions of the density. Two concepts control sample collection:

Burn-in B: Depending on the initial value of the Markov chain, MCMC algorithms

might take time to reach the stationary state where samples are drawn from the true

1For more details please refer to (Neal, 2003; Andrieu et al., 2003; Resnik and Hardisty, 2010).
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Selected samples during test

Figure 2.8: Illustration of training and test chains in MCMC, showing samples used
in four prediction strategies studied in this section: Single Final (sf), Single Average
(sa), Multiple Final (mf), and Multiple Average (ma).

target distribution. Thus, in practice, samples before a burn-in period B are often

discarded.

Sample-lag L: Averaging over samples to estimate the target distribution requires

i.i.d. samples. However, future samples depend on the current samples (i.e., the

Markov assumption). To avoid autocorrelation, we discard all but every L samples.

2.3.2 MCMC in Topic Modeling

As generative probabilistic models, topic models define a joint distribution

over latent variables and observable evidence. In our setting, the latent variables

consist of corpus-level global variables g and document-level local variables l; while

the evidence consists of words w and additional metadata y—the latter omitted in
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unsupervised models.

During training, MCMC estimates the posterior p(g, ltr |wtr,ytr) by gener-

ating a training Markov chain of Ttr samples.2,3 Each training sample i provides a

set of fully realized global latent variables ĝ(i), which can generate test data. During

test time, given a learned model from training sample i, we generate a test Markov

chain of Tte samples to estimate the local latent variables p(lte |wte, ĝ(i)) of test

data. Each sample j of test chain i provides a fully estimated local latent variables

l̂te(i, j) to make a prediction.

Figure 2.8 shows an overview. To reduce the effects of unconverged and

autocorrelated samples as discussed in Section 2.3.1, during training we use a

burn-in period of Btr and a sample-lag of Ltr iterations. We use Ttr = {i | i ∈

(Btr, Ttr] ∧ (i−Btr)modLtr = 0} to denote the set of indices of the selected mod-

els. Similarly, Bte and Lte are the test burn-in and sample-lag. The set of indices of

selected samples in test chains is Tte = {j | j ∈ (Bte, Tte] ∧ (j −Bte)modLte = 0}.

2.3.3 Averaging Strategies

We use S(i, j) to denote the prediction obtained from sample j of the test

chain i. We now discuss different strategies to obtain the final prediction:

• Single Final (sf) uses the last sample of last test chain to obtain the predicted

value,

Ssf = S(Ttr, Tte). (2.10)

2We omit hyperparameters in conditional probabilities for clarity.
3We split data into training (tr) and testing (te) folds, and denote the training iteration i and

the testing iteration j within the corresponding Markov chains.
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• Single Average (sa) averages over multiple samples in the last test chain

Ssa =
1

|Tte|
∑
j∈Tte

S(Ttr, j). (2.11)

This is a common averaging strategy in which we obtain a point estimate of

the global latent variables at the end of the training chain. Then, a single test

chain is generated on the test data and multiple samples of this test chain are

averaged to obtain the final prediction (Chang, 2012; Singh et al., 2012; Jiang

et al., 2012; Zhu et al., 2014a).

• Multiple Final (mf) averages over the last samples of multiple test chains

from multiple models

Smf =
1

|Ttr|
∑
i∈Ttr

S(i, Tte). (2.12)

• Multiple Average (ma) averages over all samples of multiple test chains for

distinct models,

Sma =
1

|Ttr|
1

|Tte|
∑
i∈Ttr

∑
j∈Tte

S(i, j), (2.13)

2.3.4 Unsupervised Topic Models

We evaluate the predictive performance of the unsupervised topic model LDA

using different averaging strategies in Section 2.3.3. In LDA, the global latent vari-

ables are topics {φk}Kk=1 and the local latent variables for each document d are topic

proportions θd.

Train: During training, we use collapsed Gibbs sampling to assign each token in

the training data with a topic (Steyvers and Griffiths, 2006). The probability of
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assigning token n of training document d to topic k is

p(ztrd,n = k | ztr−d,n,wtr
−d,n, w

tr
d,n = v) ∝

N−d,ntr,d,k + α

N−d,ntr,d,· +Kα
·
N−d,ntr,k,v + β

N−d,ntr,k,· + V β
, (2.14)

where Ntr,d,k is the number of tokens in the training document d assigned to topic

k, and Ntr,k,v is the number of times word type v assigned to topic k. Marginal

counts are denoted by ·, and −d,n denotes the count excluding the assignment of

token n in document d.

At each training iteration i, we estimate the distribution over words φ̂k(i) of

topic k as

φ̂k,v(i) =
Ntr,k,v(i) + β

Ntr,k,·(i) + V β
(2.15)

where the counts Ntr,k,v(i) and Ntr,k,·(i) are taken at training iteration i.

Test: Because we lack explicit topic annotations, we use perplexity–a widely-used

metric to measure the predictive power of topic models on held-out documents. To

compute perplexity, we follow the estimating θ method (Wallach et al., 2009, Section

5.1) and evenly split each test document d into wte1
d and wte2

d . We first run Gibbs

sampling on wte1
d to estimate the topic proportion θ̂ted of test document d. The

probability of assigning topic k to token n in wte1
d is

p(zte1d,n = k | zte1−d,n,w
te1 , φ̂(i)) ∝

N−d,nte1,d,k
+ α

N−d,nte1,d,· +Kα
· φ̂

k,w
te1
d,n (i)

(2.16)
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where Nte1,d,k is the number of tokens inwte1
d assigned to topic k. At each iteration j

in test chain i, we can estimate the topic proportion vector θ̂ted (i, j) for test document

d as

θ̂ted,k(i, j) =
Nte1,d,k(i, j) + α

Nte1,d,·(i, j) +Kα
(2.17)

where both the counts Nte1,d,k(i, j) and Nte1,d,·(i, j) are taken using sample j of test

chain i.

Prediction: Given θ̂ted (i, j) and φ̂(i) at sample j of test chain i, we compute the

predicted likelihood for each unseen token wte2
d,n as

S(i, j) ≡ p(wte2
d,n | θ̂

te
d (i, j), φ̂(i)) =

K∑
k=1

θ̂ted,k(i, j) · φ̂k,wte2d,n
(i) (2.18)

Using different strategies described in Section 2.3.3, we obtain the final predicted

likelihood for each unseen token p(wte2
d,n | θ̂

te

d , φ̂) and compute the perplexity as

exp

(
−
∑

d

∑
n log(p(wte2

d,n | θ̂
te

d , φ̂))

Nte2

)
(2.19)

where Nte2 is the number of tokens in wte2 .

Setup: We use three Internet review datasets in our experiment. For all datasets,

we preprocess by tokenizing, removing stopwords, stemming, adding bigrams to the

vocabulary, and we filter using TF-IDF to obtain a vocabulary of 10,000 words.4

4To find bigrams, we begin with bigram candidates that occur at least 10 times in the corpus
and use a χ2 test to filter out those having a χ2 value less than 5. We then treat selected bigrams
as single word types and add them to the vocabulary.
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Figure 2.9: Perplexity of LDA using different averaging strategies with different
number of training iterations Ttr. Perplexity generally decreases with additional
training iterations, but the drop is more pronounced with multiple test chains.

The three datasets are:

• Hotel: 240,060 reviews of hotels from TripAdvisor (Wang et al., 2010).

• Restaurant: 25,459 reviews of restaurants from Yelp (Jo and Oh, 2011).

• Movie: 5,006 reviews of movies from Rotten Tomatoes (Pang and Lee, 2005)

We report cross-validated average performance over five folds, and use K = 50

topics for all datasets. To update the hyperparameters, we use slice sampling (Wal-

lach, 2008, p. 62).5

Results: Figure 2.9 shows the perplexity of the four averaging methods, computed

with different number of training iterations Ttr. sa outperforms sf, showing the

benefits of averaging over multiple test samples from a single test chain. However,

both multiple chain methods (mf and ma) significantly outperform these two meth-

ods.

5MCMC setup: Ttr = 1, 000, Btr = 500, Ltr = 50, Tte = 100, Bte = 50 and Lte = 5.
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This result is consistent with Asuncion et al. (2009), who run multiple training

chains but a single test chain for each training chain and average over them. This

is more costly since training chains are usually significantly longer than test chains.

In addition, multiple training chains are sensitive to their initialization.

2.3.5 Supervised Topic Models
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Figure 2.10: Performance of sLDA using different averaging strategies computed at
each training iteration.

We evaluate the performance of different prediction methods using supervised

latent Dirichlet allocation (sLDA) (Blei and McAuliffe, 2007) for sentiment analysis:

predicting review ratings given review text. Each review text is the document wd

and the metadata yd is the associated rating. In sLDA, in addition to the K multi-

nomials {φk}Kk=1, the global latent variables also contain the regression parameter
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Figure 2.11: Performance of sLDA using different averaging strategies computed
at the final training iteration Ttr, compared with two baselines MLR and SVR.
Methods using multiple test chains (mf and ma) perform as well as or better than
the two baselines, whereas methods using a single test chain (sf and sa) perform
significantly worse.

ηk for each topic k. The local latent variables of sLDA resembles LDA’s: the topic

proportion vector θd for each document d.

Train: For posterior inference during training, following (Boyd-Graber and Resnik,

2010), we use stochastic EM, which alternates between (1) a Gibbs sampling step

to assign a topic to each token, and (2) optimizing the regression parameters. The

probability of assigning topic k to token n in the training document d is

p(ztrd,n = k | ztr−d,n,wtr
−d,n, w

tr
d,n = v) ∝

N (yd;µd,n, ρ) ·
N−d,ntr,d,k + α

N−d,ntr,d,· +Kα
·
N−d,ntr,k,v + β

N−d,ntr,k,· + V β
(2.20)

where µd,n = (
∑K

k′=1 ηk′N
−d,n
tr,d,k′+ηk)/Ntr,d is the mean of the Gaussian generating yd
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if ztrd,n = k. Here, Ntr,d,k is the number of times topic k is assigned to tokens in the

training document d; Ntr,k,v is the number of times word type v is assigned to topic

k; · represents marginal counts and −d,n indicates counts excluding the assignment

of token n in document d.

We optimize the regression parameters η using L-BFGS (Liu and Nocedal,

1989) via the likelihood

L(η) = − 1

2ρ

D∑
d=1

(ytrd − ηT z̄trd )2 − 1

2σ

K∑
k=1

(ηk − µ)2 (2.21)

At each iteration i in the training chain, the estimated global latent variables include

the a multinomial φ̂k(i) and a regression parameter η̂k(i) for each topic k.

Test: Like LDA, at test time we sample the topic assignments for all tokens in the

test data

p(zted,n = k | zte−d,n,wte) ∝
N−d,nte,d,k + α

N−d,nte,d,· +Kα
· φ̂k,wted,n (2.22)

Prediction: The predicted value S(i, j) in this case is the estimated value of the

metadata review rating

S(i, j) ≡ ŷted (i, j) = η̂(i)T z̄ted (i, j), (2.23)

where the empirical topic distribution of test document d is defined as z̄ted,k(i, j) ≡

1
Nte,d

∑Nte,d
n=1 I

[
zted,n(i, j) = k

]
.

Experimental setup: We use the same data as in Section 2.3.4. For all datasets,

the metadata are the review rating, ranging from 1 to 5 stars, which is standardized
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using z-normalization. We use two evaluation metrics: mean squared error (mse)

and predictive R-squared (Blei and McAuliffe, 2007).

For comparison, we consider two baselines: (1) multiple linear regression

(MLR), which models the metadata as a linear function of the features, and (2)

support vector regression (Joachims, 1999, SVR). Both baselines use the normal-

ized frequencies of unigrams and bigrams as features. As in the unsupervised case,

we report average performance over five cross-validated folds. For all models, we

use a development set to tune their parameter(s) and use the set of parameters that

gives best results on the development data at test.6

Results: Figure 2.10 shows sLDA prediction results with different averaging strate-

gies, computed at different training iterations.7 Consistent with the unsupervised

results in Section 2.3.4, sa outperforms sf, but both are outperformed significantly

by the two methods using multiple test chains (mf and ma).

We also compare the performance of the four prediction methods obtained at

the final iteration Ttr of the training chain with the two baselines. The results in

Figure 2.11 show that the two baselines (MLR and SVR) outperform significantly

the sLDA using only a single test chains (sf and sa). Methods using multiple test

chains (mf and ma), on the other hand, match the baseline8 (Hotel) or do better

(Restaurant and Movie).

6For MLR we use a Gaussian prior N (0, 1/λ) with λ = a · 10b where a ∈ [1, 9] and b ∈ [1, 4]; for
SVR, we use SVMlight (Joachims, 1999) and vary C ∈ [1, 50], which trades off between training
error and margin; for sLDA, we fix σ = 10 and vary ρ ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, which trades off
between the likelihood of words and response variable.

7MCMC setup: Ttr = 5, 000 for Restaurant and Movie and 1, 000 for Hotel; for all datasets
Btr = 500, Ltr = 50, Tte = 100, Bte = 20 and Lte = 5.

8This gap is because sLDA has not converged after 1,000 training iterations (Figure 2.10).
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2.3.6 Discussion and Conclusion

MCMC relies on averaging multiple samples to approximate target densities.

When used for prediction, MCMC needs to generate and average over both training

samples to learn from training data and test samples to make prediction. We have

shown that simple averaging—not more aggressive, ad hoc approximations like tak-

ing the final sample (either training or test)—is not just a question of theoretical

aesthetics, but an important factor in obtaining good prediction performance.

Compared with SVR and MLR baselines, sLDA using multiple test chains

(mf and ma) performs as well as or better, while sLDA using a single test chain

(sf and sa) falters. This simple experimental setup choice can determine whether a

model improves over reasonable baselines. In addition, better prediction with shorter

training is possible with multiple test chains. Thus, we conclude that averaging using

multiple chains produces above-average results.
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Chapter 3: Agenda Control in Political Debates

3.1 Introduction

In this chapter, we are interested in discovering agendas and agenda control

behaviors of individuals in political debates and other multi-party conversations. We

introduce Speaker Identity for Topic Segmentation (SITS), a Bayesian nonparamet-

ric topic model which jointly captures topics, topic shifts and individuals’ tendency

to control the topic of the conversation. The model is capable of discovering (1) the

topics used in a set of conversations, (2) how these topics are shared across conversa-

tions, (3) when these topics change during conversations, and (4) a speaker-specific

measure of agenda control. Using SITS, we analyze the agenda control behaviors

of candidates in the 2008 U.S. election debates and the 2012 Republican primary

debates, as well as those of participants in a large-scale set of political debate tran-

scripts from CNN’s TV show Crossfire. To make manual content analysis of con-

versational transcripts more effective, we build Argviz—an interactive visualization

which leverages SITS’s outputs to help users (e.g., domain experts) quickly grasp

the topical dynamics of the conversation, discover when the topic changes and by

whom, and interactively visualize the conversation’s details on demand. In addition

to providing insights on agendas and agenda control in multi-party conversation,
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through extensive empirical experiments, we also show that SITS can effectively im-

prove the performance of two quantitative tasks: topic segmentation and influencer

detection.

This chapter synthesizes and revises the work originally published in (Nguyen

et al., 2012, 2013d, 2014b).

3.1.1 Presidential Debates: Unique Setting for Agenda Control

Presidential debates play a central role in U.S. politics. For example, debuting

in 1960 between John Kennedy and Richard Nixon, and having been conducted in

every presidential campaign since 1976, televised presidential debates have become

a de facto election process, in which leading candidates are presented side by side to

respond to questions on various important, yet often controversial, issues (Schroeder,

2008). With their unique setting, debates provide candidates distinct opportunities

to inform and educate a large and diverse set of audiences about their policy posi-

tions, and thus potentially influence votes and elections (Geer, 1988; Holbrook, 1999;

Benoit et al., 2002; Blais and Perrella, 2008).1 Although how much these debates

really affect the election outcomes is the subject for a whole different debate (McK-

inney and Warner, 2013), much previous research agree with Racine Group (2002)’s

conclusion that “while journalists and scholars display varying degrees of cynicism

about the debates, few deny that viewers find them useful and almost no one doubts

that they play an important role in national campaigns” (Benoit et al., 2003; McK-

1Nielsen (2012) estimated that on average, the 2008 and 2012 presidential debates attracted
approximately 57 and 64 million viewers respectively.
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inney and Carlin, 2004).

A key question that has attracted much recent research in political science on

presidential debates is: How do candidates control the agenda of the debates? Previ-

ous research suggests that, in general, candidates should and do focus on topics that

are most advantageous to them and avoid topics that favor their opponent (Vavreck,

2009; Boydstun et al., 2013b). However, what are these topics? When do the can-

didates change the topic from one to another? How often do they change the topic,

especially in the unique setting of debates where candidates do not have complete

control over the agenda and are expected to respond to questions from the moder-

ator and the audience? Recent work tackle these questions by performing manual

content analysis on debates’ transcripts. Boydstun et al. (2013a) manually code the

transcripts from each of the three 2008 presidential debates between John McCain

and Barack Obama using the Policy Agendas Topics Codebook, to offer empirical

support for different types of agenda control behaviors in debates. Boydstun et al.

(2013b) use similar approach to explore agenda-setting strategies in all presidential

debates in 1992, 2004, and 2008. Motivated by this line of work, in this chapter,

we introduce SITS, an automated content analysis method using nonparametric

Bayesian approach, to study agendas and agenda control in debates.

3.1.2 Agenda Control to Influence in Multi-party Conversations

Although motivated by analyzing political debates, our proposed method SITS

is applicable for studying agendas and agenda control in a more general setting:

55



multi-party conversations. This is a broad category which includes political debates,

business meetings, online chats, discussions, conference panels, and many TV or

radio talk shows. We also apply SITS to study how participants use agenda control

to influence the conversation—an important research problem in communication,

sociology and psychology.

Conversation, interactive discussion between two or more people, is one of the

most essential and common forms of communication in our daily lives. One of the

many functions of conversations is influence: having an effect on the belief, opinions

or intentions of other conversational participants. Using multi-party conversations

to study and identify influencers, the people who influence others, has been the focus

of researchers in communication, sociology, and psychology (Katz and Lazarsfeld,

1955; Brooke and Ng, 1986; Weimann, 1994), who have long acknowledged that

there is a correlation between the conversational behaviors of a participant and how

influential he or she is perceived to be by others (Reid and Ng, 2000).

In an early study on this topic, Bales (1970) argues that “to take up time

speaking in a small group is to exercise power over the other members for at least

the duration of the time taken, regardless of the content.” This statement asserts

that structural patterns such as speaking time and activeness of participation are

good indicators of power and influence in a conversation. Participants who talk

most during a conversation are often perceived as having more influence (Sorrentino

and Boutillier, 1975; Regula and Julian, 1973; Daley et al., 1977; Ng et al., 1993),

more leadership ability (Stang, 1973; Sorrentino and Boutillier, 1975), more dom-

inance (Palmer, 1989; Mast, 2002) and more control of the conversation (Palmer,
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1989). Recent work using computational methods also confirms that structural fea-

tures such as number of turns and turn length are among the most discriminative

features to classify whether a participant is influential or not (Rienks et al., 2006;

Biran et al., 2012).

However, it is wrong to take Bales’s claim too far; the person who speaks

loudest and longest is not always the most powerful. In addition to structural

patterns, the characteristics of language used also play an important role in es-

tablishing influence and controlling the conversation (Ng and Bradac, 1993). For

example, particular linguistic choices such as message clarity, powerful and powerless

language (Burrel and Koper, 1998), and language intensity (Hamilton and Hunter,

1998) in a message can increase influence. More recently, Huffaker (2010) showed

that linguistic diversity expressed by lexical complexity and vocabulary richness has

a strong relationship with leadership in online communities. To build a classifier to

detect influencers in written online conversations, Biran et al. (2012) also propose

to use a set of content-based features to capture various participants’ conversational

behaviors, including persuasion and agreement/disagreement.

Among many studied behaviors, agenda control and management is considered

one of the most effective ways to control the conversation (Planalp and Tracy, 1980).

Palmer (1989) shows that the less related a participants’ utterances are to the im-

mediate topic, the more dominant they are, and then argues, “the ability to change

topical focus, especially given strong cultural and social pressure to be relevant,

means having enough interpersonal power to take charge of the agenda.” Recent

work by Rienks et al. (2006) also shows that topic change, among other structural
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patterns discussed above, is the most robust feature in detecting influencers in small

group meetings.

3.1.3 Topic Segmentation to Capture Conversational Structures

Whether in an informal situation or in more formal settings such as a polit-

ical debate of business meeting, a conversation is often not about just one thing:

topics evolve and are replaced as the conversation unfolds. Discovering this hidden

structure is a key problem to understand conversations to build conversational as-

sistants (Tur et al., 2010) and develop tools that summarize (Murray et al., 2005)

and display (Ehlen et al., 2007) conversational data. Understanding when and

how the topics change also helps us study human conversational behaviors such as

individuals’ agendas (Boydstun et al., 2013a), patterns of agreement and disagree-

ment (Hawes et al., 2009; Abbott et al., 2011), relationships among conversational

participants (Ireland et al., 2011), and dominance and influence among partici-

pants (Palmer, 1989; Rienks et al., 2006).

One of the most natural ways to capture conversational structure is topic seg-

mentation—the task of “automatically dividing single long recordings or transcripts

into shorter, topically coherent segments” (Purver, 2011; Joty et al., 2013). There

are broadly two basic approaches previous works have used to tackle this problem.

The first approach focuses on identifying discourse markers which distinguish top-

ical boundaries in the conversations. There are certain cue phrases such as well,

now, that reminds me, etc. that explicitly indicate the end of one topic or the be-
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ginning of another (Hirschberg and Litman, 1993; Passonneau and Litman, 1997).

These markers can also serve as features for a discriminative classifier (Galley et al.,

2003) or observed variables in generative model (Dowman et al., 2008). However, in

practice the discourse markers that are most indicative of topic change often depend

heavily on the domain of the data (Purver, 2011). This drawback makes methods

solely relying on these markers difficult to adapt to new domains or settings.

The second general approach, which our model is based on, relies on the insight

that topical segments evince lexical cohesion (Halliday and Hasan, 1976). Intuitively,

words within a segment will look more like their neighbors than like words in other

segments. This has been a key idea in previous work. Morris and Hirst (1991)

determine the structure of text by finding “lexical chains” which consist of units of

text that are about the same thing. The often-used text segmentation algorithm

TextTiling (Hearst, 1997) exploits this insight to compute the lexical similarity

between adjacent sentences. More recent improvements to this approach include

using different lexical similarity metrics like LSA (Choi et al., 2001; Olney and

Cai, 2005) and improving feature extraction for supervised methods (Hsueh et al.,

2006). It also inspires unsupervised models using bags of words (Purver et al.,

2006), language models (Eisenstein and Barzilay, 2008), and shared structure across

documents (Chen et al., 2009).
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3.1.4 Chapter Structure

We describe the model SITS in detail, together with an MCMC algorithm for

perform posterior inference in Section 3.2. Applying SITS on real-world conversa-

tional data (Section 3.3), we show that this modeling approach is not only more

effective than previous methods on traditional topic segmentation (Section 3.6), but

also more intuitive in that it is able to capture an important behavior of individ-

ual speakers during conversations. More specifically, we analyze qualitatively the

agenda control behaviors of candidates in 2008 U.S. election debates and 2012 Re-

publican primary debates, as well as those of political pundits participating in CNN’s

Crossfire TV show (Section 3.4). We then show that using SITS to model agenda

control improves influencer detection (Section 3.5). In Section 3.7, we describe an

interactive visualization that can be used to leverage SITS’s output to effectively

analyze the dynamics of topics of a conversation. We conclude by summarizing the

work and discuss some directions for future work in Section 3.8.

3.2 SITS: Speaker Identity for Topic Segmentation

In this section, we describe SITS, a nonparametric Bayesian model for topic

segmentation that takes into consideration speaker identities, allowing us to char-

acterize speakers’ agenda control behavior over the course of the conversation. We

begin by providing an overview of our approach and highlighting the differences

between SITS and previous approaches. We then describe the generative process

and inference technique that we use to estimate the model.
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3.2.1 Overview of our Approach

We follow the lexical cohesion approach described in Section 3.1.3 by using a

probabilistic topic modeling method which we review in Chapter 2. The approach

we take is unsupervised, so it requires few resources and is applicable in many

domains without extensive training. Following the literature on topic modeling, we

define each topic as a multinomial distribution over the vocabulary. Like previous

generative models proposed for topic segmentation (Purver et al., 2006), each turn

is considered a bag of words generated from an admixture of topics and topics are

shared across different turns within a conversation or across different conversations.2

In addition, we take a Bayesian nonparametric approach (Müller and Quintana,

2004) to allow the number of topics to be unbounded, in order to better represent

the observed data.

In general, SITS takes as input a set of C multi-party conversations. A con-

versation c has Tc turns, each of which is a maximal uninterrupted utterance by one

speaker.3 In each turn t ∈ [1, Tc], a speaker ac,t utters Nc,t words wc,t = {wc,t,n |

n ∈ [1, Nc,t]}. Each word is from a vocabulary of size V , and there are M dis-

tinct speakers. This setting is still consistent with those in popular topic models

such as LDA (Blei et al., 2003b) or HDP (Teh et al., 2006), in which turns in a

conversation are considered independent. In practice, however, this is not the case.

2The “bag of words” treatment of linguistic utterances is widely used, but of course a gross sim-
plification. Previous research has investigated nonparametric models capturing arbitrary-length
phrases (Hardisty et al., 2010) and syntactic topic models (Boyd-Graber and Blei, 2008b); inte-
grating linguistically richer models with SITS is a topic for future work.

3Note the distinction from phonetic utterances, which by definition are bounded by silence.
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Obviously, the topics of a turn at time t are highly correlated with those of the

turn at t + 1. To address this issue, recent works have been proposed to capture

the temporal dynamics within a document. For example, Du et al. (2010) introduce

Sequential LDA to study how topics within a document evolve over its structure.

It uses the nested two-parameter Poisson Dirichlet process (PDP) to model the

progressive dependency between consecutive part of a document, which can cap-

ture the continuity of topical flow in a document nicely but does not capture the

topic change explicitly. Fox et al. (2008) propose Sticky HDP-HMM, which is an

extension of HDP-HMM (Teh et al., 2006) for the problem of speaker diarization

involving segmenting an audio recording into intervals associated with individual

speakers. Applying to the conversational setting, Sticky HDP-HMM associates each

turn with a single topic; this is a strong assumption since people tend to talk about

more than one thing in a turn, especially in political debates. We will, however,

use it as one of the baselines in our topic segmentation experiment (Section 3.6).

Other more recent works introduce model to perform topic segmentation in various

settings including emails (Joty et al., 2010, 2011), book chapters and novels (Du

et al., 2012, 2013).

However, many of these methods do not explicitly model the changes of the

topics within a document or conversation. To address this, we endow each turn

with a binary latent variable lc,t, called the topic shift indicator (Purver et al.,

2006). This latent variable signifies whether in this turn the speaker changed the

topic of the conversation. In addition, to capture the agenda control behavior of

the speakers across multiple conversations in the corpus, we further associate each
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speaker m with a latent topic shift tendency denoted by πm. Intuitively, this variable

is intended to capture the propensity of a speaker to effect a topic shift. Formally,

it represents the probability that the speaker m will change the topic (distribution)

of a conversation. In the remainder of this section, we will describe the model in

more detail together with the inference techniques we use.

3.2.2 Generative Process of SITS

πm γ

ac,2 ac,Tc

wc,1,n wc,2,n wc,Tc,n

ψc,1,n ψc,2,n ψc,Tc,n
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Figure 3.1: Plate diagrams of our proposed models: (a) nonparametric SITS; (b)
parametric SITS. Nodes represent random variables (shaded nodes are observed);
lines are probabilistic dependencies. Plates represent repetition. The innermost
plates are turns, grouped in conversations.

As in the HDP (Teh et al., 2006), we allow an unbounded number of topics to

be shared among the turns of the corpus. Topics are drawn from a base distribution

H over multinomial distributions over the vocabulary of size V ; H is a finite Dirichlet

distribution with symmetric prior λ. Unlike HDP, where every document (here,
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every turn) independently draws a new multinomial distribution from a Dirichlet

process, the social and temporal dynamics of a conversation, as specified by the

binary topic shift indicator lc,t, determine when new draws happen. The hierarchy

of Dirichlet processes allows statistical strength to be shared across contexts; within

a conversation and across conversations. The per-speaker topic shift tendency πm

allows speaker identity to influence the evolution of topics.

Generative process: The formal generative process (Figure 3.1) is

1. For speaker m ∈ [1,M ], draw speaker topic shift probability πm ∼ Beta(γ)

2. Draw the global topic distribution G0 ∼ DP(α,H)

3. For each conversation c ∈ [1, C]

(a) Draw a conversation-specific topic distribution Gc ∼ DP(α0, G0)

(b) For each turn t ∈ [1, Tc] with speaker ac,t

i. If t = 1, set the topic shift indicator lc,t = 1. Otherwise, draw

lc,t ∼ Bernoulli(πac,t).

ii. If lc,t = 1, draw Gc,t ∼ DP (αc, Gc). Otherwise, set Gc,t ≡ Gc,t−1.

iii. For each word index n ∈ [1, Nc,t]

• Draw a topic ψc,t,n ∼ Gc,t

• Draw a token wc,t,n ∼ Multinomial(ψc,t,n)

Intuitively, SITS generates a conversation as follows: At the beginning of a

conversation c, the first speaker ac,1 draws a distribution over topics Gc,1 from the

base distribution, and uses that topic distribution to draw a topic ψc,1,n for each
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token wc,1,n. Subsequently, at turn t, speaker ac,t will first flip a speaker-specific

biased coin πac,t to decide whether ac,t will change the topic of the conversation. If

the coin comes up tails (lc,t = 0), ac,t will not change the conversation topic and

uses the previous turn’s topic distribution Gc,t−1 to generate turn t’s tokens. If,

on the other hand, the coin comes up heads (lc,t = 1), ac,t will change the topic

by drawing a new topic distribution Gc,t from the conversation-specific collection of

topics DP(αc, Gc,).
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Figure 3.2: Diagram of notation for topic shift indicators and conversation segments:
Each turn is associated with a latent binary variable topic shift indicator l specifying
whether the topic of the turn is shifted. In this example, topic shifts occur in turns
τ and τ ′ + 1. As a result, the topic shift indicators of turn τ and τ ′ + 1 are equal
to 1 (i.e. lc,τ = lc,τ ′+1 = 1) and the topic shift indicators of all turns in between are
0 (i.e. lc,t = 0, ∀t ∈ [τ + 1, τ ′]). Turns [τ, τ ′] form a segment s in which all topic
distributions Gc,τ , Gc,τ+1, · · · , Gc,τ ′ are the same and are denoted collectively as Gc,s.

Segmentation Notation: To make notation more concrete and to connect our model

with topic segmentation, we introduce the notion of segments in a conversation. A
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segment s of conversation c is a sequence of turns [τ, τ ′] such that


lc,τ = lc,τ ′+1 = 1

lc,t = 0, ∀t ∈ [τ + 1, τ ′]

When lc,t = 0, Gc,t is the same as Gc,t−1 and all topics (i.e. multinomial distributions

over words) {ψc,t,n | n ∈ [1, Nc,t]} that generate words in turn t and the topics

{ψc,t−1,n′ | n′ ∈ [1, Nc,t−1]} that generate words in turn t − 1 come from the same

distribution. Thus, all topics used in a segment s are drawn from a single segment-

specific probability measure Gc,s,

Gc,s | lc,1, lc,2, · · · , lc,Tc , αc, Gc ∼ DP(αc, Gc) (3.1)

A visual illustration of these notations can be found in Figure 3.2. For notational

convenience, Sc denotes the number of segments in conversation c, and st denotes

the segment index of turn t. We emphasize that all segment-related notations are

derived from the posterior over the topic shifts l and are not part of the model itself.

