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Calibration weighting is widely used to decrease variance, reduce nonresponse bias, and
improve the face validity of survey estimates. In the purely sampling context, Deville &
Sérndal (1992) demonstrate that many alternative forms of calibration weighting are
asymptotically equivalent, so for variance estimation purposes, the generalized regression
(GREG) estimator can be used to approximate some general calibration estimators with
no closed-form solutions such asraking. It isunclear whether this conclusion holds when
nonresponse exists and single-step calibration weighting is used to reduce nonresponse
bias (i.e., calibration is applied to the basic sampling weights directly without a separate

nonresponse adjustment step).

In this dissertation, we first examine whether aternative calibration estimators may
perform differently in the presence of nonresponse. More specifically, properties of three

widely used calibration estimations, the GREG with only main effect covariates



(GREG_Main), poststratification, and raking, are evaluated. In practice, the choice
between poststratification and raking are often based on sample sizes and availability of
external data. Also, the raking variance is often approximated by a linear substitute
containing residuals from a GREG_Main model. Our theoretical development and
simulation work demonstrate that with nonresponse, poststratification, GREG_Main, and
raking may perform differently and survey practitioners should examine both the
outcome model and the response pattern when choosing between these estimators. Then
we propose a distance measure that can be estimated for raking or GREG_Main from a
given sample. Our analytical work shows that the distance measure follows a Chi-square
probability distribution when raking or GREG_Main is unbiased. A large distance
measure is a warning sign of potential bias and poor confidence interval coverage for
some variables in a survey due to omitting a significant interaction term in the calibration
process. Finaly, we examine severa aternative variance estimators for raking with
nonresponse. Our simulation results show that when raking is model-biased, none of the
linearization variance estimators under evaluation is unbiased. In contrast, the jackknife
replication method performs well in variance estimation, although the confidence interval

may still be centered in the wrong place if the point estimate is inaccurate.
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Chapter 1. Literature Review

Calibration weighting was originally developed as a method for reducing sampling errors
while retaining randomization consistency. Deville and S&rnda (1992) introduce
calibration estimators using the distance function approach. Later work by Sarndal (2007)
points out that there are two different approaches to take account of auxiliary information
in estimation — a “caibration approach” and a “regression approach”. The two
approaches generate the same estimator, the generalized-regression (GREG) estimator, in
the situation where the genera least squares (GLS) distance function is used in the
calibration approach and linear regression model is used in the regression approach. For
the purpose of comparison, we use the term “genera calibration estimators’ to refer to
the other estimators in the calibration estimator family covered by Deville and Sarndal

(1992), as opposed to the GREG estimator.

Although almost all surveys in practice are subject to frame deficiencies and nonresponse,
the theories in Deville and Sérndal (1992) are developed for the ideal situation where
non-sampling errors do not exist. In this context (i.e., in the situation where non-sampling
errors do not exist), Deville and Sérndal (1992) show that many aternative forms of
calibration weighting are asymptotically identical. This leads to a breakthrough in our
understanding of some commonly used calibration estimators that do not have closed-
form solutions, such as raking. As a result, the GREG estimator is often considered a
good approximation of the general calibration estimators. However, non-sampling errors

such as nonresponse almost aways exist in real-world surveys. In the past decade,



Sarndal and Lundstrom (1999, 2005), Kott (2006), Chang and Kott (2008), Kott and
Chang (2010), and Kott and Liao (2012) have proposed different methods for using
calibration to reduce nonresponse bias through one-step weighting, yet we still lack
understanding of the empirical properties of the calibration estimators generated by these
methods. For example, it is unclear whether the GREG estimator and the genera
calibration estimators are asymptotically equivalent when nonresponse is present in a
survey and single-step calibration weighting is used to reduce potential nonresponse bias
(i.e., cdibration is applied to the basic sampling weights directly without a separate
nonresponse adjustment step). In practice, the poststratification estimator (as a special
case of the GREG estimator) and the raking estimator (as an example of the generd
calibration estimator) are both widely used in the government-sponsored surveys in the
United States and European countries. Quite often survey practitioners choose between
these two estimators based on the availability of the benchmark totals and the case counts
in the survey requiring calibration. Such a decision rule is fully justifiable only if
poststratification and raking can reduce nonresponse bias to asimilar extent. However, no
systematic research has been conducted on comparing the performance of the
poststratification estimator and the raking estimator when calibration is used to correct

nonresponse bias.

Our research expands the literature by relaxing the assumption of no non-sampling error.
To keep the picture simple, we assume that the sampling frame has perfect coverage and
there is no measurement error in surveys, so we can focus on the non-sampling error

caused by nonresponse. Our goal is to evaluate the properties of some calibration



estimators when calibration is used to reduce nonresponse bias through a one-step
weighting approach. The rest of this chapter is organized as follows. Sections 1.1 through
1.3 summarize the research on the properties of various calibration estimators,
particularly those proposed by Deville and Sérndal (1992), in the absence of nonresponse.
Sections 1.4 describes the aternative single-step calibration methods in the literature.
Section 1.5 explains the importance of choosing auxiliary variables to effectively reduce
nonresponse bias. Section 1.6 points out the gaps in the existing literature and describes

our research aims.

1.1 Two Approachesto Incorporate Auxiliary Information in Estimation

There are two systematic ways to take account of auxiliary information in estimation,
labeled as the “regression approach” and the “calibration approach”, athough the
distinction may not be completely clear-cut (Sdrndal 2007). In their original definition of
the calibration estimator, Deville and Sarndal (1992) require “minimum distance”
between the calibration weights and the original sampling weights, subject to satisfying
the calibration equation. In general, the term “calibration approach” often refers to

creating estimators by benchmarking the auxiliary information to external controls.

Let y, be the value of the variable of interest, y, for the kth population element, which is
associated with a vector of auxiliary variables Xk:(x(l,...x@,...,x@)T . For the

elements ke s, where s is the set of sample elements, we observe (Y,,X,) . For



simplicity, the population total of x, tx=2xk , which is often referred to as the
U

benchmark control vector, is assumed to be accurately known.

The objective is to estimate the population total t, = Zyk . Let d, be the basic sampling
U

design weight calculated as the inverse of the inclusion probability 7z, . The Horvitz-

Thompson estimator is f,, = >y, /7, =>d,y,. The calibration estimator is defined as
f,, = > WY, , With weights W, as close as possible, in an average sense based on a

distance function, to the basic design weights d, while respecting the cdibration
eguation

D W, =t, (1.2)

Under a chosen distance function G, (w,,d, ), this becomes an optimization problem. The
godl is to find a set of weights {W}, _ that minimizes > ..G(W,,d,) subject to (1.1).
This leads to the Lagrange function

W=, G, d)+2T (6=, wx,) (1.2)

which is minimized to find the optimal set of weights { W}

kes®

The calibration weights can be expressed as

w, = d, R (XA (1.3)



where A =(4,,...,4, )" is the vector of Lagrange multipliers determined from (1.2). A
corresponds to a realized sample, but for simplicity we often use A as the shorthand for

A,. F (x;4) is the inverse function of g, (w,,d,)=0G (w,d,)/ow,, the first partial
derivative of the distance function taken with respect to the calibrated weight. F, (xlx)
uniquely corresponds to G, (w,,d,). It is assumed that F, is non-negative and convex,
and that F, (0)=1, implying that when w, =d, the distance between the basic design
weights and calibrated weights is zero. Moreover, it is required that F, is continuous,

one-to-one, and that F/() =0 and F/(1) >0, which makes w;, =d, alocal minimum.

The Horvitz-Thompson estimator of t, ist_ = > d.x, , so the caibration equation can

be expressed as
> F ()x, — D dex, =t —t,, (1.4)
Define

Zd{ (xin)- }xk (1.5)

Then (1.4) can be written as

~

D (h)=t, —t, (1.6)

The task of obtaining W, boils down to solving (1.6) for A . The calibration estimator of

t, is



£ = D WY = D AR (1) Y, (L7)

Depending on the distance function G, (W,,d, ), iteration may be required to obtain a

~

solution for A. With full response, the Horvitz-Thompson estimator t,, using basic
sampling weights d, is unbiased. If the calibration weights W, are as close as possible,
according to G, (w,,d, ), to the basic sampling weights d, , then a realistic expectation is

that the calibration weights will maintain near unbiasedness.

Although severa distance functions are discussed in Deville and Sérndal (1992), most

theoretical research has focused on the GL S distance function Z(wk —d,)?/d,.q,, where

1/q, isthe positive weight associated with the kth term and is unrelated to d,. With this
distance function, the calibration equation has a closed-form solution. We obtain

F (X¢A) =1+q,x, A, and the calibration estimator is the GREG estimator

fre = D 0 A+ GX M) Y, =1, +(t, —t, )" B, (1.8)
where
A=T(t ~t,) (1.9)
B, =T,"> dGX, Vi (1.10)
T, =Y d,gx,X, (1.11)



An alternative method for obtaining the calibration estimator is referred to as the
“regression approach”. With the regression approach, estimators are calculated by using
an assisting model that closely represents the relationship between the outcome variable
and the auxiliary variables. The assisting model is also referred to as the calibration
model or the working prediction model by Kott (2006) to distinguish it from other models
such as those used to address response propensity. The assisting model can have linear or
nonlinear forms. When the assisting model is a linear regression model, the weight
happens to be calibrated to the auxiliary controls and the estimator (which is the GREG
estimator) is expressible as a linearly weighted sum with calibrated weights as a by-
product. One advantage of the GREG estimator is that the calibrated weights are

independent of any particular outcome variable y and can therefore be applied to al the

variables of interest in asurvey (Sérndal, Swensson, and Wretman, 1992).

In summary, the central ideafor the regression approach is to find an assisting model that
fits the population data well. In practice, we are often interested in estimating totals for a
number of survey variables, and it is unreasonable to assume that different outcome
variables fit the same model. This is probably why survey statisticians often adopt a
model-assisted approach rather than a model-based approach. In contrast, the calibration
approach does not refer explicitly to any models, but emphasizes the linear weighting of
the observed y values with weights made to confirm computable aggregates. The
resulting calibrated weights are functions only of the auxiliary variables and not any of
the outcome variables, so one set of final analysis weights is created instead of requiring

weights specific to each variable within a set of key outcome variables. The two



approaches generate the same estimator, the GREG estimator, under the special situation
where the GLS distance function is used in the calibration approach and linear regression

isused in the regression approach (Sarndal 2007).

Our research adopts the perspectives of both approaches. The weights are primarily
justified by their consistency with the benchmark controls (which is the calibration
approach). Although the calibration approach does not refer explicitly to any assisting
models, we demonstrate that the performance of a calibration estimator in the presence of
nonresponse depends on the choice of auxiliary vector and/or function form used in the

calibration process, and this requires amodeling effort in some sense.

1.2 Distance Function Method versus Function Form Method

Under the umbrella of the calibration approach, two methods are discussed in the

literature. Deville and Sarndal (1992) initially require that the set of calibration weights
{V\((}kes minimize some distance function ZkesGk(Wk’dk) subject to satisfying the

calibration equation — this is the “distance function method” described in Section 1.1.
An alternative approach is the “function form method” (Estevao and Sarndal 2006) or
“instrument vector method” (Kott 2006). Just as the distance function approach can
result in different sets of weights associated with different distance functions, the
function form method can generate aternative sets of weights calibrated to the same

auxiliary information using different function forms.



The function form method removes the limitation that the calibration weights minimize a

distance function, and requires only that {WK}kes satisfy the calibration equation and be of

the function form w, =d, F(z;4), where d, is the design weight, and z, is a vector with
values defined for the units in the sample and sharing the dimension of the specified
benchmark control vector X, . The vector z, can be a specified function of X, or of other
background data about unit k (Sé&rndal and Lundstrébm 2005). The vector A is
determined from the calibration equation. The function F(-) plays a similar role as
G, (W,,d,) does in the distance minimization method. For easy reference, we refer to
F(-) as “weight adjustment function” or “adjustment function” in our research. One
possible form of the weight adjustment function is w, =d, (1+z;2) , and the
corresponding calibration estimator is

fycal = zdk A+zZM)y,
: (112)

where

A= (zdkxkz-li—)_l(tx - zdkxk) (1.13)

The GREG estimator t,,., defined in (1.8) is a special case of (1.12) obtained for

Z, = QX

We think that when nonresponse exists in a survey, it is more appropriate to understand
the calibration process using the function form method rather than the distance function
method. This is because in the presence of nonresponse, the Horvitz-Thompson
estimator for the total of an outcome variable y using the basic design weights becomes

9



fyﬂ =deyk, where 1 represents the responding set. This estimator is biased when

r=s. If the calibration process aims to correct the nonresponse bias, it is neither
necessary nor appropriate to require the calibrated weights to be “as close as possible’ to

the basic design weights based on a distance function.

More discussions about the weighting adjustment function F(-) are included in Section
1.3. When applying the function form method, survey practitioners face some practical

questions. For example, is there any advantage to make the vector z, in the weighting
adjustment function F(-) differ from the calibration vector X, ? How should the variables

be chosen to include in X, and z,? These questions have not been clearly answered by
the existing literature. Sarndal (2007, Section 4.3) gives an example showing that “even
‘deliberately awkward choices for z, give surprisingly good results’. However, the

property of near-unbiasedness of the calibration estimator in this situation seems to
depend on the assumption of no non-sampling error, which usually does not hold in

practice.

1.3 Relationship between GREG Estimator and General Calibration
Estimators in the Absence of Nonresponse Error

As described in Section 1.1, various calibration estimators can be derived with the aid of
different distance measures under the same set of constraints on the auxiliary variables.
Alternative distance functions are compared in Deville, Sérndal, and Sautory (1993),

Singh and Mohl (1996), and Stukel, Hidiroglou, and Sarndal (1996). When there is no
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non-sampling error, there are usually very small differences between the point estimates
corresponding to the various distance functions, and changes in the distance function
often have only a minor effect on the variance of the calibration estimator even if the
sample size is rather small. The GREG estimator and the other members of the
calibration estimator family (referred to as the “genera calibration estimators’) are
compared in Deville and Sérnda (1992). They conclude that the GREG estimator is a
first approximation to the genera calibration estimators, al the general calibration
estimators are asymptotically equivalent to the GREG, and the variance estimator for

the GREG can be used for the general calibration estimators.

Although the GREG estimator is a specia case of the calibration estimator family when

the function form is F(x[%) =1+ q.x;2., we use {,,., to denote the GREG estimator and

~

t,,, to denote the other calibration estimators (i.e., the general caibration estimators) for

the purpose of comparison.

Deville and Séarndal (1992) consider a sequence of finite populations and sampling
designs indexed by n, where n is the sample size (for a fixed-sized sampling design) or
the expected sample size (for arandom-sized sample design). The finite population size,

N, tends to infinity with n. Several assumptions are made about the auxiliary vector x: (i)

lim N7t exists; (ii) N’l(fm —tx):Op(n’”z) , Where the subscript p means probability

induced by repeated sampling; and (iii) N“2N*(t, —t,) converges in distribution to the

multinorma N(O,A) where A is a covariance matrix. Two additional assumptions are
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also made for proving their Results 3 through 5 (described in next paragraph): (iv)
max X, | =M <o, where max is over n as well as over k; and (v) max F/(0) =M’ <.
Assumptions (i) through (iii) have two practical implications. First, the components of
2

are

N’l(fxﬂ —tx) are considered small and qualities on the order of N*ZHf —t

Xt X

considered negligible. Second, fx,r —t, follows an approximately normal distribution with

covariance matrix N"N°A (where A can be viewed as a matrix that describes an
asymptotic effect of the sampling design used for the survey), and thisisto justify the use
of the norma approximation in confidence intervals based on the point estimator.
Assumption (iv) is usually satisfied in practice since covariates are bounded. Assumption

(v) isverified for al the calibration estimators given in Deville and Sérndal (1992).

Deville and Sérndal (1992) show five results. Result 1 states that the calibration equation
(1.6) has a unique solution belonging to an open neighborhood of O, with probability

tending to 1 as N — oo. Results 2 and 3 are about the magnitude of the Lagrange

multiplier. They prove tha A, = Ts‘l(tX ~t,_ )+Op (n*)=0,(n*) , where
To = daX X . So A, tendsto 0 in design probability asn — oo. Result 4 indicates
S

that the general calibration estimators are design-consistent, and the difference between

the general calibration estimators and the Horvitz-Thompson estimator is asymptotically

zero. That is, N™(f,, -, )=0,(n"?). Result 5 compares the general calibration
estimators with the GREG estimator. For any weight adjustment function F, (-) obeying

thelr assumptions, fw given by equation (1.7) is asymptotically equivalent to the GREG
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estimator given by equation (1.8), in the sense that N™*(f,, —f,, ) =0, (n™). Results 4

and 5 together show that as n — oo, the difference between the general calibration
estimators and the GREG estimator approaches zero faster than the difference between

the genera calibration estimators and the Horvitz-Thompson estimator. The asymptotic
variance of fwv is, thus, the same as that of the GREG estimator. The proofs for these five

results are summarized in Appendix A.

These results have important practical implications because some general calibration
estimators do not have a closed-form solution. For example, although the raking ratio
estimator has a long history of use in survey practice, the variance of the raking
estimator is difficult to derive even approximately. Deville and Sérndal (1992) resolve
the problem by using the property that the general calibration estimators and the GREG
estimator are asymptotically equivalent. Thus, the large-sample variance of the raking
ratio estimator can be calculated using the same formula as that for the GREG estimator,

given in Sarndal, Swensson, and Wretman (1992).

It isimportant to note that all the resultsin Deville and Sérndal (1992) are derived under
the assumptions i) N’l(fm —tx)zop(n’”z) . and i) N>N(t, -t ) converges in

distribution to a multinormal distribution with mean of 0. That is, they require the
Horvitz-Thompson estimator of the population total of the auxiliary vector X with the
basic design weights to be approximately unbiased and consistent. This unbiasedness

assumption is true in the purely sampling context, i.e., one uncontaminated by
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nonresponse or undercoverage error. When non-sampling errors exist, the unbiasedness
assumption above does not hold anymore, so it is unclear whether the GREG estimator is

still asymptotically equivaent to other calibration estimators.

1.4 Cadlibration for Nonresponse Bias Reduction

There are several variations in the literature on how to adjust for nonresponse and
calibrate the weights to benchmark controls. The conventiona approach uses auxiliary
information in two steps (Kalton and Flores-Cervantes 2003). In step (i), a response
model is formed based on the patterns of correlation between the response probabilities
and available auxiliary variables. The aim is to derive good proxies of the unknown
response probabilities, so as to limit the nonresponse bias as much as possible. In step
(ii), the goal is to select the auxiliary variables that best meet the dua purpose of
reducing the sampling variance and of giving added protection against nonresponse bias.
An alternative approach is to skip explicitly estimating the response propensity, but use
calibration for nonresponse adjustment directly. The basic design weights are modified
in a single step with two simultaneous goals. to reduce the nonresponse bias and to
ensure the consistency between survey estimates and known population totals. The
single-step weighting approach has the potential to simplify the derivation of the variance

estimation formulas, so we adopt this approach in our work.
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1.4.1 Alternative Single-Step Weighting Methods

A single-step weighting approach through calibration is first proposed by Sarndal and
Lundstrém (1999, 2005). The literature is expanded by Kott (2006), Chang and Kott
(2008), Chang and Kott (2010), Kott and Liao (2012), and D’ Arrigo and Skinner (2010)

in the past decade.
Sirndal & Lundstrém Method

In the Sarndal & Lundstrém method, auxiliary controls can be available at the population

level, the sample level, or both. At the level of the population U, let x, denote a vector
of dimension J° such that the population vector total ZU X, is known and for every
k er (where r is the set of respondents), the vector value x, is known. At the level of
the sample s, let x; denote a vector of dimension J° such that for every k € s, the vector

value x, is known. During calibration, all the auxiliary controls from the population

and/or the sample are included in the calibration equation, with the dual purpose of

X
reducing both sampling error and nonresponse bias. The auxiliary vector X, =[ ';J has
Xk

2%
2,8

weighting system W, for k e r that satisfies the calibration equation Zr wXx, =t,. The

dimension J° +J°. The corresponding information input is t, —[ J . Weseek a

calibrated weights arew, =d,V, , where V, corresponds to the weighting adjustment

function F(-) described in Section 1.2 and can take different forms.
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Although the distance function method is used in Lundstrém and Sérndal (1999) for
obtaining W, , their later work adopts the function form method, which seems more

appropriate when nonresponse is present and calibration is used to correct nonresponse

bias. The calibration equation poses only weak constraint on the weights. Depending on

the form Vv, takes, there exist many sets of calibrated weights for a given auxiliary vector
X, . Sérndal and Lundstrom (2005) discuss two alternative schemes for defining the
function form for Vv, : (i) as afunction of the auxiliary vector X, ; and (ii) as a function of

any vector z, specified for k e r and with the same dimension as X, .

Under scheme (i), v, should reflect the known individual characteristics of the element
k e r, summarized by the vector value X, . The calibration equation can be expressed as
Zr dF(XiA,)=t, , where X, is a vector to be determined through the calibration
equation. A simple function form is recommended that depends linearly on X, :

F (k) =1+x2,, where &, = (D d,x,x,) " (t, - D d,x,). An aternative scheme (i.e,

scheme (ii)) isto define the weighting adjustment function using a vector z, specified for
k € r and with the same dimension as X,. The vector z, can be a specified function of

X, or any background data about k. Only a linear function form based on z, is
considered by Sdrnda and Lundstrom (2005). The calibrated weights are

w, =d, (1+2:2,), where &, = (O d,x,z;) ™ (t, - > d,x,) . Sérndal and Lundstrém (2005)
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call the vector z, an “instrument vector” for the calibration, but do not explain why an

instrument vector z, may be more desirable than the vector X, . Besides alerting the
reader to this generality of the calibration approach, Sérndal and Lundstréom (2005) give
little information about how to choose z, except to suggest that z, =X, is the “standard

choice’”. This gap is filled by some later work by Chang and Kott (2008), Kott and

Chang (2010), and Kott and Liao (2012).

We can see that scheme (ii) is the generalization of scheme (i) in Sérndal and Lundstrom
(2005). When z, =X, , the two schemes give identical estimators. Furthermore, when
r = s (indicating full response) and x, = X, (meaning that the auxiliary vector contains
information only from external benchmarks and not from the sampling frame), the
caibration estimator w, = d, (1+ X1, ) and the GREG estimator defined in equation (1.8)

areidentical.

Kott & Chang Method

Recent developments by Kott (2006), Chang and Kott (2008), Kott and Chang (2010),
and Kott and Liao (2012) emphasize two possibilities: 1) the set of variables modeling
the response mechanism (referred to as “model variables’) being divergent from the
benchmark variables in the calibration equation; and 2) using a nonlinear calibration

weighting procedure to implicitly estimate a logistic response model. The vector for the

benchmark controls in the calibration equation is still X, , with known population totals
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t.. Unit nonresponse is viewed as an additional phase of Poisson sampling. Using the
guasi-randomization perspective, each element k in the original sample is assumed to
have a response probability p,(-), which is a function of the response model covariate
vector z, . Some components of the response-model vector z, governing the unit
response mechanism need not coincide with the components on the calibration vector X, .
The components of z, that are not components of X, are called instrument variables.

The reason to use a vector z, that may be different from X, is that sometimes the

variables the response mechanism depends on are known only for respondents, not for the
whole sample. For example, in an agriculture survey, the benchmark variables can be
previous-census frame variables known for every farm in the population while the

response model covariates are current-period variables known only for survey
respondents. Kott (2006) still requiresthat the dimensions of z, and X, coincide. Chang
and Kott (2008) expand the method such that it allows the number of benchmark

variables (i.e., the dimension of X, ) to exceed the number of response model covariates

(i.e., thedimension of 7, ).

The statisticians can specify the function form for the response probability p,(-) and the

unknown parameters in the function can be estimated during the calibration process.
Although in theory, the response propensity p(-) can take different forms, Kott and
Chang’ s discussions are restricted to linear function of the response model covariates. For

example, the response propensity for each responding unit k can be specified as p(z;B),
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an unknown but estimable linear combination of the response mode! covariate vector z, .
The input weight for the calibration equation is calculated as the product of basic design

weight d, and ]/ p(z.B), where the vector p can be estimated from the data using the

calibration equation t, =Zkerd—§xk through a nonlinear calibration process. This

p(z.B)
equation is sufficient to determine p if the dimension of X, equals the dimension of z,
(Kott 2006). On the other hand, when the dimension of X, exceeds the dimension of z,,

the calibration equation can be modified into a nonlinear regression-type equation

txzzker%xk+£ , where z, and X, denote the vectors for response model
pP(Z,

covariates and benchmark variables respectively, t, is the vector of calibration target

values comprising the known population totals, and € is the error term between the
calibrated estimates and the population controls of the auxiliary variable (Chang and Kott

2008).

One main potential advantage of the Kott & Chang method is that it permits the use of
variables that are observed only on the respondents, and thus may prove useful in the

context of nonignorable nonresponse (Kott and Chang, 2010).

1.4.2 Properties of Calibration Estimators in the Presence of Nonresponse

Although several different calibration estimators are widely used in survey practice (e.g.,

poststratification and raking), there is not much literature about the properties of these
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calibration estimators in the presence of nonresponse. It is unclear whether and how the
different estimators may perform differently when the nonresponse mechanism is not

MCAR.

In terms of bias, Sarndal and Lundstrém (2005) claim that the single-step weighting
through calibration approach meets the double objective of reducing sampling error and
nonresponse error in the presence of powerful auxiliary information, but give little

guidance about how to choose significant auxiliary variables. Although nonlinear
adjustment function forms can be considered such as F(x,,) = exp(x; 4, ), S&rndal and

Lundstrom (2005) suggest that the linear form will suffice due to its considerable
computational advantage and the fact that it fits the routine production environment.
However, little theoretical or empirical justification is provided to support this statement.
During the discussion of confidence interval estimates, Sdrndal and Lundstrom (2005)
point out that to trust the confidence interval, one must be reasonably assured that the
bias of the point estimator is nearly zero; otherwise the confidence interval tends to be
off-center and this will cause damage to the coverage rate. Kott and Liao (2012) claim
that calibration weighting can provide “double protection” against the selection bias
resulting from unit nonresponse. A statistician needs to assume an outcome model
(which they refer to as “prediction model”) and a response model (which they cal
“selection model”) during calibration weighting. According to Kott and Liao (2012), if
either an assumed linear prediction model or an implied unit selection model holds, the
calibration estimator can be asymptotically unbiased “in some sense’. It is unclear what

Kott and Liao (2012) mean by “in some sense”, so their conclusion is vague and may
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require some unverifiable model assumptions. At the same time, the Kott & Chang

method is computationally intensive, and thus may be difficult to implement in practice.

Lesage, Haziza, and D'Hautlfoeuille (2016) refer to the Kott & Chang method as

instrument vector calibration. They lay out the conditions required for establishing the

consistency of an instrumental calibration estimator. Let R denote the response indicator

for unit k such that R =1 if unit k is a respondent and R =0 otherwise. Let

{(xl, Yer Z1, rk),keU} be redlizations of independent and identically distributed

random vectors {(XI Y, Z], Rk),keU} . Assume that the response mechanism is

described as

E(R 1Z,) = p(Z:B) (1.14)

Lesage, Haziza, and D'Hautlfoeuille (2016) show that the instrumental vector calibration
leads to negligible bias provided that the calibration function F(-) is correctly specified
and the following two conditions (referred to as exclusion restriction conditions) are
satisfied

R LX,|Z, (1.15)
and

R LY, |Z, (1.16)
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That is, the response propensity is related to some instrument variables via (1.14) but,

given the values of the instruments, Z, , response is unrelated to either the covariates, X, ,

or the analysis variables, Y, .

Lesage, Haziza, and D'Hautlfoeuille (2016) point out that although instrument vector
calibration may be successful in reducing nonresponse bias, the estimator may be highly
biased and/or unstable when the exclusion restriction conditions are not satisfied. For
example, a violation of (1.15) may occur when there exists an unobserved variable U ,
independent of Z and Y, which is related to both R and X . In practice, it is not

possible to validate the choice of F(-) because the instrument variables are only available

for the respondents. Also, it is not possible to check whether or not (1.15) and (1.16)
hold. Idedlly, the calibration variables should be those exhibiting a strong relationship
with the instruments. Alternatively, one may use the one-step calibration procedure
solely based on calibration variables for which the population total is known. Although
one may not be successful in reducing the bias to the same extent as with instrument
vector calibration in some situations, there is no risk of bias and variance amplification as
the calibration variables coincide with the instruments, which in turn offer some

protection against an unduly large bias and/or variance.

Regarding variance estimation, Sérndal and Lundstrom (2005) show that the variance of

a single-step calibration estimator is estimated as the sum of two components. That is,

V(t :VASAM +\7NR. The first component is the estimated sampling variance and the

yu)

second component is the estimated nonresponse variance. Both components involve
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estimating residuals — the differences between the observed values and the estimated
values for the outcome variable. Using the notations defined for the Sarndal &

Lundstrém method in Section 1.4, the estimated sampling variance component is

Vour =33 (0, —d )4E)(4E) -3 d, (d ~Dv, (v ~D(E)? (117)

and the estimated nonresponse variance component is

Vir = 2 Y% —D(A,&)° (1.18)
with

& =Y —(X) B4 (1.19)
and

&= Y% %Bra =¥~ (X) By —(X)' By, (120)
inwhich

B, .o = (E:J =2, dv,zx0) (dV,Z,Y,) (1.21)

where d, =1/, and d, =1/, aretheinverse of thefirst order inclusion probability and

the inverse of the second order inclusion probability, respectively.

This variance estimator in Sarndal and Lundstrém (2005) is based on a linear adjustment
function F(x;A,)=1+x.), so that the residual terms can be estimated using regression

models. It is unclear how the variance should be estimated if a nonlinear function term is

used for calibration (e.g., raking ratio adjustment).
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D’ Arrigo and Skinner (2010) evaluate the properties of the GREG estimator, raking ratio
estimator, and maximum likelihood raking estimator as well as the performance of
several linearization variance estimators in the presence of nonresponse. They define
aternative forms of linearization variance estimators via the choices of (1) the weights
applied to the residuals from the regression model; and (2) the weights used in the
regression model to estimate regression coefficients and residuals. Their study displays
few differences among the properties of the three calibration estimators for a given
sampling scheme and nonresponse model. Among the linearization variance estimators,
the approach that weights residuals by the design weight can be severely biased in the
presence of nonresponse. The approach that weights residuals by the calibrated weight
tends to display much less bias. Varying the choice of weights used to construct the
regression coefficients has little impact. In the D’ Arrigo and Skinner (2010) framework,
the simulation is based on several variables from the British Labor Force Survey and
German Survey of Income and Expenditure. Although the response mode is discussed,
there is no explicit information about the outcome variable model. It is unclear whether
their conclusion will hold under different outcome variable models. More details about
the forms of the linearization variance estimators in D’Arrigo and Skinner (2010) are

included in Chapter 5.

1.5 Choosing Auxiliary Variables to Reduce Nonresponse Bias

In the single-step weighting approach, calibration is applied to the basic sampling

weights directly without a separate nonresponse adjustment step, so Little and Vartivarian
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(2005) offer a useful framework for thinking about how to choose auxiliary variables
and/or calibration estimator. The situation in Little and Vartivarian (2005) is a very
simple one — simple random sampling (SRS) with a negligible sampling fraction and an
outcome variable (Y) with two values. This creates a 2 x 2 Situation: response or
nonresponse and the 2-value outcome variable. Two distributions are considered: the
response distribution and the Y distribution. The properties of a nonresponse-adjusted
mean estimator are evaluated across both the response and the superpopulation Y
distributions. Asshown in Table 1.1, four scenarios are assessed in Little and Vartivarian
(2005) based on the association of the auxiliary variables with response and outcome.
The following conclusions (quoting the original text from Little and Vartivarian (2005))

are reached:

L&V (i): “Substantial bias reduction requires adjustment cell variables that are related

both to nonresponse and to the outcome of interest.”

L&V (ii): “If the adjustment cell variables are unrelated to nonresponse, then weighting
tends to have no impact on bias (an unweighted mean would aso be unbiased), but
reduces variance to the extent that the adjustment cell variables are good predictors of the

outcome.”

L&V (iii): “If adjustment cell variables are good predictors of nonresponse but unrelated

to the outcome variable, then weighting increases variance without any reduction in bias.”

25



L&V (iv): “If the adjustment cell variables are related to neither outcome nor nonresponse,

then weighting affects neither bias nor variance.”

Table1.1 Summary of Little and Vartivarian (2005) Conclusions

Scenario Association with  Association with  Bias Variance
Outcome Response

L&V (i) High High l l

L&V (ii) High Low -- l

L&V (iii) Low High -- 1

L&V (iv) Low Low

Source: Little and Vartivarian (2005), Table 1.

However, the messages in Little and Vartivarian (2005) are not quite clear to the readers
sometimes. For example, on the one hand, they assert that “[a] covariate for a weighting
adjustment must have two characteristics to reduce nonresponse bias — it needs to be
related to the probability of response, and it needs to be related to the survey outcome.”
On the other hand, they state that “the most important feature of variables for inclusionin
weighting adjustment is that they are predictive of survey outcome; prediction of
propensity to respond is a secondary, though useful, goal.” The former statement seems
to suggest that the outcome variable model and response model should play equaly
important roles in determining the appropriate covariates for nonresponse adjustment,
while the | atter seems to indicate that the outcome variable model should be the dominant
factor. We suspect that this is because the variables that are predictive of response only

have the potential to reduce nonresponse bias, but the variables that are predictive of
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outcomes have the potential to reduce both nonresponse bias and sampling variance. So,
if avariableis predictive of outcome it will reduce mean squared error (MSE) even if it is
not predictive of response. But avariable that is only predictive of response will actually

increase M SE.

Moreover, the descriptions in the main text and in Table 1 of Little and Vartivarian (2005)
are not quite consistent. The text seems to address extreme conditions where the
variables are either “related” or “not related” to the outcome and/or response, while Table
1 shows “high” and “low” correlations, which are the middle-ground conditions that we

aremore likely to seeinreality.

Finally, Little and Vartivarian (2005) address only main effects and do not provide any
explicit guidance about how to handle the interaction effects. Since the interaction terms
of the main effect variables are not completely new variables, the conclusions in Little
and Vartivarian (2005) do not shed light on the differences between the GREG estimator

with only main effect terms, the poststratification estimator, and the raking estimator.

1.6 Gapsinthe Literature and Research Aims

In the context of using calibration as a single-step weighting approach to reduce potential
nonresponse bias, little evaluation has been conducted on the asymptotic properties of
different calibration. For example, both the raking ratio estimator and the

poststratification estimator are widely used in practice, the former as an example of the
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general calibration estimators and the latter as a specia case of the GREG estimator.
Based on Deville and Sarndal (1992), these two estimators are asymptotically equivalent
in the absence of non-sampling errors. However, non-sampling errors such as
nonresponse error amost always exist in surveys. It is important to re-examine
conclusions in Deville and Sérndal (1992) in the context of using calibration for

nonresponse adjustment.

If the conclusions in Deville and Sarndal (1992) do not hold when calibration is used for
nonresponse adjustment, then the existing literature provides neither a good framework
for comparing the performances of different calibration estimators, nor practical guidance
for choosing the appropriate auxiliary vectors and/or function forms for calibration
weighting. Although D’ Arrigo and Skinner (2010) compare three calibration estimators
in the presence of nonresponse, their conclusions are based on a limited number of
outcome variables from two surveys, and thus may not hold up in terms of externa
validity. To understand how a calibration estimator may perform in the presence of
nonresponse, we need to go beyond the purely design-based approach used in Deville and
Sarndal (1992) and examine the underlying models for population structure (i.e., what
variables are correlated with the key outcome variable) and response mechanism (i.e.,
what variables are corrected with response propensity). Survey practitioners need
guidelines for how to select the appropriate calibration estimator(s) for nonresponse
adjustment, but there is not much research in this area. The work by Little and
Vartivarian (2005) may help us define a framework for answering such questions, yet at

discussed in Section 1.5, research is needed to address the issues about interaction terms
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and refine the conclusions in Little & Vartivarian (2005) through some sensitivity

analyses.

In this dissertation, our first research question is whether and how alternative calibration
estimators may perform differently in the presence of nonresponse. More specificaly,
we want to evaluate the properties of three widely used calibration estimators over
repeated sampling. Two chapters are dedicated to answering this question. The first
chapter focuses on some design-based theoretical development. The second chapter
contains a simulation study that compares the performance of three widely used
calibration estimators — poststratification, raking, and GREG with only the main effect

covariates.

The second research question is how the performance of a calibration estimator may vary
by sample configuration. In the rea-world survey practice, only one sample can be
fielded and all the estimates are based on that particular sample, so it is important to
study the properties of the calibration estimators conditioning on sample configuration.
We propose a distance measure that can be calculated for a particular sample and may be
related to the potentia bias of a calibration estimator, which can be used as a diagnostic

tool by survey practitioners.

The final chapter of this dissertation examines severa aternative variance estimators for
raking in the presence of nonresponse, including both the linearization method and

replication method. We specify the outcome variable models and response models
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explicitly so that the impact of these models on the performance of the variance

estimators can be detectable.
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Chapter 2. Analytical Work for Comparing the GREG Estimator and
Genera Calibration Estimators with Nonresponse

Chapter 1 identifies some gaps in the existing literature on using calibration for reducing
nonresponse bias. In this chapter, we attempt to fill in one gap by comparing the
asymptotic properties of the general calibration estimators and GREG estimator when
calibration is used for nonresponse adjustment through a single-step weighting approach.
Given the risk of bias and variance amplification associated with the instrument vector
calibration weighting (Lesage, Haziza, and D'Hautlfoeuille 2016), we use the Sérndal &

Lundstrom Method described in Section 1.4.1 and focus on the situation where the vector

z, used in the weighting adjustment function F(-) coincides with the calibration

variable vector Xi. In the presence of nonresponse, the Horvitz-Thompson estimator of

the total for the auxiliary vector using the basic design weights is a function of the
respondent set and can therefore be “far” from the benchmark control total. This violates
one of the key assumptions in Deville and Sérndal (1992), so it is unclear whether their
conclusions about the relationship between the GREG estimator and the generd

calibration estimators still hold.

Section 2.1 below specifies the scope and assumptions underlying the theoretical
derivation. Section 2.2 presents the analytical work using design-based approach and
indicates that different calibration estimators are not necessarily asymptotically identical
when calibration is applied on basic design weights directly to correct nonresponse bias.
The setup and analytical work in this chapter largely follow the approach taken by

Deville and Sarndal (1992), which is purely design-based. The proofs in Deville and
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Sarndal (1992) are summarized in Appendix A, so we can refer to some of their equations
during the presentation of our analytical work. We use the terms “new assumption” and
“new result” to differentiate our assumptions and findings from those in Deville and
Sarndal (1992). Our theoretical results are applicable to a family of general calibration
estimators discussed in Deville and Sarndal (1992). At the end of the chapter, we point
out the limitations of the purely design-based approach and emphasize the importance of
examining the underlying models for the outcome variable and response propensity when

comparing different calibration estimators.

2.1 Scope and Assumptions

First, we assume the analytic survey (i.e, the survey requiring calibration) and
benchmark survey come from the same population U of size N . Although the
benchmark control totals are often estimated and subject to sampling and non-sampling
errors in practice, we assume that the total for the auxiliary vector X is accurately known

and equal to the true population total.

Second, we assume that the analytic survey has no coverage or measurement error, but
may suffer from nonresponse error that can bias the estimated parameters such as

population totals. In the presence of nonresponse, the survey has a respondent set r of
sze n.. We assume that no separate nonresponse adjustment is conducted prior to
calibration, so the pre-calibration population estimates are calculated using only the basic

design weights d,. That is, the Horvitz-Thompson estimators of the population total's of
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the auxiliary vector and outcome varisble are t,_ = dx, and f =>dy,
r r

respectively. Under probability sampling, the Horvitz-Thompson estimator is unbiased if

100 percent participation rate is achieved.

