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Magnetostrictive transducers are used in a broad variety of applications that include 

linear pump drive mechanisms, active noise and vibration control systems and sonar 

systems. Optimization of their performance relies on accurate modeling of the static 

and dynamic behavior of magnetostrictive materials. The nonlinearity of some 

properties of magnetostrictive materials along with eddy current power losses 

occurring in both the magnetostrictive material and the magnetic circuit of the system 

makes this task particularly difficult.  

This thesis presents continuum level, three dimensional, finite element analysis of 

magnetostrictive-based applications for different operating conditions. The Finite 

element models (FEMs) are based on boundary value problems which are first 

introduced in the “differential” form  (Chapter 2) and then derived to a “weak” form 

(Chapter 3) suitable for the implementation on the commercial finite element 

software, FEMLAB 3.1©. Structural mechanics and electromagnetics BVPs are used 

to predict the behavior of, respectively, structurally-involved parts and the 

electromagnetic circuit of a magnetostrictive-based application. In order to capture 



the magnetostrictive material’s behavior, static and dynamic three-dimensional multi-

physics BVPs include magneto-mechanical coupling to model magnetostriction and 

the effect of the magnetic stress tensor, also known as Maxwell stress tensor, and 

electromagnetic coupling to model eddy current power losses (time-harmonic and 

dynamic case only). The dynamic formulation is inspired by the finite element 

formulation in the Galerkin form introduced by Perez-Aparicio and Sosa [1], but 

focuses on a weak form formulation of the problem suitable for implementation in the 

commercial finite element software FEMLAB 3.1©. Implementation methods of the 

introduced models are described in Chapter 4. Finally, examples of these models are 

presented and, for the coupled magneto-mechanical FEM, compared to experimental 

results. 
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Chapter 1: Introduction 
 

Over the last two decades, magnetostrictive materials have received significant interest 

from the smart materials and structures community. A better understanding of the electro-

magneto-mechanical coupling behavior of these smart materials has lead to novel, more 

efficient, active and adaptive applications. Part of the research effort on the design of 

magnetostrictive-based devices includes the development of various computational tools 

with predictive and detailed analysis capabilities for use in optimizing the performance in 

the design phase. Most of these computational tools are based upon simplifying 

assumptions specific to the structural or functional configuration of the application under 

consideration. Only recently was a dynamic, fully coupled, non-linear, three-dimensional 

Finite Elements Method (FEM) for magnetostrictive materials introduced [1].  

For most magnetostrictive-based applications, there are three types of FEM 

implementations necessary to capture the coupled mechanical and electromagnetic 

behavior of all the components that makes a transducer: (1) a fully coupled Electro-

Magneto-Mechanical Finite Element Method (EMMFEM) implementation capable of 

capturing the behavior of the magnetostrictive material; (2) an electromagnetic FEM 

capable of predicting the behavior of the part involved in the electromagnetic circuit; and 

(3) an uncoupled continuum mechanics FEM capable of predicting the mechanical 

behavior of the structurally involved parts. Note that some parts may be structurally 

involved and magnetically involved like the magnetic steel housing of a magnetostrictive 



2

transducer that serves both to conduct a magnetic field in the magnetic circuit and to 

insure the structural integrity of the transducer.  

When modeling magnetostrictive materials, various coupling behaviors must be taken 

into account. First, the magneto-elastic interactions, also known as magnetostriction, 

must be included in the EMMFEM implementation. Although this coupling behavior is 

non-linear, under the assumption of small increments of the mechanical and magnetic 

independent variables, two linear coupled constitutive equations can be used to take into 

account this bidirectional magneto-mechanical coupling behavior. Second, the 

EMMFEM implementation and the mechanical FEM must take into account the effects of 

body-force and body-moment of magnetic origin. This form of coupling is unidirectional 

and is implemented by adding non-linear terms to the mechanical constitutive equations 

(i.e. the constitutive equations that link stress to strain and magnetic field). Note that this 

type of magneto-mechanical coupling does not apply to non-magnetizable materials like 

Aluminum. Third, an electromagnetic coupling occurs in non-static purely 

electromagnetic problems. An example of this coupling can be illustrated by the creation 

of a magnetic field around a wire with an electric current passing through it. A 

consequence of this type of coupling is often observed in the form of eddy current power 

losses occurring in magnetizable materials under time-harmonic or dynamic conditions. 

This type of coupling is accounted for by using the general form of the Maxwell 

equations as governing equations. Additional information on the behavior of a 

magnetostrictive material is given in more detail in section 1.3. 

All three types of FEM implementations must be ‘compatible’, meaning they must 

have common independent variables in order to be able to solve all implementations 
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simultaneously. When writing your own FEM code of a multi-physic problem, 

‘compatibility’ of the models is usually insured by using a single multi-physic FEM 

scheme in the Galerkin form where some of the coefficients of the tangent matrix are 

zeroed depending on the type of material modeled (i.e. the magneto-mechanical coupling 

coefficients are zeroed for non-magnetostrictive parts) [2,3]. However writing your own 

FEM can be tedious especially when modeling 3-D structures with complicated 

geometries. An alternative is to implement this multi-physics problem on commercially 

available software, in which case, compatibility may become an issue, especially when 

modifying pre-written uncoupled FEM schemes [4].  

The objective of this work is to capture the behavior of all parts involved in a 

magnetostrictive-based application by using various three dimensional FEM schemes 

implemented on a commercially available software, FEMLAB 3.1©, by modifying pre-

existing FEM schemes. The interest of using FEMLAB 3.1© is that the user can integrate 

application specific equations that describe the physics of the problem by modifying the 

FEM code using a MATLAB© language interface to add the desired formulation [4]. 

Some FEM schemes investigated in this work are based on formulations used by 

FEMLAB 3.1©. These include:  

� A static mechanical FEM implementation, 

� A dynamic mechanical FEM implementation, 

� A magnetostatic FEM implementation , and, 

� A time-harmonic electromagnetic FEM implementation. 

In addition to those four implementations, a three-dimensional, static, fully coupled 

MMFEM implementation and a three-dimensional, dynamic, fully coupled, EMMFEM 
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implementation are introduced. The static MMFEM implementation is a coupled version 

of the static mechanical FEM implementation and the magnetostatic FEM 

implementation. The dynamic EMMFEM is coupled version of the dynamic mechanical 

FEM implementation and a non-coupled dynamic electromagnetic FEM implementation 

yet to be developed on FEMLAB 3.1©. Both coupled FEM schemes are inspired by 

existing schemes discussed in section 1.4.  

On FEMLAB 3.1©, an FEM implementation is input either in the ‘differential’ form 

or in the ‘weak’ form of the Boundary Value Problem (BVP). For coupled multi-physic 

FEM, the ‘weak’ form of the BVP is often the easiest to implement on FEMLAB 3.1© 

[4]. Each FEM implementation discussed in this work is based on a BVP in the 

‘differential’ form given in Chapter 2 and in the ‘weak’ form given in Chapter 3 when 

required. Chapter 4 describes the implementation methods on FEMLAB 3.1© and 

Chapter 5 validates the FEM implementations by comparison of simple models to 

standard computational analysis or experimental results.      

1.1. Scope of the Objective 

 
The work presented in this thesis, in accordance with the above-mentioned objectives, 

pertains to either static or dynamic behavior. Although a time-harmonic, electromagnetic 

FEM implementation is used to study the magnetic circuit of the magnetostrictive-based 

applications, attempts to create a fully-coupled, time-harmonic, EMMFEM 

implementation were unsuccessful.  Some necessary assumptions used in the derivation 

of the time-harmonic electromagnetic FEM implementation, when used in a coupled 
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multi-physic model, resulted into a form of the BVP which could not be reduced to a 

weak form needed for implementation on FEMLAB 3.1© [1].  

In this section, general assumptions and modeling considerations for various FEM 

implementations are given. These include: (1) the description of the physics behavior at 

the macroscopic continuum level, (2) the linearization of the coupled constitutive 

equations of a magnetostrictive material in the coupled MMFEM & EMMFEM 

implementations, (3) the use of small deformation theory in mechanical FEM 

implementations, and (4) the effect of various hysteresis loss mechanisms.  

In the implementations presented in this work, the modeling is at a macroscopic 

continuum level, implying that magnetic quantities, such as magnetization and magnetic 

induction, are volume average quantities. As a result, the implementations are not 

intended to model microscale magnetic and magnetostrictive details such as magnetic and 

elastic domains configuration. Instead, the magnetostriction is modeled using an 

empirical linear model extrapolated from experimentally obtained characterization 

curves. The magneto-mechanical coupling behavior of a magnetostrictive material is non-

linear over a large range of magnetic field or mechanical stress. When modeling devices 

in which the maximum peak-to-peak value of these quantities are significantly small with 

respect to the non-linearity observed, linearized coupled constitutive equations are used 

in the BVP. The term ‘non-linear’ when referring to a dynamic coupled MMFEM or 

EMMFEM refers only to the nonlinear coupling terms added to the linearized coupled 

mechanical constitutive equation to account for the magnetic body forces and moments 

occurring in the magnetostrictive material. In terms of continuum mechanics, the small 

deformation theory for deformable solids is used in all mechanical and magnetostrictive 
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implementations by neglecting the second order spatial-differential terms in the strain-

displacement relationship. A typical value for the largest achievable magnetostriction in a 

magnetostrictive material is of the order of 2000 µstrain (peak magnetostriction of 

Terfenol-D under static conditions) and strain observed in the other structurally involved 

parts of a magnetostrictive-based device are generally of the same order of magnitude. 

Therefore, using the theory of small deformation in deformable solids is a valid 

assumption [5].   

There are three major types of hysteresis losses occurring in a magnetostrictive-based 

application: eddy current power losses occurring in magnetic materials under dynamic 

conditions, internal structural damping in structurally involved parts, and internal 

magnetic wall friction creating hysteresis that can be observable in the bidirectional 

coupled magneto-mechanical interaction of a magnetostrictive material. Eddy current 

power losses are automatically taken into account when using the general form of the 

Maxwell’s equations as the governing equations of the electromagnetic BVP. This type 

of power loss only occurs for applications run under dynamic conditions [6].  

Internal magnetic wall frictions are microscale magnetic details that create hysteresis 

power losses when switching the orientation of the magnetic domain configuration. At 

the present time, this type of hysteresis loss is not completely understood and simple 

computational models capable of quantifying this phenomenon properly do not exist yet 

[6]. Some mathematical models using the Preisach operator were developed to predict 

hysteresis losses by recording the history of the magnetic and mechanical state of the 

material and using it when computing the new state. The modeling of hysteresis using the 

Preisach operator is largely developed for ferromagnetism, magnetostriction, shape-
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memory alloys and piezoelectric in [7, 8, 9, and 10]. However, the new magnetostrictive 

material Galfenol used in the devices modeled in this thesis exhibit negligible hysteresis 

of this type. Consequently, additional matter on the subject and possible addition of a 

Preisach operator in the implementation introduced are not further discussed.   

Hysteresis losses due to internal structural damping are included in the dynamic 

mechanical FEM implementation under the form of Rayleigh damping coefficients. 

However, some of the assumptions made to obtain such a formulation make it very 

difficult to account for such an effect in a fully coupled, dynamic, electro-magneto-

mechanical implementation of a magnetostrictive material. Therefore, the fully coupled 

EMMFEM presented in this thesis does not account for hysteresis losses induced by 

internal structural damping or, for that matter, by internal wall friction. The extent to 

which this type of hysteresis loss affects the performance of a magnetostrictive material 

remains to be studied.   

The next three sections will successively present brief accounts from the literature on 

smart material, magnetostrictive materials, and the existing modeling tools developed to 

capture their behavior. The approaches adopted in this work to achieve the stated 

objective are presented in section 1.5.  

1.2. Smart Structure 

 
The general definition of a smart structure is a material or combination of materials with 

the ability to sense external stimuli specific to their functionality and by providing an 

intended response to these sensed stimuli. In other words, these materials transform one 

type of energy into another. A large community of researchers is working on the 
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development of viable forms of such structures for a variety of applications. The sensing 

of the stimulus, the identification of the proper nature and magnitude of the response, 

and, the actual manifestation of the response are the three major functions that a smart 

structure must necessarily perform in addition to providing reliable passive functionality.  

In order to use these structures in modern applications, the sensed stimulus must be 

quantitatively correlated to the desired response to allow proper prediction of the 

behavior of the structure studied. The concept of a ‘truly’ smart structure or device would 

include fully integrated sensing, actuation and control functions in a functional material. 

Such a smart structures have not been fully realized yet, but intermediate technologies 

such as active and adaptive structures using smart materials, also called ‘coupled’ 

materials, exist [11].Equation Chapter (Next) Section 1 

Nowadays, the smart structure research community focuses extensively on smart 

materials for their transduction properties which are particularly convenient for 

characterizing the stimulus-response relationship. The ‘textbook’ smart material is 

piezoelectric. It is a bidirectional smart material that transforms electrical energy into 

mechanical energy and vice-versa. In other words, an electrical stimulus induces a 

mechanical response and a mechanical stimulus generates an electrical response. The 

transformation of mechanical energy into electrical energy is called the ‘direct effect’ and 

the inverse transformation is called the ‘converse effect’. The strict definition of the direct 

effect is ‘electric polarization produced by mechanical strain, being directly proportional 

to the applied strain’. Similarly, the definition of the converse effect is the appearance of 

mechanical strain induced by an applied electrical current. Neglecting hysteresis and 
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temperature effects within the useful strain-voltage transduction region, these two effects 

are linear and can be modeled using the following coupled constitutive equations  

 E
ij ijkl kl kij kS s T d E= +  (1.1) 

 T
i ikl kl ik kD d T E= + ε (1.2) 

where S is the mechanical strain, T is the mechanical stress, E is the electrical field, D

is the electric displacement, s is the stiffness matrix, ε is permittivity matrix and d is the 

coupling matrix. The two categories of applications of a smart material are ‘actuators’ 

and ‘sensors’. Equation (1.1) is the ‘sensor’ equation used to model the ‘direct effect’ and 

equation (1.2) is the ‘actuator’ equation used to model the ‘converse effect’ [12]. Both 

these effects include power losses of various origins, also called hysteresis, which are not 

taken into account in the constitutive equations presented above. All smart materials 

exhibit more or less hysteresis in their coupling behavior, making the energy 

transformation an irreversible process. For piezoelectric materials, the efficiency of 

energy conversion can be quantified by the ratio of strain energy to electrical energy –

about 0.55 for PZT-5H, the most common type of piezoelectric. 

Other than piezoelectric materials, the most common types of smart materials used in 

aerospace, mechanical and naval engineering application include SMA, magnetostrictive 

and electrostrictive and ER and MR fluids. Each type of coupled material has a unique set 

of advantages and disadvantages relative to the others depending on their transduction 

capabilities in specific applications. The diverse nature of potential smart structure 

applications allows a functional area of application to be identified for each of these 

materials. In Table 1.1, the most common smart materials are identified and briefly 

described, their touching on functionality, linearity or non-linearity of their coupling 
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behavior and existing materials displaying the type of behavior described [13]. Tables 

1.2a and 1.2b provide a comparison of smart materials used as actuator (Table 1.2a) and 

on sensor (Table 1.2b) [13]. In table 1.2b, the ‘linearity’ refers to the linearity of the 

coupling occurring in the concerned type of smart structure. The ‘embedability’ refers to 

the ability of the concerned type of smart structure to be used embedded in a structure. 

The information referring to linearity and embedability is a comparison provided by J. 

Hubbard during a class oral presentation on smart materials in application operated under 

dynamic condition [13] 

Type of Smart Structure Energy Transformation Smart Materials 
Piezoelectric Electrical <~> Mechanical Cadnium Sulphide 
Shape-Memory alloy Thermic ~> Mechanical Nickel Titanium 
Magnetostrictive Magnetic <~> Mechanical Terfenol-D, Galfenol 
Electrostrictive Electrical <~> Mechanical PMN 
Pyroelectric effect Thermic ~> Electrical & Mechanical Quartz, Tourmaline 
Photoelectric EM radiation such as light ~> Electrical Copper Oxide 
Photoconductive Light affect Conductivity Germanium 
Viscoplastic Magnetic or electric field affect Viscosity E-R/M-R Fluid 

Table 1.1: Most common Smart Materials and their functionality (Data provided mostly 

from [13], but also from [12] and [14]). 

Actuators Maximum Strain Linearity Response(Hz) Embedability Cost 
Electrostrictive 300 Fair 1-20000 Good Moderate 

Magnetostrictive 2000 Fair 0-20000 Good Moderate 
Piezoelectric Ceramic 200 Good 1-20000 Excellent Moderate 
Shape-Memory alloy 5000 Good 0-5 Excellent Low 

Sensors Maximum Strain sensitivity Linearity Response(Hz) Max T° 
Strain Gauge 10000 2 Good 0-500000 Good 

Magnetostrictive 2000 0.001-0.1 Fair 0-20000 T°>300°C*
Piezoelectric Ceramic 550 0.001-0.01 Good 1-20000 200°C 
Shape-Memory alloy 5000 0.1-1 Good 0-10000 300°C 

Table 1.2: Smart material comparison chart when used as: (a) an actuator (top); and (b) 

sensor (bottom) [13] (* 300°C for Terfenol-D,  670°C for Galfenol). 
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The type of applications in which smart materials are used mostly depends on the 

transduction properties –actuation or sensing capabilities, magnitude and nature of 

response, bandwidth, sensitivity– and other material properties unrelated to transduction 

which may influence the design of any application –stiffness,  coefficient of thermal 

expansion, resistivity, permittivity, permeability. Using the ‘converse effect’, smart 

materials are used as actuators in various types of applications including linear pump 

mechanism, hybrid motors, servovalves, micropositioner… Using the ‘direct effect’,

smart materials can either be used as simple sensors –i.e. pressure sensor, strain sensor – 

or as more innovative applications such as energy harvester, vibration-control systems, 

health-monitoring systems, sonar systems. Extensive discussion on the various 

applications of smart materials can be found in introductory books by Banks [15] and 

Srinivasan [16]. 

1.3. Magnetostrictive Material 

 
It has been known for more than a century that some ferromagnetic materials exhibit 

dimensional changes occurring with change in magnetization (Joules effect), and 

inversely, change in magnetization when subjected to mechanical stresses (Villari effect). 

This phenomenon is called magnetostriction [6]. For the first half of the twentieth 

century, the low magnitude of the magnetostriction observed in the available 

ferromagnetic materials focused the interest of the smart materials and structures 

community to sensor applications as Nickel-based sonar systems. In the early seventies, 

the introduction of Terfenol-D, a new material with magnetostriction up to 200 times the 

one of Nickel, opened the doors to new actuator applications. In the last two decades, the 
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increased interest for magnetostrictive induced significant progress on the understanding 

of the origin of the phenomenon, the characterization of the materials properties, and the 

modeling of the coupled behavior exhibited by these materials. This last decade, the 

magnetostrictive research community has shown a growing interest in a new promising 

magnetostrictive material, Galfenol, with peak magnetostriction of 420µstrain and robust 

mechanical properties. In this section, the various phenomena observed in 

magnetostrictive materials such as magnetostriction, characterization curves or hysterisis, 

are introduced and explained. In addition, a comparison between the main 

magnetostrictive materials and a short summary of the various applications are given. 

 

1.3.1. Magnetostrictive material behavior 

 
Magnetostriction 

The phenomenon of magnetostriction, previously described, can be regarded as an energy 

transduction (or transformation) from mechanical to magnetic and vice-versa. It can be 

described as a bidirectional magneto-mechanical coupling between the mechanical and 

magnetic fields in the magnetostrictive material. The origin of this phenomenon can be 

traced to the alignment of the magnetic domains inside the material. Figure 1.1 is a 

schematic of the effect simplified to one dimension [12]. When no magnetic field is 

applied to the system, the series of domains have randomly oriented magnetic moments. 

Whereas when a magnetic field is applied, the series of domains rotate to partially align 

themselves to the magnetic field direction resulting in a change in length ∆l. Applying a 

sufficiently high magnetic field will result in perfectly aligned domains, in which case the 

material achieves the maximum magnetically induced strain (i.e. peak magnetostriction). 
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Magnetostriction requires the magnetic domains to be longer in one dimension than the 

other two to obtain a change in length when the domain rotates, as illustrated in Figure 

1.1. This, in general, results in anisotropy of the crystal structure of the material, whether 

it is body center cubic (i.e. Galfenol) or hexagonal (i.e. Terfenol-D). Because 

magnetostriction originates from the motion of magnetic domains occurring at a 

molecular level, range of operation frequencies for a magnetostrictive material goes from 

static to several kilohertz. Additional information on the role of “anisotropy” in 

magnetostriction can be found in [14] for Terfenol-D and [17, 18] for Galfenol. 

Figure 1.1: Schematics of the magnetostrictive 

effect [12]. 

Figure 1.2: Independence of strain on 

polarity of applied field [12].

 
Magnetostrictive materials and comparison of magnetostrictive materials properties  

James Joules first observed magnetostriction on Nickel in 1842. Later, Cobalt and Iron, 

along with their alloys, were shown to exhibit the same behavior. The ferromagnetic 

materials exhibited peak magnetostriction up to 50 µstrain. Alfenol 13 is an example of 

Iron-Gallium-Aluminum alloy exhibiting such level of magnetostriction. The low 

saturation strain limited the range of applications to sensor systems. In the first half of the 

twentieth century, Nickel-based telephone receiver, a sonar transducer and a torque-meter 
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were among the first devices made using the magnetostrictive effect.  Table 1.3 shows 

properties for Galfenol, Terfenol-D, pure Iron and pure Nickel. 

 Terfenol-Da Galfenolb Irona,d Nickela,d

Magneto-Mechanical Properties  
3/2 λs (µstrain) 1600~2400 150~420 -24 -66 
coupling factor 0.7-0.8 0.69-0.76     
Hysterisis in λ-H and B-H curves moderate very low low low 
preferred plane for magnetostriction <111> <100> <100> <111> 
Mechanical Properties  
Modulus of Elasticity (Gpa) 25-35 65 200 207 
Ultimate tensile strength (MPa) 28 580 400 500 
yield tensile strength (MPa) 28 500 250 140 
Magnetic Properties  
Saturation Magnetization (Tesla) 1 1.8 2.2 0.6 
relative permeability 2~8 60~360 150~5000 110~600
Magnetic field needed to get 90%          
of peak magnetostriction (kA/m) 120 8     
Thermal properties  
Temperature dependence of magnetostriction high moderate     
Curie Temperature (°C) 357 675 1044 627 
coefficient of thermal expansion @ room T° 11 10~12c 12.2 13.1 
Other   
raw material cost ($/g) 0.5 0.08 0.014    
crystallographic structure  hexagonal bcc bcc fcc 
electrical resistivity (µΩ.cm) 60 120 8.9 6.4 

Table 1.3: Property comparison chart between Terfenol-D, Galfenol, Iron and Nickel. 