3.2.3 Posterior Inference for SITS

To find the latent variables that best explain observed data, we use Gibbs

sampling (Neal, 2000; Resnik and Hardisty, 2010). The state space in our Gibbs

sampler consists of the latent variables for topic indices assigned to all tokens z =

{zc,t,n} and topic shifts assigned to turns l = {lc,t}. We marginalize over all other

latent variables. For each iteration of the sampling process, we loop over each turn
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in each conversation. For a given turn t in conversation c, we first sample the topic

shift indicator variable lc,t and then sample the topic assignment zc,t,n for each token

in the turn.
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Figure 3.3: Illustration of topic assignments in our inference algorithm. Each solid
rectangle represents a restaurant (i.e., a topic distribution) and each circle represents
a table (i.e., a topic). To assign token n of turn t in conversation c to a table zc,t,n
in the corpus-level restaurant, we need to sample a path assigning the token to a
segment-level table, the segment-level table to a conversation-level table and the
conversation-level table to a globally shared corpus-level table.

Sampling Topic Assignments In Bayesian nonparametrics, the Chinese restaurant

process (CRP) metaphor is often used to explain the clustering effect of the Dirichlet

process (Ferguson, 1973). As reviewed in Chapter 2, the CRP is an exchangeable
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distribution over partitions of integers, which facilitates Gibbs sampling (Neal, 2000)

(as we will see in Equation 3.2). When used in topic models, each Chinese restau-

rant consists of infinite number of tables, each of which corresponds to a topic.

Customers, each of which is a token, are assigned to tables and if two tokens are

assigned to the same table: they share the same topic.

The CRP has a “rich get richer” property, which means that tables with many

customers will attract yet more customers—a new customer will sit at an existing

table with probability proportional to the number of customers currently at the

table. The CRP has no limit on the number of tables; when a customer needs to

be seated, there is always a probability—proportional to the Dirichlet parameter

α—that it will be seated at a new table. When a new table is formed, it is assigned

a “dish”; this is a draw from the Dirichlet process’s base distribution. In a topic

model, this atom associated with a new table is a multinomial distribution over

word types. In a standard, non-hierarchical CRP, this multinomial distribution

comes from a Dirichlet distribution.

But it doesn’t have to—hierarchical nonparametric models extend the metaphor

further by introducing a hierarchy of restaurants (Teh et al., 2006; Teh, 2006), where

the base distribution of one restaurant can be another restaurant. This is where

things can get tricky. Instead of having a seating assignment, a customer now has a

seating path and is potentially responsible for spawning new tables in every restau-

rant. In SITS there are restaurants for the current segment, the conversation, and

the entire corpus, as shown in Figure 3.3.

To sample zc,t,n, the index of the shared topic assigned to token n of turn
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t in conversation c, we need to sample the path assigning each word token to a

segment-level table, each segment-level table to a conversation-level table and each

conversation-level table to a shared dish. Before describing the sampling equations,

we introduce notation denoting the counts:

• Nc,s,k: number of tokens in segment s in conversation c assigned to dish k

• Nc,k: number of segment-level tables in conversations c assigned to dish k

• Nk: number of conversation-level tables assigned to dish k

Note that we use k to index the global topics shared across the corpus, each of

which corresponds to a dish in the corpus-level restaurant. In general, computing

the exact values of these counts makes bookkeeping rather complicated. Since there

might be multiple tables at a lower-level restaurant assigned to the same table at the

higher-level restaurant, to compute the correct counts, we need to sum the number

of customers over all these tables. For example, in Figure 3.3, since both ψc,1 and ψc,2

are assigned to ψ0,2 (i.e., k = 2), to compute Nc,k we have to sum over the number

of customers currently assigned to ψc,1 and ψc,2 (which are 4 and 2 respectively in

this example).

To mitigate this problem of bookkeeping and to speed up the sampling process,

we use the minimal path assumption (Cowans, 2006; Wallach, 2008) to generate the

path assignments.4 Under the minimal path assumption, a new table in a restaurant

is created only when there is no table already serving the dish. In other words in a

4We also investigated using the maximal assumption and fully sampling assignments. We found
the minimal path assumption worked as well as explicitly sampling seating assignments and that
the maximal path assumption worked less well. Another, more complicated, sampling method is to
sample the counts Nc,k and Nk according to their corresponding Antoniak distributions (Antoniak,
1974), similar to the direct assignment sampling method described in Teh et al. (2006).
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Figure 3.4: Illustration of minimal path assumption. This figure shows an example
of the seating assignments in a hierarchy of Chinese restaurants of a higher-level
restaurant and a lower-level restaurant. Each table in the lower restaurant is as-
signed to a table in the higher restaurant and tables on the same path serve the
same dish k. When sampling the assignment for table ψL2 in the lower restaurant,
given that dish k = 2 is assigned to this table, there are two options for how the
table in the higher restaurant could be selected. It could be an existing table ψH2 or
a new table ψHnew, both serving dish k = 2. Under the minimal path assumption, it
is always assigned to an existing table (if possible) and only assigned to a new table
if there is no table with the given dish. In this case, the minimal path assumption
will assign ψL2 to ψH2 .

restaurant, there is at most one table serving a given dish. A more detailed example

of the minimal path assumption is illustrated in Figure 3.4. Using this assumption,

in the example shown in Figure 3.3, ψc,1 and ψc,2 will be merged together since they

are both assigned to ψ0,2.

Now that we have introduced our notations, the conditional distribution for

zc,t,n is P (zc,t,n | wc,t,n, z−c,t,n,w−c,t,n, l, ∗) ∝

P (zc,t,n | z−c,t,n)P (wc,t,n | zc,t,n,w−c,t,n, l, ∗) (3.2)

The first factor is the prior probability of assigning to a path according to the
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minimal path assumption (Wallach, 2008, p. 60),

P (zc,t,n = k | z−c,t,n) ∝
N−c,t,nc,st,k

+ αc
N−c,t,nc,k +α0

N
−c,t,n
k

+α 1
K+

N
−c,t,n
· +α

N−c,t,nc,· +α0

N−c,t,nc,st,· + αc
, (3.3)

where K+ is the current number of shared topics.5 Intuitively, Equation 3.3 com-

putes the probability of token wc,t,n being generated from a shared topic k. This

probability is proportional to Nc,st,k—the number of customers sitting at table serv-

ing dish k at restaurant Gc,st , smoothed by the probability of generating this token

from the table serving dish k at the higher-level restaurant (i.e., restaurant Gc).

This smoothing probability is computed in the same hierarchical manner until the

top restaurant is reached, where the base distribution over topics is uniform and the

probability of picking a topic is equal to 1/K+. Equation 3.3 also captures the case

where a table is empty; when the number of customers on that table is zero, the

probability of generating the token from the corresponding topic relies entirely on

the smoothing probability from the higher-level restaurant’s table.

The second factor is the data likelihood. After integrating out all ψ’s, we have

P (wc,t,n = w | zc,t,n = k,w−c,t,n, l, ∗) ∝


M−c,t,nk,w +λ

M−c,t,nk,· +V λ
, if k exists;

1
V
, if k is new.

(3.4)

Here, Mk,w denotes the number of times word type w in the vocabulary is assigned to

topic k; marginal counts are represented with · and ∗ represents all hyperparameters;

5The superscript + is to denote that this number is unbounded and varies during the sampling
process.
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V is the size of the vocabulary, and the superscript −c,t,n denotes the same counts

excluding wc,t,n.

Sampling Topic Shift Indicators Sampling the topic shift variable lc,t requires us

to consider merging or splitting segments. We define the following notation:

• kc,t: the shared topic indices of all tokens in turn t of conversation c.

• Sac,t,x: the number of times speaker ac,t is assigned the topic shift x ∈ {0, 1}.

• Jxc,s: the number of topics in segment s of conversation c if lc,t = x

• Nx
c,s,j: the number of tokens assigned to the segment-level topic j when lc,t =

x.6

Again, the superscript −c,t denotes the exclusion of turn t of conversation c in the

corresponding counts.

Recall that the topic shift is a binary variable. We use 0 to represent the “no

shift” case, i.e. when the topic distribution is identical to that of the previous turn.

We sample this assignment with the following probability:

P (lc,t = 0 | l−c,t,w,k,a, ∗) ∝

S−c,tac,t,0 + γ

S−c,tac,t,· + 2γ
×
α
J0
c,st
c

∏J0
c,st
j=1 (N0

c,st,j − 1)!∏N0
c,st,·

x=1 (x− 1 + αc)
(3.5)

In Equation 3.5, the first factor is proportional to the probability of assigning a

topic shift of value 0 to speaker ac,t and the second factor is proportional to the

6Deterministically knowing the path assignments is the primary efficiency motivation for using
the minimal path assumption. The alternative is to explicitly sample the path assignments, which
is more complicated (for both notation and computation).
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joint probability of all topics in segment st of conversation c when lc,t = 0.7

The other alternative is for the topic shift to be 1, which represents the intro-

duction of a new distribution over topics inside an existing segment. The probability

of sampling this assignment is:

P (lc,t = 1 | l−c,t,w,k,a, ∗) ∝

S−c,tac,t,1 + γ

S−c,tac,t,· + 2γ
×

αJ1
c,(st−1)
c

∏J1
c,(st−1)

j=1 (N1
c,(st−1),j − 1)!∏N1

c,(st−1),·
x=1 (x− 1 + αc)

α
J1
c,st
c

∏J1
c,st
j=1 (N1

c,stj − 1)!∏N1
c,st,·

x=1 (x− 1 + αc)

 (3.6)

As above, the first factor in Equation 3.6 is proportional to the probability of as-

signing a topic shift of value 1 to speaker ac,t; the second factor in the big bracket

is proportional to the joint distribution of the topics in segments st − 1 and st. In

this case, lc,t = 1 means splitting the current segment, which results in two joint

probabilities for two segments.

3.3 Data Collections and Annotations

Datasets Speakers Conversations Annotations Content
2008 Debates 9 4 topics politics
2012 Debates 40 9 none politics
Crossfire 2567 1134 influencer politics
ICSI Meetings 60 75 topics engineering
Wikipedia discussions 604 1991 influencer varied

Table 3.1: Summary of datasets detailing how many distinct speakers are present,
how many distinct conversations are in the corpus, the annotations available, and
the general content of the dataset.

We validate our approach using five different datasets shown in Table 3.1.

7Refer to (Gershman and Blei, 2012) for a detailed derivation of this joint probability.
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First, in Section 3.4, we qualitatively evaluate the effectiveness of SITS on cap-

turing the agenda control behavior of candidates in two sets of debates: the 2008

presidential election debates and the 2012 Republican primary debates. We also an-

alyze the behavior of participants in a large number of CNN’s Crossfire shows. We

then quantitatively evaluate SITS on two computational tasks: influencer detection

in Section 3.5 and topic segmentation in Section 3.6. For influencer detection, we

collaborate with researchers in communication to annotate influencers in a set of

Wikipedia discussion pages and Crossfire shows. For topic segmentation, we use

the ICSI meeting corpus which is a commonly used dataset for topic segmentation,

and the 2008 presidential election debates which was manually annotated by domain

experts.

3.3.1 Datasets

We first describe the datasets that we use in our experiments. For all datasets,

we tokenize texts using OpenNLP and remove common stopwords.8 After that, we

remove turns that are very short since they do not contain much information content-

wise and most likely there is no topic shift during these turns. We empirically remove

turns that have fewer than 5 tokens after removing stopwords.

The 2008 Presidential Election Debates: Our first dataset contains three annotated

presidential debates between Barack Obama and John McCain and a vice presiden-

tial debate between Joe Biden and Sarah Palin. Each turn is one of two types:

8http://opennlp.apache.org/
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Speaker Type Turn clauses TQ TR

Brokaw Q
Sen. Obama, time for a discussion. I’m going to begin
with you. Are you saying to Mr. Clark and to the other
members of the American television audience that the
American economy is going to get much worse before it
gets better and they ought to be prepared for that?

1 N/A

Obama R

No, I am confident about the American economy. 1 1
But most importantly, we’re going to have to help ordi-
nary families be able to stay in their homes, make sure
that they can pay their bills, deal with critical issues
like health care and energy, and we’re going to have
to change the culture in Washington so that lobbyists
and special interests aren’t driving the process and your
voices aren’t being drowned out.

1 14

Brokaw Q
Sen. McCain, in all candor, do you think the economy
is going to get worse before it gets better?

1 N/A

McCain R

I think if we act effectively, if we stabilize the housing
market–which I believe we can,

1 14

if we go out and buy up these bad loans, so that people
can have a new mortgage at the new value of their home

1 14

I think if we get rid of the cronyism and special interest
influence in Washington so we can act more effectively.

1 20

Table 3.2: Example turns from the 2008 election debates annotated by Boydstun
et al. (2013a). Each clause in a turn is manually coded with a Question Topic Code
(TQ) and a Response Topic Code (TR). The topic codes (TQ and TR) are from the
Policy Agendas Topics Codebook. In this example, the following topic codes are
used: Macroeconomics (1), Housing & Community Development (14), Government
Operations (20).
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questions (Q) from the moderator or responses (R) from a candidate. Each clause

in a turn is coded by Boydstun et al. (2013a) with a Question Topic Code (TQ) and

a Response Topic Code (TR). Thus, a turn has a list of TQ’s and TR’s both of length

equal to the number of clauses in the turn. Topics are from the Policy Agendas

Topics Codebook, a widely used inventory containing codes for 19 major topics and

225 subtopics.9 Table 3.2 shows an example annotation.

To obtain reference segmentations in debates, we assign each turn a real value

from 0 to 1 indicating how much a turn changes the topic. For a question-typed turn,

the score is the fraction of clause topic codes not appearing in the previous turn;

for response-typed turns, the score is the fraction of clause topic codes that do not

appear in the corresponding question. This results in a set of non-binary reference

segmentations. For evaluation metrics that require binary segmentations, we create

a binary segmentation by labeling a turn as a segment boundary if the computed

score is 1. This threshold is chosen to include only true segment boundaries. After

preprocessing, this dataset contains 9 unique speakers and the vocabulary contains

1,761 non-stopword tokens.

The 2012 Republican Primary Debates: We also downloaded nine transcripts in

the 2012 Republican Party presidential debates, whose information is shown in Ta-

ble 3.3. Since the transcripts are pulled from different sources, we perform a simple

entity resolution step using edit distance to merge duplicate participants’ names. For

example, “Romney”, “Mitt Romney” are resolved into “Romney”; “Paul”, “Rep.

9http://www.policyagendas.org/page/topic-codebook
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Paul”, “Representative Ron Paul R-TX” are resolved into “Paul” etc. We also

merge anonymous participants such as “Unidentified Female”, “Unidentified Male”,

“Question”, “Unknown” etc into a single participant named “Audience”. After pre-

processing, there are 40 unique participants in these 9 debates including candidates,

moderators and audience members. This dataset is not annotated and we only use

it for qualitative evaluation.

Date Place Sponsor Participants
13 Jun. 2011 Goffstown, NH CNN Bachmann, Cain, Gingrich, Paul, Paw-

lenty, Romney, Santorum
12 Sep. 2011 Tampa, FL CNN Bachmann, Cain, Gingrich, Huntsman,

Paul, Perry, Romney, Santorum
18 Oct. 2011 Las Vegas, NV CNN Bachmann, Cain, Gingrich, Paul,

Perry, Romney, Santorum
09 Nov. 2011 Rochester, MI CNBC Bachmann, Cain, Gingrich, Huntsman,

Paul, Perry, Romney, Santorum
22 Nov. 2011 Washington, DC CNN Bachmann, Cain, Gingrich, Huntsman,

Paul, Perry, Romney, Santorum
19 Jan. 2012 Charleston, SC CNN Gingrich, Paul, Romney, Santorum
23 Jan. 2012 Tampa, FL NBC Gingrich, Paul, Romney, Santorum
26 Jan. 2012 Jacksonville, FL CNN Gingrich, Paul, Romney, Santorum
22 Feb. 2012 Mesa, AZ CNN Gingrich, Paul, Romney, Santorum

Table 3.3: List of the 9 Republican Party presidential debates used.

CNN’s Crossfire: Crossfire is a weekly U.S. television “talking heads” program

engineered to incite heated arguments (hence the name). Each episode features

two recurring hosts, two guests, and clips from the week’s news. Our Crossfire

dataset contains 1134 transcribed episodes aired between 2000 and 2004.10 There

are 2,567 unique speakers and the vocabulary size is 16,791. Unlike the previous

two datasets, Crossfire does not have explicit topic segmentations, so we use it to

explore speaker-specific characteristics (Section 3.4.2).

10http://www.cnn.com/TRANSCRIPTS/cf.html
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The ICSI Meeting Corpus: The ICSI Meeting Corpus consists of 75 transcribed

meetings at the International Computer Science Institute in Berkeley, California (Janin

et al., 2003). Among these, 25 meetings were annotated with reference segmenta-

tions (Galley et al., 2003). Segmentations are binary, i.e., each point in the document

is either a segment boundary or not, and on average each meeting has 8 segment

boundaries. We use this dataset for evaluating topic segmentation (Section 3.6).

After preprocessing, there are 60 unique speakers and the vocabulary contains 3346

non-stopword tokens.

A: The current lead sentence has been agreed upon by many - I know, I was em-
broiled in the huge debate that developed into the current lead. However, the
sentence is still kinda awkward - even though it captures the broader essence of
evolutionary theory. I would like to propose an alternate (below), because there
is a problem with the way that the term change is used, as Kirk J. Fitzhugh has
noted: “Change is not the pertinent quality of interest in evolution”. Hence: Evo-
lution is the gradual departure across successive generations in the constituency
of the inherited characteristics of organisms in biological populations.

B: No thank you, this is just more obscurantism.
A: It’s wp:V, not obscurantism, consistent with the history of the science. Not much

thought goes into conceiving that “Evolution is change”, but if you are asked to
think past this and call it obscurantism in your critique, it is a strange response.
Obscurantism: “is the practice of deliberately preventing the facts or the full
details of some matter from becoming known” - ironic that this applies more
aptly to your rejection.

B: Your obsession with providing the most scientifically accurate and current defini-
tion of evolution prevents the average reader from having a chance at understand-
ing this article. That is obscurantism. It is not WPV, because that definition is
not by a longshot the most commonly used, and specifically it is entirely unsuited
for works meant to be read by lay readers.

C: This is a general encyclopedia, not a graduate level evolutionary biology course.
Keeping it simple so that people can understand what we write without having
an advanced degree is a good thing. So no, let’s keep the lead as is.

Table 3.4: Example of a Wikipedia discussion in our dataset.

Wikipedia Discussions: Each article on Wikipedia has a related discussion page so

that the individuals writing and editing the article can discuss the content, editorial
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decisions, and the application of Wikipedia policies (Butler et al., 2008). Unlike the

other situations, Wikipedia discussions are not spoken conversations that have been

transcribed. Instead, these conversations are written asynchronously.

However, Wikipedia discussions have much of the same properties as our other

corpora. Contributors have different levels of responsibility and prestige, and many

contributors are actively working to persuade the group to accept their proposed

policies (for an example, see Table 3.4), other contributors are attempting to main-

tain civility, and other contributors are attacking their ostensible collaborators. Un-

like spoken conversations, Wikipedia discussions lack social norms that prevent an

individual from writing as often or as much as they want. This makes common

techniques such as counting turns or turn lengths less helpful measures to discover

who influencers are.

3.4 Evaluating Agenda Control

In this section, we focus on the ability of SITS to capture the extent to which

individual speakers affect topic shifts in conversations. Recall that SITS associates

with each speaker a topic shift tendency π that represents the probability of changing

the topic in the conversation. While topic segmentation is a well studied problem,

hence the evaluation in Section 3.6, there are no established quantitative measure-

ments of an individual’s ability to control a conversation. To evaluate whether the

tendency is capturing meaningful characteristics of speakers, we look qualitatively

at the behavior of the model.
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Figure 3.5: Topic shift tendency
π of speakers in the 2008 Presi-
dential Election Debates (larger
means greater tendency). Ifill
was the moderator in the vice
presidential debate between
Biden and Palin; Brokaw,
Lehrer and Schieffer were the
moderators in the three presiden-
tial debates between Obama and
McCain; Question collectively
refers to questions from the audi-
ences. Colors denote Republicans,
Democrats, Moderators, and
Audiences.

3.4.1 2008 Election Debates

To obtain a posterior estimate of π (Figure 3.5) we create 10 chains with

hyperparameters sampled from the uniform distribution U(0, 1) and average π over

10 chains (as described in Section 3.6.1). In these debates, Ifill is the moderator

of the debate between Biden and Palin; Brokaw, Lehrer and Schieffer are the three

moderators of the three debates between Obama and McCain. Here “Question”

denotes questions from audiences in “town hall” debate. The role of this “speaker”

can be considered equivalent to the debate moderator.

The topic shift tendencies of moderators are generally much higher than for

candidates. In the three debates between Obama and McCain, the moderators—

Brokaw, Lehrer and Schieffer—have significantly higher scores than both candidates.

This is a useful reality check, since in a debate the moderators are the ones ask-

ing questions and literally controlling the topical focus. Similarly, the “Question”
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speaker had a relatively high variance, consistent with that “participant” in the

model as an amalgamation of many distinct speakers.

Interestingly, however, in the vice-presidential debate, the score of moderator

Ifill is higher than the candidates’ scores only by a small margin, and it is indis-

tinguishable from the degree of topic control displayed by Palin. Qualitatively, the

assessment of the model is consistent with widespread perceptions and media com-

mentary at the time that characterized Ifill as a weak moderator. For example,

Harper’s Magazine’s Horton (2008) discusses the context of the vice-presidential

debate, in particular the McCain campaign’s characterization of Ifill as a biased

moderator because she “was about to publish a book entitled The Breakthrough

that discusses Barack Obama, and a number of other black politicians, achieving

national prominence”. According to Horton:

“First, the charges against Ifill would lead to her being extremely passive

in her questioning of Palin and permissive in her moderating the debate.

Second, the charge of bias against Ifill would enable Palin to simply skirt

any questions she felt uncomfortable answering and go directly to a pre-

rehearsed and nonresponsive talking point. This strategy succeeded on

both points.”

Similarly, Fallows (2008) of The Atlantic included the following in his “quick guide”

remarks on the debate:

Ifill, moderator: Terrible. Yes, she was constrained by the agreed debate

rules. But she gave not the slightest sign of chafing against them or looking
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for ways to follow up the many unanswered questions or self-contradictory

answers. This was the big news of the evening . . .

Palin: “Beat expectations.” In every single answer, she was obviously trying

to fit the talking points she had learned to the air time she had to fill, knowing

she could do so with impunity from the moderator.

That said, our quantitative modeling of topic shift tendency suggests that all

candidates managed to succeed at some points in setting and controlling the topic of

conversation in the debates. In the presidential debates, our model gives Obama a

slightly higher score than McCain, consistent with social science claims that Obama

had the lead in setting the agenda over McCain (Boydstun et al., 2013a). Table 3.5

shows some examples of SITS-detected topic shifts.

3.4.2 Crossfire

The Crossfire dataset has many more speakers than the presidential and vice-

presidential debates. This allows us to examine more closely what we can learn about

speakers’ topic shift tendency and ask additional questions; for example, assuming

that changing the topic is useful for a speaker, how can we characterize who does

so effectively? In our analysis, we take advantage of properties of the Crossfire data

to examine the relationship between topic shift tendency, social roles, and political

ideology.

In order to focus on frequent speakers, we filter out speakers with fewer than

30 turns. Most speakers have relatively small π, with the mode around 0.3. There
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Previous turn Turn detected as shifting topic
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BIDEN: Well, mortgage-holders didn’t
pay the price [. . . ] Barack Obama
pointed out two years ago that there
was a subprime mortgage [. . . ]

PALIN: That is not so, but because that’s just a quick answer,
I want to talk about, again, my record on energy ... When we
talk about energy, we need to consider the need to do all that
we can to allow this nation to become energy independent
[. . . ]

PALIN: Your question to him was
whether he supported gay marriage
and my answer is the same as his and
it is that I do not.

IFILL: Wonderful. You agree. On that note, let’s move to
foreign policy. You both have sons who are in Iraq or on
their way to Iraq. You, Governor Palin, have said that you
would like to see a real clear plan for an exit strategy. [. . . ]

MCCAIN: I think that Joe Biden is
qualified in many respects. . . .

SCHIEFFER: [. . . ] Let’s talk about energy and climate con-
trol. Every president since Nixon has said what both of you
[. . . ]

IFILL: So, Governor, as vice president,
there’s nothing that you have promised
[. . . ] that you wouldn’t take off the ta-
ble because of this financial crisis we’re
in?

BIDEN: Again, let me–let’s talk about those tax breaks.
[Obama] voted for an energy bill because, for the first time, it
had real support for alternative energy. [. . . ] on eliminating
the tax breaks for the oil companies, Barack Obama voted to
eliminate them. [. . . ]
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PRESS: But what do you say, gover-
nor, to Governor Bush and [. . . ] your
party who would let politicians and not
medical scientists decide what drugs are
distributed [. . . ]

WHITMAN: Well I disagree with them on this particular is-
sues [. . . ] that’s important to me that George Bush stands
for education of our children [. . . ] I care about tax policy, I
care about the environment. I care about all the issues where
he has a proven record in Texas [. . . ]

WEXLER: [. . . ] They need a Medicare
prescription drug plan [. . . ] Talk about
schools, [. . . ] Al Gore has got a real
plan. George Bush offers us vouchers.
Talk about the environment. [. . . ] Al
Gore is right on in terms of the majority
of Americans, but George Bush [. . . ]

KASICH: [. . . ] I want to talk about choice. [. . . ] George
Bush believes that, if schools fail, parents ought to have a
right to get their kids out of those schools and give them a
chance and an opportunity for success. Gore says “no way”
[. . . ] Social Security. George Bush says [. . . ] direct it the
way federal employees do [. . . ] Al Gore says “No way” [. . . ]
That’s real choice. That’s real bottom-up, not a bureaucratic
approach, the way we run this country.

PRESS: Senator, Senator Breaux men-
tioned that it’s President Bush’s aim to
start on education [. . . ] [McCain] [. . . ]
said he was going to do introduce the
legislation the first day of the first week
of the new administration. [. . . ]

MCCAIN: After one of closest elections in our nation’s his-
tory, there is one thing the American people are unanimous
about. They want their government back. We can do that by
ridding politics of large, unregulated contributions that give
special interests a seat at the table while average Americans
are stuck in the back of the room.

Table 3.5: Example of turns designated as a topic shift by SITS. We chose turns to
highlight speakers with high topic shift tendency π. Some keywords are manually
italicized to highlight the topics discussed.
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Rank Speaker π Rank Speaker π
1 Announcer .884 10 John Kasich .570
2 Male .876 11 James Carville† .550
3 Question .755 12 Tucker Carlson† .550
4 George W. Bush‡ .751 13 Paul Begala† .545
5 Bill Press† .651 14 Christine T. Whitman .533
6 Female .650 15 Terry McAuliffe .529
7 Al Gore‡ .650 16 Mary Matalin† .527
8 Narrator‡ .642 17 John McCain .524
9 Robert Novak† .587 18 Ari Fleischer .522

Table 3.6: Top speakers by topic shift tendencies from our Crossfire dataset. We
mark hosts (†) and “speakers” who often (but not always) appeared in video clips
(‡). Announcer makes announcements at the beginning and at the end of each
show; Narrator narrates video clips; Male and Female refer to unidentified
male and female respectively; Question collectively refers to questions from the
audience across different shows. Apart from those groups, speakers with the highest
tendency were political moderates.

are, however, speakers with very high topic shift tendencies. Table 3.6 shows the

speakers having the highest values according to SITS.

We find that there are three general patterns for who influences the course

of a conversation in Crossfire. First, there are structural “speakers” that the show

uses to frame and propose new topics. These are audience questions, news clips

(e.g. many of Gore’s and Bush’s turns from 2000), and voiceovers. That SITS is

able to recover these is reassuring, similar to what it has to say about moderators

in the 2008 debates. Second, the stable of regular hosts receives high topic shift

tendencies, which is again reasonable given their experience with the format and

ostensible moderation roles (though in practice they also stoke lively discussion).

The third category is more interesting. The remaining non-hosts with high

topic shift tendency appear to be relative moderates on the political spectrum:

• John Kasich, one of few Republicans to support the assault weapons ban and
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who was elected in 2010 as the governor of Ohio, a swing state

• Christine Todd Whitman, former Republican governor of New Jersey, a very

Democratic state

• John McCain, who before 2008 was known as a “maverick” for working with

Democrats (e.g. Russ Feingold)

Although these observations are at best preliminary and require further in-

vestigation, we would conjecture that in Crossfire’s highly polarized context, it was

the political moderates who pushed back, exerting more control over the agenda of

the discussion, rather than going along with the topical progression and framing as

posed by the show’s organizers. Table 3.5 shows several detected topic shifts from

these speakers. In two of these examples, McCain and Whitman are Republicans

disagreeing with President Bush. In the other, Kasich is defending a Republican

plan (school vouchers) popular with traditional Democratic constituencies.

3.4.3 2012 Republican Primary Debates

As another qualitative data point, we include in Figure 3.6 the model’s topic

shift tendency scores for a subset of nine 2012 Republican primary debates. Al-

though we do not have objective measures to compare against, nor clearly stated

contemporary commentary as in the case of Ifill’s performance as moderator, we

would argue that the model displays quite reasonable face validity in the context of

the Republican race.

For example, among the Republican candidates, Ron Paul is known for tight
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Figure 3.6: Topic shift tendency π of speakers in the 2012 Republican Primary
Debates (larger means greater tendency). King, Blitzer and Cooper are mod-
erators in these debates; the rest are candidates.

focus on a discrete set of arguments associated with his position that “the proper

role for government in America is to provide national defense, a court system for

civil disputes, a criminal justice system for acts of force and fraud, and little else”

(Paul, 2007), often regardless of the specific question that was asked. Similarly, Rick

Santorum’s performance in the primary debates tended to include strong rhetoric on

social issues. In contrast, Mitt Romney tended to be less aggressive in his responses,

arguably playing things safer in a way that was consistent with his general position

throughout the primaries as the front-runner.
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3.5 Detecting Influencers in Conversations

As motivated in Section 3.1.2, prior research in communication has shown

qualitatively that agenda control and management is one of the most effective ways

to control the conversation and influence other participants. In this section, we use

SITS to quantify how influential each participant is in a conversation, which is then

used to detect influencers in the conversation. We collaborate with researchers in

communication to annotate influencers in two datasets: Crossfire and Wikipedia

discussions. In the remaining of this chapter, we first described the process which

our collaborators follow to annotate influencers, review related work on influencer

detection, and report empirical results showing SITS is more effective than tradi-

tional approach in detecting influencers in the two annotated datasets.

3.5.1 Influencer Annotation

In most research on persuasion and power, an influencer attempts to gain

compliance from others or uses tactics to shape the opinions, attitudes, or behaviors

of others (Scheer and Stern, 1992; Schlenker et al., 1976). In research on social media,

such as blogs and Twitter, measurements such as the number of followers or readers

serve as a proxy for influence (Alarcon-del Amo et al., 2011; Booth and Matic,

2011; Trammell and Keshelashvili, 2005). Others have studied what influencers

say; Drake and Moberg (1986) demonstrated that linguistic influence differs from

attempts to influence that rely on power and exchange relationships. In interactions

with targets, influencers may rely more on linguistic frames and language than on
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resources offered, which is proposed as the requirement for influence by exchange

theorists (Blau, 1964; Foa and Foa, 1972; Emerson, 1981).

Our goal in this experiment is to discover who are the influencers in these

discussions. We define an influencer as someone who has persuasive ability over

where an interaction is headed, what topics are covered, and what positions are es-

poused within that interaction. In the same way that persuasion shapes, reinforces,

or changes attitudes or beliefs, an influencer shapes, reinforces, or changes the di-

rection of the interaction. An influencer within an interaction is someone who may

introduce new ideas or arguments into the conversation that others pick up on and

discuss (shapes new directions through topic shift), may express arguments about

an existing topic that others agree to and further in the discussion (i.e., reinforces

the direction), or may provide counter-arguments that others agree to and perpetu-

ate, thereby redirecting where the topic of conversation is headed (i.e., changes the

direction of the conversation).