Finally, although survey nonresponse is generaly viewed as being caused by a random
mechanism, for the simplicity of theoretical derivations in this chapter, we assume that
each population member has fixed response propensity of either 1 or 0. (In later chapters,
we do allow the response for each unit to be random so that the response propensities can
be values between 0 and 1.) In the presence of nonresponse, the design-based

expectation of the Horvitz-Thompson estimator reflects the characteristics of the

“responding population” U, of size N,. We define Eﬁ(frm):trx and E (f )=t ,
where E, means design-based expectation, and t, and t, are the population totals of the

auxiliary variable vector and the outcome variable for the respondent set U, .

The theoretical derivation in this section requires the following assumptions. We refer to

these as “new assumptions” in contrast of thosein Deville and Sérndal (1992).

New assumption (i): lim Nt exist, butin general, lim N, = N7't, .

New assumption (ii): Nr‘l(fr”z ~t, ) — 0in design probability. Nr’l(frn —trx):Op(nr’”z).
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New assumption (iii). n'’N- 1(frm —t, ) converges in distribution to the multinormal
N(0,A), where A can be viewed as a matrix that describes an asymptotic effect of the

sampling design used for the analytic survey.

Recall that one of the key assumptions in Deville and Sérndal (1992) is that in the purely
sampling context, the Horvitz-Thompson estimators of the population totals of the

auxiliary vector approach the true values of the population as the sample size increases.
That is, N’l(fm —tx)zop(n’”z) . Based on our new assumption (ii), the Horvitz-
Thompson estimators from the respondent set approach only t, = E,,(f,m). We know

that t, =t,in the presence of nonresponse. This has important implications in the

theoretical derivation in Section 2.2.

2.2 Analytica Results Using Design-based Approach

In this section we re-examine the results in Deville and Sarndal (1992) in the context of

using calibration for nonresponse adjustment through single-step weighting. The input

weights for the calibration equation are the basic design weights dy . In this setup, the
Horvitz-Thompson estimator frw using the basic sampling weights d, is biased due to

nonresponse, so calibration is used to reduce such bias to the extent possible.
Conceptualy, it is more appropriate to understand calibration from the perspective of the
function form method than that of the distance function method. Thisis because our goal
is not to obtain calibration weights that are as “close’ to the basic design weights as
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possible in order to maintain design unbiasedness, as required in Deville and Sarndal
(1992). We suspect that whether the calibration equation has a solution may depend on
the how the response propensities differ by the benchmark control variables used in the

calibration. We show that the vector for Lagrange multiplier determined from the
calibration equation, A, , consists of a term that is driven by the difference between the
Horvitz-Thompson estimator of the auxiliary vector (using the basic design weights) for
the respondent population total (denoted by f,m ) and the benchmark control tota

(denoted by t,). Unless nonresponse is negligible, this term does not decrease as the

survey sample size increases, so A, may tend to a non-zero constant vector in design

probability. Our analytical work results in the formulae for: (1) the difference between a
general calibration estimator and Horvitz-Thompson estimator in the presence of
nonresponse; and (2) the difference between a genera calibration estimator and the
GREG estimator in the presence of nonresponse. We prove that when nonresponse exists
and calibration is used to reduce nonresponse bias through single-step weighting, the
general calibration estimators and the GREG estimator are not asymptotically equivalent

in general situations.

In the presence of nonresponse, the calibration equation is ZwkxkztX and the
r

calibration estimator is f,, = > Wy, . Equations (1.5) and (1.6) in Chapter 1 should be

modified into

@, (1) = Yd {R(xik, ) -1x, (2.1)

35



and

@, (h)=t,—t =(t,—t )+(t —t ) (2.2)

We know that t, #t, in the presence of nonresponse, so the right-hand side of (2.2)

contains a non-zero term that does not exist in equation (1.6) of Chapter 1. This non-zero
term plays an important role in the discussions below. We have five new results in

paralel to the onesin Deville and Sarndal (1992).

New Result 1. As n — oo, whether equation (2.2) has a solution may depend on the

difference between t, and t, aswell asthe function form F, (-) used in the calibration.

For this result, we give intuitive explanations instead of strict proof. In the presence of

nonresponse, equating (2.1) and (2.2) gives

Nr_chr ()“r) = Nr_lzdka(X-lk—;\’r)Xk - Nr_lzdkxk = Nr_l(tx _trx) + Nr_l(trx _Erm ) (23)

The second term on the right-hand side of (2.3) is similar to that in Deville and Sarndal
(1992). N7'(t, —fr, )=0,(n"?) and is asymptotically 0. However, when nonresponse
exists, t, = t, and the first term is N (t, —t, )=0() . Due to this additional term, the

right-hand side of (2.3) does not tend to O, but becomes a non-zero constant vector as n

increases.
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A more intuitive way to understand this result is that in Deville and Sarndal (1992), only
“small” adjustments need to be made to the basic design weights to obtain the calibration

weights, and that is essentially why the calibration equation almost aways has a solution

for large samples. When nonresponse exists, the Horvitz-Thompson estimator dexk

may be “far” from the benchmark controls t, and therefore “large” adjustments on the

basic design weights may be required to satisfy the calibration constraints. In this

situation, whether the calibration equation has a solution may depend on the difference

between t, and t, as well as the function form F () used in the calibration. An

empirical example is that for the same calibration constraints and respondent set ke,

poststratification always has a solution but raking does not always converge.

New Result 2. Let &, be the solution to equation (2.3) if one exists. If t, —t, =0, then

A, =0,(1) in genera situations. This means that A, tends to a non-zero vector in design

probability.

Proof: Define z, = N/*(t, ~t, ) and z,=N;*(t, -t ), s0 &, =(N"®,)*(z,+2,) if a

solution to (2.3) exists. Since N7®, (0)=0 we  have

-1

kr—O:(N‘1<I>,)_1(zl+z2)—(N‘1<I>,) (0) . Following the notations in Deville and
Sarndal (1992), the inequality (A.3) in their Result 2 (refer to Appendix A) becomes

% <lza+ 2o K@=B) " <[z, K A=)+ [z, K(L-p) (24)
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where Kisdefined in (A.1) and O<ﬁ<%.

Since z,=0(1) and z, =0,(n*?), inequality (2.4) implies that i, =O(1)+0,(n*?).
The second term tends to O as n increases. However, the first term is a non-zero

constant vector in general situations, and does not decrease as N, increases.

New Result 3. In genera situations, A, = T,’l(trx -t )+Op (D), where T, =>"d, g X, X -

Proof: We use F(x}A, ) to denote the adjustment function for a general calibration

estimator. For the GREG estimator, the adjustment function takes the form 1+ qgx 4, .
The difference between the two adjustment functions is expressed as

ek (X-I[)\‘r) :Fk (X-Ii—)“r)_(l_i_qu-ll(—)“r) (25)

From (2.1), (2.2), and (2.5), we obtain

(tx _trx) + (trX _i:\r,zr ) = dexk {qxx-l[;\‘r +0k (X-ID\‘r )} (26)

Multiplying both sides of (2.6) by T.* and rearranging the terms, we obtain

ho—THE —t ) =T (t,—t, )-T,* > dx,0, (xi2,) (2.7)

38



An important assumption in Deville and Sarndal (1992) is that F,"(0) is uniformly
bounded, which is equivalent to 6 (x{a, ) = max 6, (x{1, ) = O((x[xr )2) . Note that this

assumption requires the condition that 4, = O, (n; Y2) which does not necessarily hold

when t, #t, . However, given that max |X; A, <o, when nonresponse in the analytic
survey is not extremely severe, we can still assume that for any ¢ >0, there exists K”

2

such that, for all k, [x;, k& will imply that 6, (x;2, ) <K"(x{2,)

Using (2.7) and the bound above on 6, (x;4, ), we have

;“r _Tril(trx _Erm )H < “(NflTr )71H K’ {erzdk ”Xk”g}”)"r ”2 + T;l(tx _trx) (28)

We know that [[(N;*T,)™| =0,(@) and N,">d, I% ' =0,(1) . Based on the New Result

2, ||)ur||2 =0, (1), so the first term of the right-hand side of (2.8) is O, (1) . The second
teem of the right-hand side of (28) is aso O,(1) . Therefore we have
A =T7(t, —t_)+O,(1). Although T*(t, ~t, ) tendsto O as n, — o, the magnitude

of &, is O,(1) ingenera situations. Unlesst, =t, , A, doesnottendto Oas N, —o.

New Result 4. The difference between the general calibration estimator and the Horvitz-

Thompson estimator can be expressed in two ways.
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In terms of totals:;

f, -f =B7(t.-t, )+B/(t, —f,_)+(Y,-Y,)'D,6, (2.9)
where

-1
B, =T.’X'D,Q,Y, =[dequkle > d G, Yi

px1

Tr = X-errQrXr = dequkXI

pxp r
Xll X:I.p
X, = :
nxp
Xn,l ) Xn,p
= (1, Xy )
Gy 0
Q =
Ny xn, O qn
d, 0
D, = s
n, xn; O dn

In terms of means;
N7E -NE

ST A SIRT ” -1 v \T (2.10)
= Brpx(l—(urx/px) p)—urw 1- p)+NB] (trx -t )+ N(Y,-Y,)'D.6,
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where p, isthe mean of the auxiliary vector for the respondent population, p, is the true
population mean, ﬁrw is the Horvitz-Thompson estimator of the mean for the outcome

variable estimated from the respondent set, and p is the response rate of the analytic

survey.
Proof: If the calibration equation has a solution A, , then from (2.5) the difference

between the genera calibration estimator and the Horvitz-Thompson estimator can be

written as

1,:\ryw _frw = de yk{qul—;"r +0k (X?(—)“r)} (211)

From (2.7),

b =T t,—t )+ Tt —t_)-T 'Y dx6,(xid, ) (2.12)

Replacing the first occurrence of A, in (2.11) by the right-hand side of (2.12), we obtain
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A

t

T tryﬂ

= d Y, GXx {Tr‘l(tX ~t, )+ Tr‘l(trx -t )—Tr‘lzdkxkek (xlxr )}
+de YO0, (X;A,)

= Zr:dkyquxITr‘1 (t-t, )+ Zr:dkyquxITr‘1 (t, -t )
—deyquxITr‘lzr:dkek (xih, )x, + deykek (x]2,)

=(X/D,Q,Y,) T (t,~t, )+ (X/D.Q,Y,) T/*(t, -, )
~(XD,Q,Y,) T’X/D,0, +YD,0,

=(X/D,Q,Y,) T, (t,~t, )+(XTD.Q,Y,) T*(t, -, )
—B'X'D,6, +Y'D,6,

=B (t,-t, )+B/(t

r—r-r r=—r-r

. —t_)-Y/D,6,+YD,0
=B (t,-t, )+B/(t, —t,_)+(Y,-Y,)' D6,

(2.13)

Then the difference between two meansis

T N;ltrw

=N deyd Ao, +6, (xeh )} + (N7 =N

= NlérrT (t.-t,)+N7B/(t, -t )

+N(Y, =Y,)"D,0, +(E /NN, /N-1)

=BT (t,/N=(t, /NN, /N))+(E /NN, /N-1) (2.14)
+N7B (t, T, )+N(Y,-Y,)'D,6,

=B/ (m,—n, (N,/N))+fi, (N, /N-D+N'B (t, —t_)+N*(Y,-Y,)'D,0,

=B (m,—m,(n, /m)p)—h, (1-p)+N"B/(t, —t_)+N(Y,-Y,)'D,60,

=Bn, (1-(n, /m,)p)—hi, (- p)+N7B/(t, —t_)+N(Y,-Y,)'D,0,

where p=N, /N isthe proportion of respondents in the population.
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For the right-hand side of (2.14), the first two terms do not cancel out except in some
special situations such as p, =p, (indicating ignorable nonresponse) and Berx =ﬁrw
(meaning that the assisting linear regression model has perfect predicting power). The
third term is O, (n,”?). The fourth term is a weighted sum of residuals (Y, - Y, ) , which
has model-expectation O if y follows a linear model on the X's based on the responding
sample but not otherwise. Based on the New Result 3, we know 6, =0, (1), so the fourth
term does not necessarily diminish as n increases. Instead, its magnitude seems to

depend on the variation of the outcome variable, the predicting power of the regression
model underlying the GREG estimator, and the form of the weight adjustment function

used in calibration. In general, the difference between general calibration estimator and

Horvitz-Thompson estimator does not necessarily decrease as N, increases.

New Result 5. The difference between the genera calibration estimator and the GREG

estimator is N (frw -t

)=N"Y/D,6, =0,().

Proof: From (2.5) and (2.14), the general calibration estimator can be expressed as
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£, = X+ Taxh v+ X80, (xIh ) v

= de Ye + zdekXI {Trl (tx - trx ) + Tril(trx _frx ) _Trilzdkxkek (XI)‘r )} Yi

+de9k (Xb“r ) Yk

(2.15)
= de Ye + zqukXITril (tx - trx ) Yt dequITfl (trx - frx ) Yi
_dequWk—Trildexkgk (X-I[)\‘r ) Ye T zdkgk (X-l[)\‘r ) Yk
=f_+B7(t,—t,)+B/(t, -t )-Y'D,6, +YD,o,
But thefirst four terms of the right-hand side of (2.15) is the GREG estimator
f, =t +B/(t,-t )+B(t, -t )-Y'Do, (2.16)

so N*(f, ~f )=N"YD,6, =0, (1.

The term 0, captures the difference between the weight adjustment function for any
genera calibration estimator and the weight adjustment function for the GREG estimator.
When cdlibration is used for nonresponse adjustment, , =0, (1) in genera situations
and does not tend to zero as the sample size n, increases. As a result, the GREG

estimator and the general calibration estimators are not asymptotically equivalent.

2.3 Summary

The resultsin this chapter are purely design-based and provide some initial insight on the

difference between the genera calibration estimators and the GREG estimator when
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calibration is applied on the basic design weight directly to correct nonresponse bias. In
contrast to the findings of Deville and Sarndal (1992) in the absence of nonresponse, our
theoretical analysis shows that in the presence of nonresponse, the general calibration
estimators and the GREG estimator are not asymptotically equivalent in generd
situations. At the same time, there are some questions yet to answer. For example, what
factors may affect the magnitude of the difference between two calibration estimators?
Are there special situations where some forms of calibration estimators may yield
asymptotically equivalent results? To further understand what drives the differences
between the various calibration estimators, we need to go beyond the design-based
approach and examine the underlying models for the outcome variable and the response
mechanism. For example, a set of variables may be correlated with the outcome variable
of interest. Another set of variables may be correlated with the response propensity. The
guestion is how to incorporate these covariates in the calibration process to reduce
potential nonresponse bias without increasing variance significantly. In the next chapter,
we examine three widely used calibration estimators, poststratification, raking, and
GREG estimator accounting for only the main effects of the auxiliary variables, in greater
detail. We aim to provide a framework for evaluating calibration estimators using both

design-based and model -based approaches.
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Chapter 3. Comparison of Three Widely Used Calibration Estimators for
Nonresponse Adjustment over Repeated Sampling

Chapter 2 contains some theoretical results about the difference between the GREG
estimator and the general calibration estimators when nonresponse exists and calibration
is used for nonresponse adjustment through a single-step weighting approach (i.e.,
calibration is applied to the basic sampling weights directly without a separate
nonresponse adjustment step). The results in Chapter 2 show that the GREG estimator
and general calibration estimators are not necessarily asymptotically equivalent when the
nonresponse mechanism is not missing completely at random (MCAR). At the same
time, to further understand what drives the differences between the various calibration
estimators, it is necessary to go beyond the purely design-based approach and examine

the underlying models for the outcome variable and the response mechanism.

In this chapter, we focus on three widely used calibration estimators in the situation
where the auxiliary information is in the form of counts in a frequency table in two or
more dimensions. We examine raking (as an example of the general calibration
estimators), poststratification (as a special form of the GREG estimator that accounts for
the interaction effects of the auxiliary variables), and the GREG estimator that accounts
for only the main effects of the auxiliary variables. In practice, the choice between these
estimatorsis often based on the availability of external data and the counts of respondents
in cells formed by variables that may drive response propensities. This chapter uses a
systematic approach to evauate the performance of these three estimators through a

simulation study. We compare the empirical biases, empirical variances, and coverage
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rates of the 95 percent confidence intervals of these estimators over repeated sampling.
We aso provide a comprehensive framework to evaluate the impact of sampling,
outcome variable structure, and nonresponse mechanism simultaneously. The findings
demonstrate the importance of accounting for both the outcome variable model and the
response model when choosing the appropriate calibration estimator. The results of this
chapter also provide survey practitioners with some guidance for choosing between these

widely used calibration estimators.

The content of this chapter is organized as follows. Section 3.1 defines the three
calibration estimators in comparison. Sections 3.2 through 3.4 describe the scope,
conceptual framework, scenarios, and steps for the simulation study. The evauation
criteria and anticipated results are presented in Sections 3.5 and 3.6. Section 3.7 shows
the simulation results over repeated sampling, followed by some sensitivity analysis in
Section 3.8. Section 3.9 summarizes the findings and discusses some potential work in

the future.

3.1 Poststratification, Raking, and the GREG without Interaction Effects

Survey practitioners often face the issue of variable and function form selection when

conducting calibration weighting to reduce nonresponse bias. For example, a set of

covariates X, may determine the outcome variable of interest while another set of
covariates X, may drive the response propensity. The relationship between X, and X,

can fall into one of the three situations: 1) X, and X, are exactly the same; 2) X, and
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X, are different but have overlapping components; or 3) X, and X, are completely

different with no overlapping components. In practice, some the covariates associated
with the response propensity are not be correlated with an outcome variable (the second
situation above), so the question is what covariates should be included in the calibration
process to reduce nonresponse without increasing variance significantly. In the single-
step weighting approach, calibration is applied to the basic sampling weights directly
without a separate nonresponse adjustment step, so Little and Vartivarian (2005) offer a
useful framework for thinking about how to choose auxiliary variables and/or calibration
estimator (e.g., poststratification versus raking). However, one of the limitations of Little
and Vartivarian (2005) is that they address only main effects and do not provide any

explicit guidance about how to handle the interaction effects.

The theoretical results in Chapter 2 indicate that the GREG estimator and general
calibration estimators are not necessarily asymptotically equivaent when calibration is
used for nonresponse adjustment. To further investigate the factors that may affect the
difference between the GREG estimator and a genera calibration estimator, we focus on
three widely used calibration estimators. (1) poststratification estimator as a special case
of the GREG estimator where both main and interaction effects of the categorical
auxiliary variables are taken account of; (2) raking ratio estimator as an example of the
general calibration estimators; and (3) the GREG estimator when only the main effects of
the auxiliary variables are accounted for. For simplicity, we refer to the GREG estimator

accounting for only main effectsas“GREG_Main”.
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3.1.1 Poststratification Estimator

The poststratification estimator is model-unbiased under the group-mean assisting mode!.
The auxiliary information consists of known cell counts in a frequency table in any

number of dimensions. For simplicity, we consider a two-way table with r rows and c
columns, and thus r x c mutually exclusive cells. The auxiliary vector X, is composed of

rc—1 entries of 0 and a single entry of 1 indicating the cell to which kbelongs. The

population U;; in cell ij contains N, elements, i=1, ..., r; j=1, ...,c. SON=> >N, .

r
i=1l j=1

Let r; denote the set of survey respondents in cell U;(r . For every kin r,,
F(xa,) =N, /N, , where N, =" d,. The caibration weights for al kin cell ij

are calculated as

A

w=d (N, /N, ), ker, (3.1)

1

The poststratification estimator of a population total can be written as

ey (3.2)

3.1.2 Raking Estimator

Sometimes survey practitioners do not have al the cell counts N, , but only marginal

counts for the benchmark controls. In other cases, it may not be wise to use the full
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cross-classification for adjusting the estimator when the sample sizes for some cells are
small. One way to utilize the auxiliary information is to calibrate on known marginal
counts, referred to as generalized raking (Deville and Sarndal, 1993). For example, in the
situation with two auxiliary variables with r and c categories respectively, it is only

necessary to know the marginal population counts. The auxiliary vector takes the form of

8, 8y 84)", where 8, =1if element kis in row iand O otherwise, and

0. =1if kisin column j and O otherwise. Consequently, the benchmark control vector

is Y % =(N., .. N ,N_,...,N )", where N, =2 Ny N =Y N, . Define the

i=1

vector of Lagrange multipliers A, =(u,_u, v, V)" , then x[)u,:uijtvj and

F(x;A,)=F(u +V;) whenever kbelongsto cell ij. With Nrij =Zk€rij d, , the calibration
equations are
ZC: N, F(u+v))=N,_, i=1 ..r (3.3
=t
and

> N, F(u+v)=N,,, j=1 ..c (3.4)

i=1

These calibration equations do not have a closed-form solution for A, . Deming and
Stephan (1943) suggest an iterative proportiona fitting procedure that adjusts one
marginal at atime until convergence is achieved. Once F(u, +V;) has been determined,
the calibrated cell counts can be estimated as

NY =N, FU+v), i=1.,rj=1.c (35)
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The calibrated weightsfor al kincell ij are

w, = d, N;?/Nrij : ker, (3.6)

The corresponding calibration estimator of a population total is called raking ratio

estimator

r ¢ d
=ZZZker Wi Vi ZZNHI z d (37)

3.1.3 GREG_Main Estimator

An alternative approach to take advantage of the marginal counts is to use the GREG

estimator (Sarndal, Swensson, and Wretman, 1992)

~ s R

tyy =1, +(t,—-t, ) B, (3.8)
where fr,,, is the Horvitz-Thompson estimator of the population totals of the auxiliary
vector from the respondent sample, frw is the Horvitz-Thompson estimator of the

population total of the outcome variable from the respondent sample, and I:%r is estimated

from the respondent sample as the solution of the weighted least squares equation.

t, => dx, (3.9)

try, = zdk Yk (3.10)
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T

B = (Z Xy Xy jlz Xy Yk

2 2
r O 7Ty r Oy 7Ty

(3.11)

For the purpose of comparison, we examine the GREG estimator that accounts for only

the main effects of the auxiliary variables, referred to as GREG_Main.

Deville and Sarndal (1993) show that all calibration estimators built from the same set of
covariates are asymptotically equivalent when there isfull response. Asaresult, a GREG
estimator that uses only main effects for a set of factor variables and a raking estimator
that uses the margins for those factors should be approximately the same in large samples.
Little and Wu (1991) and Little (1993) aso show that the raking estimator has a Bayesian
interpretation when cell means follow a main effects model and the probability of aunit’s
responding in cell ij isthe product of row and column probabilities of response. Whether

these results hold empirically when there is nonresponse is tested in subsequent sections.

3.1.4 Comparison between Poststratification, Raking, and GREG_Main

There are several motivations for comparing raking, GREG_Main, and poststratification.
First, raking and GREG_Main share the same set of auxiliary variables, and their

difference lies in the form of distance function G(-) and the corresponding adjustment
function F(:). In the pure sampling context as discussed in Deville and Sérndal (1992),

these two estimators are asymptotically equivalent. That is, conditioning on the same set

of auxiliary variables, the particular form of the distance function has negligible impact
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on the asymptotic properties of the calibration estimator if non-sampling error does not
exist. However, the conclusion in Deville and Sarndal (1992) does not necessarily hold
when nonresponse exists and calibration is used to reduce nonresponse bias. The
theoretical results in Chapter 2 suggest that the difference between raking and

GREG_Main could be as large as O (1) . The question is in what situation the two

estimators tend to give very similar results and in what situations they tend to diverge

significantly.

Second, GREG_Main and poststratification both belong to the GREG estimator family,
although poststratification is usually not thought of in terms of calibration constraints and
a distance function. GREG_Main accounts for only the main effects of the auxiliary
variables while poststratification accounts for the interaction effects as well. The
comparison of these two estimators shows the impact of the interaction terms in the
outcome variable model and/or response model. The results can help us refine the
guidelines in Little and Vartivarian (2005) for choosing auxiliary variables in

nonresponse adjustment weighting.

Third, poststratification and raking are probably the two most commonly used calibration
estimators in U.S. government surveys. From the practical perspective, a key difference
between poststratification and raking is that the former fits a fully saturated model with
both main and interaction effects of the auxiliary variables, while the latter fits a model
including only the main effects. On the other hand, Deville, Sdrndal, and Sautory (1993)

refer to poststratification as “ complete poststratification” and raking ratio as “incomplete
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poststratification”. The literature shows that raking (through proportional fitting)
preserves the multiplicative interaction effect in the sample data (Haberman 1979),
although there is little theoretical or empirical research to suggest whether raking or
GREG_Main may be superior in the situation that poststratification should be the most
appropriate estimator. We attempt to investigate whether and to what extent raking can

get closer to poststratification compared to how GREG_Main does.

3.2 Scope of Simulation Study

The simulation study aims to evaluate the empirical properties of the poststratification
estimator, raking estimator, and GREG_Main estimator for finite population totals and
means when calibration is used for nonresponse adjustment in a one-step weighting
approach. We measure the magnitude of their differences in terms of empirical bias,
variance, MSE, and coverage rate of 95 percent confidence intervals, under different
model assumptions for the outcome variable and the nonresponse mechanism. The

research is conducted in the following scope.

First, we evaluate estimates for population totals and means for a single outcome variable.
In the presence of nonresponse, calibration is used to reduce the bias, variance, and MSE

of the estimate for this single outcome variable.

Second, athough Chapter 1 points out that it is possible to use a covariate vector z, for

the calibration adjustment function F(-) that is different from the auxiliary vector X, in
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the calibration equation, our evaluation focuses on the situation where z, =X, , which is

the “standard choice” in Sarndal and Lundstrém (2005).

Third, the outcome variable model and the response model contain the same main effect
covariates. We also assume that there are only two main effect covariates and they are
both categorical variables. In some scenarios, there is interaction between the two
categorical variables because the effect of one variable depends on the value of the other
variable. In these scenarios, an interaction term, assessed through either an additive
model or a multiplicative model (to be discussed in greater detail in Section 3.3), is also

included in the outcome variable model and/or response model.

Fourth, for the response mechanism, we assume missing at random (MAR). This means
that the probability of response does not depend on the outcome variable once we control
for the known covariates. The classes or cells defined by the covariates are response

homogeneity groups.

Finally, the results focus on overall estimates in the context of SRS. Although practica
surveys almost always involve complex sample designs, the SRS assumption allows us to
focus on the impact of population structure and response mechanism on the performance
of a calibration estimator. The findings about how to choose auxiliary variables and
calibration estimators apply in general to complex designs, although the technical details

become more complicated.
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3.3  Outcome Variable Models and Response Models

One question to be answered through the ssmulation study is whether and how the three
calibration estimators account for the interaction term in the outcome variable model
and/or response propensity model. There are two types of interaction effects, referred to
as “additive interaction” and “multiplicative’ interaction respectively. Additive
interaction model (also known as absolute difference model) evaluates whether the
effects of one variable are the same across categories of another variable. The
multiplicative interaction model (also known as relative difference model) examines
whether the odds ratios or risk ratios by one variable are homogeneous across categories
of another variable. In our simulation work, the interaction effect in the outcome variable
model is assessed using an additive interaction model. For the response propensity model,
the interaction effect is assessed through both multiplicative interaction model and
additive interaction model because we are interested in evaluating the impacts of both

types of interaction effects.

All the outcome variable models and response propensity models include two main effect
covariates. In some scenarios, the models also include an interaction term in addition to
the main effects. The aternative models for the outcome variable Y, Y_Main and

Y _Additive_Interaction, are specified in (3.12) and (3.13).

Y_Main:

Yi =ty tay +By ey, 1=1 2/j=1 2, k=1 .., N, (3.12

56



Y _Additive_Interaction:

Yo =ty oy + By +7y tego 1=12j=1 2,k=1 .., N, (3.13)

where N; isthe population sizein cell ij for the survey and ¢, ~ N(0,6%).

We refer to (3.12) asthe“Y_Main” model because there are only main effect termsin the
model. We refer to (3.13) asthe “Y_Additive_Interaction” model because in addition to

the main effects, anon-zero addictive interaction termis also included in the model.

For response, we use two models to describe the association and interaction patterns
between two categorical random variables — a linear model that alows us to study the
effect of additive interaction and a log-linear model that allows us to study the effect of
multiplicative interaction. It matters what type of interaction (multiplicative versus
additive) isincluded in the response model because the literature shows that raking forces
the weights to conform to the marginal totals without perturbing the associations in the
unadjusted table (Haberman 1979). That is, the raking process is expected to preserve the
multiplicative interaction effect, but not necessarily the additive interaction effect, that

aready existsin the cell counts before calibration.

Linear response model:

Ry =t +og +Ba+/ g i=12j=12 (314)

Log-linear response model:
log(R)) =ptp+ag +Bg +7g,  1=12j=12 (3.15)

where R;istheresponseratefor cell ij .
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In practice, both response models should satisfy the constraint 0<R; <1. During the

simulation, we choose not to manipulate the parameters in (3.14) and (3.15) directly.
Instead, we randomly assign response flags (1 indicating response and O indicating
nonresponse) for all the cases in each of the four cells formed by the two random
categorical variables using the binomial distribution with parameters N; and R;, where

N; and R; are the population count and response rate, respectively, for the cell ij. This

method alows us to control the strength of both the main effects and the two types of

interaction effects in the response model directly.

We assess the strength of additive interaction effect in the response model using DIFF

defined in (3.16), which measures the extent to which the effect of the two variables

together exceeds the effect of each considered individually.

DIFFy = (R, —Ry) —[(Ry —Ry) +(Ry, —Ry)l (3.16)
=R, -R,-R,p+R,
where R;, R,, R,;, and R,, are the response rates for the four cells formed by the

categories of the two random independent variables.

Under model (3.14), equation (3.16) can be expressed as

DIFFg = (g +a gy +Broty rao) — W+ gy + B ra)
~(Ug+a g +BrotV riz) T Ug +A g + Byt rir) (3.17)

=Yr2 VRt TV ri2 TV Ru
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The sufficient condition for DIFF; =0 iS ¥rp Vet —Vri2 T Vri1 =0. One special
situation is that when y, =0V i, j , we have DIFF, =0. The nearer that DIFF isto

zero, the lower is the effect of additive interaction.

To assess multiplicative interaction, we first define relative risks as in (3.18), (3.19), and

(3.20).
RR, =R, /R, (3.18)
RR, =Ry /R, (3.19)
RR, =R./R, (3.20)

Then we calculate cross product ratio of response rates, CPR, asin (3.21).

CPRy = RR,,/(RR, x RR,)
R,xR; (3.21)

Ry xR,

Under model (3.15), equation (3.21) can be expressed as

R, xRy
CPR,, =
R RixR,

g'rR%Re PBroY r22 g'rRt® rRiBRIY RU

(3.22)

é‘RWRz*'ﬂRl*V Rzleu R 1B R2Y R12

— é R2277 R217Y R12*7 R11
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The sufficient condition for CPRy; =1 iS ¥rp Vet~ Vri2 T V/r1 =0 . One specid
situation is that when y, =0Vi,j , we have CPR,=1, indicating that the
multiplicative interaction effect is zero; otherwise the multiplicative interaction effect is
non-zero. The farther that CPR; is from one, the stronger is the effect of multiplicative

interaction.

Here is a hypothetical example for the simulation setup. We are interested in a single
outcome variable, income. Both the outcome variable and the response propensities can
be fully explained by two dichotomous variables, education (high versus low) and age
(young versus old), and possibly an interaction term between education and age. In the

outcome variable and response rate models specified in (3.12) through (3.15),

a, = (a,,,ay,) and o, = (ag.0g,) indicate the main effects of education on income and
response rate respectively, B, = (B,,, By,) ad B = (Bry, Br,) indicate the main effects

of age on income and response rate respectively, Yy =y, ¥yi:¥vo1:Yv2) denotes the
additive interaction effect between education and age on income, and
Ve = ryr? rio ¥ ror ¥ ree) denotes the interaction effect (measured on either additive or

multiplicative scale) between education and age on response rate. The interaction effect
in the outcome variable model is assessed only on additive scale, so we have two
scenarios. Y_Main and Y_Additive Interaction. For the response model, 17 scenarios
are created with different combinations of DIFF,;, and CPR,, values because we are
interested in assessing the interaction term on both multiplicative scale and additive scale

(see detailsin Section 3.4).
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In poststratification, the weights are adjusted by four full-classification cells defined by
the combinations of education and age. In raking, the weighting adjustment is conducted
iteratively by using age and education as marginal controls until convergence is achieved.
In GREG_Main, the calibration estimator is afunction of the regression coefficient as the
result of modeling the outcome variable income by only the main effects of education and
age. Through the simulation study, we examine the performance of poststratification,
raking, and GREG_Main under the scenarios created by the different outcome variable
model and response model combinations. We evaluate the consistency between our
results and those in Little & Vartivarian (2005) and refine their conclusions. At the same
time, we attempt to expand Deville and Sarndal (1992) and shed light on the empirical
difference between the GREG estimators (i.e., GREG_Main and poststratification) and
the raking estimator (as an example of the general calibration estimator) in the presence

of nonresponse.

3.4 Simulation Scenarios and Steps

Several factors may affect the properties of and differences between the three calibration
estimators under evaluation, including: (1) the number of simulation samples; (2) the
overall sample size for the respondent sample and the distribution across the four
subpopulations; (3) the substantive and statistical significance of the additive interaction

effect in the outcome variable model; and (4) the strength of the multiplicative and

additive interaction effect in the response model, measured by CPR, and DIFF,
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respectively. In this section, we choose the simulation parameters so as to minimize the

factorsthat could cloud our comparison between the three calibration estimators:

First, we use 1,000 simulation samples to evauate the performance of the three
calibration estimators over repeated sampling. Due to the large number of simulation
iterations, it is unlikely that any observed differences between the estimators are due to

chance.

Second, we know that the necessary condition for the additive interaction effect in the

outcome variable model to be NoN-zero is 7y, —Vyxu —7vi2 +7vu #0. For Y_Main, we
set yy; =0Vi,j for smplicity. For Y_Additive Interaction, the strength of the
interaction effect can be controlled through the values for y;. Two criteria are followed

when choosing the parameters for the outcome variable models. First, the random error
terms in (3.12) and (3.13) should be very small such that the models have very strong
predictive power. Second, the interaction effect in the Y_Additive Interaction model
should be substantively and statistically significant. Under these criteria, severa sets of
parameters for the outcome variable models have been used for test runs. The results
associated with these different parameters lead to the same conclusions, so we choose to
present the results based on only one set of parameters for Y_Main in (3.12) and

Y _Additive_Interaction in (3.13), as shown below.

11, =1000

a, = (@, ay,)=(-200, 300)
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BY = (ﬂyp ﬂyz) = (_100' 150)
Yy = (Vyaas Vyvazs Vvars Vv2o) = (100, 300, 700, 1200)

& ~ N(0,900)

Using these parameters, finite populations with approximately 40,000 units are generated
for Y_Main and Y_Additive_Interaction, respectively. Then for each finite population, a
regression model of the outcome variable is fitted (on both the main effect variables and
the interaction term) to check the predictive power of the model as well as the strength of
the interaction term. Table 3.1 shows the cell means, the R-squared value of the
regression model, and the p-values for the interaction term for each finite population.
The R-sguared values are close to one for both Y_Main and Y_Additive Interaction,
indicating almost perfect prediction power of the outcome models. For Y_Main, the p-
value for the interaction term is close to one. For Y_Additive_Interaction, the p-value for

the interaction term is amost zero.

Table 3.1 Two Finite Populations Corresponding to Two Outcome Variable Models

oacomeVadle B () Bu(d  EuOm)  Eu(m) ool el
Model Term

Y_Main 700 950 1,200 1,450 0.9886 0.998

Y _Additive Interaction 800 1,250 1,900 2,650 0.9979 <0.0001

Third, for the response model, we create 17 scenarios with different combinations of

DIFF,, and CPR,, values, as shown in Table 3.2. Thisis achieved by manipulating the
four cell responserates (R, R,, R, R,). Models (3.14) and (3.15) are not used directly

to generate responses. However, given aset of R;, CPRy, and DIFF, can be computed
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to measure the strength of multiplicative interaction effect and the strength of additive
interaction effect respectively. These scenarios can be divided into five categories: (1)
full response (scenario SO1), which serves as the evaluation baseline; (2) neither
multiplicative nor additive interaction (scenario S02); (3) only additive interaction but no
multiplicative interaction (scenario SO03); (4) only multiplicative interaction but no
additive interaction (scenarios S04 through S11); and (5) both types of interaction
(scenarios S12 through S17). The direction and strength of the multiplicative interaction
also vary among scenarios $4 through S17. These combinations allow us to understand
whether and how these two different types of interaction effects in the response model

affect the performance of poststratification, raking, and GREG_Main.

For Scenario S02, to ensure both additive independency and multiplicative independency
for the response rates in a 2x2 table, the two conditions shown in (3.23) and (3.24) need

to be satisfied.

DIFFr=R;+R»-R,-R,; =0 (3.23)
R, xRy

CPRy=—=—%=1 3.24

% R, xR, (329

Putting (3.23) and (3.24) together, we have
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R+ R iR, 4R,

Ry
S Ry xR+ Ry xR, =R *R, + Ry * R,y
< Ri*R;-Ri*R, =R *R,, - R, xR, (3.25)

= Rll(Rll_ Riz) = F"21(F‘>11_ Riz)
N (Rn_ R21)(R11_ I:‘>12) =0
SRy =Ry 0r R, =R,

This means that the response rates should be independent of either the row variable or the
column variable. That is, the response model essentially contains only one covariate, not

two covariates.

Table 3.2 Scenarios for Response Models

Scenario

Category Number Ru Ri2 Rx1 Rz CPRrr | DIFFgr

Full Response S01 1.00 1.00 1.00 1.00 1.00 0.00

Neither Additive Interaction

Nor Multiplicative Interaction S02 0.45 0.45 0.30 0.30 1.00 0.00

Only Additive Interaction S03 041 | 010 | 095 | 0.24 1.00 -0.41

S04 0.12 0.48 0.02 0.38 475 0.00
S05 0.26 0.94 0.06 0.74 341 0.00
S06 0.28 0.92 0.08 0.72 2.74 0.00
S07 0.32 0.88 0.12 0.68 2.06 0.00
S08 0.40 0.80 0.20 0.60 1.50 0.00
S09 0.46 0.74 0.26 0.54 1.29 0.00
S10 0.54 0.66 0.34 0.46 111 0.00
S11 0.56 0.64 0.36 0.44 1.07 0.00

Only Multiplicative Interaction

S12 0.23 0.07 0.55 0.15 0.90 -0.24
S13 0.20 0.10 0.52 0.18 0.69 -0.24
. S14 0.15 0.15 0.47 0.23 0.49 -0.24
Both Types of Interaction
S15 0.09 0.21 0.41 0.29 0.30 -0.24
S16 0.04 0.26 0.36 0.34 0.15 -0.24
S17 0.02 0.58 0.66 0.74 0.04 -0.48

Finally, the respondent sample sizes by cell are determined by both the overall SRS

sample size n and the response model. For each outcome variable and response model
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combination, we vary the respondent sample sizes by using three alternative SRS sample
sizes: n=8,000, n=2,000, and n=200. This allows us to not only evauate the asymptotic
properties of the calibration estimators, but also see the impact of small cell counts on

poststratification in some scenarios.

In summary, the simulation study covers 102 scenarios formed by crossing two outcome
variable scenarios, 17 response model scenarios, and three aternative SRS sample sizes.
The following steps are used to evaluate the properties of the three calibration estimators

over repeated sampling.

Sep | Generate two finite populations corresponding to the outcome variable models
Y_Main and Y_Additive Interaction in Table 3.1, respectively. Each finite population
contains four subpopul ations defined by the categories of the two auxiliary variables. The

subpopulation sizes, N; , are determined through Poisson distribution with mean of

10,000. The overal size for each finite population is approximately 40,000, with
approximately equal number of cases in each of the four cells. These two finite

populations are used for repeated sampling in the steps that follow.

Sep I1: From each finite population, first select a simple random sample of size n, and
then select a subsample of respondents from the simple random sample using one of the
response models shown in Table 3.2. With the three dternative SRS sample sizes
(n=8,000, n=2,000, and n=200) and 17 response model scenarios, this step results in 51

respondent samples from each finite population for each simulation iteration.
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Sep I11: Conduct calibration on each respondent sample using poststratification, raking,
and GREG_Main, respectively. Obtain the estimates for the outcome variable associated

with the three calibration estimators.