Data from: a=> [14], b=> [19], c=> [20] and d=> [21]. 

 
Single crystal and polycrystalline structures 

Generally, single crystal magnetostrictive alloys serve great purpose in research to 

characterize the material properties and observe the material behavior in the design stage 

of the material. However, most applications using magnetostrictive materials use 

polycrystalline alloy, especially when dealing with macroscale applications due to the 

lower production cost and a faster production rate with respect to single crystal alloy. In 
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terms of performance, a strong dependence exists between the orientation of the crystal 

structure and the magnetostriction phenomenon resulting in smaller peak 

magnetostriction in polycrystalline alloys where the control over the orientation of the 

domains is more difficult. Information on the crystallographic structure of 

magnetostrictive materials are discussed in more detail by R. Kellogg for application to 

bcc structures (Galfenol) [19] and D. MacMasters for rare-earth magnetostrictive alloys 

[14].     

 
λ-H curves and Linearized Constitutive Equation for a Magnetostrictive Material 

Conversely to piezoelectric, magnetostrictive materials induce strain irrespective of the 

polarity of applied field. Figure 1.2 explains why the direction of the magnetic field does 

not affect the strain induced [12]. This effect results in a quadratic-like relationship 

between magnetostriction and magnetic field and is similar to what occurs in 

electrostrictive material. Magnetostriction versus magnetic field curves, or λ-H curves,

are typical characterization curves often displayed for various levels of applied 

mechanical stress. Figure 1.3 is a set of λ-H curves measured for Galfenol, an Iron 

Gallium magnetostrictive alloy discussed in more detail in the next section. These curves 

are provided by Kellogg [19]. The peak magnetostriction or saturation magnetostriction, 

highest value of the induced strain, can be read on λ-H curves. 

Applying a moderate compressive pre-stress to the sample is a common practice for 

magnetostrictive materials. It allows orienting the domains normal to the direction of the 

applied stress and increases the recoverable strain relative to the case with zero pre-stress 

(see explanatory sketches Figure 1.4 [12]).  Too high a pre-stress can only be overcome 

by a very high magnetic field. A moderate pre-stress is desirable to achieve optimal 
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transduction performance. Note that the effect of pre-stress on a λ-H curve can be seen in 

Figure 1.3 [19].  The slope of a λ-H curve is the magneto-mechanical coupling 

coefficient. Generally, the coupling coefficient is assumed constant over a certain range 

of applied magnetic fields. For AC applications a biasing field is generally applied to the 

magnetostrictive sample (see Figure 1.5 [12]). The linearized, uniaxial, one-dimensional, 

constitutive law for magnetostrictive material is very similar to the one for piezoelectric 

materials but with magnetic variables. They are given by 

 ( )tT
mech= +HS c T d H (1.3) 

H= + T
mechB d T µ H (1.4) 

where S is the mechanical strain tensor, T is the mechanical stress tensor, c is the 

stiffness matrix, H is the magnetic field tensor, B is the magnetic induction tensor, µ is 

the permeability matrix, and, finally, d is the magneto-mechanical coupling coefficient. 

The superscripts (H and T) indicate that the coefficients of the matrices concerned are 

measured under respectively constant magnetic field or constant mechanical stress. For 

example, dT, is the magneto-mechanical coupling coefficient measured from λ -H curve 

with pre-stress of magnitude T (see Figure 1.3 [19]).  

Using a magnetostrictive material as a sensor requires slightly different curves. In this 

case a plot of the induced magnetic induction (or magnetization) with respect to the 

applied stress for various magnetic fields is necessary for measuring the sensing coupling 

factor, dH. A typical characterization B-T curves for Galfenol is shown in Figure 1.6 [22]. 

However, the most common way to get this coupling factor is to derive it from the 

actuator coupling factor, dT. Another manifestation of magneto-mechanical coupling is 

the E∆ -effect, a change in elastic moduli accompanying a change in magnetization. An 
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example of this phenomenon can be seen in Figure 1.7, a plot of the modulus of elasticity 

with respect to the applied stress for various magnetic field levels [22].   

Figure 1.3: Magnetostriction vs Magnetic field curves of 18.4% production grade 

polycrystal Galfenol for various stress level [56]. 

 

Figure 1.4: Effect of compressive pre-stress on 

magnetostriction [12]. 

Figure 1.5: Range of application 

when using a bias magnetic field to 

operate in a linear region [12]. 
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Figure 1.6: Sample magneto-mechanical 

sensor characterization curves of a 19% 

Gallium Galfenol sample [22]. 

 

Figure 1.7: Illustration of the Delta-E 

effect in magnetostrictive Galfenol 

provided by [22]. 

 

B-H curves, M-H curves and Hysteresis 

It is very common to see associated with the λ-H curves a magnetic induction, B, versus 

magnetic field, H, sharing the same x-axis. Since magnetic induction and magnetization 

are related one to another by  

0 0= µ + µB H M (1.5)  

where µ0 is the permeability of vacuum, the magnetic characterization curve can also be 

plotted as the magnetization with respect to the magnetic field, in other word an M-H 

curve. The magnetization is directly linked to the magnetic field by the 

relationship m= χM H , where mχ is the susceptibility. Substituting this equation in (1.5) 

one can introduce the permeability matrix, µ such that 

( )0 m 01= µ + χ = µ =rB H µ H µH (1.6)  
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where rµ is the relative permeability. Figure 1.8 is a typical B-H curve for Galfenol 

coming from the same set of curves as Figure 1.3 provided by [19].  

 

Figure 1.8: Sample magnetic characterization curves for a 19% Gallium Galfenol sample 

under various compressive stresses at 22°C [19]. 

 
When the material is fully magnetized (i.e. the magnetic moments are fully aligned 

with an applied magnetic field), the material has reached saturation magnetization. This 

can be observed on Figure 1.8 as the maximum magnetization magnitude. When 

characterizing the magnetic or magneto-mechanical behavior of a magnetostrictive 

material, the point at the origin corresponds to a demagnetized minimum length state for 

a given pre-stress. Then a field is applied up to saturation, beyond which increases in 

magnetic field do not cause increases in either magnetization or magnetostriction. Once 

saturation magnetization (and saturation magnetostriction) is reached, the magnetic field 

is lowered to its equivalent negative value and back to the positive value to complete the 

loop.  
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The very reproducible gap between the curves generated when increasing and 

decreasing the applied magnetic field is commonly named hysteresis loops & is 

associated with irreversible losses. The main source of hysteresis losses in an M-H or B-

H curve is the work necessary to reorient the magnetic domains in the magnetostrictive 

material. Along with internal damping, this loss mechanism is another significant source 

of hysteresis in magneto-mechanical characterization curves (see area between the top 

and bottom λ-H curves for a single pre-stress on Figure 1.3 to visualize hysteresis). This 

type of hysteresis is independent of the bandwidth at which the material is driven. Under 

dynamic conditions, an additional type of hysteresis associated with eddy currents, occurs 

in all magnetizable materials including magnetostrictive materials.  This will be discussed 

in more detail later in this section.  

Other important information contained in B-H curve and M-H curves are values for 

saturation or peak magnetic induction, BS, saturation magnetization, MS, remanent 

magnetic induction, BR, and remanent magnetization, MR. The remanent values are the 

value of the magnetic induction (or magnetization) where the curve going from positive 

to negative peak magnetic induction (or magnetization) crosses the H=0 axis.    

 
Magnetic circuit, electromagnetic coupling and the demagnetization effect 

The physics of magnetic and electric phenomena are very similar and connected. The 

Maxwell equations govern both types of physics couple electric and magnetic fields of a 

magnetic circuit. The Maxwell equations are inseparable except under static conditions. 

For example, a magnetic circuit made of permanent magnets generates no electric field. 

Under any type of dynamic conditions (i.e. quasi-static, time-harmonic or simply 

dynamic), magnetic and electric fields are strongly coupled. The most common 
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electromagnetic coupling is the one used to drive any magnetostrictive-based actuator: a 

driving coil generates a sinusoidal magnetic field by applying a time-harmonic electrical 

current.   

 An important part of the design of a device using a magnetostrictive material is the 

design of the magnetic circuit. To get an efficient magnetic circuit, high permeability 

materials such as 1018 steel are used to complete a loop between both ends of the 

magnetostrictive rod. For example, a common actuator design is to have a 

magnetostrictive rod surrounded by a driving coil surrounded itself by a high-

permeability material housing. End caps link each end of the magnetostrictive rod to the 

high-permeability housing. This way the path of the magnetic flux generated by the 

driving coil run through the magnetostrictive material and is directed through the end-

caps and the high permeability housing, completing a magnetic loop. In a similar fashion 

to an electric circuit, the high-permeability material serves as a conductor for the 

magnetic flux path. The geometry of the magnetic circuit and the material used along 

with the driving coil design are important factors in the design of magnetostrictive-based 

applications.  

Another type of electromagnetic coupling almost simultaneously generates losses. An 

example of this type of power loss is explained by an electrical current generated in 

circles on the plane around the direction of the applied field. This electrical current 

generates in turn an induced magnetic field that opposes the originally applied magnetic 

field. This induced magnetic field depends on the magnitude of the original field, the 

driving frequency, and, the shape and permeability of the material used. This effect 
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applies to magnetizable materials and therefore to magnetostrictive materials. It is called 

eddy current power losses.  

A last consideration to take into account regarding magnetic circuits is the 

demagnetization effect. Consider two poles creating a magnetic field between the pole 

faces. The magnitude of this magnetic field depends on the pole strength, the distance 

between the poles and the permeability of the material between the poles. The 

introduction of a ferromagnetic material between the two poles that does not completely 

occupy the volume will result in a discontinuous magnetic field as the magnetic flux 

passes through both air an the ferroelectric material. The magnetic field produced by this 

new material will alter the previously existing magnetic field. This phenomenon arises 

because of demagnetization effects and depends on the shape and the permeability of the 

material added to the system.   

The most common unit systems that exist to define magnetic quantities are the 

Gaussian system or CGS system and the SI-Kennelly system. Both types of units for 

magnetic quantities are given with their conversion factors in Table 1.4. 

Quantity   CGS Units  Conv. factor SI Units 
Field H Oersted (Oe) 79.58 (A/m) 
Induction B Gauss 1*10-4 Tesla (T) 
Magnetization M emu/cc 1000 (A/m) 
Flux Φ Maxwell 1*10-8 Weber (Wb)

Table 1.4: Unit system and conversion factors for magnetic quantities. 
 

Temperature dependence and electro-magneto-mechanical coupling   

A very common unidirectional coupling effect is the generation of mechanical strain in 

elastic materials undergoing a temperature change. The relationship is generally linear. 

The slope of a plot of thermally induced mechanical strain with respect to temperature is 
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called coefficient of thermal-expansion. This effect may be relevant when the material 

undergoes a temperature change. Temperature changes are often created in 

magnetostrictive actuators by the driving coil through resistive heating. Resistive heating 

is a thermo-electric coupling explained by the reluctance of the material to carrying an 

electric current. Therefore, although the resistivity of the copper used in a coil is quite 

low, a certain amount of the electrical energy is transformed into thermal energy through 

this phenomenon. The effect of resistive heating in a driving coil often results in 

operating the magnetostrictive material at temperature significantly higher than room 

temperature. This contributes to the design parameters of a driving coil. Since 

magnetostriction is sensitive to temperature change as well [14, 23], during 

measurements of characterization curves, a cooling system is used to counter coil induced 

increases in temperature. Other forms of thermo-coupling that could potentially affect the 

design of a magnetostrictive-based application include coupling between material 

properties and temperature (i.e.: permeability, resistivity and modulus of elasticity). 

Figure 1.9 shows the temperature dependence of the magnetostrictive effect for Terfenol-

D [23].   

The coupled behavior of magnetostrictive materials between mechanical, magnetic, 

electric and thermal fields has various origins. Some of the couplings between the various 

fields are unidirectional (i.e. thermal expansion: heat induces mechanical strain but strain 

does not induce heat) and some are bidirectional (i.e. piezoelectric effect). Various 

coupling effects were described in the previous subsection, some applicable to 

magnetizable materials and others more specific to magnetostrictive materials. A 

schematic displaying each type of coupling and their origin is given in Figure 1.10. 
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Figure 1.9: Sample λ-T° curves at various temperatures for a Terfenol-D sample [23]. 
 

Figure 1.10: Coupling diagram
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1.3.2. Terfenol-D, Galfenol and other magnetostrictive materials 

 
Terfenol-D and other Rare-Earth Alloys 
The most popular giant magnetostrictive material is the crystalline form of Terfenol-D, 

an alloy made of iron (Fe) and two rare earth elements terbium (Tb) and dysprosium 

(Dy). Discovered in the early seventies by Clark and coworkers, it generated a large 

interest because of its large magnetostriction of up to 2000µstrain (second best after 

SMA) over a broad range of application frequencies combined with a low magnetic 

anisotropy. The stoichiometry of Terfenol-D can be represented as TbxDy1-xFey, where 

0.27 ≤ x ≤ 0.30 and 1.9 ≤ y ≤ 1.95. Small changes in stoichiometry have a major 

influence on the magnetic, elastic and magnetostrictive properties of the alloy. A small 

decrease in Iron content reduces brittleness significantly but also decreases the 

magnetostriction. Increasing x above 0.27 improves magnetostriction at lower fields and 

results in more efficient energy transduction. Terfenol-D’s magnetostriction comes from 

the rare earth alloys which are very magnetostrictive but have low Curie temperatures, 

below room temperature. The iron is used to raise the Curie temperature to a reasonable 

level for application in the industry. The Curie temperature of rare-earth magnetostrictive 

materials averages 380°C.  

The mechanical properties of the polycrystalline form of Terfenol-D are also a 

limiting design factor. The brittleness of the material and the low ultimate tensile strength 

requires the material to be used in compression only. Finally, Terfenol-D exhibits a fairly 

large hysteresis mostly due to magnetic wall friction. Other rare-earth magnetostrictive 

alloys include TbFe2 and DyFe2 but their large magnetic anisotropies limit their practical 
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applications. The two most common manufacturing processes use to manufacture 

Terfenol-D are the Free Standing Zone Melt (FSZM) Bridgman (BG) method. The 

material is available in multiple forms including solid and laminated rods, powder or thin 

films. Original work on these binary and ternary magnetostrictive alloys includes many 

papers by Clark [24-28] and are resumed and discussed in the “Handbook of Giant 

Magnetostrictive Material” by Engdahl [14]. 

 
Galfenol 

Neither Terfenol-D, Iron nor Nickel possesses the combined desired properties of 

mechanical toughness and appreciable magnetostriction capability simultaneously. The 

large gap in saturation magnetostriction (15µstrain for Iron, 45 µstrain for Nickel, 2000 

for Terfenol-D) and the low tensile strength of Terfenol-D (~28MPa) has motivated 

recent research on magnetostrictive materials to principally focus on a fairly new 

promising material, Galfenol. Galfenol is a Gallium substituted α-Iron alloy exhibiting a 

peak magnetostriction of up to 420µstrain capable of handling tensile stresses up to 440 

MPa [19, 29]. Its crystallographic structure is body centered cubic where the Gallium 

atoms are randomly distributed among the Iron atoms.  

The attractive features of Galfenol include: a ‘ductile’ behavior (although brittle 

fracture may occur under certain condition), a low magnetic field requirement (~200 Oe) 

to achieve saturation magnetostriction [19], very limited temperature dependence of 

properties between 20° C and 80° C, a high Curie temperature (~675°C) [19,30,31], the 

possibility of build-in pre-stress to operate in tension [32] and  “in plane” auxetic 

properties in the <110> direction (i.e. negative poison ratio) [19]. Moreover, Galfenol is 

not toxic and does not require special handling during the manufacturing process. The 
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most common manufacturing process of Galfenol is the Bridgman technique but 

investigation on more efficient production method are currently under investigation at 

ETREMA products, Inc., DRDC, and the University of Maryland [33].  

Since Galfenol has a relatively high permeability, the material is easy to fully 

magnetize but is also susceptible to eddy current power losses occurring under dynamic 

operations. The low hysteresis exhibited by Galfenol under quasi-static conditions 

suggest that most of the hysteresis witnessed under dynamic operating conditions can be 

attributed to eddy current power losses. Therefore, in the design of a Galfenol-based 

application, measures are taken to limit eddy current power losses. Laminating the 

material and designing an optimized magnetic circuit, are often the key to optimal 

dynamic performance.  

Characterization curves for magnetostrictive materials are typically measured by 

holding one independent variable constant while slowly varying the other (i.e. stress is 

held constant as field varies to generate λ-H curves). The amount of data necessary to 

fully characterize a material is large. Moreover, the optimal stoichiometry of Galfenol has 

not yet been determined and will probably vary with different applications. Therefore, 

part of the research effort consists of measuring characterization curves for various 

stoichiometries and crystal structures. The data points in Figure 1.11 represent 

magnetostriction measured for different stoichiometries of Galfenol with 10 to 35% 

atomic Gallium content single crystal. Most of the figures presented in this section are for 

a 19% Gallium Galfenol samples. 

ETREMA products, Inc., now produces two types of polycrystal Galfenol, a “research 

grade” and a “production grade”. The main difference between the two types of 
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polycrystalline Galfenol is that the research grade was grown slower and therefore 

orientation of the crystal structures are closer to the preferred axis of magnetostriction. 

Additionally, current efforts on the metallurgy side of the research on Galfenol include 

various visualization techniques of domain orientations [34] and optimization of rolling 

techniques [35].  

Figure 1.11: Magnetostriction versus Gallium content in single crystal Galfenol [17]. 

 

1.3.3. Applications 

There are two types of applications for magnetostrictive materials: actuators or sensors. 

Magnetostrictive-based actuators usually have an electrical coil shaped in a solenoid form 

around a magnetostrictive rod. The coil transforms electrical energy into magnetic energy 

and the magnetostrictive rod is use to convert magnetic energy into mechanical energy. 

Optimization of the design of a magnetostrictive actuator includes the design of the 

magnetic circuit and driving coil.  Generally, a driving coil is used to provide a 

superposition of the appropriate uniform bias field and time-harmonic applied field in the 
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sample. Sometimes permanent magnets are preferred to provide the bias field. The 

driving coil must also be properly design with respect rated voltage and current and with 

respect to the dielectric strength of comprising insulation materials. A good magnetic 

circuit must provide a uniform distribution of the magnetic field passing through the 

magnetostrictive rod as well as limited eddy current power losses. This is done by 

completing the magnetic circuit using a housing made of a high-permeability material as 

mentioned in section 1.3.1. The stiffness of the force outlet, mechanical transmission, 

and, actuator fixture and pre-stress system, have to be designed to optimize the structural 

performance of the application. A cooling system is also generally required to match the 

overall heat generation and internal heat transfer during operation. Finally, the total 

weight of the actuator is often an issue.  

Magnetostrictive-based sensors use a piece of magnetostrictive material to transform 

a mechanical strain into a change in magnetization permeability and reluctance of the 

material as well as a change in the surrounding magnetic field. A pick-up or sensing coil, 

a GMR sensor or a Hall probe can be used to read the change in magnetic state. As with 

actuators, a good magnetic circuit design can be very beneficial. Modeling tools can 

prove to be very handy to correlating the magnetic field read by the pick-up coil, GMR 

sensor or Hall probe to the magnetic state of the magnetostrictive material, and in turn 

correlating that for strain and force applied to produce the magnetic state change. 

Magnetostrictive-based applications are extensively detailed in the ‘Handbook on 

Giant Magnetostrictive Material” by Engdahl [14] and can be grouped as followed:  

� Sound and vibration sources systems including:  
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o Acoustic underwater systems using magnetostrictive transducers (such as 

the Tonpilz transducer design) are found in geophysical surveying and 

exploration, ocean tomography, mine clearance, underwater information 

exchange, underwater sonar systems. 

o Sound systems using magnetostrictive transducers as broadband vibration 

sources are found in speakers and laboratory and industrial shakers.  

� Vibration control systems using either the infinitely soft or the infinitely stiff 

modes of vibration control take advantage of the controllability of the 

magnetostrictive material. 

� Direct motional control systems use the high strain and force capability of 

magnetostrictive, ideal for in micromotional control, in applications including: 

diesel engine fuel injectors, laser optical scanning systems, astronomical image 

stabilizing platform, movie film pin registration, and ¼ inch magnetic tape head 

positioner. 

� Non-direct motional control systems take advantage of the possibility of applying 

a magnetic field from a distance with no wire or structure connected to the 

magnetostrictive material. Applications include linear motors, fast-response valve 

actuator, fast servo valves, pumps, and rotary motors. 

� Material processing systems can use either direct interaction of a magnetostrictive 

actuator or sound penetration. Ultrasonics high-frequency, high-power actuator 

used in medical, dental, petrochemical, sonochemical applications. Application 

includes: 
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o Physical treatment such as ultrasonic cleaning, cell disruption and 

sterilization systems, ultrasonic friction welding, emulsification, 

deemulsification, and foaming systems, and, mixing, vibration and 

boundary layer control systems.      

o Chemical treatment such as petroleum production and processing, 

chemical reaction, sonochemistry processes (i.e. chemical synthesis, 

emulsification, emulsion breaking, catalysis, food processing). 

� Electromechanical converter such as energy-harvester systems used the magneto-

mechanical coupling to transform one form of energy to another. 

� Sensor systems include various type compressive force, moment and torque non-

contact sensors and also sonar systems. The possibility to extend the various types 

of sensors to applications in tension using the capabilities of Galfenol is currently 

under investigation [36].  

 

1.4. Modeling Magnetostrictive Materials 

Several models of various complexity have been developed based on the linearized 

piezomagnetic coupled constitutive equations, (1.3) and (1.4). Early models were based 

on finite difference approaches, a simple method that is very compliant and suitable for 

use in modeling structures made of dissimilar materials such as most smart structures. 

Engdahl and Svensson [37] introduced a simple, uncoupled finite difference analysis to 

predict steady response of magnetostrictive rod due to an applied sinusoidal magnetic 

field using linear material characteristic. Kvarnsjo and Engdahl [38] developed a 2-D 
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finite difference transient analysis for modeling responses to a magnetic field using 

nonlinear material characteristics. 