To assess the ability of SITS to discover influencers, our collaborators anno-

tated randomly selected documents from both Wikipedia and Crossfire datasets.11

This process proceeded as follows. First, the annotation guidelines for influencers

proposed by Bender et al. (2011) is used for Wikipedia discussion. A discussant is

considered an influencer if he or she initiated a topic shift that steered the conver-

sation in a different direction, convinced others to agree to a certain viewpoint, or

used an authoritative voice that caused others to defer to or reference that person’s

expertise. A discussant is not identified as an influencer if he or she merely initi-

11The annotation was done by the last three co-authors in (Nguyen et al., 2014b)
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ated a topic at the start of a conversation, did not garner any support from others

for the points he or she made, or was not recognized by others as speaking with

authority. After annotating an initial set of documents, the annotation guidelines

were revised and two independent annotators were retrained until an inter-coder

reliability Cohen’s Kappa (Artstein and Poesio, 2008) of 0.8 is reached.12

Wikipedia Discussions: Coders first learned to annotate transcripts using data from

Wikipedia discussion pages.The two coders annotated over 400 English Wikipedia

discussion transcripts for influencer in batches of 20 to 30 transcripts each week. For

the English transcripts, each coder annotated the transcripts independently, then

annotations were compared for agreement; any discrepancies in the annotations

were resolved through discussion of how to apply the coding scheme. After the

first four sets of 20 to 30 transcripts, the coders were able to code the transcripts

with acceptable intercoder reliability (Cohen’s Kappa > 0.8). Once the coders

reached acceptable intercoder reliability for two sets of English data in a row, the

coders began independently coding the remaining set of transcripts. Intercoder

reliability was maintained at an acceptable level (Cohen’s Kappa > 0.8) for the

English transcripts over the subsequent weeks of coding.

Crossfire: After Wikipedia, Crossfire data are annotated. Each Crossfire episode

is split into smaller segments using the “Commercial Break” tags and each seg-

12Kappa was measured based on whether the two annotators agreed on (a) whether there was an
influencer, (b) who the primary influencer was, and (c) if there was a secondary influencer. When
discrepancies occurred between the annotators, they were resolved through discussion between
the annotators and with the supervising researcher. So decisions were not ”yes or no” about each
speaker; instead, they were about whether or not there was an influencer in each overall interaction,
and if so, who the primary and secondary influencers were in a particular interaction.
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ment is used as a unit of conversation. The same two coders annotated the Crossfire

data. To prepare for annotating the Crossfire interactions, the coders both anno-

tated the same set of 20 interactions. First the intercoder reliability Cohen’s Kappa

was calculated for the agreement between the coders, then any disagreements be-

tween the coders were resolved through discussion about the discrepant annotations.

The first set of 20 transcripts was coded with a Cohen’s Kappa of 0.65 (before discus-

sion). This procedure was repeated twice; each time the coders jointly annotated 20

transcripts, reliability was calculated, and any discrepancies were resolved through

discussion. The third set achieved an acceptable Cohen’s Kappa of 0.8. The re-

maining transcripts were then split and annotated separately by the two coders. In

all, 105 Crossfire episode segments were annotated.

3.5.2 Computational Methods for Influencer Detection

Even though influence in conversations has been studied for decades in com-

munication and social psychology, computational methods have only emerged in

recent years, thanks to improvements in both quantity and quality of conversational

data. As one example, an early computational model to quantify influence between

conversational participants (Basu et al., 2001) modeled interactions among a con-

versational group in a multi-sensor lounge room where people played interactive

debating games. In these games, each participant can be in two states: speaker

or silent. The model equates each participant with a Markov model. Each par-

ticipant is allowed to be in either speaking state or silent state at each time step
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and the transition from one state to another of an individual is influenced by other

participants’ states. This allows the model to capture pair-wise interactions among

participants in the conversation. Zhang et al. (2005) then extended the work by

proposing a model with two-level structure: the participant level, representing the

actions of individual participants, and the group level, representing group-level ac-

tions. In this setting, the influence of each participant on the actions of the whole

group is explicitly captured by the model. These models use expensive features such

as prosody and visual cues.

Another popular approach is to treat influencer detection as a supervised clas-

sification problem that separates influential individuals from non-influential ones.

Rienks and Heylen (2006) focus on extracting a set of structural features that can

predict participants’ involvement using Support Vector Machines (Cortes and Vap-

nik, 1995, SVM). Later, Rienks et al. (2006) improved their previous work by extend-

ing the set of features to include features capturing topic changes as well as those

derived from audio and speech. Again, we do not use any features extracted from

audio or visual data, which makes our approach more generalizable. The two most

relevant and most useful features extracted from the meeting textual transcripts are

number of turns and length of turns, which we use as the baseline in our experiments

described in Section 3.5.3. Biran et al. (2012) also follow a similar approach to de-

tecting influencers in written online conversations by extracting features to capture

different conversational behaviors such as persuasion, agreement/disagreement and

dialog patterns.

In this work, we are interested in determining who are the influencers in a
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conversation using only the conversation transcripts. We tackle this problem by

using an unsupervised ranking approach. It is worth mentioning that, even though

we are focused on studying how conversational influence expressed in textual data,

there has also been a body of work approaching this problem by studying audio data

(Hung et al., 2011), visual data (Otsuka et al., 2006) and both audio-visual activity

cues (Jayagopi et al., 2009; Aran and Gatica-Perez, 2010).

Our main purpose in this experimentation is to assess how effective SITS can

be in detecting influencers in conversations, especially in comparison with methods

based on structural patterns of conversations. We focus on the influencer detection

problem: given a speaker in a multi-party conversation, predict whether the speaker

is influential. In the remaining of this section, we describe in details the approach

we take, the experimental setups, and the results.

3.5.3 Influencer Detection Problem

The influencer detection problem can be tackled using different methods that

can be broadly classified into classification and ranking approaches. Most previous

work follows the classification approach, in which different sets of features are pro-

posed and a classifier is used (Rienks and Heylen, 2006; Rienks et al., 2006; Biran

et al., 2012). In this work, we follow the ranking approach.

The ranking approach allows us to focus on individual functions that take a set

of individuals and produce an ordering over those individuals from most influential

to least influential. The function that produces this ordering is called a ranking

92



method. More specifically, given a speaker a in a conversation c, each ranking

method will provide an influence score Ia,c that indicates how influential speaker a is

in conversation c. We emphasize that, unlike most classification approaches (Rienks

and Heylen, 2006; Rienks et al., 2006; Biran et al., 2012), the ranking approach we

are focusing on is entirely unsupervised and thus requires no training data.

The ranking approach has a straightforward connection to the classification

approach, as each ranking function can be turned into a feature in the supervised

classification framework. However, viewing the ranking methods (features) inde-

pendently allows us to compare and interpret the effectiveness of each feature in

isolation. This is useful as an evaluation method because it is independent of the

choice of classifier and is less sensitive to the size of training data, which is often a

limiting factor in computational social science.

We consider two sets of ranking methods: (1) structure-based methods, which

use structural features and (2) topic-change-based methods, which use features ex-

tracted from the outputs of SITS.

Structure-based methods score each instance based on features extracted from the

structure of the conversation. We use Tc to denote the number of turns in conver-

sation c; ac,t to denote the speaker that utters turn t in conversation c; and Nc,t to

denote the number of tokens in turn t in conversation c.

1. Number of turns : assumes that the more turns a speaker has during a conver-

sation, the more influential he or she is. The influence score of this method
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is

Ia,c = |{t ∈ [1, Tc] : ac,t = a}| (3.7)

2. Total turn lengths : instead of the number of turns, this method uses the total

length of turns uttered by the speaker.

Ia,c =
∑

t∈[1,Tc]:ac,t=a

Nc,t (3.8)

The two structural features used here capture the activeness of the speakers during a

conversation and have been shown to be among the most effective features to detect

influencers. These two structure-based methods are appropriate baselines in our

experiment since, although being simple, they have been proven to be very effective

in detecting influencers, both qualitatively (Bales, 1970) and quantitatively (Rienks

et al., 2006; Biran et al., 2012).

Topic-change-based methods score each instance based on features extracted from

the posterior distributions of SITS.

1. Total topic shifts is the total number of expected topic shifts speaker a makes

in conversation c,

Ia,c =
∑

t∈[1,Tc]:ac,t=a

l̄c,t. (3.9)

Recall that in SITS, each turn t in conversation c is associated with a binary

latent variable lc,t, which indicates whether the topic of turn t is changed or

not (these latent variables are introduced in Section 3.2). This expectation is
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computed through the empirical average of samples from the Gibbs sampler,

l̄c,t, after a burn-in period.13 Intuitively, the higher l̄c,t is, the more successful

the speaker ac,t is in changing the topic of the conversation at this turn t.

2. Weighted topic shifts also quantify the topic changes a speaker makes by using

the average topic shift indicator l̄c,t but weighted by (1 − πa), where πa is

the topic shift tendency score of the speaker a. The basic idea here is that

not all topic shifts should be counted equally. A successful topic shift by a

speaker with small topic shift tendency score should be weighted higher than

a successful topic by a speaker with high topic shift tendency score. The

influence score of this ranking method is defined as

Ia,c = (1− πa) ·
∑

t∈[1,Tc]:ac,t=a

l̄c,t (3.10)

3.5.4 Experimental Setup

Datasets: In this experiment, we use two datasets annotated for influencers: Cross-

fire and Wikipedia discussion pages. These two datasets and the annotation proce-

dures are described in detail in Section 3.5.1. Table 3.7 shows dataset statistics.

Parameter settings and implementation: As before, we use Gibbs sampling with

10 randomly initialized chains for inference. Initial hyperparameter values are sam-

pled from U(0, 1) and statistics are collected after 200 burn-in iterations with a

13For more details on how to compute this value, refer to Section 3 of (Resnik and Hardisty,
2010)
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Statistics Crossfire Wikipedia
Number of conversations 3391 604
Number of unique speakers 2381 1991
Average number of turns per conversation 38.2 12.8
Average number of speakers per conversation 5 7
Number of conversations annotated 85 48
Number of positive instances 197 57
Number of negative instances 182 338

Table 3.7: Statistics of the two datasets Crossfire and Wikipedia discussions that
we annotated influencers. We use these two datasets to evaluate SITS on influencer
detection.

lag of 20 iterations over a total of 1000 iterations. Slice sampling optimizes the

hyperparameters.

Evaluation measurements: To evaluate the effectiveness of each ranking method in

detecting the influencers, we use three standard evaluation measurements. The first

measurement is F1, the harmonic mean of precision and recall,

F1 =
2 · Precision · Recall

Precision + Recall
(3.11)

Even though F1 is widely used, an important disadvantage is that it only examines

a subset of top instances with highest scores, which might be the “easiest” cases.

This phenomenon might lead to biased results when comparing the performance

of different ranking methods. To overcome this problem, we also use AUC-ROC

and AUC-PR, which measure the area under the Receiver-Operating-Characteristic

(ROC) curve and the Precision-Recall (PR) curve. Using these two measurements,

we can compare the performances of ranking methods using the full ranked lists.

Davis and Goadrich (2006) point out that PR curve is more appropriate than ROC
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for skewed datasets.

3.5.5 Results and Analysis

Ranking methods F1 AUC-ROC AUC-PR

C
ro

ss
fi

re Num. of turns � .736 .795 .726
Total turn lengths � .716 .782 .730
Total topic shifts ? .806± .0122 .858± .0068 .865± .0063
Weighted topic shifts ? .828± .0100 .869± .0078 .873± .0057

W
ik

ip
ed

ia Num. of turns � .367 .730 .291
Total turn lengths � .306 .732 .281
Total topic shifts ? .552± .0353 .752± .0144 .377± .0284
Weighted topic shifts ? .488± .0295 .749± .0149 .379± .0307

Table 3.8: Influencer detection results on Crossfire and Wikipedia discussion pages.
For both datasets, topic-change-based methods (?) outperform structure-based
methods (�) by large margins. For all evaluation measurements, higher is better.

Table 3.8 shows the results of the four ranking methods using Crossfire and

Wikipedia discussion datasets. Since we run our Gibbs samplers multiple times, the

results of the two topic-change-based methods are reported with standard deviations

(across different chains).

For both datasets, the two topic-change-based methods outperform the two

structure-based methods by a large margin for all three evaluation measurements.

The standard deviations in all three measurements of the two topic-change-based

methods are relatively small. This shows the effectiveness of features based on

topic changes in detecting influencers in conversations. In addition, the weighted

topic shifts ranking method generally performs better than the total topic shifts

method. This provides strong evidence that SITS is capable of capturing the speak-

ers’ propensity to change the topic. The improvement (if any) in the performance of
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the weighted topic shifts ranking method over the total topic shifts method is more

obvious in the Crossfire dataset than in Wikipedia discussions. We argue that this is

because conversations in Wikipedia discussion pages are generally shorter and con-

tain more speakers than those in Crossfire debates. This leaves less evidence about

the topic change behavior of the speakers in Wikipedia and thus SITS struggles to

capture the speakers’ behavior.

3.6 Evaluating Topic Segmentation

In this section, we examine how well SITS identifies when new topics are

introduced, i.e., how well it can segment conversations. We discuss metrics for

evaluating an algorithm’s segmentation relative to a gold annotation, describe our

experimental setup, and report those results.

3.6.1 Experiment Setups

Evaluation Metrics: To evaluate the performance on topic segmentation, we use

Pk (Beeferman et al., 1999) and WindowDiff (WD) (Pevzner and Hearst, 2002).

Both metrics measure the probability that two points in a document will be incor-

rectly separated by a segment boundary. Both techniques consider all windows of

size k in the document and count whether the two endpoints of the window are

(im)properly segmented against the gold segmentation. More formally, given a ref-

erence segmentation R and a hypothesized segmentation H, the value of Pk for a
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given window size k is defined as follow:

Pk =

∑N−k
i=1 δH(i, i+ k)⊕ δR(i, i+ k)

N − k
(3.12)

where δX (i, j) is 1 if the segmentation X assigns i and j to the same segment and 0

otherwise; ⊕ denotes the Xor operator; N is the number of candidate boundaries.

WD improves Pk by considering how many boundaries lie between two points

in the document, instead of just looking at whether the two points are separated or

not. WD of size k between two segmentations H and R is defined as:

WD =

∑N−k
i=1 [|bH(i, i+ k)− bR(i, i+ k)| > 0]

N − k
(3.13)

where bX (i, j) counts the number of boundaries that the segmentation X puts be-

tween two points i and j.

However, these metrics have a major drawback. They require both hypothe-

sized and reference segmentations to be binary. Many algorithms (e.g., probabilistic

approaches) give non-binary segmentations where candidate boundaries have real-

valued scores (e.g., probability or confidence). Thus, evaluation requires arbitrary

thresholding to binarize soft scores. In previous work, to be fair for all methods,

thresholds are usually set so that the number of segments is equal to a predefined

value (Galley et al., 2003; Purver et al., 2006). In practice, this value is usually

unknown.

To overcome these limitations, we also use ÊMD (Pele and Werman, 2008),
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Model ÊMD
Pk WindowDiff

k = 5 10 15 k = 5 10 15

20
08

D
eb

at
es

TextTiling 2.821 .433 .548 .633 .534 .674 .760
P-NoSpeaker-single 2.822 .426 .543 .653 .482 .650 .756
P-NoSpeaker-all 2.712 .411 .522 .589 .479 .644 .745
P-SITS 2.269 .380 .405 .402 .482 .625 .719
NP-HMM 2.132 .362 .348 .323 .486 .629 .723
NP-SITS 1.813 .332 .269 .231 .470 .600 .692

IC
S
I

TextTiling 2.507 .289 .388 .451 .318 .477 .561
P-NoSpeaker-single 1.949 .222 .283 .342 .269 .393 .485
P-NoSpeaker-all 1.935 .207 .279 .335 .253 .371 .468
P-SITS 1.807 .211 .251 .289 .256 .363 .434
NP-HMM 2.189 .232 .257 .263 .267 .377 .444
NP-SITS 2.126 .228 .253 .259 .262 .372 .440

Table 3.9: Results on the topic segmentation task. Lower is better. The parameter
k is the window size of the metrics Pk and WindowDiff chosen to replicate previous
results.

a variant of the Earth Mover’s Distance (EMD). Originally proposed by Rubner

et al. (2000), EMD is a metric that measures the distance between two normalized

histograms. Intuitively, it measures the minimal cost that must be paid to transform

one histogram into the other. EMD is a true metric only when the two histograms

are normalized (e.g., two probability distributions). ÊMD relaxes this restriction to

define a metric for non-normalized histograms by adding or subtracting masses so

that both histograms are of equal size.

Applied to our segmentation problem, each segmentation can be considered a

histogram where each candidate boundary point corresponds to a bin. The proba-

bility of each point being a boundary is the mass of the corresponding bin. We use

|i − j| as the ground distance between two points i and j.14 To compute ÊMD we

use the FastEMD implementation (Pele and Werman, 2009).

14The ground distance is the distance between two bins in a histogram. Please refer to (Pele

and Werman, 2008) for a more formal definition of ÊMD.
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Experimental Methods: We applied the following methods to discover topic seg-

mentations in a conversation:

• TextTiling (Hearst, 1997) is one of the earliest and most widely used general-

purpose topic segmentation algorithms, sliding a fixed-width window to detect

major changes in lexical similarity.

• P-NoSpeaker-single: parametric version of SITS without speaker identity,

run individually on each conversation (Purver et al., 2006).

• P-NoSpeaker-all: parametric version of SITS without speaker identity run

on all conversations.

• P-SITS: the parametric version of SITS with speaker identity run on all

conversations.

• NP-HMM: the HMM-based nonparametric model with speaker identity. This

model uses the same assumption as the Sticky HDP-HMM (Fox et al., 2008),

where a single topic is associated with each turn.

• NP-SITS: the nonparametric version of SITS with speaker identity run on

all conversations.

Parameter Settings and Implementation: In our experiment, all parameters of

TextTiling are the same as in (Hearst, 1997). For statistical models, Gibbs sam-

pling with 10 randomly initialized chains is used. Initial hyperparameter values

are sampled from U(0, 1) to favor sparsity; statistics are collected after 500 burn-in

iterations with a lag of 25 iterations over a total of 5000 iterations; and slice sam-

pling (Neal, 2003) optimizes hyperparameters. Parametric models are run with 25,
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50 and 100 topics and the best results (averaged over 10 chains) are reported.

3.6.2 Results and Analysis

Table 3.9 shows the performance of various models on the topic segmentation

problem, using the ICSI corpus and the 2008 election debates. Consistent with

previous results in the literature, probabilistic models outperform TextTiling. In

addition, among the probabilistic models, the models that had access to speaker

information consistently segment better than those lacking such information. Fur-

thermore, NP-SITS outperforms NP-HMM in both experiments, suggesting that

using a distribution over topics for turns is better than using a single topic. This is

consistent with the parametric models in (Purver et al., 2006).

The contribution of speaker identity seems more valuable in the debate set-

ting. Debates are characterized by strong rewards for setting the agenda; dodging a

question or moving the debate toward an opponent’s weakness can be useful strate-

gies (Boydstun et al., 2013a). In contrast, meetings (particularly low-stakes ICSI

meetings, technical discussions in R&D group) tend to have pragmatic rather than

strategic topic shifts. In addition, agenda-setting roles are clearer in formal debates;

a moderator is tasked with setting the agenda and ensuring the conversation does

not wander too much.

In the last three sections, we have reported the empirical evidences to show

the effectiveness of SITS in (1) capturing agenda control behavior of participants,

(2) detecting influencers, and (3) performing topic segmentation in conversations.
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Figure 3.7: The Argviz user interface consists of speaker panel (A), transcript panel
(B), heatmap (C), topic shift column (D), topic cloud panel (E), selected topic panel
(F).

However, the latent structures that SITS extracts from conversational data are

much richer. To help analyst leverage SITS’s outputs to analyze conversations more

effectively, we build an interactive visualization called Argviz , which we describe in

detail in the next section.

3.7 Argviz : Interactive Visualization of Topic Dynamics in Conver-

sations

Uncovering the structure of conversations often requires close reading by a

human expert to be effective. As motivated at the beginning of this chapter, political

scientists often use manual content analysis to analyze what gets said in debate to

explore how candidates shape the debate’s agendas and frame issues (Boydstun
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et al., 2013a,b), or how answers subtly (or not so subtly) shift the conversation

by dodging the question that was asked (Rogers and Norton, 2011). In previous

sections, we have introduced SITS, a Bayesian nonparametric model which can

automatically discover the topics discussed in a conversation and when these topics

change. In this section, we introduce Argviz , an interactive visualization which

can leverage SITS’s outputs to help domain expert analyze the topical dynamics

of multi-party conversations. Argviz ’s interface allows users to quickly grasp the

topical flow of the conversation, discern when the topic changes and by whom, and

interactively visualize the conversation’s details on demand.

Argviz is a web-based application, built using Google Web Toolkit (GWT),15

which allows users to visualize and manipulate SITS’s outputs entirely in their

browser after a single server request. Given the limited screen of a web browser,

Argviz follows the multiple coordinated views approach (Wang Baldonado et al.,

2000; North and Shneiderman, 2000) successfully used in Spotfire (Ahlberg, 1996),

Improvise (Weaver, 2004), and SocialAction (Perer and Shneiderman, 2006). Argviz

supports three main coordinated views: transcript, overview and topic.

• Transcript occupies the prime real estate for a close reading. It has a

transcript panel and a speaker panel. The transcript panel displays the original

transcript. Each conversational turn is numbered and color-coded by speaker.

The color associated with each speaker can be customized using the speaker

panel, which lists all the speakers.

• Overview shows how topics gain and lose prominence during the conversa-

15https://developers.google.com/web-toolkit/
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tion. SITS’s outputs include a topic distribution and a topic shift probability

for each turn in the conversation. In Argviz these are represented using a

heatmap and topic shift column.

In the heatmap, each turn-specific topic distribution is displayed by a heatmap

row (Sopan et al., 2013). There is a cell for each topic, and the color intensity

of each cell is proportional to the probability of the corresponding topic of

a particular turn. Thus, users can see the topical flow of the conversation

through the vertical change in cells’ color intensities as the conversation pro-

gresses. In addition, the topic shift column shows the topic shift probability

(inferred by SITS) using color-coded bar charts, helping users discern large

topic changes in the conversation. Each row is associated with a turn in the

conversation; clicking on one shifts the transcript view.

• Topic displays the set of topics learned by SITS, with font-size proportional

to the words’ topic probabilities. The selected topic panel goes into more

detail, with bar charts showing the topic-word distribution. For example, in

Figure 3.7, the Foreign Affairs topic in panel E has high probability words

“iraq”, “afghanistan”, “war”, etc. in panel F.

Figure 3.7 shows Argviz displaying the 2008 vice presidential debate between

Joe Biden and Sarah Palin, moderated by Gwen Ifill. Users can start exploring the

interface from any of the views described above to gain insight about the conver-

sation. For example, an user may be interested in seeing how the “Economy” is

discussed in the debates. Clicking on a topic in the topic cloud panel highlights
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that column in the heatmap. The user can now see where the “Economy” topic is

discussed in the debate. Next to the heatmap, the topic shift column when debate

participants changed the topic. The red bar in turn 48 shows an interaction where

Governor Palin dodged a question on the “bankruptcy bill” to discuss her “record

on energy”. Clicking on this turn shows the interaction in the transcript view,

allowing a closer reading.

Users might also want to contrast the topics that were discussed before and

after the shift. This can be easily done with the coordination between the heatmap

and the topic cloud panel. Clicking on a cell in the heatmap will select the corre-

sponding topic to display in the selected topic panel. In our example, the topic of

the conversation was shifted from “Economy” to “Energy” at turn 48.

3.8 Conclusions and Future Work

In this chapter, we focus on analyzing agendas and agenda control behav-

iors in political debates and other conversations. We introduce SITS, a Bayesian

nonparametric topic model that jointly captures topics, topic shifts and individu-

als’ tendency to control the topic in conversations. Using SITS, we analyze the

agenda control behaviors of candidates in the 2008 U.S. election debates and the

2012 Republican primary debates. We also apply SITS on a large-scale set of debate

transcripts from CNN’s TV show Crossfire. To make the analysis process more ef-

fective, we build Argviz , an interactive visualization which leverages SITS’s outputs

to allow users to quickly grasp the topical dynamics of the conversation, discover
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when the topic changes and by whom, and interactively visualize the conversation’s

details on demand. In addition to providing insights on agendas and agenda con-

trol in multi-party conversation, through extensive empirical experiments, we also

show that SITS can effectively improve the performance of two quantitative tasks:

influencer detection and topic segmentation.

Crucially, SITS models speaker-specific properties. As such, it improves per-

formance on practical tasks such as unsupervised segmentation, but it also is attrac-

tive philosophically. Accurately modeling individuals is part of a broader research

agenda that seeks to understand individuals’ values (Fleischmann et al., 2011), inter-

personal relationships (Chang et al., 2009a), and perspective (Hardisty et al., 2010),

which creates a better understanding of what people think based on what they write

or say (Pang and Lee, 2008). One particularly interesting direction is to extend the

model to capture how language is coordinated during the conversation and how it

correlates with influence (Giles et al., 1991; Danescu-Niculescu-Mizil et al., 2012).

The problem of finding influencers in conversation has been studied for decades

by researchers in communication, sociology, and psychology, who have long acknowl-

edged qualitatively the correlation between the ability of a participant to control

conversational topic and his or her influence on other participants during the con-

versation. With SITS, we now introduce a computational technique for modeling

more formally who is controlling the conversation. Empirical results on two datasets

(Crossfire TV show and Wikipedia discussion pages) show that methods based on

SITS outperform previous methods that used conversational structure patterns in

detecting influencers.
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Chapter 4: Learning Agenda Hierarchy from Multi-labeled Political

Text

4.1 Introduction

In the previous chapter, we focus our study on agendas in conversations, where

multiple individuals take turn to discuss various topics. In this chapter, we move to

a more general setting to study agendas in political text, using legislative text in the

U.S. Congress. The U.S. Congress is the bicameral legislature of the U.S. federal

government which consists of the Senate and the House of Representatives. The most

important responsibility of the Congress is making the laws, which are proposed

in the congressional bills. Discovering and analyzing agendas in congressional bills

help shed light on understanding the political attentions of policymakers and answer

important questions such as: What are the most important policy issues in the 112th

Congress? How does the attention on those issues change over time?

We study policy agendas in congressional bill text using multi-labeled data, in

which each bill is tagged with multiple agenda issues (i.e., labels) from a flexible

list. Using this type of multi-labeled data provides two clear advantages: (1) it helps

improve the interpretability of the learned topics, compared with using unlabeled
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data, which reduces post-analysis cost, and (2) it reduces pre-analysis cost in com-

parison with single-labeled data using a predefined coding system. However, one

major drawback of this type of multi-labeled data is that the label space is often

much larger than that of single-labeled data, which makes learning and predicting

relatively harder.

In this chapter, we present L2H—Label to Hierarchy—a hierarchical topic

model that can induce a hierarchy of user-generated labels and the topics associated

with those labels from a set of multi-labeled documents. The model is robust enough

to account for missing labels from untrained, disparate annotators and provide an

interpretable summary of an otherwise unwieldy label set. We apply L2H to study

policy agendas and the relationships among different agenda issues using bill text

from four Congresses (109th–112th). Empirical experiments shows the effectiveness

of L2H in predicting held-out words and labels of unseen documents.

This chapter synthesizes and revises the work originally published in (Nguyen

et al., 2013b, 2014c).

4.1.1 Analyzing Agendas in Legislative Text

As discussed in Chapter 1, the study of agendas in political text has been

the focus of a large body of research in political science for decades. However,

for a long period of time, agenda-setting research had largely been case studies:

researchers analyzed agendas in various separated cases of interest, but there was

no systematic way to compare and measure the differences in policy activities across
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different settings (Baumgartner et al., 2006). In 1993, Bryan Jones and Frank

Baumgartner initiated the Policy Agendas Project “in response to a clear need for

better measurement of key concepts in the study of public policy”.1 The project

develops a coding scheme of 19 major topic and 225 subtopic codes, which provides

an exhaustive and consistent set of references in analyzing agendas in political text.

The codebook has been used extensively in numerous research and the project has

become the model for various research programs on studying policy agendas (John,

2006).2 Table 4.1 shows the list of the major topics in the 2014 Policy Agendas

Topics codebook.

Using the Policy Agendas Topics codebook, the Congressional Bills project,

led by Adler and Wilkerson (2006), labels over 400,000 public and private bills

introduced in the U.S. Congress since 1947. Each bill is coded with one major topic

and one subtopic, based on its title of the introduced version. Table 4.2 shows some

examples of coded bills from the 100th Congress.

This set of coded congressional bills has provided an invaluable resource for

scholars studying legislative politics (Adler and Wilkerson, 2013). However, using

the Policy Agendas Topics codebook to analyze agendas and assign a single label

to each bill also poses some drawbacks. In this chapter, we use the set of labeled

data provided by the Congressional Research Service (CRS), in which each bill is

coded with multiple agenda issues. In this set of data, each issue comes from a

1See http://www.policyagendas.org/page/about-project for a description of the history
and development of the project

2Examples of research programs modeled after the Policy Agendas Project include the Euro-
pean Union Policy Agendas Project (http://www.policyagendas.eu/), the Comparative Agen-
das Project (http://www.comparativeagendas.info/), and the Pennsylvania Policy Database
Project (http://www.cla.temple.edu/papolicy/)
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Code Major Topic
1 Macroeconomics
2 Civil Rights, Minority Issues, and Civil Liberties
3 Health
4 Agriculture
5 Labor and Employment
6 Education
7 Environment
8 Energy
9 Immigration†

10 Transportation
12 Law, Crime, and Family Issues
13 Social Welfare
14 Community Development and Housing Issues
15 Banking, Finance, and Domestic Commerce
16 Defense
17 Space, Science, Technology and Communication
18 Foreign Trade
19 International Affairs and Foreign Aid
20 Government Operations
21 Public Lands and Water Management

Table 4.1: Major topics with their corresponding codes in the Policy Agendas Topics
codebook. †The major topic “Immigration” was newly added to the codebook in
2014.

Bill Title
PA Topics

Major Minor
H.R.228 A bill to amend title II of the Social Security Act to provide

that an individuals entitlement to benefits thereunder shall
continue through the month of his or her death (without
affecting any other persons entitlement to benefits for that
month), in order to provide such individuals family with
assistance in meeting the extra death-related expenses.

13 1303

H.R.62 A bill to establish a series of six regional Presidential pri-
maries at which the public may express its preference for
the nomination of an individual for election to the Office
of President of the United States.

20 2012

H.R.364 A bill to amend the Internal Revenue Code of 1954 to allow
individuals a deduction for commuting expenses incurred
on public mass transit.

10 1001

Table 4.2: Examples of bills from the 100th Congress, coded by the Congressional
Bills project. The mapping of the Policy Agenda (PA) major topic codes are pro-
vided in Table 4.1.
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Bill CRS Index Terms

H.R.228
Social welfare
Old age, survivors and disability insurance
Social security eligibility

H.R.62

Government operations and politics
Campaign funds
Presidential candidates
Presidential elections
Presidential primaries
Voting

H.R.364

Taxation
Commuting
Income tax
Mass rapid transit
Motor Vehicles and Driving
Tax deductions
Transportation and Travel
Travel costs
Urban affairs
Urban transportation

Table 4.3: Examples of multiple labels provided by the Congressional Research
Service for the three bills shown in Table 4.2

relatively long list of CRS Legislative Subject Terms.3 Here are the advantages of

using multi-labeled data over the single-labeled data coded using the Policy Agendas

Topic codebook:

• A Congressional bill can be about more than one agenda issue. Indeed, in the

description about its coded data, the Congressional Bills project notes that

“researchers should not assume that every bill relating to ‘air pollution’ (for

example) will be found among the ‘705’ bills. A bill could address air pollution

but be primarily among something else”, and explicitly refers to the Library

of Congress, where we obtained the multi-labeled data, for coded data with

more details.