Sep 1V: Repeat Steps I1 and 111 for 1,000 times. This results in 1,000 iterations for each

of the 102 simulation scenarios.

Sep V: For each of the 102 simulation scenarios, examine the empirical properties of
poststratification, raking, and GREG_Main over repeated sampling using the 1,000

simulation samples and the evaluation criteria described in Section 3.5.

The simulation results over repeated sampling are reported in Section 3.7. We then
conduct some sensitivity analysis in Section 3.8 by varying the predictive power of the

outcome variable model.

The simulation is conducted in R (Lumley, 2005; R Development Core Team, 2015)
because of its efficiency in handling matrix calculations and extensive capacity for
analyzing survey data. The programs devel oped for the simulation studies are provided in

Appendix B.
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3.5 Evauation Criteria

We examine the empirical properties of the calibration estimators using the repeated
sampling approach (i.e., averaging across the 1,000 simulation samples). The empirical
properties of the three calibration estimators under different outcome variable model,
response model, and SRS sample size combinations are compared using several measures.
The measures are described below in terms of totals. A similar set of measures can be

used to evaluate the properties of the estimatorsin terms of overall means.

1. Relativebias RelBias(f,,)=(1/9)Y." (,, ~t,)/,
where s indicates a particular sample, S isthe total number of samplesincluded. tis

the true population total, and fws is the estimate from sample s using one of the three

cdlibration estimators.

2. Empirical relative standard error

EmpReISE(fW,) = \/M/ty = \/(1/ S)Z;(fyws - Ep(tAyws))2 /[V

where E (f,,) =1/ 9)Y.° f,, . theaverage value of f, over repested sampling.

ErrpVar(fW) is the empirical variance across the S simulated samples, not the

average of the S estimated variances computed by the R software for all the simulated

samples.
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3. Reative square root of MSE
RelIRMSE(£,,,)
= JMSEG,,) /1,

- \/(1/ Y% (£, ~En(€) +((1/ 9Y " (,, —ty))z /ty

4. Coverage rate of the 95 percent confidence intervals

W)Y 1(|2]<2.,) wheea =005 and 2, = (£, -t,) /ver (£,.)

where var (fw) is the estimated variance for each simulated sample computed using

Z;

the “calibrate’ function in the R Survey package; | (D) is an indicator for whether

‘21. ‘ <z,,. The method essentialy estimates the variance of alinear substitute that

is equivalent to the product of the calibrated weight and a residual calculated from a
linear model of the outcome variable on a vector of auxiliary variables. For raking,

the residual is based on a main effect model with the covariates being indicators for

the raking categories of each dimension. We use var (fw,), the estimated variance

from each smulated sample (instead of ErrpVar(ny) , the empirical variance

estimated from all the simulated samples), to obtain the 95 percent confidence
interval because only one sample can be obtained for any survey in practice. The
l[imitation of this approach is that it relies on the accuracy of the variance estimation
method implemented in the “calibrate” function of the R Survey package. More

details about the impact of the variance estimation method is discussed in Chapter 5.
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5. Biasratio, calculated astheratio of Bias(f,,) and square root of EmpVar (f,,)

BiasRatio(f,,) = 1/ 9)Y " ({,, -t,) / \/(1/ S)I (e Ep(fyw))2
3.6 Expected Results from Simulation

We anticipate the results for the overal totals and those for the overall means to follow
the same pattern because the denominator of the estimator for the overall mean is
calibrated to the overall population count, which is a constant for any finite population.
The properties of the three calibration estimators are expected to depend on the outcome

variable model, response model, overall sample size, and existence of small cell counts.

3.6.1 Expected Impacts of Outcome Variable Model and Response Model

First of al, we anticipate the outcome variable model to be the primary driving factor for
determining the performance of the calibration estimators. When the outcome variable
model contains only the main effect terms (in the Y_Main scenarios), we expect the three
calibration estimators to perform similarly well regardiess of the form of the response
model. The response model matters only when the outcome variable model includes an
additive interaction term. In the Y_Additive_Interaction scenarios, the three calibration
estimators are expected to perform differently. Moreover, the response model is expected
to play an important role in the properties of the raking estimator and GREG_Main

estimator. Out of the three estimators of interest, we find the exact theory about
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GREG_Main difficult to develop. By definition, the GREG_Main estimator accounts for
only the main effects. Under the Y_Additive_Interaction outcome model, GREG_Main
is expected to be biased in all the response scenarios except SO1 (with full response) and
S02 (when the response model contains neither multiplicative interaction effect nor
additive interaction effect, and thus depends on a single covariate essentially, as shown in

(3.25)).

3.6.2 Theoretica Development about Poststratification

Poststratification accounts for the interaction term in the outcome variable model as
shown below. As long as al the respondent cell counts are reasonably large, the
poststratification estimator is expected to perform well regardless of the response model.

We can prove that the poststratification estimator is model-unbiased.

Assume the ssmulation population is a realization of the super population generated by

I C

(3.13). Let the population total of the outcome variable Y be t, =>" > >"y, . Thenthe

i=1 j=1keU;

expectation of t, with respect to the outcome variable model is
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I C

Ev(t,)=Ey(2 2 ¥

i=1 j=1 keU;

- Zz z Ev (Yi)
I:rl ]Zl kEUJ (3'26)
= ZZ Hy 0y + By + 7y
i=1 j=1keU;
- ZZ N;; (et +ory + By + ;)
i=1 j=1
Now define the following Horvitz-Thompson estimators
Nij = z dy (3.27)
kes;
N, =Y d.=> 5d, (3.28)
ker; kes;
f = 2 AV (3.29)
kes;
Ly = z dey, = Z5kdk Yk (3.30)
kerij keqj

where J, isthe responseindicator and d, isthe basic design weight for unit kin cell ij.

1 if
5. ={ if response

0 if nonresponse

d, =1r, , where 7, istheinclusion probability for unit kin cell ij.

The expectations of N and f.. with respect to the response models (3.14) and (3.15)

yrij

are

ER(Nrij) = z = (5kdk) = z dkER (5k) = z dkRj = R] Nij (3.31)

kes; kes; kes;
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and

Ex (fyrij) = Z Er (6 d V)= z d YkEr(6,) = z d Vi R = ijys'j (3.32

kes; kes; kes;

The poststratification estimator in (3.2) can be expressed as

2085,

£ 2y N — ST (3.33)
e gé ]Zkequskdk i=l j=1 Nrij "

Then using linear approximation, we can obtain

R r ¢ r ¢ N. .
Eq (typs) = ” ZZ"_”tys'j (3:34)
i=1 =1 , i=1 j= Nij
and

E.E (typs)

~E, (Z}Z} ”tysl)
i=1 ]

NZZ U E (tysu)

i=1l j= l
= Z A” Zd Ev (Vi)

i=1 j=1 N.] kes;

d Zd (uy tay, +ﬁv +7Y,)
N” keﬁI

~ Nij (uy tay, +ﬂv, +7Yij)

-

=Ey ty) (3.35)
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So the poststratification estimator f is model-unbiased under the outcome models and

response models specified in (3.12) through (3.15).

3.6.3 Theoretica Development about Raking

Implications of Raking Maintaining Multiplicative Interaction Effect

Although raking does not explicitly account for the interaction term in the outcome
variable model, the iterative proportiona fitting algorithm forces the weights to conform
to the margina totals without perturbing the associations in the unadjusted table
(Haberman 1979). To understand the implications of this in the setting of a 2x 2 table,

we define severa cross product ratios of unweighted and weighted cell counts, including
CPR,,, for the population cell counts, CPR for the weighted sample cell counts using
the basic design weights, CPR for the weighted respondent cell counts using the basic
design weights, and CPR, for the weighted respondent cell counts using the calibrated

weights from raking, poststratification, or GREG_Main.

N, N
CPR, =—1 -2 (3.36)
N12N21
N, %2
CPR, =il 22 - ks kewy (3.37)
N12N21 Z dk Z dk
kesy, kesy
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> d > dy

N N ker, ker.

CPR =iz _ ke 2 (3.38
erer21 kz: dka: dk
Qs &2

CPRN — r11 r22 _ kEI’ll kEI’ZZ (3'39)

NSNS D W D W,

ker, kery,

where Nr"”V denotes the estimated population count in cell ij using the calibrated weights

from raking, poststratification, or GREG_Main, and W, is the calibrated weight for unit k

incel ij.

First, the proportional fitting process for raking makes the weights conform to the row
control totals during each row iteration and conform to the column control totals during
each column iteration. Let fim denote the weighting adjustment factor for the ith row
during the mth row iteration and fj» denote the weighting adjustment factor for the jth
column during the nth column iteration. It is important to note that fim and fin are
independent of each other. Assume that when raking converges, the total number of row
iterations is M and the total number of column iterations is N. Usualy M =N=+1in

practice. Then the overall weighting adjustment factor for unit k in cell ij, shown as

F(u +v,) in(3.5), can be calculated as

M N
F=T]fu]]fn i=12i=12 (3.40)
m=1 n=1

We can re-write (3.39) as
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(Fu D d)(Fz 2 d)

CP — ken, ker,,
TR Y d)(Fa Y 6
ker, kery,
M N M N
(T fl T f 20 AT fam] T f2n 2 )
m=1 n=1 ker, m=1 =1

kery,
- = (3.41)

= N N
(T fund T Fon 22 AT Faml T fin 22 )
m=1 n=1 ker, m=1 n=1 kery
PILDICH

_ keny kery,

2424,

ker, kery,

From (3.38) and (3.41), it is easy to see that, for raking,

CPR, = CPR (3.42)

That is, the cross product ratio of the weighted respondent cell counts before raking
(using the basic design weights) is the same as that after raking (using the raked weights).
Brick, Montaguila, and Roth (2003) aso provide a numerica example showing that

raking retains the cross product ratio of the observed case counts.

Second, in the SRS setting where d, = N/n, if N; = ER(nrij ) =n;R;, then (3.38) can be

re-expressed as
> 54> 5.d
PR - m Ml (WRI(WRY) _cppLcpr (343)
Z5kdk Z5kdk nrlznr21 (nlzRiz)(nle21)
kes, kesy

where CPR.; isthe cross product ratio of the response rates, as defined in (3.21).
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Third, we know that CPR, converges to CPR_ as the cell sample sizes

n,,N,,N,, N, —>co. From (3.42) and (3.43), it is easy to see that, for raking, CPRy

approaches the product of CPRyop and CPRgr as the cell sample sizes become large.

Finally, in the specia situation where there is no multiplicative interaction term in the

response model (as in the response scenario S03), CPR, =1. So for raking, CPR,
approaches CPR,, as Nn,,N,,N,,N, > . Tha is, raking maintains the internal

interaction effect in the population cell counts. Therefore we expect the raking estimator

to perform amost as well as poststretification when CPR,, =1. At the same time, the

relative bias of raking is expected to increase as the multiplicative interaction term in the

response model becomes stronger and CPRrr becomes farther away from 1.

A Sufficient Condition in Weighting Adjustment for Raking to Be Unbiased

In the SRS setting, the Y-model expectation of the raking estimator is

EM (tyrk)
2 2 Nyjj
- ZZW.J- z Ew (yijk)
i=1 j=L k=1
2 2 rij
= ZZ\NU Ev (y +ay + By +7 v +Evix) (3.44)
-1 j=L k=1
2 2 Nyjj
= zzvvij (uy +ay +By +7v)
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The Y-model expectation of the population total is

()=

Vi = ZZ N; (y +ry + By +7y;) (3.45)
j

Therefore the Y-model bias of the raking estimator is

( ) ZZ( i )(HY +ay + Py +7\nj) (3.46)

In a general dituation, y,, #0. A sufficient (but not necessary) condition for

E, (£, —t,)=0's N% =N, . Thisis true regardiess of whether the outcome variable

model contains the interaction effect.

1 if response

_ . The base-
0 if nonresponse

The response indicator for a unit k in cél ij is i :{

weighted estimate of the number of unitsin cell ij based on the respondents in the cell is

Nrij

d;, - The expectation of Nrij over the response model is

k=1

- 0 0 ~
Eq ( Nrij |Si,- ) =Ex zaijkdijk = Z dijk Rj = Rj Nij (3.47)
k=1 k=1

where R; isthe response probability for al the unitsin cell ij.

Also, from (3.40), we know NrIl Fi Nrij , S0 the expectation over repeated sampling

distribution (E,) and response distribution ( Eg) is
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E-Ex (N

S ) = EPER(Fij Nrij

$)=E(RRN,)-RE(RR,)=FRN, G4

The derivation above treats F; as fixed, which is loose since the weighting adjustment

actually varies from sample to sample. This is probably acceptable if we think of F; as

the converged value for agiven initial sample, i.e., across the response distribution.

The compound bias (i.e., over repeated sampling, outcome variable, and response
distributions) for raking is
E.E:E, (f,, - t,)

= EPERij(Nm =Ny ) (1 + ey + By + 7)) (3.49)
i

= ii(ﬁ, R;N; —N; )(/JY +ay + By, "'?’\nj)
i

If F; = Rj‘l (i.e., the raking adjustment factor in cell ij is the inverse of the cell response

probability), then fyrk is unbiased across al three distributions. In this situation, raking
achieves what poststratification does. Note that this is the sufficient condition, but not

necessary condition, for E,E-E,, (f,, —t,, )=0.
3.6.4 Expected Impacts of Sample Sizes

We expect the sample sizes to have two effects on the performance of the estimators.
First, for a biased and inconsistent estimator, we suspect that purely increasing the

sample size (without improving the calibration model) does not necessarily improve the
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effective coverage rate of the confidence interval. Although the variance tends to
decrease as the sample size increases, the relative bias does not change with the sample
size. Thus, the confidence interval tends to become narrower as the sample size becomes
larger and the variance becomes smaller. As aresult, the coverage rate of the 95 percent
confidence intervals for a biased estimator is expected to become worse as the sample

Size increases.

Second, assuming that both estimators are unbiased, one advantage of raking over
poststratification is that when the marginal counts are large but some cell counts (formed
by crossing the categories of the auxiliary variables) are small, raking may be more stable
than poststratification. We include some simulation scenarios to test this hypothesis. For
example, in the response scenarios S04 and S17 under the Y_Main model, the marginal
response rates are high enough but the smallest cell-level response rates are only 2
percent. In these scenarios, particularly with SRS n=200, we expect the empirical

relative standard errors for raking to be smaller than those for poststratification.

3.7 Simulation Results

In this section we examine the empirical properties of poststratification, raking, and
GREG_Main over repeated sampling. As expected, the results for the overal totals are
almost exactly the same as those for the overal means; any differences are negligible and
only due to rounding. Therefore we only show the properties of the estimators for the

totals in the discussions below.
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Tables 3.3 and Table 3.4 show the relative bias, empirical relative standard error, relative
sguare root of MSE, bias ratio, and coverage rate of the 95 percent confidence intervals
for the three estimators under the outcome variable models Y_Main and
Y _Additive_Interaction respectively. In addition, the average respondent sample sizes
by cell and average cross product ratios for various unweighted and weighted cell counts
are also presented in the tables because the information helps explain the results. For
each outcome variable scenario, three sets of results are presented for SRS sizes n=8,000,
n=2,000, and n=200, respectively. Although the results corresponding to full response (in
scenario SO1) are not our focus, they serve as the evauation baselines, and are thus

included in the tables.

3.7.1 Impact of Outcome Variable Modedl and Response Model on Bias

The relative bias is not only an important evaluation measure itself, but also a factor
affecting the bias ratio and coverage rate of the 95 percent confidence intervals, which
are discussed in Section 3.7.3 in greater detail. Among all the ssimulation scenarios in
Tables 3.3 and 3.4, none of the three estimators is associated with unacceptably high
relative bias. The biggest relative bias is only approximately 4 percent — It occurs for
GREG _Main (with SRS n=8,000 and n=2,000) when the outcome variable model
contains a substantively and statistically significant additive interaction term
(Y_Additive Interaction) and the response model contains a strong interaction term

(scenario S17 with DIFF,, =-0.48 and CPR,, =0.04). Overal, the three estimators
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can all achieve significant bias reduction through accounting for at least the main effects

of the auxiliary variables.

At the same time, the data confirms our expectation that the performances of the
estimators are affected by the outcome variable model and response model. It is clear
that the outcome variable model is the primary driving factor for determining whether
there are any substantial differences between the relative biases of the estimators. In
Table 3.3 (for the Y_Main model), poststratification does not reduce the nonresponse bias
further than raking or GREG_Main, and this is true regardless of the response model.
The three calibration estimators yield very similar relative biases in al the response
scenarios including those with strong interaction term, and any noticeable differences
between them (such as in S17) can be attributed to random error, which is discussed in
Section 3.7.2 in greater detail. The key to understanding this data pattern is that if an
auxiliary variable is correlated only to nonresponse but uncorrelated to the outcome
variable, then the differential response related to the auxiliary variable does not cause any
nonresponse bias. For example, in a hypothetical survey targeting both males and
females, if the outcome variable depends only on age, then differential response rates by
gender do not make the overal estimate biased, as long as the distribution of age is
independent of gender. In our simulation setting, although the interaction effect is
present in some response models, it does not affect the outcome variable, and thus does
not introduce any nonresponse bias in addition to the nonresponse bias that has already
been caused by the main effects. Since no bias has been caused by the interaction effect

in thefirst place, it does not help to include the interaction term in the calibration process.
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Thisiswhy raking and GREG_Main perform almost as well as poststratification in terms

of relative biasin al the Y_Main scenarios regardless of the response model.

In contrast, an interaction term in the response model plays an important role in the
performance of a calibration estimator conditioning on the fact that the interaction effect
is present in the outcome variable model. Figure 3.1 shows the absolute values of the
relative biases for poststratification, raking, and GREG_Main in the various response
scenarios when the outcome model is Y _Additive_Interaction and the SRS sample sizeis
8,000. Using the absolute values allow us to better understand the relationship between
the magnitude of relative bias and the strength of the interaction term in the response

model. We can see three patterns from Table 3.4 and Figure 3.1.

First, the response scenarios SO1 and SO2 are two specia situations. SO1 is for full
response. S02 occurs only when the response rates are independent of either the row
variable or the column variable, which means that the response rates are essentialy
driven by a single variable. Not surprisingly, the three estimators perform similarly well

in SO1 and S02.

Second, the response scenarios S03 (with CPR., =1 and DIFF.; = -0.41) and S04 (with
CPRy, =4.75 and DIFF.; =0) form an interesting pair of contrasts because the former

contains only additive interaction term and the latter contains only multiplicative
interaction term. For example, in the scenario SO03 with n=2,000, the magnitude of the

relative bias for poststratification (0.002 percent) and that for raking (0.043 percent) are
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comparable, while the magnitude for GREG_Main (1.17 percent) is substantially higher.
In the scenario S04 with n=2,000, the response model contains a strong multiplicative
interaction term, and neither GREG_Main nor raking can match the performance of
poststratification. The absolute values of the relative biases for raking and GREG_Main
are approximately 126 times and 215 times, respectively, as large as that for
poststratification. These results are consistent with our anticipation that under the
outcome variable model Y_Additive Interaction, the performance of raking is affected
by the multiplicative interaction effect rather than the additive interaction effect in the
response model, yet GREG_Main is biased if there is either type of interaction effect in

the response mode!.

Third, the results for the response scenarios S05 through S17 confirm our expectation that
the biasedness of raking is associated with the strength of the multiplicative interaction
term in the response model (measured by how far off CPRrr isfrom 1). For example, in
the Y_Additive_Interaction and n=8,000 scenario, the absolute value of the relative bias
for raking increases from 0.06 percent to 1.71 percent as CPRrr increases from 1.07 to
4.75, and increases from 0.04 percent to 3.09 percent as CPRrr decreases from 0.90 to
0.04. In the response scenarios S11 and S12 with relatively weak multiplicative
interaction term, raking may be considered an acceptable estimator in terms of relative
bias and coverage rate of the 95 percent confidence intervals (92 percent in S11 and 100
percent in S12), but its performance becomes worse as CPRrr moves farther away from 1.
The performance of GREG_Main for response scenarios S05 through S17 follows a

similar pattern except that it is generally more biased than raking.
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Figure 3.1 Absolute Values of Relative Biases for Poststratification, Raking, and GREG_Main for
Outcome Model Y_Additive_Interaction, n=8,000, and Various Response Scenarios

Although the benchmark controls for raking are marginal totals instead of cell counts as
in poststratification, raking performs amost as well as poststratification in the response
scenario SO03 (with CPR., =1). The simulation results confirm our theoretical derivation
about raking under Y _Additive Interaction as discussed in Section 3.6.1. For example,
in the Y_Additive Interaction, n=8,000, and SO3 scenario, the average cross product
ratios of the cell counts for the population, respondent sample, poststratification, and
raking are 099, 1.02, 0.99, and 1.02 respectively. For poststratification,

CPR, =CPR,, =0.99. The poststratification process forces the weighted cell counts to

strictly align with the population cell counts and thus reduces nonresponse bias most

effectively. For raking, CPR, =CPR =1.020 CPR,, . The difference between raking
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and poststratification is caused by the random errors in the two-phase sampling process

for selecting respondents, which is reflected in the difference between CPR , and CPR .

This explains why raking performs amost as well (but not quite as well) as

poststratification.

In theory, the cross product ratios of the unweighted and weighted cell counts for a given
response scenario are independent of the outcome variable model, and the data in Tables
3.3 and 3.4 confirms this. Raking achieves bias reduction by forcing the weights to
conform to the marginal totals while maintaining the association in the cell counts of the
respondent sample. In contrast, GREG_Main fits a linear regresson model for the
outcome variable by accounting for only the main effects and excluding the interaction
term. When the outcome model contains an interaction term, as in
Y _Additive_Interaction, GREG_Main generally performs worse than raking. Raking and
GREG_Main both include only main effects in their calibration equations, but are
associated with different distance functions or function forms. The comparison between
raking and GREG_Main shows that the form of distance function or function form

matters much in some situations.

3.7.2 Impact of Outcome Variable Model and Small Cell Countson
Empirical Relative Standard Error

Figure 3.2 shows the empirical relative standard errors of the three estimators for various
response scenarios with n=8,000. The top panel (a) is for the outcome variable model

Y _Main and bottom panel (b) is for the outcome variable model Y_Additive_Interaction.
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Before the simulation, we suspect that when the outcome variable model contains only
main effects, using poststratification may increase the variance without reducing the bias
further than raking and GREG_Main. Thisis confirmed by the simulation results shown
in Table 3.3 and Figure 3.2(a). Under the Y_Main model, although the empirical relative
standard errors for the three estimators in each response scenario are generaly
comparable, poststratification has a larger empirical relative standard error than raking
and GREG_Main in the scenarios with small cell counts. For example, in the response
scenario S17, the respondent sample size in one of the four cells is significantly smaller
than those in the other three. The empirical relative standard errors for poststratification
are significantly larger than those for raking and GREG_Main for all the SRS sample
sizes (n=8,000, n=2,000, and n=200). This means the point estimate for poststratification
is significantly less stable than those for raking and GREG_Main, which makes the
coverage rate of the 95 percent confidence intervals significantly worse for
poststratification (e.g., 88 percent for n=2,000 and 77 percent for n=200) . The results
regarding Y_Main demonstrates that in the calibration process, including the interaction
terms correlated only to the response propensity (but not to the outcome variable) can
increase the variance without reducing the bias. One important implication is that when
choosing the appropriate calibration estimator, survey practitioners should first focus on
the outcome variable model, not the response model. We understand that in practice,
survey practitioners not only need to create a single set of weights for a pool of outcome
variables, but also often lack knowledge of the distribution of the outcome variables.

This is probably why practitioners tend to model response and use that as the guidance
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for choosing calibration covariates. However, clarifying the theoretical understanding is

still critical for usto inform the selection of calibration variablesin real-world surveys.

Table 3.4 shows that under the Y_Additive Interaction outcome model, the empirical
relative standard error for poststratification is noticeably smaller than those for raking and
GREG_Main in al the response scenarios except S17 (where the small cell count makes
poststratification unstable). This is true even for SRS n=200, under which we see some
very small cell counts such as those in S04 and S16. Compared to raking and
GREG_Main, the poststratification estimator is a better predictor of the outcome variable,
and therefore is more stable as long as all the cell counts are large enough. At the same
time, even for the response scenario S17, the empirical relative standard error for
poststratification is no higher than those for raking and GREG_Main. Moreover, for the
response scenarios S01, S02, and S03, although the three estimators perform similarly
well in terms of bias reduction, poststratification outperforms the other two estimatorsin
terms of variance reduction. All this shows that when the outcome model has very high
explanatory power and the interaction term in the model is substantively and statistically
significant, poststratification almost always outperforms raking and GREG_Main in
terms of both bias reduction and variance reduction. Even in some situations with very
small cell counts (e.g., the response scenario S17), using poststratification (when it is the
most appropriate estimator based on the outcome model) does not necessarily lead to
higher variance. In all the response scenarios including S17, the relative square root of

MSE for poststratification is smaller than those for raking and GREG_Main.

88



Finally, although GREG_Main and raking are asymptotically equivalent when thereis no
nonresponse, Figure 3.2(b) illustrates that under Y_Additive Interaction, raking has a
consistently smaller empirica relative standard error than GREG_Main. In contrast,
Figure 3.2(a) shows that the empirical relative standard errors for raking and
GREG Man under Y_Main are approximately equal. This means that when
nonresponse exists, whether GREG _Main and raking become indistinguishable is

affected by the underlying outcome variable model.
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and Various Response Scenarios
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3.7.3 Impact of Overall and Cell Sample Sizes on Bias Ratio and the
Coverage Rate of 95 Percent Confidence Intervals

As discussed in Section 3.7.1, despite the differences between the three calibration
estimators under the Y_Additive Interaction model, these estimators can all achieve
effective bias reduction through accounting for at least the main effects of the auxiliary
variables. In Table 3.4, the relative biases are no more than approximately 4 percent even
for the estimators that fail to appropriately account for the interaction term in the outcome
variable model. Then the question is. Should survey practitioners be concerned about

such small relative biases in raking and GREG_Main?

To answer this question, we should note that the coverage rate of the 95 percent
confidence intervals can be poor even when the relative bias is small. In Table 3.4, for
the SRS sample sizes n=8,000 and n=2,000, the coverage rates of the 95 percent
confidence intervals for GREG_Main and raking are unacceptable in most of the
response scenarios from S04 through S17. For example, the relative biases for raking and
GREG_Main for n=8,000 and S10 are only approximately 1.0 percent and 2.3 percent
respectively, but the coverage rates of the 95 percent confidence intervals are as low as

77 percent and 16 percent respectively.

Moreover, the coverage rate of the 95 percent confidence intervals becomes worse as the
SRS sample size increases from 2,000 to 8,000. For example, in the response scenario
S13, the coverage rates of the 95 percent confidence intervals for poststratification,

GREG_Main, and raking are 95 percent, 86 percent, and 85 percent respectively for
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n=2,000, but drop to 93 percent, 39 percent, and 27 percent respectively for n=8,000.
When the SRS sample size drops to 200, we can see two opposite patterns depending on
whether the calibration weighting involves some small subgroup counts. For
poststratification, the coverage rates of the 95 percent confidence intervals for n=200 are
generally worse than those for n=8,000 and n=2,000 because the estimator becomes
unstable under n=200 due to some very small cell counts. For raking and GREG_Main,
however, the coverage rates of the 95 percent confidence intervals for n=200 are
noticeably better than those for n=8,000 and n=2,000 due to the larger variances under

n=200 (which make the confidence intervals wider).

Figures 3.3 and 3.4 present the absolute values of bias ratios and the coverage rates of the
95 percent confidence intervals of the three estimators for the various response scenarios
under the Y_Additive Interaction model. The three panels (a), (b), and (c) correspond to
n=8,000, n=2,000, and n=200, respectively. For raking and GREG_Main, the bias ratios
increase as the SRS sample size increases (from 200 to 2,000, and then to 8,000), and this
generally hurt the coverage rates of the 95 percent confidence intervals. On the other
hand, increasing the overall sample size from 200 to 2,000 helps eliminate the small cell
problem for poststratification to some extent. Given that the poststratification estimator
is unbiased, eliminating the small cells during calibration weighting makes the estimate
more stable, so the confidence interval is more likely to be centered at the population
truth. Thisis why for the poststratification estimator, the coverage rate of the 95 percent

confidence intervals for n=2,000 is better that for n=200. For example, for the response
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scenario S17, the coverage rates of the 95 percent confidence intervals for

poststratification are 78 percent for n=200 and 89 percent for n=2,000, respectively.

How can the coverage rate of the 95 percent confidence intervals be unacceptably poor
even when the relative bias is very low? Why may increasing sample size hurt the
coverage rate of the 95 percent confidence intervals? The answer lies in the asymptotic

property of the biasratio. We can re-write the t-statistic into the summation of two terms

t-statistic = b =t b~ BB ) + EEn(ty) -t

JVa(,) B JVa(,) Jva(,)

(3.50)

The first term on the right-hand side of (3.50) is asymptotically N(O, 1) under standard
conditions. The second term is the standardized bias or bias ratio. As the sample size
increases, the denominator of the second term decreases. However, if the calibration
estimator is model-biased as in the situation of GREG _Main and raking under
Y _Additive_Interaction, the numerator in the second term of (3.50) stays constant instead
of decreasing with the increase of sample size. As aresult, a larger sample size makes
the bias ratio higher, and thus leads to the t-statistic not being centered at zero. This hurts
the coverage rate of the 95 percent confidence intervals. An important message to survey
practitioners is that unless the calibration weighting process can be improved by
incorporating more meaningful covariates, purely increasing the sample size does not
help improve the performance of a calibration estimator that is model-biased. When the

sample size is large, the coverage rate of the 95 confidence intervals for a biased
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estimator can be unacceptably poor even when the relative bias is very small. However,
this does not mean that we are advocating for small sample sizes in surveys. In practice,
a bigger sample size alows for richer calibration models (e.g., with more variables, more
categories for categorical variables, and more interaction terms), and thus more potential

to reduce bias in practice.
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Figure 3.3 Bias Ratios for Poststratification, Raking, and GREG_Main under Y_Additive_Interaction and Various Response Scenarios
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Table 3.3 Properties of Poststratification, Raking, and GREG_Main under Y_Main Outcome Variable Model

True Total Relative Bias Empirical Relative Relative Square Root of Bias Ratio Average Cross Product Retios of
Standard Error MSE Coverage Rate of 95% | Average Respondent Sample Urweighted or Weighted
t,x107  RelBias(f,,)x10° | EmpREISE(f,)x10" | RIRMSE(f,,)x10 BiasRatio(f,,)x10% | Confidenceinends Szesby Cel Cell Courts

Outcome Variable Model: Y_Main 5

c S c 8 S S S 8 <

s & s g & 3 g 3 g 3 g 3 5§ 5 s 2

S F g e 3 0F g e ¥og e §o¢ g @ g ¢ TE2 5 o =

s 2 & F = B & 3 B & 3 B & F £ & F " " " | BE5 B 5 B
SRS Sample Size n=8,000
S01. DIFF rr=0.00, CPRrr=1.00 4.28 5.6 11 11 1.1 26.2 2.7 2.7 2.7 22 22 2.2 3.9 3.9 39 0.95 0.95 0.95( 2018 2006 2008 1,968 0.99 0.99 099 099 0.99
S02. DIFF rz=0.00, CPRrz=1.00 428 -64746.0 5.1 5.3 54 485 48 48 48 38 38 3.8 109 114 115 095 095 095 93 875 50 589 09 103 099 103 103
S03. DIFF gr=-0.41, CPRgz=1.00 428 -565293 82 -04 -79 537 59 57 59 47 45 47 -139 07  -134 095 095 095 818 19 1909 469 09 103 099 28 103
S04. DIFF rr=0.00, CPRrr=4.75 4.28| -74513.6 15.6 7.7 11.0 46.6 11.2 8.6 9.1 9.0 7.0 7.4 15.7 9.3 13.1] 0.93 0.94 0.94 244 940 40 741 0.99 4.87 099 2378 4.87
05. DIFF rr=0.00, CPRrr=3.41 4.28| -48537.4 -11.8 -28.6 -20.9 55.1 6.9 57 6.0 55 51 5.0 -17.2 -50.6 -35.2 0.94 0.92 0.93 519 1894 123 1453 0.99 3.26 099 1112 3.26
S06. DIFF rz=0.00, CPRr==2.74 428 -486739 -260 -280 2700 567 61 53 55 53 48 49 426 520  -485 092 092 092 559 187 163 1416 099 262 099 718 262
S07. DIFF rz=0.00, CPRr==2.06 428 -4%0792 -296 -241 -268 536 53 50 51 49 45 46| -3 -487 533 091 093 092 639 1774 240 1345 099 203 099 421 203
S08. DIFF rr=0.00, CPRrr=1.50 4.28| -49882.8 -21.1  -188 -19.9 535 4.5 4.3 4.4 4.0 38 3.9 -46.6 -42.4 -44.8 0.93 0.94 0.94 801 1624 393 1190 0.99 1.50 099 229 1.50
09. DIFF rr=0.00, CPRrr=1.29 4.28| -50524.2 -5.9 -5.7 -5.8 51.2 4.1 4.1 4.1 33 33 3.3 -13.9 -13.6 -13.7 0.96 0.95 0.96 921 1508 513 1070 0.99 1.28 0.99 167 1.28
S10. DIFF gr=0.00, CPRrz=1.11 428 -515305 -36 -29 -33 502 41 41 41 33 33 3.3 -8.9 72 -8.1 095 095 095 109% 1353 673 8% 099 108 099 121 108
S11. DIFF rr=0.00, CPRrr=1.07 4.28| -51667.1 -6.5 -6.0 -6.3 484 4.0 4.0 4.0 32 32 3.2 -16.1 -14.8 -15.6 0.95 0.96 0.95 1138 1316 713 860 0.99 1.04 0.99 113 104
S12. DIFF rr=-0.24, CPRrr=0.90 4.28| -74290.7 04 -5.4 0.6 46.6 7.6 7.4 7.6 6.1 6.0 6.1] 04 -7.5 0.7 0.95 0.95 0.95 463 128 1114 292 0.99 0.95 099 246 0.95
S13. DIFF gr=-0.24, CPRgz=0.69 428 -738162 -153 -161 -146] 470 67 67 67 53 54 54 -28 242  -2L§ 094 093 094 402 194 1053 357 099 071 099 135 071
Sl4. DIFF gr=-0.24, CPRgz=0.49 428 -735329 -37.6 -395 409 480 61 61 61 58 58 59 -59.7 -630  -651] 092 090 090 301 288 936 458 099 051 099 068 051
S15. DIFF rr=-0.24, CPRgr=0.30 4.28| -72932.5 -16.4  -22.6 -21.8 47.8 6.6 6.3 6.3 54 53 5.3 -24.9 -36.3 -34.9 0.94 0.92 0.93 188 402 816 572 0.99 0.33 099 027 0.33
S16. DIFF rr=-0.24, CPRrr=0.15 4.28| -72729.5 -688 -54.5 -58.5 49.6 8.6 6.9 7.0 9.0 7.1 7.4 -8L.5 -82.2 -85.8 0.87 0.87 0.86 80 496 714 660 0.99 0.15 099 0.06 0.15
S17. DIFF gr=-0.48, CPRrz=0.04 428 43221  -92.3 08 -21.8| 564 108 49 55 116 39 471  -8.2 17  -401 084 095 093 4 119 1336 1455 09 004 099 000 004
SRS Sample Size n=2,000
01. DIFF rr=0.00, CPRrr=1.00 4.28 0.0 -0.9 -0.9 -0.9 58.6 6.0 6.0 6.0 4.8 4.8 4.8 -1.5 -1.5 -1.5 0.95 0.95 0.95 504 502 502 492 0.99 0.99 099 099 0.99
S02. DIFF rz=0.00, CPRr==1.00 428 -647095 109 111 111 1025 97 97 97 78 78 7.8 107 108 108 09 09 096 225 220 147 147 09 103 099 104 103
S03. DIFF gr=-0.41, CPRrz=1.00 428 -se5281 -101  -15  -95 1123 127 121 126 103 98 10.2 -7.8 -11 73 095 09 095 204 49 478 117 09 104 099 29 104
S04. DIFF rr=0.00, CPRrr=4.75 4.28| -74531.9 9.4 12.6 119 1023 26.4 186  20.2 209 14.9 16.3] 9.3 6.5 7.5 0.91 0.95 0.94 62 234 10 185 0.99 5.44 099 3329 5.44
05. DIFF rr=0.00, CPRrr=3.41 4.28| -48461.3 -7.0 -20.1 -139] 1173 15.6 124 133 12.4 10.2 10.6] -4.2 -16.5 -10.9 0.93 0.95 0.94 130 473 31 364 0.99 3.35 099 11.90 3.35
S06. DIFF rz=0.00, CPRrz=2.74 428 -487002 -287 -265 -27.7| 1210 135 117 122 108 95 98 -21.3 -25 -22§ 093 093 093 140 462 40 35 099 272 09 771 272
S07. DIFF rr=0.00, CPRrr=2.06 4.28| -49014.6 =279 223 -25.0 1182 11.4 108 109 9.4 8.8 9.0 -24.3 -20.6 -22.8 0.94 0.94 0.95 160 444 60 336 0.99 2.06 099 437 2.06
08. DIFF rr=0.00, CPRrr=1.50 4,28 -49816.3 -246  -21.9 -231 1217 9.8 95 9.5 8.0 7.7 7.9 -24.9 -22.7 -23.8 0.94 0.94 0.94 201 406 99 298 0.99 151 099 233 151
S09. DIFF rz=0.00, CPRrz=1.29 428 54842 62 61 62 1159 95 94 94 76 75 75 -6.7 -6.6 -6.7 094 094 094 230 376 128 269 099 129 099 170 129
S10. DIFF rz=0.00, CPRrz=1.11 428 -514931 -14 -07 -11] 1086 89 89 89 71 71 7.1 -17 -0.9 -13 095 094 094 274 BT 169 225 099 109 099 122 109
S11. DIFF rr=0.00, CPRrr=1.07 4.28| -51694.3 -3.6 -2.8 -33] 1112 8.7 8.7 8.7 6.9 6.9 6.9 -4.0 -3.1 -3.7 0.95 0.95 0.95 284 329 178 214 0.99 1.05 0.99 113 1.05
S12. DIFF rr=-0.24, CPRrr=0.90 4.28| -74290.5 -1.3 -2.5 -0.7] 1013 16.8 16.2 16.8 13.3 12.8 13.2] -0.9 -1.7 -0.6 0.95 0.95 0.95 116 3?2 279 73 0.99 0.98 099 263 0.98
S13. DIFF gr=-0.24, CPRgz=0.69 428 -737829 -186 -186 -17.8| 1035 147 147 148 119 119 19| -126 -127  -120 094 094 094 100 8 264 ) 099 072 099 141 072
S14. DIFF rr=-0.24, CPRrr=0.49 4.28| -73554.5 -40.6 -42.4 -43.7) 1044 13.8 138 138 11.5 11.5 11.5 -29.6 -31.0 -31.9 0.95 0.94 0.94 75 72 234 114 0.99 0.52 099 0.69 0.52
S15. DIFF rr=-0.24, CPRrr=0.30 4.28| -72960.3 -189  -237 -23.0 1101 14.8 138 139 12.0 11.3 11.3 -13.8 -17.9 -17.4] 0.94 0.95 0.95 47 100 204 142 0.99 0.33 099 0.28 0.33
S16. DIFF rr=-0.24, CPRgz=0.15 428 -72620.7 -624 -503 -538| 1089 192 147 152 158 123 128 -353 -348 -364 091 093 093 20 125 179 166 099 015 09 006 015
S17. DIFF gr=-0.48, CPRrz=0.04 428 -432493  -910 89 -151| 1265 239 106 117 201 86 94 -441 83 -122 088 095 095 10 299 333 363 09 004 099 000 004
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Table 3.3 Properties of Poststratification, Raking, and GREG_Main under Y_Main Outcome Variable Model (Continued)