The effective dynamic coupling constants of a magnetostrictive actuator were 

established by Claeyssen et al. [39] using a three-dimensional, coupled, linear finite 

element analysis based on an empirical representation of the material characteristics. 

Carman and Mitrovic [40] formulated a coupled one-dimensional non-linear finite 

element analysis using a phenomenological constitutive model for magnetostrictive 

actuator that showed good agreement with test data for high preload. However, it did not 

take into account saturation effects. These type of effects where incorporated along with 

thermal effects in a more comprehensive models by Hom and Shanker [41], and Duenas 

et al. [42]. Dapino et al. [43] developed a coupled nonlinear and hysteretic magneto-

mechanical model for magnetostrictives providing an accurate representation of the bi-

directional coupling between the magnetic and elastic states. The magnetostrictive effect 

is modeled by taking into account the Jiles-Atherton model of ferromagnetic hysteresis in 

combination with a quartic magnetostriction law.  

3-D magneto-mechanical FEM models have been developed for static and ultrasonic 

applications of Terfenol-D using commercial codes such as ATILA and using personal 

FEM codes. The formulations currently available in commercial codes do not seem to 

properly capture the behavior of the active material [44, 45].  Stillesjö and Engdahl [45] 

proposed a 3-D model for a laminated rod that uses an effective magnetic field and 

magnetic induction accounting for the eddy currents power loss. Kannan [46] introduced 

the effect of the Maxwell stress tensor and modeled the material behavior by incremental 

constitutive equations based on the magnetic field. Perez-Aparicio and Sosa [1] 
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developed a fully coupled, dynamic, 3-D FEM model that uses the displacement vector, 

the magnetic vector potential and the electric scalar potential as independent variables, 

and includes eddy current power losses. This FEM is proposed in the Galerkin form and 

is implemented on commercially available software, FEAP.  

More application-specific models include Anjanappa et al. [47, 48] who introduced a 

simple 1-D model simulating the behavior of a magnetostrictive mini-actuator. Wu and 

Anjanappa [49] and Krishnamurthy et al. [50] developed a simple rule of mixture model 

to calculate the response of magnetostrictive particulate composite. Flatau et al. [51] 

discussed on the effect of material characterization, design consideration, underlying 

physical processes that occurs during fabrication and structural health sensing, in 

magnetostrictive composites. In addition, Pradhan et al. [52] developed “first shear 

deformation theory” to study vibration control of laminated composite plate with 

embedded magnetostrictive layers. The effects of the material properties and placement 

of magnetostrictive layers on vibration suppression were examined.  

1.5. Outline of Approach and thesis 

Work presented in this thesis is based on existing structural, electromagnetic and coupled 

models at the macroscopic continuum level. All models are implemented in the 

commercial software FEMLAB 3.1 ©. The interest of using FEMLAB© is that the user 

can integrate application specific equations that describe the physics of the problem by 

modifying the FEM code using a MATLAB© language interface to add the desired 

formulation. Pre-existing modules of structural mechanics and electromagnetics (along 

with many others) are available and can be used in the construction of multi-physics 
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problems. Generally, multi-physics problems are implemented using the weak form of 

the boundary value problems.  

All BVP formulations used in this thesis are presented in chapter 2 in the direct form. 

The formulation differs for various conditions so more than one formulation is given for 

each type of model. Implementations of multi-physics problems capturing the behavior of 

magnetostrictive material on FEMLAB 3.1 require “weak” form formulations of the 

BVPs. This is introduced in Chapter 3. The weak form formulation of the fully coupled 

electro-magneto-mechanical models is close to the one developed by Aparicio and Sosa 

[1], but the FEM used in this thesis is not based on the Galerkin form. Note that the 

coupled model presented in this thesis is intended for magnetostrictive materials that 

exhibit low hysteresis as it currently does not account for losses due to effects other than 

those due to eddy currents. Chapter 4 explains how to implement the presented models on 

FEMLAB, what kind of data can be obtained and how to process the results. Sample 

models for each formulation introduced are given in Chapter 5 and compared to 

experimental results. Finally, Chapter 6 summarizes the work presented and concludes 

with possible suggestions for future work on the three-dimensional and time-dependent 

modeling of magnetostrictive-based applications. 
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Chapter 2: Differential Formulation of the Governing 

Equations 
 

This chapter’s goal is to provide the Boundary Value Problem (BVP) governing the 

mechanical field in structurally involved transducer components and the electric and 

magnetic fields in the magnetic circuit at the macroscopic continuum level. A BVP 

captures a physical behavior of a material with a set of differential equations (i.e. 

mechanical, magnetic, and thermic). The set of differential equations consists of a 

governing equation, subsidiary condition(s), constitutive relation(s) and boundary 

condition(s). The various BVPs are given in their most general form, usually for 

applications under dynamic conditions, and then simplified to capture applications under 

other conditions (i.e. static). Similarly, modifications based on different types of 

materials (i.e. magnetizable materials) are introduced to obtain simpler, more efficient 

BVPs. Therefore, more than one BVP is presented for each type of physics. Eventually, 

in order to obtain a BVP capturing the coupled electro-magneto-mechanical behavior of a 

magnetostrictive material, mechanical and electromagnetic BVPs are modified and 

magneto-mechanical coupled constitutive equations are introduced. As explained in the 

last chapter, a coupled BVP can later be modified into a weak form suitable to implement 

a Finite Element model (FEM) on FEMLAB 3.1. This will be the topic of Chapter 3. All 

equations provided in this chapter are given in three-dimensions, often simplified in 

matrix form. 
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2.1. The Mechanical Governing Equation 

2.1.1. The non-coupled, purely mechanical, Boundary Value 

Problem 

 
The mechanical BVP includes various independent and dependant variables. The 

independent variables are the “x”, “y”, and, “z” components, u , v and w , of the 

displacement vector, 

 [ ]t
u
v u v w
w

   =   
=u Equation Chapter (Next) Section 2(2.1)  

In this thesis, the variables in italic are scalars and the variables given in bold are vectors 

or matrices. As for the superscript notation “t”, it is to denote the transpose of the matrix 

concerned. The mechanical dependent variables used in the equations of the BVP are the 

components of the strain tensor,S , and the stress tensor, T . Both the stress tensor and 

strain tensor are symmetric 3x3 matrices, which can be written as       

 
1 12 13

21 2 23 12 21 13 31 23 32

31 32 3

; ; ; =
T T T
T T T T T T T T T
T T T

  = = =   
T (2.2) 

where the indices 1, 2, and 3 refers to the direction of the “x”, “y”, and, “z” axis. A 

common form of the stress and strain tensors are 6 by 1 matrices written as 

 
[ ]
[ ]

t
1 2 3 23 13 12

t
1 2 3 23 13 12

T T T T T T
S S S S S S

 = =
T
S

(2.3) 
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This is the form which is referred to when the symbol S and T are used. Other 

dependent variables can be computed post-processing such as the mechanical energies.  

The Mechanical BVP consists of: 

� One governing equation, also called equation of motion, 

� One subsidiary condition, also called strain-displacement relationship, 

� One constitutive equation, also called Hooke’s law, and, 

� Two boundary conditions types.  

The BVP presented in this section along with other more specific structural mechanics 

BVPs can be found in the FEMLAB structural mechanics module manual [4] or in books 

on solid mechanics (i.e. [5]).      

 
The Equation of motion 

First, consider the governing equation of all continuum mechanics problems, the equation 

of motion. It is derived from Newton 2nd Law, i.e. the sum of forces (in this case the 

internal stress and the externally applied forces) equals the product of mass and 

acceleration (in this case the density since the other terms are per unit of volume).  It can 

be written as 

 
2

2
d
dtρ∇ ⋅ + = uT b  (2.4) 

where b is the elastic body force per unit of volume (i.e. gravity), ρ is the mass density, 

and, 2
2d

dt is the second order time derivative where t is the time, not to be confused 

with the transpose superscript notation “t”. The symbol,∇ is define by  

 

td d d
dx dy dz
 ∇ =    (2.5) 
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and is commonly called gradient. The expanded form of the equation of motion can be 

written as 

 

2
1 12 13

1 2

2
12 2 23

2 2

2
13 23 3

3 2

T T T ubx y z t
T T T vbx y z t
T T T wbx y z t

ρ

ρ

ρ

∂ ∂ ∂ ∂+ + + = ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ + + + = ∂ ∂ ∂ ∂

(2.6) 

Since equation (2.4) includes a second order time derivative in this governing equation, 

one may introduce the velocity v given by  

 t
∂= ∂
uv (2.7) 

By using equation (2.7), one can write an expanded equation of motion of the form 

 d
dtρ∇ ⋅ + = vT b  (2.8) 

Generally, equation (2.7) associated with equation (2.8) are preferred to equation (2.4) 

alone to implement mechanical BVP in FEM software like FEMLAB 3.1©, which does 

not solve second order time differential terms directly. In the case of the study of a 

structure under static loading, the velocity vector vanishes and equation (2.8) can be 

reduced to 

 0∇ ⋅ + =T b  (2.9).

The strain-displacement and stress-strain relationships  

The strain-displacement relationship is the subsidiary condition of the continuum 

mechanic BVP. Under the assumption of small deformation, it can be written as 
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1 12

2 23

1
2
1
2

u u vS Sx y x
v v wS Sy z y

 ∂ ∂ ∂= = + ∂ ∂ ∂ 
 ∂ ∂ ∂= = + ∂ ∂ ∂ 

3 13
1
2

w u wS Sz z x
∂ ∂ ∂ = = + ∂ ∂ ∂  (2.10). 

When modeling deformations in a solid mechanics application, the design of the 

application is made such that the stress level remains small enough to stay in the elastic 

region everywhere in the structure [5]. In this case, a purely elastic material can be 

modeled using a linear relationship between stress and strains. Post-processing, one will 

verify that the maximum stress level has not exceeded the material’s yield stress, the 

stress level above which plastic deformation would occur in a non-linear fashion. The 

stress-strain relationship, a 3-D version of Hooke’s law, 1 1 1T E S= , where 1E is the 

modulus of elasticity along the x axis for a 1D problem, can be written as 

 ( )0el th= = − −mechT cS c S S S (2.11) 

where c is the 6 by 6 stiffness matrix, S is the total strain, elS is the elastic strain, thS is 

the thermal strain and 0S is the initial strain. Note that the term, mechT denote the stress 

level induced by a deformation, elS only. If other sources of strain exist, a structural 

mechanics problem must be treated by separating the strain into term for each source as 

was done in the right hand side of equation (2.11). The stiffness matrix can be 

anisotropic, orthotropic, transversely isotropic, or isotropic depending on the number of 

planes of symmetry in the material modeled. For example, Aluminum is isotropic (same 

properties in all direction) and Galfenol is transversely isotropic (isotropic in the 12 plane 

and anisotropic in the 3 direction). Except for isotropic materials, it is important to use 
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rotation matrix to orient the material properties correctly in a structural mechanic 

problem. More detail on rotation matrix and planes of symmetry in materials can be 

found in “Elasticity in engineering Mechanics” by Boresi [5]. Other source of stress such 

as the application of an initial pre-stress or magnetic stress will be discussed later in this 

chapter. Equation (2.11) is usually the constitutive law used in the non-coupled purely 

mechanical BVP.  

 
Boundary conditions 

The boundary conditions (BC) can be of three forms, essential, natural or initial. The 

essential mechanical BC is formulated as a prescribed displacement *u on the surface, 

u∂Ω whereas the natural is formulated as an applied traction *f on the surface, f∂Ω . The 

total surface ∂Ω is equal to u f∂Ω ∂ΩU (where the symbol U stands for “union” or 

“+”). The mechanical boundary condition can be written as 
* =u u on  u∂Ω (2.12) 

⋅*f = T n on f∂Ω

(2.13).  

where n is a unit normal vector. Initial BCs are used for time varying problems. They 

take the form of essential or natural BC but for a specific time such as *
0t= =u u . To sum 

up, Equations (2.7) and (2.8), (2.10), (2.11), (2.12) and (2.13)  are respectively the 

governing equations, the subsidiary condition, the constitutive relation, and the boundary 

conditions  of the mechanical BVP.  
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Principle of Virtual Work 

The principle of virtual work states the virtual work from any variation in internal strain 

and external load are zero. The total stored energy, W, from external and internal strain 

and load is 

 
( ) t

1 1 2 2 3 3 12 12 23 23 13 13

t t t

S L

1 2 2 22
+
V

S L p

W S T S T S T S T S T S T dv

ds dl

 = − − − − − − +  
+ +

∫
∫ ∫

u b

u b u b U b
 (2.14) 

where the subscript V, S, L and P stands for Volume, Surface, Line, and Point. The 

principle of virtual work states that 0dW = where the “dW” is the variation of W. This 

will be derived in chapter 3 along with other weak form formulations of BVPs introduced 

in the chapter [5]. 

 

2.1.2. Modified Hooke’s Law for Elastic Materials under Pre-stress 

In many magnetostrictive devices, an axial pre-stress is applied along the active strain 

direction of the magnetostrictive materials. To model pre-stresses on a magnetostrictive 

material, Perez-Aparicio and Sosa [1] used the ‘theory of small displacement superposed 

upon large’. This method was developed by Hughes [53] and consists of modifying the 

stiffness matrix c into a modified stiffness matrix whereby the mechanical stress tensor 

accounts for the stress due to the strain S and due to the pre-stress 0T . Applied to the 

constitutive law of the non-coupled mechanical BVP of a purely elastic material, the 

modified stiffness matrix could be defined by  

 modified= + = + =mech 0 0T T T cS T c S (2.15). 
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In such case, one must use a new 9x1 stress tensor that includes symmetric and skew-

symmetric components (i.e. { }t
1 2 3 23 13 12 32 31 21T ,T ,T ,T ,T ,T ,T ,T ,T ). The “extra” three 

rotational components, 32 31 21T ,T ,T , are added to model the pre-stresses such that the 

modified stiffness matrix is given by 

1+ 4

11 12 13

11 13

33

44

44

66

Symetric
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01 03
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Symetric
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

(2.16) 

where the “0” included in the subscript of the pre-stress components serves to 

differentiate them from the stress component (i.e. 03T is the “z”-component of the applied 

pre-stress). Note that the stiffness matrix in equation (2.16) is transversely isotropic but 

could very well be anisotropic. For most applications, the only non-zero pre-stress 

component is 03T which significantly simplifies equation (2.16). In the case where no pre-

stress is applied, the traditional form of the stiffness matrix can be used. In the rest of this 

thesis, when pre-stress is non-zero, c will refer to the modified stiffness matrix given in 
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(2.16), and mechT , will refer to the mechanical stress tensor accounting for both strain 

induced stress and pre-stress (9x1 tensor).  

Now, consider the mechanical subsidiary condition, also known as the ‘strain-

displacement relationship for small displacement’. To stay consistent with the mechanical 

stress tensor accounting for the pre-stress in the stiffness matrix, the strain vector S

includes irrotational strain components and rotational strain components, making the 

strain tensor a 9x1 matrix. The strain-displacement relationship can be written as 
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u (2.17)                     

where S∇ is an operator defined as above and previously used for purely elastic material 

[53] and for magnetostrictive material [1]. Note that if no pre-stress is applied the 

rotational strains may be neglected.  

 

2.2. The Electromagnetic Governing Equations 

 
There are many different types of macroscopic electromagnetic boundary value 

problems. Different types of couplings between the electric and magnetic fields can 
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occur. The most common is described by a wire with an electric current passing through 

it that generates a circular magnetic field in the plane perpendicular to the wire. Another 

common type occurs in dynamic cases and has to do with power losses associated with 

the formation of a small electric current that opposes to the one originally applied. The 

only two cases where they can be treated separately are ‘electrostatics’ and 

‘magnetostatics’. This is when, respectively, no current, and no magnetic flux, moves 

inside the volume concerned.  

In this section, the most general form of Maxwell’s equations is introduced. Solving 

them subjected to certain application conditions and boundary condition constitutes the 

problem of electromagnetic analysis. In this chapter, three main BVPs are introduced: 

one for the dynamic case, one for the quasi-static, time-harmonic case and one for the 

magnetostatic case. Many others exist but they are beyond the scope of this thesis. The 

BVP presented in this section along with other more specific electromagnetic BVP can be 

found in the FEMLAB electromagnetic module manual [4].      

 

2.2.1. The dynamic electromagnetic boundary value problem  

 
The Maxwell’s Equations 

Maxwell’s equations are a set of equations stating the relationship between the 

fundamental electromagnetic quantities [6]. The governing equation of electro-magnetic 

phenomena is generally one of the four Maxwell’s equations which can be written, in 

their most general form, as 

 t
∂∇ × = + ∂
DH J  (2.18) 
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 t
∂∇ × = − ∂
BE (2.19) 

 q∇ =D (2.20) 

 0∇ =B (2.21) 

where E is the electric field intensity vector, D is the electric displacement or electric 

flux density, H is the magnetic field intensity, B is the magnetic flux density, J is the 

current density and q is the electric charge density [54]. Equations (2.18) and (2.19) are 

respectively known as the Maxwell-Ampere’s law and Faraday’s law. Equations (2.20) 

and (2.21) are respectively the electric form and the magnetic form of Gauss’ law. A fifth 

equation is generally presented with the Maxwell’s equation, the equation of continuity 

given by  

 = - q
t

∂∇ ⋅ ∂J (2.22). 

Electric and Magnetic Constitutive Relations 

The general constitutive equations generally associated with the Maxwell’s equations are 

given by  

 0ε= +D E P (2.23) 

 0 ( )µ= +B H M (2.24) 

 σ=J E (2.25) 

where 0ε is the permittivity of vacuum, 0µ is the permeability of vacuum, and σ is the 

conductivity [4,6]. The permittivity of vacuum and the permeability of vacuum in the S.I. 

unit system are chosen to be, respectively, 91
36 10π

−⋅ F/m and 4π 10-7 H/m.  The electric 

polarization vector, P , describes how the material is polarized when an electric field, E ,
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is applied. Similarly, the magnetization vector, M , describes how the material is 

magnetized when a magnetic field, H , is applied. Both can be interpreted as volume 

density of respectively electric and magnetic dipole moments. The electric polarization 

and magnetization have usually a range in which a linear relationship to, respectively, 

electric fields and magnetic fields, can be assumed. Certain materials however have non-

zero electric polarization and magnetization for no electric or magnetic field applied. A 

good example of non-zero magnetization for no applied field is a permanent magnet. To 

accommodate these behaviors the constitutive equations can be rewritten as  

 0 r rε ε= +D E D (2.26) 

 0 r rµ µ= +B H B (2.27) 

 eσ= +J E J (2.28) 

where rε is the relative permittivity, rµ is the relative permeability, rD is the remanent 

current displacement,  rB is the remanent magnetic flux density and eJ is the externally 

generated current density [4,6]. The constitutive relations used for magnetostrictive 

materials are coupled with mechanical fields. They will be addressed in the last section of 

this chapter.  

 
Definition of Electrical and Magnetic Potentials 

Subsidiary conditions are equations that relate the independent variables to higher order 

dependant variables. In a dynamic electromagnetic BVP, it is convenient to use the 

potential equations as subsidiary conditions. These link the magnetic flux density B and 

the electric field E to a magnetic vector potential A and an electric scalar V potential as 

follows: 
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 = ∇ ×B A (2.29)   

 
V t

∂= ∇ − ∂
AE (2.30) 

Equations (2.29) and (2.30) are direct consequences of Gauss’ Law and Faraday’s law 

[1]. Equation (2.30) couples the electric field to both the electric and magnetic 

independent variables. The magnetic vector potential A is a useful computing tool for 

electromagnetic BVP.  

 
Electric and Magnetic Boundary Conditions 

The magnetic BC are either formulated as a prescribed magnetic potential *A on the 

surface A∂Ω or as a prescribed magnetic flux density *B on the surface B∂Ω . As with 

the mechanical boundary conditions, ∂Ω is equal to A B∂Ω ∂ΩU . The magnetic BC can 

be written as 

 * =A A on A∂Ω (2.31) 

 * =B B n on B∂Ω (2.32). 

Finally, the electrical BC are either formulated as a prescribed electric potential *V on 

the surface V∂Ω or as a prescribed surface charge density *D on the surface D∂Ω , with 

∂Ω equal to V D∂Ω ∂ΩU . The electrical boundary condition can be written as 

 *V = V on V∂Ω (2.33)      

 * =D D n on  D∂Ω (2.34). 

 

2.2.2. Additional electromagnetic variables 

The following electromagnetic quantities may be calculated during post-processing: the 

magnetization vector, M , the polarization vector, P , the magnetic and electric 
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energies, eW and mW , the electric, magnetic, radiative and resistive power, eP , mP , hP

and rP , and the time-average dissipated energy in the magnetostrictive material Q . The 

first two quantities can be computed using 

 
0µ

 = −  
µM B H (2.35) 

and,                 

 = −P D εE (2.36) 

where I is a 3x3 identity vector [1].  

 Electric and magnetic energies, We and Wm, can be expressed as   

 ( ) 1

0

D t

0 t
= d d de

V V
W v t vt

∂ ⋅ ∂ = ⋅ ∂ ∫ ∫ ∫ ∫ DE D E  (2.37) 

 ( ) 1

0

B t

0 t
= H d d dm

V V
W v t vt

∂ ⋅ ∂ = ⋅ ∂ ∫ ∫ ∫ ∫ BB H  (2.38). 

One may get the electric and magnetic power, Pe and Pm, by taking the time derivative of, 

respectively, the electric and magnetic energies such that 

 =e
V

P dvt
∂⋅ ∂∫ DE (2.39) 

 =m
V

P dvt
∂⋅ ∂∫ BH (2.40). 

These energies are related to the resistive and radiative energy by Poynting’s theorem [4]. 

The resistive and radiative energy are respectively given by  

 =h
V

P dv⋅∫ J E (2.41) 

 ( )=r
S

P dv× ⋅∫ E H n (2.42). 
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The Poynting’s theorem states 

 ( )- +
V V S

dv dv dvt t
∂ ∂ ⋅ ⋅ = ⋅ + × ⋅ ∂ ∂ ∫ ∫ ∫D BE H J E E H n (2.43). 