3See http://thomas.loc.gov/help/terms-subjects.html for more details about the list of
CRS subject terms.
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• Compared to using a fixed and exhaustive coding system like the Policy Agen-

das Topics Codebook, it is relatively cheaper to maintain and use the list of

labels such as the one provided by CRS. This list of labels needs not to be

completely and exhaustively defined beforehand by domain experts and can

be cumulatively extended as new labels arise. This flexibility is particularly

useful given the fact that, despite being very well defined, the Policy Agen-

das Topic codebook has also been modified, both globally (e.g., adding major

topic “Immigration” in 2014) or specifically for certain datasets (e.g., adding

eight major topics for coding the New York Times and the Encyclopedia of

Associations) or domains (e.g., adding major topic “EU Governance” to study

agendas in the European Union).

These advantages help reduce the high pre-analysis cost of approaches using

traditionally coded data. However, they do not come for free. The large number

of labels poses new challenges to learning and interpreting the data. First, with

the large label space, there are naturally dependencies among the labels, which any

effective models should capture. For example, the model should be able to capture

the fact that “Taxation” is, in general, more similar to “Income Tax” than to “Social

Welfare”. In addition, the coded data are likely to be noisy and not exhaustive. For

example, one might expect “Public Transit”—a valid CRS subject term—to appear

in the list of labels for Bill H.R. 364 shown in Tables 4.2 and 4.3. In this chapter,

the model we introduce, L2H, tackles these problems by learning a tree-structured

hierarchy of labels, which provides interpretable results, and thus helps avoid a high
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post-analysis cost.

4.1.2 Topic Models for Multi-labeled Documents

Even though we are motivated by analyzing agendas in political text, especially

legislative text, that are tagged with multiple agenda issues, multi-labeled data are

ubiquitous and exist in a wide range of settings and applications. Web pages are

tagged with multiple directories,4 Ph.D. theses are associated with multiple key

words,5 interdisciplinary research grants are assigned multiple research areas, and

books can be labeled with more than one category. Topic models for multi-labeled

documents in general fall into a branch of topic modeling research, which jointly

captures the documents’ text and their associated metadata. Chapter 2 surveys a

collection of topic models using different types of metadata.

Specifically having multiple labels as the metadata, various topic models have

been proposed. Rosen-Zvi et al. (2004) introduce the Author-Topic model which

jointly captures the documents’ text and their authorship information. Ramage

et al. (2009) propose Labeled LDA whose generative process is similar to LDA except

that tokens in a given document are generated only from a subset of topics defined

by the document’s set of labels. Various researchers have applied Labeled LDA to

different settings including characterizing Twitter users’ contents (Ramage et al.,

2010a) and performing named entity recognition (Ritter et al., 2011) in microblogs.

Wang et al. (2009) extend sLDA to jointly capture both the class label and multiple

4Open Directory Project (http://www.dmoz.org/)
5ProQuest service (http://www.proquest.com/)
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annotated key words in a set of images. Yang et al. (2009) use logistic regression to

indicate whether a label appears in a document.

These models have been applied effectively to a wide range of multi-labeled

data. However, one common drawback of these models is that they assume that

all labels are independent. This assumption is reasonable if the number of labels is

relatively small. Unfortunately, in many real-world examples, it is not uncommon

to have hundreds or thousands of unique labels, which makes the independence as-

sumption too strong. When the label space is large, there are naturally relationships

among the labels. This characteristic of large-scale multi-labeled data motivates

various work to learn the label dependencies. For example, Ramage et al. (2011)

propose Partially Labeled LDA (PLDA) and Partially Labeled Dirichlet Process

(PLDP) to discover the label relationships in a hidden topic space. Also project-

ing labels onto some latent space, Rubin et al. (2012) introduce Prior-LDA and

Dependency-LDA to capture the label dependencies and overcome the aforemen-

tioned problem.

Projecting labels onto a latent space has proven to be an effective approach

to learn the label dependencies, especially when the main goal is to achieve good

performances on predicting labels for unseen data (Rubin et al., 2012). However,

by moving to a latent space, these models risk the interpretability that the labels

provide, which motivates us to use labeled data to analyze agendas and reduce

the post-analysis cost in the first place (Chapter 1). This motivates the model we

present in this chapter, L2H, which captures explicitly label dependencies using a

tree-structured hierarchy. Besides analyzing agendas in multi-labeled political text
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in this thesis, interpretable label hierarchies in general have been shown to be a

valuable resource which can provide an effective way of organizing data including

text (Lewis et al., 2004) and images (Deng et al., 2009), and make annotating large-

scale multi-labeled data more effective and scalable (Deng et al., 2014; Lin et al.,

2014).

4.1.3 Chapter Structure

We describe the L2H model in detail next in Section 4.2. In Section 4.3, we

present an MCMC algorithm to perform posterior inference efficiently. To evaluate

L2H, we use multi-labeled legislative text in four Congresses (109th–112th). Sec-

tion 4.4 qualitatively analyzes the hierarchy learned from the data by L2H. We

also quantitatively evaluate L2H in two computational tasks: document modeling—

measuring perplexity on a held-out set of document, and multi-label classification—

predicting multiple labels for unseen documents in Section 4.5. Section 4.6 concludes

the chapter and opens up some potential future directions.

4.2 L2H: Capturing Label Dependencies using a Tree-structured Hi-

erarchy

Discovering a topic hierarchy from text has been the focus of much research in

the topic modeling community. One popular approach is to learn an unsupervised

hierarchy of topics, which we survey in Chapter 2. As discussed in Chapter 1, unsu-

pervised topic hierarchies provide a useful way to perform exploratory analysis, but
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it usually requires an additional step of post hoc topic labeling to make them inter-

pretable. This difficulty motivates work leveraging existing label taxonomies such

as HSLDA (Perotte et al., 2011), hLLDA (Petinot et al., 2011) and SSHLDA (Mao

et al., 2012a).

A second active area of research is constructing a taxonomy from multi-labeled

data. For example, Heymann and Garcia-Molina (Heymann and Garcia-Molina,

2006) extract a tag hierarchy using the tag network centrality; similar work has

been applied to protein hierarchies (Tibely et al., 2013). Hierarchies of concepts

have come from seeded ontologies (Schmitz, 2006), crowdsourcing (Nikolova et al.,

2012; Chilton et al., 2013; Bragg et al., 2013), and user-specified relations (Plangpra-

sopchok and Lerman, 2009). More sophisticated approaches build domain-specific

keyword taxonomies with adapting Bayesian Rose Trees (Liu et al., 2012). All of

these approaches, however, concentrate on the tags, ignoring the content the tags

describe.

In this chapter, we combine ideas from these two lines of research and intro-

duce L2H, a hierarchical topic model that discovers a tree-structured hierarchy of

concepts from a collection of multi-labeled documents. L2H takes as input a set

of D documents {wd}, each tagged with a set of labels ld. The label set L con-

tains K unique, unstructured labels and the word vocabulary size is V . To learn an

interpretable taxonomy, L2H associates each label—a user-generated word/phrase—

with a topic—a multinomial distribution over the vocabulary—to form a concept,

and infers a tree-structured hierarchy to capture the relationships among concepts.

Figure 4.1 shows the plate diagram for L2H, together with its generative process.
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1. Create label graph G (Section 4.2.1)
2. Draw a spanning tree T from G (Section 4.2.2)
3. For each node k ∈ [1,K] in T

(a) If k is the root, draw background topic φk ∼ Dir(βu)
(b) Otherwise, draw topic φk ∼ Dir(βφσ(k)) where σ(k)

is node k’s parent.

4. For each document d ∈ [1, D] having labels ld

(a) Define L0
d and L1

d using T and ld (Section 4.2.3)
(b) Draw θ0

d ∼ Dir(L0
d × α) and θ1

d ∼ Dir(L1
d × α)

(c) Draw a switching variable πd ∼ Beta(γ0, γ1)
(d) For each token n ∈ [1, Nd]

i. Draw set indicator xd,n ∼ Bern(πd)
ii. Draw topic indicator zd,n ∼ Mult(θ

xd,n
d )

iii. Draw word wd,n ∼ Mult(φzd,n)

Figure 4.1: Generative process and the plate diagram notation of L2H.

4.2.1 Creating the Label Graph

We assume an underlying directed graph G = (E ,V) in which each node is a

concept consisting of (1) a label—observable user-generated input, and (2) a topic—

latent multinomial distribution over words.6 The prior weight of a directed edge from

node i to node k is the fraction of documents tagged with label k which are also

tagged with label i: ti,k = Di,k/Dj. We also assume an additional root node which

is called the background node. Edges to the background node have prior

zero weight and edges from the background node to node i have prior weight

troot,i = Di/maxkDk. Here, Di is the number of documents tagged with label i,

and Di,k is the number of documents tagged with both labels i and k.

Figure 4.2a illustrates the weighted directed graph G, created from a simple

multi-labeled data set having three unique labels: health care, health care

6We use node when emphasizing the structure discovered by the model. Each node corresponds
to a concept which consists of a label/topic pair.
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coverage and access, and medicare. In this example, health care is more

general than medicare, and thus the weight of the directed edge from health

care to medicare is greater than that of the reciprocal edge.

4.2.2 Generating Tree-structured Hierarchy

The tree T is a spanning tree generated from G. The probability of a tree given

the graph G is thus the product of all its edge prior weights p(T | G) =
∏

e∈E te. To

capture the intuition that child nodes in the hierarchy specialize the concepts of

their parents, we model the topic φk at each node k using a Dirichlet distribution

whose mean is centered at the topic of node k’s parent σ(k), i.e., φk ∼ Dir(βφσ(k)).

The topic at the root node is drawn from a symmetric Dirichlet φroot ∼ Dir(βu),

where u is a uniform distribution over the vocabulary (Adams et al., 2010; Ahmed

et al., 2013a). This is similar to the idea of “back-off” in language models where

more specific contexts inherit the ideas expressed in more general contexts; i.e., if

we talk about “pedagogy” in education, there’s a high likelihood we’ll also talk

about it in university education (Mackay and Peto, 1995; Teh, 2006).

Figure 4.2b illustrates an example of a spanning tree that can be generated

from the label graph shown in Figure 4.2a. This spanning tree is also the maximum

spanning tree that can be generated from G, based on the example edge weights

illustrated, which we will use to initialize the hierarchy during posterior inference

(Section 4.3).
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Background

Health care
Health care 

coverage and 
access

Medicare

(a) The weighted directed graph G

Background

Health care

Health care 
coverage and 

access
Medicare

(b) A spanning tree T generated from G

Figure 4.2: Example of the weighted directed graph G and a spanning tree T gen-
erated from G, created from a set of multi-labeled data having three unique labels:
health care, health care coverage and access, and medicare. The thick-
ness of an directed edge represents its weight.

4.2.3 Generating Documents

As in LDA, each word in a document is generated by one of the latent topics.

L2H, however, also uses the labels and topic hierarchy to restrict the topics a doc-

ument uses. The document’s label set ld identifies which nodes are more likely to

be used. Restricting tokens of a document in this way—to be generated only from

a subset of the topics depending the document’s labels—creates specific, focused,

labeled topics (Ramage et al., 2009, Labeled LDA).

Unfortunately, ld is unlikely to be an exhaustive enumeration: particularly

when the label set is large, users often forget or overlook relevant labels. We therefore

depend on the learned topology of the hierarchy to fill in the gaps of what users

forget by expanding ld into a broader set, L1
d, which is the union of nodes on the

paths from the root node to any of the document’s label nodes. We call this the

document’s candidate set. The candidate set also induces a complementary set
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L0
d ≡ L \ L1

d. Previous approaches such as LPAM (Bakalov et al., 2012) and Tree

labeled LDA (Slutsky et al., 2013b) also leverage the label hierarchy to expand the

original label set. However, these previous models require that the label hierarchy

is given rather than inferred as in our L2H.

Figure 4.3 illustrated the candidate set and the complementary set of a docu-

ment tagged with two labels: higher education and medicare. The candidate

set consists of nodes on all the paths from the background root node to any of the

document’s label nodes. This allows an imperfect label set to include topics that the

document should be associated with even if they were not explicitly enumerated.

Background

Health care

Elementary 
& Secondary 

Education

Health care  
Coverage & 

Access

School 
administration

Higher 
Education

Teaching, 
teachers, 
curricula

Defense

Medicare

Education

Figure 4.3: Illustration of the candidate set and the complementary set of a document
tagged with two labels: higher education and medicare.

L2H replaces Labeled LDA’s absolute restriction to specific topics to a soft

preference. To achieve this, each document d has a switching variable πd drawn

from Beta(γ0, γ1), which effectively decides how likely tokens in d are to be gener-

ated from L1
d versus L0

d. Token n in document d is generated by first flipping the
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biased coin πd to choose the set indicator xd,n. Given xd,n, the label zd,n is drawn

from the corresponding label distribution θ
xd,n
d and the token is generated from the

corresponding topic wd,n ∼ Multinomial(φzd,n).

In Nguyen et al. (2013b), we also explored different ways to define the candi-

date set of a document given its set of labels (Figure 4.4). Preliminary results show

that using these candidate sets yields relatively similar predictive results. However,

understanding the effects of different candidate sets in more detail is an important

research question that requires further investigation in future work. Moreover, to

keep the posterior inference tractable (Section 4.3), we use a relatively straightfor-

ward prior distribution over the nodes in the candidate/complementary sets. In-

corporating more sophisticated prior distributions which take into account of the

tree-structured hierarchy is another interesting research direction.

root

1 2

5 6 7

8 9 10 11

3

4

(a) The candidate set L1,a

contains all nodes on the
paths from the root to any of
the document’s label nodes
(explored in detail in this
chapter).

root

1 2

5 6 7

8 9 10 11

3

4

(b) The candidate set L1,b

contains nodes in L1,a

(Fig. 4.4a) and all the nodes
in the subtree rooted at
any of the document’s label
nodes.

root

1 2

5 6 7

8 9 10 11

3

4

(c) The candidate set L1,c

contains nodes in L1,b

(Fig. 4.4b) and all the nodes
in the subtree rooted at the
first-level nodes included in
L1,a (Fig. 4.4a).

Figure 4.4: Example of different ways to define the candidate set L1 (shaded nodes)
and the complementary set L0 (white nodes) for a document tagged with two labels
(double-circled nodes).
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4.3 Posterior Inference

Given a set of documents with observed words {wd} and labels {ld}, we develop

an MCMC algorithm to infer the posterior distribution over the latent variables.

Each iteration of our algorithm, after the initialization, consists of the following

steps: (1) sample a set indicator xd,n and topic assignment zd,n for each token,

(2) sample a word distribution φk for each node k in the tree, and (3) update the

structure of the label tree.

4.3.1 Initialization

With the large number of labels, the space of hierarchical structures that

MCMC needs to explore is huge. Initializing the tree-structure hierarchy is crucial

to help the sampler focus on more important regions of the search space and help

the sampler converge more quickly. We initialize the hierarchy with the maximum

a priori probability tree by running Chu-Liu/Edmonds’ algorithm to find the max-

imum spanning tree on the graph G starting at the background node (Chu and

Liu, 1965; Edmonds, 1967).

4.3.2 Sampling Assignments xd,n and zd,n

For each token, we need to sample whether it was generated from the label

set or not, xd,n. We choose label set i with probability
C−d,nd,i +γi

C−d,nd,· +γ0+γ1
and we sample

a node in the chosen set i with probability
N−d,nd,k +α

C−d,nd,i +α|Lid|
· φk,wd,n . Here, Cd,i is the

number of times tokens in document d are assigned to label set i; Nd,k is the number
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of times tokens in document d are assigned to node k. Marginal counts are denoted

by ·, and −d,n denotes the counts excluding the assignment of token wd,n.

After we have the label set, we can sample the topic assignment. This is more

efficient than sampling jointly, as most tokens are in the label set, and there are a

limited number of topics in the label set. The probability of assigning node k to zd,n

is p(xd,n = i, zd,n = k |x−d,n, z−d,n, φ,Lid)

∝
C−d,nd,i + γi

C−d,nd,· + γ0 + γ1

·
N−d,nd,k + α

C−d,nd,i + α|Lid|
· φk,wd,n (4.1)

4.3.3 Sampling Topics φ

As discussed in Section 4.2.2, topics on each path in the hierarchy form a

cascaded Dirichlet-multinomial chain where the multinomial φk at node k is drawn

from a Dirichlet distribution with the mean vector being the topic φσ(k) at the

parent node σ(k). Given assignments of tokens to nodes, we need to determine the

conditional probability of a word given the token. This can be done efficiently in

two steps: bottom-up smoothing and top-down sampling (Ahmed et al., 2013a).

• Bottom-up smoothing: This step estimates the counts M̃k,v of node k prop-

agated from its children. This can be approximated efficiently by using the

minimal/maximal path assumption (Cowans, 2006; Wallach, 2008). For the

minimal path assumption, each child node k′ of k propagates a value of 1 to

M̃k,v if Mk′,v > 0. For the maximal path assumption, each child node k′ of k

propagates the full count Mk′,v to M̃k,v (Chapter 2).

124



• Top-down sampling: After estimating M̃k,v for each node from leaf to root,

we sample the word distributions top-down using its actual counts mk, its

children’s propagated counts m̃k and its parent’s word distribution φσ(k) as

φk ∼ Dirichlet(mk + m̃k + βφσ(k)).

4.3.4 Updating tree structure T

We update the tree structure by looping through each non-root node, propos-

ing a new parent node and either accepting or rejecting the proposed parent using

the Metropolis-Hastings algorithm. More specifically, given a non-root node k with

current parent i, we propose a new parent node j by sampling from all incoming

nodes of k in graph G, with probability proportional to the corresponding edge

weights. If the proposed parent node j is a descendant of k, we reject the proposal

to avoid a cycle. If it is not a descendant, we accept the proposed move with prob-

ability min
(

1, Q(i≺k)
Q(j≺k)

P (j≺k)
P (i≺k)

)
, where Q and P denote the proposal distribution and

the model’s joint distribution respectively, and i ≺ k denotes the case where i is the

parent of k.

Since we sample the proposed parent using the edge weights, the proposal

probability ratio is

Q(i ≺ k)

Q(j ≺ k)
=
ti,k
tj,k

(4.2)
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The joint probability of L2H’s observed and latent variables is:

P =
∏
e∈E

p(e | G)
D∏
d=1

p(xd | γ)p(zd |xd, ld, α)p(wd | zd, φ)
K∏
l=1

p(φl |φσ(l), β)p(φroot | β)

(4.3)

When node k changes its parent from node i to j, the candidate set L1
d changes

for any document d that is tagged with any label in the subtree rooted at k. Let
a
k

denote the subtree rooted at k and Da
k

= {d | ∃l ∈
a
k ∧l ∈ ld} the set of documents

whose candidate set might change when k’s parent changes. Canceling unchanged

quantities, the ratio of the joint probabilities is:

P (j ≺ k)

P (i ≺ k)
=
tj,k
ti,k

∏
d∈Da

k

p(zd | j ≺ k)

p(zd | i ≺ k)

p(xd | j ≺ k)

p(xd | i ≺ k)

p(wd | j ≺ k)

p(wd | i ≺ k)

K∏
l=1

p(φl | j ≺ k)

p(φl | i ≺ k)

(4.4)

We now expand each factor in Equation 4.4. The probability of node as-

signments zd for document d is computed by integrating out the document-topic

multinomials θ0
d and θ1

d (for the candidate set and its inverse):

p(zd |xd,L0
d,L1

d;α) =
∏

x∈{0,1}

Γ(α|Lxd|)
Γ(Cd,x + α|Lxd|)

∏
l∈Lxd

Γ(Nd,l + α)

Γ(α)
(4.5)

Similarly, we compute xd for each document d, integrating out πd,

p(xd | γ) =
Γ(γ0 + γ1)

Γ(Cd,· + γ0 + γ1)

∏
x∈{0,1}

Γ(Cd,x + γi)

Γ(γx)
(4.6)

Since we explicitly sample the topic φl at each node l, we need to re-sample

all topics for the case that j is the parent of i to compute the ratio
∏K

l=1
p(φl | j≺k)
p(φl | i≺k)

.
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Given the sampled φ, the word likelihood is p(wd | zd, φ) =
∏Nd

n=1 φzd,n,wd,n . However,

re-sampling the topics for the whole hierarchy for every node proposal is inefficient.

To avoid that, we keep all φ’s fixed and approximate the ratio as:

∏
d∈Da

k

p(wd | j ≺ k)

p(wd | i ≺ k)

K∏
l=1

p(φl | j ≺ k)

p(φl | i ≺ k)
≈
∫
φk
p(mk + m̃k |φk) p(φk |φj) dφk∫

φk
p(mk + m̃k |φk) p(φk |φi) dφk

(4.7)

where mk is the word counts at node k and m̃k is the word counts propagated from

children of k. Since φ is fixed and the node assignments z are unchanged, the word

likelihoods cancel out except for tokens assigned at k or any of its children. The

integration in Equation 4.7 is

∫
φk

p(mk + m̃k |φk) p(φk |φj) dφk =
Γ(β)

Γ(Mk,· + M̃k,· + β)

V∏
v=1

Γ(Mk,v + M̃k,v + βφi,v)

Γ(βφi,v)

(4.8)

Using Equations 4.2 and 4.4, we can compute the Metropolis-Hastings acceptance

probability.

4.4 Analyzing Political Agendas in U.S. Congresses

To study the U.S. Congress’s policy agendas, we obtain both the title and the

legislative text of bills in four Congresses (109th–112th) from THOMAS—the online

archive of the Library of Congress.7 Each bill is tagged with multiple subject terms

issued by the Congressional Research Service. Examples of bills’ titles and their

assigned labels are in Table 4.2.

7https://www.govtrack.us/data/us/
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For each bill, we merge its title and legislative text together. We then perform

standard pre-processing steps including tokenization, removing stopwords, stem-

ming, adding bigrams and filtering using TF-IDF to obtain a vocabulary of 10,000

words. The statistics of the data after pre-processing are in Figure 4.5.8 We ignore

labels associated with fewer than 100 bills.

13067 14034 13673 12274 418 375
243 205

Number of bills Number of labels

0

5000

10000

0

100

200

300

400

109 110 111 112 109 110 111 112
Congress

Figure 4.5: Number of bills and unique labels in our dataset after pre-processing for
each Congress.

We first qualitatively analyze the hierarchy learned by our model. Figure 4.6

shows a subtree whose root is about international affairs, obtained by running

L2H on bills in the 112th U.S. Congress. The learned topic at international

affairs shows the focus of 112th Congress on the Arab Spring—a revolutionary

wave of demonstrations and protests in Arab countries like Libya and Bahrain. The

concept is then split into two distinctive aspects of international affairs: military

and diplomacy. In addition, Figures 4.7 and 4.8 show the subtree in the learned

hierarchy rooted at environmental assessment, monitoring, research and

health respectively.

When analyzing the learned hierarchy, political scientist Kristina Miler (per-

8We find bigram candidates that occur at least ten times in the training set and use a χ2 test
to filter out those having a χ2 value less than 5.0. We then treat selected bigrams as single word
types in the vocabulary.
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Terrorism

intellig, intellig_commun, 
afghanistan, nation_intellig, 
guantanamo_bai, qaeda, 

central_intellig, detent, pakistan, 
interrog, defens_intellig, detaine, 

Int'l organizations & 
cooperation

export, arm_export, control_act, 
foreign_assist, cuba, 

defens_articl, foreign_countri, 
foreign_servic, export_administr, 

author_act, munit_list

International affairs

libya, unit_nation, intern_religi, 
bahrain, religi_freedom, 

religi_minor, freedom_act, africa, 
violenc, secur_council, 

benghazi, privileg_resolut, hostil, 

Foreign aid and 
international relief

fund_appropri, foreign_assist, 
remain_avail, regular_notif, 

intern_develop, relat_program, 
unit_nation, pakistan, 

foreign_oper, usaid, prior_act

International law and 
treaties

foreign_assist, intern_develop, 
vessel, foreign_countri, sanit, 

appropri_congression, 
develop_countri, violenc, girl, 

defens_articl, export

Religion

unit_nation, israel, iaea, harass, 
syria, iran, peacekeep_oper, 

regular_budget, unrwa, 
palestinian, refuge, durban, bulli, 

secur_council

Europe

republ, belaru, turkei, nato, 
holocaust_survivor, north_atlant, 

holocaust, european_union, 
albania, jew, china, macedonia, 

treati_organ, albanian, greec

Middle East

syria, israel, iran, enterpris_fund, 
unit_nation, egypt, palestinian, 

cypru, tunisia, hezbollah, 
lebanon, republ, hama, syrian, 

violenc, weapon,

Latin America

border_protect, haiti, 
merchandis, evas, tariff_act, 
cover_merchandis, export, 

custom_territori, custom_enforc,, 
countervail_duti, intern_trade

Asia

china, vietnam, taiwan, republ, 
chines, sea, north_korea, 

tibetan, north_korean, refuge, 
south_china, intern_religi, tibet, 

enterpris, religi_freedom

Military operations and 
strategy

armi, air_forc, none, navi, 
addit_amount, control_act, 

emerg_deficit, fund_appropri, 
balanc_budget, terror_pursuant, 

transfer_author,marin_corp

Sanctions

iran, sanction, syria, 
comprehens_iran, north_korea, 
financi_institut, presid_determin, 
islam_republ,  foreign_person, 

weapon, iran_sanction

Human rights

traffick, russian_feder, 
traffick_victim, prison, alien, 

visa, nation_act, victim, detent, 
human_traffick, corrupt, russian, 

foreign_labor, sex_traffick, 

Department of Defense

air_forc, militari_construct, 
author_act, armi, nation_defens, 

navi, militari_depart, aircraft, 
congression_defens, command, 

sexual_assault, activ_duti

Military personnel and 
dependents

coast_guard, vessel, command, 
special_select, sexual_violenc, 
academi, sexual_harass, navi, 
former_offic, gulf_coast, haze, 

port, marin, marin_debri

Armed forces and 
national security

cemeteri, nation_guard, dog, 
service_memb, 

homeless_veteran, funer, 
medic_center, militari_servic, 
arlington_nation, armi, guard

Department of 
Homeland Security
cybersecur, inform_secur, 

inform_system, cover_critic, 
critic_infrastructur, 

inform_infrastructur, 
cybersecur_threat, 

Figure 4.6: A subtree rooted at international affairs in the hierarchy learned
by L2H using data from the 112th Congress.

sonal communication) has the following comments:

• On Figure 4.6: “The international affairs topic does an excellent job of cap-

turing the key distinction between military/defense and diplomacy/aid. Even

more impressive is that it then also captures the major policy areas within

each of these issues: the distinction between traditional military issues and

terrorism-related issues, and the distinction between thematic policy (e.g., hu-

man rights) and geographic/regional policy.”

• On Figure 4.7: “The environmental policy sub-tree nicely recognizes the im-

portance of water policy within broader environmental policy. Even more
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Envtl. assessment, 
monitoring, research
oil, outer_continent, oil_spill, 

shelf_land, oil_pollut, dispers, 
royalti, coastal, shelf, 

coast_guard, respons_plan, 
hazard_substanc, chemic

Environmental 
protection

green_infrastructur, hypoxia, 
ballast_water, harm_algal, 
bloom, commerci_vessel, 

vessel, mercuri, lake, 
pollut_control, marin, speci

Wildlife conservation 
and habitat protection
coral_reef, speci, ecosystem, 
endang_speci, nation_wildlif, 

salmon_stronghold, anim, 
salmon, livestock, joint_ventur, 
lacei_act, wildlif_foundat, refug

Water quality
chesapeak_bai, watersh, basin, 

feder_water, pollut_control, 
water_qualiti, island_sound, 

restor_activ, sediment, 
lake_taho, water_pollut, river

Water use and supply
navajo_nation, hopi_tribe, 

settlement_agreement, river, 
restor_agreement, 

lower_colorado, river_water, 
colorado_river, water_qualiti,  

Oil and gas
oil, outer_continent, leas_sale, 

coastal_plain, shelf_land, 
leas_program, pipelin, shelf, 

drill, coastal, feder_land, lesse, 
polici_act, gulf, keyston, royalti,

Environmental 
regulatory procedures
chemic_substanc, substanc, 

chemic, safeti_standard, 
cover_water, processor, 
cover_treatment, mixtur, 

administr_determin, intent_act

Marine and coastal 
resources, fisheries

gulf_coast, gulf, coastal, fisheri, 
marin, ocean, ecosystem, 

marin_debri, fisheri_conserv, 
atmospher_administr, 

trust_fund, nation_ocean

Figure 4.7: A subtree rooted at environmental assessment, monitoring, re-
search in the hierarchy learned by L2H using data from the 112th Congress.

Health

pharmaci, prosthet, orthot, 
health_secur, prescript_drug, 

pbm, practition, custom_orthot, 
health_servic, american_health, 
antibiot, formulari, primari_care

Medical research

prostat_cancer, task_forc, 
lung_cancer, pancreat_cancer, 
nih , cavern_angioma, cancer 

drug_administr,, tumor, 
invas_research,  human_subject

Medicare

supplier, prescript_drug, therapi, 
card, medicar_beneficiari, 

pilot_program, auction, 
nurs_practition, specialist, 

control_substanc, clinic_nurs

Health care costs and 
insurance

health_insur, issuer, 
health_plan, associ_health, 

insur_coverag, individu_health, 
applic_author, premium, truste, 
coverag_offer, insur_commissio

Employee benefits and 
pensions

total_health, debtor, 
employe_retir, incom_secur, 
health_benefit, health_plan, 
invest_option, health_insur, 

person_social, domest_partner

Health care coverage 
and access

awsuit, claimant, medic_product, 
punit_damag, postal_servic, 
distributor, drug_administr, 
liabil_claim, health_insur, 

nutrit_act, applic_percentag

Health information and 
medical records

eat_disord, practition, syndrom, 
registri, profession_box, nih, 

control_substanc, disord, 
onlin_pharmaci, stillbirth, 

diseas_cluster, concuss, suid

Health promotion and 
preventive care
elig_entiti, infect, hiv, 

comprehens_sex, , sex_educ, 
diabet_prevent, sti, diabet, 

sexual_transmit, oral_health, 
hiv_infect, sexual, contracept

Mental health

mental_health, substanc_abus, 
pilot_program, behavior_health, 
health_center, disord, elig_entiti, 

suicid, suicid_prevent, 
health_servic, demonstr_project

Child health

physic_activ, girl, physic_educ, 
obes, matern_care, youth, 

sexual, child_marriag, newborn, 
child_care, overweight, infant, 

elig_entiti, chipacc, nurs

Department of Health 
and Human Services
drug_administr, cosmet_act, 
feder_food, cosmet, ingredi, 

biosimilar_biolog, drug_applic, 
prescript_drug, countermeasur,, 

product_applic, rare_diseas

Figure 4.8: A subtree rooted at health in the hierarchy learned by L2H using data
from the 112th Congress.

notable is that the sub-tree captures the unique water needs of the Western

states, which is a hallmark of the politics of water (and environmental policy

more generally).”

• On Figure 4.8: “Within health policy, there has been increasing attention to

issues of childhood obesity and health as well as to mental health issues (both

children and adults), and the subtree does a nice job of mirroring the recent

attention to these two issue areas.”
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4.5 Document Modeling and Classification

To quantitatively evaluate the effective of L2H, we conduct experiments on

two computational tasks: document modeling—measuring perplexity on a held-out

set of document, and multi-label classification—predicting multiple labels for unseen

documents. For both tasks, we perform 5-fold cross-validation. For each fold, we

perform standard pre-processing steps as described in Section 4.4. After building

the vocabulary from training documents, we discard all out-of-vocabulary words in

the test documents.