True Total Relative Bias Ens"lpirical Relative Relative Square Root of Bias Ratio Average Cross Product Ratios of
andard Error MSE Coverage Rete of 95% | Average Respondent Sample Unweighted or Weighted
t,x107 | RelBias(f,,)*10° EmpReISE(f,,) x10° |ReRMSE(f,,) x10*| BiasRatio(f,,)x10% | Confidenceintendls Sizes by Cell Cell Counts

Outcome V ariable Model: Y_Main C C C C c S

s "% = 5 % = "% < % < "% < c E g 3

i = 8 kS = 8 = g = 8 = 8 s 3 5 =

S s E' =) S B E' =) s E' =) B E' =) s E' =) B -g 2 g (DI 2

i 7 Q £ 3 7 9 £ 509 £ 7 Q £ 7 Q = 2 g g Z o %

s & 5 Bl = & & B & & g 2 8 F B B F[ ™ " o onm| By 3 5 B
SRS Sample Size n=200
01. DIFF rr=0.00, CPRgr=1.00 4.28] -102.8 -1.1 -14 -14( 1919 19.6 19.6 19.6 15.6 15.6 15.6 -0.7 -0.9 -0.8 0.95 0.95 0.95] 51 50 50 49 0.9 104 0.99 1.04 1.04
02. DIFF rr=0.00, CPRgr=1.00 428 -64820.9 55 6.3 58 349.0 3.3 331 332 26.7 26.6 26.6 18 20 1.8 0.%4 0.95 0.95 23 22 15 15 0.9 1.18 099 121 1.18
S03. DIFF gr=-0.41, CPRrr=1.00 4.28| -56834.2 8.9 12.2 6.0 3618 43.3 405 422 34.8 329 33.9 2.2 35 2.1 0.90 0.93 0.93] 20 5 a7 12 0.9 121 099 423 1.21
04. DIFF rr=0.00, CPRgr=4.75 4.28| -74070.9 -8.8 -9.7 -7.2| 3392 57.3 541 54.7| 458 427 43.5] 2.8 -11 11 0.85 0.92 0.91 6 23 2 18 0.9 215 099 5.07 215
S05. DIFF rr=0.00, CPRrr=3.41 4.28| -48436.5 -17.6 -34.4 -27.4( 39.0 48.6 415 430 385 329 341 -4.0 -8.8 -7.0 0.86 0.92 0.92 13 47 4 36 0.9 325 099 1215 325
S06. DIFF r=0.00, CPRrr=2.74 4.28| -48672.5 -41.5 -37.6 -38.6|] 3934 44.5 386 40.0 354 30.8 32.0 -10.5 -9.6 -9.2) 0.88 0.93 0.93] 14 46 4 35 0.9 3.01 0.99 1040 3.01
07. DIFF rr=0.00, CPRgr=2.06 428 -49001.5 -375 -337 -36.0] 377.3 39.9 359 36.8 321 287 29.7 -12.7 -11.0 -12.0 0.90 094 0.93 16 45 6 3 0.9 234 099 6.32 234
S08. DIFF rr=0.00, CPRrr=1.50 4.28| -49877.0 -28.6 -26.8 -28.2| 366.1 323 310 313 25.8 24.6 25.0] -9.0 -8.6 -9.0 0.94 0.94 0.94 20 41 10 30 0.9 175 0.99 311 1.75
09. DIFF rr=0.00, CPRgr=1.29 428 -50689.5 -4.3 -7.3 -5.5 3711 312 305 305 250 244 24.5 -17 -2.6 -2.0 0.93 094 0.94 23 33 13 27 0.9 1.44 099 215 1.44
S10. DIFF gr=0.00, CPRrr=1.11 4.28| -51615.6 -3.8 -25 -2.8| 3617 2.4 29.0 29.0 236 233 23.3 -1.6 -1.2 -1.3 0.%4 0.95 0.95 28 34 17 22 0.99 1.17 099 134 1.17
S11. DIFF rr=0.00, CPRrr=1.07 4.28| -51573.7 -7.0 -9.1 -9.1f 363.6 29.0 288 289 232 23.2 23.2 -2.2 -2.9 -2.9 0.95 0.95 0.95] 29 33 18 22 0.9 117 0.99 1.30 1.17
S12. DIFF rr=-0.24, CPRgr=0.90 428 -73980.4 -18  -10.7 -0.2| 3264 57.0 54.7 56.6 49 431 4.7 0.1 -2.6 -1.7] 0.87 0.90 0.90 12 4 28 7 0.99 1.00 099 275 1.00
S13. DIFF gr=-0.24, CPRrr=0.69 4.28| -73757.2 -30.2 -30.7 -30.3] 3304 49.8 484 493 39.7 38.8 39.3] -7.6 -7.2 -6.9 0.91 0.92 0.92 10 5 26 9 0.9 0.86 0.99 1.95 0.86
S14. DIFF rr=-0.24, CPRgr=0.49 4.28| -733725 -24.2 -20.7 -22.7) 3476 47.6 46,5 46.6 37.8 36.9 37.2 -6.4 -4.9 -5.1] 0.92 0.93 0.93] 7 7 23 12 0.9 0.62 0.99 0.96 0.62
S15. DIFF pr=-0.24, CPRrr=0.30 4.28| -72749.4 -3L7 -36.1 -35.0] 3264 47.6 438 44.0 381 3H1 35.2 -7.7 -7.9 -7.7] 0.91 094 0.94 5 10 20 14 0.9 0.41 099 0.39 0.41
S16. DIFF rr=-0.24, CPRrr=0.15 428/ -725788 -100.6 -67.3 -77.4] 336.7 56.4 47.1 480 45.6 37.6 38.6) -24.1 -15.4 -17.7| 0.83 0.92 0.92 3 12 18 16 0.9 0.25 0.99 0.14 0.25
S17. DIFF rr=-0.48, CPRrr=0.04 428 -432952 -1191  -17.2 -46.6| 394.9 53.0 347 36.8 435 275 29.7 -35.9 -5.0 -12.5 0.77 0.93 0.92 2 29 33 36 0.99 0.09 099 0.02 0.09

98



Table 3.4 Properties of Poststratification, Raking, and GREG_Main under Y _Additive Interaction Outcome Variable Model

Empirical Relative

Relative Square Root of

True Total Relative Bias Standard Error MSE Bies Ratio Coverage Rate of 95% | Average Respondent Sample Aveﬁgns\/grg%idpg:?/l\;(:i thTégs of
t,x107 RelBias(f,,)x10° | EmpREISE(f,,)x10°| ReIRMSE(f,,) x10* | BiasRatio(f,) <107 | Confidence ntenals Sizesby Cell Cell Cournts
5
- c c c - =)

5§ s s 3 s 5 § s T s 5 & 8

- g 2 3 s 3z g3 g Z £g 5 =

s ¢ 9 g2 3 3 g8 § ¢ g 3§ g g § ¢ g 8t 7 g £

o ot ¥ ¥ ° 3 d ¥ of ¥ i~ 1) ¥ k™4 % i | N Ny N N a 7 5 1%} o %

z & o 4 zZ £ O @ £ o & £ o 4 £ o & 4 £ O
SRS Sample Size n=8,000
S01. DIFF rr=0.00, CPRrr=1.00 6.56 64 05 2.9 29 393 18 49 49 1.4 4.0 4.0 26 5.8 5.8 09 095 095 2018 2003 2009 199| 09 09 09 09 099
S02. DIFF rr=0.00, CPRrz=1.00 6.56| -64934.7 39 445 45.8 55.1 31 89 85 25 7.9 7.6 12.8 51.3 52.8 0.94 091 092 902 878 590 587 099 102 0.99 102 102
S03. DIFF rr=-0.41, CPRrr=1.00 6.56| -61333.8 -51 11622 318 489 38 142 101 30 1162 84| -133 812.1 16.9 0.95 0.00 100, 816 197 1,909 469 099 102 0.99 282 102
S04. DIFF gr=0.00, CPRrr=4.75 6.56| -71372.7 85 29821 17123 552 7.3 197 17.0 58 2982 1712 132 15370 5220 094 000 000 244 941 41 738| 099 481 099 2337 481
S05. DIFF rr=0.00, CPRrr=3.41 6.56| -42358.2 -6.8 24448 13142 647 45 136 106 36 2445 1314 -153 17869  668.7 094 000 000 519 18%2 123 1456| 099 328 099 1117 328
S06. DIFF rr=0.00, CPRrr=2.74 6.56| -42899.6 -184 20740 1078.7 63.1 40 132 99 35 2074 107.9] -46.3 15731 625.5) 0.92 0.00 0.00[ 560 1,855 163 1418 09 264 09 722 264
S07. DIFF rr=0.00, CPRrr=2.06 6.56| -44017.1 -187 1576.0 799.7 63.5 34 123 91 31 1576 80.00 -545 13199 567.8 0.92 0.00 000[ 640 1,775 239 1345 099 204 09 425 204
S08. DIFF rr=0.00, CPRrr=1.50 6.56| -46330.6 -13.5 9360 4622 587 30 96 7.9 26 936 462 -457 9581 4417 093 000 000 8®2 1624 392 118| 099 150 099 230 150
S09. DIFF rr=0.00, CPRrr=1.29 6.56| -48051.7 -47 5937 2883 573 27 85 7.3 22 594 288 -17.2 6905 3248 09 000 006 921 1508 513 1071 099 128 09 167 128
S10. DIFFrr=0.00, CPRrr=1.11 6.56| -50614.7 -34 2289 101.6 54.8 2.7 78 73 22 29 10.7) -12.7 29.3 130.6 0.94 0.16 077 10% 1,352 674 897 099 1.08 0.99 121 1.08
S11. DIFF rr=0.00, CPRrr=1.07 6.56| -51108.0 -50 1437 56.6 57.4 2.6 76 7.0 22 14.6 74 -19.2 1885 73.9 0.96 0.52 092 1138 1317 714 859 099 104 09 112 104
S12. DIFF gr=-0.24, CPRr==0.90 656 -76999.7 -1.0 10134 -416| 438 50 177 130 40 1013 1.0 -18 5677 @ -212 095 000 100 464 128 1113 292| 099 09 099 248 0.9
S13. DIFF rr=-0.24, CPRrr=0.69 656 -75908.1 -108 3348 -39%43| 450 44 148 115 36 336 304 -249 2213 -2433 093 039 027 401 194 1053 357 099 071 09 135 071
S14. DIFF rr=-0.24, CPRrz=0.49 6.56| -74650.8 -26.6 -457.6 -770.9 48.0 41 130 108 39 45.8 771  -649 -3552  -5%4.7 0.90 0.06 0.00[ 301 288 937 458 099 051 0.99 068 051
S15. DIFF rr=-0.24, CPRrr=0.30 6.56| -73004.1 -10.6 -1445.9 -1247.2 49.8 42 124 101 35 1446 1247 -246 -11154  -931.1 0.94 0.00 0.00[ 188 403 817 570 099 033 0.99 027 033
S16. DIFF rr=-0.24, CPRr==0.15 6.56| -71838.2 -47.0 -2817.3 -2036.1| 555 58 145 121 61 28L7 2036 -851 -1990.6 -1056.1] 08 000 000 8 497 714 60| 099 015 09 006 015
S17. DIFF pr=-0.48, CPRrr=0.04 6.56 -40220.0 -59.3 -4058.7 -3089.00 662 70 77 97 74 4059 3089 -880 -53468 -1567.3 08 000 000 40 1191 133 1457 099 004 09 000 004
SRS Sample Size n=2,000
S01. DIFF rr=0.00, CPRrr=1.00 6.56 -365 -11 -7.6 -7.6 85.1 39 105 104 31 8.3 83 -2.6 -7.1 -7.1 0.95 0.96 096 504 503 502 401 099 0.98 0.99 098 098
S02. DIFF rr=0.00, CPRrr=1.00 656 -64879.4 61 519 541 1149 67 190 180 54 157 15.0 9.2 275 28.6 095 095 09 226 219 148 147 099 104 09 104 104
S03. DIFF rr=-0.41, CPRrr=1.00 656 -61350.0 -21 11731 428 1103 86 319 233 69 117.3 1900 -25 3746 8.3 094 003 100 205 49 477 17| 099 104 099 295 104
S04. DIFF rr=0.00, CPRrr=4.75 6.56| -71308.3 140 30144 17591 1217 161 434 3B.0 127 3014 175.9 137 733.3 242.6) 0.91 0.00 0.15 61 235 10 185 099 540 099 3281 540
S05. DIFF rr=0.00, CPRrr=3.41 6.56| -423339 -52 24514 13248 138.0 96 308 244 77 2451 132.5] -4.9 826.7 307.0 0.95 0.00 0.01 130 473 31 364 099 339 099 1216 339
S06. DIFF gr=0.00, CPRrr=2.74 6.56| -42936.4 -152 20594 10718/ 1396 91 209 227 72 2059 1072 -17.3 7179 2839 092 000 006 139 484 41 3v4| 099 266 099 749 266
07. DIFF rr=0.00, CPRrr=2.06 6.56| -43992.0 -18.7 15600 789.6| 1347 72 268 199 59 1560 790, -246 590  256.1 09 000 014 160 444 60 33| 099 204 099 432 204
S08. DIFF rr=0.00, CPRrr=1.50 6.56| -46301.0 -117 9381  463.6 1347 66 21.6 17.5 53 93.8 464 -183 4392 201.9 0.94 0.01 048 201 406 93 297 099 151 0.99 233 151
S09. DIFF rr=0.00, CPRrr=1.29 6.56| -48077.9 -30 599.7 2946 1313 58 184 159 4.6 60.0 29.8 -5.0 3184 151.2 0.96 0.09 0711 230 376 128 268 099 129 0.99 170 129
S10. DIFFrr=0.00, CPRrr=1.11 6.56| -50583.2 -44 2352 1066 1283 60 171 159 47 250 1560 -76 1385 615 094 072 093 274 338 168 25| 099 109 099 123 109
S11. DIFFrr=0.00, CPRrr=1.07 656 -51081.1 -32 1510 655 1171 57 160 149 45 182 132 -55 0.5 390 095 087 09| 285 328 179 215 099 105 09 114 105
S12. DIFF rr=-0.24, CPRrz=0.90 6.56| -76925.1 -7.6 1018.6 -46.0, 922 111 400 288 88 1019 23.2 -6.4 259.0 -13.7 0.94 0.26 100 116 32 280 73 099 0.98 0.99 267 0.98
S13. DIFF rr=-0.24, CPRrr=0.69 6.56| -75919.3 -93 3204 -405.8 93.9 94 318 247 7.6 36.8 41.9 -9.7 U4 -117.2 0.95 0.86 0.85 101 49 264 89 099 071 0.99 137 071
S14. DIFF gr=-0.24, CPRr==0.49 6.56| -74698.1 -22.9 -4530 -765.6 1048 92 284 237 75 466 766 -255 -162.8 -271.4 094 063 021 75 72 234 114 099 052 099 069 052
S15. DIFF rr=-0.24, CPRrr=0.30 6.56| -72982.5 -11.1 -1436.1 -1236.8 1096 94 281 232 75 1436 1237 -122 -507.8 -4224 094 000 000 47 101 204 143 099 033 09 028 033
S16. DIFF rr=-0.24, CPRrz=0.15 6.56| -71851.7 -46.7 -2821.4 -2041.0f 1114 124 319 26.1 106 2821 2041 -405 -916.7 -482.0 0.92 0.00 0.00 20 124 179 165 099 015 0.99 006 015
S17. DIFF rr=-0.48, CPRrr=0.04 6.56| -40277.1 -60.2 -4058.9 -3103.3] 1434 153 163 213 132 4059 310.3] -449 -25049  -7215 0.89 0.00 0.00 10 298 334 363 099 004 09 000 004
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Table 3.4 Properties of Poststratification, Raking, and GREG_Main under Y_Additive_Interaction Outcome Variable M odel (Continued)

Empirical Relative

Relative Square Root of

True Total Relative Bias Standard Error MSE Blas Ratio Coverage Rate of 95% | Average Respondent Sample AVEYJ’Q];V;;ONS;PL(:(:;\J/(; ;?égs of
t,x107 RelBias(f,,)x10° | EmpREISE(f,,)x10° | RIRMSE(f,,) x10* | BiasRatio(f,,) 107 | Confidence intenals Sizes by Cell Cell Counts
i _ i . i} S

5 "c% < S '% < "c% < "c% £ '% £ c E S 3

A= g g £ Z s 32 = g s g2, ® =

2 5 o 21 8§ § ¢ 2 &5 ¢ 2 5 o 2 F 4 2 s g 9 £

s 2 &% ¥ ¢ E 85 3 B & F B &8 F B B F MM o wow) B 3 5 B
SRS Sample Size n=200
S01. DIFF rr=0.00, CPRrr=1.00 6.56 -134 59 6.1 6.3 2814 133 360 348 10.6 27.9 27.8 4.7 17 1.8 0.93 0.95 0.95 50 50 50 49 099 103 0.99 103 103
S02. DIFF r=0.00, CPRrr=1.00 6.56| -64875.6 4.7 59.2 56.3] 3614 212 639 594 17.0 50.7 47.0 2.3 94 9.0 0.95 0.95 0.97, 22 22 15 15 099 117 0.99 120 117
03. DIFF rr=-0.41, CPRgrr=1.00 6.56| -612231 53 11484 423 3441 285 945 715 224 1259 57.4 21 1114 -3.2 0.90 0.81 1.00] 20 5 48 12 099 121 0.99 423 121
S04. DIFF rr=0.00, CPRgr=4.75 6.56| -71024.8 10.1 1476.0 7132 3734 384 896 74.1 306 1558 88.1 7.0 112.4 45.0 0.84 0.89 1.00] 6 23 2 18 0.99 2.16 0.99 504 216
S05. DIFF rr=0.00, CPRrr=3.41 6.56| -41934.6 -9.0 21916 1179.2] 4642 306 783 62.3] 24.2  219.7 119.8 -1.4 234.3 88.0 0.86 0.35 1.00] 13 47 4 37 0.99 3.36 099 1227 336
S06. DIFF r=0.00, CPRrr=2.74 6.56| -42853.4 -16.1 19352 1014.8] 440.7 286 831 632 28 1944 104.3 -5.8 212.4 81.6 0.89 0.45 0.99 14 46 4 36 099 291 0.99 968 291
S07. DIFF rr=0.00, CPRrr=2.06 6.56| -44064.6 -13.4 15845 8336/ 4405 254 833 628 20.3 161.0 89.2 -4.7 189.7 78.5 091 0.52 0.99 16 a4 6 34 099 246 0.99 6.72 246
S08. DIFF rr=0.00, CPRrr=1.50 6.56| -46327.7 -155 9352 46201 4245 221 713 57.5 17.6 9.5 59.4] -7.0 131.6 57.4] 0.92 0.75 0.98 20 41 10 30 099 170 0.99 303 170
S09. DIFF gr=0.00, CPRgr=1.29 6.56| -48007.3 5.2 590.2 283.3] 422 204 637 54.6) 16.2 70.0 49.5 2.7 2.1 40.9 0.93 0.86 0.97, 23 38 13 27 0.99 1.40 0.99 198 140
S10. DIFF rr=0.00, CPRrr=1.11 6.56| -50734.8 -1.2 252.9 123.3] 4096 192 56.6 51.3 15.3 48.9 42.0 0.0 43.0 20.2 0.93 0.94 0.97, 27 33 17 23 0.99 1.20 0.99 139 120
S11. DIFF rr=0.00, CPRrr=1.07 6.56| -50924.1 9.7 171.3 81.8] 4045 191 550 51.1 15.3 45.5 41.2 51 30.1 14.1 0.94 0.94 0.96 28 33 18 2 0.99 1.15 0.99 127 115
S12. DIFF gr=-0.24, CPRrr=0.90 6.56| -76696.3 27 72.0 -197.3] 3035 358 1042 8L9 282 1065 67.2 0.6 56.4 -19.2 0.88 0.95 0.99 11 4 28 7 099 103 0.99 284 103
S13. DIFF gr=-0.24, CPRgr=0.69 6.56| -75889.2 -7.1 2806 -4204] 3219 336 1037 822 26.8 86.0 74.2 -3.1 18.6 -43.8 0.89 0.95 0.95 10 5 26 9 099 083 0.99 190 0.83
S14. DIFF rr=-0.24, CPRgr=0.49 6.56| -74643.7 -29.9 -491.7 -779.8] 3266 315 998 8L3 25.2 90.9 93.8 -11.4 -58.5 -86.6 091 0.89 0.89 7 7 23 12 099 064 0.99 098 064
S15. DIFF rr=-0.24, CPRgrr=0.30 6.56| -72937.3 -7.8 -1428.3 -1249.4) 3537 326 899 74.6) 259 1479 128.0| -37 -158.6 -130.6 0.90 0.66 0.80 5 10 21 14 0.99 0.38 0.99 036 038
S16. DIFF gr=-0.24, CPRrr=0.15 6.56| -71873.2 -46.3 -2235.1 -1642.0] 356.8 36.7 729 65.6) 20.3 2239 165.0| -17.8 -229.6 -140.0| 0.86 0.35 0.82 3 12 18 16 0.99 0.26 0.99 015 026
S17. DIFF rr=-0.48, CPRrr=0.04 6.56| -40296.6 -64.3 -3437.8 -2476.1] 4363 340 346 385 275 3438 247.6 -204 -531.6 -220.0 0.78 0.00 0.32 2 30 33 36 099 0.09 0.99 0.02 0.09
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3.8 Sensitivity Analysis

In Section 3.7, the parameters for the models Y_Main and Y_Additive_Interaction are
chosen in away to maximize the possibility of detecting the impact of the outcome model.
The R-sguared values for the outcome variable models shown in Table 3.1 are
exceptionally high. In the real world, however, it is often unredlistic to expect the

outcome variable models to have such strong predictive power.

In this section, we use the Y_Additive Interaction scenario to conduct some sensitivity
analysis by lowering the overall predictive power of the outcome variable model while
keeping the response propensity models unchanged. Operationally, we achieve this by
increasing the variance of the random error terms in outcome variable model. That is, we

set ¢, ~ N(0,250000) for the Y_Additive_Interaction model in (3.13) while keeping the

values for u,, a,, B,, and y, the same as specified in Section 3.4. As a result, the

expected cell means for the outcome variable used in the sensitivity analysis remain the
same as those shown in the Y_Additive_Interaction row of Table 3.1. The R-squared
value for the overall model drops to 0.6348 and the p-value for the interaction term
remains less than 0.0001 (meaning that the interaction term is still highly statistically
significantly in an overall model with less explanatory power). The response scenarios
for the sensitivity analysis are the same as those shown in Table 3.2. Using these model
specifications, the simulation steps described in Section 3.5 are repeated. Then the

properties of the three calibration estimators over repeated sampling are evaluated using
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the criteria described in Section 3.6. The detailed results from the sensitivity analysis are

presented in Table 3.5.

Figures 3.5 through 3.8 compare the results in Section 3.7 (shown in Table 3.4 for the
Y_Additive_Interaction model) and those from the sensitivity analysis for the SRS
sample size n=8,000. The four figures show the impact of the overal predictive power of
the outcome variable model (measured by R-squared value) on the absolute value of
relative bias, empirical relative standard error, absolute value of the bias ratio, and
coverage rate of the 95 percent confidence intervals, respectively. For simplicity, we
sometimes refer to the Y_Additive_Interaction model in Section 3.7 (with R?= 0.9979) as
the “high R-squared setup” and the Y_Additive_Interaction model for the sensitivity
analysis (with R?=0.6348) as the “medium R-squared setup”. In Figures 3.5 through 3.8,
the results for the medium R-squared setup are shown on the top panel and the results for
the high R-squared setup are shown on the bottom panel. In general, these figures show
that as the predictive power of the outcome model Y_Additive Interaction decreases, the
differences between poststratification and the other two estimators become smaller. We

see severa patterns from Table 3.4, Table 3.5, and Figures 3.5 through 3.8.

First, when the R-squared value for the Y_Additive Interaction model decreases from
0.9979 to 0.6348, the impact on the empirical relative biases for raking and GREG_Main
are generaly negligible; any noticeable changes can be attributed to ssmulation variation
(especidly for the SRS sample size n=200). In contrast, the empirical relative biases for

poststratification increase approximately 17 times for al the response scenarios. Thisis
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because the variance of the random error term in the outcome variable model increases
from 900 for the high R-squared setup to 250,000. The square root of the ratio between
250,000 and 900 is approximately 17. In general, the empirical relative bias for
poststratification moves farther away from zero as the R-squared vaue for the
Y _Additive_Interaction model decreases. We know that the poststratification estimator
is model-unbiased, so any change in the empirical relative bias is actually a reflection of

increased empirical variance.

Second, the empirica relative standard errors increase for al the three calibration
estimators as the predictive power of the outcome variable model decreases, yet the
biggest increases occur in poststratification. The differences in the empirical relative
standard errors between the three estimators diminish almost completely from the high R-
squared setup to the medium R-sgquared setup. Moreover, in some situations with small
cell counts (e.g., the response scenarios S16 and S17), the empirical relative standard
errors for poststratification are larger than those for raking and GREG_Main in the
medium R-squared setup, which are not seen in the high R-squared setup. Recall that in
the R-squared setup, poststratification amost always outperforms raking and
GREG_Main in terms of both bias reduction and variance reduction. In the medium R-
squared setup, the effect of further bias reduction may not outweigh the drawback of
increased variance for poststratification when the calibration process involves some small
cells. For example, in the response scenario S17, the relative square root of MSE for

poststratification is larger than those for raking and GREG_Main.
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Third, the bias ratio for poststratification remains unchanged for each response scenario
as the R-squared value for the outcome variable model changes. This, again, is because
in theory, poststratification is model-unbiased, so the observed empirical relative bias for
poststratification actually reflects the magnitude of the empirical relative standard error.
For raking and GREG_Main, the bias ratio decreases as the R-squared value for the
outcome variable model decreases because the empirical relative standard error increases

to agreater extent than the increase in empirical relative bias.

Finally, the coverage rate of the 95 percent confidence intervals is independent of the R-
squared value of the outcome variable model for poststratification, but improves for
raking and GREG_Main as the predictive power of the Y_Additive Interaction model
becomes weaker. The latter is largely due to increased standard errors of the estimators,

which make the bias ratios smaller and confidence intervals wider.

The sensitivity analysis shows that the results in Section 3.7 may be highly sensitive to
the model specifications for the outcome variable, or more specifically, the predictive
power of the outcome variable model. Although the differences between
poststratification, raking, and GREG_Main under the Y_Additive_Interaction model in
Section 3.7 are very revealing, those conclusions are based on the assumptions that the
outcome variable models have almost perfect predictive power (R-squared value being
approximately 0.99). When the R-squared value for the Y_Additive Interaction model
drops to a reasonably high level (approximately 0.65), the poststratification estimator still

outperforms raking and GREG_Main in terms of bias and MSE (except in the situations
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with small cell counts), athough the differences between poststratification and the other
two estimators decrease significantly. Inthe real world, it is not rare to have an outcome
model with the R-sguared value being under 0.50. This is probably why survey
practitioners often use raking or GREG_Main in place of poststratification, and the
differences between poststratification and the other two estimators are not expected to be
detrimental. Moreover, raking and GREG_Man may have smaler MSEs than

poststratification when small cells are involved in the poststratification weighting.
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Figure 3.5 Impact of Predictive Power of Outcome Variable Model on Absolute Value of Relative Bias for
Y_Additive_Interaction Model and n=8,000
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Figure 3.6 Impact of Predictive Power of Outcome Variable Model on Empirical Relative Standard Error
for Y_Additive Interaction Model and n=8,000
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Table 3.5 Properties of Poststratification, Raking, and GREG_Main under the Y _Additive Interaction Model for Sensitivity Analysis

True Total Relative Bias Empirical Relative Standard Error Relative Square Root of MSE Bias Ratio Coverage Rete of 95% | Average Respondent Sample A\Ger:\?;?gigfofrv?g?;:“ F\;glc(:); :)f
ty <107 Rel Bi as(fyw) x10° EmpReI SE (fyw) % 104 RelRMSE (fyw) %x10* | BiasRati o(fyw) > 102 Confidence Interva s Sizes by Cell Counts
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T & 9 2 5 & ¢ 2 & 9 2 F ¢ g : 4 = 288 7 8 ¢

s ¢ & 3 s 2 & ¥ & & F B & F B § F e ww| Py B 5 B
SRS Sample Size n=8,000
S01. DIFF rr=0.00, CPRrr=1.00 6.57| 14.0 8.0 10.4 10.4] 48.7 30.2 30.3 30.3 24.0 24.2 24.2) 2.6 34 34 0.95 0.96 0.96] 2018 2003 2009 1969 099 099 0.99 0.99 0.9
S02. DIFF rr=0.00, CPRgr=1.00 6.57] -64913.2 651 1075  108.9 58.4 52.2 52.8 52.8 41.4 425 42.4 12.8 20.9 21.1] 0.94 0.93 093 902 878 590 587 099 102 0.99 1.02 102
S03. DIFF rr=-0.41, CPRgr=1.00 6.57] -613120 -84.8 11625 -44.8 52.3 62.5 61.6 62.1] 50.1 117.9 49.4 -13.3 182.3 -6.7] 0.95 0.56 096 816 197 1,909 469 099 102 0.99 282 102
S04. DIFF rr=0.00, CPRgr=4.75 6.57| -71344.2 1416 3046.7 1806.0 57.2 1207 94.7 99.2 96.5 304.7 183.2 13.2 325.2 178.0, 0.94 0.11 0.59 244 A1 41 738 099 481 099 2337 481
05. DIFF rr=0.00, CPRpr=3.41 6.57| -42445.9 -1135 21426 11021 68.6 74.6 64.2 66.5| 60.6 214.3 112.5] -15.3 342.0 166.0, 0.94 0.08 0.62 519 1,892 123 1,456 099 328 099 1117 328
S06. DIFF rr=0.00, CPRrr=2.74 6.57| -42981.3 -306.7 17728 7837 65.9 66.8 59.3 61.1] 58.4 177.3 84.4) -46.3 296.7 125.5 0.92 0.16 0771 560 1855 163 1418 099 264 0.99 722 264
07. DIFF rr=0.00, CPRrr=2.06 6.57| -44070.4 -311.8 13391 5354 66.9 57.3 54.5 54.8 51.7 134.1 63.4] -54.5 243.0 94.9 0.92 0.31 0.86] 640 1775 239 1345 099 204 0.99 425 204
S08. DIFF rr=0.00, CPRrr=1.50 6.57| -46394.2 -223.9 7525 2652 62.2 49.3 49.1 49.2 437 77.8 44.6 -45.7 153.5 53.8 0.93 0.66 0.91] 802 1,624 392 1188 0.99 1.50 0.99 230 150
S09. DIFF rr=0.00, CPRrr=1.29 6.57] -48076.7 -79.0 5179 2133 60.3 44.2 4.7 44.6 358 57.7 39.9 -17.2 111.6 45.8 0.95 0.81 0.95 921 1,508 513 1071 0.99 1.28 0.99 167 128
S10. DIFFgr=0.00, CPRrr=1.11 6.57] -50622.4 -55.9 183.9 52.5 582 44.9 454 454 36.6 39.2 36.8] -12.7 41.2 11.8] 0.94 0.93 095 1096 1,352 674 897 0.99 1.08 0.99 121 108
S11. DIFFgr=0.00, CPRrr=1.07 6.57] -511336 -839 715 -19.6 60.9 43.6 44.0 43.9 35.8 36.1 35.6] -19.2 16.1 -4.4] 0.96 0.96 096 1,138 1317 714 859 099 104 0.9 112 104
S12. DIFF rr=-0.24, CPRgr=0.90 6.57] -769759 -165 9388 -537| 464 83.9 82.3 84.3 66.9 103.4 67.5) -1.8 115.4 -6.0) 0.95 0.78 0.96] 464 128 1113 292 099 0.9 0.99 248 096
S13. DIFF rr=-0.24, CPRgr=0.69 6.57] -75900.0 -180.2 156.7 -555.7 47.2 73.0 734 73.9 59.8 59.3 75.3 -24.9 212 -74.4] 0.93 0.94 0.88 401 194 1053 357 099 071 0.99 135 071
S14. DIFF gr=-0.24, CPRgr=0.49 6.57| -747424 -4426 -890.4 -12151 49.7 68.3 69.1 68.8] 64.9 94.9 123.2 -64.9 -1289  -175.4] 0.90 0.75 0.61] 301 288 937 458 099 051 0.99 0.68 0.51
S15. DIFF rr=-0.24, CPRgr=0.30 6.57| -73035.1 -176.3 -1669.5 -1463.0) 51.6 70.7 67.9 67.6) 58.2 167.0 146.6 -24.6 -242.1  -211.5 0.94 0.32 044 188 403 817 570 099 0.33 0.99 027 033
S16. DIFF rr=-0.24, CPRgr=0.15 6.57| -71912.1 -7831 -3358.0 -2632.3| 57.8 95.9 75.9 78.2] 101.5 335.8 263.2 -85.1 -460.0  -346.4] 0.86 0.00 0.08] 8l 497 714 660 099 015 0.99 006 0.15
S17. DIFF gr=-0.48, CPRrr=0.04 6.57] -40225.6 -987.8 -4029.6 -3291.9 69.8 117.2 52.6 59.0 123.9 403.0 329.2 -88.0 -761.7  -549.5 0.85 0.00 0.00] 40 1191 1335 1457 099 004 0.99 0.00 004
SRS Sample Size n=2,000
S01. DIFF grr=0.00, CPRrr=1.00 6.57| -529 -17.5 -23.9 -239( 1085 65.4 65.8 65.8] 52.1 52.4 52.4] -2.6 -3.6 -3.5) 0.95 0.95 095 504 503 502 491 099 098 0.99 098 098
S02. DIFF rr=0.00, CPRgr=1.00 657 -648455 1015 1502 1524 121.8 1120 112.8 112.7 89.7 911 910 9.2 134 136 0.95 0.95 095 226 219 148 147 099 104 0.99 1.04 104
S03. DIFF rr=-0.41, CPRr=1.00 6.57] -61321.9 -355 12268 13.1) 1187 1433 139.6 143.9 114.8 152.8 114.7 -2.5 884 1.3 0.94 0.87 0.95 205 49 ar7 117 0.99 1.04 0.99 295 104
S04. DIFF rr=0.00, CPRrr=4.75 6.57] -712555 2333 31723 19441 1246 2676 205.1 215.7| 210.8 3285 238.4] 13.7 157.1 92.3 0.91 0.64 0.86| 61 235 10 185 099 540 099 3281 540
S05. DIFF rr=0.00, CPRgr=3.41 6.57| -424169 -86.6 21609 11283 1484 1604 135.4 140.4 128.6 222.2 145.1 -4.9 158.5 79.0 0.95 0.65 0.89 130 473 31 364 099 339 099 1216 339
06. DIFF rr=0.00, CPRrr=2.74 6.57| -43002.7 -2535 1760.6 80L7| 1468 1511 135.6 139.8 120.0 189.3 129.1 -17.3 135.8 60.1] 0.92 0.72 090 139 464 41 354 099 266 0.99 749 266
07. DIFF rr=0.00, CPRrr=2.06 6.57| -44043.7 -311.4 13353 531.8| 1428 1196 115.9 115.2] 98.8 149.0 102.7 -24.6 110.9 43.5 0.95 0.81 0.95 160 444 60 336 099 204 0.99 432 204
S08. DIFF rr=0.00, CPRrr=1.50 6.57] -46353.8 -195.5 7814 2931 1437  109.7 110.4 110.0 88.1 109.4 90.7] -18.3 732 27.4 0.94 0.87 0.93 201 406 98 297 0.99 1.51 0.99 233 151
S09. DIFF rr=0.00, CPRrr=1.29 6.57 -48092.7 -50.3 5531 2476/ 1380 97.3 96.6 96.4 77.2 90.5 79.9 -5.0 54.7 24.4 0.96 0.93 0.96] 230 376 128 268 0.99 1.29 0.99 170 129
S10. DIFF gr=0.00, CPRgr=1.11 6.57] -50601.6 -736 174.6 413 1394 9.1 101.0 100.6 781 80.8 79.3] -7.6 17.9 4.2 0.94 0.92 094 274 338 168 225 099 1.09 0.9 123 109
S11. DIFFrr=0.00, CPRgr=1.07 6.57 -51087.4 -525 107.2 182 1273 94.3 95.1 95.0 74.9 75.8 75.3] -55 111 1.9 0.95 0.95 095 285 328 179 215 099 105 0.99 114 105
S12. DIFF gr=-0.24, CPRgr=0.90 6.57] -76913.1 -127.2 8604 -164.5 980 1839 177.6 183.8] 145.7 158.7 145.6) -6.4 48.8 -7.9 0.94 0.93 0.94 116 32 280 73 099 098 0.99 2.67 098
S13. DIFF gr=-0.24, CPRgr=0.69 6.57] -75889.9 -154.5 1745 -548.1] 1049 157.3 157.7 160.1 126.0 126.9 135.2 -9.7 10.8 -33.5 0.95 0.95 0.94 101 49 264 89 099 071 0.99 137 071
S14. DIFF rr=-0.24, CPRrr=0.49 6.57| -747793 -38L1 -8269 -11525 1117 153.6 153.0 152.9 125.3 139.1 155.6 -25.5 -54.9 -76.2) 0.94 0.91 0.87| 75 72 234 114 099 052 0.99 069 052
S15. DIFF rr=-0.24, CPRgr=0.30 6.57| -73016.3 -1854 -16625 -14558| 1134 156.1 152.4 151.4 124.9 187.2 172.6 -12.2 -111.1 -97.1] 0.94 0.80 0.83] 47 101 204 143 099 0.33 0.99 028 033
S16. DIFF gr=-0.24, CPRgr=0.15 6.57] -71935.2 -777.0 -3434.6 -2687.6] 1169 207.0 164.3 167.9 176.9 345.3 276.5| -40.5 -2159  -163.0 0.92 0.43 0.64 20 124 179 165 099 015 0.99 0.06 0.15
S17. DIFF gr=-0.48, CPRgr=0.04 6.57] -40290.2 -1001.8 -4031.8 -3309.8] 151.3 2552 111.9 124.5] 220.4 403.2 331.0 -44.9 -350.1  -257.7| 0.89 0.06 0.30] 10 298 334 363 099 004 0.99 0.00 004
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Table 3.5 Properties of Poststratification, Raking, and GREG_Main under the Y _Additive Interaction Model for Sensitivity Analysis (Continued)

True Total Relative Bias Empirical Relative Standard Error Relative Square Root of MSE Bias Ratio Coverage Rate of 95% | Average Respondent Sample A\L/Jerm?g gcri;zdssofrv?/de?;tm Z?g; :)f
tx10" | ReBias(f,,)x10° EmpReISE(f,,)x10° | RARMSE(f,,)x10° | BiasRatio(f,,)x10?| Confidence inervals Sizesty Cell Counts
S
c c - - - 2

5 2 < 5 2 = 2 £ 2 < 2 < c € S 3

8 & g8 S S = S S S = 53 £ =

5 = > 5 = > 5 = 5 = b= = 2 o ® I

s f ¢ 2 3 £ ¢ g2 § ¢ g E ¢ g § 4§ e 228 ¥ g &
SRS Sample Size n=200
$01. DIFFrr=0.00, CPRrr=1.00 6.57| 78.9 97.7 94.8 948 3475 220 2237 2237, 175.9 1773 177.3 4.7 4.4 4.4 0.93 093  0.93 50 50 50 49 09 103 099 103 103
S02. DIFF rr=0.00, CPRrr=1.00 6.57| -64867.7 789 1126  109.5 3842 3536 354.2 353.5 283.6 285.0 284.5 23 3.2 3.2 0.95 095  0.95 22 22 15 15 099 117 09 120 117
$03. DIFF rr=-0.41, CPRrr=1.00 6.57| -61156.2 88.7 1321.7 1357 3799 4745 448.3 464.3 372.9 371.9 366.1] 21 29.4 4.8 0.90 094  0.93 20 5 48 12 09 121 09 423 121
S04. DIFF rr=0.00, CPRrr=4.75 6.57| -709500 1688 16829 885.0] 3925 639.1 609.9 616.3, 508.6 504.7 494.9 7.0 335 215 0.84 091 092 6 23 2 18 099 216 09 504 216
S05. DIFF rr=0.00, CPRrr=3.41 6.57| -420440 -150.6 19555 990.2] 4853 509.7 442.9 453.3 402.9 387.0 370.5 -14 48.4 27.6 0.86 090 092 13 47 4 37 099 33 09 1227 336
S06. DIFF rr=0.00, CPRrr=2.74 6.57| -42929.7 -268.2 17533 809.7| 4656 476.7 4160 4285 378.9 361.3 348.6 -5.8 44.0 22.6 0.89 092  0.93 14 46 4 36 099 291 09 968 291
S07. DIFF rr=0.00, CPRrr=2.06 6.57| -44090.7 -222.8 14089 647.6] 4617 4235 392.6 395.5 338.6 3325 319.5 -4.7 37.7 18.8 0.91 092  0.94 16 44 6 34 09 246 09 672 246
S08. DIFF rr=0.00, CPRrr=1.50 6.57| -463952 -257.2 7234 2347 4574 3678 360.8 361.2 293.0 288.6 286.5 -7.0 215 7.8 0.92 092  0.93 20 41 10 30 09 170 099 303 170
S09. DIFF rr=0.00, CPRrr=1.29 6.57| -47975.4 8.9 6777 370.3] 4425 3400 340.8 339.5 270.3 273.4 270.1] 27 20.7 115 0.93 093  0.93 23 38 13 27 099 140 099 198 140
S10. DIFF rr=0.00, CPRprr=1.11 6.57| -50730.3 -196 2238 98.5| 4446 3192 3220  321.6 254.8 258.0 2517.7] 0.0 7.6 3.7 0.93 094  0.94 27 33 17 23 099 120 099 139 120
S11. DIFF rr=0.00, CPRrr=1.07 6.57] -5085L5 1611 3243 2352 4330 3186 321.0 3207 254.6 257.0 256.1] 51 10.0 7.2 0.94 095  0.95 28 33 18 22 09 115 09 127 115
S12. DIFF rr=-0.24, CPRrr=0.90 6.57| -76648.1 450 7656 -166.2] 3245 5%.7 5744  590.2 468.8 4533 463.6 0.6 141 -1.0 0.88 092 091 11 4 28 7 099 103 09 28 103
S13. DIFF rr=-0.24, CPRrr=0.69 6.57| -75865.7 -117.4 2052 -5254] 3443 5584 551.0 5583 445.9 438.3 446.5 -31 3.9 -9.2 0.89 092 091 10 5 26 9 09 08 09 19 083
S14. DIFF rr=-0.24, CPRrr=0.49 6.57| -74721.9 -496.9 -1019.3 -1303.7] 3439 5237 520.1 518.5 420.0 421.5 425.3 -11.4 -22.6 -28.0] 0.91 092 092 7 7 23 12 09 064 09 098 064
S15. DIFF gr=-0.24, CPRrr=0.30 6.57| -72944.8 -1295 -1486.2 -1302.0] 3665 543.0 507.9 509.3 431.9 424.5 420.6 -3.7 -32.1 -28.6] 0.90 092 092 5 10 21 14 099 038 09 036 038
S16. DIFF rr=-0.24, CPRrr=0.15 6.57| -7199%6.3 -77/0.4 -2876.9 -2303.7] 3699 6108 510.8 522.1] 488.2 465.7 454.9 -17.8 -60.6 -50.1] 0.86 089  0.90 3 12 18 16 09 026 09 015 0.26
S17. DIFF r=-0.48, CPRrr=0.04 6.57| -40384.3 -1070.7 -3603.0 -2883.7] 4656 566.0 3564 3810 458.5 416.0 381.4 -294  -101.3 -80.8] 0.78 0.85  0.87] 2 30 33 36 099 009 099 002 0.09
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3.9 Summary of Findings

This chapter compares the empirical properties of three widely used calibration
estimators — poststratification, raking, and GREG_Main. The simulation results show
that in the presence of nonresponse, the conclusions in Deville and Sérndal (1992) that all
the calibration estimators should perform approximately the same in large samples do not
necessarily hold. The speed at which the calibration estimators that use the same set of
covariates but different adjustment functions become equivalent aso depends on the
underlying outcome variable model. The differences between poststratification, raking,
and GREG_Main can be either substantive or negligible depending on the outcome
variable model and response model. We demonstrate the importance of accounting for
the outcome variable model and response model when choosing the appropriate
calibration estimator. The outcome variable model should be the driving factor. If a
significant and strong interaction effect is present in the outcome variable model and the
overal predictive power of the model is very strong (with R-squared value being close to
1), then poststratification outperforms the other two calibration estimators except in the
specia situation that the response model does not include a multiplicative interaction
term, in which case raking performs almost equally well as poststratification. Raking
preserves the multiplicative interaction effect that is internal in the data before calibration
while GREG_Main does not, and this is why raking can be less biased than GREG_Main

when the response model contains a strong multiplicative interaction term.
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One interesting finding is that for alarge sample, a small relative bias associated with an
inappropriate calibration estimator can still lead to very poor coverage rate of the 95
percent confidence intervals. This is because the bias remains constant while the
standard error decreases as the sample size increases, so a larger sample size tends to

make the bias ratio higher.