The quantity = ×S E H is called the Poynting vector. Using (2.26) and (2.27),  

 1
2t t t tε ε∂ ∂ ∂ ∂ ∂   ⋅ = ⋅ ⋅ = ⋅ = ⋅   ∂ ∂ ∂ ∂ ∂   

D D E EE E E E EE (2.44) 

 1 1
2t t t tµ µ

 ∂ ∂ ∂ ∂ ∂ ⋅ = ⋅ ⋅ = ⋅ = ⋅   ∂ ∂ ∂ ∂ ∂   
B B H BH B B B BH (2.45). 

Therefore equation (2.43) can be rewritten as 

 ( )1 1- +2 2V V S
dv dv dvt ε µ

 ∂ ⋅ ⋅ = ⋅ + × ⋅ ∂  ∫ ∫ ∫E E B B J E E H n (2.46) 

using (2.44) and (2.45) [1,4,6].  

 
Eddy current power losses  

Eddy currents are one of several loss mechanisms in magnetostrictive materials. Eddy 

currents occur when a dynamic magnetic field is applied to a ferromagnetic material. This 

electric current forms in planes perpendicular to the magnetic field vectors. In turn, this 

current creates an opposing smaller magnetic field that ultimately cancels a portion of the 

originally applied magnetic field. The time-average dissipated energy in the 

magnetostrictive material Q quantifies the eddy current power losses and is given by 

 

+ + +Q V V Vt t t
∂ ∂ ∂     = ⋅ = ∇ + ⋅ ∇ ⊗ ∇     ∂ ∂ ∂     

e A A AJ E J σ (2.47)  

[1].  
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Lamination of the ferromagnetic material reduces the cross-sectional area and 

therefore reduces the eddy current power losses. An alternative to laminations is to 

increase the electrical resistivity. A magnetostrictive actuator is often comprised of the 

actuating material surrounded by successively a coil and a highly permeable housing. 

To complete the magnetic circuit, end caps link the actuating material to the housing. As 

with lamination, a slit in the housing of a transducer can be used to reduce the strength of 

eddy currents in the housing by reducing the cross sectional area in which a current can 

circulate. To sum up by laminating the active material and by introducing a slit in the 

housing as shown in Figure 2.1, one may drastically reduce the eddy current power losses 

for device operating at high frequency.  

 

Figure 2.1: Illustration of the effect of reducing the cross sectional area of a magnetizable 

material to limit eddy current power losses (left: cross section view of a circular rod 

surrounded by hollow cylinder, right: cross section view of a laminated rod surrounded 

by a slit hollow cylinder). 
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2.2.3. Simplification for the magnetostatic and time-harmonic 

applications 

The Magnetostatic cases 

There are two approaches to the magnetostatic cases. First one can reduce the Maxwell’s 

equations by removing the time derivatives of the magnetic induction B and electric 

displacement D and the electric field E . This will eliminate coupling between the 

magnetic BVP and the electric BVP (i.e. no eddy current power losses) and equation 

(2.71) becomes 0∇ × =H . A new formulation based on a scalar magnetic potential mV

may be defined such that  

 mV= −∇H (2.48). 

consequently, the boundary conditions (2.31) become  

 *
m mV V= on 

mV∂Ω (2.49). 

In this case the model only applies the magnetostatic case with no current [4,6].  

If static current is applied, the second alternative consists of keeping the magnetic 

vector potential and the electric vector potential. Since it is a static case, any time 

derivative is equal to zero, which reduces the Maxwell-Ampere’s law and the continuity 

equation to 

 ( ) ( )1
0 Vµ σ σ−∇ × ∇ × − − × ∇ × + ∇ = eA M v A J (2.50) 

 ( )( )V 0σ σ−∇ ⋅ × ∇ × + ∇ − =ev A J  (2.51) 
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[4]. Note the term ( )σ × ∇ ×v A represents the current generated by a static magnetic 

field in constant motion. The term Vσ− ∇ represents the current generated by a static 

electric field. One may solve (2.50) independently from other equations.  

 
The Quasi-Static approximation  

In the Maxwell’s equation, the time rate of change of the electric charge density, tρ∂ ∂ ,

and the time rate of change of the electric displacement, t∂ ∂D , represent the lag between 

the changes of the fields induced by a change in sources. This describes the physical 

phenomenon of a finite speed of propagation of electromagnetic waves. The Quasi-Static 

approximation considers the speed of propagation to be infinite. In term of quantities, this 

means tρ∂ ∂ and t∂ ∂D are assumed to be zero. This is equivalent to calculating 

electromagnetic fields for stationary currents at every instant.  

Assuming a geometry moves at a velocity v relative to a fixed reference system, the 

force F per charge q is given by 

 / +q = ×F E v B (2.52) 

Therefore the current density is given by 

 ( )=σ + × + eJ E v B J (2.53) 

where eJ is the externally applied current density [4,6,and 54]. 

 

The Maxwell’s Equations under Quasi-Static Conditions 

Setting tρ∂ ∂ and t∂ ∂D to zero in the Maxwell equations and using (2.53),  

 × = =σ( +v )+∇ × eH J E B J (2.54) 



53

 × = - t
∂∇ ∂
BE (2.55) 

 = ρ∇ ⋅D (2.56) 

 = 0∇ ⋅B (2.57). 

Using (2.27), (2.29) and (2.30), one can rewrite Ampere’s law and the continuity 

equation as  

 ( ) ( )1
0 V=tσ µ σ σ−∂ + ∇ × ∇ × − − × ∇ × + ∇∂

eA A M v A J (2.58)      

 ( ) V 0tσ σ σ∂ −∇ ⋅ − × ∇ × + ∇ − = ∂ 
eA v A J  (2.59) 

[4,6]. 

 
The Gauge transformation  

Before rewriting Maxwell-Ampere’s law and the constitutive equation for a quasi-static 

time harmonic model, one must introduce the concept of Gauge fixing. This is simply a 

new form of potentials defined as  

 = ψ+ ∇A A% (2.60) 

 =V V t
ψ∂− ∂

% (2.61) 

where ψ can be called the gauge function. The same magnetic and electric field can be 

obtained from this formulation as that from   (2.29)  and  (2.30): 

 ( )= )ψ∇ × = ∇ × − ∇ = ∇ ×B A A A% % (2.62) 

 ( )= +V V Vt t t t
ψψ ∂ − ∇∂ ∂ ∂ − ∇ − = −∇ − = −∇ − ∂ ∂ ∂ ∂ 

AA AE
% %% %  (2.63). 

This formulation allows placement of constraints on ψ making the solution unique[4,54]. 
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Whenever a problem is time-harmonic the field can be written using a phasor. The 

electrical field is therefore given by 

 ( ) ( ) ( )( ) ( )( )ˆ ˆ( , ) cos Re Rej j t j tt t e e eφ ω ωω φ= + = =r r rE r E E E% (2.64) 

where ( )rE% is a phasor that contains the field amplitude and phase information. Note this 

equation is independent of time. This formulation simplifies the form of the derivative 

which is  

 ( )( )( , ) Re j tt j et
ωω∂ =∂ r

E r E% (2.65) 

[4,54]. 

 

2.3. The Mechanical and Electromagnetic Governing 

Equations for Magnetostrictive Materials 

2.3.1. Electromagnetic Stress Tensor and Modified Equilibrium 

Equation for Magnetizable Material 

For a magnetostrictive material, the stress tensor, T , must include the strain induced 

stress tensor, the stress tensor due to pre-stress  and the stress tensor due to the magnetic 

field, MT , also know as Maxwell’s stress tensor. An important issue encountered when 

modeling a magnetostrictive material is to include an electromagnetic stress tensor MT to 

account for the stress due to the electromagnetic force induced by a magnetic field, H

[36]. In order to account for this force in the equation of motion(2.8), one must split the 

volumetric body force, b , into a  mechanical volumetric body force, mechb and an 
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electromagnetic volumetric body force, magb , which, depending of the type of material 

(i.e. polarizable, magnetizable), can take different forms. Magnetostrictive materials are 

magnetizable magnetic materials. Therefore, the electromagnetic body force is expressed 

as,  

 0µ= × + ∇ ⋅magb J B H M (2.66). 

By substituting equation (2.66) into the mechanical equation of motion (2.8), the 

Maxwell stress tensor can be written as 

 ( )µ= ⊗ − ⋅0
M 2T H B H H I (2.67) 

where the operator ⊗ is the dyadic tensor product. Using equation (2.66), one can 

rewrite the equation of motion (2.8) as 

 ( ) d= dt∇ ⋅ + + ρmech M mech
vT T b  (2.68). 

A full derivation on how to get (2.67) is given in Kannan [46].  

 

2.3.2. Simplified Maxwell’s Equations 

A few simplifications can be made for the modeling of magnetostrictive materials. First, 

because of a lack of capacitance in magnetostrictive material, the electric free charge 

density q can be dropped when applying Maxwell’s equations to the magnetostrictive 

material. Therefore equation (2.20) reduces to 

 0∇ =D (2.69)  

Note however that the modeling of the magnetic circuit surrounding the magnetostrictive 

material other parts of the design (i.e. a coil) may require to use equation (2.20) instead of 

equation(2.69). Second, the electric current density can be separated into 
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 e σ= +J J E (2.70) 

where eJ is the externally applied volumetric current density and σ is the electrical 

conductivity [10,12]. Using equation (2.70) in equation  (2.18), one gets 

 tσ ∂∇ × = + ∂
DH E  (2.71). 

The externally applied volumetric current density in equation (2.70) is equal to zero for 

magnetostrictive material but can be non-zero in the rest of the magnetic circuit (i.e. the 

induction coil in an actuator design) [1]. 

 

2.3.3. The Linearized Coupled Constitutive Equations 

The constitutive equations describing a magnetostrictive material are a coupled set of 

equations linking the mechanical stress and strain tensors to the magnetic field and flux 

density. These relationships, although nonlinear, can be approximated to a linear 

formulation for small increments of these quantities. The linearized form of the 

constitutive equation is given by  

 ( )tT
mech= +HS c T d H (2.72) 

 H= + T
mechB d T µ H (2.73) 

where c is the stiffness matrix introduced in section 2.1, d is the magneto-mechanical 

coupling matrix, µ is the permeability and the superscript t continues to indicate the 

transpose of the matrix with the superscript. It is a common notation to use the 

superscript ‘H’, ‘B’, ‘T’ and ‘S’ to indicate that the values inside this matrix reflect 

conditions under which the parameter in the superscript is a known constant (i.e. Hc is 

the stiffness matrix in presence of a constant magnetic field of magnitude H ). These 
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equations also known as the piezomagnetic constitutive equations for a magnetostrictive 

material, may be expressed in many ways. Although equations (2.72) and (2.73) are the 

most common form found in publications on the subject, it may be more convenient to 

express the mechanical stress and the magnetic field in terms of the strain and the 

magnetic induction. To do so, one must first rearrange (2.72) into 

 ( )t
mech - - = =  

H T HT c S d H c S gH (2.74) 

where ( )t= H Tg c d the stiffness matrix Hc is a symmetric matrix.  Then, by introducing 

equation (2.74) in (2.73), the magnetic induction can be written as   

 ( ) == + +H H T Η SB d c S µ - d g H g'S µ H (2.75). 

where ( )tt t' = = = =H H H Hg d c dc c d g if ( )t= =Η Td d d , which is a valid assumption for 

small increment of the independent variables. Similarly, by isolating the magnetic field H

in equation (2.75), on gets 

 ( ) ( ) ( )1 1 1S S S- − − −= + = +t tH µ g S µ B h S µ B (2.76) 

where ( ) 1t S t- −=h µ g . Finally, by introducing equation (2.76) in equation (2.74), one gets 

 ( )t −  −-1H S B
mech gT = c gh S - µ B = c S hB (2.77) 

where B t = − Hc c gh . Equations (2.76) and (2.77) are the two forms of the constitutive 

equations that will be used in the weak form formulation of the coupled problems. An 

additional constitutive equation linking the electrical field to the electric displacement is 

necessary for the dynamic model.     
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2.3.4. Summary of the BVP capturing the behavior of a 

Magnetostrictive Material 
To conclude this chapter let me sum up the equations used in the BVP capturing the 

macroscopic behavior of a magnetostrictive material under dynamic applications. The 

Mechanical governing equations used for magnetostrictive materials or any other type of 

elastic materials are the equation of motion (2.8), which is often associated to (2.7) get a 

first order differential equations. The mechanical subsidiary condition is also the same as 

for a regular elastic material. It is the strain-displacement relationship introduced in 

equations (2.10). The electric and magnetic governing equations for magnetostrictive 

materials under dynamic application are, respectively, equations (2.69) and (2.71) as 

introduced earlier in this section. Electric and magnetic subsidiary conditions are the 

potentials equations (2.29) and (2.30). Finally the coupled constitutive relations used are 

equation (2.76) and (2.77). Figure 2.2 shown below sums up this paragraph. 

Figure 2.2: Summary of the differential form of the electro-magneto-mechanical BVP for 

magnetostrictive material under dynamic application. 
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Simplification to Static 

The static version of the BVP displayed in Figure 2.3 consist of using equations (2.9) and 

(2.21) as, respectively, the mechanical and magnetostatic governing equations, equations 

(2.10) and (2.48) as the subsidiary conditions, equations (2.74) and (2.75) as the coupled 

constitutive law and, finally, equations (2.12), (2.13), (2.32) and  (2.49) as boundary 

conditions.  

 

Figure 2.3: Summary of the differential form of the magneto-mechanical BVP for 

magnetostrictive material under static application. 
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Chapter 3: Weighted-Residual Formulations 
 

In chapter 2, different sets of BVP were introduced to capture the mechanical and 

electromagnetic behavior of all sorts of pieces that could be involved in a 

magnetostrictive-based application. For the structurally involved pieces, the dynamic and 

static BVPs in their differential form are based on the equilibrium equations. To model 

the electromagnetic circuit, BVPs, based on the Maxwell’s equations, were introduced for 

dynamic, quasi-static time-harmonic and the static conditions. Using these BVPs of 

continuum mechanics and electromagnetics under dynamic applications, a fully coupled, 

electro-magneto-mechanical BVP was developed for magnetostrictive materials. Using a 

similar approach, a static, fully coupled, magneto-mechanical BVP was introduced as 

well.  

On FEMLAB 3.1 ©, most BVPs are easier to implement in the differential form. 

However, coupled BVPs, especially the dynamic set, requires being in the weighted-

residual form, also known as “weak form”. This type of method is the common basis of 

most FEM schemes. It consists of taking the variation of the governing equation and 

boundary conditions and expressing it in an integral form, using subsidiary conditions 

and constitutive relation to write this new form in terms of the independent variables.  

The static, fully coupled, magneto-mechanical BVP for magnetostrictive material as 

well as purely mechanical BVPs (static and dynamic) are examples of models commonly 

implemented using the “weak” form. The common appellation of the “weak” form in 

structural mechanics problem is Principal of Virtual Work (PVW), the weighted-residual 

form of the equilibrium equation. It is used to implement structural mechanics FEM 
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schemes based on the Galerkin Method. FEMLAB offers to implement either form but 

the method used by the software to solve a structural mechanic model is the PVW.  

Coupled pre-implemented models such as the piezoelectric model (similar to the 

static magnetostrictive model), uses either the “weak” form or an alternate form of 

implementation, close to the differential form, called the “coefficient” form. This type of 

formulation uses a very general partial differential equation where coefficients are placed 

in front of some of strategic terms.  This alternate formulation will not be discussed in 

detail because it is difficult to put coupled BVP in this form. FEMLAB © software 

technical engineers strongly advise use of the “weak” form for BVPs with numerous 

independent variables. This requires inputting all the coupling coefficients between each 

of independent variables. Models with more than one type of coupling such as in the 

dynamic electro-magneto-mechanical BVP, are almost impossible to implement in the 

differential or “coefficient” form for that reason. 

Chapter 3 introduces the weighted residual form for various BVPs: the dynamic and 

static structural mechanics BVPs, the static, fully coupled, magneto-mechanical BVP 

(and at the same time the static piezoelectric BVP), and, finally, the dynamic, fully 

coupled, electro-magneto-mechanical BVP, the most complicated kind. In the next 

chapter, the method to implement such kind of formulations on FEMLAB along with 

implementation method for the BVPs in there differential form will be addressed.   
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3.1. The “Weak” Form Formulation of the Structural 

Mechanics BVPs 

 
First let me recall the equations involved in the static and dynamic structural mechanics 

BVPs for purely elastic material. Note that these BVPs do not account for the Maxwell 

stress tensor introduced in section 2.3.1.  
 

Figure 3.1: Summary of Structural mechanics BVPs for purely elastic material. 
 

There are two ways to get a “weak” form formulation: start from the energy terms 

and start from the governing equation and the natural BCs. In this thesis, the second 

method will be used and instead of using matrix notation and all terms will be introduced 

in indicial notation to make this chapter easier to understand. Consider the equations of 

motion with suitable boundary conditions. Multiplying them by the variation of the 

displacement vector and putting them into integral form, respectively, over the volume 

and over the surface, and finally equating the sum to zero, one obtains: 
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Equation Chapter (Next) Section 3 

 ( )2
*

, 2 0uT b u dv T n f u dstΩ ∂Ω

 ∂+ − + − = ∂ ∫∫∫ ∫∫α
βα β α α αβ β α αρ δ δ  (3.1) 

where α and β successively equal 1, 2 and 3 [2,3,4,5,55]. The coma in the subscript of 

the term ,Tαβ β means that the coefficient of the stress matrix Tαβ is differentiated with 

respect to xβ , where xβ successively equal x, y, z for β equal to 1, 2 and 3. In terms of 

energy variation terms, one can separate equation (3.1) such that 

 

2

2b
uW b u dvtΩ

 ∂= − ∂ ∫∫∫ α
α αδ ρ δ  (3.2), 

( ) *
sW T n u ds f u ds

∂Ω ∂Ω
= −∫∫ ∫∫βα β α α αδ δ δ  (3.3). 

where bWδ is the virtual work due to externally applied body forces and inertial forces, 

and, sWδ is the virtual work due to surface stresses. Now, before starting the derivation 

of the variation of the total energy by modifying the way equations (3.2) and (3.3) are 

written, let me introduce simple variational calculus. The linearity (hence 

interchangeability) of the derivative of the variation of a term can be written in the three 

following forms  

 ( ) ( ),,
u u ux
α

α α ββ
β

∂δ = δ = δ∂ (3.4). 

 Another mathematical tool used in “weak” form formulations is the divergence 

theorem, which can be written as 

 =1,2,3i
i i

i

F dv Fn ds ixΩ ∂Ω

∂ =∂∫∫∫ ∫∫  (3.5). 
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Using the divergence theorem, one can rewrite equation (3.3) as 

 

( )
( )

*

*

*

sW T n u ds f u ds

T u dv f u dsx
T uu T dv f u dsx x

∂Ω ∂Ω

Ω ∂Ω

Ω ∂Ω

= −

∂= −∂
 ∂ ∂= + −  ∂ ∂ 

∫∫ ∫∫
∫∫∫ ∫∫
∫∫∫ ∫∫

βα β α α α

βα α α α
β

βα α
α βα α α

β β

δ δ δ

δ δ

δδ δ
 (3.6). 

The next step is to introduce the virtual strain term, Sαβδ associated with a virtual 

displacement, uαδ , which can be written 

 ( ) ( ) ( )( ), , , ,
1 1
2 2S u u u u = + = +  αβ α β β α α β β αδ δ δ δ  (3.7). 

Using equation (3.7), one may see that the term T Sβα αβδ can be expressed as 

 uT S T x
∂= ∂

α
βα αβ αβ

β

δδ (3.8). 

Then, equation (3.6) can be written  

 ( ) *
,sW T u T S dv f u dsβα β α βα αβ α αδ δ δ δ

Ω ∂Ω

−
− = − + +∫∫∫ ∫∫  (3.9). 

Now,  the variation of the term αβ,β= T∇ ⋅T can be introduced as such 

 ,iW T u dv
Ω

= ∫∫∫ βα β αδ δ  (3.10). 

Then equation (3.1) can be written as the sum of equation (3.2), (3.9) and (3.10), such 

that   
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 ( )

2

, 2

*
,

2
*

2

i b s
uW W W T u dv b u dvt

T u T S dv f u ds

uT S dv b u dv f u dst

Ω Ω

Ω ∂Ω

Ω Ω ∂Ω

 ∂+ + = + + − ∂ 
− + +

 ∂= − + − + ∂ 

∫∫∫ ∫∫∫
∫∫∫ ∫∫
∫∫∫ ∫∫∫

α
βα β α α α

βα β α βα αβ α α

α
βα αβ α α α α

δ δ δ δ ρ δ

δ δ δ

δ ρ δ δ 0=∫∫

 (3.11) 

where U T S dv
Ω

= ∫∫∫ βα αβδ δ  is the variation of the internal energy term and 

b sW W W= +δ δ δ is the total virtual work due to body forces, inertial forces and surface 

stresses [2,3,4,5,and 55].   

 The last line of equation (3.11) constitutes the “weak” form generally input into 

FEMLAB 3.1 along with the subsidiary condition and the constitutive equation in order 

to allow the software to express the variation of the internal energy in terms of the 

compliance matrix, the displacement vector and the variation of the displacement vector. 

Since this task is not required by the software and is not necessary to implement FEM 

schemes in the Galerkin form, it will not be carried through in this thesis but additional 

derivation can be found in any FEM or advanced structural mechanics books [5,55]. To 

conclude this section, let me introduce the equivalent form for static application where 

the inertial force term vanishes: 

 * 0T S dv b u dv f u ds
Ω Ω ∂Ω

− + + =∫∫∫ ∫∫∫ ∫∫βα αβ α α α αδ δ δ  (3.12). 
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3.2. The “Weak” Form Formulation of Static fully coupled 

electro-mechanical and magneto-mechanical BVPs 

 
In this section, the “weak” form formulation of two very similar BVP is introduced, one 

capturing the static behavior of a piezoelectric material and one capturing the static 

behavior of a magnetostrictive material. One might ask why the interest in piezoelectric? 

Well simply because the latest version of FEMLAB 3.1 Structural Mechanics module and 

MEMS module includes a built in model for piezoelectric materials. This model was 

previously suggested by using the “coefficient” form of a structural mechanics model 

coupled with an electrostatic model. And therefore, one may be able to look up such a 

model from the library of the FEMLAB software and compare it to the fully coupled, 

static, magneto-mechanical model developed later in this section.  