4.5.1 Document modeling

In the first quantitative experiment, we focus on the task of predicting the

words in held-out test documents, given their labels. This is measured by perplexity,

a widely-used evaluation metric (Blei et al., 2003b; Wallach et al., 2009). To compute

perplexity, we follow the “estimating θ” method described in Wallach et al. (Wallach

et al., 2009, Sec. 5.1) and split each test document d into wte1
d and wte2

d . During

training, we estimate all topics’ distributions over the vocabulary φ̂. During test,

first we run Gibbs sampling using the learned topics on wte1
d to estimate the topic

proportions θ̂ted for each test document d. Then, we compute the perplexity on the

held-out words wte2
d as

exp

−
∑

d log
(
p(wte2

d | ld, θ̂ted , φ̂)
)

Nte2


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where Nte2 is the total number of tokens in wte2
d .

Setup: We compare our proposed model L2H with the following methods:

• LDA (Blei et al., 2003b): unsupervised topic model with a flat topic structure.

In our experiments, we set the number of topics of LDA equal to the number

of labels in each dataset.

• L-LDA (Ramage et al., 2009): associates each topic with a label, and a doc-

ument is generated using the topics associated with the document’s labels

only.

• L2F (Label-to-Flat structure): a simplified version of L2H with a fixed, flat

topic structure. The major difference between L2F and L-LDA is that L2F

allows tokens to be drawn from topics that are not in the document’s label

set via the use of the switching variable (Section 4.2.3). Improvements of L2H

over L2F show the importance of the hierarchical structure.

For all models, the number of topics is the number of labels in the dataset. We

run for 1,000 iterations on the training data with a burn-in period of 500 iterations.

After the burn-in period, we store ten sets of estimated parameters, one after every

fifty iterations. During test time, we run ten chains using these ten learned models

on the test data and compute the perplexity after 100 iterations. The perplexity of

each fold is the average value over the ten chains as described in Chapter 2.

Results: Figure 4.9 shows the perplexity of the four models averaged over five folds

on the four datasets. LDA naturally outperforms the other models with labels when
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Figure 4.9: Perplexity on held-out documents, averaged over 5 folds (lower is better).

measuring perplexity since it can freely optimize the likelihood without additional

constraints. LDA does that, however, at the cost of learning less interpretable set

of topics, each of which is not associated with a predefined label.

Among the models using labels, L-LDA and L2F are comparable which shows

that soften the constraint of assigning tokens of a document to only labels associated

with that document does not help. However, L2H significantly outperforms both

L-LDA and L2F which shows that when incorporating labels, using an additional

topic hierarchy improves the predictive power and generalizability of L-LDA.
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4.5.2 Multi-label Classification

Multi-label classification is predicting a set of labels for a test document given

its text (Tsoumakas et al., 2010; Madjarov et al., 2012; Zhang and Zhou, 2014). The

prediction is from a set of pre-defined K labels and each document can be tagged

with any of the 2K possible subsets. In this experiment, we use M3L—an efficient

max-margin multi-label classifier (Hariharan et al., 2012)—to study how features

extracted from our L2H improve classification.

We use F1 as the evaluation metric. The F1 score is first computed for each

document d as F1(d) = 2 P(d) R(d)/(P(d) + R(d)), where P(d) and R(d) are the

precision and recall for document d. After F1(d) is computed for all documents, the

overall performance can be summarized by micro-averaging and macro-averaging to

obtain Micro-F1 and Macro-F1 respectively. In macro-averaging, F1 is first com-

puted for each document using its own confusion matrix and then averaged. In

micro-averaging, on the other hand, only a single confusion matrix is computed

for all documents, and the F1 score is computed based on this single confusion

matrix (Rubin et al., 2012).

Setup: We use the following sets of features:

• TF: Each document is represented by a vector of term frequency of all word

types in the vocabulary.

• TF-IDF: Each document is represented by a vector ψTF-IDF
d of TF-IDF of all

word types.
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• L-LDA&TF-IDF: Ramage et al. (2010a) combine L-LDA features and TF-IDF

features to improve the performance on recommendation tasks. Likewise, we

extract a K-dimensional vector θ̂L-LDA
d and concatenate with TF-IDF vector

ψTF-IDF
d to form the feature vector of L-LDA&TF-IDF. 9

• L2H&TF-IDF: Similarly, we concatenate TF-IDF with the features θ̂L2H
d =

{θ̂0
d, θ̂

1
d} extracted using L2H (same MCMC setup as L-LDA).

One complication for L2H is the candidate label set L1
d, which is not observed

during test time. Thus, during test time, we estimate L1
d using TF-IDF. Let Dl

be the set of documents tagged with label l. For each l, we compute a TF-IDF

vector φTF-IDF
l = avgd∈Dlψ

TF-IDF
d . Then for each document d, we generate the k

nearest labels using cosine similarity, and add them to the candidate label set L1
d of

d. Finally, we expand this initial set by adding all labels on the paths from the root

of the learned hierarchy to any of the k nearest labels (Figure 4.3). We explored

different values of k ∈ {3, 5, 7, 9}, with similar results; the results in this section are

reported with k = 5.

Results: Figure 4.10 shows classification results. For both Macro-F1 and Micro-

F1, TF-IDF, L-LDA&TF-IDF and L2H&TF-IDF significantly outperform TF. Also,

L-LDA&TF-IDF performs better than TF-IDF, which is consistent with Ramage

et al. (2010a). L2H&TF-IDF performs better than L-LDA&TF-IDF, which in turn

performs better than TF-IDF. This shows that features extracted from L2H are

9We run L-LDA on the training data for 1,000 iterations and store ten models, each 50 iterations
apart, after 500 burn-in iterations. For each model, we sample assignments for all tokens using
100 iterations and average over chains to estimate θ̂L-LDA

d .
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Figure 4.10: Multi-label classification results. The results are averaged over 5 folds.

more predictive than those extracted from L-LDA, and both improve classification.

The improvements of L2H&TF-IDF and L-LDA&TF-IDF over TF-IDF are clearer

for Macro-F1 compared with Micro-F1, which shows that features from both topic

models help improve prediction, regardless of the frequencies of their tagged labels.

4.6 Summary

In this chapter, we focus on analyzing policy agendas in legislative text using

the topic modeling approach. To improve the model’s interpretability and thus

reduce the post-analysis cost of analyzing and interpreting the results, we leverage

a set of multi-labeled data, in which each legislative text is tagged with multiple

policy agenda issues from a flexible list of labels. There are two major advantages

of using this type of labeled data over traditional single-labeled data using a fixed

coding system: (1) it captures the multi-faceted nature of many Congressional bills,

and (2) it helps reduce the pre-analysis cost of creating and maintaining the well-

defined coding system. However, the large label space also incurs new challenges

for the learning techniques. Any effective automated methods should be able to (1)

capture the dependencies among the labels and (2) handle missing annotated labels.
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We introduce L2H, a hierarchical topic model, to address these problems. L2H

captures the dependencies among labels using an interpretable tree-structured hier-

archy, in which each node is associated with a label—a pre-defined word or phrase

from the label list, and a topic—a multinomial distribution over the vocabulary.

We apply L2H on a set of legislative bill text from four U.S. Congresses. Qualita-

tive analysis of the results shows that L2H can learn interpretable label hierarchies,

which helps provide insights about the political attentions that policymakers focus

on, and how those policy issues relate to each other. Empirical results also show

the effectiveness of L2H on two computational tasks: predicting held-out words and

predicting multiple labels for unseen documents.

Specifically for the problem of studying agendas in political text, although

in this chapter we focus on using multi-labeled data with the policy agenda issues

provided by the Congressional Research Service, we are not suggesting using this

to replace the Policy Agendas Topics codebook. Instead, we want to suggest a

complementary resource with relatively cheaper pre-analysis cost for agenda-setting

research and also present a computational method to address some specific chal-

lenges that these data incur.

As discussed in Section 4.1.2, besides the multi-labeled legislative text which

is the focus of this work, multi-labeled data are ubiquitous and can be found in

various settings. One potential future direction is to apply L2H to other settings to

help improve the multi-label classification performance, which is the focus of much

recent in machine learning (Tsoumakas et al., 2010; Madjarov et al., 2012; Rubin

et al., 2012; Zhang and Zhou, 2014). In addition, another major advantage of L2H is
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the interpretable label hierarchy, which can be used to make searching and browsing

large-scale data collection more effective.
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Chapter 5: Discovering Agendas and Frames in Ideologically Polar-

ized Text

5.1 Introduction

In the two previous chapters, we have focused on developing effective topic

models to discover and analyze agenda issues from political text. In this chapter,

we go beyond agenda-setting (i.e., what topics people talk about) and expand our

focus to framing (i.e., how they talk about different issues). We introduce SHLDA—

Supervised Hierarchical Latent Dirichlet Allocation—which can discover a hierarchy

of topics from a collection of documents, each associated with the ideological score

of the author. In the learned hierarchy, first-level nodes map to agenda issues while

second-level nodes represent ideologically polarized frames of the corresponding is-

sue.

Although inspired by the study of political discourse, SHLDA is applicable to

a much broader setting: a collection of text, in which each document is associated

with a continuous response variable of interest. Examples of this type of data include

product reviews with their corresponding ratings (Pang and Lee, 2005), online sta-

tus updates with their corresponding geo-tagged latitudes and longitudes (Eisenstein
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et al., 2010), and students’ essays with their accompanying depression scores (Resnik

et al., 2013). Our model extends the nested Chinese restaurant processes to discover

tree-structured topic hierarchies and uses both per-topic hierarchical and per-word

lexical regression parameters to model the response variable. Experiments on po-

litical text and product reviews show that SHLDA is able to discover meaningful

topic hierarchies to provide insight into how issues under discussion are frames;

while improving the performance in predicting political ideologies and online review

ratings.

This chapter revises and extends the work originally published in (Nguyen

et al., 2013c).

5.1.1 Framing: Going beyond Agenda-setting to Understand How

Things are Talked About

How do liberal-leaning bloggers talk about immigration in the U.S.? What

do conservative politicians have to say about education? How do Fox News and

MSNBC differ in their language about the gun debate? Such questions concern not

only what, but how things are talked about. In the previous two chapters, we have

focused on agenda-setting, which concerns what issues are introduced into political

discourses (e.g., political debates, legislative proceedings etc) and their influence

over public priorities (McCombs and Shaw, 1993) and policy agendas (Baumgartner

and Jones, 1993b). The question of how concerns framing : the way presentation of

an issue reflects or encourages a particular perspective or interpretation (McCombs
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and Ghanem, 2001). “Framing essentially involves selection and salience. To frame

is to select some aspects of a perceived reality and make them more salient in a

communicating text, in such a way as to promote a particular problem definition,

causal interpretation, moral evaluation, and/or treatment recommendation for the

item described” (Entman, 1993, p. 52, italics originally by the author).

By highlighting a particular perspective or interpretation and deemphasizing

others, it is widely accepted that framing can have significant influence on public

opinions towards important policy issues (Scheufele, 1999; Chong and Druckman,

2007). For example, when covering news or events leading toward the application of

the death penalty, mass media might use the “morality frame” to discuss whether it

is right or wrong to kill as punishment. On the other hand, the use of the “innocence

frame” which emphasizes the irreversible consequence of mistaken convictions, has

led to a sharp decline in the use of capital punishment in the U.S. (Dardis et al.,

2008; Baumgartner et al., 2008). As another example, when discussing the issue

of legalizing marijuana, news articles might focus on different frames such as the

“economic frame” (e.g., stories emphasizing the cost of the drug war and the poten-

tial revenue through legalizing and regulating the market), the “health frame” (e.g.,

stories on the health benefits that medical marijuana can provide), and the “legal

frame” (e.g., stories on the conflicts between federal and state regularization when

marijuana becomes legal) (Boydstun and Gross, 2014).
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5.1.2 Framing as Second-level Agenda-setting

Despite its omnipresence in social sciences, framing research lacks “a com-

monly shared theoretical model” (Scheufele, 1999). Boydstun et al. (2013c) ar-

gue that “the very definition of framing has been notoriously slippery”, for which

Entman (1993) refers framing as a “scattered conceptualization” and a “fractured

paradigm”. Interestingly, one line of communication theory seeks to unify agenda

setting and framing by viewing frames as second-level agendas : just as agenda set-

ting is about which objects of discussion are salient, framing is about the salience of

attributes of those objects (McCombs, 2004). The key is that what communications

theorists consider an attribute in a discussion can itself be an object, as well. For

example, “mistaken convictions” is one attribute of the death penalty discussion,

but it can also be viewed as an object of discussion in its own right.

This two-level view leads naturally to the idea of using a hierarchical topic

model to formalize both agenda-setting and framing within a uniform setting. In

previous chapters, we have used topic models to capture agendas in which each topic

(i.e., a distribution over the vocabulary) maps to an agenda issue. In this chapter

and the next chapter, we introduce models to discover hierarchy of topics, in which

higher-level nodes in the hierarchy map to agenda issues while lower-level nodes map

to issue-specific frames.

To learn politically meaningful topics to discover frames, we jointly model the

text and its author’s ideological score—a continuous response variable. Figure 5.1

illustrates the hierarchical output that SHLDA learns. In this hierarchy, the first-
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level nodes are agenda issues while each second-level node represents a frame of the

corresponding issue. For example, the hierarchy illustrates three central political

agenda issues: “Health care”, “Environment”, and “Economy”. When discussing

the environmental issue, policymakers and the media might use different frames such

as the “nature frame” (e.g., supporting policies that prevent global warming and

opposing ), the “externalities frame” (e.g., studying the cost that the air pollution

from motor vehicles incurs on the society), and the “industry frame” (e.g., analyzing

how extreme Environmental Protection Agency regulations would hurt the industry

and create job losses) (Lakoff, 2010).

In addition to the topic, SHLDA also learns for each node regression param-

eter, which indicates where on the ideological spectrum that the node falls onto.

For example, Figure 5.1 illustrates that liberals are more likely to talk about the

environmental issue using the “nature frame”, while conservatives often focus on

discussing the “industry frame”.

EnvironmentHeath Care Economy

Background

Nature Externalities Industry

R: 0.5

R: 1.5

R: 0.0

D: 0.4D: 0.9

D: 1.4 R: 0.6

L:0.9

0.0

L:0.4 C:0.5

C:1.5C:0.6L:1.4

Figure 5.1: Example hierarchy with ideologically polarized topics that SHLDA
learns. First-level nodes map to agenda issues, while second-level nodes map to
issue-specific frames. Each node is associated with a topic (i.e., a multinomial dis-
tribution over words) and an ideological score.
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5.1.3 Framing Research: Traditional vs. Data-driven Approach

Like many concepts in political science in particular and social science in gen-

eral, traditional approach for studying framing is heavily based on close reading and

manual content analysis. However, due to its complex and abstract nature, research

on framing lacks a general framework or a shared coding system, like the Policy

Agendas Topics Codebook for studying agenda-setting, that can be used across dif-

ferent studies. In a recent study, Matthes and Kohring (2008) survey five common

methods that researchers have been using to study framing and argue “a frame is a

quite abstract variable that is hard to identify and hard to code in content analysis”.

Due to this “lack of a commonly shared theoretical model underlying framing

research” (Scheufele, 1999), much of prior research on framing is issue-specific, in

which researchers focus specifically on an issue or an event and analyze different

frames qualitatively based on relatively small samples. Although in this type of

studies, frames are analyzed extensively, it is often difficult to generalize the pro-

cess from which the frames are extracted from the materials, which makes it very

challenging to apply the same approach for different issues or events. On the other

hand, despite the challenge, Boydstun and Gross (2014) have started an ambitious

project to define a Policy Frames Codebook to examine framing both within and

across issues. Just like the Policy Agendas Topics Codebook provides a system for

categorizing policy agenda issues, the Policy Frames Codebook aims to provide a

system for categorizing frames across different policy issues (Boydstun et al., 2013c).

Different from these traditional methods, in this thesis, we take a data-driven
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approach to study framing using automated content analysis. We follow the line

of framing research, considering framing as second-level agenda-setting, to design

probabilistic topic models to discover hierarchy of topics in which higher-level nodes

map to policy agenda issue and lower-level nodes map to issue-specific frames. To

capture more interesting, interpretable frames, we jointly model the text with ad-

ditional information of political actors such as their pre-estimated ideological score

or their voting records.

Using this data-driven approach to study framing has several advantages.

First, just like other automated content analysis, it enjoys relatively low pre-analysis

cost, which allows us to study and analyze a large collection of text (Chapter 1).

Second, the discovered hierarchy of topics provides a natural way to study framing

for multiple issues discussed in the text at the same time. However, one major

drawback of using automated content analysis methods for framing study is the in-

terpretability of the discovered topic hierarchy. Learning a coherent topic hierarchy

from text is a challenging task and has been an active research area in topic modeling

community. In this chapter we present an attempt to overcome this challenge.

5.1.4 Chapter Structure

We describe the model SHLDA in detail next in Section 5.2. In Section 5.3,

we describe an inference algorithm using stochastic EM, which learns SHLDA’s

posterior distribution given the observed data. To evaluate the effectiveness of

SHLDA, we use three datasets described in Section 5.4. Section 5.5 qualitatively
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analyzes the topic hierarchies discovered by SHLDA and Section 5.6 shows SHLDA’s

improvements over various baseline methods in predicting the documents’ responses.

Section 5.7 concludes the chapter and opens up some directions for future work.

5.2 SHLDA: Capturing Text and Continuous Response using Hier-

archical Topic Structure

Jointly capturing supervision and hierarchical topic structure falls under a class

of models called supervised hierarchical latent Dirichlet allocation. These models

take as input a set of D documents, each of which is associated with a response

variable yd, and output a hierarchy of topics which is informed by yd. Figure 5.2

shows the plate notation diagram of SHLDA, whose generative process is:1
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Figure 5.2: Plate notation diagram of our SHLDA model.

1. For each node k ∈ [1,∞) in the tree

1Zhang (2012) also introduces a model called supervised hierarchical latent Dirichlet allocation
for modeling a set of documents, each of which is associated with categorical response. In this
thesis, we refer to Zhang (2012)’s model as multi-class SHLDA, which is consistent with the way
prior works named the non-hierarchical counterparts: sLDA by Blei and McAuliffe (2007) for
continuous response and multi-class sLDA by Wang et al. (2009) for categorical response.
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(a) Draw topic φk ∼ Dir(βk)

(b) Draw regression parameter ηk ∼ N (µ, σ)

2. For each word v ∈ [1, V ], draw τv ∼ Laplace(0, ω)

3. For each document d ∈ [1, D]

(a) Draw level distribution θd ∼ GEM(m,π)

(b) Draw table distribution ψd ∼ GEM(α)

(c) For each table t ∈ [1,∞), draw a path cd,t ∼ nCRP(γ)

(d) For each sentence s ∈ [1, Sd], draw a table indicator td,s ∼ Mult(ψd)

i. For each token n ∈ [1, Nd,s]

A. Draw level zd,s,n ∼ Mult(θd)

B. Draw word wd,s,n ∼ Mult(φcd,td,s ,zd,s,n)

(e) Draw response yd ∼ N (ηT z̄d + τ T w̄d, ρ):

i. z̄d,k = 1
Nd,·

∑Sd
s=1

∑Nd,s
n=1 I [kd,s,n = k]

ii. w̄d,v = 1
Nd,·

∑Sd
s=1

∑Nd,s
n=1 I [wd,s,n = v]

5.2.1 Generating Text

At its core, SHLDA’s document generative process resembles a combination of

hierarchical latent Dirichlet allocation (Blei et al., 2010b, hLDA) and the hierarchical

Dirichlet process (Teh et al., 2006, HDP), both of which we review in Chapter 2.

hLDA uses the nested Chinese restaurant process (nCRP(γ)), combined with an

appropriate base distribution, to induce an unbounded tree-structured hierarchy of

topics: each node contains one topic and general topics at the top, specific at the
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bottom. A document is generated by traversing this tree, at each level creating

a new child (hence a new path) with probability proportional to γ or otherwise

respecting the “rich-get-richer” property of a CRP.

A drawback of hLDA, however, is that each document is restricted to only a

single path in the tree. Since each path is designed to capture a consistent theme,

from more general (i.e., at higher-level nodes) to more specific (i.e., at lower-level

nodes), restricting a document to be about a theme is a relatively strong assump-

tion, especially when modeling long documents. Recent work relaxes this restriction

through different priors: nested hierarchical Dirichlet processes (Paisley et al., 2014,

nHDP), nested Chinese restaurant franchises (Ahmed et al., 2013a, nCRF) or re-

cursive Chinese restaurant processes (Kim et al., 2012, rCRP). In this chapter, we

address this problem by allowing documents to have multiple paths through the tree

by leveraging information at the sentence level using the two-level structure used

in HDP. More specifically, in the HDP’s Chinese restaurant franchise metaphor,

customers (i.e., tokens) are grouped by sitting at tables and each table takes a dish

(i.e., topic) from a flat global menu. In our SHLDA, dishes are organized in a

tree-structured global menu by using the nCRP as prior. Each path in the tree is

a collection of L dishes (one for each level) and is called a combo. SHLDA groups

sentences of a document by assigning them to tables and associates each table with

a combo, and thus, models each document as a distribution over combos.2

In SHLDA’s metaphor, customers come in a restaurant and sit at a table in

2We emphasize that, unlike in HDP where each table is assigned to a single dish, each table in
our metaphor is associated with a combo–a collection of L dishes. We also use combo and path
interchangeably.
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groups, where each group is a sentence. A sentence wd,s enters restaurant d and

selects a table t (and its associated combo) with probability proportional to the

number of sentences Sd,t at that table; or, it sits at a new table with probability

proportional to α. After choosing the table (indexed by td,s), if the table is new, the

group will select a combo of dishes (i.e., a path, indexed by cd,t) from the tree menu.

Once a combo is in place, each token in the sentence chooses a “level” (indexed by

zd,s,n) in the combo, which specifies the topic (φkd,s,n ≡ φcd,td,s ,zd,s,n) producing the

associated observation (Figure 5.3).
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Figure 5.3: Illustration of SHLDA’s restaurant franchise metaphor.
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5.2.2 Generating Responses

SHLDA also draws on supervised LDA (Blei and McAuliffe, 2007, sLDA) as-

sociating each document d with an observable continuous response variable yd that

represents the author’s perspective toward a topic, e.g., positive vs. negative sen-

timent, conservative vs. liberal ideology, etc. This lets us infer a multi-level topic

structure informed by how topics are framed with respect to positions along the yd

continuum.

Unlike sLDA, we model the response variables using a Gaussian linear re-

gression that contains both per-topic hierarchical and per-word lexical regression

parameters. The hierarchical regression parameters are just like topics’ regression

parameters in sLDA: each topic k (here, a tree node) has a parameter ηk, and the

model uses the empirical distribution over the nodes that generated a document as

the regressors. However, the hierarchy in SHLDA makes it possible to discover rela-

tionships between topics and the response variable that sLDA’s simple latent space

obscures. Consider, for example, a topic model trained on Congressional debates.

Vanilla LDA would likely discover a healthcare category. sLDA (Blei and McAuliffe,

2007) could discover a pro-Obamacare topic and an anti-Obamacare topic. SHLDA

could do that and capture the fact that there are alternative perspectives, i.e., that

the healthcare issue is being discussed from two ideological perspectives, along with

characterizing how the higher level topic is discussed by those on both sides of that

ideological debate.

Sometimes, of course, words are strongly associated with extremes on the

150



response variable continuum regardless of underlying topic structure. Therefore, in

addition to hierarchical regression parameters, we include global lexical regression

parameters to model the interaction between specific words and response variables.

We denote the regression parameter associated with a word type v in the vocabulary

as τv, and use the normalized frequency of v in the documents to be its regressor.

Including both hierarchical and lexical parameters is important. For detect-

ing ideology in the U.S., “liberty” is an effective indicator of conservative speakers

regardless of context; however, “cost” is a conservative-leaning indicator in discus-

sions about environmental policy but liberal-leaning in debates about foreign policy.

For sentiment, “wonderful” is globally a positive word; however, “unexpected” is a

positive descriptor of books but a negative one of a car’s steering. SHLDA captures

these properties in a single model.

5.3 Posterior Inference and Optimization

Given documents with observed words w = {wd,s,n} and response variables

y = {yd}, the inference task is to find the posterior distribution over: the tree

structure including topic φk and regression parameter ηk for each node k, combo

assignment cd,t for each table t in document d, table assignment td,s for each sentence

s in a document d, and level assignment zd,s,n for each token wd,s,n. We approximate

SHLDA’s posterior using stochastic EM, which alternates between a Gibbs sampling

E-step and an optimization M-step. More specifically, in the E-step, we integrate

out ψ, θ and φ to construct a Markov chain over (t, c, z) and alternate sampling
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Sd # sentences in document d
Sd,t # groups (i.e. sentences) sitting at table t in restaurant d
Nd,s # tokens wd,s

Nd,·,l # tokens in wd assigned to level l
Nd,·,>l # tokens in wd assigned to level > l
Nd,·,≥l ≡ Nd,·,l +Nd,·,>l
Mc,l # tables at level l on path c
Cc,l,v # word type v assigned to level l on path c
Cd,x,l,v # word type v in vd,x assigned to level l
φk Topic at node k
ηk Regression parameter at node k
τv Regression parameter of word type v
cd,t Path assignment for table t in restaurant d
td,s Table assignment for group wd,s

zd,s,n Level assignment for wd,s,n
kd,s,n Node assignment for wd,s,n (i.e., node at level zd,s,n on path cd,td,s)
L Height of the tree
C+ Set of all possible paths (including new ones) of the tree

Table 5.1: Notation used in this chapter

each of them from their conditional distributions. In the M-step, we optimize the

regression parameters η and τ using L-BFGS (Liu and Nocedal, 1989). Before

describing each step in detail, let us define the following quantities.

• First, define vd,x as a set of tokens (e.g., a token, a sentence or a set of sen-

tences) in document d. The conditional density of an arbitrary set of tokens

vd,x in document d being assigned to path c given all other assignments is

f−d,xc (vd,x) =

L∏
l=1

Γ(C−d,xc,l,· + V βl)

Γ(C−d,xc,l,· + Cd,x,l,· + V βl)

V∏
v=1

Γ(C−d,xc,l,v + Cd,x,l,v + βl)

Γ(C−d,xc,l,v + βl)
(5.1)

where we use vd,x,l to denote the set of tokens in vd,x that are assigned to level

l. We use Cc,l,v to denote the number of times word type v is assigned to node

at level l on path c, and Cd,x,l,v to denote the number of times word type v in

vd,x is assigned to node at level l on path c. Superscript −d,x denotes the same

count excluding the assignments of vd,x. Marginal counts are represented by
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·’s. For a new path cnew, if the node does not exist, C−d,xcnew,l,v = 0 for all word

types v.

• Second, define the conditional density of the response variable yd of document

d given the set of vd,x being assigned to path c and all other assignments

as g−d,xc (yd) ≡ P (yd | cd,x, c−d,x, z, t) which is a Gaussian with variance ρ and

mean

1

Nd,·


∑

wd,s,n∈{wd\vd,x}

ηcd,td,s ,zd,s,n︸ ︷︷ ︸
other words’ topic regression

+
L∑
l=1

ηc,l · Cd,x,l,·︸ ︷︷ ︸
vd,x’s topic regression

+

Sd∑
s=1

Nd,s∑
n=1

τwd,s,n︸ ︷︷ ︸
doc. lexical regression


(5.2)

where Nd,· is the total number of tokens in document d. For a new node at

level l on a new path cnew, we integrate over all possible values of ηcnew,l. For

new node at level l on a new path cnew, we integrate over all possible values

of ηcnew,l by using the following property of Gaussian distribution

∫
N (a+ bx; y, σx)N (y;µ, σy) dy = N (a+ bx;µ, b2σx + σy) (5.3)

Sampling t: For each group wd,s we need to sample a table td,s. The conditional

distribution of a table t given wd,s and other assignments is proportional to the

number of sentences sitting at t times the probability of wd,s and yd being observed

under this assignment. This is
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P (td,s = t | rest)

∝ P (td,s = t | t−sd ) · P (wd,s, yd | td,s = t,w−d,s, t−d,s, z, c,η)

∝


S−d,sd,t · f−d,scd,t

(wd,s) · g−d,scd,t
(yd), for existing table t;

α ·
∑

c∈C+ P (cd,tnew = c | c−d,s) · f−d,sc (wd,s) · g−d,sc (yd), for new table tnew.

For a new table tnew, we need to sum over all possible paths C+ of the tree, including

new ones. For example, the set C+ for the tree shown in Figure 5.3 consists of four

existing paths (ending at one of the four leaf nodes) and three possible new paths

(a new leaf off of one of the three internal nodes). The prior probability of path c

is:

P (cd,tnew = c | c−d,s) ∝



∏L
l=2

M−d,sc,l

M−d,sc,l−1+γl−1
, for an existing path c;

γl∗

M−d,s
cnew,l∗+γl∗

∏l∗

l=2

M−d,scnew,l

M−d,scnew,l−1+γl−1
, for a new path cnew which consists of an existing path

from the root to a node at level l∗ and a new node.
(5.4)

Sampling z: After assigning a sentence wd,s to a table, we assign each token wd,s,n

to a level to choose a dish from the combo. The probability of assigning wd,s,n to

level l is

P (zd,s,n = l | rest) ∝ P (zd,s,n = l | z−s,nd )P (wd,s,n, yd | zd,s,n = l,w−d,s,n, z−d,s,n, t, c,η)

(5.5)
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The first factor captures the probability that a customer in restaurant d is assigned

to level l, conditioned on the level assignments of all other customers in restaurant

d, and is equal to

P (zd,s,n = l | z−s,nd ) =
mπ +N−d,s,nd,·,l

π +N−d,s,nd,·,≥l

l−1∏
j=1

(1−m)π +N−d,s,nd,·,>j

π +N−d,s,nd,·,≥j
, (5.6)

The second factor is the probability of observing wd,s,n and yd, given that wd,s,n is

assigned to level l: P (wd,s,n, yd | zd,s,n = l,w−d,s,n, z−d,s,n, t, c,η) = f−d,s,ncd,td,s
(wd,s,n) ·

g−d,s,ncd,td,s
(yd).

Sampling c: After assigning customers to tables and levels, we also sample path

assignments for all tables. This is important since it can change the assignments

of all customers sitting at a table, which leads to a well-mixed Markov chain and

faster convergence. The probability of assigning table t in restaurant d to a path c

is

P (cd,t = c | rest) ∝ P (cd,t = c | c−d,t) · P (wd,t, yd | cd,t = c,w−d,t, c−d,t, t, z,η) (5.7)

where we slightly abuse the notation by using wd,t ≡ ∪{s|td,s=t}wd,s to denote the

set of customers in all the groups sitting at table t in restaurant d. The first factor

is the prior probability of a path given all tables’ path assignments c−d,t, excluding

table t in restaurant d and is given in Equation 5.4.

The second factor in Equation 5.7 is the probability of observing wd,t and yd

given the new path assignments, P (wd,t, yd | cd,t = c,w−d,t, c−d,t, t, z,η) = f−d,tc (wd,t)·
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g−d,tc (yd).

Optimizing η and τ : We optimize the regression parameters η and τ via the

likelihood,

L(η, τ ) = − 1

2ρ

D∑
d=1

(yd − ηT z̄d − τ T w̄d)
2 − 1

2σ

K+∑
k=1

(ηk − µ)2 − 1

ω

V∑
v=1

|τv|, (5.8)

where K+ is the number of nodes currently in the tree.3 This maximization is

performed using L-BFGS (Liu and Nocedal, 1989).

5.4 Data: Congress, Products, Films

In this section, we describe the three datasets that we use to evaluate SHLDA.

First, we discover and analyze agendas and frames used in a collection of floor de-

bates in the 109th U.S. Congress. Second, to show the applicability of SHLDA in

other settings, we use two online review datasets: Amazon product reviews and

movie reviews. For all datasets, we perform similar preprocessing step as in experi-

ments in Chapter 4, in which we remove stopwords, add bigrams to the vocabulary,

and filter the vocabulary using TF-IDF.

5.4.1 U.S. congressional floor debates:

We download the transcripts of the floor debates in the 109th U.S. Congress

from GovTrack and follow the preprocessing procedure described in Thomas et al.