The sensitivity analysis suggests that the differences between poststratification, raking,
and GREG Main are highly sensitive to the model specifications for the outcome
variable. As the predictive power of the outcome variable model decreases, the

advantage of poststratification over raking and GREG_Main becomes less substantial.

We understand that in practice, response propensity model often tends to drive the
selection of auxiliary variables to be used in calibration. Quite often, survey practitioners
either lack the knowledge of the outcome variable(s) or need to create a single set of
weights for analyzing a range of outcome variables. Despite the practical limitations, a
better understanding of the impacts of the outcome variable model and response model
can provide a good framework for us to examine the variable and function form selection
issues in calibration weighting. For example, using paradata for nonresponse adjustment
has been a popular topic in the recent survey literature (Kreuter et al. 2010, Kreuter
2013). It isimportant to evaluate to what extent the paradata (for example, the number of
call attempts to reach atarget respondent) may be correlated with the outcome variable(s)
(for example, employment status, tobacco use, mental health status). Including in the
calibration model any paradata that correlates only to the response propensities but not to

the outcome variabl e(s) does not help reduce potential nonresponse bias.
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Chapter 4. A Proposed Distance Measure Related to the Potentia Bias of
Raking and GREG_Main

Chapter 3 compares the empirical properties of the poststratification, raking, and
GREG_Main estimators over repeated sampling. In the real-world survey practice, only
one sample can be fielded and all the estimates are based on that particular sample, so it
is important to understand the properties of the calibration estimators conditioning on
sample configuration. In this chapter, we propose a distance measure that is related to the
magnitude of bias for raking and GREG_Main when the outcome variable model
contains an interaction term (referred to as Y_Additive_Interaction in Chapter 3). For a
particular sample, survey practitioners can use this distance measure as a diagnostic tool
to gauge the potential impact of failing to incorporate a significant interaction term in the
calibration process. Section 4.1 presents the general theory of the proposed distance
measure. Section 4.2 discusses the application of the proposed distance measure in the
SRS 2x2 table setting. Sections 4.3 and 4.4 show the simulation results over repeated
sampling and conditioning on samples grouped by the proposed distance measure,

respectively, followed by a summary of conclusions and limitations in Section 4.5.

4.1 General Theory

The distance measure we propose applies to raking and GREG_Main. It helps gauge the
potential impact of omitting a significant interaction term between two auxiliary
covariates in the calibration process. Assume that the two main effect variables have |

and J categories, respectively. Based on (3.49), the potential bias of the raking estimator
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is related to how much the estimated cell counts using the raked weights differ from the

population counts (i.e., Ni‘j"'— Njj). A statistic that summarizes the differences is the
distance measure DIST, defined as
~ T T R T AN1/A

DIST=m(N—N) V(N) (N—N):m(p—p) VE)*(p-p) (4.1)

where
T . .

N :(Nn,..., Ny Ny sevey Nogggy oo Ny N(,_l)(J_l)) is the vector of population
benchmark totals for the cells defined by the two auxiliary variables, assuming that the

cross-classification between the two variables are available;
ijre

:
N = (NX”l, NI{J 1)N;Vl, NQ’(H) NV N{,’l)u 1)) is the vector of estimated

population totals from raking or GREG_Main for the cells defined by the two auxiliary

variables;

.

p =( Piisos Pyaoay, Pog oo oo Pogggy, - o0 Byjoe-es p(|71)(;|71)) )
| J

inwhich p, = Nij/zz N; ;

~ ~ ~ ~ ~ ~ ~ T

p =( Piisvs Pyaoay, Pog oo oo Pogggy, - o0 Byjoe-vs p(|71)(;|71)) '

in which p, = I\Alnv/iil\wz Nﬁv/zl:iNij because ii iiN for raking

i=1 j=1 i=L j=1 i=1 j=1 i=1 j=1
(when the process converges) and GREG_Main; and
V(N)/m and V(p)/m are the true variance-covariance matrices for N and p, in which
m is the number of sampled primary sampling units in a complex sample design and the

samplesizeinan SRS design. That is, Var(N) = V(N)/m and Var(p) = V(p)/m.
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Note that there are only (1 —1)x(J —1) elements, but not | xJ elements, in N-N and
J | R

p—p because Y (N;'-N;)=0and > (N}~ N,)U 0 after the raking process (when the
j=1 i=1

process converges) or the GREG_Main calibration process. DIST has asimilar form as a
generalized Wald statistic (Rao and Scott 1981). Whether the distance measure has the

same value regardless of which set of (1 —1)x (J —1) categories are used to construct the

statistic needs to be further examined through some anal ytical work.

Our first goal isto obtain the probability distribution of the proposed distance measure in
(4.1) under the null hypothesis H,: E(N) =Nor E(p)=p, so we can use the statistical

properties of the known probability distribution to make inference.

Based on Krewski and Reo (1981), we have vmp ~ N(p,V) asymptoticaly (i.e., as N

approaches infinity) under the null hypothesis. Their result does apply to multistage
sample design with potentially varying probabilities at each stage but with the assumption

that the primary sampling units are selected with replacement. Now define a vector
z=+/m(p-p). Under the null hypothesis E(p) =p, we have z~ AN(0,V(p)). The
distance measure DIST can be expressed as a quadratic form in z and V(P)™". Also,
since V(P) is positive definite and symmetric, it can be factored as V(p) =LL", where

L is a nonsingular, lower triangular matrix. Assuming that V(p) is invertible, the

distance measurein (4.1) can be re-written as
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DIST =z'V(p) 'z
=z'(LL )_12 (4.2)

=7 (L‘l)T Lz

We further define w =L""z=+/mL™(p—p). Then, (4.2) can be re-written as

DIST =w'w =) > W (4.3

E(w)=E(VmL™(p-p))=0 (4.9)

and

(4.5)

Under the null hypothesis E(P)—p =0, we know z=+/m(p—p)~AN(0,V). Therefore,

W~ AN(O,I) and W’ in (4.3) are independent Chi-square(1) random variables. The

J
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1-1J-1
probability distribution of the distance measure DIST is the same as that of » > W?,

i=1 j=1

whichiscentral y* with (I —1)x (J —1) degrees of freedom.

Our second question is: if E(p)—p=A for some non-zero A (i.e., the null hypothesis

should be rejected), then what is the distribution of DIST defined in (4.1)? At agiven
relative bias level, the distance measure tends to increase with the sample size. So the
guestion is how large the distance measure should be to make it practically important.

Thisinvolves the power theory about the distance measure.

Suppose that Vm(p—p)~AN(A,V). Define z=Jm(p-p), V() =LL", and

w =L"'z asintheearlier proof, where L isanonsingular, lower triangular matrix. When
E(P)-p=A for some non-zero A, the distance measure till has the forms shown in

(4.2) and (4.3), where the variance-covariance matrix for w is shown in (4.5) and the

mean of w is

E(w)=E(L"z)=L"E(z) =L VmE(p-p)=L"VmA (4.6)

That is, w~AN(L*1JFIA, I). According to Searle (1971, Section 2.4h), DIST [J

noncentral y * with (1 —1)x (J —1) degrees of freedom when E(p)-p=A for some non-

zero A. A noncentral y 2 distribution involves the noncentrality parameter 5 (whichisa

scaler) as shownin (4.7).
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5 ==(E(w)) E(w)

_ %(L‘1M)T (L*Vma)
=~mA"(L?) LA (4.7)
=MV A

= %ATVar(f))'lA

In practice, we can specify alevel of relative bias (for an estimator of cell population
count) that is important to detect, say b=0.10 (i.e., 10 percent relative bias). For
simplicity, we assume that the same b value is specified for al the cells ij. That is,

b=E(P; - p;)/p;j =A;/ p; and A=E(p)-p=bp. Then, we can evaluate how much

power the DIST test has at the specified relative bias level b.

We can cal cul ate the noncentrality parameter for a given b using

5 =%m(bp)TV(ﬁ)1(pb>

”;’ V() P 4.8)

mb? e
> p'Var(p)'p

Then, Power = Pr(DIST >c) = PV(Z(2|—1)(J—1)5 > ), where cisacritical point for a central
x? with (I -1)x(J ~1) degrees of freedom and y{_y,yy5 iS @ noncentral x> with

(1 =1) x (J —1) degrees of freedom and the noncentral parameter in (4.7). In practice, we
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can evaluate the power for arange of specified relative bias levels, such as -0.2<b<0.2,

using the corresponding ¢ 's calculated through (4.8). Note that p has to be obtained

from externa sources. We do not know the true variance-covariance matrices Var(N)
and Var(p), and thus need to estimate the values from an achieved sample. For a

consistent variance estimator, the estimated variance approaches the true variance as the
sample size approaches infinity. At the same time, survey practitioners may face small
sample size problems in the real world sometimes, which make the estimated variance
unstable. In our simulation study, we include some small sample size scenarios (with
SRS n=200) to help us understand whether the proposed distance measure can really be

useful in practice.

4.2  Application in the 2x2 Table Setting

In the 2x2 table setting, conditions (4.9) through (4.12) are satisfied as the result of

raking or GREG_Main calibration.

NY +N% =N, +N,, (4.9)
N +NY =N, +N,, (4.10)
N2+ NY% =N, +N,, (4.12)
N2 +NY =N, +N,, (4.12)
Thatis,
N — N, =—(NY = N,) =—(N% —=N,) =N% —N,, (4.13)
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Given that Var(lQIﬁV— N;) :Var(IQIﬁv) , we have

Var (N") =Var(N%) =Var (N%) =Var (N, (4.14)
(N:?l_ Nij)2

As the result of (4.13) and (4.14), DIST = is the same regarless of which

Var(Ny)

1

category isdeleted in a2x2 table.

As discussed in Chapter 3, the outcome variable moded may be Y_Man or
Y _Additive_Interaction depending on whether the model contains an interaction term.

To facilitate the discussions in this chapter, we use Y, = u, +ay + By +7y; +&y as the
general form for both Y_Main and Y_Additive_Interaction. That is, y,; =0 for Y_Main

and y; = 0 for Y_Additive_Interaction.

A poststratification, raking, or GREG_Main calibration estimator for a total associated

with a 2x2 table can be expressed as

f= 220D Vi (4.15)

where w; isthe calibrated weight for aunit kin cell ij .

Under the general form for the outcome variable model, the model expectation of the

calibration estimator fyw can be expressed as
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m
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~—+

Il
M DM I
D EMN EM~ EM~

EM (yuk)

Ey (1, +ay, +,BY + 7 vij +8Y1k)

E ?FM:? ’.FM;
[N [N

(4.16)
= W (/v‘v"'aw"'ﬁv, +7/\nj)
i=1 k=1
2 2 2 2 2 2 2
=122, .”ﬁZawZ WEDWIPRILESIHA
i=1 j=1 i=1 j= j=1 i=1 i=1 j=1
2 2 2 2
=u N+ awN,W+ZﬂYJNW+ZZyW
i=1 j= i=1 j=1
Then the mode! bias of the estimator t,,, is
EM(fyw_ty)
- 2 - 2 - 2 2 - (4.17)
=y (N" = N)+ D (NP =N+ D By (NS =N )+ D v (NF=N,)
i=1 j=1 i=1 j=1

During the calibration process, raking (when converged), poststratification, and

GREG_Main can al force the estimated row totals and column totals to be equal or
approximately equal to the marginal control totals. That is, the terms (NW—N) ,
(Niv,“— N,), and (N,“j"—N_j) are expected to be zero regardless of which of the three

calibration estimators is used, making the first three terms in (4.17) zero. However,
whether the fourth term in (4.17) is zero may depend on the outcome variable model,

response model, and calibration process. If the outcome model is Y_Main, theny; =0

and the fourth term is zero regardless of the value for (l(l;”— N;) . If the outcome variable
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model is Y_Additive_Interaction (with y,; # 0), then poststratification forces (Nﬁ“— N;)
to be zero and therefore is model-unbiased, but GREG_Main and raking are model-biased

except in some special situations. One specia Situation iS ¥yy — Yy — Yy +Vya1 =0,

2 2 .
which makes > >y (Ni'— N, ) =0 dueto the condition in (4.13).

i=1 j=1

Although we normally do not know the values for u,, ay, By, and y; in the outcome

variable model, we can compute (Nﬁ”—Nij) as long as the classification and
corresponding cell totals for the population are available. The larger the magnitude of

(N;“—Nij) is, the more severe the potentia bias is for raking and GREG_Main. In a

national survey of general population, for example, the marginal control totals N. and
N; can probably be obtained from either the Census or the Census population

projections or estimates. The cross-classification control totals Nij may be estimated from
some large samples such as American Community Survey and Current Population Survey.
These estimated totals are often treated as known population truth during the calibration
process (Dever 2008). However, quite often, raking or GREG_Main is used in practice
mainly because only the marginal control totals, but not the cross-classification cell totals,
are available. In this situation, the proposed distance measure is still useful for
conducitng sensitivity analysis. For example, survey practitioners can create a set of
hypothetical cross-classification cell totals based on various assumptions about the
interaction effect between the auxiliary variables, and then use the hypothetical cross-

clasification cell totals to compute the distance measures. The range of the estimated
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distance measure can help us gauge the potential impact of the interaction effect tin the

control totals.

Given the conditions in (4.13) and (4.14), we can use the information from any of the
four cells to compute the distance measure. The estimated distance measure in the SRS
2x2 table setting is

— (I\]le_[\ln)z _ (NIVZ— le)z _ (N;Vl_ N21)2 _ (N;vz_l\lzz)z

DIST, = . ~ (4.18)
var(NX”l) var(NXVZ) var(Ngvl) var(NZ”z)

where var(I\Alﬁv) is the estimated value of Var(Ni“jV) from the sample, i=1, 2; j=1, 2.

The distance measure in (4.18) follows a Chi-square distribution with one degree of

freedom. On the one hand, the term in (4.17) that is related to the potential bias of the

cdibration estimator, (l(li“j"—Nij), is not a function of sample size for any particular

sample (since N;“ is fixed for agiven sample). On the other hand, the estimated distance

measure in (4.18) is a function of the sample size because its denominator is the
estimated variance of the estimated population size for cell ij. As contradictory as this

may seem, we choose to define the distance measure in the general form shown in (4.1)
for two main reasons. First, although we can obtain the distribution of (Nﬁ“— Nij) across
al the iterations in a simulation study, only one sample can be obtained in practice. We
have no knowledge of the distribution of (IQI;”—N”) , and thus no decision rule for

determining whether a value is “too large” or not. The distance measure we propose,

however, follows a known probability distribution (i.e., Chi-square distribution) under the
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null hypothesis, so it allows us to make statistical inference from a single sample.
Second, as discussed in Chapter 3, bias ratio may be a more important indicator of the
performance of a calibration estimator than absolute or relative bias. The former can be
more revealing than the latter because a large bias ratio often means an unacceptable
coverage rate of the 95 percent confidence intervals even when the bias is small. The
bias ratio is a function of the sample size, with the order of the square root of the order
for the proposed distance measure. That is, we suspect that the proposed distance
measure has the advantage of being highly correlated to the bias ratio under

Y _Additive_Interaction.

One way to use the proposed distance measure is to compare the estimated distance

measure from a given sample to the critical values of the Chi-square distribution. For
example, Prob(0.004< y*(1) <3.84)=0.95 and Prob(0.000< y*(1) <6.63)=0.99 , so

the upper tail critical values for Chi-square distribution with one degree of freedom is

3.84 a 5 percent significance level and 6.63 at 1 percent significance level. If the
estimated distance measure from a SRS 2x2 table, DIST, s+ 155.0, then we consider it “too

large” at 5 percent significant level, but not “too large” at 1 percent significance level.
Knowing whether the estimated distance measure is “too large” can help us determine

whether the raking estimator or GREG_Main estimator is potentially biased. On the one
hand, it is important to note that “ DIST, s hot being too large” is a sufficient yet not a

unnecessary condition for the model-unbiasedness of raking and GREG_Main estimators.

As (4.17) shows, in the Y_Main scenario, y,; =0, so raking and GREG_Main are
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unbiased regardless of the value of (Nﬁ“— N;) or the estimated distance measure. The

bias (or more accurately, bias ratio) of a raking estimator or GREG_Main estimator is
associated with the distance measure only under Y _Additive_|Interaction outcome model.
On the other hand, areal-world survey contains a number of key outcome measures and it
is rare that none of the outcome measures is governed by a Y_Additive Interaction
model. If raking or GREG_Main is used for the calibration weighting of a given sample,
then a large value of the estimated distance measure is probably a warning sign of
potential bias for some variables due to omitting a significant interaction term in the

calibration process.

4.3 Simulation Results over Repeated Sampling

This section demonstrates the properties of the proposed distance measure and its
relationships with bias and bias ratio over repeated sampling. All the simulation work is
based on the Y_Additive Interaction model with R?=0.9979 (shown in Table 3.1)
because it is under this outcome model that raking and GREG_Main may be severely
biased. We do not cover the Y_Additive Main scenario because when the outcome
variable model does not include an interaction term, al the three calibration estimators
are expected to be unbiased despite the magnitude of the proposed distance measure.

Section 4.3.1 examines the empirical distributions of the proposed distance measures for
raking and GREG_Main under full response, in which the null hypothesis E(N) =Nor
E(p) =p istrue. Section 4.3.2 evaluates the relationships between the strength of the

multiplicative interaction term in the response model, the proposed distance measure, and
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the empirical bias and bias ratio of the calibration estimator over repeated sampling (i.e.,
averaging across the 1,000 simulated samples for each response scenario). The
simulation scenarios and procedure are very similar to what is described in Chapter 3,
with all the 17 response scenarios included. Two alternative SRS sample sizes, n=8,000
and n=200, are used to evaluate whether a small sample size may affect the useful ness of
the proposed distance measure. In addition to the evaluation parameters described in
Chapter 3, the distance measures for raking and GREG_Main are also estimated from

each simulated sample using (4.18).

4.3.1 Distribution of Estimated Distance Measure under Full Response

When there is full response, raking and GREG_Main are both unbiased regardless of the
outcome variable model. If the theory presented in Section 4.1 holds, then we expect that
in the response scenario SO01 (which is full response, as described in Chapter 3), the
estimated distance measure should follow Chi-squared distribution with one degree of
freedom. Figure 4.1 shows the histograms of the estimated distance measures for raking
and GREG_Main over the 1,000 simulated samples. Panels (a) and (b) are for two SRS

sample sizes, n=8,000 and n=200, respectively. The distributions of the estimated

distance measures seem to align well with the y ?(1) distribution curve shown in red.
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Table 4.1 shows some key statistics of the estimated distance measures for raking and

GREG_Main under full response, for SRS sample sizes n=8,000 and n=200, respectively.

First, we examine the empirical mean Ep(DfST) =(1/S)Z;°’=1DIASTS and the empirical

variance EmpVar(DfST) =1/ S)Zil(DfSTS— Ep(DfST))Z. The empirical means of the

estimated distance measures range from approximately 0.98 to approximately 1.02. The
empirical variances of the estimated distance measures range from approximately 1.84 to

approximately 1.93. These values are reasonably close to the mean and the variance of
the »?(1) probability distribution (i.e., the mean should be one and the variance should

be two). Second, for n=8,000, the 95" percentiles of the estimated distance measures are
very close to 3.84 (approximately 3.88 for raking and approximately 3.84 for
GREG_Main) and the 99" percentiles are reasonably close to 6.63 (approximately 6.22
for both raking and GREG_Main). For n=200, the numbers are dlightly more off
(approximately 3.80 and 5.72 for raking and approximately 3.96 and 6.12 for
GREG_Main) probably due to a smaller sample size. Across the simulation iterations,
the proportions of samples with the estimated distance measure larger than 3.84 are close
to 5 percent (ranging from approximately 5.0 percent to approximately 5.5 percent). The
estimated proportions of samples with the estimated distance measure larger than 6.63 are
not far from 1 percent (all approximately 0.7 percent). Finaly, we use a one-sample

Kolmogorov-Smirnov test to compare the distribution of the estimated distance measure
to the y?(1) probability distribution. The p-values are all larger than 0.05, so the

distributions of these estimated distance measures are not significantly different (at the 5
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percent significance level) from the y*(1) distribution. The p-values for n=8,000

(approximately 0.16 for raking and approximately 0.12 for GREG_Main) are lower than
those for n=200 (approximately 0.33 for both raking and GREG_Main) mainly because

they are associated with alarger sample.

Table 4.1 Statistics of Estimated Raking and GREG Main Distance Measures under Full Response

SRS Sample Size SRS Sample Size
n=8,000 n=200
Raking | GREG Main | Raking | GREG Main

Empirical Mean Ep(DfSF ) 1.02 1.02 0.98 1.00
Empirical Variance EmpVar (D IST ) 1.84 1.84 1.86 193
95 percentile of DIST 3.88 3.84 3.80 3.96
99" percentile of DIST 6.22 6.22 5.72 6.12
Percent of samples with DIST, . >384 5.1% 5.0% 5.0% 5.5%
Percent of samples with DIST, . >6.63 0.7% 0.8% 0.7% 0.7%
p-value for One-Sample Kolmogorov-Smirnov
Test of DIST Distribution against (1) 0.16 0.12 0.33 0.33

4.3.2 Interaction Effect in Response Model, Distance Measure, and Bias

For each SRS sample size and response scenario combination, we calculate the average
relative bias, average bias ratio, coverage rate of the 95 percent confidence intervals, and
some statistics about the estimated distance measures over the 1,000 simulated samples.
The results are shown in Table 4.2 and Figures 4.2 through 4.4, from which we can draw

four conclusions.

The first conclusion is that the magnitude of distance measure is positively correlated

with the strength of the interaction term in the response model. This relationship is
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clearly manifested in the scenarios with SRS sample size n=8,000. The expectations of

the estimated distance measures are close to one for raking (which is the mean of the
2° () distribution) when CPR., =1 (in the response scenarios S01, S02, and S03). As
CPR,;, moves away from one, the estimated distance measures for raking generally

become larger. For example, the expectation of the estimated distance measures is 12.7

when CPR, =129 (in the response scenario S09), but increases to 28.0 when
CPR, =4.75 (in the response scenario S04) and to 243.9 when CPR,, =0.04 (in the

response scenario S17). The GREG_Main distance measure follows a similar pattern
except that it is driven by not only the multiplicative interaction effect, but also the
additive interaction effect, in the response model. The correlation between the distance
measure and the strength of the interaction term in the response model can aso be
observed for the response scenarios under the SRS sample size n=200, although the range
of the estimated distance measures are much smaller for n=200 than that for n=8,000.
The smaller range is due to two reasons. First, the numerator of the distance measure
does not depend on the sample size, but the denominator (which is the variance of an
estimator) increases as the sample size becomes smaller. Second, the variance in the
denominator of the distance measure is estimated using a linearization method
implemented in the R Survey package. This method tends to overestimate the variance
for raking as the multiplicative interaction effect in the response model becomes stronger
(more details are provided in Chapter 5), and the impact of such overestimation seems

more noticeable for n=200 than for n=8,000.
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The second conclusion is that the proportion of samples with extreme distance measure
also depends on the strength of the interaction effect in the response model. For SO1 and
S02, only approximately four to eight percent of the simulated samples have estimated
distance measures larger than 3.84 and approximately one to two percent of the simulated
samples have estimated distance measures larger than 6.63. These percentages largely
reflect the magnitude of Type | error. As the interaction effect in the response model
becomes stronger, the proportion of samples with extreme distance measure increases.

For raking with SRS sample size n=8,000, when CPR_, =1.07 (in the response scenario

A

S11), only approximately 11 percent of the samples have DIST

rakingg

>3.84 and

A

approximately 3 percent of the samples have DIST

raking, > 6-63. This means that for the

majority of the ssimulated samples, the estimated distance measures fall within the range
of the 95 percent or 99 percent confidence interval of the y*(1) distribution. For these
majority of samples, the raking estimator does a reasonably good job in terms of reducing
bias and producing accurate confidence interval estimate. When CPR,, increases to as

large as 1.50 or decreases to as small as 0.49, the expectation of the estimated distance
measure for SRS sample size n=8,000 becomes much larger than 3.84 or 6.63 (being 22.9
for CPR, =1.50 and 37.5 for CPR,, =0.49). This indicates noticeable bias, large bias
ratio, and unacceptable coverage rate of the 95 percent confidence intervals for raking

and GREG_Main.

The third conclusion is that there is positive correlation between the magnitude of bias as

well as bias ratio and the distance measure. To demonstrate this more clearly, we take
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the absolute values of the relative biases and bias ratios for raking and GREG_Main, and
then plot them against the corresponding distance measures for all the response scenarios
except S17. The magnitude of bias and distance measure for S17 is much larger than that
for the other response scenarios, so we exclude such extreme data points to improve the
representational value of the graphs. Figure 4.2 shows the relationship between the
absolute value of relative bias and the distance measure. Figure 4.3 shows the
relationship between the absolute value of bias ratio and the distance measure. For both
figures, panel (@) isfor the SRS sample size n=8,000 and panel (b) isfor the SRS sample
sizen=200. The data patterns for the two sample sizes are similar. Although the absolute
value of the relative bias and the absolute value of the bias ratio both increase as the
distance measure becomes larger, the distance measure is a more precise predictor of the
latter (shown in Figure 4.3) than the former (shown in Figure 4.2). As discussed in
Section 4.2, the bias ratio and the distance measure are both functions involving both
absolute bias and sample size. Thisis why the data points in Figure 4.3 reveal a clearer
pattern than those in Figure 4.2. We suspect that if we plot the square of the bias ratio
against the distance measure, we are likely to see a positive linear relationship between

the two.

The fourth conclusion is that, as shown in Figure 4.3, in each response scenario with
CPRrr being away from one, the distance measure for the SRS sample size n=200 is
substantially smaller than that for n=8,000. This is due to the larger variance in the
denominator of the distance measure for a smaller sample size. The same pattern holds

for the bias ratio. That is, athough the magnitude of the bias does not depend on the
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sample size, the distance measure and bias ratio both decrease as the sample size
decreases, resulting in a better coverage rate of the confidence intervals under the given
bias level. As shown in Figure 4.4 (@), the coverage rates of the 95 percent confidence
intervals are unacceptable for most response scenarios under n=8,000. In contrast, the
coverage rates of the 95 percent confidence intervals for n=200 are close to 95 percent
except for a few response scenarios with CPRrr being far away from one. Instead of
predicting the bias level, the proposed distance measure is actually a good indicator of the
bias ratio and the quality of the coverage rate of the 95 percent confidence intervals. If
the estimated distance measure is “too large”, then the survey practitioner should be

warned of the possibly poor coverage rate of the confidence intervals.

Y_Additive_Interaction, SRS n = 8,000 Y_Additive_Interaction, SRS n = 8,000
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GREG_Main

A & Raking
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Figure 4.2 Absolute Values of Relative Biases versus Estimated Distance M easures under
Y_Additive_Interaction and Various Response Scenarios
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Table 4.2 Relative Bias, Bias Ratio, Coverage Rate of 95 Percent Confidence Intervals, and Statistics about Estimated Distance Measure over Repeated Sampling

Raking GREG_Main

Relative Bias Bias Raio Coverage Rate of 95% Distance Measure| % samples with extreme di stance measure Relative Bias Bias Ratio Coverage Rate of 95% Distance Measure | % samples with extreme di stance measure
Sample Size and Response Scenario RelBias(f,,)x10° | BiasRatio(f,,)x10? | Corfidence Intervals E,(DIST, 1) | DIST 4. >384 |DI' ST, .uing, > 6.63| RelBias(f,,)x10° | BiasRatio(f,,)x107| Confidence Intervals Ep(Df STeres wain) | DISTures wan, > 384 | DISTeees yyan, > 6.63
SRS Sample Size n=8,000
S01. DIFF gr=0.00, CPRrr=1.00 2.9 5.8 95% 1.0 5% 1% 29 5.8 95% 1.0 5% 1%
S02. DIFF gr=0.00, CPRrr=1.00 45.8 52.8 92% 12 7% 1% 445 513 91% 13 8% 2%
S03. DIFF gr=-0.41, CPRgr=1.00 31.8 16.9 100% 0.4 0% 0% 1162.2 812.1 0% 72.3 100% 100%
04. DIFF gg=0.00, CPRgrr =4.75 1712.3 522.0 0% 28.0 100% 100% 2982.1 1537.0 0% 257.9 100% 100%
05. DIFF gg=0.00, CPRrr=3.41 1314.2 668.7 0% 47.1 100% 100% 24448 1786.9 0% 347.7 100% 100%
S06. DIFF rg=0.00, CPRgr=2.74 1078.7 625.5 0% 425 100% 100% 2074.0 1573.1 0% 272.2 100% 100%
07. DIFF gg=0.00, CPRgr =2.06 799.7 567.8 0% 36.0 100% 100% 1576.0 1319.9 0% 1935 100% 100%
S08. DIFF gg=0.00, CPRgrr =1.50 462.2 441.7 0% 229 100% 100% 936.0 958.1 0% 104.3 100% 100%
09. DIFF gg=0.00, CPRgrr=1.29 288.3 324.8 6% 12.7 97% 88% 593.7 690.5 0% 54.8 100% 100%
S10. DIFF gg=0.00, CPRgr=1.11 101.6 130.6 7% 29 28% 10% 228.9 296.3 16% 11.2 88% 72%
S11. DIFF gg=0.00, CPRgrr =1.07 56.6 73.9 92% 16 11% 3% 143.7 188.5 52% 53 57% 29%
S12. DIFF rg=-0.24, CPRgr =0.90 -41.6 -21.2 100% 0.4 0% 0% 10134 567.7 0% 35.6 100% 100%
S13. DIFF rg=-0.24, CPRgr =0.69 -394.3 -243.3 27% 6.6 74% 42% 334.8 221.3 39% 6.6 68% 44%
S14. DIFF rg=-0.24, CPRgr =0.49 -770.9 -594.7 0% 375 100% 100% -457.6 -355.2 6% 13.6 94% 82%
S15. DIFF rg=-0.24, CPRgr =0.30 -1247.2 -931.1 0% 945 100% 100% -1445.9 -1115.4 0% 136.9 100% 100%
S16. DIFF rg=-0.24, CPRgr =0.15 -2036.1 -1056.1 0% 112.7 100% 100% -2817.3 -1990.6 0% 423.8 100% 100%
S17. DIFF rr=-0.48, CPRrr =0.04 -3089.0 -1567.3 0% 243.9 100% 100% -4058.7 -5346.8 0% 3379.6 100% 100%
SRS Sample Size n=200
S01. DIFF gr=0.00, CPRrr=1.00 6.3 18 95% 1.0 5% 1% 6.1 1.7 95% 1.0 6% 1%
S02. DIFF gr=0.00, CPRrr=1.00 56.3 9.0 97% 0.9 4% 1% 59.2 9.4 95% 1.0 5% 1%
S03. DIFF gr=-0.41, CPRgr=1.00 42.3 -3.2 100% 0.3 0% 0% 11484 1114 81% 21 19% 5%
04. DIFF gg=0.00, CPRgr =4.75 713.2 45.0 100% 0.4 0% 0% 1476.0 1124 89% 18 12% 2%
05. DIFF gg=0.00, CPRrr=3.41 1179.2 88.0 100% 1.0 0% 0% 2191.6 234.3 35% 6.9 69% 43%
06. DIFF gg=0.00, CPRgr=2.74 1014.8 81.6 99% 0.9 1% 0% 1935.2 2124 45% 5.9 59% 35%
S07. DIFF gg=0.00, CPRgr =2.06 833.6 78.5 99% 0.9 1% 0% 1584.5 189.7 52% 5.0 49% 26%
S08. DIFF gg=0.00, CPRgrr=1.50 462.0 57.4 98% 0.9 2% 0% 935.2 131.6 75% 29 29% 10%
09. DIFF gg=0.00, CPRgrr=1.29 283.3 40.9 97% 0.8 3% 0% 590.2 921 86% 19 16% 5%
S10. DIFF gg=0.00, CPRgr=1.11 123.3 20.2 97% 0.8 3% 1% 252.9 43.0 94% 12 6% 2%
S11. DIFF gg=0.00, CPRgrr =1.07 81.8 14.1 96% 0.8 3% 1% 171.3 30.1 94% 1.0 6% 1%
S12. DIFF gg=-0.24, CPRgr =0.90 -197.3 -19.2 99% 0.4 1% 0% 729.0 56.4 95% 11 4% 0%
S13. DIFF rg=-0.24, CPRgr =0.69 -429.4 -43.8 95% 0.7 4% 1% 280.6 18.6 95% 0.9 4% 1%
S14. DIFF rg=-0.24, CPRgr =0.49 -779.8 -86.6 89% 15 10% 4% -491.7 -58.5 89% 15 10% 3%
S15. DIFF rg=-0.24, CPRgr =0.30 -1249.4 -130.6 80% 24 20% 7% -1428.3 -158.6 66% 3.7 38% 18%
S16. DIFF rg=-0.24, CPRgr =0.15 -1642.0 -140.0 82% 23 15% 4% -2235.1 -229.6 35% 6.1 69% 37%
S17. DIFF gr=-0.48, CPRrr =0.04 -2476.1 -220.0 32% 4.9 68% 16% -3437.8 -531.6 0% 30.9 100% 100%
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4.4  Simulation Results Conditioning on Samples Grouped by Distance
Measure

Both Chapter 3 and Section 4.3 show that under the outcome variable model
Y _Additive_Interaction, the average relative bias and coverage rate of the 95 percent
confidence intervals for raking over repeated sampling may be acceptable in some
response scenarios with weak multiplicative interaction effort (e.g., S11 and S12).
However, we have only one sample for a survey in the real world, so it is important to
understand how a calibration estimator may perform for a given sample. That is,
although a calibration estimator may perform reasonably well on average (over repeated
sampling), we may still end up with an “unlucky” sample with poor performance in
practice. In this section, we demonstrate the value of the proposed distance measure in
helping identify such samples. We use the combination of the outcome variable model
Y _Additive_Interaction and response scenario S11 to evauate the properties of
poststratification, raking, and GREG_Main conditioning on samples defined by the
proposed distance measure. Given the fact that the coverage rates of the 95 percent
confidence intervals are acceptable for most of the response scenarios with SRS sample
size n=200 (discussed in Section 4.3), the simulation work in this section is based on
only two SRS sample sizes. n=8,000 and n=2,000. The simulation setup is similar to
that in Section 4.3 except that the total number of simulated samples is increased to
10,000 to warrant a large number of samples in each group defined by the range of
distance measures. The 10,000 simulated samples are sorted by the estimated distance
measure for the calibration estimator of interest and then partitioned into 20 groups. For

example, to compare raking with poststratification, we first estimate the raking distance
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measure for each sample, DIST aking, - 1 €N we sort all the 10,000 samples ascendingly

by DIST -aking, @Nd partition the sorted samples into 20 groups with approximately 500

samples in each group. These groups are referred to as “0"-5 percentile distance
measure group”, “5M-10" percentile distance measure group”, ..., and “95"-100"
percentile distance measure group”. Finally, we examine the properties of the
poststratification estimator and raking estimator for the samples in each of the 20
distance groups using the evaluation parameters described in Chapter 3. A similar

procedure is used to compare GREG Main and poststratification conditioning on
samples defined by the GREG_Main distance measure DfSFGREG_MajnS. The results in

this section warn us of the potential consequence of using an “amost appropriate but not
quite appropriate” calibration estimator for a possibly “unlucky” sample in the real

world.