One main issue to discuss however is the role of the Maxwell stress tensor. As 

explained in the last section, the Maxwell stress tensor is a non linear contribution of the 

magnetic field to the mechanical stress in a magnetostrictive material. Kannan [46] 

(magnetostrictive) and Hom and Shankar [41] (electrostrictive) appear to be the only ones 

to have attempted to include the effects of a body force of electromagnetic origin in a 

computational analysis of the deformation of a polarized or magnetized coupled material. 

Both use an incremental scheme based on the Galerkin method. They seem however to 

have approaches which only partially account for the effect of body forces and moments 

due to the difficulty of incorporating the effect of the antisymmetric part of the stress 

tensor in the linearized constitutive equations.  
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All the implementations in this thesis use linear constitutive equations. They are only 

applied for applications where changes in deformation and in magnetic field are 

sufficiently small to assume the constitutive equation to be linear. Kannan [46] used 

incremental coupled constitutive equations to capture the effect of saturation in the 

magnetostrictive effect. This approach is achievable, although quite difficult, because of 

assumptions such as the quasi-static simplification of the Maxwell’s equations.  

Both derivations presented in this section were developed by the author during the 

completion of a class on variational methods in structural mechanics. Both might not look 

like anything reference on the topic but the results seem to be the same. Note however 

that the piezoelectric formulation does not account for body forces of electromagnetic 

origin whereas the magnetostrictive formulation may.     

3.2.1. The Static fully coupled electro-mechanical “weak” form 

formulation for piezoelectric material 

Piezoelectric materials exhibit a naturally occurring coupling effect between their 

electrical and mechanical properties. The coupling works both ways: electric polarization 

is produced by mechanical strain (the ‘direct’ piezoelectric effect) and, inversely, an 

electrical current induce mechanical strain (the ‘converse’ piezoelectric effect).   

 
Electro-mechanical static BVP 

There are two sets of governing equations, mechanical and electrical. The mechanical 

governing equation and subsidiary condition are the same as the one introduced in 

Chapter 2 and in the first section of this chapter. The electrical governing equation, also 
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known as the Maxwell’s equations, under the assumption of quasi-static electrical field 

can be reduced to    

 q∇ =D (3.13) 

 ,i iD q= 1, 2, 3i = (3.14) 

and 

 V= −∇E (3.15)  

 ,i iE V= − 1, 2, 3i = (3.16) 

[3,4]. Weak form formulation of an electrical problem generally uses (3.13) as the 

governing equation and (3.15) as the subsidiary condition. Note that q is zero inside the 

electrically insulating dielectric. The electrical BCs were introduced in Chapter 2 for the 

electro-magneto-mechanical model.  

Using the same approach as with previously introduced BCs, the electrical BC are 

either formulated as a prescribed electric potential, *V , on the surface V∂Ω or as a 

prescribed surface charge density, *Q , on the surface Q∂Ω . Note that ∂Ω is equal to 

Q V∂Ω ∂ΩU and the electrical BC can be written as 

 *V V= on V∂Ω (3.17) 

and 
*Qi iD n = − on Q∂Ω (3.18) 

[3,4]. Under the assumption that the thickness of the electrode bounded to the 

piezoelectric material is negligible, the free charge on the surface electrodes can be 

represented by a prescribed charge density, *Q .
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For a normal elastic solid, the mechanical constitutive equation used is Hooke’s law 

( ij ijkl klT s S= where s is a 4th order compliance tensor). Similarly, the electrical 

constitutive relation linearly links the electric displacement to the electric field 

( i ij iD e E= where e is the dielectric tensor). For piezoelectric materials, the constitutive 

relations used are an extension of the linear mechanical and electrical constitutive 

equation.  In indicial form, the linear piezoelectric constitutive relation introduced in the 

introduction chapter, can be written  

ij ijkl kl kij kT C S h E= − (3.19) 

i ijk jk ij jD h S e E= +  (3.20) 

where h is the 3rd order coupling tensor [3,4]. 

 
Weak form derivation 
 

In a similar way to what was done for a purely mechanical problem, a variation 

principle approach can be derived from the governing equations. The weak form can be 

obtained by expanding the principle of virtual work with the electrical governing 

equation and boundary conditions. The weak form obtained is  

 
( ) ( )

( )
Q

*
,

*
,

0

Q 0
T

ij j i i ij j i i

k k i i

T b w dv T n T w ds

D dv D n ds
Ω ∂Ω

Ω ∂Ω

− + + − = − + + =

∫ ∫
∫ ∫ω ω

 (3.21) 

where iw and ω are weight functions that satisfy the mechanical and electrical boundary 

conditions respectively [3]. Both the equation of motion and Maxwell’s electrostatic 

equations are self-adjoint problems. Therefore, we can rewrite (3.21) using variation of 
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the displacement, iuδ (which vanish on u∂Ω ), and of the scalar potential, Vδ (which 

vanishes on Q∂Ω ), and obtain 

 
( ) ( )

( )
Q

*
,

*
,

0

Q 0
T

ij j i i ij j i i

k k i i

T b u dv T n T u ds

D Vdv D n Vds
Ω ∂Ω

Ω ∂Ω

− + + − = − + + =

∫ ∫
∫ ∫

δ δ
δ δ

 (3.22). 

Now, by adding both equation in (3.22) and using the strain-displacement relationship 

and equation (3.15) as subsidiary conditions, using partial integration and applying the 

divergence theorem, (3.22) can be rewritten as 

 ( )
Q

* *Q 0
T

ij ij k k i i i iT S D E dv b u dv T u ds VdsΩ Ω ∂Ω ∂Ω− − − + =∫ ∫ ∫ ∫δ δ δ δ δ  (3.23) 

where ijSδ is the variation of the strain field produced by the compatible displacement 

field iuδ , and similarly kEδ is the electric field produced by the compatible electric 

potential δφ [3]. The first term of (3.23) is the variation of the electric enthalpy density, 

H . It is an energy term defined as  

 ( )ij ij k kH T S D E dvΩ= −∫δ δ δ  (3.24). 

Note that the first section, development stopped at the stage of (3.22) but for coupled 

problems of this sort, it might be interesting to pull out the variation component to get a 

functional. To do so, first, one needs to pull the variation out of each term in (3.24) to 

obtain 

 ( ) ( )( )ij ij ij ij k k k kH T S S T D E E D dvΩ= − − +∫δ δ δ δ δ  (3.25). 

Using the variation of the constitutive equation (3.19) and (3.20), one gets 

 ( ) ( ) ( ) ( )( )ij ij ij ijkl kl kij k k k k kij ij ki iH T S S C S h E D E E h S e E dvΩ= − − − + +∫δ δ δ δ δ δ δ  (3.26). 

Rearranging (3.26), one gets 
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( ) ( )( )ij ij k k ij ijkl kl k ki i ij ijk k k kij ijH T S D E S C S E e E S h E E h S dvΩ= − − + + +∫δ δ δ δ δ δ δ  (3.27). 

In Equation (3.27), the 3rd term shows the necessity of having a symmetric 4th order 

compliance tensor. Similarly, the 4th term shows the necessity of having a symmetric 2nd 

order permittivity tensor. And finally, the last two terms show the necessity of having a 

symmetric 3rd order coupling tensor. By factoring out the coupling tensor in the last two 

terms, the last term of equation  (3.27) reduces to ( )kij ij k k ijh S E E S+δ δ  where the term 

inside the parenthesis is equivalent to the variation of ( )k ijE S . This manipulation is only 

achievable thanks to the symmetry of the coupling tensor. Additionally, by using the rule 

of variational calculus on the 3rd and 4th terms of  (3.27), one may obtain 

( ) ( ) ( ) ( ) ( )( )1 1
2 2ij ij k k ij ijkl kl k ki i kij k ijH T S D E S C S E e E h E S dvΩ= − − + +∫δ δ δ δ δ δ  (3.28). 

By regrouping the last 3 terms of (3.28), the variation of the electric enthalpy can be 

rewritten as  

 ( ) ( ) ( )( )1
2 2ij ij k k ij ijkl kl k ki i k kij ijH T S D E S C S E e E E h S dvΩ= − + − + +∫δ δ δ δ  (3.29) 

 and by rearranging the last term of (3.29), one gets  

( ) ( ) ( ) ( )( )( )1
2ij ij k k ij ijkl kl k kij ij k ki i k kij ijH T S D E S C S E h S E e E E h S dvΩ= − + − + + +∫δ δ δ δ  

(3.30) 
or 

( ) ( ) ( ) ( )( )( )1
2ij ij k k ij ijkl kl kij k k ki i kij ijH T S D E S C S h E E e E h S dvΩ= − + − + + +∫δ δ δ δ  (3.31). 

By using the constitutive relations (3.19) and (3.20) respectively in the 3rd and 4th term of 

(3.31), one gets 

 ( ) ( ) ( )( )1
2ij ij k k ij ij k kH T S D E S T E D dvΩ= − + − +∫δ δ δ δ  (3.32). 

Finally, grouping all the terms of (3.32) under the same variation sign we get 
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 ( )( )1 1
2 2ij ij k k ij ij k kH T S D E S T E D dvΩ= − − +∫δ δ  (3.33) 

which reduces to 

 ( )( )1
2 ij ij k kH S T E D dvΩ= −∫δ δ  (3.34) 

[3]. Similarly, the last three terms of (3.23) can be grouped to form the work due to an 

external load, W , such that, 

 
Q

* *Q
T

i i i iW b u dv T u ds VdsΩ ∂Ω ∂Ω= + −∫ ∫ ∫δ δ δ δ  (3.35) 

By pulling the variation out of the integral, one may rewrite (3.35) as 

 
Q

* *Q
T

i i i iW b u dv T u ds VdsΩ ∂Ω ∂Ω
 = + −  ∫ ∫ ∫δ δ  (3.36) 

where φ is the surface potential where charge is prescribed [3]. One may rewrite (3.23) 
as 
 0I H Wδ δ δ= − = (3.37)  
where I, is called the functional. Consequently, 
 ( )

Q

* *1 1
2 2 Q

T
ij ij k k i i i iI T S D E dv b u dv T u ds VdsΩ Ω ∂Ω ∂Ω

 = − − + −  ∫ ∫ ∫ ∫  (3.38). 

 

3.2.2. The static fully coupled magneto-mechanical “weak” form 

formulation for magnetostrictive material 

 
The static fully coupled magneto-mechanical BVP consists of using equations displayed 

in figure 2.3. Note however that the equilibrium equation, equation (2.9), must be 

rewritten in the form of equation (2.70) in order to account for the Maxwell stress tensor.  

The electric variables do not appear in the static model and the magnetic vector 

potential Α is replaced by a magnetic scalar potential mV which reduces the BVP 
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independent variables from { }, , , , , ,x y zu v w A A A V for the dynamic PDE, to { }, , , mu v w V

for the static PDE. Then, by using the same method of derivation as the one used for the 

electro-mechanical BVP, one gets, in vector form, 

 ( ) * 0t dv dv dsΩ Ω ∂Ω− − =∫ ∫ ∫ f
S T b u f uδ δ δ  (3.39) 

and          

 ( ) ( )
Q

*
mV 0t tdV dSΩ ∂Ω− + =∫ ∫H B Bδ δ  (3.40). 

Now, as one may recall from the piezoelectric derivation, up to this point the 

constitutive equation were not used. Only governing equations and subsidiary conditions 

are necessary to get up to this point. Adding equation (3.39) and (3.40), a functional can 

be derived for magnetostrictive material by following the same derivation as for 

piezoelectric. Note however, that to get this functional the constitutive equations must not 

include the effect of the Maxwell stress tensor. They must be of the form of equations 

(2.74) and (2.75). Therefore, the functional formulation is not a fully coupled 

implementation and consequently may not be the best way to proceed for these types of 

models. The functional obtained is of the form 

 ( ) ( )( ) ( )
Q

* *1
m2 Vt t tt tF dV dV dS dSΩ Ω ∂Ω ∂Ω= − − − +∫ ∫ ∫ ∫f

S T H B u b u f B  (3.41) 

where the first integral can also be called the magnetic enthalpy and the rest of the 

integral term can be seen as work due to external load.  

To get a fully coupled model accounting for the electromagnetic body forces and 

moments, one must keep the “weak” form formulation given by equations (3.39) and 

(3.40), and use constitutive equations accounting for the Maxwell stress tensor, MT ,
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introduced in last chapter. The coupled constitutive equations used therefore consists of 

equation (2.74) and a fully coupled stress constitutive equation which may be written as 

 ( )0µ+ ⊗ − ⋅= − +M 2
H

mech T H B H H IT T = c S gB  (3.42).

3.3. The “weak” formulation of dynamic fully coupled electro-

magneto-mechanical BVP 

 
A well-posed set of PDEs describing the dynamic behavior of a magnetostrictive material 

has been introduced in section 2.3. The equations involved are summarized in table 2.2 

provided at the end of chapter 2. To derive a weak form formulation of this BVP, one 

must first derive an integral form of the multi-physic BVP.  This can be done by 

multiplying the governing equations and the natural boundary conditions with weight 

functions (say { }tu, v, wδ = δ δ δu for the mechanical sets of PDEs, Vδ for the electrical set 

of PDEs, and  { }t
1 2 3A , A , Aδ = δ δ δA for the magnetic set of PDE) and by integrating the 

governing equations over a subdomain Ω and the BC over the boundary ∂Ω . Then, to 

go from an integral form to a weak form, one must used the subsidiary conditions and 

mathematical tools such as integration by parts, the divergence theorem and Stokes 

theorem such as the one derived in the previous sections. The weak form obtained is  

 ( ) ( ) ( ) ( )V+ V S V 0t t t td d d dΩ Ω ∂Ω Ω− + + =∫ ∫ ∫ ∫f

*S T u b u f u u&&δ δ δ δ ρ  (3.43), 

 ( ) ( ) *V S=0t tV d V dΩ Ω− ∇ +∫ ∫D Dδ δ  (3.44), 
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( ) ( ) ( )
( ) ( )

*V S+ V

V V 0

t t t

t t

d d d

Vd d

δ δ δ
δ σ δ σ

Ω Ω Ω

Ω Ω

− +

− ∇ − =
∫ ∫ ∫

∫ ∫
H

eB H A H A J

A A A&
(3.45) 

where the term u&& is the 2nd order time differential of the displacement field u and A& is 

the 1st order time differential of the magnetic vector potential Α [1]. By using central and 

forward finite differences approach, respectively, these terms can be approximated to 

 ( )
( ) ( ) ( )( )n 1 n n 1

n 1

t t t
t 2

2
t

+ −
+

− += ∆
u u u

u&&  (3.46) 

and, 

 ( ) ( )n 1 nt t 1

t
+ −−
∆

Α ΑA& (3.47). 

The software’s solver, however, has a “time” solver which only treats first order time 

differential. Therefore, the only alternative to implement equation (3.43) is to start with 

equation (2.7) and (2.8). Then equation (2.7) can be expressed in the “weak” form as 

 dv dvtΩ Ω
∂= ∂∫ ∫ uv v vδ δ  (3.48) 

and (2.8) can be rewritten as 

 ( ) ( ) ( ) ( )V+ V S V 0t t t td d d dtΩ Ω ∂Ω Ω
∂− + + =∂∫ ∫ ∫ ∫f

* vS T u b u f uδ δ δ δ ρ  (3.49). 

So the final form of the “weak” form of the dynamic electro-magneto-mechanical BVP 

are the equations (3.49), (3.44) and (3.45), in conjunction with the constitutive equations 

(2.78), (3.42) and (2.23). Note that this weak form is in terms of variation of the field 

terms { }, ,δ δ δS H E and variation of the variables { }, , , Vδ δ δ δu v A  and the flux density 

term { }, ,T B D . Using FEMLAB, the weak form application mode requires using 
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equations in this form in any non-static models. Figure 3.2 is a summary of the direct and 

“weak” form of such type of BVP. 

 

Figure 3.2: Summary of the differential form of the electro-magneto-mechanical BVP for 

magnetostrictive material under dynamic application. 
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Chapter 4: FEM Implementations on FEMLAB 3.1© 
 

Chapter 2 and 3 defined, respectively, the differential and “weak” form formulation of 

the various BVPs that will be used to capture the electromagnetic, mechanic and coupled 

electro-magneto-mechanical behaviors of the different parts involved in modeling a 

magnetostrictive-based application under different application conditions. The goal for 

Chapter 4 is to present details that illustrate the implementation of 3-D FEM models 

based on these BVPs on FEMLAB 3.1©. Although a basic knowledge of the software is 

preferable, an unfamiliar user can use sections of this chapter as a tutorial manual to gain 

an understanding of steps needed to implement these equations. This chapter is separated 

into 3 sections. The first one introduces the software’s capabilities and limitations and 

focuses on the justification of the choice of commercial software used. The next two 

sections focus on implementation methods for the static and dynamics models.  

4.1. Brief Overview of FEMLAB 3.1 © 

 
FEMLAB 3.1 © is a powerful interactive software which enable one to model and solve 

all kinds of scientific and engineering problems based on BVPs. The software includes 

pre-implemented BVPs of various types of physics including structural mechanics, 

electromagnetic, heat transfer, etc. Each type of physics BVP is implemented for 

different application conditions and is generally proposed in 1, 2 and 3 dimensions. Each 

model type is called an application mode. For example, “3-D, solid stress-strain, static 

analysis” or “Axial symmetry (2-D), Magnetostatic, Azimuthal Currents” are application 
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mode names. Application modes are split into modules (i.e. the “Electromagnetic 

module”) which may be purchased individually with the initial software package [4]. In 

this Chapter, application modes from the “Structural Mechanics Module” and 

“Electromagnetic Module” are used. If the application of the magnetostrictive material is 

MEMS related, one may also consider the “MEMS module”. 

 This software runs finite element analysis together with adaptive meshing and error 

control using a variety of numerical solvers. Although the solver types suggested for each 

type of BVP presented in this chapter will be mentioned, the mathematical and numerical 

foundations of each type of solver will not be addressed. One can find additional 

information on this topic and other implementation related topics in the FEMLAB 

manuals [4]. For those familiar with FEMLAB, the main types of solvers used in this 

thesis, are the “SPOOLES direct” solver, the “UMFPACK direct” solver, and the 

“GMRES iterative” solver (in combination with the “Incomplete LU” or “Algebraic 

multigrid” preconditioner). These can be set to solve “linear” or “non-linear” problems 

which may be time dependent as long as the BVPs have, at most, first order time 

derivatives. For the equation of motion, which has a 2nd order time derivative of the 

displacement vector, the software requires using an additional variable, the velocity 

vector [4]. This is why, in Chapter 2 and 3, the mechanical equation of motion was 

separated by introducing an additional governing equation defining the velocity vector. 

This way the software solves two governing equations with first order time-derivative 

instead of one with a 2nd order time-derivative.    

 With FEMLAB©, one may easily extend conventional models for one type of physic 

into multi-physics models capable of solving coupled physical phenomena. There are two 
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ways to solve coupled problems: “sequential” solving and “simultaneous” solving. The 

“sequential” method consists of solving one type of physics first and applying the results 

to the second type of physics before solving it. In other word, one solves a multi-physics 

problem in sequence. The limitation of this method is that it can only take into account 

unidirectional coupling meaning that coupling between say the mechanical and thermal 

fields can only occur such that only one field affect the other. This is the case for a 

thermal expansion problem where the mechanical fields are dependent on the temperature 

but not the other way around. In this case, we would solve the heat transfer problem first, 

save the temperature distribution obtained and use it to solve the unidirectional-coupled 

mechanical BVP.  

 The second way of solving coupled problem is to compute the solution for both types 

of physics simultaneously. The way the software treats such a problem is by setting 

multiple degrees of freedom to each node accounting for both types of physics. This way 

one can solve bidirectional-coupled problems such as the electromechanical BVPs for a 

piezoelectric material. Since there are more degrees of freedom in such a model, this 

alternate way of solving coupled problems generally requires significantly more 

computational time [4].  

 FEMLAB© was chosen among other FEM programs for its ability to implement 

and solve bidirectional-coupled multi-physic problems. Many FEM programs solve only 

one type of physics. Some are able to solve coupled BVPs such as thermo-mechanical or 

electromechanical BVPs. A good example of such software is ANSYS© which was 

originally a structural mechanics FEM software that allows the user to alter the code in 

order to solve coupled problems. The only real limitation of this software is that it is not 
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able to solve complex non-linear bidirectional-coupled BVPs such a dynamic electro-

magneto-mechanical BVPs, nor can it solve the electromagnetic part necessary to predict 

the fields inside the magnetic circuit typical of the magnetostrictive-based application 

modeled. Recently, ANSYS© released a software that allows multi-physics problems to 

be solved in a similar manner to FEMLAB©. More information can be found on 

ANSYS© official webpage. Other than this new version of ANSYS©, the author is not 

aware of any other commercial FEM software can solve such multi-physics BVPs at this 

time. The capabilities of both softwares seem to be similar based on the respective 

webpage advertisement of their products. 

Equation Chapter (Next) Section 4 

4.2. Implementation of the static BVPs 

 
This section focuses on 3-D FEM of the previously introduced static BVPs. The 

structural mechanics FEM of a purely elastic material will serve as a basic introduction to 

the software for readers who are not familiar with FEMLAB 3.1©. It uses a pre-

implemented FEM codes there almost no programming is necessary to build such a 

model. The subsequent sub-section will be less detailed and might require unfamiliar 

users to refer to the FEMLAB manual now and then.  

 

4.2.1. Structural mechanics FEM of a purely elastic material 

 
Model definition and geometry drawing 

In this section the implementation of a simple structural mechanics problem is described. 

The example chosen is the modeling of a rectangular beam, clamped on one end and with 
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an applied load on the other end. The first screen one may see when starting FEMLAB 

3.1 is the one shown in Figure 4.1. It is the “model navigator” window, which allows the 

user to select the BVP to implement. The first step is to select the “space dimension”. 

Since 3-D analysis will be required to account for some phenomenon occurring in a 

magnetostrictive-based application such as eddy current power losses, all models are 

implemented in 3-D. Adapting the presented work to similar 2-D or axisymetric analysis 

is possible but may require serious modifications of the equations used.  

Figure 4.1: Model Navigator window. 
 

The second step consists of defining the application mode. For this model, select the 

“Solid, Stress-Strain / Static analysis” in the “Structural Mechanics Module” folder. Note 

that in the model navigator one can set the application mode name and can see the 

dependent variable names. The type of element suggested by the program is also 

displayed in the model navigator and may be changed at this point or later. Once you 

press “Ok”, the FEMLAB “geometry” screen appears. This is shown in Figure 4.2.  
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Figure 4.2: Option menu in the FEMLAB geometry window. 