3The superscript + is to denote that this number is unbounded and varies during the sampling
process.
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Figure 5.4: Distributions of the response variables in the three datasets.

(2006).4 First, we associate each page with a bill and each bill with a roll-call

vote. If there is no association, the page is discarded. We then segment each page

into turns, each of which is a continuous utterance by a legislator.5 Each turn is

labeled with either “Yea” or “Nay” according to the voting records. Each set of

turns corresponding to the same bill is then grouped into a debate. To consider only

“interesting” debates, we keep only the ones in which at least 20% of the turns were

labeled “Yea” and at least 20% were labeled “Nay”.

In using this corpus, we are interested in studying what agenda issues that leg-

islators with different ideologies talk about and how they talk about those issues on

the congressional floor. To approximate the ideological position of each legislator on

a liberal-conservative spectrum, we use the first dimension of the DW-NOMINATE

coordinate obtained from VoteView.6 Developed by (Poole and Rosenthal, 1997),

DW-NOMINATE and other NOMINATE-based methods are procedures to esti-

mate the positions of legislators, or often called ideal point, in a ideological space

using their voting records. Although by design, DW-NOMINATE can capture the

4http://www.govtrack.us/data/us/109/
5A turn here is equivalent to a speech segment in Thomas et al. (2006).
6http://voteview.com/dwnomin_joint_house_and_senate.htm
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ideal points in multi-dimensional space, only one or two dimensions are often used.

VoteView provides pre-estimated two dimensional ideal points, in which the first

coordinate approximately maps to positions on a liberal-conservative dimension.7

We then download information about legislators including their names, types

(either Representative or Senator), parties, states and the ICPSR ID from Gov-

Track.8 Matching legislator records from GovTrack and VoteView is done using

their ICPSR IDs. For records with missing ICPSR IDs, we manually matched using

the legislator’s name, type, state and party. After processing, our corpus contains

5,201 turns in the House, 3,060 turns in the Senate, and 5,000 words in the vocab-

ulary. Figure 5.4a shows the distribution of the ideological score.9

5.4.2 Amazon product reviews

Our second dataset is a set of Amazon reviews on products such as computers,

MP3 players, GPS devices etc, used in (Jindal and Liu, 2008; Lim et al., 2010). We

focus our analysis on the most popular products by keeping only the top 50 products

with the most reviews. After filtering, this corpus contains 37,349 reviews with a

vocabulary of 5,000 words. We use the rating associated with each review as the

response variable in our experiments. The values of these ratings range from 1 to 5

and their distribution is very skewed towards high ratings as shown in Figure 5.4b.

7More details about NOMINATE-based procedures and other ideal point models are discussed
in Chapter 6.

8ICPSR IDs are identification numbers that are issued by the Inter-university Consortium for
Political and Social Research for each Congressional member. The set of ICPSR IDs used in
our corpus are from http://www.voteview.com/icpsr.htm, which have been corrected by Keith
Poole and Howard Rosenthal.

9Data are available at http://www.cs.umd.edu/~vietan/data/debates-109112.zip.
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5.4.3 Movie reviews

Our third corpus is a set of 5,006 reviews of movies (Pang and Lee, 2005),

again using review ratings as the response variable yd, although in this corpus the

ratings are normalized to the range from 0 to 1 (Figure 5.4c). After preprocessing,

the vocabulary contains 5,000 words.

5.5 Qualitative Analysis of Topic Hierarchies
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Figure 5.5: Topics discovered from Congressional floor debates. Many first-level
topics are bipartisan (purple), while lower level topics are associated with specific
ideologies (Democrats blue, Republicans red). For example, the “tax” topic (B) is
bipartisan, but its Democratic-leaning child (D) focuses on social goals supported
by taxes (“children”, “education”, “health care”), while its Republican-leaning child
(C) focuses on business implications (“death tax”, “jobs”, “businesses”). The num-
ber below each topic denotes the magnitude of the learned regression parameter
associated with that topic. Colors and the numbers beneath each topic show the
regression parameter η associated with the topic.

We first qualitatively analyze the topic hierarchies learned by SHLDA. In Fig-

ure 5.5, a portion of the topic hierarchy induced from the Congressional debate cor-
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pus, Nodes A and B illustrate agendas—issues introduced into political discourse—

associated with a particular ideology: Node A focuses on the hardships of the poorer

victims of hurricane Katrina and is associated with Democrats, and text associated

with Node E discusses a proposed constitutional amendment to ban flag burning

and is associated with Republicans. Nodes C and D, children of a neutral “tax”

topic (value η is near zero), reveal how parties frame taxes as gains in terms of new

social services (Democrats) and losses for job creators (Republicans).10 Although a

formal coherence evaluation remains a goal for future work (Chang et al., 2009b),

a qualitative look at the topic hierarchy uncovered by the model suggests that it is

indeed capturing agenda/framing structure as discussed in Section 5.1

Figure 5.6 shows the topic structure discovered by SHLDA in the Amazon

review corpus. Nodes at higher levels are relatively neutral, with relatively small

regression parameters. These nodes have general topics with no specific polarity.

However, the bottom level clearly illustrates polarized positive/negative perspective.

For example, Node A concerns washbasins for infants, and has two polarized children

nodes: reviewers take a positive perspective when their children enjoy the product

(Node B: “loves”, “splash”, “play”) but have negative reactions when it leaks (Node

C: “leak(s/ed/ing)”).

In addition to the per-topic regression parameters, SHLDA also associates each

word with a lexical regression parameter τ . Table 5.2 shows the top ten words with

highest and lowest τ . The results are unsurprising, although the lexical regression

10This relates to a different view of framing in term of cognitive bias (Tversky and Kahneman,
1981; Ledgerwood and Boydstun, 2014)
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Figure 5.6: Topics discovered from Amazon reviews. Higher topics are general, while
lower topics are more specific. The polarity of the review is encoded in the color: red
(negative) to blue (positive). Many of the first-level topics have no specific polarity
and are associated with a broad class of products such as “routers” (Node D). How-
ever, the lowest topics in the hierarchy are often polarized; one child topic of “router”
focuses on upgradable firmware such as “tomato” and “ddwrt” (Node E, positive)
while another focuses on poor “tech support” and “customer service” (Node F, neg-
ative). The number below each topic is the regression parameter learned with that
topic.

for the Congressional debates is less clear-cut than other datasets. As we will see in

Section 5.6, for similar datasets, SHLDA’s context-specific regression is more useful

when global lexical weights do not readily differentiate documents.

5.6 Quantitative Prediction of Document Responses

For quantitative evaluation, we measure the effectiveness of SHLDA in pre-

dicting values of the response variables for unseen documents in the three datasets.

For comparison we consider these baselines:

• Multiple linear regression (MLR) models the response variable as a linear
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Dataset
Top 10 words with positive
weights

Top 10 words with negative
weights

Debates

bringing, private property, illegally,
tax relief, regulation, mandates,
constitutional, committee report,
illegal alien

bush administration,
strong opposition, ranking, repub-
licans, republican leadership, secret,
discriminate, majority, undermine

Amazon
Reviews

highly recommend, pleased, love, loves,
perfect, easy, excellent, amazing, glad,
happy

waste, returned, return, stopped, leak,
junk, useless, returning, refund, terrible

Movie
Reviews

hilarious, fast, schindler, excellent, mo-
tion pictures, academy award, perfect,
journey, fortunately, ability

bad, unfortunately, supposed, waste,
mess, worst, acceptable, awful, sup-
pose, boring

Table 5.2: Top words based on the global lexical regression coefficient, τ . For the
floor debates, positive τ ’s are Republican-leaning while negative τ ’s are Democrat-
leaning.

function of multiple features (or regressors). Here, we consider two types of

features: topic-based features and lexically-based features. Topic-based MLR,

denoted by MLR-LDA, uses the topic distributions learned by vanilla LDA

as features (Blei and McAuliffe, 2007), while lexically-based MLR, denoted by

MLR-VOC, uses the normalized frequencies of words in the vocabulary as

features. MLR-LDA-VOC uses both features.

• Support vector regression (SVM) is a discriminative method (Joachims, 1999)

that uses LDA topic distributions (SVM-LDA), word frequencies (SVM-

VOC), and both (SVM-LDA-VOC) as features.11

• Supervised topic model (sLDA): we implemented sLDA using Gibbs sampling.

The version of sLDA we use is slightly different from the original sLDA de-

scribed in (Blei and McAuliffe, 2007), in that we place a Gaussian priorN (0, 1)

over the regression parameters to perform L2-norm regularization. 12

11http://svmlight.joachims.org/
12This performs better than unregularized sLDA in our experiments.

162

http://svmlight.joachims.org/


Models
Floor Debates Amazon Movie

House-Senate Senate-House Reviews Reviews
pcc ↑ mse ↓ pcc ↑ mse ↓ pcc ↑ mse ↓ pcc ↑ mse ↓

SVM-LDA10 0.173 0.861 0.08 1.247 0.157 1.241 0.327 0.970
SVM-LDA30 0.172 0.840 0.155 1.183 0.277 1.091 0.365 0.938
SVM-LDA50 0.169 0.832 0.215 1.135 0.245 1.130 0.395 0.906
SVM-VOC 0.336 1.549 0.131 1.467 0.373 0.972 0.584 0.681

SVM-LDA-VOC 0.256 0.784 0.246 1.101 0.371 0.965 0.585 0.678
MLR-LDA10 0.163 0.735 0.068 1.151 0.143 1.034 0.328 0.957
MLR-LDA30 0.160 0.737 0.162 1.125 0.258 1.065 0.367 0.936
MLR-LDA50 0.150 0.741 0.248 1.081 0.234 1.114 0.389 0.914
MLR-VOC 0.322 0.889 0.191 1.124 0.408 0.869 0.568 0.721

MLR-LDA-VOC 0.319 0.873 0.194 1.120 0.410 0.860 0.581 0.702
sLDA10 0.154 0.729 0.090 1.145 0.270 1.113 0.383 0.953
sLDA30 0.174 0.793 0.128 1.188 0.357 1.146 0.433 0.852
sLDA50 0.254 0.897 0.245 1.184 0.241 1.939 0.503 0.772
SHLDA 0.356 0.753 0.303 1.076 0.413 0.891 0.597 0.673

Table 5.3: Regression results for Pearson’s correlation coefficient (pcc, higher is better
(↑)) and mean squared error (mse, lower is better (↓)). Results on Amazon product
reviews and movie reviews are averaged over 5 folds. Subscripts denote the number of
topics for parametric models. For SVM-LDA-VOC and MLR-LDA-VOC, only best
results across K ∈ {10, 30, 50} are reported. Best results are in bold.

For parametric models (LDA and sLDA), which require the number of topics

K to be specified beforehand, we use K ∈ {10, 30, 50}. We use symmetric Dirichlet

priors in both LDA and sLDA, initialize the Dirichlet hyperparameters to 0.5, and

use slice sampling (Neal, 2003) for updating hyperparameters. For sLDA, the vari-

ance of the regression is set to 0.5. For SHLDA, we use trees with maximum depth

of three. We slice sample m, π, β and γ, and fix µ = 0, σ = 0.5, ω = 0.5 and ρ = 0.5.

We found that the following set of initial hyperparameters works reasonably well

for all the datasets in our experiments: m = 0.5, π = 100, ~β = (1.0, 0.5, 0.25),

~γ = (1, 1), α = 1. We also set the regression parameter of the root node to zero,

which speeds inference (since it is associated with every document) and because it

is reasonable to assume that it would not change the response variable.
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To compare the performance of different methods, we compute Pearson’s cor-

relation coefficient (pcc) and mean squared error (mse) between the true and pre-

dicted values of the response variables and average over 5 folds. For the Congres-

sional debate corpus, following Yu et al. (2008), we use documents in the House to

train and test on documents in the Senate and vice versa.

Results and analysis: Table 5.3 shows the performance of all models on our three

datasets. Methods that only use topic-based features such as SVM-LDA and MLR-

LDA do poorly. Methods only based on lexical features like SVM-VOC and MLR-

VOC outperform methods that are based only on topic features significantly for

the two review datasets, but are comparable or worse on congressional debates.

This suggests that reviews have more highly discriminative words than political

speeches (Table 5.2). Combining topic-based and lexically-based features improves

performance, which supports our choice of incorporating both per-topic and per-

word regression parameters in SHLDA.

In all cases, SHLDA achieves strong performance results. For the two cases

where SHLDA was second best in mse score (Amazon reviews and House-Senate),

it outperforms other methods in pcc. Doing well in pcc for these two datasets

is important since achieving low mse is relatively easier due to the response vari-

ables’ bimodal distribution in the floor debates and positively-skewed distribution

in Amazon reviews. For the floor debate dataset, the results of the House-Senate

experiment are generally better than those of the Senate-House experiment, which

is consistent with previous results and is explained by the greater number of debates
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in the House (Yu et al., 2008).

5.7 Conclusion

5.7.1 Summary

In this chapter, we go beyond studying agendas—the focus of Chapters 3 and 4

and expand our focus to discovering and analyzing framing—tackling the question of

how agenda issues are talked about. We are particularly interested in understanding

how policymakers with different ideologies talk about various policy issues in U.S.

Congress. We present SHLDA, a supervised hierarchical nonparametric topic model,

to discover a tree-structured topic hierarchy, in which top-level topics map to agenda

issues and bottom-level topics represents issue-specific frames that policymakers

with different ideologies.

Although motivated by studying framing in political discourse, the model we

introduce, SHLDA, is applicable to a broader setting of text, which are associated

with continuous responses of interest. Besides congressional floor debates with the

accompanying ideological scores of the speakers, we also apply SHLDA on modeling

online reviews with their associated rating scores. We show qualitatively that the

topic hierarchies learned by SHLDA indeed capture the two-level agenda/framing

structure in line with the theory that motivates the work. Experimental results on

both political and review data show that SHLDA can improve the performance of

predicting political ideologies and review ratings over commonly used baselines.
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5.7.2 Discussions and Future Directions

SHLDA extends state-of-the-art hierarchical nonparametric topic models to

learn topic hierarchies. Without requiring any topic labels, SHLDA enjoys a low

pre-analysis cost which is similar to traditional unsupervised topic models. Quali-

tative analysis reveals that the discovered topic hierarchies are meaningful and can

potentially provide insights to discover and study agenda-setting and framing in po-

litical text. However, due to the complex and abstract nature of framing as described

in Section 5.1.2, hierarchical topics modeled by multinomial distributions over the

vocabulary, which are usually represented by lists of most probable words as shown

in Figures 5.5 and 5.6, still incur moderately high post-analysis cost. In this chapter,

we alleviate the problem by jointly modeling the text and pre-estimated authors’

ideological scores—readily available metadata with no additional cost. However,

improving the interpretability of the discovered topic hierarchies in general is still a

challenging problem. In Chapter 6, we address this problem by leveraging existing

labeled data to learn prior distributions for topics representing agenda issues that

help discover more interpretable topic hierarchies.

In this chapter, we use a tree-structured hierarchy of topics, as the one shown

in Figure 5.1, to capture issue-specific framing. Thanks to the flexibility of the

nCRP prior, SHLDA can learn tree structures with unbounded width and depth.

To discover agenda-setting and framing as second-level agenda setting, we limit the

number of levels in the tree to be three: one root node to capture shared back-

ground topic, first-level nodes correspond to agenda issues and second-level nodes
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correspond to issue-specific frames. We also use this particular three-level hierar-

chy in designing the model to capture framing as second-level agenda setting more

explicitly in the next chapter.

In addition, each node in a tree has at most one parent. This property allows

us to capture issue-specific frames in which a low-level node corresponds to a frame

that is a more specific subtopic of its parent node. For example, a node with the

topic on legalizing marijuana might have children nodes which discuss subtopics such

as the cost the the drug war, the benefits of medical marijuana, and the conflicts be-

tween state-level and federal-level legal systems when marijuana is legalized only in

some states. These subtopics, under the assumptions of our models, are specifically

about the legalizing marijuana topic. Conceptually, however, one could consider

the above subtopics an economic frame, a health frame, and a legal frame respec-

tively, which can be shared across different topics. One example of this approach

is the Policy Frames Codebook which defines frame categories such as “Economic”,

“Capacity & Resources”, “Morality & Ethics” and “Fairness & Equality” that are

applicable across multiple policy issues like abortion, immigration, and marriage

equality (Boydstun et al., 2013c). We consider capturing this type of framing an

interesting direction for future work, which can draw upon various existing relevant

computational methods such as using a directed acyclic graph (DAG) instead of a

tree with PAM-like topic models (Li and McCallum, 2006; Li et al., 2007; Mimno

et al., 2007) or combining additively the effects of multiple topics in the log space

with SAGE (Eisenstein et al., 2011), factorial LDA (Paul and Dredze, 2012), struc-

tural topic model (Roberts et al., 2014), and SPRITE (Paul and Dredze, 2015).
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Chapter 6: Discovering Agendas and Frames from Roll Call Votes

and Text

6.1 Introduction

In the previous chapter, we propose a hierarchical topic model to discover

agendas and frames from political text. The model learns a hierarchy of topics where

top-level topics correspond to more general agenda issues and bottom-level topics

correspond to issue-specific frames. To discover frames used by legislators with

different ideologies, the model jointly captures the text and the first dimension of

DW-NOMINATE score—a commonly used quantity estimated from voting records

to approximate the position, or the ideal point, of lawmakers on a single liberal-

conservative dimension (Poole and Rosenthal, 2007). In reality, however, people

might hold different positions on different issues, which motivates work on estimating

lawmakers’ ideologies using multi-dimensional ideal points.

One major disadvantage of multi-dimensional ideal point models is that the

estimated dimensions are often difficult to interpretable. To mitigate this problem,

recent research has introduced methods to estimate multi-dimensional ideal points

using both voting data and the associated text. One popular approach is to use
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topic models to discover topics from bill text, each of which maps to a dimension

of the ideal point space (Gerrish and Blei, 2012; Lauderdale and Clark, 2014; Gu

et al., 2014; Sim et al., 2015).

Following this approach, in this chapter, we introduce HIPTM, a Hierarchical

Ideal Point Topic Model, which estimates multi-dimensional ideal points of legis-

lators using their votes and speeches as well as the bill text. We improve the in-

terpretability of ideal points’ dimensions by leveraging existing labeled data from

the Congressional Bills Project. Using these data, our ideal point model contains

19 dimensions, each of which corresponds to a major topic in the Policy Agendas

Topics Codebook. In addition, HIPTM discovers a hierarchy of topics, which allows

us to analyze both agenda issues and issue-specific frames that legislators use on the

congressional floor.

We first use HIPTM as a tool for exploratory data analysis. We apply HIPTM

to qualitatively analyze how Republican legislators vote and talk in the 112th U.S.

Congress with respect to the Tea Party movement, a recent American political

movement which has attracted a great deal of attention from both the public and

academic scholars. We analyze (1) the difference in ideological positions on different

issues of members of the Tea Party Caucus—the first institutional organization for

the Tea Party movement—in comparison with other legislators with no Tea Party

Caucus membership and (2) what policy agenda issues that Republican legislators

pay attention to and how these issues are framed by legislators with different po-

sitions on the Tea Party. Then, we quantitatively show the effectiveness of our

HIPTM model in capturing the “Tea Partiness” of legislators from their votes and
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text by conducting experiments on classifying Tea Party Caucus membership.

In the remainder of this chapter, we briefly introduce ideal point models,

compare one-dimensional with multi-dimensional ideal points, discuss how recent

work incorporates text to improve the interpretability of multi-dimensional ideal

point models, and motivate the focus of our analysis on the Tea Party in the House

of Representatives.

6.1.1 A Brief Overview of Ideal Point Models

In Chapter 5, we use the DW-NOMINATE score estimated by Lewis and

Poole (2004) to approximate how liberal or conservative a legislator is. Estimating

positions (or preferences) of political actors in the ideological space, like the DW-

NOMINATE score on the liberal-conservative spectrum, has been a fundamental

component of contemporary political science research. These positions are often

called ideal points and methods to estimate them are ideal point models, an appli-

cation of the item response theory.

Item response theory (IRT) is a popular approach used for describing proba-

bilistic relationship between observed responses on a set of items by a set of respon-

ders who are characterized by some continuous latent traits (Fox, 2010). Pioneered

by Lord (1953) and Rasch (1961), one of an IRT’s early uses is to esimate par-

ticipants’ scores on standardized tests. Since then, IRT has been widely applied

on many problems in a wide range of research disciplines, some recent examples of

which include alcohol disorder (Feske et al., 2007; Beseler et al., 2010), psychiatric
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epidemiology (Tsutsumi et al., 2009) and nicotine dependence symptoms (Rose and

Dierker, 2010).

Legislator
Roll Call Number

18 32 96 149
David McKinley (R-WV) Yea Yea Yea Nay
Jeff Flake (R-AZ) Yea Yea Yea Yea
Justin Amash (R-MI) Yea Yea Yea Yea
Timothy Bishop (D-NY) Yea - Yea Yea
Robert Andrews (D-NJ) Nay Nay Yea Nay
Suzanne Bonamici (D-OR) - - Yea Nay

Table 6.1: Example voting records of legislators in the 112th House of Representa-
tives. A legislator might not vote on a bill, which is denoted by ‘-’ in this table.

In political science, ideal point models are IRT models which estimate political

preferences, called ideal points, of lawmakers (i.e., the latent traits) from binary data

such as legislative votes or judicial decisions (i.e., the observed responses). Figure 6.1

shows an example of a set of roll call votes in the 112th U.S. Congress. A popular

formulation of one-dimensional ideal point models, based on which we develop our

model in this chapter, posits an ideal point ua ∈ R for each lawmaker u, a polarity

xb ∈ R and a popularity yb ∈ R for each bill b (Martin and Quinn, 2002; Bafumi

et al., 2005; Gerrish and Blei, 2011). The probability that lawmaker u votes “Yes”

on bill b is

p(va,b = Yes |ua, xb, yb) = Φ(uaxb + yb) (6.1)

where Φ(α) = exp(α)/(1 + exp(α)) is the logistic (or inverse-logit) function.1 In-

tuitively, most lawmakers will vote “Yes” on bills with high popularity yb and vote

“No” on bills with low yb. When the popularity of a bill is near zero, the outcome of

1A probit function is also often used where Φ(α) is instead the cumulative distribution function
of a Gaussian distribution (Martin and Quinn, 2002).
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va,b depends on the interaction between the lawmaker’s ideal point ua and the bill’s

polarity xb. Under this setting, a legislator with ideal point ua will more likely to

vote “Yes” on a bill b if ua > −yb/xb.

In one-dimensional ideal point models, if two legislators have similar ideal

points, they will vote similarly on every bill. To capture the intuition that people

might hold different positions on different policy issues, various works have been

done to extend these models to multi-dimensional space. In multi-dimensional ideal

point models, the ideal point of each legislator is no longer characterized by a scalar,

but a multi-dimensional vector ua ∈ RK (Heckman and Jr., 1997; Jackman, 2001;

Clinton et al., 2004). Extending from Equation 6.1, the probability that lawmaker

u votes “Yes” on bill b in multi-dimensional ideal point models is

p(va,b = Yes |ua,xb, yb) = Φ(uTaxb + yb) ≡ Φ

(
K∑
k=1

ua,kxb,k + yb

)
(6.2)

6.1.2 On the Dimensionality of Ideal Points

Arguably, one of the most influential methods for ideal point estimation in

political science is the nominal three-step estimation procedure, or more commonly

known as NOMINATE, by Poole and Rosenthal (1997). Poole and Rosenthal (1985,

1987) develop the original NOMINATE model which estimates one-dimensional ideal

points of legislators in U.S. Congress. Subsequently, different variants of NOMI-

NATE are developed: D-NOMINATE (Poole and Rosenthal, 1991), W-NOMINATE (Poole

and Rosenthal, 1997), Common Space NOMINATE (Poole, 1998), and DW-NOMINATE—
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the latest version which we use in developing SHLDA in Chapter 5 (McCarty et al.,

1997). More details about the development of these models can be found in Poole

and Rosenthal (1997), Poole and Rosenthal (2001) and Carroll et al. (2009).2,3

Although all these extensions of NOMINATE are multi-dimensional by design,

in practice, only one or two dimensions are often used. Analyzing roll call votes

in the U.S. Congress from 1959–1980, Poole and Daniels (1985) report that “a

single liberal-conservative dimension accounts for more than 80% of the variance

in the ratings. A second dimension, associated with party unity, accounts for 7%

of the variance.” Similarly, Grofman and Brazill (2002) observe a “fundamental

unidimensionality in the data on Supreme Court voting patterns 1951–1993”. Hix

et al. (2006) analyze two dimensions of politics in the European Parliament: the

main dimension is “the classic left-right dimension found in domestic politics”, while

the second dimension captures “government-opposition conflicts as well as national

and European party positions on European integration”.

Despite the successes of ideal point models using one or two dimensions in

fitting the observed roll call data statistically, many scholars have debated and ar-

gued for using higher dimensional models (Koford, 1989; Wilcox and Clausen, 1991;

Poole et al., 1991; Snyder Jr, 1992; Carmines and D’Amico, 2015). For example,

by splitting up the roll call data into “subsets of relatively homogeneous subject

matter” to analyze ideal points, Crespin and Rohde (2010) find that “voting is mul-

tidimensional and members do not vote in a consistent ideological fashion across

2Descriptions of different NOMINATE models are also described at http://www.voteview.

com/page2a.htm.
3Estimated ideal points with other related data can be found at http://www.voteview.com/.
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all issue areas”. Lauderdale and Clark (2014) provide two main obstacles which

have prevented scholars from moving beyond two dimensions. First, when moving

to more than two dimensions, the dimensions are less politically interpretable. Sec-

ond, binary data most commonly used such as roll call votes or judical decisions are

“insufficiently informative to support analyses beyond one or two dimensions using

multidimensional scaling methods”. To overcome these difficulties, recent work has

proposed multi-dimensional ideal point models to jointly capture both the binary

votes and the associated text.

6.1.3 Scaling Multi-dimensional Ideal Points using Votes and Text

As discussed in previous chapters of this thesis, topic models such as LDA and

many of its extensions provide us a useful set of tools to extract thematic structure

from a large collection of documents. Applying topic models to political text, we

can extract topics, each of which is a multinomial distribution over words and can

map to a political agenda issue. By modeling both the votes and the text jointly,

recent work discovers multi-dimensional ideal points, each of which is associated

with a topic.

For example, Gerrish and Blei (2012) introduce the issue-adjusted ideal point

model, which posits that each legislator a is characterized by a base ideal point

ua ∈ R and an issue-adjusted vector za ∈ RK . The model captures both the votes

and the text associated with the bills and define the probability of lawmaker a voting
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“Yes” on bill b as

p(va,b = Yes |ua, za, xb, yb,wb) = Φ

(
(
K∑
k=1

za,kθb,k + ua)xb + yb

)
(6.3)

where θb denotes the topic proportion of bill b estimated from its text wb. Also

extending the multi-dimensional model described in Equation 6.2, Gu et al. (2014)

introduce the topic-factorized ideal point model (TF-IPM), which defines

p(va,b = Yes |ua,xb, yb,wb) = Φ

(
K∑
k=1

θd,kua,kxb,k + yb

)
(6.4)

where again θb denotes the estimated topic proportion of bill b.

Following Jackman (2001) who uses a probit model instead, Lauderdale and

Clark (2014) define

va,b =


Yes, if v′a,b ≥ 0;

No, if v′a,b < 0.

where v′a,b ∼ N

(
xb

K∑
k=1

θb,kua,k + yb

)
(6.5)

In this model, a bill b has a one-dimensional polarity xb as in Equation 6.1. The

quantity
∑K

k=1 θb,kua,k can be seen as a vote-specific ideal point of voter ua on bill b,

which essentially is the average of voter a’s K-dimensional ideal points ua weighted

by bill b’s estimated topic proportions θb. Sim et al. (2015) use a similar framework

studying judical decisions of the U.S. Supreme Court to incorporate text authored

by amici curiae (“friends of the court” separate from the litigants) who seek to weigh

in on the decision.
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6.1.4 Tea Party in the House

The recent rise of the Tea Party in U.S. politics, with its complex political

views, provides an excellent case to study multi-dimensional ideologies. The Tea

Party movement is an American political movement which has attracted much recent

attention from both the media and social science scholars. The movement burst into

the public attention after President Barack Obama passed the American Recovery

and Reinvestment Act of 2009 (ARRA), more commonly known as the “Stimulus

bill” in February 2009 to address the fiscal crisis by providing temporary relief

programs in infrastructure, education, health, federal tax etc. Widely attributed as

“amorphous, grassroots, bottom-up, anti-government” (Gervais and Morris, 2012),

the Tea Party movement began as a series of small rallies centered on demands

for limited government and lower taxes, and gradually formed a mix of grassroots

networks assembled by local organizers and national organizations such as the Tea

Party Express, the Tea Party Patriots and Freedom Works (Williamson et al., 2011).

Within a short period of time, the Tea Party movement had created a huge

amount of energy vilifying President Obama and congressional Democrats, and

protesting their agendas on various issues including economic, environmental, and

health care. In July 2010, taking advantage of the energy, the Tea Party Caucus,

the first institutional organization for the Tea Party movement, was founded by

Representative Michele Bachmann (R-MN). The caucus immediately attracted sev-

eral dozen legislators, all from the Republican Party, and has become increasingly

prominent on the U.S. political scene.
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Despite being the focus of much recent public attention, understanding and ex-

plaining the Tea Party and its ideologies are still extremely challenging, as Carmines

and D’Amico (2015) observe: “Conventional views of ideology as a single-dimensional,

left-right spectrum experience great difficulty in understanding or explaining the Tea

Party.” Recent research argues that the Tea Party is just a rebranding of Repub-

licanism (Williamson et al., 2011; Skocpol and Williamson, 2012). They also show

that, while Tea Partiers are notable for their opposition against the Affordable Care

Act, or ObamaCare, they are supporters of long-standing federal social programs

like Social Security, Medicare, and generous benefits for military veterans. Some

have suggested that the Tea Party is primarily based on the opposition to President

Obama and racial resentment (Barreto et al., 2011; Maxwell and Parent, 2012),

while others argue that the Tea Party is mainly a religious movement (Clement and

Green, 2011).

6.1.5 Main Contributions

In this chapter, following the multi-dimensional ideal point approach, we intro-

duce HIPTM—a Hierarchical Ideal Point Topic Model—to jointly capture the votes

and the text associated with both legislators and bills. The main contributions of

our work in this chapter includes

• By using the votes and the associated text from both legislators and bills, our

model jointly discovers (1) a hierarchy of topics which captures agenda issues

and issue-specific frames, and (2) ideal points in multiple dimensional space.
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• By leveraging existing labeled data from the Congressional Bills Project, we

discover ideal points in multiple interpretable dimensions, each of which maps

to an issue in the widely used Policy Agendas Topics Codebook. While pre-

vious multi-dimensional ideal point models learn a topic—a distribution over

words—for each dimension, we also associate each topic with a predefined label

to improve the interpretability and reduce post-analysis cost.

• By using a two-level hierarchical structure to model legislators’ speeches, we

go beyond discovering topics associated with agenda issues and also learn

issue-specific frames, each of which has a position on the corresponding ideal

point dimension. The discovered frames not only help analyze the framing

behaviors of legislators on different issues, but also provide a way to estimate

multi-dimensional ideal points of new legislators using their text only.

Figure 6.1 illustrates an overview of the outputs expected from our model HIPTM.

We present the model in detail in the next section and describe the inference

algorithm that we use to infer the posteriors over latent variables from observed

data in Section 6.3. In Section 6.4, we describe the data that we collect before

presenting our analysis on the different positions on various policy agenda issues

of members and non-members of the Tea Party Caucus using their voting records

on the collection of key votes selected by Freedom Works. We analyze the topic

hierarchy discovered by HIPTM to understand what legislators pay attentions to

and how they frame different issues in Section 6.5. In Section 6.6, we quantitatively

evaluate the effectiveness of our model in capturing the “Tea Partiness” of legislators
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Figure 6.1: Overview of HIPTM’s outputs: (1) first-level nodes map to policy issues,
each of which corresponds to a major topic in the Policy Agendas Topics codebook,
(2) second-level nodes map to issue-specific frames, and (3) each frame node and
each lawmaker are associated with an issue-specific ideological position.

via experiments on classifying whether they are members of the Tea Party Caucus—

an institutional organization of the Tea Party movement. Section 6.7 concludes the

chapter with a summary and some directions for future work.