Figure 4.5 illustrates the properties of the three calibration estimators conditioning on
samples grouped by the distance measure for the Y_Additive Interaction and S11

combination. The response model S11 has DIFF,; =0 and CPRy =1.07 , meaning

there is no additive interaction effect and almost no multiplicative interaction effect in
the model. The top panel (a) of Figure 4.5 shows the relationship between the relative
bias and the distance measure, and the bottom panel (b) shows the relationship between
the bias ratio and the distance measure. Within Figure 4.5(a), the two rows from top to
bottom correspond to SRS sample sizes n=8,000 and n=2,000 respectively. The four
columns from left to right show the relationships: 1) between poststratification relative

bias and raking distance measure; 2) between poststratification relative bias and
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GREG_Main distance measure; 3) between relative bias and distance measure for raking;
and 4) between relative and distance measure for GREG_Main. The three grey linesin
each of the eight embedded subfigures indicate the upper limits of the distance measures
for the 25" percentile, 50" percentile, and 75" percentile, respectively, of the 10,000
sorted samples. The two left columns (both labeled “ Poststratification”) in Figure 4.5(a)
demonstrate that the relative bias for poststratification remains very small (actually zero
in theory) and is independent of the magnitude of the raking and GREG_Main distance
measure. The two right columns (labeled “Raking” and “GREG_Main”) show that for
both raking and GREG_Main, there is a positive relationship between the absolute value
of relative bias and the distance measure. For al the three estimators, the “bands’ of the
relative biases become wider as the SRS sample size decreases because the variances of

the estimators become larger.

Figure 4.5(b) has the same structure as Figure 4.5(a) except that the y-axis for each
subfigure in Figure 4.5(b) is bias ratio instead of relative bias. The bias ratios for
poststratification generally fall within the range of [-2, 2] and are independent of the
distance measures. For raking and GREG_Main, the absolute value of the bias ratio
increases as the distance measure becomes larger. For example, Table 4.2 above shows
that for the combination of Y_Additive Interaciton, S11, and n=8,000, the average bias
ratios over all the simulated samples are approximately 0.74 for raking and
approximately 1.89 for GREG_Main. When the samples are sorted ascendingly by the
estimated distance measure and divided into 20 distance groups, the average absolute

values of the average bias ratios by distance group range from 0.04 (for the 0-5™
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percentile distance group) to 2.49 (for the 95™-100"" distance group) for raking and from
0.11 to 3.80 for GREG_Main. As discussed earlier, the absolute value of the bias ratio
increases as the SRS sample size increases because the larger sample size decreases
sample variances. This is reflected in Figure 4.5(b) by the ranges of bias ratios for

raking and GREG_Main being wider with n=8,000 than with n=2,000.

The coverage rates of the 95 percent confidence intervals by distance group under the
Y _Additive_Interaction, n=8,000, and S11 combination are presented in Table 4.3 for
raking and Table 4.4 for GREG_Main, respectively. Although the average coverage rate
of the 95 percent confidence intervals over all the simulated samples is as good as
approximately 92 percent for raking (see Table 3.4 in Chapter 3), Table 4.3
demonstrates that the coverage rates for raking vary substantially by the distance
measure. For samplesin the 0" to 60" percentile distance groups, the average coverage
rates of the 95 percent confidence intervals are 100 percent (i.e., over coverage).

However, the coverage rates drop to under 84 percent for the samples in the 80" to 100™"

A

percentile distance groups (corresponding to DI >2.76). If asurvey practitioner

rakingg
happens to obtain a sample from the 95"-100" percentile distance group (corresponding

to DIST

raking, > 0-56), then the coverage rate of the 95 percent confidence intervals is

only 9 percent. In contrast, the coverage rates of the 95 percent confidence intervals for
poststratification are essentially independent of the groups of samples defined by the

raking distance measure.
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Figure 4.5 Properties of Poststratification, Raking, and GREG_Main Conditioning on Samples Grouped
by Distance Measure under Outcome Model Y_Additive Interaction and Response Model S11

139



Table 4.3 Properties of Raking and Poststratification Conditioning on Estimated Raking Distance Measure

under Outcome Model Y_Additive Interaction, SRS n=8,000, and Response Model S11

Distance Group . Mean of 95(yccovefr'adge Ratletof o
Based on DIST,,,,, Range of DIST, ., DIST g, o Confidence Intervals
Poststratification Raking
Oth — 5th percentile (6.23x10%,0.00784] 0.00 96% 100%
5th — 10th percentile (0.00784,0.034] 0.02 96% 100%
10th — 5th percentile (0.034,0.0749] 0.05 95% 100%
15th — 20th percentile (0.0749,0.138] 0.10 95% 100%
20th — 25th percentile (0.138,0.215] 0.17 97% 100%
25th — 30th percentile (0.215,0.312] 0.26 95% 100%
30th — 35th percentile (0.312,0.432] 0.37 95% 100%
35th — 40th percentile (0.432,0.556] 0.49 95% 100%
40th — 45th percentile (0.556,0.699] 0.63 95% 100%
45th — 50th percentile (0.699,0.879] 0.79 95% 100%
50th — 55th percentile (0.879,1.09] 0.98 94% 100%
55th — 60th percentile (1.09,1.32] 1.20 95% 100%
60th — 65th percentile (1.32,1.57] 1.45 95% 99%
65th — 70th percentile (1.57,1.9] 174 96% 99%
70th — 75th percentile (1.9,2.27] 2.08 95% 96%
75th — 80th percentile (2.27,2.76] 251 95% 92%
80th — 85th percentile (2.76,3.33] 3.03 94% 84%
85th — 90th percentile (3.33,4.18] 3.71 95% 71%
90th — 95th percentile (4.18,5.56] 481 95% 46%
95th — 100th percentile (5.56,16.3] 7.60 96% 9%

Table 4.4 shows the coverage rates of the 95 percent confidence intervals for
GREG_Main and poststratification for the various groups defined by the GREG_Main
distance measure. The average coverage rate of the 95 percent confidence intervals over
the 10,000 simulated samples is only approximately 52 percent for GREG_Main (see
Table 3.4 in Chapter 3). In Table 4.4, the coverage rates become unacceptable for the

samples in the 45" to 100" percentile distance groups (corresponding to
DIASI'GREG_M%S >3.86) due to the combined effect of a biased estimator (so the

confidence interval is centered at awrong point) and very small variance associated with

large sample size (so the confidence interval is very narrow).
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Table 4.4 Properties of GREG_Main and Poststratification Conditioning on Estimated GREG_Main
Distance Measure under Outcome Model Y_Additive Interaction, SRS n=8,000, and Response Model

S11
Distance Group Based | Range of Mean of 950/082)’%%9;5:??]%“ ]
on DISTGREG_MajnS DlSI—GREG_Majns DlSI—GREG_Majns ’

Poststratification GREG _Main
Oth — 5th percentile (2.43x107, 0.231] 0.08 97% 100%
5th — 10th percentile (0.231,0.667] 0.44 96% 100%
10th — 5th percentile (0.667,1.13] 0.90 94% 100%
15th — 20th percentile (1.13,1.58] 135 95% 100%
20th — 25th percentile (1.58,2] 1.79 96% 99%
25th — 30th percentile (2,2.5] 2.24 94% 96%
30th — 35th percentile (2.5,2.92] 271 96% 90%
35th — 40th percentile (2.92,3.39] 3.15 96% 86%
40th — 45th percentile (3.39,3.86] 3.63 96% 72%
45th — 50th percentile (3.86,4.39] 4.13 94% 61%
50th — 55th percentile (4.39,4.96] 4.67 95% 46%
55th — 60th percentile (4.96,5.52] 5.25 94% 35%
60th — 65th percentile (5.52,6.12] 5.82 98% 21%
65th — 70th percentile (6.12,6.8] 6.46 93% 14%
70th — 75th percentile (6.8,7.58] 7.20 96% 6%
75th — 80th percentile (7.58,8.51] 8.03 95% 3%
80th — 85th percentile (8.51,9.68] 9.06 95% 1%
85th — 90th percentile (9.68,11.2] 10.41 94% 0%
90th — 95th percentile (11.2,13.6] 12.26 97% 0%
95th — 100th percentile (13.6,30.8] 16.94 94% 0%

45 Conclusions and Limitations

Chapter 3 may give the readers the impression that raking should be a good calibration

estimator even for the outcome variable model Y_Additive Interaction as long as the

multiplicative interaction term in the response model is weak. Such a conclusion is only

based on the average properties of the estimator over repeated sampling, and thus can be

misleading. This is because in the real world, a survey practitioner can usually obtain

only one sample and al the outcome measures must be estimated from this sample.
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This chapter shows that choosing an “amost appropriate but not quite appropriate”
estimator can be detrimenta to the bias ratio and the coverage rate of the 95 percent
confidence intervals for some “unlucky” samples, especialy when the sample size is
large (assuming that the same calibration weighting strategy is used regardiess of the
sample size). The distance measure we propose can help identify such “unlucky”
samples to some extent. Through both theoretical development and simulation work, we
prove that the proposed distance measure follows Chi-square probability distribution
under the null hypothesis that the expected values of the estimated cell counts equal the
cell benchmark controls. The proposed distance measure can be estimated from an
achieved sample, and then compared to the critical values in a Chi-sgquare distribution
table to determine whether it is “too large’. On the one hand, we need to emphasi ze that
the outcome variable model is the most critical factor and a large distance measure does
not necessarily indicate significant bias for raking or GREG_Main. On the other hand,
a real-world survey usualy contains multiple key outcome measures, and it is often
unlikely that the interaction term exists in none of the key outcome variable models. If
the estimated distance measure is “too large’, then it is a warning sign of potential bias
for raking or GREG_Main due to excluding a significant interaction term during

cdlibration.

Finally, we need to point out that the variance term var( l(l{”l) in (4.18) is estimated from

each simulated sample, so the conclusions in Sections 4.3 and 4.4 may depend on the
accuracy of the variance estimation method implemented in the “calibrate” function of

the R Survey package. To check the validity of these conclusions, the empirical
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variance of Nll is calculated over al the simulated samples and compared to the

estimated variance for some response scenarios. It isfound that for raking, the estimated
variance tends to be noticeably larger than the empirical variance under the response
models with strong multiplicative interaction effect, making the estimated distance
measure smaller than the true value. Despite this limitation, the conclusions about the
relationships between the strength of the interaction effect in the response model, the
distance measure, and the bias and bias ratio of the calibration estimator under the
Y _Additive_Interaction model still hold. We plan to further investigate the variance

estimation issue for raking in Chapter 5.
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Chapter 5. Comparison of Alternative Variance Estimators for Raking

Several evaluation measures presented in Chapters 3 and 4 involve estimated variances

using the “calibrate’ function in the R Survey package. For example, the estimated

variance from the sample, var (fw) , Is used to obtain the 95 percent confidence interval

for each simulated sample in Chapter 3. This approach (instead of using the empirical
variance from all the simulation samples) is chosen because in practice, only one sample
can be obtained for a survey and the variance has to be estimated from the sample. The
“calibrate’ function in the R Survey package estimates the variance of alinear substitute
that is equivalent to the product of the calibrated weight and aresidual calculated from a
linear model of the outcome variable on a vector of auxiliary variables. For raking, the
residual is based on a main effects model with the covariates being indictors for the
raking categories of each dimension. The limitation of using the estimated variance
from the sample is that the results rely on the accuracy of the variance estimation

method implemented in the “calibrate” function.

In Chapter 4, the denominator of the distance measure shown in (4.18), var(Ni“jV) ,isalso

computed from each simulation sample, so the conclusions about the distance measure
may depend on the accuracy of the variance estimation method as well. During the
validity check (described in Section 4.5 of Chapter 4), it is found that for raking, the
estimated variance tends to be significantly larger than the empirical variance for the
response scenarios with strong multiplicative interaction effect (see more details in

Section 5.6 of this chapter). Although the biasin the estimated variance does not change

144



the general conclusions in Chapter 4, it motivates us to further investigate the variance

estimation issue for raking.
5.1 Background and General Research Method

Since iteration is needed to solve the calibration equations for raking, survey
practitioners often approximate the variance of the estimated total fyrk by the variance of
the “converged” estimator, i.e., the hypothetica estimator arising from an infinite

number of iterations, represented by var(Zvv,yi) , where W is the “converged” weights

(Deville, Sérndal, and Sautory 1993). In practice, a linear model,
Yy, =BXx, +¢,, ¢, ~iid N(0, o?), is fitted for the outcome variable y on a vector of

auxiliary variables x . For raking, the linear model is a main effects model with the

covariates being indictors for the raking categories of each dimension. A linearization

variance estimator is obtained by approximating var(Zvviyi) by var(ZdiZ) for a

“linearized varisble” z , where Z =(y, —I_5>xi)fi , with f being the weighting
adjustment factor applied to the basic design weight d. when weighting (Deville 1999,

D’Arrigo and Skinner 2010). Severa choices of the factor f are available and

discussed later in this chapter. D’ Arrigo and Skinner (2010) define alternative forms of
linearization variance estimators for an estimated total via different choices of weights
applied to not only the residuals but also the estimated regression coefficients used in

calculating the residuals. Their empirical work results in two conclusions. First, the
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approach that weights residuals by the basic design weight can be severely biased in the
presence of nonresponse. In contrast, the approach that weights residuals by the
calibrated weight tends to display much less bias. Second, varying the choice of weights
used to construct the regression coefficients has little impact. In the D’Arrigo and
Skinner (2010) framework, however, the simulation is based on a few selected variables
from the British Labor Force Survey and German Survey of Income and Expenditure. It
is unclear what models may govern the outcome variables (i.e., whether there are strong
interaction effects in the outcome models and/or whether the outcome models have very
strong explanatory power). Although response models are discussed in their work, there
is no explicit manipulation of the strength of the multiplicative interaction term in the
response model. We know from Chapter 3 that both the outcome model and the
response model may affect the performance of a raking estimator. Now the question is
whether and how these models may impact the performance of a variance estimator for

raking. The existing literature does not provide a clear answer to this question.

Given the perceived bias of the linearization variance estimator for raking in Chapter 4,
it is worthwhile to evaluate how alternative variance estimators for raking may perform
in the presence of nonresponse under different outcome models and response models.
We will specify the outcome models and response models explicitly to show the impacts
of these models on the performance of the variance estimators. We will also vary the R-
squared values of the outcome variable models to help us understand how the results

may hold in practice.
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One challenge in the attempt to obtain a variance estimator for raking is that the raking
ratio estimator does not have a closed form solution. Because of this, it is unclear how
to obtain an analytical solution for the linearization variance estimator. Therefore our
approach is to use a simulation to obtain the empirical approximation to the distribution
of the variance of araking estimator. During the simulation study, we repeatedly draw a
sample, rake, and compute an estimate and estimated variances using the variance
estimators under evaluation. Then for each variance estimator, we compute the mean
(across simulation iterations) of the variance estimates, and then estimate the empirical
bias of the variance estimator by comparing the mean of the variance estimates to the

empirical variance of the estimates.

5.2 Variance Estimators under Evaluation

Shao (1996) and Wolter (2007) provide detailed discussions of both replication and
linearization approximation methods used for variance estimation from sample surveys.
In this research, we first re-evaluate the properties of the four linearization variance
estimators proposed by D’ Arrigo and Skinner (2010), and then examine the performance

of areplication variance estimator for raking.

5.2.1 Four Linearization Variance Estimators

D’ Arrigo and Skinner (2010) show that the linearization variance estimator for a raking

estimator for atotal fyrk can be expressed as
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var(f,, ) ~ var(} d.z) (5.1)

where Z =(y, — éxi) f. istrested as afixed variable. That is, the variance of the raking

estimator {,, is approximately equal to the variance of ) d (yi ~Bx, )f. . d is the

basic design weights. B is the vector for the regression coefficients in the weighted
regression model for obtaining the GREG estimator. f. is the weighting adjustment
factor applied to the basic design weight d. when weighting the residuals g =y, — éxi
from the regresson model. Therefore, the variance of fy,k depends on not only the

variance of theresiduals € , but also the weighting adjustment factor f;.

A number of choices of B and f. are discussed in D’ Arrigo and Skinner (2010). Two

options are considered for B depending on what weights are used in the regression

model:

1) B™ = (2 dyx")(Cdxx")™" when the regression model uses base weights.

The corresponding residual from the regression model is €™ =y, — é“’w‘xi :

2) B™ = (ZwiyixiT)(ZwixixiT)‘1 when the regression mode! uses raked weights

W =diF(xiT):) . The corresponding residual from the regression model is

quwt =y _érkwtx_ .

148



The weighting adjustment factor f. determines how the residuals are weighted. Two

natural choices are:

1) base-weighted residuals, where f. =1, and

2) calibration-weighted residuals, where f, = F(x,"%) = w /d .

In summary, the variance of araking ratio estimator can be estimated as

2
A 1
var(ty,) = Vaf(z d fig)= nnr_lz(di fi& —n—zi'er d; fi'q'j (5.2
where
. 1
Cw/d

y, —B™x,

q :{ 5 rkwt
\ B X

As part of this research, we will obtain the mean of the variance estimates (over all the
simulation iterations) for raking using each of the following four linearization variance

estimators discussed in D’Arrigo and Skinner (2000). These estimators are based on
different choices for B and f., as summarized in Table 5.1. Among these four

estimators, “BWT.Residual_ RKWT.Regression” is probably the least intuitive one, so

we include it mainly for completeness.
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Table 5.1 Four Linearization Variance Estimators and Their Labels

Description of how weights are used in | Choice | Choice | Label for Easy Reference
variance estimator for f | for B

Base weightsto weight up residuals &
base weights to obtain regression 1 gt BWT.Residua BWT.Regression
coefficients

Base weights to weight up residuals &
raked weights to obtain regression 1 B | BWT.Residual_RKWT.Regression
coefficients

Raked weights to weight up residuals &
base weights to obtain regression w /d; gowt RKWT.Residual_BWT.Regression
coefficients

Raked weights to weight up residuals &
raked weights to obtain regression w /d; B | RKWT.Residual_RKWT.Regression
coefficients

5.2.2 Replication Variance Estimator

Replication variance estimation consists of repeatedly calculating estimates for
subgroups of the full sample and then computing the variance among these “replicate”
estimates. One main advantage of the replication method is that it provides a ssimple
way to account for adjustments that are made in weighting. By separately computing
the weighting adjustments for each replicate, it is possible to reflect the effect of
variability of weight adjustments in the estimates of variance. Replication aso has some
disadvantages. For example, the method is computationally intensive and, in the case of

the jackknife, inappropriate for quantile estimation.

The key motivation for considering the replication method is that the raking ratio
estimator does not have a closed form solution, so that the linearization method of
variance estimation may not correctly account for all sources of variation in an estimator.

A good aternative may be to use the replication method to approximate the variance.
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The Jackknife 1 (JK1) method is appropriate for our simulation study because the
sample design (described in Chapter 3) involves no explicit stratification. To implement
the JK1 method for raking, we first form replicates that are random subsets of equal or
nearly equal size, with each subset resembling the full sample. Then raking is
performed separately on the full sample as well as on each replicate, and the estimate of
interest is calculated from the full sample and each replicate. Finaly, the variation
between the replicate estimates and the full-sample estimate is used to estimate the
variance for the full sample. Assuming that the finite population correction factor can
be ignored, the JK1 variance estimator for an estimated total (using a raking estimator)

takes the form

0= £ 5.3
var(t,,) = G Z(yrk(g) yrc) (5.3)
o1

A

where fyrk is the full-sample estimate, t,, , is the estimate of t based on the

observations included in the g-th replicate, and G is the tota number of replicates

formed.

5.3 Simulation Setup
5.3.1 Simulation Scenarios

The simulation study aims to compare the properties of several alternative variance

estimators for raking for the estimate of afinite population total under different outcome
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variable models and response scenarios. The scope of the study is described in Section
3.3 of Chapter 3. The SRS sample size is 8,000 for the simulation conducted in this

chapter. The simulation scenarios are determined by the combination of three factors.

First, there are two outcome variable models. Y_Main as specified in (3.12) versus
Y _Additive_Interaction, as specified in (3.13). The Y_Main model contains only main
effect terms, while the Y_Additive Interaction model contains a non-zero additive

interaction term in addition to the main effects.

Second, the predictive power of each outcome variable model is varied as in the
sensitivity analysis in Chapter 3. The R-squared value of the model is either close to
one (i.e., the high R-squared setup) or approximately 0.65 (i.e., the medium R-squared

setup).

Third, the strength of the multiplicative interaction effect in the response model is varied
because the ssmulation results in Chapter 3 shows that it is the multiplicative interaction
effect (not the additive interaction effect) in the response model that affects the
performance of the raking estimator under the Y_Additive_Interaction outcome variable
model. For the evaluation of the variance estimators, we choose only seven of the 17
response scenarios from Table 3.3 because the replication method is computationally
intensive. These seven response scenarios still represent a gradual change of the

strength of the multiple interaction effect, with the CPRrr ranging from 0.04 to 4.75.
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The total number of simulation scenarios is 2x2x7=28. Table 5.2 summarizes these 28

scenarios defined by four outcome variable models and seven response models.

Table 5.2 Simulation Scenarios for Comparing Variance Estimators

Scenario Model Parameters
Y_Int with 11, =1000, @, = (aty,, ety,) = (—200, 300), B, = (By,, By,) = (—100, 150),
- R?=0.9979 Ty = (Pya1:Vv12:VvarsVv22) = (200, 300, 700, 1200), Evik ~ N (0,900)
e
S [ Y_Manwith | x4, =1000, a, = (a,,, ay,) = (—200, 300), B, = (B,, By,) = (—100, 150),
% R?=0.9886 &5 ~ N(0,900)
% Y_Int with 11, =1000, 0, = (cty,, @,,) = (200, 300), B, = (By,, B.,) = (—100, 150),
g R?=0.6348 Ty = ("vanVvaz: Vvar: Vvze) = (100, 300, 700, 1200), &y, ~ N(0,250000)
O
3 | Y_Manwith | 4, =1000, e, = (ay,, @y,)=(-200, 300), B, = (B, B,) = (-100, 150),

R?=0.6813 &y ~ N(0,40000)

S04.CPR=4.75 | R11=0.12, R1>=0.48, R»=0.02, R»>=0.38
S06.CPR=2.74 | R11=0.28, R1>=0.92, R»=0.08, R2=0.72
S08.CPR=1.50 | R11=0.40, R1,=0.80, R21=0.20, R»=0.60
S11.CPR=1.07 | R11=0.56, R1,=0.64, R21=0.36, R»=0.44
S15.CPR=0.30 | R11=0.09, R12>=0.21, R21=0.41, R»,=0.29
$16.CPR=0.15 | R11=0.04, R1,=0.26, Rx1=0.36, R»=0.34
S17.CPR=0.04 | R11=0.02, R1,=0.58, R21=0.66, R»=0.74

Response Model

5.3.2 Simulation Steps and Evaluation Criteria

We compare the properties of six variance estimators for raking, including the four
linearization variance estimators in Table 5.1, the JK1 variance estimator (with 80
replicate groups), and the variance estimator implemented in the “calibrate” function of
the R Survey package. The last one is referred to as “Lumley estimator”; it is included
in the evaluation because the existing documentation does not provide much technical
detail about the method. For each of the 28 simulation scenarios, the following steps are
used to evaluate each of the variance estimators.
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First, we repeatedly draw a sample, rake, and compute an estimate and estimated

variance var(fyrk) using the variance estimators under evaluation. We aso compute the

estimated relative standard error, RelSE({,,, ) = \/var(f,,) / t, .

Second, we compute the mean (across the S simulation iterations) of the estimated

relative standard errors. This mean is denoted E, (Rel SE(fyrk)) .

Third, we compute the empirical relative standard error across the S simulated samples,

EmpReISE(f,,) = [Empvar £, /1, \/(1/8)2 ~E,(,, ) , » where

E,(t,)=@1/9)>] ;fyws , the average value of fwvs over repeated sampling.

Finaly, we compare E,(RelSE(t,,)) against EmpRelSE(f,,) by calculating the ratio
between Ep(ReISE(fy,k)) and EmpReISE(ny) (referred to as “ratio of estimated

standard error versus empirical standard error).

5.4 Theoretical Development and Expected Results from Simulation
5.4.1 Genera Formulafor Raking Variance

In the presence of nonresponse, the variance comes from three sources, including the

outcome variable, response, and sampling distributions. We are interested in finding
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E.EV,, (fyrk) , the expectation of the model variance for raking over both response

distribution ( E; ) and sampling distribution (E; ).

To obtan the variance formula for raking, a linear modd,
Yy, =Bx, +¢,, ¢, ~iid N(0, 6?), is fitted for the outcome variable y on a vector of

auxiliary variables x .  Then as shown in (5.1), the model variance for raking
(conditioning on sampling and response) can be approximated by the variance of alinear

substitute

VM (fyrk |S’ r)
~Vy (zdkzk |51 r

ker

=V (zdk fiew)

ker

= zdkz ka\/M (&)

ker

(5.4)

where d, isthe basic design weight, f, isthe weighting adjustment factor applied to d.,

and &, =Y, —BX,. Both d, and f, aretreated asfixed variables.

1 if response

. . The expectation of the
0 if nonresponse

Now define the response indicator & :{

model variance for raking over response distribution (still conditioning on the initia

random sample) is
ER (VM (fyrk |S))
~ Eg (Z5dek2 sz\/M (gk)j (5.5)

kes

= z R<dk2 kaVM )

kes
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where R, isthe response propensity for unit k.

1 if sampled

. . The expectation of the
0 if not sampled

Finally, define the sampling indicator & ={

model variance for raking over response and random sampling distributionsis
EP ERVM (fyrk)

~E, (z5ka<dk2 sz\/M (8k)j

keU

| 59
= _dek2 kaVM (‘9k)

keU dk

= z Rd, sz\/M (&)

keU

Thisisthe genera formulafor the variance for raking.

5.4.2 Variance Estimator for a Special Situation When Raking Is Unbiased

In Chapter 3, we prove that if F; = Rj‘l (i.e., the raking adjustment factor in cell ij isthe
inverse of the cell response probability), then fyrk is unbiased across the outcome

variable, response, and repeated sampling distributions. Note that this is a sufficient

condition, but not necessary condition, for E,E.E, (f,, —t,, )=0.

In our simulation setup, al the units k in cell ij have the same response propensity. Also,
when raking is converged, al the units k in cél ij also have the same weighting

adjustment factor. Therefore a sufficient condition for the raking estimator to be
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unbiased would be f, =R *, which is essentialy Condition C in D’ Arrigo and Skinner

(2010).

When f, =R*, we can simplify (5.6) into two forms

E-ExVi (fyrk) ~ z dy f Vi (&4) (5.7)
keU
or
~ 1
EoEVy (6,0 ~ YV, () (59)
keU ﬂ.k

where 7, R, is the product of selection probability and response propensity. That is,

R, represents the probability of the unit being observed.

In practice, f, and V,, (g,) can be estimated from the responding sample, so (5.7) can be
used to estimate the variance for raking under a sufficient condition in which the raking
estimator is unbiased (as discussed in Section 5.4.2). Under this sufficient condition,
the approach in (5.7) is consistent with the RKWT.Residual_BWT.Regression approach
and the RKWT.Residua_ RKWT.Regression approach (see Table 5.1) in D’ Arrigo and

Skinner (2010).

There are two remaining questions. First, when the sufficient condition for raking to be
unbiased is not satisfied or when the raking estimator is biased, how do the four

linearization variance estimators in D’Arrigo and Skinner (2010) perform? Second,

dthough we know that V,, (¢,) can be estimated using €, it is unclear whether basic
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design weights or raked weights should be used in the regression model for obtaining the

residual €. The simulation results can help shed light on these two questions.

55 Simulation Results

Table 5.3 compares the estimated relative standard errors using different variance
estimation methods. The first column shows all the simulation scenarios defined by
different outcome variable model specifications and response models with varying
strength of multiplicative interaction effect. The second column is for the empirical
relative standard error. The remaining columns show the ratio of the estimated relative
standard error versus the empirical relative standard error for each of the four
linearization variance estimators in D’Arrigo and Skinner (2010), the Lumley result
using the “calibrate” function in the R Survey package, and the result using JK1
replication method with 80 replicate groups, respectively. Some cells are shown in color

font to help us identify and explain the data pattern. Recall that when the outcome
variable model contains a significant interaction term, the raking estimator fyrk is

unbiased only in the response scenarios with CPRrr being close to 1. Severa

conclusions can be drawn from Table 5.3.

First, the BWT.Residua_BWT.Regression estimates and
BWT.Residua_ RKWT.Regression estimates are much smaller than the estimates in the
“Empirical” column. The underestimation is due to the basic design weights not

weighting the sum in (5.2) to a high enough level to account for nonresponse. As a
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result, using the basic design weights to weight up the squared residuals from the
regression model (regardless of what weights are used in the regression model to obtain
the coefficients) results in underestimating the variance for an estimated total. For
example, the ratio of BWT.Residual_BWT.Regression to the empirical relative standard
error for the outcome model “Y _Int with R-squared = 0.9979” and response model S04

combination is only 0.09.

Second, under the outcome models “Y_Main with R-squared = 0.9886”, “Y _Int with R-
squared = 0.6348", and “Y_Man with R-squared = 0.6813", the
RKWT.Residua_ BWT.Regression estimates (using basic design weights to obtain
regression coefficients and raked weights to weight up the residuals from the regression
model) align well with the “Empirical” estimates (shown in purple font). That is, the
RKWT.Residual_ BWT.Regression approach performs well under two types of outcome
variable models: (1) when the outcome variable model contains only the main effect
covariates;, or (2) when the outcome variable model contains both main effect and
interaction terms, but the overall explanatory power of the model is not close to being
perfect. In contrast, using raked weights in the regression model to obtain residuals (the
RKWT.Residua_ RKWT.Regression estimates) leads to over-estimated relative standard
errors under these outcome variable models unless the response model contains almost

no multiplicative interaction effect (shown in green font).

Third, under the outcome variable model “Y _Int with R-squared = 0.9979”, both

RKWT.Residua_ BWT.Regression and RKWT.Residual_ RKWT.Regression are biased
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variance estimators except for the response model S11 with CPRrr=1.07 (shown in red
font). That is, unless the response model contains almost no multiplicative interaction
effect, none of the linearization variance estimators in D’Arrigo and Skinner (2010)
performs well when the outcome variable model contains strong interaction effect and

the model has amost perfect prediction power.

Fourth, for the scenarios in which the RKWT.Residual BWT.Regression variance
estimator and RKWT.Residual_ RKWT.Regression variance estimator are biased (shown
in green font and red font), the magnitude of the bias seems to be positively correlated

with the strength of the multiplicative interaction effect in the response model.

Fifth, the “Lumley” column shows the estimates using the “calibrate’ function in the R
Survey package. Our simulation results show that Lumley estimates are consistent with

the RKWGT.Residual_BWGT.Regression approach.

Finally, the replication method clearly outperforms all the linearization variance
estimation methods in D’Arrigo and Skinner (2010) in the scenarios that the raking
estimator is biased. The JK1 relative standard error aigns well with the empirical
relative standard error regardless of the outcome variable model and response model.

However, despite the unbiased variance estimator using JK 1, the confidence intervals do

not cover at the correct rate when the raking estimator fyrk isbiased. Thisisbecause the

confidence intervals tend to center at the wrong place due to the bias of the point

estimator.
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Table 5.3 Comparison of Estimated Relative Standard Errors Using Different VVariance Estimation Methods for SRS sample size n=8,000

Ratio of Estimated Relative Standard Error versus Empiricd Relative Standard Error

Empirica Linearization Method in D'Arrigo and Skinner (2010)

Outcome Variable Model and Response Model Reldive  |BWTResicud_ [BWTResidid_  |RKWTResidud [RKWTResidd_ | | ey | K1

Stendard Ifrror BWT.Regression | RKWT.Regression |BWT.Regression [RKWT.Regression
Y_Int with R-squared = 0.9979 X0
04: R11=0.12, R1,=0.48, R;;=0.02, R»2,=0.38, CPR=4.75 17.26 0.09 0.15 217 2.83 218 1.10
06: R11=0.28, R1,=0.92, R;;=0.08, R»2=0.72, CPR=2.74 10.80 0.25 0.35 1.80 1.97 1.80 1.02
08: R11=0.40, R1,=0.80, R;;=0.20, R»,=0.60, CPR=1.50 8.57 0.40 0.45 1.35 1.30 135 1.02
S11: R11=0.56, R1,=0.64, R»1=0.36, R2,=0.44, CPR=1.07 7.62 0.50 0.51 111 1.09 111 1.04
S15: R11=0.09, R12=0.21, R;;=0.41, R»,=0.29, CPR=0.30 11.11 0.22 0.24 1.35 131 135 1.06
S16: R11=0.04, R1,=0.26, R;;=0.36, R»2,=0.34, CPR=0.15 12.80 0.16 0.19 1.69 1.68 1.70 1.01
S17: R11=0.02, R12=0.58, R»:=0.66, R,=0.74, CPR=0.04 10.59 0.19 0.28 2.10 2.81 210 1.04
Y_Main with R-squared = 0.9886
S04: R11=0.12, R12=0.48, R»:=0.02, R»2=0.38, CPR=4.75 10.03 0.15 0.15 1.01 2.27 1.01 1.01
S06: R11=0.28, R12=0.92, R»:=0.08, R»2=0.72, CPR=2.74 6.09 0.36 0.36 1.01 1.79 1.01 1.00
S08: R11=0.40, R12=0.80, R2:=0.20, R»2=0.60, CPR=1.50 5.08 0.43 0.43 0.98 1.23 0.98 0.98
S11: R11=0.56, R12=0.64, R2:=0.36, R»2=0.44, CPR=1.07 4.29 0.52 0.52 1.05 1.10 1.05 1.06
S15: R11=0.09, R12=0.21, R2:=0.41, R»2=0.29, CPR=0.30 6.26 0.25 0.25 1.10 1.32 1.10 1.10
$16: R11=0.04, R12=0.26, R2:1=0.36, R»2=0.34, CPR=0.15 7.19 0.22 0.22 1.03 1.46 1.03 1.04
S17: R11=0.02, R1,=0.58, R»1=0.66, R2,=0.74, CPR=0.04 5.91 0.37 0.37 1.01 1.99 1.01 1.01
Y_Int with R-squared = 0.6348
04: R11=0.12, R1,=0.48, R»1=0.02, R2,=0.38, CPR=4.75 109.16 0.15 0.16 1.07 2.31 1.07 1.02
06: R11=0.28, R1,=0.92, R;;=0.08, R»,=0.72, CPR=2.74 66.92 0.36 0.36 1.04 1.80 1.04 1.00
08: R11=0.40, R1,=0.80, R;=0.20, R»,=0.60, CPR=1.50 56.26 0.43 0.43 0.98 1.22 0.98 0.97
S11: R11=0.56, R1,=0.64, R>1=0.36, R»2,=0.44, CPR=1.07 47.08 0.52 0.52 1.06 111 1.06 1.06
S15: R11=0.09, R1,=0.21, R»1=0.41, R2,=0.29, CPR=0.30 68.79 0.25 0.25 111 1.32 111 1.10
§16: R11=0.04, R12=0.26, R2:=0.36, R»2=0.34, CPR=0.15 79.85 0.21 0.21 1.05 1.46 1.05 1.03
S17: R11=0.02, R12=0.58, R»:=0.66, R»,=0.74, CPR=0.04 65.75 0.36 0.36 1.03 1.99 1.03 1.00
Y_Main with R-squared = 0.6813
S04: R11=0.12, R12=0.48, R2:=0.02, R»,=0.38, CPR=4.75 66.92 0.15 0.15 1.01 2.27 1.01 1.01
S06: R11=0.28, R12=0.92, R»:=0.08, R»2=0.72, CPR=2.74 40.63 0.36 0.36 1.01 1.79 1.01 1.00
S08: R11=0.40, R12=0.80, R2:=0.20, R»2=0.60, CPR=1.50 33.88 0.43 0.43 0.98 1.23 0.98 0.98
S11: R11=0.56, R12=0.64, R2:=0.36, R»2=0.44, CPR=1.07 28.60 0.52 0.52 1.05 1.10 1.05 1.06
S15: R11=0.09, R12=0.21, R21=0.41, R»2=0.29, CPR=0.30 41.75 0.25 0.25 1.10 1.32 1.10 1.10
S16: R11=0.04, R1,=0.26, R;1=0.36, R»2,=0.34, CPR=0.15 47.98 0.22 0.22 1.03 1.46 1.03 1.04
S17: R11=0.02, R1,=0.58, R;1=0.66, R»,=0.74, CPR=0.04 39.39 0.37 0.37 1.01 1.99 101 1.01
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To illustrate the data distribution, we plot the ratio of the estimated (relative) standard
error versus the empirical (relative) standard error, E (RelSE(t,,))/EmpReISE(f,,,) , for

RKWGT.Residua BWGT.Regression and RKWGT.Residual RKWGT.Regression
under each of the 28 simulation scenarios. Figure 5.1 shows the distribution of these

ratios grouped by the outcome variable model and reveal three patterns.

First, for the response model S11 with CPRrr=1.07 (when the raking estimator is almost
unbiased regardless of the outcome variable model), the ratio of the estimated standard
error versus the empirical standard error is close to 1 regardless of the outcome variable

model.

Second, for the outcome variable models “Y_Main with R-squared = 0.9886”, “Y _Int
with R-squared = 0.6348”, and “Y_Main with R-squared = 0.6813”, al the ratios for
RKWT.Residua BWT.Regression ae close to 1 while the ratio for
RKWT.Residua_ RKWT.Regression increases as the CPR value moves away from 1 to

either 0.04 or 4.75.
Finally, for the outcome variable model “Y _Int with R-squared = 0.9979”, the ratio for

RKWT.Residual_ BWT.Regression and the ratio for RKWT.Residua_ RKWT.Regression

both increase as the CPR value moves away from 1 to either 0.04 or 4.75.
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Figure 5.1 Ratio of Estimated (Relative) Standard Error versus Empirical (Relative) Standard Error for
RKWGT.Residua_BWGT.Regression and RKWGT.Residual_ RKWGT.Regression under Different
Outcome Variable Models and Response Models

The results in Valliant, Dorfman, and Royall (2000, Section 5.6) on model-based
variance estimation are relevant to the results for “Y _Int with R-squared = 0.9979". The
outcome model has amost perfect explanatory power and contains a substantively and
statistically significant interaction term. However, the raking estimator implicitly fits a
Y-model with main effects only, which is a misspecified model. In this case, a variance

estimator based on squared residuals from a misspecified model is expected to have two

properties. First, the variance estimator is expected to overestimate the variance of the
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raking estimator, but till be the same order of magnitude as the variance. Second, the

MSE of the raking estimator is expected to be of a higher order of magnitude than the

variance estimator due to the bias of fy .

The results in Table 5.3 and the plots in Figure 5.1 are consistent with the first point
above. Both RKWGT.Residua_ BWGT.Regression and
RKWGT.Residua_ RKWGT.Regression produce standard error estimates that are larger
than the empirical standard error, athough, as noted above, the degree of overestimation

issubstantialy larger for the latter.