 
Drawing structures using the FEMLAB software is not very difficult but requires a 

certain amount of practice. Here, a simple rectangular beam modeled as a single 

“subdomain” is drawn, so that no major issues will be encountered while drawing the 

structure. “Subdomains”, “Boundaries”, “Edge”, and “Point” are the respective names for 

the volume, the boundary of the volume, a line on the boundary of the volume and a point 

in or on the volume. When drawing geometry with multiple subdomains, one must make 

sure that the common boundaries of each subdomains are correctly linked (i.e. no very 

small gaps between subdomains should appear in the geometry).  
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 To set the Axis and grid, one must open the “draw” menu and select “Axis and Grid 

setting” as displayed in Figure 4.2 and 4.3. Note that the default units of FEMLAB are 

S.I. (although one could work in other unit systems [4]). Choose the minimum and 

maximum values of the axis as displayed in Figure 4.3. Then one must choose a “2-D 

work plane” to draw the cross-section of the beam in order to extrude it. Choose the y-z 

plane with no displacement from the x-axis. Similarly to the 3-D view, axis and grid 

settings can be done for the 2-D work plane. Choose the “y” axis minimum and 

maximum value to be -3e-2 and 3e-2 (e-2 stands for x10-2) and choose 5e-3 for the grid 

spacing.  The next step is to draw a 5 by 1 cm rectangle centered at the (0,0) point in the 

“y-z plane” as displayed and extrude it by 30e-3 as displayed in Figure 4.4. The various 

drawing tools are found in the “draw” menu or in the vertical tool bars on the left of the 

screen. The link to the “extrude” window can be found in the “draw” menu as well. 

Figure 4.3: Axis and Grid setting window. 
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Figure 4.4: 2-D work plane with beam cross-section and “extrude” window. 

 
Physics implementation 

Now that the geometry is complete, let’s take a look at the physic of the pre-implemented 

module has set up. In order to be consistent with the work presented in Chapter 3, let’s 

work with “weak” form implementation.  To set “weak” form formulation on FEMLAB, 

go to the “solve” menu, select “solver parameter”, and change the Solution form to 

“weak” as displayed in Figure 4.5. Then to visualize the equation system, go to the 

“Physics” menu and select “Equation System / Subdomain Settings”. Select the 

subdomain 1 (there should be only 1), and look at the “weak”, “dweak”, and, “variables” 

tabs as displayed in Figure 4.6. The equation displayed is 

-(ex_solid3_test*sx_solid3+ey_solid3_test*sy_solid3+ez_solid3_test*sz_solid3 
 +2*exy_solid3_test*sxy_solid3+2*eyz_solid3_test*syz_solid3 
 +2*exz_solid3_test*sxz_solid3) 
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Figure 4.5: Setting “weak” form display of the equation system. 

 

Figure 4.6: “weak” tab in the “Subdomain Setting / Equation System” window. 

 
FEMLAB is written in a modified Matlab language, meaning that if we wanted to 

include a certain type of function in this equation we could use Matlab functions. The 

variables names follow a certain logic. For example, “ex_solid3_test” is the test function 

of the “x” component of the strain tensor. The “_solid3” is to indicate that this variable is 

solved by the application mode called “solid3”.  
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 This application mode name can be changed in the model navigator (see Figure 4.1) 

and this nomenclature is very practical when dealing with multi-physics problem to 

identify which variables are solved by a certain application mode. The “_test” extension 

is to indicate that it is the variation of the “x” component of the strain. In this equation, 

only the stress components and the variation of the strain components are used. Every 

variables starting with “s” refers to a stress component and the variables starting with “e” 

refers to a strain component. Note that the equation displayed in this window is the 

content of the volume integral of the equilibrium equation (3.12) assuming no body 

forces are applied.  

 The “dweak” tab is non-zero everywhere only for time-dependent problems. This will 

be addressed in the section on dynamic models. The “variable” tab is very useful. It 

allows visualizing and potentially modifying the equations which define dependent 

variables. Recall that in the model navigator window (see Figure 4.1) the dependent 

variables are the “x”, “y”, and “z” components of the displacement vector, “u”, “v” and 

“w”. Figure 4.7 shows the “variable” tabs in which the equations for the body load, the 

total displacement, the stress tensor components, the strain tensor components, the strain 

energy density and the Von Mises and Tresca stress are provided. Note that “ux” stands 

for the first order derivative of “u” with respect to “x”. This type of shorthand notation 

only applies to the different degrees of freedom, which are in this case “u”, “v”, and “w”.   

 Now depending on the type of material modeled the variable equations will be 

automatically modified. Since for a simple model nothing needs to be changed in the 

“Subdomain Setting / Equation System” window, close the window by clicking “cancel”. 

To set the type of material go to the “Physics” menu and select “Subdomain Setting…”. 
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The “Material” tab allows you to define the material properties (see Figure 4.8). One can 

select different material models such as isotropic, orthotropic, anisotropic or even elasto-

plastic material to implement the compliance matrix and the thermal coefficient matrix. 

Another option is to select a material from the material library. To do so, click on the 

“load” button next to “material library” in the “Material” tab and, for example, “select 

“Aluminum” (see Figure 4.9). Since it’s an isotropic material, no changes will occur in 

the “Variable” tab of the “Subdomain Setting / Equation System” window. However, if 

you select an anisotropic material, the equation for the stress and other dependent 

variables will be automatically modified.    

 

Figure 4.7: “Variable” tab in the “Equation setting / Subdomain” window. 
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Figure 4.8: “Material” tab in the “subdomain setting” window. 

 

Figure 4.9: “Material library” window. 

 
Note that in the “subdomain setting” window, there are tabs to define constraints on the 

subdomain, volumetric load, initial stress and strain and other tabs irrelevant for now. 

Since none of the mentioned applies to our simple model, these tabs will not be further 

discussed but information on how to set these can be found in the FEMLAB manual [4]. 

The “boundary condition setting” can be found in the “physics” menu. They allow the 

user to set constraints and to specify load on the boundary of the domain. In Figure 4.10, 
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the “constraint” tab displays the necessary setting to model clamped boundary conditions. 

In the “load” tab, the face load on the boundary at the other end can be set in force per 

unit of area. Since the area of this boundary is 5x10-4 ( 5x10-2 x 1x10-2 ), assuming a -50 N 

load in the “z” direction, the total force per unit of area in the “z” direction will be -

100000 N/m2. Figure 4.11 displays the “load” tab of the “boundary setting” window.  

 

Figure 4.10: “Constraint” tab of the BC setting window. 
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Figure 4.11: “Load” tab of the BC setting window. 

 
Mesh and Solver Parameters 

For a simple model with only one subdomain not much effort is required to get an 

appropriate meshing. One must go into the “mesh parameter” window by selecting it in 

the “mesh” menu. Then select a “predefined mesh size” such as “Coarse” and mesh. For 

complex geometries with various subdomains, a couple of the following tips may be 

useful: 

� To focus the computation analysis on one subdomain, boundary, edge or point, 

such as the magnetostrictive material or one of its boundaries, one can chose in 

the respective tab of the “mesh parameter” window the maximum element size 

and growth rate. The maximum element size should be set smaller than 1/5th of 

the thickness of the subdomain. This is to ensure that the field will be computed at 

least at 5 points in the smallest region. The element growth rate should be set to a 

large value (e.g. 2) in large subdomains where the fields changes slowly and does 
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not require much precision. It should be very close to 1 in the region of interest 

(i.e. 1.05). The element growth rate must be above 1.  

� Narrow regions may require use of an advanced meshing option. In the “advance” 

tab, one can set the resolution of the narrow region to a higher value than 1 such 

as 1.5. The higher the length to thickness ratio the higher the resolution of the 

narrow regions needs to be. 

� It is necessary when meshing a complex structure to make sure that the number of 

degrees of freedom is low enough. Since this is function of both the number of 

dependent variables (3 for a static mechanical FEM) and the number and type of 

elements. Some elements have more nodes than others but certain types of 

physics require quadratic or higher order elements to appropriately capture the 

phenomenon modeled. 

� Finally, for better results, start your meshing one level coarser than you intend 

and refine it once. In Figure 4.12, a “coarser” mesh once refined is shown. Note 

that refining a mesh for a simple model triples the number of degree of freedom 

so it might not be wise to use this option in complicated geometry. 

 As mentioned earlier, there are many types of solvers which can be used for linear 

and non-linear models. For a structural mechanics model of a purely elastic material, 

SPOOLES seems to be the best one (also the recommended one by the software 

engineers). Generally, the software selects the best solver for the chosen application 

mode. 
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Figure 4.12: “Mesh parameters” window and meshed structure. 

 
A couple of options may be set or unset before solving a model. For example coupled 

models tend to be unsymmetrical so in the “Solver Parameter” window, one must 

uncheck the symmetric matrix check box for coupled problems. In our case, this is not 

necessary. When a matrix is complex symmetric, which is common for harmonic analysis 

of structural mechanics and electromagnetic problems, one must clear the “Use Hermitian 

transpose” check box in the advance tab. Other than these two important check boxes, 

one must use common sense to set “non-linear” or “time-dependent” solver appropriately 

such models.  

Finally before solving the model, one must open the “solver manager” window and 

select the “initial value expression” check box or eventually the “Initial value expression 
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evaluated using the current solution”. In the case of a sequential solving of a 

unidirectional coupled problem, one must first select the “initial value expression” check 

box to solve the first type of physics and then the “current solution” check box for the 

second type of physics where coupling occurs. Eventually, one must store the first 

solution in order to reuse it when solving for the dependent coupled field. This will allow 

the user not to recomput the first model solution before each attempt to solve the coupled 

dependent type of physics.   

Once the model is solved, the post processing is quite simple. Depending on the type 

of modeled field, a slice plot, a boundary plot, a deformed shape plot, a streamline plot, 

etc. or a combination of some of the above may be used. For each type of post-processing 

used one must first check and uncheck the checkbox referring to the desired post-

processing plot type and then go to the respective tab to set the predefined quantity to be 

plotted and the various options of each type of plots. Figure 4.13 shows the result of our 

model using a deform shape and a boundary plot of the displacement. The maximum 

displacement obtained is 6.76x10-4 m and occurs on the opposite surface to the clamped 

end as one could expect.  

 Since plotting using the various types of 3-D plots is not always ideal to read a 

precise value at one point in the geometry, one may find very useful to use the “cross-

section plot parameter” window (in the post-processing menu). It allows plotting any 

variables on a chosen surface or along a specific line. For example, one may plot the “z” 

component of the strain along the neutral axis of the beam (from position (0,0,0) to 

(.3,0,0)). Figure 4.14 shows the results and the setting to obtain such a plot. Slice plots 

can be achieved by setting the coordinates of 3 points instead of 2.  
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Figure 4.13: “Plot parameter” window and final solution. 

 

Figure 4.14: “Cross-section plot parameter” window and line plot of the “z” component 

of the strain along the neutral axis. 
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4.2.2. Magnetostatic FEM 

There are two types of magnetostatic models. One is based on a vector magnetic potential 

and the other one on a scalar magnetic potential. In this section, only the implementation 

of the second type is covered. The implementation for the first type is a simplification of 

the magnetic equations used in the dynamic electro-magneto-mechanical models 

presented in the next section. The example presented in this section is a magnetic circuit 

using permanent magnets to apply a constant magnetic field over a small region. The 

purpose of this apparatus was to obtain in-plane magnetostriction measurements while 

applying a magnetic field at different angles with respect to the easy axis of the 

magnetostrictive sample. The sample was mounted on a rotating support keeping the 

magnetic circuit fixed while the sample rotates through 360°.   

 The magnetostatic model was used to quantify the magnetic induction inside the 

magnetostrictive sample. Figure 4.15 displays the apparatus magnetic circuit as modeled. 

The very small shaded volume in the middle is a Galfenol magnetostrictive plate with 

average relative permeability of 360. The two small cylinders on each side of the 

magnetostrictive plate are permanent magnets, magnetized to 100000 A/m each. The 

magnetization value of the permanent magnets is usually set based on experimental 

values obtained in air. Modeling only the permanent magnet in air, one can calibrate the 

magnetization of the permanent magnets such that it exactly reproduces the lab value. 

This way, when the magnetostrictive plate is added in the model, one can expect to get 

accurate modeling of the field. This technique is often used to calibrate coils models and 

permanent magnet models.  
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 The rest of the magnetic circuit is made of magnetic steel 1018 of relative 

permeability of 2000. The last two subdomains are made of air with permeability of one. 

The first is the space between the two permanent magnets and surrounding the 

magnetostrictive plate and the second is the large brick surrounding the magnetic circuit. 

Note that among the pieces made of magnetic steel, the two pieces attached to the 

permanent magnet that pass through the main frame of the magnetic circuit can be moved 

such that the air gap between the two permanent magnets varies thereby allowing control 

of the applied magnetic field seen by the sample. The sample was 8x8x1 mm3, therefore 

the minimum air gap needed to be above 12 mm wide to allow a 360 rotation of the 

sample. The magnetic induction obtained was around 0.8 Tesla at each end of the sample 

and around 1.4 Tesla in the center of the sample.   

 The first step necessary to implement this system include the drawing of the complex 

geometry along with a complex meshing emphasizing on the region near the 

magnetostrictive sample. This will not be covered here. The second step is to define the 

material types and properties in the “subdomain setting” windows. Since this is a purely 

magnetic model, the magnetostrictive material is considered as a simple magnetizable 

material with constant relative permeability. Note that FEMLAB allows implementing 

non-linear equations for permeability or other material properties but this option was not 

explored for the work presented in this thesis for two reasons. First, the non-linear models 

require more memory and memory use was already maximized for this 3-D geometry. 

Second, the applications generally operate in a limited range such that the change in 

magnetic field is small enough to assume a linear relationship between magnetic field and 

magnetic induction.  
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Figure 4.15: Geometry of the magnetic circuit  

 
The other magnetizable material used in this model is the magnetic steel. The 

permanent magnets are magnetized material using a constitutive relation different from 

magnetizable materials. The constitutive relations of a magnetized material and 

magnetizable material were previously introduced as, respectively, equation (2.24) and 

equation (2.27) with a negligible remanent magnetic induction. Air uses equation (2.27) 

as well but the relative permeability is zero in this case.  

 The subdomain and boundary equation system was not modified like for the structural 

mechanics example. The BCs selected are “continuity” everywhere except on the 

boundaries of the air modeled around the system where “magnetic insulation” is chosen 

to insure that the magnetic flux path stays inside the “air” subdomain. The mesh needs to 
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use “Lagrange quadratic” elements but “Lagrange linear” elements will work if one is 

limited by memory requirements. To modify the element type, one must change the 

element type to Lagrange linear in the model navigator and potentially make sure that 

each subdomain has this type of element by going into the “element” tab of the 

“subdomain setting” window. As suggested by the software engineers for this application 

mode, the solver used was a GMRES solver with an “algebraic multigrid” preconditioner. 

Post-processing was done using a streamline plot for the magnetic flux density, a slice 

plot for the magnetic field distribution and a cross-section line plot to get numerical 

values of the magnetic field and magnetic flux density along the sample midline. Results 

obtained in this model as well as in as subsequent models are presented in this chapter are 

discussed in Chapter 5.  

 

4.2.3. Fully coupled magneto-mechanical FEM of a magnetostrictive 

material 

 
Now that both the static structural mechanics and the magnetostatic application modes 

were introduced, one may consider a coupled magneto-mechanical model of a 

magnetostrictive material. The model presented in this section consists of two simple 

magnetostrictive plates attached to a beam. In this model the magnetostrictive material is 

used as sensors. The set-up consist of a 317.5x24.85x1.6 mm3 Aluminum beam with two 

25.1x8.35x1.57 mm3, 18.4% polycrystalline production grade Galfenol plates (fairly new 

magnetostrictive material provided by ETREMA products, Inc.) attached symmetrically 

on the top and the bottom of the beam at 25mm from the clamped end. Figure 4.16 shows 

the model geometry. 
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Figure 4.16: Geometry of the example implemented for the static coupled  

magneto-mechanical model. 

 
The first step when implementing a multi-physics model is to select the type of 

physics involved in the “model navigator” window. One must first select in the model 

navigator the two types of application modes to couple. Here the primary application 

mode is “3-D, solid stress-strain, static analysis” and the secondary application mode is 

“3-D Magnetostatic, No Currents” (see Figure 4.16). In the experimental apparatus, a coil 

generated the magnetic field. To model the coil, one needs an application mode where the 

electric quantities are considered. A “3-D, Magnetostatic” application mode would allow 

us to model a coil but in order to save memory, modeling the magnetic field with 

permanent magnet provides a fairly equivalent result with a less complex and smaller 

geometry and a less computationally demanding application mode.  

The second step consists of drawing and meshing your structure. This will not be 

discussed in more details since the topic has been covered in the last two subsections. 
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Once the geometry is finished and meshed one can set the equation system. The first 

issue to consider is that this model is made of elastic material (the aluminum beam), 

magnetic material (the permanent magnets), air and magnetostrictive material (the 

Galfenol plates) each of which does not necessarily require to be solved in both the 

structural mechanic application mode and the magnetic application mode. For example, 

the permanent magnets and the air do not need to be part of the solid mechanics 

application mode. The aluminum needs to be both in the mechanical and magnetic 

application modes but no coupling occurs for this subdomain. The Galfenol plates are 

also in both application mode but with modified equations. To determine which domains 

are active and which are non-active for a certain application mode, one must go in the 

“multiphysics” menu and select the “solid, stress-strain” for example. Then go to the 

“subdomain setting” window in the physic menu and uncheck the domain referring to the 

permanent magnet and the air. Similarly, after selecting the magnetostatic application 

mode, repeat the task in the “subdomain setting” window for the non-active material. For 

this model all subdomains are active for the magnetic FEM. 

Recall the weighted-residual formulation described in section 3.2.2. Before 

implementing any equation one must open the “constant” window in the “Option” menu 

and add the following constants: 

� The stiffness matrix components {c11,c12,c13,c22,c23,c33,c44,c55,c66}, 

� The coupling  matrix components {g11,g12,g13,g21,g22,g23,….,g61,g62,g63} 

(also called “h” in some models), 

� The permeability (constant strain) matrix  components {musr11,musr22,musr33}. 
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The value of each constant comes from the characterization curves of the 

magnetostrictive material being modeled. More on how to choose these is discussed in 

section 4.4. Figure 4.17 shows the “constants” window. Note that these constants may be 

added in the “Subdomain expression” window accessible from the “Option/Expression” 

menu. Selecting the Galfenol plate subdomains in this menu allows defining expressions 

and constants which will be taken into account only when referring to the concerned 

subdomains. Either way of adding the constant to the model is valid in this case.  

 

Figure 4.17: “Constants” window. 

 
Now that the constants have been defined the equations for the subdomain of the 

Galfenol plates can be changed based on the weighted residual integral introduced in 

Chapter 3. To do so, first select the solid mechanics model in the “Multi-physics” menu 

and open the “Physics” tab of the “subdomain setting” window. For each type of 

material, chose the appropriate “material model”. Select anisotropic for the Galfenol 

plates subdomains and click on the “Edit” button next to the Quantity “D” to input the 

constants for the stiffness matrix. Figure 4.18 shows the “D” matrix window and the 
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“subdomain setting” window for an anisotropic material. Similarly, for the magnetostatic 

“subdomain setting” window select an anisotropic permeability matrix and input the 

constant names for the coefficient of the permeability matrix introduced earlier.  

 

Figure 4.18:  “D” matrix window and the “subdomain setting” window  

for an anisotropic material. 

 
The next step consists of modifying the equation settings of the application modes. To 

do so, first change the solution form to “weak” in the “solver parameter” window and 

open the “Equation system/subdomain setting” window. The weak forms of the equation 

governing the purely magnetic and purely mechanical application mode are implemented 

in the subdomain active for these application modes. The subdomains referring to the 

Galfenol plates need to have equation (3.39) and (3.40) implemented. In the “variable” 

tabs, the formula for the stress and magnetic induction should be modified to account for 
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the anisotropy previously implemented earlier. Complete these equations to get (2.77) 

and (2.76). Table 4.1 summarizes the important variables of the implementation. The 

constitutive equations are the only changes from the original software equation set up.  

The weak form may be expressed as the test function of the strain energy density for 

the mechanical application mode and the test function of the magnetic energy for the 

magnetic application mode. Note that here the three first slots refer to the displacement 

vector components (respectively, “u”, “v” and “w”) and the third refers to the magnetic 

scalar potential. If the magnetic application mode was selected first in the “model 

navigator” window, the first slot would correspond to the magnetic scalar potential and 

the last three slots to respectively “u”, “v” and “w”. See Figure 4.19 to see how the 

governing equations are implemented in the weak form on the “weak” tab of the 

“subdomain setting/ equations system” window. The solvers recommended for this type 

of problem are “non-linear SPOOLES” and “non-linear GMRES” with an “algebraic 

multigrid” preconditioner. Ideally, “Lagrange quadratic” elements are used but eventually 

linear elements may be used to limit the memory use. Results will be discussed in next 

chapter. 

Figure 4.19: “weak” tab of the “subdomain setting/ equations system” window. 
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4.3. Implementation of the Dynamic BVPs 

 
4.3.1. Electromagnetic, time-harmonic, FEM  

The electromagnetic, time harmonic FEM can be very practical in the design period of a 

magnetostrictive based transducer. The magnetic circuit of a transducer significantly 

affects the performance of the magnetostrictive material. One must make sure that the rod 

is uniformly and sufficiently penetrated by the magnetic field. The electromagnetic model 

was used to model the magnetic circuit of pump (see Figure 4.20). 

 

Figure 4.20: Pump model geometry. 
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 The coil and the magnetostrictive rod can be observed in Figure 4.20 as well as the 

steel housing (transparent parts). On the top of the steel housing, four subdomains were 

created to model the effect of the slit in the housing length on the magnetic circuit 

performance at different frequencies.  As explained in the introduction chapter, eddy 

current power losses can be significant in high frequency applications. The main goal of 

this model was to visualize the effect of eddy currents by varying the size of the slit of the 

housing and observing the distribution of the magnetic field inside the sample for 

different conditions. Since four subdomains were drawn to model the slit, one can go 

from a “full slit situation” by giving a relative permeability of 1 (in the “subdomain 

setting” window) to all four domains, to a “no slit situation” by giving  those four 

subdomains a relative permeability of magnetic steel, the material used in the rest of the 

housing parts.   