6.2 Hierarchical Ideal Point Topic Model

Our model takes as input a collection of votes {va,b}, each of which is a binary

response of voter a ∈ [1, A] on item b ∈ [1, B]. In addition to the votes, the data

also contain two different sets of text: (1) a collection of D documents {wd}, each

of which is authored by a voter ad, and (2) a collection of B documents {w′b},

each of which describes an item b. More specifically in the legislative context,

there are A legislators voting on B bills. The text content of bill b is w′b and wd

denotes a speech that legislator ad gives on the congressional floor. Note that even
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though congressional speeches are usually specific about a certain bill or a collection

of related bills, in general we are not making any assumptions about the mapping

between wd and w′b. This allows our model to be applicable to more general settings

where wd can be text authored by legislator ad that is obtained from various other

sources such as blogs, social media, press releases etc. Figure 6.2 shows the plate

notation diagram of the HIPTM, which has the following generative process:

1. For each issue k ∈ [1, K]

(a) Draw a global distribution over frames ψk ∼ GEM(λ0)

(b) Draw a topic φk ∼ Dirichlet(β, φ?k)

(c) For each frame j ∈ [1,∞)

i. Draw a topic φk,j ∼ Dirichlet(β, φk)

ii. Draw ηk,j ∼ N (0, γ)

2. For each document d ∈ [1, D]

(a) Draw a topic proportion θd ∼ Dirichlet(α)

(b) For each issue k ∈ [1, K], draw a distribution over frames ψd,k ∼ DP(λ, ψk)

(c) For each token n ∈ [1, Nd]

• Draw an issue zd,n ∼ Multinomial(θd)

• Draw a frame given the issue td,n ∼ Multinomial(ψd,zd,n)

• Draw a word type wd,n ∼ Multinomial(φzd,n,td,n)

3. For each voter a ∈ [1, A] on each issue k ∈ [1, K]

• Draw issue-specific ideal point ua,k ∼ N (
∑Jk

j=1 ψ̂a,k,jηk,j, ρ)
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4. For each bill b ∈ [1, B]

• Draw a polarity xb ∼ N (0, σ) and a popularity yb ∼ N (0, σ)

• Draw topic proportion ϑb ∼ Dirichlet(α)

• For each token m ∈ [1,Mb]

– Draw an issue z′b,m ∼ Multinomial(ϑb)

– Draw a word type w′b,m ∼ Multinomial(φz′b,m)

5. For each vote va,b of voter a on bill b

• p(va,b = Yes |ua, xb, yb, ϑ̂b) = Φ
(
xb
∑K

k=1 ϑ̂b,kua,k + yb

)
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Figure 6.2: Plate notation diagram of our HIPTM model.
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6.2.1 Defining the Topic Hierarchy

With the goal of analyzing agendas and frames in mind, we specifically design

our topic hierarchy with two levels of nodes: (1) issue nodes at the first level to

capture different agenda issues, and (2) frame nodes at the second level to capture

issue-specific frames. More specifically, there are K issue nodes, each having a topic

φk drawn from a Dirichlet distribution with concentration parameter α and a prior

mean vector φ?k, i.e., φk ∼ Dirichlet(β, φ?k).

To improve the interpretability of the topics, we use K = 19 issue nodes, where

each of which maps to a major topic in the Policy Agendas Topics Codebook. To

ensure the mapping, we estimate prior distributions {φ?k} using labeled data from

the Congressional Bills Project. As discussed in Chapter 4, the Congressional Bills

Project provides a large collection of labeled congressional bill text, each tagged with

a major topic from the Policy Agendas Topics Codebook. We obtain these labeled

data and represent each labeled document as a term-frequency vector. Then, we

obtain the prior distribution φ?k for an issue k by averaging the vectors of all bills

labeled with k and normalizing the averaged vector.4 Table 6.2 shows words with

highest weights for each prior vector.

Similar to the way L2H captures the relationship between topic of a node and

its parent’s topic in Chapter 4, the topic φk,j at each frame node is drawn from a

Dirichlet distribution whose mean is the topic φk at the corresponding issue node,

i.e., φk,j ∼ Dirichlet(β, φk). In our topic hierarchy, the number of issue nodes is

4Labels are obtained from the Congressional Bills Project and the bill text are from the Library
of Congress as in Chapter 4.
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Agriculture: food; agriculture; loan; farm; crop; dairy; rural; conserve; commodity; eligible; farmer; margin;
milk; contract; nutrition; livestock; plant
Banking, Finance, and Domestic Commerce: insure; bank; patent; mortgage; loan; commission; issuer;
director; fee; application; contract; transaction; property; internet; flood insurance; code; file
Civil Rights, Minority Issues, and Civil Liberties: vote; entity; abortion; violation; ballot; civil; attor-
ney; employment; commission; discrimination; cybersecurity; disclosure; notice; privacy; breach; notification;
data
Community Development and Housing Issues: mortgage; reside; loan; eligible; property; enterprise;
qualification; income; resident; urban development; foreclosure; neighborhood; rehability; homeless; rental
Defense: unit; army force; transfer; army; contract; acquisition; subsection; air force; homeland security;
nuclear; personnel; public law; nation defense; navy; command
Education: student; local educcation; teacher; eligible; academic; elementary; instruct; assess; literacy;
parent; secondary education; award; evaluation; grade; english; teach
Energy: oil; electricity; fuel; shelf; outer continent; pipeline; facility; environment; qualification; re-
new energy; energy efficiency; interior; energy policy; exploration
Environment: chemical; substance; fish; conservatory; fishery; marine; coastal; ecosystem; habitat; species;
discharge; environment protection; region; council; gulf coast; waste; pollution control; treatment; environ-
ment
Foreign Trade: unit; duty; tariff; harmony; schedule; suspend; date; suspense; enter; consumption; ef-
fect date; assembly; temporary; session; insert; chapter; trade
Government Operations: commission; unit; postal service; code; execute; transfer; coin; candidate; do-
mestic; official; contract; postal; expend; vote; salary; inspector; partner
Health: drug; medicine; coverage; disease; public health; hospital; social security; health insurrance; patient;
application; treatment; payment; physician; nurse; clinic
International Affairs and Foreign Aid: internal; foreign; iran; sanction; human; syria; export; congression;
bank; israel; democracy; freedom; diplomat; foreign affair; financial institution; army; violate; official
Labor, Employment, and Immigration: employment; immigration; labor; paragraph; eligible; status;
compensation; application; wage; homeland security; unemployment; board; violation; file; perform; mine
Law, Crime, and Family Issues: attorney; criminal; offense; child; sexual assault; crime; domestic violence;
firearm; court; abuse; offend; law enforcement; violate; traffick; prison; investigation; justice; gang
Macroeconomics: internal revenu; income; property; qualify; corporation; treat; calendar; december; de-
ductible; partnership; effect date; excess; extension; income tax
Public Lands and Water Management: indian; river; indian tribe; tribe; tribal; acre; interior; map;
federal land; national forest; boundary; property; country; native hawaiian; bureau; recreation; trust; creek;
park
Social Welfare: social security; disable; eligible; payment; social; food; nutrition; insurance; employment;
income; poverty; earn; calendar
Space, Science, Technology and Communications: spectrum; cybersecurity; director; public safety;
network; internet; broadband; critical infrastructure; mobile; federal agency; cyber; license; disclosure; band;
computer
Transportation: transport; highway; motor vehicle; metropolitan; airport; freight; rail; carrier; chapter;
driver; motor; october; traffic; paragraph; surface transport

Table 6.2: Words with highest weights in the priors φ?k for 19 Policy Agendas Topics,
estimated by using labeled data from the Congressional Bills Project.

fixed to leverage existing resources from research on policy agendas. Given each

issue, the number of frames is unbounded. In particular, for each issue k, we draw a

global distribution over an infinite number of frames using a stick breaking process

ψ0,k ∼ GEM(λ0), which we reviewed in Chapter 2.

We also associate each frame node with an ideal point ηk,j ∼ N (0, γ) which

captures the position of the given frame on the issue-specific ideal point dimen-

sion. This is similar to the conventional way that supervised topic models such as
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sLDA (Blei and McAuliffe, 2007) and SHLDA (Nguyen et al., 2013c, Chapter 5) dis-

cover topics that are polarized on the spectrum of the associated response variable.

Unlike SHLDA, in which each node in the unbounded hierarchy has one regression

parameter, in HIPTM we assume a two-level hierarchy to specifically capture the

two-level model of agenda-setting described in Chapter 1. In this hierarchical struc-

ture, first-level nodes map to agenda issues, which we treat as non-polarized, and

second-level nodes map to issue-specific frames, which we assume polarize on the

issue-specific dimension.

6.2.2 Generating Congressional Speeches

As mentioned above, one of our model’s goals is to study how legislators frame

various policy agenda issues on the congressional floor. To achieve that, we ana-

lyze congressional speeches {wd}, each of which is delivered by a legislator ad. To

generate each token wd,n of a speech d, legislator ad will (1) first choose an issue

zd,n from a document-specific multinomial distribution θd, (2) then choose a frame

td,n from the set of infinitely many possible frames of the given issue zd,n using the

frame proportion ψd,k drawn from a Dirichlet process, and (3) finally choose a word

type from the chosen frame’s topic φzd,n,td,n .

Like LDA, to define the prior distribution for the topic proportion θd of each

speech d, we use a symmetric Dirichlet distribution θd ∼ Dirichlet(α). For each

issue k ∈ [1, K], the document-specific distribution over frames ψd,k is distributed

according to a Dirichlet process DP(λ, ψk) with λ as the concentration parameter
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and the issue-specific global distribution ψk as the base distribution. In other words,

our model generates text in the speeches using a mixture of K HDPs (Teh et al.,

2006). If we abandon the labeled data from the Congressional Bills Project to obtain

the prior means φ?k for the 19 topics, it is relatively straightforward to extend to a

fully nonparametric model where K is unbounded and can change to fit the data,

like nCRF by Ahmed et al. (2013a) and nHDP by Paisley et al. (2014).

6.2.3 Generating Bill Text

The bill text provides information about the policy agenda issues that each

bill is about. We use standard unsupervised topic model LDA to model the bill

text {w′b}. Each bill b is a mixture ϑb over K issues, which is again drawn from

a symmetric Dirichlet prior, i.e., ϑb ∼ Dirichlet(α). Each token w′b,m in bill b is

generated by first choosing a topic z′b,m ∼ Multinomial(ϑb), and then choosing a

word type w′b,m ∼ Multinomial(φz′b,m), just like LDA’s generative process.

6.2.4 Generating Roll Call Votes

Following recent work on multi-dimensional ideal points described in Sec-

tion 6.1.3 (Lauderdale and Clark, 2014; Sim et al., 2015), we define the probability

of legislator a voting “Yes” on bill b as

p(va,b = Yes |ua, xb, yb, ϑ̂b) = Φ

(
xb

K∑
k=1

ϑ̂b,kua,k + yb

)
(6.6)
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where ϑ̂b is the empirical distribution of bill b over the K issues and is defined as

ϑ̂b,k =
Mb,k

Mb,·
. Here, Mb,k is the number of times in which tokens in b are assigned to

issue k and Mb,· is the marginal count, i.e., the number of tokens in bill b.

We use ua,k to denote the ideal point of legislator a specifically on issue k.

To capture the relationship between how legislator a talks about issue k and their

issue-specific ideal point ua,k, we define

ua,k ∼ N (ψ̂Ta,kηk, ρ) ≡ N

(
Jk∑
j=1

ψ̂a,k,jηk,j, ρ

)
(6.7)

where Jk is the number of frames for topic k, which is unbounded. The mean of the

Gaussian distribution is a linear combination of the ideal points {ηk,j} of all issue k’s

frames, weighted by how much time legislator a spends on each frame when talking

about issue k, i.e., ψa,k,j =
Na,k,j
Na,k,·

. Here, Na,k,j is the number of tokens authored by

a that are assigned to frame j of issue k, and Na,k,· is the marginal count. When

Na,k,· = 0, which means that legislator a does not talk about issue k, we back off to

an uninformed mean of 0.

Equation 6.7 represents a similar but more complex way than traditional super-

vised topic model (sLDA) to link the topics with the response, in that the response

ua,k here is latent. It is similar to how Gerrish and Blei (2011) use the bill text to

regress on the bill’s latent polarity xb and popularity yb, which are then used for

modeling the votes downstream. In this chapter, we only use text from congressional

speeches for regression, since we mainly focus on studying agendas and frames. In-

corporating the bill text into the regression as well is an interesting direction for
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future work.

6.3 Posterior Inference

Given observed data which consist of (1) a set of legislative votes {va,b} by A

legislators on B bills, (2) a collection of congressional speeches {wd}, each of which

is given by a legislator ad, and (3) the bill text {w′b}, we estimate the posterior

distributions over the latent variables in our model using a stochastic EM inference

algorithm, similar to Chapter 5. We alternate between (1) sampling the issue assign-

ments {z′b,m} for tokens in the bill text, (2) sampling the issue assignments {zd,n}

and frame assignments {td,n} for tokens in the speeches, (3) sampling the topics

at first-level issue nodes {φk}, (4) sampling the global frame proportion {ψk} for

all issues, (5) optimizing frames’ regression parameters {ηk,j} using L-BFGS (Liu

and Nocedal, 1989), and (6) updating the legislators’ multi-dimensional ideal points

{ua,k} and the bills’ polarity {xb} and popularity {yb} using gradient ascent.

6.3.1 Sampling Issue Assignments for Bill Tokens

The probability of assigning a token w′b,m in the bill text to an issue k is

p(z′b,m = k | rest) ∝
M−b,m

b,k + α

M−b,m
b,· +Kα

· φ̂k,w′b,m (6.8)

where Mb,k denotes the number of tokens in bill text b that are assigned to issue k.

The current estimated probability of word type v given issue k is denoted by φ̂k,v,

which we update during the inference as described in Section 6.3.3. Marginal counts
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are denoted by · and the superscript −b,m denotes the exclusion of the assignment

for token w′b,m from the corresponding count.

6.3.2 Sampling Frame Assignments for Speech Tokens

To sample the assignments for tokens in the speeches, we first sample an issue

using the following sampling equation

p(zd,n = k | rest) ∝
N−d,nd,k + α

N−d,nd,· +Kα
· φ̂k,wd,n (6.9)

where Nd,k similarly denotes the number of times that tokens in d are assigned to

issue k. Given the sampled issue k, we sample the frame as p(td,n = j | zd,n = k, ad =

a, rest) ∝


N (ua,k;µa,k,j, ρ) ·

(
N−d,nd,k,j

N−d,nd,k,j +λ
+ λ

N−d,nd,k,j +λ
· ψ̂k,j

)
, if j exists;

N (ua,k;µa,k,jnew , ρ) · λ

N−d,nd,k,j +λ
· ψ̂k,jnew , if jnew is new.

(6.10)

where µa,k,j = (
∑Jk

j′=1 ηk,j′N
−d,n
d,k,j′ + ηk,j)/Nd,k,· for an existing frame j, and for a

newly created frame jnew, we have µa,k,jnew = (
∑Jk

j′=1 ηk,j′N
−d,n
d,k,j′ + ηk,jnew)/Nd,k,·,

where ηk,jnew is drawn from the Gaussian prior N (0, γ). Here, the estimated global

probability of choosing a frame j of issue k is ψ̂k,j. We describe how we update this

probability during inference in Section 6.3.4.
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6.3.3 Sampling Issue Topics

In the generative process of HIPTM, the topic φk of issue k is used both

(1) for generating tokens in the bill text and (2) as the mean of the Dirichlet priors

generating topics of this issue’s frames. Following Ahmed et al. (2013a), we sample

this distribution using

φ̂k ∼ Dir(mk + ñk + βφ?k) (6.11)

where mk ≡ (Mk,1,Mk,2, · · · ,Mk,V ) is the actual count vector of tokens from the bill

text assigned to each issue. The vector ñk ≡ (Ñk,1, Ñk,2, · · · , Ñk,V ) denotes the token

counts propagated from words assigned to topics that are associated with frames of

issue k, which can be approximated effectively using either the minimal or maximal

path assumptions (Cowans, 2006; Wallach, 2008; Ahmed et al., 2013a).

6.3.4 Sampling Frame Proportions

Following the direct assignment method described in Teh et al. (2006), we

sample the global frame proportion as

ψ̂k ≡ (ψ̂k,1, ψ̂k,2, · · · , ψ̂k,jnew) ∼ Dir(N̂·,k,1, N̂·,k,2, · · · , N̂·,k,Jk , λ0) (6.12)

where N̂·,k,j =
∑D

d=1 N̂d,k,j and N̂d,k,j can be sampled effectively using the Antoniak

distribution (Antoniak, 1974). More details can be found in Teh et al. (2006, page

1574) or Ahmed et al. (2013a, Appendix).
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6.3.5 Optimizing Frame Regression Parameters

We update the regression parameters ηk of frames under issue k by using

L-BFGS (Liu and Nocedal, 1989) to optimize the following log likelihood

L(ηk) = − 1

2ρ

A∑
a=1

(ua,k − ηTk ψ̂a,k)−
1

2γ

Jk∑
j=1

η2
k,j (6.13)

6.3.6 Updating Ideal Points, Polarity and Popularity

We update the multi-dimensional ideal point ua of each legislator a and the

polarity xb and popularity yb of each bill b by optimizing the following log likelihood

using gradient ascent.

L(u,x,y) =
A∑
a=1

B∑
b=1

va,b log p(va,n = 1) + (1− va,b) log p(va,b = 0)

− 1

2ρ

A∑
a=1

K∑
k=1

(
ua,k − ηTk ψ̂a,k

)
− 1

2σ

B∑
b=1

x2
b −

1

2σ

B∑
b=1

y2
b (6.14)

6.4 Analyzing Tea Party Ideal Points

6.4.1 Data Collection

As motivated in Section 6.1.4, we are interested in applying our model to per-

form exploratory analysis of the Tea Party in the U.S. House of Representatives. To

scale the multi-dimensional ideal points with respect to the Tea Party movement,

we obtained the set of key votes identified by Freedom Works as the most impor-
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tant votes on issues of economic freedom. Led by former House Majority Leader

Dick Armey (R-TX), Freedom Works is a conservative non-profit organization which

promotes “Lower Taxes, Less Government, More Freedom” and has been widely as-

sociated with the Tea Party movement.5 A recent study reports that, among the

endorsements of various Tea Party organizations, Freedom Works endorsements are

the most successful, associated with a statistically significant increase in votes for

the Republican candidates in the 2010 midterm election (Karpowitz et al., 2011).

For the 112th Congress, Freedom Works selected 60 key votes, 40 in 2011 and

20 in 2012. Since in our study, we are interested in ideal points with respect to the

Tea Party movement, i.e., on the anti-pro Tea Party dimension, we consider whether

a legislator agrees with the position of Freedom Works on a bill the binary response

used in scaling the ideal points. More specifically, we assign va,b to be 1 if legislator a

agrees with the position of Freedom Works on bill b, and 0 otherwise. In addition to

the votes, we obtained the bill text with labels from the Congressional Bills Project

as described in Chapter 4 and the congressional speeches as in Chapter 5. In total,

we have 240 Republicans, 60 of which self-identify as a the member of the Tea Party

Caucus, and 13,856 votes.

6.4.2 One-dimensional Ideal Points

First, as a baseline for comparison, we estimate the one-dimensional ideal

points of each legislator in our dataset using Equation 6.1. We put a Gaussian prior

N (0, σ) over ua, xb and yb and use gradient ascent to optimize the following log

5http://congress.freedomworks.org/
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Figure 6.3: Box plots of the estimated one-dimensional Tea Party ideal points for
members and non-members of the Tea Party Caucus among Republican Represen-
tatives in the 112th U.S. House. The median of members’ ideal points is significantly
higher than that of non-members’ ideal points, though there are a lot of overlaps
between the two distributions.

likelihood

L(u,x,y) =
A∑
a=1

B∑
b=1

va,b log p(va,n = 1) + (1− va,b) log p(va,b = 0)

− 1

2σ

(
A∑
a=1

u2
a +

B∑
b=1

x2
b +

B∑
b=1

y2
b

)
(6.15)

One problem with this type of ideal point model is that the signs of the esti-

mated ideal points might be flipped. This is due to the fact that uaxb = (−ua)(−xb)

which makes no difference in Equation 6.1 if the sign of ua and xb are flipped. To

avoid this problem and make sure our analysis is consistent in that higher ideal point

values are associated with “pro-Tea Party”, we select a set of anchor legislators and

initialize their ideal points with some predefined values (Gerrish and Blei, 2011).

More specifically, we first sort the legislators according to the fraction of votes for

which they agree with Freedom Works. Then, we initialize the ideal points of the top

and bottom five legislators with +3σ and -3σ respectively, where σ is the variance

of the Gaussian prior we put on ua.
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Figure 6.4: Republican legislators having the (a) lowest and (b) highest estimated
one-dimensional ideal points.
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Figure 6.3 shows the box plots of estimated Tea Party ideal points for both

members and non-members of the Tea Party Caucus among Republican Represen-

tatives in the 112th U.S. House. The estimated Tea Party ideal points are strongly

correlated with the DW-NOMINATE scores, with a correlation coefficient of 0.908.

As we can clearly see from the figure, the median ideal point of legislators with

Tea Party Caucus membership is significantly higher than that of legislators who

do not join the caucus. This observation confirms a widely accepted belief that Tea

Partiers are generally more conservative than other Republicans (Williamson et al.,

2011; Karpowitz et al., 2011; Gervais and Morris, 2012, 2014).

However, we can also see a great deal of overlap between the ideal points of the

two groups. This shows that not all legislators with voting behaviors aligning with

Freedom Works’s positions self-identify with the Tea Party Caucus. Figures 6.4a

and 6.4b show the Republican Representatives who have the lowest and highest

estimated ideal points respectively.

From our estimate, Jeff Flake (R-AZ) has the second highest ideal point, but

is not a member of the Tea Party Caucus. Looking more closely into his voting

record, out of 60 key votes selected by Freedom Works he only disagrees with Free-

dom Works’s position on one where he voted “Nay” on the bill “H.R.1: Full-Year

Continuing Appropriations Act, 2011”. This bill includes the largest single dis-

cretionary spending cut in history, cutting $106 billion from various programs and

departments. Another example is Justin Amash (R-MI), who founded and is the

Chairman the Liberty Caucus; its members are conservative and libertarian Repub-

licans. Amash has agreed with Freedom Works on every single key votes selected
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by Freedom Works since 2011.

Conversely, there are members of the Tea Party Caucus who do not often

agree with Freedom Works, and thus have relatively low ideal points. For example,

Rodney Alexander (R-LA), who agrees with Freedom Works only 48% of the time in

the 112th Congress, was a member of the Democrat party before changing his party

affiliation in 2004. Another example is Ander Crenshaw (R-FL) with 50% agreement

with Freedom Works’s positions on key votes in 2011 and 2012. Both Alexander

and Crenshaw are categorized as “Green Tea” by Gervais and Morris (2014), which

refers to Republican legislators who are strongly “associated with the Tea Party on

their own initiative” but are not strongly supported by Tea Party organizations.

6.4.3 Multi-dimensional Ideal Points

In this section, we will analyze how the ideal points of the two groups of

Republican Representatives are different from each other on different dimensions.

Figure 6.5 shows the boxplots of the estimated ideal points for each policy agenda

issue, sorted by the difference between the median of the two groups’ ideal points.

On most issues, the ideal point distributions of the two Republican groups overlap

significantly. This is not surprising given that the one-dimensional ideal points of

the two groups also overlap a great deal as we discuss in the previous section.

However, on several issues, the ideal point distributions of the two groups of

legislators differ significantly. To understand why these issues polarize, we look at

the set of key votes on each issue and how Republicans vote on them. Recall that
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Figure 6.5: Boxplots of ideal points on 19 dimensions, each of which corresponds
to a major topic in the Policy Agendas Codebook estimated by our model. On
most issues the ideal point distributions over the two Republican groups (member
vs. non-member of the Tea Party Caucus) overlap significantly. The most polarized
issues are ‘Government Operations’ and ‘Macroeconomics’, which align well with the
agenda of the Tea Party movement supporting small government and lower taxes.
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in our model, each bill b has a distribution ϑb over K issues, capturing what the bill

is about. For each key vote b, we choose the issue with the highest probability ϑb,k

and use it to label. Although using a single issue for each key vote conflicts with

our model’s admixture assumption in which each document is a mixture of topics, it

provides a good estimation of what the key vote is primarily about and helps reduce

the complexity of our analysis.

In the remainder of this section, we analyze the voting records of Republicans

on the key votes that our model assigns to the “Government Operation”, “Macroeco-

nomics”, and “Transportation” issues, which helps explain why our model estimates

these issues as the most polarized.

Government operations Table 6.3 shows the list of key votes that are assigned

to the “Government Operation” issue, with details about how the two groups of

legislators vote on each key vote. As shown, Republicans do not unanimously agree

on any vote. The majority of the two groups, members vs. non-members of the

Tea Party Caucus, vote differently on eight out of eleven key votes on this issue.

Most of these key votes are to reduce the government spending on various federal

programs including the Economic Development Administration (key vote 2012-207),

the Energy Efficiency and Renewable Energy Program (key vote 2012-311) and

the Fossil Fuel Research and Development programs (key vote 2012-317). More

specifically, for example, on the key vote to eliminate the Energy Efficiency and

Renewable Energy Program (2012-311), nearly 80% (41 out of 53) of the Tea Party

Caucus members vote “Yea” agreeing with the Freedom Works, while only about

197



43% of non-Tea Party Caucus members vote similarly. This difference in voting

behaviors explains why this issue is estimated as the most polarized issue by our

model, which aligns well with the agenda of the Tea Party movement fighting for

less government and more federal spending cuts.

Macroeconomics Table 6.4 shows the list of key votes on ‘Macroeconomics’ esti-

mated by HIPTM. Among these ten key votes, the majority of Republican legislators

agree with each other on six of them including, for example, key vote to eliminate

the requirement to submit an IRS form 1099 for all goods and services purchased

over $600 starting in 2012 (key vote 2011-162) or key vote to reform the way that

the Congressional Budget Office (CBO) calculates the spending baseline each year

(key vote 2012-32). However, the remaining four key votes are quite divisive among

the Republicans.

Among these four, there are two key votes in which the majority of the two

groups vote differently. These are key vote 2011-275 (To replace the Paul Ryan bud-

get with the RSCs budget) and key vote 2012-149 (Substitute amendment containing

the Republican Study Committee budget for FY 2013 ). Both of these key votes,

one in 2011 and the other in 2012, are to replace Paul Ryan’s budge plan with the

Republican Study Committee’s (RSC) alternate proposal “Back to Basics”, which

would cut the government spending more aggressively to balance the federal budget

in about a decade, instead of about three decades as in Paul Ryan budget. In 2011,

the key vote 2011-275 split the Republican Representatives in the House right in

the middle with 118 Yea’s and 119 Nay’s. However, while the majority (104 out
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ID Key vote title FW
# Agrees # Disagrees

ϑb,kAll TP NTP All TP NTP

2012-221
To cut Commerce, Science,
& Justice appropriations
by 1%

Y 156 48 108 77 10 67 .47

2012-207
To eliminate the Eco-
nomic Development
Administration

Y 128 45 83 104 14 90 .46

2012-222
To cut $2.7 billion
from selected portions
of CJS appropriations

Y 105 35 70 128 23 105 .46

2012-311

To eliminate the En-
ergy Efficiency and Re-
newable Energy Pro-
gram

Y 114 41 73 106 12 94 .39

2012-336
To cut $3.1 billion from
Energy and Water ap-
propriations

Y 125 43 82 110 15 95 .36

2012-317
To defund the Fossil
Fuel Research and De-
velopment programs

Y 102 39 63 123 19 104 .35

2012-513

To require a full audit of
the Federal Reserve Sys-
tem and the Federal re-
serve banks

Y 237 60 177 1 0 1 .35

2011-538

To cut spending 9.93%
($3.04 billion) from En-
ergy & Water Appro-
priations Act of 2012

Y 95 34 61 135 22 113 .32

2012-450

Making appropriations for
the Departments of Trans-
portation, and Housing
and Urban Development

N 54 22 32 182 36 146 .31

2011-434

To cut $900 million in
waste and apply to a
spending reduction ac-
count

Y 108 38 70 128 22 106 .30

2011-424
To cut $700 million dol-
lars in waste to pay off
the debt

Y 82 32 50 151 28 123 .30

Table 6.3: Key votes having “Government operations” as the most probable issue,
estimated by our model. The last column shows the estimated probability ϑb,k.
Each key vote is shown with a short description, the preferred voting position of
Freedom Works (Y for Yea, N for Nay), the number of Republicans whose votes agree
and disagree with Freedom Works (‘All’ denotes all voting Republican legislators,
‘TP’ denotes Tea Party Caucus members, and ‘NTP’ denotes non-Tea Party Caucus
members). Bolded key votes are the ones on which the majority of the two groups
vote differently.
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ID Key vote title FW
# Agrees # Disagrees

Est
All TP NTP All TP NTP

2011-275
To replace the Paul
Ryan budget with the
RSC’s budget

Y 118 45 73 119 15 104 0.85

2011-277
Congressman Paul Ryan’s
Budget for Fiscal Year
2012

Y 234 58 176 3 2 1 0.84

2012-149

Substitute amendment
containing the Repub-
lican Study Committee
budget for FY 2013

Y 135 50 85 104 10 94 0.78

2011-690
The Budget Control Act of
2011

N 65 27 38 173 33 140 0.74

2011-162
Small Business Paperwork
Mandate Elimination Act
of 2011

Y 236 60 176 0 0 0 0.71

2011-606 Cut, Cap, and Balance Act Y 229 58 171 8 2 6 0.69

2012-32

To amend the Balanced
Budget and Emergency
Deficit Control Act of 1985
to reform the budget base-
line

Y 231 57 174 0 0 0 0.64

2012-659

On Concurring with the
Senate Amendments: H.R.
8 - Taxpayer Relief Act of
2012

N 150 50 100 84 9 75 0.57

2011-14
Repealing the Job-Killing
Health Care Law Act

Y 238 60 178 0 0 0 0.51

2011-901

Making major executive
regulations subject to Con-
gressional vote (REINS
Act)

Y 236 59 177 0 0 0 0.49

Table 6.4: Key votes having “Macroeconomics” as the most probable issue, esti-
mated by our model. The last column shows the estimated probability ϑb,k. Each
key vote is shown with a short description, the preferred voting position of Free-
dom Works (Y for Yea, N for Nay), the number of Republicans whose votes agree
and disagree with Freedom Works (‘All’ denotes all voting Republican legislators,
‘TP’ denotes Tea Party Caucus members, and ‘NTP’ denotes non-Tea Party Caucus
members). Bolded key votes are the ones on which the majority of the two groups
vote differently.
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ID Key vote title FW
# Agrees # Disagrees

Est
All TP NTP All TP NTP

2012-378
To require that trans-
portation spending be
capped

Y 82 32 50 145 23 122 0.58

2012-451

To provide an extension
of Federal-aid highway ...
transit, and other pro-
grams

N 51 20 31 186 38 148 0.57

Table 6.5: Key votes having “Transportation” as the most probable issue, estimated
by our model. The last column shows the estimated probability ϑb,k. Each key
vote is shown with a short description, the preferred voting position of Freedom
Works (Y for Yea, N for Nay), the number of Republicans whose votes agree and
disagree with Freedom Works (‘All’ denotes all voting Republican legislators, ‘TP’
denotes Tea Party Caucus members, and ‘NTP’ denotes non-Tea Party Caucus
members). Bolded key votes are the ones on which the majority of the two groups
vote differently. Both of these votes focus on the federal spending

of 119) of non-Tea Party Caucus members vote against this amendment, 45 out of

60 members of the Tea Party Caucus vote for it. In 2012, even more Tea Party

Caucus members vote for the key vote 2012-149, while there are still more than half

of non-Tea Party Caucus members vote against it.