Table 5.4 shows the ratio of the estimated (relative) standard error versus the square root
of  empirica  (relative) MSE,  E (ReIE(f,))/ReRMSE(E,,) .  for

RKWGT.Residua BWGT.Regression and RKWGT.Residual RKWGT.Regression
under the outcome model “Y _Int with R-squared = 0.9979” and various response models.
The only response scenario with these ratios larger than oneis S11. Thisis because when
the CPRgr is close to one (i.e.,, CPRrr=1.07 for S11), the bias of the raking estimator is
negligible, so the empirical MSE is approximately the same as the empirical variance.
For al the other rows, the data pattern is consistent with the second point above. The
estimated variance based on RKWGT.Residua BWGT.Regression  and
RKWGT.Residua  RKWGT.Regression are less than the empirical MSE. That is,
overestimating the standard error is not sufficient to produce good estimates of the actual
M SE because the MSE has a higher order than the variance due to the bias of the raking

estimator.
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Table 5.4 Ratio of Estimated (Relative) Standard Error versus Square Root of Empirical (Relative) MSE
for RKWGT.Residual_BWGT .Regression and RKWGT.Residual_ RKWGT.Regression under Outcome
Model “Y _Int with R-squared = 0.9979" and Various Response Maodels

E, (RelSE(f,, )/ RARMSE(E,,,)
Y_Int with R-squared = 0.9979 RKWGT.Residual_ | RKWGT.Residual_
BWGT.Regression | RKWGT.Regression
S04: R11=O.12, R12=0.48, R21=0.02, R22=O.38, CPR=4.75 0.22 0.28
S06: R11=O.28, R12=0.92, R21=0.08, R22=O.72, CPR=2.74 0.18 0.20
S08: R11=O.40, R12=0.80, R21=0.20, R22=O.60, CPR=1.50 0.25 0.24
S11: R11=O.56, R12=0.64, R21=0.36, R22=O.44, CPR=1.07 1.14 1.13
S15: R11=0.09, R12=0.21, R21=0.41, R22=O.29, CPR=0.30 0.12 0.12
S16: R11=0.04, R12=0.26, R21=0.36, R22=O.34, CPR=0.15 0.11 0.11
S17: R11=0.02, R12=0.58, R21=0.66, R22=O.74, CPR=0.04 0.07 0.10

D’Arrigo and Skinner (2010) conclude that both RKWT.Residual_BWT.Regression and
RKWT.Residua_ RKWT.Regression are nearly unbiased estimators. However, their
research does not explicitly investigate the impact of the outcome variable model or the
strength of the multiplicative interaction term in the response model. The conclusions
from our simulation study can help refine those in D’ Arrigo and Skinner (2010). It is
interesting that using the raked weights in the regression model to obtain regression
coefficient is actually proposed by Deville and Sarndal (1992, equation 3.4). A similar

idea is aso reflected in formula (1.21). D’Arrigo and Skinner (2000) explain that this

approach may be more practical than using the basic design weights to compute B
because the users of survey data files usually have access to the raked weights, but not
the basic design weights. However, the linearization variance estimator
RKWT.Residual_ RKWT.Regression is biased in al our simulation scenarios except
when CPRrr is approximately 1 (i.e., there is almost no multiplicative interaction effect
in the response model). This has two indications for the survey organizations in practice.

First, serious consideration should be given to producing replicate weights. Second, the
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basic design weights should be included in the public use file to facilitate the correct

implementation of the linearization variance estimation method.

5.6 Re-Examination of Conclusions about Raking in Chapters 3 and 4

In this chapter, our simulation results show that under some outcome variable model and
response model combinations, al of the linearization variance estimatorsin D’ Arrigo and
Skinner (2010) perform poorly, one of which (i.e., RKWGT.Residua BWGT.Regression)
appears to be the variance estimation method implemented in the “calibrate” function of
the R Survey package (referred to as “Lumley method”). On the other hand, the variance
estimator using the JK1 replication method is unbiased regardless of the outcome variable

model and response mode!.

Some conclusions about raking in Chapters 3 and 4 are based on the Lumley variance
estimation method. In this section, we re-examine those results by using the JK1
replication method to estimate the variance for raking. The measures of interest include
relative standard error, bias ratio, coverage rate of the 95 percent confidence intervals,
and distance measure. Due to the intensive computational work involved in the
replication method, we select only a limited number of scenarios for re-evaluation:
“Y_Main with R?=0.9886" and “Y_Int with R?>=0.9979" combined with the response
models shown in Table 5.2 for the SRS sample size n=8,000. Two new finite populations
are generated using the outcome model parameters described in Section 3.4 of Chapter 3.

Then simulated samples are drawn from the new finite populations for this re-evaluation

166



study. Due to the variation across simulation iterations, it is normal that the results using
the Lumley method in this Section may not be exactly the same as those in Tables 3.4 and

Table 3.5 in Chapter 3.

Table 5.5 compares the evaluation measures involving variance estimation using the
Lumley method to those using the JK1 replication method. The first several columns in

Table 5.5 are about the relative standard error, bias ratio, and coverage rate of the 95

percent confidence intervals for the estimated total for the outcome variable fy . Whether

there is any nonegligible difference between the Lumley method and the JK1 replication
method depends on the outcome variable model and response model. Under “Y_Main
with R?=0.9886", the raking estimator is nearly unbiased regardless of the response
model (as shown in Chapter 3). The Lumley method and JK1 replication method yield
approximately equal estimates for the relative standard error, bias ratio, and effective
confidence interval coverage rate. Under “Y_Int with R?=0.9979”, the magnitude of the
bias of the raking estimator is positively correlated with the strength of the multiplicative
interaction effect in the response model (as shown in Chapter 3). Table 5.5 shows that
when the CPRgrr is away from 1 for the response model, the Lumley method tends to
over-estimate the variance for raking. This makes the estimated relative standard error
too big, the estimated bias ratio too small, and the estimated confidence interval too wide.
Despite these inaccurate estimates due to the bias in the variance estimator for raking, all

the conclusions about raking in Chapter 3 still hold in general.
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The last three columns in Table 5.5 are about the estimated distance measure. The data
patterns for “Y_Main with R?=0.9886" and “Y _Int with R?>=0.9979" are essentially the
same because the distance measure depends on only the estimated totals for the auxiliary
variables, but not the outcome variable. When the CPRrr is away from 1 for the response
model, the estimated variances for the estimated cell counts using the Lumley method
tend to be noticeably larger than the estimated variances using the JK1 replication
method (which are close to the empirical variances). This makes the estimated distance
measure using the Lumley method noticeably smaller than that using the JK1 replication
method. For example, the ratio of the latter to the former is approximately 3.2 for the
response scenario S16 with CPRrr being 0.15. For the SRS sample size n=8,000, the

estimated distance measures are larger than the critical value 3.84 for rejecting the null
hypothesis (i.e., Prob(0.004 < y *(1) < 3.84) = 0.95), regardless of the variance estimation

method, for al the response models with CPRrr being away from one. Thus, the Lumley
results and JK1 results (despite their difference in the specific values for the estimated
distance measure) are likely to lead to the same conclusions. For the SRS sample size
n=200, however, the conclusions about the distance measure and potentia bias for raking
may be sensitive to the variance estimation method. For example, Table 4.2 in Chapter 4
shows that for n=200, the estimated distance measure using the Lumley method is
approximately 2.3 for the response scenario S16, which is smaller than the critical value
3.84. However, if we do a crude adjustment by using the ratio between the JK1 method
and Lumley method for the SRS sample size n=8,000 (which is 3.2 as described above),
then the “corrected” distance measure should be approximately 7.3. This corrected

distance measure is larger than the critical value 3.84, and thus can probably explain why
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the effective coverage rate of the 95 percent confidence intervals is only 82 percent.
Despite the limitation in Chapter 4 that is caused by the variance estimation method, the
conclusions about the properties of the distance measure in Chapter 4 till hold. That is,
the distance measure can help identify particular samples where the raking estimator is
likely to be biased, and consequently, the confidence interval coverage is likely to be

poor.
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Table 5.5 Comparison of Some Evaluation Measures in Chapters 3 and 4 Using Lumley Method and JK1 Replication Method for SRS Sample Size n=8,000

Properties of Raking Estimator Depending on How Var (fyw) Is Estimated

Distance Measure Depending on

How Var(N;;) Is Estimated

Outcome Variable model Response Scenario Reletive Standard Error Bias Retio Coverage Rate of 95% ~
RelsE(f,,,) x10° BiasRatio(f,,)x107 | Confidence Intervels E,(DIST)
Empiricd | Lumley JK1 Lumley JK1 Lumley JK1 Empiricd| Lumley JK1
Y_Mainwith R°=0.9886 S04. CPRrr=4.75 10.1 10.1] 101 21.8 218 96% 94% 101.9 214 949
S06. CPRrr=2.74 6.1 6.1 6.1 236 235 95% 95% 1334 36.0| 1244
S08. CPRrr=1.50 49 5.0 5.0 -175 -17.7 96% 95% 338 174| 332
S11. CPRrr=1.07 44 45 45 5.9 6.0 96% 95% 2.0 16 19
S15. CPRrr=0.30 6.5 6.9 6.9 -29.7 -29.7 95% 95% 154.4 87.7] 1557
S16. CPRrr=0.15 7.3 74 7.4 -41.8 -41.8 94% 93% 310.1 98.0| 3074
S17. CPRrr=0.04 5.7 5.9 6.0 4.0 3.6 96% 96% 933.9 193.6| 893.6
Y_Int with R°=0.9979 04. CPRrr=4.75 18.6 375| 19.0 457.7 907.5 0% 0% 95.1 213 931
S06. CPRrr=2.74 104 195 111 592.3 1048.0 0% 0% 138.7 36.0] 1253
S08. CPRrr=1.50 85 116 8.8 389.9 518.0 0% 0% 34.9 175 333
S11. CPRrr=1.07 7.9 8.4 8.0 84.2 90.0 89% 85% 1.9 17 2.0
S15. CPRrr=0.30 11.7 150 11.8 -901.7  -1153.3 0% 0% 146.7 88.3| 1556
S16. CPRrr=0.15 12.8 2171 129 -9685  -1634.2 0% 0% 306.9 97.4| 307.7
S17. CPRrr=0.04 10.6 224 111 -1376.1  -2796.6 0% 0% 971.6 193.2| 890.6
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Chapter 6. Conclusions and Future Work

6.1 Conclusions

This dissertation investigates the properties of several widely used calibration estimators
in the presence of nonresponse. In the purely sampling context, Deville & Sarndal (1992)
demonstrate that many aternative forms of calibration weighting are asymptotically
equivalent, so the GREG estimator can be used to approximate some general calibration
estimators with no closed-form solutions such as raking. Our research in this dissertation
shows that this conclusion does not necessarily hold when nonresponse exists and single-
step calibration weighting is used to reduce nonresponse bias. With nonresponse, the
differences between poststratification, raking, and GREG_Main can be either substantive
or negligible depending on the outcome variable model and response model, so it is
important to examine these models to the extent possible when choosing the appropriate
calibration estimator. First, the outcome variable model is the dominant factor. If a
significant interaction effect is present in the outcome model and the overall predictive
power of the model is very strong (with R-squared value being close to 1), then
poststratification (which is comparable to a GREG model with interaction terms)
outperforms raking and GREG_Main except in the specia situation that the response
model does not include a multiplicative interaction term, in which case raking performs
amost equally well as poststratification. Second, raking preserves the multiplicative
interaction effect that is interna in the data before calibration while GREG_Main does

not, so raking tends to be less biased than GREG_Main when the response model
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contains a strong multiplicative interaction term. Third, for a large sample, a small
relative bias associated with an inappropriate calibration estimator can still lead to very
poor coverage rate of the 95 percent confidence intervals. Findly, as the predictive
power of the outcome variable model decreases, the advantage of poststratification over
raking and GREG_Main in bias reduction becomes less substantial. Moreover, if the
predictive power of the outcome model with the interaction term is not extremely high
and poststratification involves some very small cell counts, then the MSE may be higher

for poststratification than for raking and/or GREG_Main.

Our research also yields a proposed distance measure that can help gauge the potential
bias of raking and GREG_Main for a given sample. The distance measure follows the
Chi-square probability distribution when raking or GREG_Main is unbiased. In practice,
the distance measure is computable as long as the classification and corresponding cell
totals for the population are available. A large estimated distance measure is a warning
sign of potential bias and poor confidence interval coverage for some variables in a

survey due to omitting a significant interaction term in the calibration process.

The last part of our research is an empirical evauation of several variance estimators for
raking with nonresponse, including linearization and replication methods. Our simulation
results refine the conclusions in D’Arrigo and Skinner (2010) by demonstrating the
impact of outcome model and response model on the performance of several linearization
variance estimators. We show that when raking is model-biased, none of the

linearization variance estimatorsin D’ Arrigo and Skinner (2010) is unbiased. In contrast,
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the jackknife replication method performs well in variance estimation, although the
confidence interval may still be centered in the wrong place if the point estimate is biased.
Our research has two indications for the survey organizations in practice. First, serious
consideration should be given on producing replicate weights. Second, the basic design
weights should be included in the public use file to facilitate the correct implementation

of the linearization variance estimation method.

6.2 Future Work

Our dissertation presents a comprehensive framework for comparing the various
calibration estimators in the presence of nonresponse. We choose a limited scope for our
empirical work (as described in Section 3.2 of Chapter 3) such that the results can clearly
demonstrate the impact of outcome models and response models. The rea-world surveys
often involve complex sample design and calibration estimators based on an array of
variables with multiple categories. Future improvement and extension to our work may

include:

1. Empirical research on the settings that are more complicated than a 2x2 table. In
such settings, in addition to ;((2,,1)( 37 Statistic, the Cramér's V. may be used to

measure associ ation between variables with more than two categories.

2. Empirica investigation on how the power theory for the distance measure may

work.
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3. Theoretical and empirical work to show whether and why the choice of categories
does not affect the value of the proposed distance measure under complex sample
designs (because under a complex sample design, each cell estimate may have a
different design effect). Chapter 4 shows that the choice of the cell does not

matter for a 2x2 table, but further work is needed for tables with more categories.

4. Theoretical development for the raking variance estimators when the main effects

outcome model does not hold.

5. Examination of domain estimators for total and mean.
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Appendix A. Summary of Proofsin Deville & Sarndal (1992)

Deville & Sarndal (1992) consider a sequence of finite populations and sampling designs
indexed by n, where n is the sample size (for a fixed-sized sampling design) or the
expected sample size (for a random-sized sample design). The finite population size, N,

tends to infinity with n. The calibration weight is calculated as w, = d, F (x;1), where
F.(x;A) is non-negative and convex with F (0)=1and F, (0)>0. Severa assumptions
are made about the auxiliary vector x: (i) lim N7t exists; (ii) N‘l(fm —tx) =0,(n"?);

and (jii) n">’N~*(t,_ —t ) converges in distribution to the multinormal N(0,A), where A

can be reviewed as a matrix that describes an asymptotic effect of the sampling design

used in the survey. Two more assumptions are added for proving Results 3-5: (iv)

max [x, || = M < oo, where max is over n as well as over k; and (v) max F;(0) =M <.

All the distance functions given in Deville & Sarndal (1992) satisfy these conditions.

Result 1. The calibration equation has a unique solution belonging to the open

neighborhood of 0, with probability tendingto 1 asn — .

Proof: G, (w,d)is defined on an interval D, (d) containing d. g, (w,d)=0G, (w,d)/ow
maps D, (d) onto an interval Im,(d) in a one-to-one fashion. w, =d,F, (x;A), where

F.(-) isthe reciprocal mapping of g, ( - , d) that maps Im(d) onto D, (d).
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Equation (1.4) defines a function of & onC, = [{}:x¢heIm(d,)}, where N is over

keU,

keU,, the finite population associated with the (expected) sample size n. The interior

C, of C, is an open convex set containing O for every n. Then C’ =("|C_ is convex,

n=1

and we assume it is also open. Let E, () denote expectation with respect to the sampling
design indexed by n. For aeC’, N7'E,{® (1)} is a well defined continuously
differentiable function. Assumption (iii) is that n” 2N‘1(fm —t,) converges in distribution
to the multinormal N(0,A). For equation (1.4) to hold, it is necessary that for L e C”,
N'E, {<I>S (x)} converges to afixed function denoted @ | and the convergence is uniform
on every compact set in C™. Let ®_(A)=0®(r)/0r. We can obtain N"'®_(0)=0,

N®(0) = NT,, & (0) = 0,0 (0) = T = limN S x,x! .
U

® maps C" onto an open neighborhood of 0in R’ . Let B be a closed sphere with radius

r contained in this neighborhood, and let A be the compact set ®*(B). The inverse
function ®is defined on B, continuous and continuously differentiable. |@™(x)| is

bounded on B. All functions N*® (1) are defined on C"and therefore on A. Let P,

denote probability with respect to the sampling design indexed by n. For everyes >0,

P.(

N“'®, - @[ <&)—1 when nincreases

Let
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K =max,_,

(@) )| (A1)

Let @, =N, for some functions verifying[®, - @[, <pr ,[®,-@ <pK , with

0<p< % . The probability of this event tendsto 1 as n increases.

Let B1 be the sphere [x| < (1- 8)r in R’ . Now ®, maps the frontier of A onto the crown
(- B)r <|x|<@+B)r. Consequently, ®,(A) covers the sphere Bs. In other words, for
everyXx  B;, the equation @, (1) = x has a (unique) solution. Because @, - CD'HA <BK
for every A inC, (cpf)' (x) existsfor everyx € B.. Moreover,

;0] < K K @-p) (A2)

Conclusion: N*(t, —t,. ) belongs to B with a probability tending to 1. N™'®_ (1) has
an inverse function on By with a probability tending to 1. Equation (1.5) can be written as

N~ (h) = N7 (¢, —t_), which has a unique solution with probability tending to 1.

Result 2. Let A, bethe solution to equation (1.5) if one exist; otherwiselet A, be an

arbitrary fixed value. A, = Op(n’”z) , SO A tendsto 0 in design probability.
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Proof: Define z=N"(t, 1, ). Let i, =(N‘1CI>S)_1 (z) if z belongs to By; otherwise A
is  arbitrarily  defined. Since N'®,(0)=0 , we have
r,—0=(N",) " (z)-(N"®,) " (0), 0

S

[] <l @-p)" (A3)

Inequality (A.3) holds with probability tending to 1 when n increases. Since

z=0,(n""?), there exists aconstant K" such that P, (||| < K'n"**) - 1. Applying thisto

(A.3), weobtainP, (A, < K K(@-B)"n"?) -1, whichimplies &, =0, (n""?).
Result 3. by =T} (t,—t, )+O,(n?).

Proof: Let the difference between the adjustment functions for a general calibration

estimator and the GREG estimator be
0, (Xih) =F (x¢h) - 1+ gxi) (A.4)

where 1+qx, A isthe adjustment function for the GREG estimator.

The assumption is that 6, (x;1) = O((x[x)z) holds uniformly, which is equivalent to the

assumption that F,(0) is uniformly bounded. Thusg (x;4 ) = max 0, (x,) = O((x[x)z).
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Otherwise, for any ¢ >0, there exists K™ such that, for all k, [x.A <& will imply that

2

6, (xeh) < K'(x;2)

From (1.3) and (A.4), the calibration equation can be rewritten as

te—t = Yo {axin+0, (x| (A.5)

Multiplying both sides of (A.5) by T.* and rearranging the terms, we obtain
-~ TH(t,—t, ) =—T."> dx,0, (xih,) (A.6)

For A sufficiently small,

b (6, )HsH<N1TS>1HK"{N12dk ||xk||3}||>»sn2 (A7

We know that|(NT,)™*| =0,(1), and assumption (ii) indicatesN™"d, x|’ = O, (1) .

From Result 2, A" =O, (n‘l) . So Result 3 follows.

Result 4. The calibration estimator given in (1.6) is design-consistent, and

N7, -, )=0,(n™"?).

Proof: If equation (1.5) has asolution, then from (A.4)
to —t, =D AV R A ) =D dey, =D d Vi {axph, +6, (xch)} (A.8)
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Given the assumption that max 6, (x;2.) = o((x[x)z) , e obtain

<N +N™* (A.9)

de Y G X A

<Nl kD)o, ()

de Yk (XD“)

where Nl{deqk |yk|xk} =0,(1) and A, =0,(n""?).

Then, Result 4 follows.

Result 5. For any Fk(-) obeying the assumptions, fyw given by (1.6) is

asymptotically equivalent to the regression estimator given by (1.7), in the sense that

A A

N, — e ) =0, (n7).

From (1.6) and (A.4),

N7, = N7, + N (t,-,)"B,+0, (n-1)+ N*>d, yf, (xlks) (A.10)
The first two terms of the right side equal N’]‘fyreg as given in equation (1.7). The last

term is O,(n™). Therefore, n"?N7*(f,, -, )=0, (n™?), with zero asymptotic

variance.
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Appendix B. R Programs and Functions for Simulation Work

B.1 A Program for Creating the Population, Conducting Simple Random Sampling,
Respondent Sampling, and Calibration, and Obtaining Evaluation Measures

This program is used in Chapters 3 and 4.

i brary(sanpling)
library(survey)
library(plyr)
requi r e( MASS)

HRABHHHH TR R R RN R A AR AR R AR R R R R i
#Function for generating popul ation, control totals, response indicator
HERHHHHH T R

pop. and. control <- function (seed, |anbda, |anbda_ i, |anbda j,

| anbda_ij, yseed, ymu, yal pha, ybeta, yganma, ysigng,
rmeans) ({

# popcnt -- population count in each of the four cells

# pop -- a "dataset" for the popul ation

# total s.xvarlxvar2 -- a 2*2 matrix showi ng the crosstab of
xvar 1*xvar 2, xvarl and xvar2 are both categorica
vari abl es

# totals.xvarl -- a vector showing the tab of xvarl

# totals.xvar2 -- a vector showing the tab of xvar2

# Generate popcnt

set . seed(seed)
popcnt <- matrix(nrow = 2,ncol = 2) # population counts in cells
popcnt[1,1] <- rpois(n=1

| anbda=l anbda+l anbda_i [ 1] +l anbda_j [ 1] +l anbda_ij[ 1, 1])
popcnt[1,2] <- rpois(n=1,

| anbda=l anbda+l anbda_i [ 1] +l anbda_j [ 2] +l anbda_ij[ 1, 2])
popcnt[2,1] <- rpois(n=1

| anbda=l anbda+l anbda_i [ 2] +| anbda_j [ 1] +l anbda_ij[ 2, 1])
popcnt[2,2] <- rpois(n=1,

I anbda=l anbda+l anbda_i [ 2] +l anbda_j [ 2] +l anbda_ij[ 2, 2])

# Generate pop
pop <- matrix(nrow = sun{popcnt), ncol = 5) # dataset for popul ation
col names(pop) <- c("xvarl", "xvar2", "xvari12", "y", "respflag")
pop <- as.data.frane(pop)

# xvarl and xvar2 are both categorical variables
# Val ues for xvarl

pop[ 1: sum(popcnt[1,]), "xvarl"] <- 1

pop[ sum(popcnt[1,],1): sum popcnt), "xvarl"] <- 2
# Val ues for xvar?2

pop[ 1: popcnt[1,1], "xvar2"] <- 1

181



pop[ sum(popcnt[ 1, 1], 1): sum popcnt[1,]), "xvar2"] <- 2
pop[ sum(popcnt[1,],1):sunmpopcnt[1,], popent[2,1]), "xvar2"] <- 1
pop[ sum(popcnt[1,], popcnt[2, 1], 1): sun(popcnt), "xvar2"] <- 2

# Create xvarl2 for QC
pop$xvar 12 <- pop$xvar1l*10 + pop$xvar?2

# Create x11 for obtainging variance of Nl1 |ater

# For standardi zed di stance neasure | ater
pop$x1ll <-ifel se(pop$xvari2==11, 1, 0)

# Turn xvarl and xvar2 into factor vars to be used for calibration

pop$xvarl <- as.factor(pop$xvarl)
pop$xvar2 <- as.factor(pop$xvar2)

pop)

total s. xvar 1xvar2 <- xtabs(~xvarl + xvar2, data

rk.control . xvar1l<-data.franme(xvarl=c(1,2), Freq

sum(popcnt[2,])))
rk.control . xvar2<-data. frane(xvar2=c(1,2), Freq = c(sunm(popcnt[,1]),

sunm(popent [, 2])))

# greg.control.xvarl <- tabl e(pop$xvarl)
# greg.control.xvar2 <- tabl e(pop$xvar2)

c(sunm(popcnt[1,]),

# Cenerate values for y (ygamma vector index: 1=[1,1], 2=[1, 2],
3=[2,1], 47[2,2])

set . seed(yseed)

pop[ 1: popcnt[1,1],"y"] <- rnorm(n = popcnt[1,1], nean = ynu +
yal pha[ 1] + ybeta[l] + ygamm[1l], sd = ysignm)

pop[ sum(popcnt[1,1],1):sum popcnt[1,]),"y"] <- rnorm(n = popcnt[1, 2],
mean = ymu + yal pha[1] + ybeta[2] + ygammma[2], sd =
ysi gma)

pop[ sum(popcnt[1,],1):sum popcnt[1,],popcnt[2,1]),"y"] < rnorm(n =
popcnt[2,1], nean = ynu + yal pha[2] + ybeta[l] +
yganme[ 3], sd = ysigm)

pop[ sum(popcnt[1,], popcnt[2,1],1):sun(popcnt),”y"] <- rnormn =
popcnt[2,2], nean = ynu + yal pha[2] + ybeta[2] +
yganma[ 4], sd = ysigm)

# Cenerate values for response flag (rnean index: 1=[1,1], 2=[1, 2],
3=[2,1], 47[2,2])

pop[ 1: popcnt[1,1], "respflag"] <- rbinom n = popcnt[1,1], size=1
prob = rmeans[1])

pop[ sum(popcnt[1,1],1):sum popcnt[1,]), "respflag"] <- rbinonm(n =
popcnt[1, 2], size=1l, prob = rneans[2])

pop[ sum(popcnt[1,],1):sum popcnt[1,],popcnt[2,1]), " "respflag"] <-
rbi nom(n = popcnt[2,1], size=1, prob = rneans[3])

pop[ sum(popcnt[1,], popcnt[2,1],1):sun(popcnt), "respflag"] <- rbinomn
= popcnt[2,2], size=1l, prob = rneans[4])

return(list(pop=pop, totals.xvarlxvar2=totals.xvarlxvar2
rk.control . xvarl=rk.control.xvarl
rk.control.xvar2=rk. control.xvar?2))
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HERHHHHH R R
# Functions for sinple random sanpling and for sanpling of respondents
HH#HHHH B HTH R HHH R R AR TR R R AR R R AR R AR

srs.snmp <- function(srsseed, popdata, n){

}

srs. bad <- FALSE

N <- nrow popdat a)

s <- srswor(n, N)
bwgt <- rep (N'n, n)
fl <- rep (n/N, n)

srs.snp <- data.frane(popdata]s==1,], bwgt, f1)
srs.totals <- xtabs(~xvarl + xvar2, data = srs.snp)

if (srs.totals[1l, 1]<2 | srs.totals[1l, 2]<2 | srs.totals[2, 1]<2 |
srs.total s[2, 2]<2){
srs. bad <- TRUE

return(list(srs. bad=srs. bad, srs.snp=srs.snp, srs.total s=srs.totals))

resp.snmp <- function (srsdata){

}

resp. bad <- FALSE

resp.indic <- srsdata["respflag"] > 0
resp.snp <- srsdataf[resp.indic==1, ]

resp.totals <- xtabs(~xvarl + xvar2, data = resp.snp)
if (resp.totals[1l, 1]<2 | resp.totals[1l, 2]<2 | resp.totals[2, 1]<2 |
resp.total s[2, 2]<2){
resp. bad <- TRUE

}
return(list(resp. bad=resp. bad, resp.snp=resp.snp,
resp.total s=resp.total s))

HH#HHHH B HTH R HH R R A T R R R R R R
# Function for calibration and obtaining sunmmary stats from each sanpl e
HERHHHHH T

calib <- function(respinfo, popinfo, srsinfo){

# Form desi gn obj ect

dsgn <- svydesi gn(
ids = ~0, # No cluster
strata = NULL, # No strata
fpc = ~f1,
wei ghts = ~bwgt,
data = respinfo$resp. snp)

# Calibration

ps.dsgn <- postStratify(design = dsgn, strata = ~xvarl + xvar?2
popul ati on = popi nf o$t ot al s. xvar 1xvar 2, parti al =TRUE)

ps.wgt <- wei ght s(ps. dsgn)
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rk.dsgn.rake <- rake(desi gn = dsgn, sanple.margins =
list(~xvarl, ~xvar?2), population.nmargins =
I i st(popinfo$rk.control.xvarl, popinfo$rk.control.xvar?2),
control = list(maxit = 50))

rk.wgt.rake <- weights(rk.dsgn.rake)

rk.dsgn <- calibrate(design = dsgn, fornula = ~xvarl + xvar?2,
popul ation = c(' (I ntercept)' =nrow popi nf o$pop),
xvar 12=sum( popi nf o$t ot al s. xvar 1xvar2[2,]),
xvar 22=sun( popi nf o$t ot al s. xvar 1xvar2[, 2])),
cal fun="raki ng")

rk.wgt <- weights(rk.dsgn)

greg. dsgn <- calibrate(design = dsgn, formula = ~xvarl + xvar?2
popul ation = c(' (I ntercept)' =nrow popi nf o$pop),
xvar 12=sun( popi nf o$t ot al s. xvar 1xvar2[2,]),
xvar 22=sun{ popi nf o$t ot al s. xvar 1xvar 2[, 2])),
cal fun="1inear")

greg. wgt <- wei ghts(greg.dsgn)

# fit regression nodels and get R-squared

# Model s including only main effects

ps. xx.main <- |Imy ~ xvarl+xvar2, data=respinfo$resp.snp, weights
ps. wgt)

ps.yy. mai n <- sumrary(ps. xxX. i n)

ps. R2. mai n <- ps.yy. mai n$r. squar ed

rk.xx.min <- Im(y ~ xvarl+xvar2, data=respinfo$resp.snp, weights
rk.wgt)

rk.yy.main <- summary(rk.xx. main)

rk. R2. main <- rk.yy. min$r. squared

greg.xx. main <- Imy ~ xvarl+xvar2, data=respi nfo$resp.snp, weights =
greg. wgt)

greg.yy. main <- sunmmary(greg. xx. main)

greg. R2. main <- greg.yy. mai n$r. squar ed

# Model including main effect and interaction

ps.xx.int <- Imy ~ xvarl*xvar2, data=respinfo$resp.snp, weights
ps. wgt)

ps.yy.int <- sunmmary(ps.xx.int)

ps. R2.int <- ps.yy.int$r.squared

rk.xx.int <- Imy ~ xvarl*xvar2, data=respinfo$resp.snp, weights
rk.wgt)

rk.yy.int <- summary(rk.xx.int)

rk.R2.int <- rk.yy.int$r.squared

greg. xx.int <- Imly ~ xvarl*xvar2, data=respinfo$resp.snp, weights =
greg. wgt)

greg.yy.int <- summary(greg.Xxx.int)

greg. R2.int <- greg.yy.int$r.squared

# SSW page 266 variance estimate fornula for PS

Nc <- as.vector(popinfo$totals.xvarlxvar?2)

nc <- as.vector(respi nfo$resp.totals)

sc2data <- aggregate(y~xvarl*xvar2, data=respinfo$resp.snp, FUN=var)
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sc2 <- as.vector(sc2dat a$y)
ps.total.se. SSW<- sqrt(sun((Nc*Nc/nc)*sc2)) # estimate using SSW

# ybarc <- as.vector(aggregate(y~xvarl*xvar?2, data=respi nfo$resp.snp,
FUN=nmean))

HERHHHHH TR
# Summary statistics
HERHHHHH TR H TR

# Estimate for outcone variable, associated SE, Cl, and Cl coverage
# Mean

pop. nean <- nean(popi nfo$pop[,"y"])

resp. nean <- svymean(-~y, dsgn)

ps. mean <- svynean(-~y, ps.dsgn)

rk. mean <- svynean(-~y, rk.dsgn)

rk. mean. rake <- svynean(-~y, rk.dsgn.rake)

greg. mean <- svymean(-~y, greg.dsgn)

resp. nean. se <- SE(svynmean(~y, dsgn))

ps. mean. se <- SE(svynean(-~y, ps.dsgn))

rk. mean. se <- SE(svynean(~y, rk.dsgn))

rk. mean. se. rake <- SE(svymean(-~y, rk.dsgn.rake))
greg. mean. se <- SE(svynean(-~y, greg.dsgn))

ps. mean. Cl <- confint(svynmean(~y, ps.dsgn))
rk. mean. Cl <- confint(svynmean(~y, rk.dsgn))
greg. mean. Cl <- confint(svynean(~y, greg.dsgn))

ps. mean. Cl . cover age
<- ifelse(ps.nmean.Cl[1] <=pop. nean & pop. nean<=ps. nean.Cl[2],
1, 0)
rk. mean. Cl . cover age
<- ifelse(rk.mean.Cl[1] <=pop. mean & pop. nmean<=rk. nmean.Cl[2],
1, 0)
greg. nean. Cl . cover age
<- ifelse(greg.nean. Cl[ 1] <=pop. nmean &
pop. mean<=greg. nean.Cl[2], 1, 0)

# Tot al

pop.total <- sun{popinfoS$pop[,"y"])
resp.total <- svytotal (~y, dsgn)

ps.total <- svytotal (~y, ps.dsgn)

rk.total <- svytotal (~y, rk.dsgn)
rk.total.rake <- svytotal (~y, rk.dsgn.rake)
greg.total <- svytotal (~y, greg.dsgn)

resp.total.se <- SE(svytotal (~y, dsgn)) # Lunl ey estimtes of SEs.
ps.total.se <- SE(svytotal (~y, ps.dsgn))

rk.total.se <- SE(svytotal (~y, rk.dsgn))

rk.total .se.rake <- SE(svytotal (~y, rk.dsgn.rake))

greg.total.se <- SE(svytotal (~y, greg.dsgn))

ps.total.Cl <- confint(svytotal (~y, ps.dsgn))
ps.total.Cl.SSW<- c(ps.total -1.96*ps.total.se. SSW
ps.total +1. 96*ps. total . se. SSW
# estinmate using SSW
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rk.total .C

greg.total

| <- confint(svytotal (~y, rk.dsgn))
.Cl <- confint(svytotal (~y, greg.dsgn))

# Cl coverage

ps.total . Cl

ps.total . Cl

| . coverage<- ifelse(ps.total.Cl[1l]<=pop.total &
pop.total <=ps.total.CI[2], 1, 0)

| . coverage. SSW<- ifelse(ps.total.Cl.SSW1]<=pop.total &
pop.total <=ps.total.Cl.SSW2], 1, 0) # estimate using
SSw

rk.total.Cl.coverage <- ifelse(rk.total.Cl[1] <=pop.total &

greg.total

pop.total <=rk.total.CI[2], 1, 0O)
.Cl.coverage <- ifelse(greg.total.Cl[1] <=pop.total &
pop.total <=greg.total.Cl[2], 1, O)

# Estimate N, Nr, Nc, Nrc as well as the difference from popul ation

truth

ps. Nrc <- svytabl e(~xvarl + xvar2, ps.dsgn)
rk.Nrc <- svytabl e(~xvarl + xvar2, rk.dsgn)
greg. Nrc <- svytabl e(~xvarl + xvar2, greg.dsgn)

ps.Di ff.Nr
rk.Diff.Nr
greg.Diff.
# Odds rat

pop. OR <-

c ps. Nrc - popinfo$total s. xvar 1xvar 2
c rk.Nrc - popinfo$total s.xvar lxvar 2
Nrc = greg. Nrc - popinfo$total s. xvar 1xvar 2

i 0s

(popi nf o$t ot al s. xvar 1xvar 2[ 1, 1] *popi nf o$t ot al s. xvar 1xvar 2
[2,2])/ (popinfo$total s.xvar1xvar2[1, 2] *popi nf o$t ot al s. xva
rixvar2[ 2, 1])

resp. OR <-

ps. OR <-
rk.oOR <-

(respinfo$resp.total s[1, 1] *respi nfo$resp.totals[2,2])/(re
spi nfo$resp.total s[1, 2] *respi nfo$resp.total s[2,1])

(ps.Nrc[1,1]*ps.Nrc[2,2])/(ps.Nrc[1,2]*ps.Nrc[2,1])
(rk.Nrc[1,1]*rk.Nrc[2,2])/(rk.Nrc[1,2]*rk.Nrc[2,1])

greg. OR <-

(greg.Nrc[1,1]*greg.Nrc[2,2])/(greg. Nrc[1, 2] *greg. Nrc[2,1
1)

# Di stance neasure for Chapter 3 (W experinented with this)
ps. Di stance. Chap3 = sqrt(sum(ps. D ff.Nrc”"2))

rk.Di stance. Chap3 = sqrt(sum(rk.Di ff.Nrc”2))

greg. Di stance. Chap3 = sqgrt(sum(greg. D ff.Nrc”"2))

# Di stance neasure for Chapter 4 (This is what we propose)
ps. Di stance. Chap4.est <- (ps.D ff.Nrc[1,1]/SE(svytotal (~x11

ps.dsgn))) "2

rk.Di stance. Chap4.est <- (rk.D ff.Nrc[1,1]/SE(svytotal (~x11

rk.dsgn)))"2

greg. Di stance. Chap4.est <- (greg.Diff.Nrc[1, 1]/ SE(svytotal (~x11

# vector t

greg.dsgn)))”"2

oreturn, for estimtes of neans

results. mean <- vector (| ength=14)

results. mean[ 1] <- pop. nean
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results. mean[ 2] <- resp.nean
results. mean[ 3] <- ps.nmean
results. nean[ 4] <- greg.nean
results. mean[ 5] <- rk.mean
results. mean[ 6] <- rk.nean.rake

results.mean[ 7] <- resp.nean.se
results. nean[ 8] <- ps.nmean. se
results.nean[ 9] <- greg.nean. se
resul ts. mean[ 10] <- rk.nean. se
resul ts. mean[ 11] <- rk.nean. se. rake

results. mean[ 12] <- ps.nean. Cl.coverage
resul ts. mean[ 13] <- greg.nean. Cl.coverage
resul ts. mean[ 14] <- rk.nean. Cl.coverage

# vector to return, for estimates of totals
results.total <- vector(length=16)

results.total[1] <- pop.tota
results.total[2] <- resp.total
results.total[3] < ps.tota
results.total[4] <- greg.total
results.total[5] <- rk.total
results.total[6] <- rk.total.rake

results.total[7] <- resp.total.se
results.total[8] <- ps.total.se
results.total[9] <- ps.total.se.SSW
results.total[10] <- greg.total.se
results.total[11] <- rk.total.se
results.total[12] <- rk.total.se.rake

results.total[13] <- ps.total.Cl.coverage
results.total[14] <- ps.total.Cl.coverage. SSW
results.total [15] <- greg.total.Cl.coverage
results.total[16] <- rk.total.Cl.coverage

# vector to return, for sanple sizes, auxiliary info, and diff term
results.comon <- vector (|l ength=33)

results.common[1l] <- respinfo$resp.total s[1, 1]
results.comon[2] <- respinfo$resp.total s[1, 2]
results.comon[ 3] <- respinfo$resp.total s[2, 1]
results.comon[ 4] <- respinfo$resp.total s[2, 2]

results.comon[ 5] <- ps.Distance. Chap3
resul ts.common[ 6] <- rk.Distance. Chap3
results.common[7] <- greg. D stance. Chap3
results.comon[ 8] <- ps. D stance. Chap4. est

results.conmon[ 9] <- rk.Di stance. Chap4. est
resul ts.conmon[ 10] <- greg. Di stance. Chap4. est

results.comon|[ 11] <- pop. OR
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results.comon[12] <- resp.OR
results.comon|[13] <- ps.OR
resul ts.conmon|[ 14] <- greg. OR
results.comon[ 15] <- rk.OR

results.common[16] <- ps.Diff.Nrc[1,1]
results.common[17] <- ps.Diff.Nrc[1,2]
results.comon[18] <- ps.Diff.Nrc[2,1]
results.common[19] <- ps.Diff.Nrc[2,2]

results.comon[20] <- rk.Diff.Nrc[1,1]
results.comon[21] <- rk.Diff.Nrc[1,2]
results.common[22] <- rk.Diff.Nrc[2,1]
results.comon[23] <- rk.Diff.Nrc[2,2]

results.conmmon[24] <- greg.Diff.Nrc[1,1]
results.conmmon[25] <- greg.Diff.Nrc[1,2]
results.comon[26] <- greg.Diff.Nrc[2,1]
results.comon[27] <- greg.Diff.Nrc[2,2]

results.conmon[ 28] <- ps.R2.nain
results.conmmon[29] <- rk.R2.nain
results.conmon[ 30] <- greg.R2.main

results.conmon[ 31] <- ps.R2.int
results.conmon[32] <- rk.R2.int
results.conmmon[33] <- greg.R2.int

return (t(c(results.nean, results.total, results.conmon)))

}

HERHHHHH T H T R R
# Function for calling srs.snmp, resp.snp, calib during each simulation
HERHHHHH TR HH T H T H T H R H R

srs.resp.calib <- function (benchmark, k, srs.size){

S < k # nunmber of good sanples to keep
s <- 1
bad.snp <- 0

# An enpty natrix to store results

rslt <- matrix(nrow=S, ncol= sum(14, 16, 33))
col names(rslt) <- c("pop.nean",

"resp. nean",

"ps. nean",

"greg. mean",

"rk. nean",

"rk. mean. rake",

"resp. nean. se",
"ps. mean. se",
"greg. mean. se",
"rk. mean. se",

"rk. mean. se. rake",
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"ps. nean. Cl . cover age",
"greg. nean. Cl . cover age",
"rk. nean. Cl . cover age",

"pop.total ",
"resp.total ",
"ps.total ",
"greg.total ",
"rk.total ",
"rk.total.rake",

"resp.total.se",
"ps.total.se",
"ps.total.se. SSW,
"greg.total.se",
"rk.total.se",
"rk.total.se.rake",

"ps.total.Cl.coverage",
"ps.total.Cl.coverage. SSW,
"greg.total.Cl.coverage",
"rk.total.Cl.coverage",

"respcnt 11",
"respcnt 12",
"respcnt 21",
"respcnt 22",

"ps. D st ance. Chap3",
"rk. Di stance. Chap3",
"greg. Di stance. Chap3",

"ps. Di stance. Chap4. est”,
"rk. D stance. Chap4. est”,
"greg. Di stance. Chap4. est",

" pop. OR",
"resp. OR',
"ps. OR',
"greg. OR',
"rk. OR",

"ps.Diff.Nrcl1l",
"ps.Diff.Nc21",
"ps.Diff.Nrcl2",
"ps.Diff.Nrc22",

"rk.Diff.Nrcl11",
"rk.Diff.Nrc21",
"rk.Diff.Nrc12",
"rk.Diff.Nrc22",

"greg.Diff.Nrcl1l",
"greg.Di ff.Nc21",
"greg.Diff.Nc12",
"greg.Di ff.Nc22",
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"ps. R2. mai n",

"rk. R2. mai n",

"greg. R2. mai n",

"ps.R2.int",

"rk.R2.int",

"greg.R2.int")
while (s <= 9){

keep.sw <- TRUE

# draw srs sanpl e and respondent sanple
srssnp <- srs.snp(popdata=benchmar k$pop, n=srs. si ze)
if (srssnp$srs. bad==TRUE) {
bad. snp <- bad.smp + 1
keep. sw <- FALSE
}
el se {
# assign respondent
respsnp <- resp.snp (srsdata=srssnp$srs. snp)

if (respsmp$resp. bad==TRUE) {
bad. snp <- bad.smp + 1
keep.sw <- FALSE

}
el se {

# calibration and save sumary statisticis
rslt[s, ] <- calib(respinfo=respsnp, popinfo=benchnark
srsi nf o=sr ssnp)

# increase sanple counter
s <- s +1

}

}
return (list(bad. snp=bad.snp, rslt=rsit))
}

B.2 A Program Calling the Program in B.1

This program is used in Chapters 3 through 5.