 The main implementation issue of this model was to reproduce accurately the field 

generated by the coil. The best way to model a coil in 3-D analysis on FEMLAB3.1© is 

to use an “externally applied volumetric current density”, Je, applied inside a hollow 

cylinder. Depending on the axis of symmetry of the coil one can implement in the 

“electric parameter” tab of the “subdomain setting” window (see Figure 4.21), for the 

hollow cylinder subdomain: 

• “x” axis is the coil symmetry axis: 

 Jex_qav =0, Jey_qav=-J0*z/sqrt(y^2+z^2),    Jez_qa=J0*y//sqrt(y^2+z^2), 

• “y” axis is the coil symmetry axis: 

 Jex_qav=-J0*z/sqrt(x^2+z^2),        Jey_qav=0,  Jez_qav=J0*x/sqrt(x^2+z^2), 
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• “z” axis is the coil symmetry axis: 

 Jex_qav=-J0*y/sqrt(x^2+y^2),        Jey_qav=J0*x/sqrt(x^2+y^2),       Jez_qav=0. 

It is not suggested to use a random axis to model a coil but eventually similar equations 

can be implemented for any orientation.  

 

Figure 4.21: “Electric parameter” tab of the “subdomain setting” window. 
 

Apart from the coil modeling there are no difficult issues with this application mode. 

The current frequency can be defined in the “Application scalar variables” window 

accessible from the “physics” menu under “scalar variables” (see Figure 4.22). No 

changes were done in the equation settings. The “application mode properties” are 

displayed in Figure 4.23. This window can be opened from the model navigator by 

selecting the application mode and clicking on “application mode properties”. Material 

properties and some constants such as J0, the magnitude of the externally applied 

volumetric current density can be found in the “constants” window (Figure 4.24). The 

solver used was the one suggested by the software, the direct SPOOLES solver. 
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Figure 4.22: “Application scalar variables” window. 

 

Figure 4.23: “application mode properties” window. 

 

Figure 4.24: “constant” window.
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4.3.2. Fully coupled electro-magneto-mechanical FEM of a 

magnetostrictive material 

 
Unfortunately, a “3-D, dynamic, electromagnetic” application mode is not available on 

FEMLAB 3.1© electromagnetic module. This application mode is scheduled for the 

version 3.2 of the software which should be on the market by fall 2005. Attempts to write 

a program from the PDE mode, which allows implementing almost any type of PDEs 

systems, were not successful. The FEMLAB© technical support strongly suggested 

postponing this implementation until version 3.2 became available and therefore the 

implementation presented below is just a suggestion of implementation of a fully couple 

non-linear electro-magneto-mechanical model based on the current “3-D dynamic solid 

mechanics” application mode and the future “3-D dynamic electromagnetic” application 

mode.  

Assuming that the application mode extensions are respectively “_solid3” and “_em”, 

suggested implementation “variables” are displayed in Table 4.2 (Table split on the next 

two pages). The suggested formulations of the time derivatives of those variables 

necessary to get a time dependent model are given below in Table 4.3. These should both 

be implemented for the magnetostrictive subdomain only. Note that the time derivative of 

variable has a “_t” after the variable name.  This does not mean that the variable is time 

differentiated on its own. It is just the common notation for these types of time 

derivatives of variables. For example the velocity vector, v, used to transform the second 

order derivative term in the equation of motion can be expressed as v={u_t,v_t,w_t}t.
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In Table 4.3, some terms like “Axt” or “uxt” are short notation recognized by the 

software for time derivative of variables like the “x” components of the magnetic vector 

potential, A, or the derivative with respect to “x” of the displacement vector “ux”. 

Whereas for “uxt”, the “x” and the “t” both indicates the displacement vector “x” 

component, “u”, is differentiated with respect to “x” and “t”. Short notation can be 

confusing for this reason but are very practical when inputting all the equations in the 

software. An alternative is to use Matlab function as diff(Ax,t) or diff(diff(u,x),t) for 

respectively, “Axt” and “uxt”. One last example of this type of notation to perfectly 

understand the notation system is “Axyt” which could be written as diff(diff(Ax,y),t).  

Note that some terms have an extension “_time” which is the notation for the time 

derivative of variables which are not degrees of freedom of the model like the stress and 

magnetic induction tensor components in contrast with the displacement vector 

components or the magnetic vector potential components.  

Table 4.4 and 4.5 summarize the expression to implement in the “weak” and “dweak” 

tab of the “Equation system/ Subdomain setting” window. They are based on the 

derivation originally introduced by Aparicio and Sosa [1] which was introduced in 

Chapter 2 and 3. The formulation was validated by Aparicio and Sosa [1] which suggests 

that a correct implementation of such a model on FEMLAB is achievable.  

To conclude this section and this chapter I will remind the readers that a time-

dependent electro-magneto-mechanical model is a non-linear problem that requires a 

time-dependent, non-linear solver. The elements type should at least be Lagrange 

quadratic to achieve reasonable accuracy. I also want to emphasize that this type of 

model was never successfully implemented due to the current absence of a dynamic 



114

electro-magneto-mechanical application mode. The formulation was however validated 

by experimental results in Aparicio and Sosa [1] using a research FEM code (FEAP). 

 

Table 4.4: Suggested implementation of the time independent parts of the governing 

equations in the “weak” tab. 

 

Table 4.5: Suggested implementation of the time dependent parts of the governing 

equations in the “dweak” tab. 
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Chapter 5:  Validation of the FEM Implementations on 

FEMLAB 3.1© 
In Chapter 4, details of the methods used for implementation of the BVPs introduced in 

this thesis were presented in conjunction with their use in appropriate examples. The 

examples were selected either to better understand the software capabilities or to help in 

the design of magnetostrictive-based applications currently being developed using 

Galfenol at the University of Maryland. In Chapter 5, the results obtained with these 

models are summarized. The purely structural model was presented only to introduce 

FEMLAB 3.1© to an unfamiliar reader. It is based on an unmodified application mode 

and does not provided relevant data on magnetostrictive-based applications. Results of 

this model will not be discussed further in this Chapter. The examples used to illustrate 

magnetostatic and quasi-static, time-harmonic, electromagnetic models are both based on 

existing application modes. In the first section of this Chapter, results are presented and 

discussed for two types of magnetic fields sources, permanent magnets for the 

magnetostatic example and a coil for the quasi-static electromagnetic model. Both of 

these models require calibration with experimental data. The second section focuses on 

the results of the static coupled magneto-mechanical model. This section includes 

comparison with experimental data and an explanation of how to choose the 

magnetostrictive material properties (assumed constant) for such a model.    
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5.1. Examples of Uncoupled Finite Elements Models based on 

existing Application Modes 

5.1.1. Example using the magnetostatic application mode 

As introduced previously, the magnetostatic example is a model of a magnetic circuit 

used in an experimental set-up. The purpose of this apparatus was to obtain in-plane 

magnetostriction measurements while applying a magnetic field at different angles with 

respect to the easy axis of the magnetostrictive sample. The sample was mounted on a 

rotating support and the magnetic circuit fixed while the sample rotates through 360°.   

 The FEM model purpose was to provide the magnetic induction distribution inside 

the sample for different length gaps between the two permanent magnets. The method 

one would use to successively go from one separation distance to another was to go to the 

geometry entered in the drawing mode and move the cylinders on which the permanent 

magnets are attached to the desired length gap. Note that both the cylinders and the 

permanent magnets subdomains require being moved. The subdomain modeling air also 

needs to be modified since it consists of a rectangular brick-shaped subdomain from 

which all other subdomains lying within this volume are subtracted. Modifying geometry 

is always a tedious and time consuming task, especially for magnetic models, since it 

requires restarting the analysis at the first step of a FEM implementation, the drawing of 

the geometry. Moreover, one must make sure revised subdomains boundaries are well 

connected to adjacent subdomains surfaces. Generally, the air gap is modeled using a 
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cylindrical subdomain sharing boundaries with the flat pole faces of both permanent 

magnets that face the air gap. Any small gap between the permanent magnet subdomains 

and the new “air gap” subdomain will result in a meshing error. An efficient method for 

avoiding this type of meshing error is to make a slightly larger “air gap” subdomain and 

to subtract copies of the permanent magnets subdomains to ensure proper subdomain 

dimensions. Once this is performed, the air gap cylinder needs to have the volume of the 

Galfenol plate subtracted in order to get consistent subdomain boundaries. 

 For this research the two gap sizes investigated were 12.0mm and 43.2mm. The first 

corresponds to the minimum gap size needed to accommodate the longest dimension of 

the 8x8x1 mm3 Galfenol plate as it was rotated. The larger gap was selected for study 

because the experimental apparatus was also configured for operation at this gap. Having 

two air gap distances allowed verification of the accuracy of the calibration of the 

permanent magnets.  

 To calibrate the permanent magnets, one must first experimentally measure the peak 

magnetic field on the pole faces of the permanent magnets as well as the minimum 

magnetic field obtained half way between the permanent magnets on the axial symmetry 

axis (x-axis in Figure 4.15). The location of the minimum field generally corresponds to 

the midpoint of the Galfenol sample’s location. Then, in the FEM model, assign the 

permanent magnet subdomains a magnetization similar that of the pole faces and increase 

its value until a magnetic field distribution is observed in the air gap that is similar to the 

one observed experimentally. In Table 5.1, one can see that for both gap lengths the 

experimentally measured magnetic fields in the air gap are predicted quite well when a 

magnetization value of 950kA/m is assigned to the permanent magnets subdomains.  
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Gap 
(mm) 

Magnetic Field (kA/m) 
Experimental measurement 

Magnetic Field (kA/m) 
FEM results  

between magnets near Magnets between magnets near Magnets
43.2 291 477  290 479 
12.0 685 704  683  706  

Table 5.1: Calibration of the permanent magnets chart. 

 
The material used for the magnetic circuit was 1018 magnetic steel. Since no B-H 

curve for 1018 steel was available, the B-H curves of 1010 magnetic steel were used. The 

main difference between the two steels is the level of carbon, which is lower for 1010 

magnetic steel. The permeability of 1018 magnetic steel should be slightly smaller than 

the one of 1010 magnetic steel. The B-H curves of the 1010 magnetic steel shows a steep 

linear rise in magnetic induction from 0 to 1.35 Tesla for an increase in applied magnetic 

field from 0 to 150kA/m [6]. A relative permeability of 7161 can be obtained by dividing 

the increase magnetic induction by the product of the increase in magnetic field and the 

permeability of vacuum.  

 The general magnetic field flux path along with the normalized magnetic induction 

distribution inside the magnetic circuit with a 12.0-mm and a 43.2-mm gap length can be 

observed in, respectively, Figure 5.1 (a) and (b). On both, a thick line between the two 

permanent magnets represents the line along which the value of the magnetic field is 

plotted in Figures 5.2. The normalized magnetic induction is given by the formula 

 norm x y zB B B B= + + (5.1).   
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Figure 5.1: 3-D plot of the normalized magnetic induction (in Tesla) (slice plot) and the 

magnetic field’s path (streamlines) inside, respectively,  (a) the 12.0-mm and (b) the 

43.2-mm air gap models with no Galfenol sample between the permanent magnets. 

Max: 1.627 Tesla

Min: 0 Tesla

Min: 0 Tesla

Max: 1.186 Tesla

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0



120

 In Figure 5.1, the number of streamlines passing through the bottom and top magnetic 

steel cylinders can quantify how much of the field is actually going through the high 

permeability magnetic circuit. One may observe that more streamlines pass outside of the 

magnetic circuit for the 43.2-mm model than for 12.0-mm model. The slice plots are 2D 

distribution of the normalized magnetic induction along the two planes of symmetry, the 

x-y plane and the x-z plane. As, expected, the level of magnetic induction observed in the 

top and bottom cylinders of the magnetic circuit is about half the one observed in the 

cylinders holding the permanent magnets.   

 Figure 5.2a&b show the magnetic field level between the two permanent magnets 

along their axis of symmetry for, respectively, a 12.0-mm and a 43.2-mm air gap. The 

permeability of the Galfenol sample is set to the 1 for these calibration models since their 

goal is to reproduce the experimentally measured magnetic field in the air gap as 

discussed earlier. The relative permeability of 1018 steel used in the model for the results 

in Figures 5.2a & b was 6000. Figure 5.2c is the same Figure as 5.2b but with a magnetic 

steel relative permeability increased to 8000. All three figures have an “x” axis going 

from 0 to either 12.0mm (Figure 5.2a) or 43.2mm (Figure 5.2b&c) representing the 

distance from the left permanent magnet along the axial symmetry axis of the permanent 

magnets.  

 As expected, comparison of Figure 5.2a and 5.2b shows that the field strength inside 

the 12.0-mm gap length is significantly larger than for the 43.2-mm gap length. As one 

may observe, less than a 1% drop in magnetic field occurs in the air gap when decreasing 

the permeability of the magnetic steel from 8000 to 6000.  This can be explained by the 

significantly larger permeability of magnetic steel with respect to the permeability of air. 
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For all three cases, the experimental values of the field measured in the air gap are very 

close to the FEM results. Therefore, one can conclude that to optimize the magnetic 

circuit the gap length should be reduced as much as the experimental set up allows. 

 Regarding the FEM post processing tool, one may observe on Figure 5.2a that the 

quality of the line plot is inferior to the one of Figure 5.2b&c. This can be explained by 

the density of the meshing in the region in which the line plot’s values are extracted. In a 

line plot, the step size depends of the number of points used along the line chosen by the 

user. A large step size where the meshing is coarse will result in distinct small steps in the 

region of curve as can be observed on each ends of the curves in Figures 5.2b&c and in 

most of Figure 5.2a. The line plots use average values of a chosen quantity along a 

chosen line using the values computed at the two (or more) closest nodes. Every time two 

or more points are located in between the same two nodes along the x-axis, they all get 

the same value and therefore flat steps are visible in the curve. If the meshing is dense 

like near where the Galfenol sample would be (midpoint of the x-axis on the line plots), 

then the steps size decreases and the curve looks smooth. This is what occurs on the 

middle of the curve of Figure 5.2b&c. For Figure 5.2a, the meshing is not as dense 

because the magnetic field x-component is only plotted for along a 12.0-mm line. The 

density of the mesh in the 8-mm region where the sample should be is similar for all three 

models. Therefore, the number of elements used in Figure 5.2a is significantly smaller 

than the one used in Figure 5.2b&c. Consequently, less node values are used for the 12.0-

mm gap models than for the 43.2-mm gap models. However, by reducing the number of 

points used in the line plot, one can obtain a smoother curve. Figure 5.1a used 70 points 

which does not decrease the size of the steps so that one may visualize the elements size. 
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In all three graphs, one also can observe that although the field strength minimum is at 

the midpoint and maximum at the pole faces, as expected, the curves do not increase 

monotonically as expected. Increasing the mesh size would reduce this numeric artifact.  

Figure 5.2: Line plot of the magnetic field (in A/m) along the x-axis between the two 

magnets (no sample) for respectively (a) a 12.0mm and (b&c) a 43.2 mm gap size, and 

using value of, respectively, (a&b) 6000 and (c) 8000  for the magnetic steel 

permeability. 
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 The relative permeability of Galfenol can be read on the B-H curve with no applied 

pre-stress. Unfortunately, the quasi-static M-H curves provided in Kellogg’s thesis [19] 

for a single crystal 19% Galfenol sample only included a B-H curves for a 14.4 MPa (or 

higher) pre-stress. The relative permeability for this pre-stress is of the order of 360. 

However, for a pre-stress of 87.1MPa, the relative permeability decreased 6-fold. On the 

other hand, for a 19% polycrystal Galfenol sample tested under quasi-static conditions 

with a 6.9MPa pre-stress, the relative permeability is of the order of 400 for a research 

grade (for fields below 2kA/m) and 220 for the production grade (for fields below 

3.6kA/m). The B-H curves of, respectively, a production grade polycrystal 19% Galfenol 

sample and a research grade polycrystal 19% Galfenol sample are displayed in Figure 

5.3a&b (provided by ETREMA products, Inc. [56]). For the models presented in this 

section, the relative permeability of Galfenol used is 220 (polycrystal production grade 

19% sample) and 360 (single crystal 19% sample). Depending on the sample tested, the 

user of this model must choose the appropriate value since the permeability slightly 

affects the magnetic induction level in the sample ( 0 rµ µ=B H ).  

The results obtained are presented in Figures 5.4 and 5.5. Figure 5.4a to Figure 5.4d are 

line plots of the magnetic induction along the x-axis passing inside the Galfenol sample 

subdomain for, respectively, (a) a single crystal sample in the 12.0-mm gap model, (b) a 

single crystal sample in the 43.2-mm gap model, (c) a production grade polycrystal 

sample in the 12.0-mm gap model, and, (d) a production grade polycrystal sample in the 

43.2-mm gap model. Figure 5.5 shows 2-D slice plot on the “x-y plane” of the magnetic 

induction in the same models as Figure 5.4a to 5.4d. The thick lines in Figure 5.5a to 5.5d 

represent the line along which Figure 5.4a to 5.4d were plotted.   
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Figure 5.3: B-H curves of 19% Galfenol polycrystal (a) production grade sample  

and (b) research grade sample [56]. 
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Figure 5.4: Line plots of the magnetic induction (in Tesla) along the x-axis of (a) a single 

crystal sample in the 12.0-mm gap model, (b) a single crystal sample in the 43.2-mm gap 

model, (c) a production grade polycrystal sample in the 12.0-mm gap model, and, (d) a 

production grade polycrystal sample in the 43.2-mm gap model. 
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Figure 5.5: 2-D x-y plane slice plots of the magnetic induction (in Tesla) inside the 

sample for (a) a single crystal sample in the 12.0-mm gap model, and  

(b) a single crystal sample in the 43.2-mm gap model. 
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Figure 5.5 (cont.): 2-D  x-y plane slice plots of the magnetic induction (in Tesla) inside 

the sample for (c) a production grade polycrystal sample in the 12.0-mm gap model,  

and, (d) a production grade polycrystal sample in the 43.2-mm gap model.  
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Comparing the peak magnetic induction in Figure 5.4a and 5.4c or Figure 5.4b 

and 5.4d, one may observe that the permeability of the Galfenol sample does not 

significantly affect this quantity. Similar conclusions can be drawn from comparison of 

the magnetic induction distribution in Figures 5.5a and c or Figures 5.5b and d. 

Comparing Figures 5.4a and 5.4b or Figures 5.4c and 5.4d, one can observe that for the 

12.0-mm gap models (5.4a&c), the magnetic induction “x” components is always above 

the saturation magnetic induction which is of the order of 1.8 Tesla for single crystal 19% 

Galfenol and 1.3 Tesla for production grade polycrystal Galfenol. For the 43.2-mm 

model the minimum value of the magnetic induction is 1 Tesla. Therefore, the sample is 

not totally saturated. However, if one looks closely, the sample is saturated after 0.1 mm 

for the polycrystal sample and 0.2 mm for the single crystal sample. This is convenient 

since this represent less than respectively 2% and 4% of the sample if you account for 

this effect on both ends.    

 In Figures 5.5a to 5.5d, the shape of the magnetic induction distribution is quite 

similar for the cases were the same gap length is used. Comparing the shape of the 

distribution for the two different gap lengths, the demagnetization effects are more visible 

and larger when the gap length is larger, as one could expect. Finally, note that on both 

case the highest magnetic induction is seen half way along the two edges which do not 

face the permanent magnets.   

 Another major result to discuss is that the predicted magnetic induction levels shown 

in Figure 5.4 and 5.5 are above Galfenol saturation magnetic induction for all four cases. 

In reality, the magnetic induction should not exceed 1.8 Tesla for a 19% single crystal 
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sample and 1.3 Tesla for a production grade polycrystal sample. Since the permeability 

values entered in these models are constant and no saturation effect is taken into account, 

any points above the saturation magnetic induction should be considered to be equal to 

the saturation magnetic induction. For Figures 5.4a&c that would mean one would obtain 

a straight horizontal line at respectively 1.8 and 1.3 Tesla for single crystal and 

polycrystal. For Figure 5.4b and 5.4d, one would keep all point with magnetic induction 

levels below the saturation level as predicted, but a horizontal line should be drawn 

everywhere else as displayed in Figure 5.6.  

 

Figure 5.6: (Figure 5.4b modified) Line plots of the magnetic induction (in Tesla) 

 in a single crystal sample accounting for the saturation effects 
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5.1.2. Example using the time-harmonic, electromagnetic application 

mode 

The time-harmonic electromagnetic model was developed to study the effect of eddy 

currents in a magnetostrictive based pump. The geometry used was almost identical to the 

actual device in terms of magnetic circuit components, dimensions and material 

properties. The main difference is that the pre-stress mechanism and the bolt transferring 

the load to the pump chamber were modeled in the same subdomain as the end caps, as 

they had the same material properties. This way, instead of having many subdomains and 

interior boundaries, the model consists of a Galfenol rod, a coil, two end caps, a housing 

(a hollow cylinder) and four subdomains where the housing is slit. The four slit 

subdomains can be seen in Figure 5.7. The reason for having four slit subdomains was to 

make it easy to vary the length of the slit and study the effect of slit length on eddy 

current losses. By selecting the permeability of air and/or magnetic steel for these 

subdomains, a “full” slit, a “half” slit or no “slit” model can be obtained.  

 The material properties used in this model are the same as the one used in the 

magnetostatic model. The Galfenol relative permeability was the one of a single crystal 

19% sample (~360). The magnetic steel used for the housing and the end caps is 1018 

magnetic steel with a relative permeability of 6000. The coil is made of copper, a 

paramagnetic material with a relative permeability of one. In this model, the electric 

properties of all materials used are required. The eddy current power losses occur from an 

electromagnetic coupling in which the electrical conductivity and the permeability of the 

materials used has considerable impact on the performance of the apparatus when 
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operating at a high frequency.  Since no values for the electrical conductivity (or 

resistivity) of Galfenol were made available, the author tested electrical resistivity on 

single crystal samples of various stoichiometries and for various crystallographic 

orientations. Appendix 1 includes results obtained from this series of testing. The 

Galfenol electrical resistivity used for this model is 8.33x105 S/m (Seimens/meter) which 

correspond to an electrical resistivity of 120 µΩ-cm. The electrical conductivity of the 

magnetic steel was set to 40x105 S/m, an average value for steel alloys.  