Although not as polarized as the two key votes above in which the majority of

both groups vote similarly, the two remaining key votes still see a lot of disagreements

among the Republicans. The first key vote is to the Budge Control Act of 2011 (key

vote 2011-690) which allows President Obama to raise the debt ceiling to over $16

trillion, while the second key vote is about the Taxpayer Relief Act of 2012 (key

vote 2012-659) to avert the “fiscal cliff”.

Transportation The third most polarized issue estimated by our model is “Trans-

portation”, which includes two key votes focusing on the federal spending on trans-

portation. The first key vote (2012-378) is about the motion to insist upon capping
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highway spending at the amount taken in by the gas tax. More than half of Tea

Party Caucus members (32 out of 55) vote for this motion, while the majority of

non-members vote against it. Conversely, the second key vote (2012-451) is to au-

thorize federal highway spending at a level that far exceeds its revenue from the gas

tax, which is opposed by Freedom Works and the majority of the two Republican

groups.

6.5 Agendas and Frames: Analyzing Topic Hierarchy

In this section, we qualitatively analyze the topic hierarchy discovered by

HIPTM. We first focus our analysis on the topics learned by HIPTM at each first-

level node, i.e., an agenda issue which corresponds to a major topic in the Policy

Agendas Topics Codebook. These topics in general capture the issues that Repub-

lican legislators focus on during the 112th Congress. We then take a closer look at

some subtrees which contain most polarized second-level nodes.

6.5.1 Analyzing Agenda Issues

Table 6.6 shows the list of words with highest probabilities for each issue.

As we can observe, in general, the topics learned at all first-level nodes coherently

describe the corresponding agenda issues. This is assuring since our model learns

this set of topics leveraging the prior distributions over words from labeled data as

shown in Table 6.2.

More interestingly, the learned topics capture some key debates happened on
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Agriculture: farmer agriculture food farm usda fda farm bill brazil rancher art radio
crop rural
Banking, Finance, and Domestic Commerce: patent internet fcc file inventor
nfip flood insurrance innov fee pto fema application invent financial service
Civil Rights, Minority Issues, and Civil Liberties: abort plan parenthood baby
child taxpay dollar taxpay fund federal fund human clinic unborn conscience mother
ohio protect life
Community Development and Housing Issues: loan bank mortgage homeowner
treasury property failure country borrow foreclosure payment lender sell terminate
Defense: afghanistan troop mission iraq air forc armi intellig commun soldier na-
tion defens uniform intellig navi command pakistan laden
Education: student freedom parent charter school principl liberti indiana kid colleg
columbia countih
Energy: oil drill gulf mexico leas permit gasolin pipelin pump american energi fuel
moratorium explor gallon
Environment: epa clean air permit plant environment protect emiss rule xxi mer-
curi pollut clean water florida cement compli coal ash environment
Foreign Trade: export trade trade agreement manufactur colombia panama
south korea tariff free trade textil china custom duti job bill intern
Government Operations: motion recommit revis union georgia accordingli insert
commiss legisl dai florida tempor michigan februari short titl
Health: obamacar patient doctor physician afford care hospit insur replac mandat
exchang health insur coverag medicaid patient protect board
International Affairs and Foreign Aid: libya human israel peac war power violat
commiss regim democraci freedom march hostil unit nation alli articl
Labor, Employment, and Immigration: employ hire job creator south carolina
union busi owner nlrb uncertainti boe labor mandat manufactur econom growth
Law, Crime, and Family Issues: border patriot act judg court law enforc enforc
terrorist investig homeland secur crimin crime extens citi alabama attornei
Macroeconomics: balanc budget borrow debt ceil cap cut spend nation debt
grandchildren social secur rais tax debt limit white hous spend monei gdp chart
Public Lands and Water Management: water river flood arizona engin mine fish
west corp lake endang speci copper idaho dam interior
Social Welfare: underli bill continu resolut revis homeland secur legisl dai transpar
underli legisl spend reduct regular earmark
Space, Science, Technology and Communications: victim gabbi arizona prai
tragedi prayer father wife saturdai mother violenc wound event duti medal
Transportation: transport extens faa airport reauthor jurisdict data sincer aviat
flight confer aircraft titl air

Table 6.6: Words with highest probabilities for each first-level issue nodes learned
by HIPTM.
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the congressional floor during the 112th Congress. For example, one major event

during this Congress is the debt-ceiling crisis of 2011, in which major debate between

the Republican Party, which had taken control of the House the prior year, and the

President centered around the raising of the debt ceiling. This debate dominates the

discussions on “Macroeconomics”, whose learned topic focuses on “balanc budget”,

“borrow”, “debt ceiling”, “cap”, “cut spending”, “nation debt”, etc. Another in-

teresting event during this period of time is the international military intervention

of the U.S. in the Libyan Civil War, which is the focus of debates on “International

Affairs and Foreign Aid”. Debates in this Congress on the “Defense” issue center

around the withdrawal of troops from Iraq in December 2011, which formally ends

the Iraq War. There are also a lot of discussions on repealing the Affordable Care

Act, more commonly known as ObamaCare, from Republican legislators.

6.5.2 Analyzing Issue-specific Frames

We now turn our focus on the second-level nodes of the hierarchy, which are

designed to capture issue-specific frames. In our model, each second-level frame

node is associated with a regression parameter ηk,j, which is essentially the ideal

point of that frame on the dimension corresponding to the issue that the frame

belongs to. To analyze polarized issues, we first compute, for each issue k, the span

of the ideal points of the frames associated with k.6 This span is defined as the

difference between the maximum ideal point and the minimum ideal point of any

6The Dirichlet process prior we put on the frame proportions ψk has the “rich-get-richer” effect,
in which a few frames get used a lot and there are always a set of unstable frame nodes which gets
created and destroyed frequently during the sampling process. In this analysis, we focus on the
more stable frames and ignore those with posterior probability ψk,j < 0.1.
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frames under that issue. We then sort all issues by this difference. In the remainder

of this section, we will analyze in more detail the issues that are most polarized

according to our model.

balanc_budget, debt_ceil, cap, 
cut_spend, debt_limit, spend_cut, 

fiscal_hous, grandchildren, 
guarante, default, august, obama, 
deficit_spend, rein, feder_budget

white_hous, shut, continu_resolut, 
mess, hous_republican, novemb, 

govern_shutdown, senat_reid, 
harri_reid, vision, shutdown, liber, 

arriv, republican_parti, blame

borrow, nation_debt, rais_tax, entitl, 
prosper, chart, grandchildren, 

spend_monei, size, gdp, 
tax_increas, cent, govern_spend, 

social_secur

0.555-0.571 -0.239 0

balanc_budget, borrow, 
debt_ceil, cap, cut_spend, 
nation_debt, grandchildren, 
rais_tax, entitl, white_hous, 

debt_limit, prosper

Macroeconomics

Frame M1 Frame M2 Frame M3

Figure 6.6: Subtree on “Macroeconomics” learned by our model.

Macroeconomics Figure 6.6 shows the subtree on “Macroeconomics” in the topic

hierarchy learned by our model. The most positive frame node, Frame M3, focuses

on criticizing government overspending. Our model reveals that many members of

the Tea Party Caucus center their speeches on this issue including Todd Akin (R-

MO), Steven E. Pearce (R-NM) and Lamar S. Smith (R-TX). Also about budget

balancing, both Frame M1 and Frame M2 discuss problems surrounding the debt-

ceiling crisis of 2011. While Frame M1 is about the potential government shutdown

of the crisis, Frame M2 mainly focuses on the “Cut, Cap, and Balance Act of 2011”,

which includes a cut in federal government spending, a cap on future spending, and

an increase in the national debt ceiling on certain conditions. As shown in Table 6.4,

the vast majority of Republican Representatives vote for this bill.
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patient, doctor, physician, hospit, 
medicaid, board, georgia, 

save_medicar, nurs, tennesse, 
page, bureaucrat, advisori_board, 

medicin, independ_payment

afford_care, exchang, 
patient_protect, human_servic, 

public_health, slush_fund, ppaca, 
mandatori, mandatori_spend, 

governor, hospit, health_center, 
flexibl, teach_health, unlimit

obamacar, replac, mandat, insur, 
health_insur, coverag, social_secur, 
premium, repeal_obamacar, entitl, 

govern_takeov, purchas, 
unconstitut, preexist_condit, employ

0.563-0.127 -0.035

obamacar, patient, doctor, 
physician, afford_care, hospit, 

insur, replac, mandat, 
exchang, health_insur, 

coverag, medicaid, 
patient_protect, board

Health

Frame H1 Frame H2 Frame H3

Figure 6.7: Subtree on “Health” issue in the topic hierarchy learned by our model.

Health Health care is a central issue during the 112th Congress with debates around

the Affordable Care Acts. Even though all Republicans vote against the health-care

reform bill, Figure 6.7 shows some distinctions in the languages that Republicans

talk about this issue. The first two frame nodes, Frames H1 and H2, talk about

various aspects of the health care system including Medicare and Medicaid. For

example, Glenn Thompson (R-PA) argues “The only prescription to save Medicare

is a Republican prescription. I have to tell you, on the Democratic side, they’re

just willing to pull the plug and let it die, because if you don’t make changes to the

Medicare program, that’s exactly what happens.” On the other hand, Frame H3,

being highly positive, emphasizes strongly on repealing ObamaCare. Talking about

the issue, Michele Bachmann (R-MN) argues

“This Chamber already passed a bill to repeal ObamaCare, which the Amer-

ican people have asked. This is now an effort to defund ObamaCare. Be-

cause as we have seen from the Congressional Research Service, the inge-
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nious nature of the ObamaCare bill was to already put the funding in place

so that if the majority lost the gavel, which they did, the new majority

would be unable to defund this bill.”

hire, job_creator, busi_owner, 
uncertainti, employ, capit, 

manufactur, econom_growth, innov, 
mandat, emploi, certainti, 

entrepreneur, regulatori, arkansa

union, south_carolina, nlrb, boe, 
employ, labor, contractor, wage, 

locat, board, execut, nation_labor, 
relat_board, unemploy_rate, 

project_labor

1.373-0.204 0

employ, hire, job_creator, union, 
south_carolina, busi_owner, nlrb, 

uncertainti, boe, labor, mandat, capit, 
manufactur, econom_growth

Labor, Employment, and Immigration

Frame L1 Frame L2

Figure 6.8: Subtree on the “Labor, Employment and Immigration” issue in the topic
hierarchy learned by our model.

Labor, Employment and Immigration Figure 6.8 shows the subtree corresponding

to the “Labor, Employment and Immigration” issue in the topic hierarchy discovered

by our HIPTM model. Analyzing the text assigned to each frame node by our model

together with the topic at each node reveals that Frame L1 is mainly about bill H.R.

4 which is to eliminate the paperwork mandate for small businesses. This bill is the

focus of the key vote 2011-162 (Small Business Paperwork Mandate Elimination Act

of 2011 ) in Table 6.4. As shown in the voting records in Table 6.4, all Republican

legislators vote ‘Yea’ unanimously on this bill, which explains the negative ideal

point of this frame.

On the other hand, Frame L2 is highly positive, which mainly focuses on the
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controversial case between the National Labor Relations Board (NLRB) and the air-

line manufacturer Boeing. In 2011, Boeing built a new 787 assembly plant in South

Carolina and was accused by the NLRB for violating “federal labor law deciding

to transfer a second airplane production line from a union facility in the state of

Washington to a non-union facility in South Carolina for discriminatory reasons”.7

This complaint from the NLRB was strongly opposed by Representatives from South

Carolina, which is captured by our model. The Republican Representatives who talk

about this the most, revealed by our model, include Trey Gowdy (R-SC), Addison

G. Wilson (R-SC), Mick Mulvaney (R-SC) and Jeff Duncan (R-SC). Among these

Representatives, all but Trey Gowdy are members of the Tea Party Caucus and

all four legislators have high ideal points (Figure 6.4b), which explains the highly

positive ideal point of this frame node.

Although the polarization in the two frames under this issue might not be

directly related to the Tea Party movement, it shows an interesting example of the

effectiveness of our model as an exploratory data analysis tool. Since our speech

data include all of the congressional floor debates in the House, many discussions

are not particularly about issues that the Tea Party focuses on. Discovering the

polarization between Tea Partiers and non-Tea Partiers on unconventional issues

provides interesting insights in the differences between them. As an example, the

polarization in this policy issue discovered by our model, is mainly due to a geo-

graphic reason: the conflict between NLRB and Boeing happened in South Carolina

7http://www.nlrb.gov/news-outreach/fact-sheets/fact-sheet-archives/boeing-complaint-fact-
sheet
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where many Representatives are members of the Tea Party Caucus. This might pro-

vide evidence on the influence of the geographic factors on a member’s decision to

join (or not) the Tea Party Caucus (Gervais and Morris, 2012).

6.6 Predicting Tea Party Caucus Membership

To quantitatively evaluate the effectiveness of our proposed HIPTM model in

capturing the “Tea Partiness” of legislators, we conduct experiments on a binary

classification task to predict the Tea Party Caucus membership of legislators given

their votes and text. The goals of our experiments are to examine (1) how effective

the baseline features extracted from the votes and text are in predicting the Caucus

membership, and (2) how much improvement in prediction performance, if any, we

can gain using the features extracted from our model. For the baselines, we consider

the following sets of features:

• Normalized term frequency (TF): each legislator is represented by a vec-

tor of term frequency of all word types in the vocabulary, normalized to unit

length.

• TF-IDF: each legislator is represented by a TF-IDF vector.

• Vote: each legislator is represented by a binary vector containing their voting

record on the set of key votes selected by Freedom Works. If a vote is not

recorded, we treat it as a missing value.

In our dataset from the 112th U.S. Congress, there are totally 240 Republi-

can Representatives, out of which 60 self-identify as Tea Party Caucus members.
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We perform 5-fold cross-validation using stratified sampling, which preserves the

ratio of the two classes in both the training and test sets. We use AUC-ROC, which

measures the area under the Receiver-Operating-Characteristic (ROC) curve, as the

evaluation metric. We use SVM as the classifier and use the SVMlight implementa-

tion (Joachims, 1999).8 We preprocess the data using similar pipeline as described

in Chapter 2. After preprocessing, our vocabulary contains 5,349 unique word types.

6.6.1 Membership Prediction given Votes and Text

AUC−ROC

0.60

0.65

0.70

0.75

TF TF−IDF Vote HIPTM Vote−TF Vote−TF−IDF Vote−HIPTM All

Figure 6.9: Tea Party Caucus membership prediction results over five folds using
AUC-ROC (higher is better, random baseline achieves 0.5). The features extracted
from our model are estimated using both the votes and the text.

First, given the votes and text of all the legislators, we run HIPTM for 1,000

iterations with a burn-in period of 500 iterations. After burning in, we keep the

sampled state of the model after every 50 iterations. The feature values are obtained

by averaging over the 10 stored models. Each legislator a is represented by a vector

8We use the default settings of SVMlight, except that we set the cost-factor equal to the ratio
between the number of negative examples (i.e., number of non-Tea Party Caucus members) and
the number of positive examples (i.e., number of Tea Party Caucus members).
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concatenating the following features:

• K dimensional ideal point vector estimated from both votes and text ua,k

• K dimensional vector, estimating the ideal point using only text ηTk ψ̂a,k

• B probabilities estimating a’s votes on B bills Φ(xb
∑K

k=1 ϑ̂b,kua,k + yb)

Figure 6.9 shows the AUC-ROC results for different sets of features. The re-

sults show that all feature sets perform better than the random predictor, which

always achieves an AUC-ROC of 0.5. Vote-based features clearly outperform sig-

nificantly text-based features like TF and TF-IDF. Combining Vote with either TF

or TF-IDF does not improve the prediction performance much (i.e., Vote-TF and

Vote-TF-IDF). The set of features extract from our model, HIPTM, also outper-

forms TF and TF-IDF significantly, but only slightly better than Vote. However,

when combining HIPTM and Vote, we can achieve relatively large gain compared

with using Vote alone.

6.6.2 Membership Prediction given Text Only

In the previous section, we experiment with features from both the votes and

the text from legislators to predict their Tea Party Caucus memberships. However,

its applicability is limited since we need to have both the votes and text to be able

to make predictions. In this section, we look at a more difficult, yet more practical

problem, which predicts the Tea Party Caucus membership using only the text of

new lawmakers.

We first run our inference algorithm on the training data, which does include
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AUC−ROC
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TF TF−IDF HIPTM

Figure 6.10: Tea Party Caucus membership prediction results over five folds using
AUC-ROC (higher is better, random baseline achieves 0.5). The features extracted
from our model for unseen legislators are estimated using their text only.

both votes and text. After training, using multiple models stored, we sample the

issue and frame assignments for each token of the text authored by test lawmakers.9

Since the votes are not available, in this section, HIPTM’s extracted features only

consist of (1) the K dimensional vector estimating legislators’ ideal point using text

only ηTk ψ̂a,k, and (2) theB probabilities estimating the votes Φ(xb
∑K

k=1 ϑ̂b,kua,k+yb).

Figure 6.10 shows the results of our features in comparison with the two text-

based baselines TF and TF-IDF. As we can see, since HIPTM can no longer access

the votes in the test data, its performance drops significantly compared with Vote.

However, HIPTM still outperforms significantly the two text-based baselines TF and

TF-IDF, which shows that our model provides an effective set of features, compared

with other commonly used text-based baselines, to capture the “Tea Partiness” of

legislators.

9The MCMC configuration is the same as in Section 6.6.1.
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6.7 Conclusion and Future Directions

6.7.1 Summary

In this chapter, we continue the approach we took in Chapter 5 to develop a

hierarchical topic model to discover and analyze agendas and frames in political text.

We present HIPTM, a Hierarchical Ideal Point Topic Model, which jointly captures

(1) the votes of legislators on congressional bills and (2) both the text associated

with the legislators (e.g.., congressional speeches) and the bills (e.g., bill text). By

leveraging existing labeled data from the Congressional Bills Project, HIPTM esti-

mates ideal points for each legislators on multiple interpretable dimensions, each of

which corresponds to a major topic in the Policy Agendas Topics Codebook. More-

over, the model is also able to discover a hierarchy of topics, in which first-level

nodes maps to agenda issues and second-level nodes maps to issue-specific frames.

We apply HIPTM to perform exploratory data analysis on how Republicans

votes and debates in the 112th U.S. House of Representatives. Our analysis using

one-dimensional ideal points shows that, among the Republican Representatives, the

single ideological positions of members and non-members of the Tea Party Caucus

overlap a great deal. The results of our model on multi-dimensional ideal points

help disentangle this overlapping by showing on which issues the two groups of

Republicans hold similar positions and on which issues they do not. We also analyze

the topic hierarchy learned by HIPTM. Our analysis shows that topics learned at

first-level nodes indeed can reveal the focus of congressional floor debates on each
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issue. Topics at second-level nodes, even though not as coherent, can capture the

polarization in certain issue.

To quantitatively evaluate the effectiveness of HIPTM, we conduct experi-

ments on predicting the Tea Party Caucus membership of legislators. Empirical

results show that vote-based features are much more effective than text-based fea-

tures in predicting the caucus membership. However, voting information is not

always available, especially for those who are not in the Congress. We show that us-

ing only text, HIPTM’s features outperform significantly two traditional text-based

sets of features TF and TF-IDF.

6.7.2 Discussion and Future Directions

In this chapter, we mainly focus on studying and analyzing votes and text of

legislators in the U.S. Congress. However, as shown in Section 6.6.2, our HIPTM

model provides an effective way to study multi-dimensional ideal points of new

legislators given only the text that they author. This gives our method the flexibility

to study not only legislative text but also text from potentially many other sources

such as press releases, debates, and social media. Applying our model to study

multi-dimensional ideal points of people, given their text in different settings than

the U.S. Congress, is one interesting future direction that we plan to pursue. This

research direction also falls under a broader research area on scaling ideal points

using new sources of data such as social media like Twitter (Barberá, 2015) or

campaign contributions (Bonica, 2014).
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In addition, as a case study for our model, we focus our analysis on Tea Party

in the U.S. House by using the set of key votes selected by Freedom Works. How-

ever, the analysis can be naturally extended to different sets of legislative votes to

study other political phenomena of interest. For example, one might be interested

in the Immigration Reform and selects a set of legislative votes that are related

to immigration, which using our model can analyze how legislators with different

perspectives on the Immigration Reform talk about different issues. Another in-

teresting direction is to apply the model to political data from local government

entities such as state, county, district, and city. This might be of particular interest

and usefulness because manual reading and human coding at this level are especially

challenging due to the large number of lawmakers and legislative documents.

Studying the changes in ideological positions of lawmakers over time is also an-

other application that might benefit from using our model. One straightforward way

is to apply HIPTM to longitudinal data to estimate the ideologies at different points

in time. Recent advances in topic modeling such as the dynamic topic model (Blei

and Lafferty, 2006) or the recursive Chinese restaurant process (Ahmed and Xing,

2008) also give us powerful computational tools to jointly model the timestamped

data and capture how agenda issues and issue-specific frames change over time.
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Chapter 7: Conclusion and Future Work

Extracting from text what topics people talk about and how they talk about

them is an important, but very challenging problem. Traditional approaches to this

problem rely on manual coding and close reading which are labor-intensive and not

scalable to big data. In this thesis, we have presented a series of automated content

analysis methods using the probabilistic topic modeling approach to discover and

analyze agendas and frames in political text at lower cost. In this last chapter, we

summarize the contributions of the methods introduced in the thesis and discuss

some directions for future work.

7.1 Summary of Contributions

In Chapter 3, we present the Speaker Identity for Topic Segmentation (SITS)

model to study agendas and agenda control behaviors of individual in political de-

bates and other multi-party conversations. The model uses Bayesian nonparametrics

to improve existing methods and is able to discover (1) the topics used in a set of

conversations, (2) how these topics are shared across conversations, (3) when these

topics changes, and (4) a speaker-specific measure of agenda control. Using SITS we

analyze the agenda control behaviors of candidates in the 2008 U.S. election debates
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and the 2012 Republican primary debates. We also apply SITS on a large-scale set

of political debate transcripts from CNN’s TV show Crossfire. To make the analysis

process more effective, we build Argviz , an interactive visualization which leverages

SITS’s outputs to allow users to quickly grasp the topical dynamics of the conversa-

tion, discover when the topic changes and by whom, and interactively visualize the

conversation’s details on demand. In addition to providing insights on agendas and

agenda control in conversations, through extensive empirical experiments, we also

show that SITS can effectively improve the performance of two quantitative tasks:

topic segmentation and influencer detection.

In Chapter 4, we study agendas in legislative text in the U.S. Congress. We

introduce the Label-to-Hierarchy (L2H) model to learn a hierarchy of topics from

multi-labeled data, in which each congressional bill is tagged with multiple policy

agenda issues from a flexible list of labels. We discuss the advantages of using

this type of labeled data over traditional single-labeled data using a fixed coding

system: (1) it captures the multi-faceted nature of many congressional bills, and (2)

it helps reduce the pre-analysis cost of creating and maintaining the well-defined

coding system. The introduced model L2H captures the dependencies among labels

using an interpretable tree-structured hierarchy. Applying L2H on congressional bill

text from four U.S. Congresses (109th–112th), qualitative analysis shows that L2H

is able to learn interpretable hierarchies, which helps provide insights about the

political attentions that policymakers focus on, and how these policy issues relate

with each other. Quantitative experiments also show the effectiveness of L2H on two

computational tasks: predicting held-out words in test documents and predicting
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multiple labels for unseen text.

In Chapter 5, we go beyond agenda-setting (i.e., what topics people talk about)

and expand our focus to framing (i.e., how they talk about different issues). We

describe the Supervised Hierarchical Latent Dirichlet Allocation (SHLDA) model,

which can discover a hierarchy of topics from a collection of documents, each is

associated with the ideological position of the author on a liberal-conservative spec-

trum, generally called the response variable. In the topic hierarchy discovered by

SHLDA, higher-level nodes map to more general agenda issues while lower-level

nodes map to issue-specific frames. Applying SHLDA on a collection of congres-

sional floor debates, we show qualitatively that the topic hierarchies learned by

SHLDA indeed capture the topic structure in line with the theory that motivates

the work. Quantitative experiments on predicting the response variable show that

SHLDA can improve the performance over commonly used baselines. Without us-

ing any topic labeled data, SHLDA enjoys a low pre-analysis cost but suffers from

a moderately high post-analysis cost due to the complex and abstract nature of

framing. Improving the interpretability of the hierarchy motivates the work in the

next chapter.

In Chapter 6, we continue the approach in Chapter 5 to develop hierarchical

topic model to discover and analyze agendas and frames in political text. We intro-

duce the Hierarchical Ideal Point Topic Model (HIPTM) which jointly captures (1)

the votes of legislators on congressional bills and (2) both the text associated with

the legislators (e.g., congressional speeches) and the bills (e.g., bill text). More cus-

tomized specifically for capturing the two-level views of agenda-setting and framing
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than in SHLDA, HIPTM discovers a two-level hierarchy of topics in which first-

level nodes map to policy agenda issues and second-level nodes map to issue-specific

frames. To improve the interpretability of issue nodes, we leverage existing labeled

data from the Congressional Bills Project to build topic priors, each corresponds to

one of the 19 major topics in the Policy Agendas Topics Codebook. In addition,

instead of using pre-computed ideal point like in SHLDA, HIPTM jointly estimate

multi-dimensional ideal points of legislators, in which each dimension maps to one of

the 19 interpretable topics. We show the effectiveness of HIPTM as an exploratory

data analysis tool by applying on data from the 112th Congress to study the lan-

guage uses (via discovered agendas and frames) and voting behaviors (via estimated

ideal points) of members of the Tea Party Caucus, the institutional organization of

the recent Tea Party movement in American politics.

7.2 Directions for Future Work

Measuring analysis cost of automated content analysis Even though the analysis

costs described in Chapter 1, based on the work by Quinn et al. (2010), has played

a central role of a guiding framework for developing models in this thesis, actually

measuring the cost quantitatively is not the focus of this research. We focus mainly

on developing, implementing and applying our models to study agendas and frames

in political text and other related settings. However, we believe that quantifying

the cost of automated content analysis methods for analyzing agendas and frames in

particular and for political text in general is challenging yet very useful, especially
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in guiding the development of future models.

There are various components of the cost whose estimation can benefit greatly

from various prior work. For example, measuring the labeling cost, in general, has

been studied extensively in active learning, a subfield of machine learning in which

the learning algorithm is allowed to select the data, ask for label and then incor-

porate into the training set (Settles, 2012). The post-analysis cost of interpreting

discovered topics for topic models is also related to work on quantifying the topic

coherence (Chang et al., 2009b; Lau et al., 2014b), which we briefly discuss in Chap-

ter 2 and expand the discussion for hierarchy of topics next.

Evaluating topic hierarchy Three out of the four models we introduce in this thesis

discover a hierarchy of topics from text data. L2H in Chapter 4 learns a tree-

structured hierarchy to capture the dependency among labels in multi-labeled data,

in which each node consists of a predefined label and a topic. To capture the

hierarchical view of agendas and frames, both SHLDA in Chapter 5 and HIPTM

in Chapter 6 discover topic hierarchies in which higher-level nodes map to agenda

issues and lower-level nodes map to issue-specific frames. For all of these models,

we perform qualitative analysis of the discovered hierarchies and show that they

capture intuitively the hierarchical structures that motivate the work. However, a

more formal evaluation of the hierarchy is needed.

As briefly mentioned in Chapter 2, evaluating topics learned by topic models

in general is an active research area. Various approaches have been proposed in the

literature including topic coherence using automatic measurements (Newman et al.,
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2010; Mimno et al., 2011; Aletras and Stevenson, 2013a; Lau et al., 2014b) and

human judgement (Chang et al., 2009b). However, when evaluating topic hierarchy,

not only we need to judge the quality of each individual topic, we also need to

evaluate the hierarchical structure such as the topics at parent nodes should be

more general than those of their child nodes. We believe evaluating the quality of

discovered topic hierarchy is still an open research question.

Applying to new applications Although all are motivated by specific problems in

political science to study agendas and frames, many models introduced in this thesis

can be applied to much broader settings.

First, L2H is applicable to any multi-labeled data in which each document is

tagged with multiple labels. It is particularly useful when the number of unique

labels is large and there are potentially dependencies among them, for which L2H

captures using a tree-structured hierarchy. The learned hierarchy can be used for

various purposes including (1) letting the users search and browse the label space

efficiently, (2) improving predictions of labels for unseen text as shown in Chapter 4,

and (3) updating the existing label hierarchy (in the case that such hierarchy exists

and the labeled data change over time (Ramage et al., 2010b)).

Second, SHLDA is broadly applicable to any setting in which there is a set

of documents, each of which is associated with a continuous response variable. As

shown already in the experiments in Chapter 5, SHLDA improves the prediction

performance over commonly used baselines when applied to two domain: sentiment

analysis to predict review ratings given the review text, and congressional floor
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debates to predict legislators’ ideological positions based on their speeches.

Using different loss functions In both models introduced in Chapter 5 and Chap-

ter 6, we use a Gaussian linear regression model to link the empirical distribution

over topics with the continuous responses, either observed or latent. Prior research

has shown that using the max-margin principle yields models that learn more dis-

criminative topics and thus achieve better predictive performance (Zhu et al., 2012).

Max-margin learning falls under the umbrella of using different loss functions to

model the metadata, which we plan to explore in future research. This approach

has become particularly attractive due to recent advances in machine learning which

makes max-margin supervised topic models more scalable (Zhu et al., 2013, 2014b).

Collaborating more closely with social scientists All of the models introduced in

this thesis are motivated by different questions and problems in political science

in particular and social science in general. These models join other work in the

emerging field of computational social science (Lazer et al., 2009) to provide social

scientists new computational tools to perform studies and analysis of large-scale

data that are impractical otherwise. On the other hand, these models also represent

recent advances in topic modeling and machine learning, whose complexity might

prevent people who do not have the relevant technical training and experience from

using them. As Hanna Wallach observed (personal communication), for researchers

who actually use this type of models as part of their research workflow, they need

enough understanding to talk confidently about the output of the models and what
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should and should not be trusted.

We acknowledge that this is one major issue for the type of work done in this

thesis. While we do not have an absolute solution for it, we would like to discuss

a few directions that might help mitigate the problem. First, although users of

these models might not need to understand every technical detail, basic modeling

structures, especially in the outputs of the models, should be made approachable.

One effective way which has benefited us greatly is to develop simple visualizations

to display the models’ outputs. For example, we built an interactive visualization

called Argviz to show the outputs of SITS in Chapter 3 and generated simple HTML

pages to display the topic hierarchies learned by SHLDA in Chapter 5 and HIPTM in

Chapter 6. In developing these visualizations, we had to iterate with social scientists

multiple times to get feedbacks and make modifications to how the information

should be displayed. It is through these interactions that help us—the computer

scientists—refine the visualizations to make the models’ outputs more accessible,

and help social scientists understand them better.

Second, despite the fact that various parts of this thesis are the result of collab-

orations with social scientists in communication and political science, one major goal

of the introduced models is predictive, which is a common practice in machine learn-

ing research. However, using the models and their outputs to provide explanations

for the observed data as well as pre-registered questions and hypotheses in social

science is also important, especially for social scientists. This contrast in research

interests between computer scientists and social scientists has been captured nicely

in Hopkins and King (2010)’s argument: “[C]omputer scientists may be interested
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in finding the needle in the haystack [...], but social scientists are more commonly

interested in characterizing the haystack.” Therefore, one important direction for

this dissertation’s future work is to focus more on the explanation tasks by strength-

ening the collaboration with social scientists which, as argued by many before, is

crucial for interdisciplinary research that involves social science (O’Connor, 2014;

Wallach, 2014; Grimmer, 2015).
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