 

Figure 5.7: Geometry of the magnetostrictive pump with the four slit subdomains shaded. 
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 To calibrate the coil, the coil was removed from the experimental apparatus and the 

magnetic field strength was measured inside the coil for selected frequency. The effects 

of eddy currents induced in the copper coil are therefore taken into account in the 

experimental measurements. Therefore, no additional eddy current should be generated in 

this subdomain in order to calibrate the coil properly, so the electrical conductivity of the 

coil subdomain is set to zero. Then by varying the value of J0 in the “constant” tab (see 

section 4.3.1), one can get an equivalent magnetic field distribution inside the coil in air 

in a similar manner than the permanent magnets magnetization value was set.  A 3-D 

view of the magnetic field generated by the coil in air for 1Hz frequency is shown in 

Figure 5.8. In this Figure, the permeability and conductivity of all components are set to, 

respectfully, 1 and 0. The streamline and the slice plot show the magnetic field path and 

normalized magnitude. 

 Figure 5.9a to 5.9c are 2-D slice plot of the magnetic induction distribution in the 

Galfenol rod and in the rest of the magnetic circuit for, respectively, a housing with no 

slit, a half slit housing and a full slit housing. On these plots one can observe the effect of 

the slit on high operating frequency. More details on the effect of a slit in the housing are 

given in Figure 5.10 and 5.11. 
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Figure 5.8: Magnetic field distribution and flux path for a coil modeled in air. 

Figure 5.9: Sample 2-D slice plot of the normalized magnetic induction for an operating 

frequency of 2KHz with a no slit in the housing. 
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Figure 5.9: Sample 2-D slice plot of the normalized magnetic induction for an operating 

frequency of 2KHz with (b) a half slit housing and (c) a full slit housing. 
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 The goal of this model was to provide the magnetic induction distribution inside the 2 

inch long, ¼ inch in diameter, magnetostrictive rod. The different frequencies tested are 

1Hz, 1kHz, 1.5kHz, 1.8kHz and 2 kHz. In order to better visualize the results, the line 

plots of the magnetic induction along the symmetry axis of the rod for various 

frequencies and various slit lengths were extracted to an excel file in order to plot all 

result on the same graph. For 2-D FEM, extracting results is easy: the x and y coordinate 

of each point have an associated value of the chosen quantity. For 3-D FEM, having three 

coordinates, the text file is usually hard to read so a small program called “datathief” was 

used on the 2-D line plots to extract the results to an excel sheet. The magnetic induction 

distributions along the 2” Galfenol rod are shown in Figure 5.10. Similarly, the various 

magnetic induction distributions along the rod diameter at the midpoint of the rod length, 

i.e. at 1” from each end are shown in Figure 5.11. 

Figure 5.10: Magnetic Induction along the 2 inch magnetostrictive rod 

under various actuation frequencies. 
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Figure 5.11: Magnetic Induction along the ¼ inch diameter  

of the magnetostrictive rod at the midpoint of the rod length. 

 
Results plotted in Figures 5.10 and 5.11 leads to four main discussion points: the 

effect of the frequency on the level of eddy current power losses, the effects of eddy 

currents on the each end of the rod, the eddy current effect on the level of penetration of 

the field inside the rod, and the effect of a slit in the housing to solve this problem. 

Looking at both Figures 5.10 and 5.11, one can see that in a magnetic circuit with a full 

slit in the housing, the magnetic induction level is frequency-dependent. If one takes the 

magnetic induction in the center of the rod (1” from each end of the rod on symmetry 

axis), then looking at Figure 5.11, one can see that the magnetic induction level for 

operating frequencies of  1 Hz, 1 kHz, and 2 kHz, are respectively, 1.43 Tesla, 1.08 Tesla 

and 0.64 Tesla. The decrease in magnetic induction between 1 Hz and 1 kHz is 0.35 

Tesla. And from 1 kHz to 1.5 kHz, the magnetic induction drops off 0.44 Tesla. As 
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expected, the predicted trend shows that with increasing operating frequency, higher eddy 

currents losses occur and therefore, a larger drop in magnetic induction is observed.  

 The second point to discuss is visible on Figure 5.10 only. At each end of the rod, the 

magnetic induction drops over the first and last 0.1” of the rod. This phenomenon can be 

explained by looking at the 2-D slice plot introduced earlier. Each of them displays a high 

level of magnetic induction in the magnetic steel pieces in contact with the Galfenol rod. 

In these pieces, the high level of magnetic induction generally induce a high level of eddy 

current which have a tendency to lower the magnetic induction inside the Galfenol rod 

ends. The third point to discuss is the decrease in magnetic induction in the core of the 

Galfenol rod. The eddy currents generated inside the sample itself shield the core of the 

sample from the magnetic field. This phenomenon is well known of the magnetostrictive 

dynamic transducer designer and is generally the considered to be the primary illustration 

of the effect of eddy current.  

 To solve these two problems (lack of penetration of the core and effects of eddy 

current in the end caps), one could laminate the rod, slit the housing and potentially slit 

the end caps where the most eddy current are generated and affect the end of the Galfenol 

rod. These pieces are usually structurally-involved in the mechanical design of the 

transducers, and therefore it is important to balance structural integrity and magnetic 

circuit efficiency. In these models, the slit in the housing was the solution of interest to 

solve these eddy currents related drops in magnetic induction in the Galfenol rod. 

Looking at the 2 kHz results in Figure 5.9, 5.10 and 5.11, one can see that slitting the 

housing decreases the eddy current power losses. The increase in magnetic induction 

obtained from a full slit with respect to the same magnetic circuit without a slit is of the 
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order of 0.07 Tesla which represents a 10.8% increase. A half slit creates an increase of 

6.1% in magnetic induction in the Galfenol rod. These results illustrate some of the utility 

of FEM models for optimization of a full structural design to aid in building an efficient 

transducer. 

 

5.2. Example of Coupled Finite Element Model of a 

Magnetostrictive-based Application 

The geometry modeled is based on an experimental set-up used at the University of 

Maryland for measurement of the static response of Galfenol when used as a sensor. The 

set-up consists of a 317.5 x 24.85 x 1.6 mm3 Aluminum beam with two 25.1 x 8.35 x 

1.57 mm3, 18.4% production grade Galfenol plates (provided by ETREMA products, 

Inc.) attached symmetrically on the top and the bottom of the beam at 25 mm from the 

clamped end (Figure 5.12). A coil is used to provide a DC bias field. The data presented 

is for different static loadings applied downwards at the free tip of the beam. The 

experiment was performed for a 26.66 kAm-1 magnetic bias by S. Datta [36].  

Figure 5.12: Experimental set up (Figure provided by S. Datta [36]).  
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The goal of the model was to predict the magnetic response of the upper Galfenol patch 

to different applied static loads and magnetic biasing fields. In the experiment, there is a 

strain gage attached on the top of the top Galfenol sensor plate (visible on the top of the 

Galfenol patch in the right picture of Figure 5.12) and another strain gage on the top of 

the aluminum beam next to the top Galfenol patch. The strain gages helped establish that 

bending induced strains were transferred from the beam to the Galfenol patch and were 

used in verifying the structural loads in the FEM model. A Hall sensor is also attached in 

front of the Galfenol patch to measure the passive change in magnetic field as the beam 

was deformed. The locations of all the measurement devices are important for the 

validation of the FEM model. In fact, in order to validate the results obtained by the FEM 

model, the strain at each strain gage location and the magnetic field induction at the 

location of the Hall probe need to be compared with the experimentally obtained 

measurements.    

 

5.2.1. Magnetostrictive material properties selection 

There are two main differences between the FEM model and the experimental set up. 

First the magnetic bias applied by the coil is reproduced using a permanent magnet 

instead of a coil. This is because, for the static case, modeling permanent magnets 

requires less memory than modeling a coil. In dynamic models this simplification will not 

apply and the implementation given in section 4.2.3 should be used. Second, the 

properties of the polycrystalline, production grade, 18.4 % Galfenol used, are based on 

preliminary data provided by the manufacturer of the material (ETREMA products, Inc. 

[56]) and on characterization curves of a single crystal 18.4% or 19% Galfenol, 
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depending of the property [19]. No complete set of characterization curves existed for 

this specific stoichiometry of Galfenol when this model was done (Quasi-static 

characterization of the polycrystal sample is currently being done at the University of 

Maryland). Recall in Figure 5.3b, the B-H curve for a production grade polycrystal 18.4 

% Galfenol sample is provided in section 5.1.1. The associated λ-H curves are given in 

Figure 5.13. The coupling factor “33”-component T
33d can be extracted from the 

magnetostriction versus magnetic field plot for different applied mechanical pre-stress 

(slope of the curve). Similarly the permeability can be extracted from the magnetic 

induction versus magnetic field plot. Note that the λ-H and B-H curves were done early 

in the development of the first polycrystal Galfenol samples. Enhanced properties should 

be expected for the current polycrystal material. The stiffness matrix can be extracted 

from a regular stress versus strain plot at constant magnetic field.  

Figure 5.13: Magnetostriction vs Magnetic field curves of 18.4% production grade 

polycrystal Galfenol for various stress level [56]. 
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Since this implementation does not take in account the nonlinearity of these 

characterization curves, it is necessary to run preliminary static models. First, by running 

a magnetic model of the permanent magnet in air (i.e. fixing the relative permeability of 

all the other material to 1), one can check that the applied bias magnetic field is equal to 

the one measured experimentally (see Figure 5.3a). Second, by running a new magnetic 

model but including the Galfenol as a permeable ferromagnetic material with no 

magnetostrictive effect, one can get an approximated biasing magnetic field. Here, the 

biasing field obtained varies between 3 kA/m and 6 kA/m. The peak magnetic induction 

inside the sample is of the order of 0.5 Tesla. Figure 5.14 shows (a) a 3-D plot of the “x” 

component of the magnetic flux density and (b) the line plot of the magnetic field “x” 

component on the top surface of the upper sensor plate. The “x” axis starting point of the 

line plot corresponds to the top sensor plate edge closest to the clamped end. The last 

ending point corresponds to the opposite edge.  

Third, by running a static mechanical model of the aluminum beam and Galfenol 

patches under a given applied load, one can get a fair approximation of the stress state of 

the Galfenol sensors (usually different especially in bending). The obtained peak stress 

level in the Galfenol samples are, respectively, for top and bottom sensor plate, 3.75 MPa 

and -3.75 MPa. Figures 5.15a&b show, respectively (a) the 2-D plot of the “x” 

component of the stress tensor and (b) the line plot of the same quantity along the z-axis 

on the plane 37 mm from the attached end which is the plane half way through the sensor 

plates (see thick line on Figure 5.15a).  

 



142

Figure 5.14: (a) a 3-D plot of the “x” component of the magnetic flux density 

 and (b) the line plot of the magnetic field “x” component  

on the top surface of the upper sensor plate. 
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Figure 5.15: (a) 2-D plots of the “x” component of the stress tensor and (b) the line plot 

of the same quantity along the z-axis on the plane 37 mm from the attached end. 

 
Now using those predicted applied field and applied stress, one can go to the 

characterization curves and measure the slope of the various curves to get the stiffness 

matrix, the coupling factor, and the permeability in the application range of the sensor. 
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Note that for the Galfenol plate under tension, properties from data measured at the 

lowest available pre-stress were chosen from λ-H and B-H curves. Often zero pre-stress 

was the closest value to the ±3.75 MPa encountered in this model. Extensive work on the 

behavior under tension of an annealed polycrystal Galfenol is currently being performed 

by Restorff [32].  

The next step is to run a magneto-mechanical model of the set up accounting for all 

the coupled effects. Ideally, to get a better convergence, this last step can be repeated a 

couple times (2 or 3 are usually good enough) with readjusting the Galfenol properties 

based on the new stress state and magnetic state of the Galfenol patches. Using this 

method to choose the material properties, it’s a fair assumption to use the piezomagnetic 

constitutive equations in the derivation of the boundary value problem as presented in 

Chapter 2 and 3 (static magneto-mechanical fully coupled model). However the lack of 

characterization curves for this region of applied stress makes it difficult to pursue this 

task adequately in this model. The model was run for five different tip loading cases used 

in experiments applied on the free end of the aluminum beam: 0N, 0.0833N, 0.255N, 

0.338N and 0.552N.  

5.2.2. Results and comparison to experimental data 

Once a model is solved, any dependant or independent variable can be plotted in many 

ways (slice plot, boundary plot, streamline, etc.). In Figures 5.16a and b, a slice plot of 

the magnetic induction “x”-component and a streamline plot of the magnetic field are 

presented for two different loading cases. An additional case it can be compared to is the 

one plotted in Figure 5.14a&b. The first plot (5.16a) shows a purely static magnetic 
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model of the permanent magnet in air and the second, (5.16b) shows a coupled magneto-

mechanical model of the set up with Galfenol patches under 0.552N tip loading. These 

plots do not provide information about the magnetic field magnitude but are very helpful 

for comparing the path of the magnetic field. Figure 5.17 is a 2-D surface plot of the 

magnetic induction on the top surface of the top sensor plate. It allows for visualization of 

the magnetic induction in the Galfenol sensor. Note that the white cross indicates where 

the change in magnetic field is measured by the Hall sensor. Figure 5.18 is a 3-D surface 

plot of the strain “x”-component for 0.552N loading using the coupled magneto-

mechanical model. It allows for visualization of the strain distribution on the beam and 

the sensor plate. The white cross in Figure 5.18 indicates the location of the strain gage 

on the experimental set up.  

Note that on both Figure 5.17 and 5.18, the strain and magnetic induction near the 

edge of the Galfenol plate are substantially lower than in the center of the plate where the 

distribution is more evenly distributed. The magnetic induction near the edge is lower 

because of the demagnetization effect. One may observe that this phenomenon is 

diminished near the corners of the Galfenol plates. In order to properly read the values of 

the computed data it is easier to use line plot along a line passing through the point of 

interest. For example, the change in magnetic field was measured 3 mm from the 

Galfenol top sample. To estimate the change in magnetic induction, we plotted the 

dependent variable along a line parallel to the “x”-axis passing through the Galfenol 

sensor plate and ending 3mm after the Galfenol plate in both cases : with no applied load 

(Figure 5.19a) and with the desired applied load (Figure 5.19b, for an applied load of 

0.552N). The white line in Figure 5.17 is the one used for these line plots. The 
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intersection point between the dashed lines on Figure 5.19 is where the change in 

magnetic induction was recorded. Figure 5.19 shows that a quasi identical figure would 

be obtained if one was to plot Figure 5.17 for the case where no load would be applied. 

Figure 5.16: (a) 3-D plots of the magnetic induction and field for the calibration of the 

permanent magnets in air obtained by a purely magnetostatic model (top), and (b) for a 

0.552N loading on the beam using the coupled magneto-mechanical model (bottom). 
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Figure 5.17: Magnetic Flux density (Tesla) on the top of the Galfenol plate. 

Figure 5.18: Strain x-component on the top of the beam (lower surface plot) and on the 

top of the Galfenol sensor plate (higher surface plot).
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Figure 5.19: Line plot of the magnetic induction along the white line plotted in Figure 

5.17 for a) no loading and b) 0.552N loading. 

 
Similarly, a line plot passing respectively, on the surface of the beam 2.5 mm from 

the edge of the Galfenol plate, and on the surface of the top Galfenol sensor, are use to  

estimate the strain measured by the beam and sensor strain gauges. In Figure 5.20 one 

can see the experimental results obtain by Datta [36] in which four masses were placed 

on the free end of the aluminum beam at ~4-6 seconds and removed at ~12 seconds. 

The masses produced loads of 0.083 N, 0.225 N, 0.338 N and 0.552 N as shown in 

Figure 5.20a-d, respectively. The strain in the beam and the upper Galfenol patch, and 

the change in field measured by the Hall probe are plotted as the mass loads are applied 

and removed. All three traces exhibit either drift or hysterisis, as they do not return to 

their initial values of zero upon removal of the mass loads.  

The FEM results given by each of the four mass loads are superimposed on Datta’s 

time trace results in Figure 5.20a to 5.20d as constant value lines. FEM model results 

are extrapolated from line plots as the one presented in Figure 5.19. In Figure 5.20, one 
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can observe the small difference obtained between the experimental measurements and 

the FEM Model. Note however that for a 0.255N and 0.338N loading, the experimental 

results shows very little difference in the strain measured on the top of the sensor and 

on the top of the beam next to the sensor. This is unexpected since the top surface of the 

sensor is higher with respect to the neutral axis and therefore should have higher strain 

since the beam is in bending. For these two cases the difference in the shape of the 

results is different than for the one obtain in the FEM. Otherwise one can observe the 

FEM results are always slightly above the experimental results. As pointed out earlier 

source of difference in the experimental and modeled results can be attributed to the 

properties used to model the active material. Another explanation is that the model does 

not account for the bonding layer between the sensor plates and the beam which in the 

model transmits all the stress but in reality transmit only a portion of the beam stress. 

Results presented in Figure 5.20, show that the implementation on FEMLAB of this 

model seems to be valid.   
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Figure 5.20: Experimental results provided by S. Datta [36] and modeled results 

computed from the FEM model. Change in magnetic induction, strain on the sensor 

surface and strain on the beam surface next to the sensor for (a) 0.0833N (top left), (b) 

0.255N (top right), (c) 0.338N (bottom left) and (d) 0.552N (bottom right). 
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Chapter 6:  Conclusion 
 

6.1. Summary 

After providing appropriate background information on magnetostrictive materials, a 

set of boundary value problems was introduced to model magnetostrictive-based 

applications under various operating conditions. These included: (1) static and dynamic 

structural mechanics BVPs for purely elastic materials designed to model the behavior 

of structurally involved part of a magnetostrictive-based devices, (2) a magnetostatic 

BVP designed to predict the magnetic field in static magnetic circuit with permanent 

magnets (does not apply to applications using coils), (3)  a quasi-static, time-harmonic, 

electromagnetic BVP designed to study electro-magnetic coupling effects in the 

magnetic circuits and in particular to model eddy current power losses, (4) a static, fully 

coupled, magneto-mechanical BVP and  (5) a dynamic, fully coupled, electro-magneto-

mechanical BVP, both designed to predict the behavior of magnetostrictive material 

based sensor and actuators.  

The structural mechanics BVPs are based on the equations of motion and the stress-

displacement relationships associated with standard, modified (for material under pre-

stress), or coupled (for magnetostrictive materials), constitutive equations. Similarly, 

the electromagnetic BVPs are based on Maxwell’s equations associated with electric 

and magnetic potential formulations and coupled or uncoupled constitutive equations. 

The various BVPs were introduced in the “differential” form in Chapter 2.  For each 

BVP type, different formulations based on different assumptions depending on the 
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operating condition or the material type used were presented. In Chapter 3, the 

continuum mechanics BVP, as well as the magnetostrictive static and dynamic coupled 

BVPs, were derived in the “weak” form using weighted-residual principles. 

 Implementation methods for all the BVPs presented were proposed in chapter 4. 

Using a format similar to that of a tutorial manual, this chapter focused on 

magnetostrictive-based applications and provided implementation tips. A set back 

encountered was the absence of a dynamic electromagnetic application mode necessary 

to implement the dynamic coupled electro- magneto-mechanical BVP for 

magnetostrictive materials. Memory requirements for 3-D models also caused concern, 

especially when using Lagrangian quadratic elements. Meshing techniques to prevent 

the use of unnecessary memory while solving were employed for large 3-D geometries 

with small details as well as for narrow geometries. Solvers and post-processing 

techniques are also detailed in this chapter. In Chapter 5, validation of the static 

magneto-mechanical models and results from the magnetostrictive-based applications 

presented in Chapter 4 are discussed.    

 

6.2. Suggestions for future work 

A number of tasks can be suggested to enhance the work presented in this thesis. The 

dynamic electro-magneto-mechanical FEM implementation was not validated by a 

FEMLAB model. Using another FEM code, Aparicio and Sosa were able to validate the 

formulation with a basic 1-element model. Therefore, it can be assumed that this 

formulation is valid [1]. Using the new dynamic electromagnetic application mode 

scheduled for released in fall 2005 in the electromagnetic module of the FEMLAB 
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3.2© software, one could attempt to verify the implementation proposed in chapter 4 to 

validate this formulation. 

Additionally, linear constitutive equations were used to model the magnetostriction 

effect. Saturation magnetostriction and the quadratic shape of the λ-H curves suggests 

an alternate formulation in which incremental FEM schemes would better capture this 

essential behavior. Similarly, stiffness matrix components, permeability matrix 

components and coupling coefficients are all dependent on magnetic field and 

mechanical load levels. FEMLAB allows implementing dependent formulas for 

material constant, especially for sequentially-solved coupled models. Since most 

material properties exhibit non-linear relationships, one would need to develop a model 

where non-linear material properties are modeled using results a preliminary uncoupled 

solution.  
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Appendix 1: Electrical Resistivity Measurements 
 

Electrical resistivity measurements were conducted to aid in design of 

magnetostrictive-based applications operating under dynamic conditions. The electrical 

resistivity values were experimentally determined for various stoichiometries of both 

single crystal and polycrystal Galfenol samples. A conventional four-probe method as 

described in ASTM B193-02 was performed on all specimens. Figure A1 summarized 

the measurement obtained. 

Figure A1: Resistivity measurements for various stoichiometries and various 

crystallographic orientations. 
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Single crystal and polycrystalline samples of 19.5 at.% Gallium content exhibit 

resistivity values of 110 ± 10 µΩ-cm and 96 ± 10 µΩ-cm respectively. For the single 

crystal samples, measurements taken along the [100], [110] and [111] crystallographic 

orientations did not show significant variation. Between 18 and 22 % Gallium content, 

the stoichiometry or crystallographic direction does not affect the resistivity 

significantly. Results from very few specimens at greater than 22% Gallium suggest a 

slight increase (~15%) in resistivity values at 27-30% Gallium content.  Availability of 

specimen was too limited to assess if crystallographic orientation is a factor. Muto and 

Takagi [57] showed by comparing resistivity of an ordered and disordered Au-Cu alloy, 

that ordered samples may have significantly lower resistivity depending on 

stoichiometry. This explains the lower value obtained by Kawamiya [58] for an ordered 

Fe3Ga compared to the values presented here. 

Temperature vs. Resistivity measurements were performed on Fe3Ga by Kawamiya 

[58] and the residual resistivity obtained was half the one obtained for 18.5% in the 

case shown in Figure A2. This difference can be explained by comparing the 

stoichiometry and the crystallographic structure (ordered vs. disordered) of the samples. 

Single crystal samples exhibited stronger temperature dependence than polycrystalline 

samples.  
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Figure A.2: Resistivity vs Temperature plots with quadratic and linear analytical model. 
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