I'i brary(ResourceSel ection)

# kk: repetition of simulation
# nn: SRS sanpl e size

kk <- 1000

nn <- 8000

# Call pop.and.control to generate population (x, y and response nodel)
and control totals
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# Scenarios under "Y nmmin":

# 1 100% response rate

ymai n. r01 <- pop. and. control (seed=41151515, | anbda=10000, | anbda_i=c(0,
0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0), nrow =
2, ncol = 2), yseed=15157552, ynmu=1000, vyal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0,0),
ysi gma=30, rnmeans = c¢(1, 1, 1, 1))

summary (ymain. r01$pop)

ddpl y(ymai n. r 01$pop, ~xvar 12, sunmari se, nean=nean(y))

ddpl y(ynmai n. r01$pop, ~xvar 12, summari se, nean=nean(respfl ag))

# check additive independence in Y node
ymain.fit <- Imly ~ xvarl*xvar2, data=ynain.r01$pop)
sunmmary(ynain. fit)

HHHHBHHHBHHH B H B H B H R H R R R R

# 2 0.45000. 4500 0. 3000 0. 3000 0. 0000 1. 0000

ymai n. r02 <- pop. and. control (seed=41151515, | anbda=10000, | anbda_i =c(O,
0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,0,0,0), nrow =
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0,0),
ysi gma=30, rmeans = c(0.4500, 0.4500, 0.3000, 0.3000))

summary (ymain. r02%$pop)

ddpl y(ymai n. r 02$pop, ~xvar 12, sunmari se, nean=nean(y))

ddpl y(ynmai n. r 02$pop, ~xvar 12, summari se, nean=nean(respfl ag))

# check additive independence in R node
rmain.fit <- Imrespflag ~ xvarl*xvar2, data=ymain.r02%pop)
summary(rnain. fit)

# check nmultiplicative i ndependence in R nodel

logistic.rmain.fit <- glmrespflag ~ xvarl + xvar2 + xvarl*xvar2,
fam | y=binomal (link="logit'), data=ymain.r02$%pop)

sunmmary(logistic.rmain.fit)

anova(logistic.rmain.fit, test="Chisq")

# Hosner - Leneshow Goodness of Fit: conputed on data after the
observati ons have been segnented into groups

# based on having simlar predicted probabilities. It exam nes whether
t he observed proportions of events

# are simlar to the predicted probabilities of occurence in subgroups
of the data set using a pearson chi square test.

# Snall values with large p-values indicate a good fit to the data
while large values with p-values below 0.05 indicate a
poor fit.

hosl em t est (ymai n. r 02$pop$respflag, fitted(logistic.rmain.fit))

HERHHHHH B

# 3 0.40800.1020 0.9520 0. 2380 - 0. 4080 1. 0000

ymai n. r03 <- pop. and. control (seed=41151515, | anbda=10000, | anbda_i=c(0,
0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0), nrow =
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0,0),
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# 4 0.12000.

ymai n. r04 <-

# 5 0.26000.

ymai n. r05 <-

# 6 0.28000.

ymai n.r06 <-

# 7 0.32000.

ymai n. r07 <-

# 8 0.40000.

ymai n. r08 <-

# 9 0.46000.

ymai n. r09 <-

ysi gnma=30, rneans = c¢(0.4080, 0.1020, 0.9520,
0.2380))

4800 0. 0200 0. 3800 0. 0000 4.7500

pop. and. control (seed=41151515, | anbda=10000, | anbda i =c(0,

0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0, 0),
ysi gma=30, rmeans = c¢(0.1200, 0.4800, 0.0200,

0. 3800))

9400 0. 0600 0. 7400 0. 0000 3. 4113

nrow =

pop. and. control (seed=41151515, | anbda=10000, | anbda_i=c(0,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,O0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0,0),
ysi gma=30, rneans = c¢(0.2600, 0.9400, 0.0600,

0. 7400))

9200 0. 0800 0. 7200 0. 0000 2.7391

nrow =

pop. and. control (seed=41151515, | anbda=10000, | anbda i =c(0,

0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ymu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamm=c(O0, 0, 0, 0),
ysi gma=30, rneans = c¢(0.2800, 0.9200, 0.0800,

0. 7200))

8800 0. 1200 0. 6800 0. 0000 2. 0606

nrow =

pop. and. control (seed=41151515, | anbda=10000, | anbda_i =c(0,

0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0,0),
ysi gma=30, rmeans = c¢(0.3200, 0.8800, 0.1200,

0. 6800))

8000 0. 2000 0. 6000 0. 0000 1. 5000

nrow =

pop. and. control (seed=41151515, | anbda=10000, | anbda i =c(0,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,O0,0,0),
2, ncol = 2), yseed=15157552, ymu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0,0),
ysi gma=30, rneans = c¢(0.4000, 0.8000, 0.2000,

0. 6000))

7400 0. 2600 0. 5400 0. 0000 1.2911

nrow =

pop. and. control (seed=41151515, | anbda=10000, | anbda i =c(0,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,0,0,0), nrow =
2, ncol = 2), yseed=15157552, ynmu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamm=c(O0, 0, 0, 0),
ysi gma=30, rmeans = c¢(0.4600, 0.7400, 0.2600,
0. 5400))
# 10 0.54000. 6600 0. 3400 0. 4600 0. 0000 1.1070

ymain.r10 <-

pop. and. control (seed=41151515, | anbda=10000, | anbda_i =c(0,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(O0, 0, 0,0),
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# 11
ymai n.

# 12
ymai n.

# 13
ymai n.

# 14
ymai n.

# 15
ymai n.

# 16
ymai n.

# 17
ymai n.

ysi gnma=30, rneans = c¢(0. 5400,
0. 4600))

0. 56000. 6400 0. 3600 0. 4400
ril <- pop.and.control (seed=41151515,

0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-

200, 300), ybeta=c(-100, 150),
ysi gma=30, rmeans = c¢(0. 5600,
0. 4400))

0. 23000. 0700 0. 5500 0. 1500
ri2 <- pop.and. control (seed=41151515,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,O0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, vyal pha=c(-

200, 300), ybeta=c(-100, 150),
ysi gna=30, rneans = c¢(0.2300,
0. 1500))

0. 20000. 1000 0.5200 0. 1800
ri3 <- pop.and.control (seed=41151515,

0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ymu=1000, yal pha=c(-

200, 300), ybeta=c(-100, 150),
ysi gna=30, rneans = c¢(0.2000,
0.1800))

0. 15000. 1500 0. 4700 0. 2300
ri4 <- pop.and.control (seed=41151515,

0), lanmbda_j=c(0, 0), lanmbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-

200, 300), ybeta=c(-100, 150),
ysi gma=30, rmeans = c¢(0. 1500,
0. 2300))

0. 09000. 2100 0. 4100 0. 2900
ri5 <- pop. and. control (seed=41151515,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,O0,0,0),
2, ncol = 2), yseed=15157552, ymu=1000, yal pha=c(-

200, 300), ybeta=c(-100, 150),
ysi gnma=30, rneans = c¢(0. 0900,
0.2900))

0. 04000. 2600 0. 3600 0. 3400
ri6 <- pop.and.control (seed=41151515,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-

200, 300), ybeta=c(-100, 150),
ysi gma=30, rmeans = c(0. 0400,
0. 3400))

0. 02000. 5800 0. 6600 0. 7400
ri7 <- pop.and.control (seed=41151515,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,0,0,0),
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-

200, 300), ybeta=c(-100, 150),
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0. 6600, 0.3400,

0. 0000 1.0694
| anbda=10000, | anbda_i =c(0,

nrow =
yganma=c(0, 0, 0, 0),
0. 6400, 0.3600,
- 0. 2400 0. 8961

| anbda=10000, | anmbda_i =c(0,

nrow =
ygamma=c(O0, 0, 0, 0),
0. 0700, 0.5500,
- 0. 2400 0. 6923

| anbda=10000, | anbda_i =c(0,

nrow =
yganma=c(0, 0, 0, 0),
0. 1000, 0.5200,
- 0. 2400 0. 4894

| anbda=10000, | anmbda_i =c(0,

ygamma=c(0, 0, 0, 0),
0. 1500, 0.4700,

nrow =

-0. 2400 0. 3031
| anbda=10000, | anbda_i =c(0,

ygamma=c(0, 0, 0, 0),
0.2100, 0.4100,

nrow =

-0. 2400 0. 1453
| anbda=10000, | anbda_i =c(0,

ygamma=c(0, 0, 0, 0),
0.2600, 0.3600,

nrow =

- 0. 4800 0. 0387
| anbda=10000, | anbda_i =c(0,

ygamma=c(0, 0, 0, 0),

nrow =



ysi gma=30, rneans = c¢(0.0200, 0.5800, 0.6600,
0. 7400))

# The procedure is repeated for 17 response scenarios under "Y int".
# The R code is not shown here.

HHHBHHBHH B HH B H R H B H B H B H B H B H B B H B H B H B H BB R H

# Call function srs.resp.calib (select sanple, calibrate, and save
sunmary statistics)

HERHHHHH T

# popinfo, srsinfo, respinfo: dataset plus some control totals
# popdata, srsdata: dataset

# k: repetition of sinulation

# srs.size: SRS sanple size

ymai n.r0l. out <- srs.resp.calib (benchmark=ymain.r01, k=kk
Srs. si ze=nn)

# Repeated for ynain.r02.out through ynmain.rl7.out. R code is not
shown.

yint.r0l.out <- srs.resp.calib (benchmark=yint.r01, k=kk, srs.size=nn)
# Repeated for yint.r02.out through yint.r17.out. R code is not shown.

save(ymain.r01, ymain.r02, ynmain.r03, ymain.r04, ymain.r05, ynain.r06

ymai n.r07, ynmain.r08, ymain.r09, ynmain.rl10, ymain.r1l,
ymain.r12, ymain.rl13, ymain.rl1l4, ymain.r1l5, ymin.r16,
ymain. r17,

yint.r01, yint.r02, yint.r03, yint.r04, yint.r05, yint.r06,
yint.r07, yint.r08, yint.r09, yint.r10, yint.r11,
yint.rl12, yint.rl13, yint.rl14, yint.r15, yint.r16,
yint.rl7,

ymai n. r01. out, ymain.r02.out, ymain.r03.out, ymain.r04.out,
ymai n. r05. out, ynain.r06.out, ynmain.r07.out,
ymai n. r08. out, ynain.r09.out, ynmain.rl10.out,
ymain.rl1l. out, ynmain.r12.out, ynain.r13.out,
ymai n. r14. out, ymain.r15.out, ynain.r16.out,
ymai n. r17. out,

yint.r01l.out, yint.r02.out, yint.r03.out, yint.r04.out,
yint.r05.0out, yint.r06.out, yint.r07.out, yint.r08.out,
yint.r09.out, yint.r10.out, yint.rl1l.out, yint.r12.out,
yint.r13.out, yint.r14.out, yint.r15.out, yint.r16.out,
yint.rl17. out,
file="D:\\Dissertation\\ConpareThreeCalibrationEsti mators
\\ Si nul ati on\\ SRS1. RDat a")
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B.3 A Program for Saving Results from Each Simulated Sample and Evaluation
Measures over All the Simulated Samples

This program is used in Chapters 3 and 4.

i brary(sanpling)
library(survey)

HERHHHH T
# Function for creating neasures fromthe S good sanpl es
HA#HHHH B RTH R HHH AR T AR AR R R R AR R AR R R

all.info <- function(datain){
datai n <- data.franme(datain)
attach(datain)

# For nean: relative bias

resp.rel.bias.mean <- (resp.nean - pop.nean)/ pop. nean
ps.rel.bias.mean <- (ps.nmean - pop.nean)/ pop. nean
rk.rel.bias.mean <- (rk.nmean - pop.nean)/pop. mean
rk.rel.bias.nmean.rake <- (rk.mean.rake - pop.mean)/pop. nmean
greg.rel.bias.mean <- (greg.nean - pop.nean)/pop. nean

# For mean: relative square root of nse

ps.rel.sqrt.nmse. mean <- sqrt((ps.nmean - pop. nean)”2)/ pop. nean
rk.rel.sqgrt.mse. mean <- sqrt((rk.nean - pop.nean)”"2)/pop. nean
greg.rel.sqgrt.nmse. mean <- sqrt((greg. mean - pop. mean)”~2)/pop. mean

# For mean: bias ratio or t-statitics

ps. bias.rati o.mean = (ps.nmean - pop.nean) / ps.nean.se
rk.bias.ratio.mean = (rk.nean - pop.nean) / rk.nean.se

greg. bias.rati o.mean = (greg. mean - pop.mean) / greg. mean. se

# Total: relative bias

resp.rel.bias.total <- (resp.total - pop.total)/pop.tota
ps.rel.bias.total <- (ps.total - pop.total)/pop.total
rk.rel.bias.total <- (rk.total - pop.total)/pop.total
rk.rel.bias.total.rake <- (rk.total.rake - pop.total)/pop.total
greg.rel.bias.total <- (greg.total - pop.total)/pop.tota

# Total: relative square root of nse

ps.rel.sqgrt.nmse.total <- sqrt((ps.total - pop.total)”2)/pop.total
rk.rel.sqgrt.mse.total <- sqrt((rk.total - pop.total)”2)/pop.tota
greg.rel.sqgrt.nse.total <- sqrt((greg.total - pop.total)”2)/pop.tota

# Total: bias ratio or t-statitics

ps.bias.ratio.total = (ps.total - pop.total) / ps.total.se
rk.bias.ratio.total = (rk.total - pop.total) / rk.total.se
greg.bias.ratio.total = (greg.total - pop.total) / greg.total.se

# Di stance Measure using enpirical variance, for Chapter 4

ps. Di stance. Chap4. EmpVar <- ps.Diff.Nrcl1”2/var(ps.Diff.Nrcll)

rk.Di stance. Chap4. EmpVar <- rk.Diff.Nrcl1”2/var(rk.Diff.Nrcll)
greg. D stance. Chap4. EnpVar <- greg.Diff.Nrcl1”2/var(greg. D ff.Nrcll)
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rk.Di stance. est.LG384 <- ifelse(rk.Distance.Chap4.est>3.84, 1, 0)
rk.Di stance. est.LG663 <- ifel se(rk.Di stance. Chap4. est>6.63, 1, 0)

greg. Di stance. est.LG384 <- ifel se(greg. D stance. Chap4.est>3.84, 1, 0)
greg. Di stance. est. L3663 <- ifel se(greg. D stance. Chap4. est>6.63, 1, 0)

HRASHHHH TR H AR H AR IR RN RN R R R R
# variable for exam ng sanpl es by groups

rk.ranges <- quantil e(rk.Di stance. Chap4.est, c(0, .05, .10, .15, .20,
.25, .30, .35, .40, .45, .50, .55, .60, .65, .70, .75
.80, .85, .90, .95, 1), na.rneTRUE)

rk.grp <- cut(rk.Di stance. Chap4.est, rk.ranges, include. LONEST=TRUE)

rk.grp. num<- as.nuneric(rk.grp)

greg.ranges <- quantile(greg.Di stance. Chap4.est, c(0, .05, .10, .15,
.20, .25, .30, .35, .40, .45, .50, .55, .60, .65, .70,
.75, .80, .85, .90, .95, 1), na.rnrTRUE)

greg.grp <- cut(greg. D stance. Chap4. est, greg.ranges,
i ncl ude. LOAEST=TRUE)

greg. grp. num <- as.nuneric(greg.grp)

dat af i nal <- data.frame( datain,
resp.rel.bias. mean,
ps.rel.bias. mean,
rk.rel.bias. nean,
rk.rel.bias. mean. rake,
greg.rel.bias. mean,

ps.rel.sqrt.nse. nean,
rk.rel.sqrt.nse. nean,
greg.rel.sqgrt. nse. nean,

ps. bi as.rati o. mean,
rk.bias.ratio. nmean,
greg. bias.ratio. mean,

resp.rel.bias.total,
ps.rel.bias.total,
rk.rel.bias.total,
rk.rel.bias.total.rake,
greg.rel.bias.total,

ps.rel.sqrt.nse.total,
rk.rel.sqrt.nse.total,
greg.rel.sqrt.nse.total,

ps.bias.ratio.total,
rk.bias.ratio.total,

greg. bias.ratio.total,

ps. Di st ance. Chap4. EnpVar ,
rk.Di stance. Chap4. EnmpVar ,
greg. D st ance. Chap4. EmpVar ,

rk. Di st ance. est. LG384,
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rk. Di stance. est. LG563,
greg. D stance. est. LG384,
greg. Di stance. est. LG663,

rk.grp,

rk.grp. num

greg. grp,

greg. grp. num
det ach( dat ai n)

return(datafinal)

}

HH#HHHH BT H R HH R R HAH TR R AR AR R
# Function for generating overall summary statitics
HERHHHHH T

overall <- function (datain, stat){
attach(datain)

# For mean: relative bias, relative standard error, relative square
root of mse, bias ratio

pop. mean <- mean(pop. nean)

resp.rel.bias.mean <- nean(resp.rel.bias. nean)

ps.rel.bias.mean <- nmean(ps.rel.bias.nmean)

rk.rel.bias.mean <- nmean(rk.rel.bias.nean)

rk.rel.bias.nmean.rake <- nean(rk.rel.bias. mean.rake)

greg.rel.bias.nean <- nean(greg.rel.bias.nean)

resp.rel.se.mean <- sqrt(var(resp.nean))/pop. mean # enpirica
ps.rel.se.nean <- sqrt(var(ps. nean))/pop. nean

rk.rel.se.nean <- sqgrt(var(rk. mean))/pop. mean
rk.rel.se.nean.rake <- sqgrt(var(rk. mean.rake))/pop. mean
greg.rel.se.nean <- sqgrt(var(greg. nmean))/pop. mean

ps.rel.sqrt.nmse. mean <- nean(ps.rel.sqrt. nse. mean)
rk.rel.sqgrt.mse. mean <- nean(rk.rel.sqgrt. nse. mean)
greg.rel.sqgrt.nse. mean <- mean(greg.rel.sqgrt. nse. nmean)

ps. bias.rati o. rean <- nean(ps. bi as.ratio. nean)
rk.bias.ratio.mean <- nean(rk. bias.ratio.nean)
greg. bias.rati o.mean <- mean(greg. bi as.ratio. mean)

# For total: relative bias, relative standard error, relative square
root of nse, bias ratio

pop.total <- nean(pop.total)

resp.rel.bias.total <- nean(resp.rel.bias.total)

ps.rel.bias.total <- nmean(ps.rel.bias.total)

rk.rel.bias.total <- mean(rk.rel.bias.total)

rk.rel.bias.total.rake <- nean(rk.rel.bias.total.rake)

greg.rel.bias.total <- nean(greg.rel.bias.total)

resp.rel.se.total <- sqrt(var(resp.total))/pop.total # enpirica
ps.rel.se.total <- sqrt(var(ps.total))/pop.total

rk.rel.se.total <- sqrt(var(rk.total))/pop.total
rk.rel.se.total.rake <- sqrt(var(rk.total.rake))/pop.total
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greg.rel.se.total <- sqrt(var(greg.total))/pop.total

ps.rel.sqgrt.nmse.total <- nean(ps.rel.sqrt.nse.total)
rk.rel.sqgrt.nmse.total <- nean(rk.rel.sqrt.nmse.total)
greg.rel.sqgrt.nse.total <- nean(greg.rel.sqrt.nse.total)

ps.bias.ratio.total <- nean(ps.bias.ratio.total)
rk.bias.ratio.total <- nean(rk.bias.ratio.total)
greg.bias.ratio.total <- nean(greg.bias.ratio.total)

CheckLunml ey. ps.rel .se.total <- nmean(ps.total.se/pop.total) # Lunl ey
estimate for QC

CheckLum ey. ps.rel .se.total . SSW<- nean(ps.total.se. SSWpop.total) #
SSWfor QC

# respondent Sanpl e sizes

respcntll <- nean(respcntl1l)
respcnt12 <- nean(respcnt12)
respcnt 21 <- nean(respcnt21)
respcnt 22 <- nean(respcnt22)

# Odds ratios

pop. OR = nean (pop. OR)
resp. OR = nean (resp. OR)
ps. OR = nean (ps. OR

rk. OR = nean (rk.OR)
greg. OR = nean (greg. OR)

# Cl coverage

ps. Cl. coverage. nean <- nean(ps. nmean. Cl.coverage)
rk.Cl.coverage. nean <- nean(rk. nean. Cl.coverage)
greg. Cl . coverage. mean <- mean(greg. nean. Cl. cover age)

ps. Cl.coverage.total <- mean(ps.total.Cl.coverage)

ps. Cl.coverage.total . SSW<- nean(ps.total.Cl.coverage. SSW
rk.Cl.coverage.total <- nean(rk.total.Cl.coverage)

greg. Cl.coverage.total <- nean(greg.total.Cl.coverage)

# Di stance Measure (using enpirical variance)

ps. Di st ance. Chap4. EnpVar <- nean(ps. D st ance. Chap4. EnpVar)
rk. Di stance. Chap4. EnpVar <- nean(rk. D st ance. Chap4. EnpVar)
greg. D st ance. Chap4. EnpVar <-nean(greg. Di stance. Chap4. EnmpVar)

# Di stance Measure -- estimated from sanple, and then taking average
ps. Di st ance. Chap4. est <- nean(ps. Di stance. Chap4. est)

rk.Di stance. Chap4. est <- nean(rk. Di stance. Chap4. est)

greg. D stance. Chap4. est <- nean(greg. Di stance. Chap4. est)

rk.Di stance. est.LG384 <- nean(rk. Di stance. est. LG384)
rk.Di stance. est. L3663 <- nean(rk. Di stance. est. LG663)

greg. Di stance. est. LG384 <- nean(greg. Di stance. est. LG384)
greg. Di stance. est. L3663 <- nmean(greg. Di stance. est. LG563)

# R-squared for nain-effect nmodel and full nodel (including

interaction tern)
ps. R2. mai n <- nean(ps. R2. mai n)
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rk. R2. main <- nmean(rk.R2. main)
greg. R2. mai n <- nean(greg. R2. nai n)
ps. R2.int <- nean(ps.R2.int)
rk.R2.int <- nean(rk.R2.int)

greg. R2.int <- nmean(greg.R2.int)

# conpare analytical results and sinulation results
# ratio.rk_greg = nean(rk.total - greg.total ) / mean(diff.rk_greg)
# ratio.rk_ps = nean(rk.total - ps.total ) / nean(diff.rk_ps)

eval nean <- chind (pop.nean, resp.rel.bias.nean, ps.rel.bias.nean,
greg.rel.bias.nmean, rk.rel.bias.nmean,
rk.rel.bias. mean.rake, resp.rel.se.mean, ps.rel.se.nean,
greg.rel.se.nean, rk.rel.se.nean, rk.rel.se. mean.rake,
ps.rel.sqgrt.nse. nean, greg.rel.sqgrt.nse. nean,
rk.rel.sqrt.nse. mean, ps.bias.ratio.nean,
greg. bias.rati o. mean, rk.bias.ratio.nean,
ps. Cl . cover age. nean, greg.Cl.coverage. nean,
rk.Cl.coverage. nean, respcntll, respcntl1l2, respcnt?21,
respcnt22, pop.OR resp.OR ps.OR greg. OR rk.OR
ps. Di st ance. Chap4. EnpVar ,
rk. Di stance. Chap4. EnpVar, greg. D stance. Chap4. EnpVar,
ps. Di st ance. Chap4. est, rk. D stance. Chap4. est,
greg. D st ance. Chap4. est,
rk. Di stance. est.LG384, rk.Di stance. est.LG563,
greg. Di stance. est. LG384, greg. Di stance. est. LG563,
ps. R2.main, rk.R2.nain, greg.R2.main, ps.R2.int,
rk.R2.int, greg.R2.int)

evaltotal <- chbind (pop.total, resp.rel.bias.total,

ps.rel.bias.total, greg.rel.bias.total,
rk.rel.bias.total, rk.rel.bias.total.rake,
resp.rel.se.total, ps.rel.se.total,

greg.rel.se.total, rk.rel.se.total, rk.rel.se.total.rake,

ps.rel.sqrt.nse.total, greg.rel.sqrt.nse.total,
rk.rel.sqrt.nse.total,

ps.bias.ratio.total, greg.bias.ratio.total,
rk.bias.ratio.total,

ps. Cl.coverage.total, greg.Cl.coverage.total,
rk.Cl.coverage.total,

respcnt1l, respcntl12, respcnt2l, respcnt22,

pop. OR, resp.OR, ps.OR greg. OR rk.OR

ps. Di st ance. Chap4. EnpVar ,
rk. Di stance. Chap4. EnpVar, greg. D stance. Chap4. EnpVar,

ps. Di stance. Chap4. est, rk. D stance. Chap4. est,
greg. D st ance. Chap4. est,

rk.Di stance. est.LG384, rk.Di stance. est.LG563,
greg. Di stance. est. LG384, greg. Di stance. est. LG663,

ps. R2.main, rk.R2.main, greg.R2.main, ps.R2.int,
rk.R2.int, greg.R2.int,

CheckLunl ey. ps.rel.se.total,
CheckLunl ey. ps.rel.se.total . SSW
ps. Cl . coverage. t ot al . SSW

det ach(dat ai n)
i fel se(stat==1, return(eval mean), return(evaltotal))

}

199



HERHHHHH T R
# Function for calculating group summary statistics
HRASHHHA TR R AR R AR R A R R R R i A

groups.rk <- function (datain, stat){
attach(dat ai n)

ps. grp. Di stance.rkgrp <-
by(dat ai n$ps. Di st ance. Chap4. est, | NDI CES=r k. grp, nean)
rk.grp. Di stance <- by(datain$rk.Di stance. Chap4. est, | NDI CES=rk. grp
nean)

# Odds ratio

pop. grp. OR rkgrp <- by(datai npop. OR | NDI CES=r k. grp, mean)
resp.grp. OR rkgrp <- by(datai n$resp. OR | NDI CES=rk. grp, nean)
ps.grp. OR rkgrp <- by(datain$ps. OR | NDI CES=rk. grp, nean)
rk.grp. OR <- by(datai n$rk. OR | NDI CES=r k. grp, nean)

# R-squared

ps. grp. R2. mai n. rkgrp <- by(datai n$ps. R2. mai n, | NDI CES=r k. grp, mnean)
ps.grp. R2.int.rkgrp <- by(datain$ps. R2.int,|ND CES=rk.grp, nean)
rk.grp. R2. main <- by(datain$rk.R2. main, | NDIl CES=rk. grp, nean)
rk.grp.R2.int <- by(datai n$rk.R2.int,|NDl CES=rk.grp, mnean)

# For mean: bias
ps.grp.rel.bias.nmean.rkgrp <-
by(dat ai n$ps. rel . bi as. mean, | NDI CES=r k. gr p, nean)
rk.grp.rel.bias.nean <- by(datain$rk.rel.bias. mean, | NDIl CES=rk. grp
nmean)

# For nean: bias ratio
ps. grp. bias.ratio. nean.rkgrp <-

by(dat ai n$ps. bi as. rati o. mean, | NDI CES=r k. grp, mean)
rk.grp. bias.ratio.nean <-

by(dat ai n$rk. bi as. rati o. mean, | NDI CES=r k. grp, mean)

# For nmean: Cl coverage
ps. grp. Cl.coverage. mean. rkgrp <-

by(dat ai n$ps. mean. Cl . cover age, | NDI CES=r k. grp, mnean)
rk.grp.Cl.coverage. mrean <-

by(dat ai n$r k. mean. Cl . cover age, | NDI CES=r k. gr p, nean)

bygr oup. mean <- data.frame(cbind(ps.grp.rel.bias.nean.rkgrp
rk.grp.rel.bias.mean, ps.grp.bias.ratio.nean.rkgrp,
rk.grp.bias.ratio.nean, ps.grp.Cl.coverage. nean.rkgrp
rk.grp. Cl.coverage. mean, ps.grp.D stance.rkgrp
rk.grp. Di stance, pop.grp. OR rkgrp, resp.grp. OR rkgrp
ps.grp. OR rkgrp, rk.grp.OR ps.grp. R2. main.rkgrp
ps.grp. R2.int.rkgrp, rk.grp.R2.main, rk.grp.R2.int))

# For total: bias
ps.grp.rel.bias.total.rkgrp <-
by(dat ai n$ps. rel . bias.total, | NDl CES=rk.grp, nean)
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rk.grp.rel.bias.total <- by(datain$rk.rel.bias.total,|ND CES=rk.grp
nmean)

# For total: bias ratio
ps.grp.bias.ratio.total.rkgrp <-

by(dat ai n$ps. bias.ratio.total,|ND CES=rk. grp, mnean)
rk.grp.bias.ratio.total <-

by(dat ai n$rk. bi as.rati o.total, | ND CES=rk. grp, nean)

# For total: Cl coverage
ps.grp.Cl.coverage.total.rkgrp <-

by(dat ai n$ps.total.Cl.coverage, | NDIl CES=rk. grp, nean)
rk.grp.Cl.coverage.total <-

by(dat ai n$rk.total.Cl.coverage, | NDl CES=rk. grp, nean)

ps. grp. Cl.coverage.total.rkgrp. SSW <-
by(dat ai n$ps.total.Cl.coverage. SSW I NDI CES=rk. grp, nean)

bygroup.total <- data.franme(cbind(ps.grp.rel.bias.total.rkgrp
rk.grp.rel.bias.total, ps.grp.bias.ratio.total.rkgrp,
rk.grp.bias.ratio.total, ps.grp.Cl.coverage.total.rkgrp
rk.grp.Cl.coverage.total, ps.grp.Di stance.rkgrp
rk.grp. Di stance, pop.grp. OR rkgrp, resp.grp. OR rkgrp
ps.grp. OR rkgrp, rk.grp.OR ps.grp. R2. main.rkgrp
ps.grp. R2.int.rkgrp, rk.grp.R2. main, rk.grp. R2.int,
ps. grp. Cl.coverage.total.rkgrp. SSW)

det ach(dat ai n)

i fel se(stat==1, return(bygroup.nean), return(bygroup.total))

}

groups.greg <- function (datain, stat){
attach(datai n)

ps. grp. Di stance. greggrp <-

by(dat ai n$ps. Di st ance. Chap4. est, | NDI CES=gr eg. grp, mnean)
greg. grp. Di stance <-

by(dat ai n$gr eg. Di st ance. Chap4. est, | NDI CES=gr eg. grp, nean)

# Odds ratio

pop. grp. OR greggrp <- by(datai n$pop. OR, | NDI CES=gr eg. grp, mnean)
resp.grp. OR greggrp <- by(datain$resp. OR | NDI CES=greg. grp, nean)
ps.grp. OR greggrp <- by(datain$ps. OR | NDI CES=gr eg. grp, nean)
greg. grp. OR <- by(datai n$greg. OR, | NDI CES=gr eg. gr p, nean)

# R-squared

ps. grp. R2. mai n. greggrp <- by(datai n$ps. R2. mai n, | NDI CES=gr eg. gr p
nmean)

ps.grp. R2.int.greggrp <- by(datai n$ps. R2.int, | NDl CES=greg. grp, nhean)

greg.grp. R2. main <- by(datai n$greg. R2. mai n, | NDI CES=gr eg. grp, mnean)

greg.grp. R2.int <- by(datain$greg. R2.int,|ND CES=greg.grp, nean)

# For nean: bias

ps. grp.rel.bias.mean. greggrp <-
by(dat ai n$ps. rel . bi as. mean, | NDI CES=gr eg. grp, mean)
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greg. grp.rel.bias. mean <-
by(dat ai n$greg. rel . bi as. nean, | NDI CES=gr eg. grp, nhean)

# For nean: bias ratio
ps. grp. bi as.ratio. nean. greggrp <-

by(dat ai n$ps. bi as. rati o. nean, | NDI CES=gr eg. gr p, nhean)
greg. grp. bias.ratio.nean <-

by(dat ai n$gr eg. bi as. rati o. mean, | NDI CES=gr eg. gr p, nean)

# For nean: Cl coverage
ps. grp. Cl.coverage. mean. greggrp <-

by(dat ai n$ps. nean. Cl . cover age, | NDI CES=gr eg. gr p, nean)
greg. grp. Cl.coverage. nean <-

by(dat ai n$gr eg. nean. Cl . cover age, | NDI CES=gr eg. gr p, nean)

bygr oup. mean <- data. franme(cbi nd(ps.grp.rel.bias.nean. greggrp
greg.grp.rel.bias. mean, ps.grp.bias.ratio. mean.greggrp,
greg. grp. bias.ratio. mean, ps. grp. Cl.coverage. nean. gr eggrp
greg. grp. Cl.coverage. nean, ps.grp.Di stance. greggrp
greg. grp. Di stance, pop.grp. OR greggrp
resp.grp. OR greggrp, ps.grp.OR greggrp, greg.grp. OR
ps. grp. R2. mai n. greggrp, ps.grp.R2.int.greggrp,
greg.grp. R2.main, greg.grp.R2.int))

# For total: bias
ps.grp.rel.bias.total.greggrp <-

by(dat ai n$ps. rel . bi as. total, | NDI CES=gr eg. grp, nean)
greg.grp.rel.bias.total <-

by(dat ai n$greg. rel . bi as.total, | NDl CES=gr eg. grp, nean)

# For total: bias ratio
ps.grp.bias.ratio.total.greggrp <-

by(dat ai n$ps. bi as.rati o.total, | NDI CES=greg. grp, nean)
greg.grp.bias.ratio.total <-

by(dat ai n$greg. bi as.ratio.total, | NDl CES=greg. grp, mnean)

# For total: Cl coverage
ps. grp.Cl.coverage.total.greggrp <-

by(dat ai n$ps.total.Cl.coverage, | NDI CES=gr eg. grp, mean)
greg.grp.Cl.coverage.total <-

by(dat ai n$greg. total . Cl. cover age, | NDI CES=gr eg. grp, nean)

ps. grp. Cl.coverage.total.greggrp. SSW <-

by(dat ai n$ps.total.Cl.coverage. SSW | NDI CES=gr eg. grp
nmean)

bygroup.total <- data.frame(cbind(ps.grp.rel.bias.total.greggrp
greg.grp.rel.bias.total, ps.grp.bias.ratio.total.greggrp,
greg.grp.bias.ratio.total,
ps.grp. Cl.coverage.total.greggrp,
greg.grp.Cl.coverage.total, ps.grp.D stance. greggrp
greg. grp. Di stance, pop.grp. OR greggrp
resp.grp. OR greggrp, ps.grp.OR greggrp, greg.grp. OR
ps. grp. R2. mai n. greggrp, ps.grp.R2.int.gregorp,
greg.grp. R2. nain, greg.grp. R2.int,
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d

}

B.4

ps. grp. Cl.coverage.total.greggrp. SSW)

et ach( dat ai n)
fel se(stat==1, return(bygroup.nean), return(bygroup.total))
A Program for Calling the Program in B.3 to Produce Results over Repeated

Sampling

This program is used in Chapters 3 and 4.

# Set up an enpty matrix to store overall summary statistics

eva
C

e

| <- matrix (nrow=68, ncol =49)
ol nanes(eval ) <- c("ID", "pop.truth",
"resp. bias", "ps.bias", "greg.bias", "rk.bias",

"rk. bi as.rake", "resp.se", "ps.se", "greg.se", "rk.se",
"rk.se.rake", "ps.sqrt.nse", "greg.sqgrt.nse",
"rk.sgrt.nse", "ps.bias.ratio", "greg.bias.ratio",
"rk.bias.ratio", "ps.Cl.coverage", "greg.Cl.coverage",
"rk.Cl.coverage", "respcntll", "respcnt12", "respcnt21",
"respcnt 22", "pop.OR', "resp.OR', "ps.OR", "greg.OR",
"rk.OR', "ps.D stance. Chap4. EmpVar",
"rk. D stance. Chap4. Enpvar", "greg. D stance. Chap4. EmpVar"
"ps. Di stance. Chap4.est", "rk.Di stance. Chap4. est",
"greg. Di stance. Chap4.est","rk. Di stance. est. LG384",
"rk. Di stance. est. LG63", "greg.D stance. est. LG384",
"greg. Di stance. est.LG663", "ps. R2. mai n", "rk.R2. main",
"greg. R2.main", "ps.R2.int", "rk.R2.int", "greg.R2.int",
"CheckLuml ey. ps. se", "CheckLuml ey. ps. se. SSW,
"ps. Cl.coverage.total.SSW)

val[1, "ID'] <- "MEAN -- Y _Main, R scenario 1: R11=1. 0000,
R12=1. 0000, R21=1.0000, R22=1.0000, DI FF=0.0000,
OR=1. 0000"

# R code not shown for filling in MEAN — Y_Main, R scenarios 2

e

e

t hr ough 16.

val[17, "ID'] <- "MEAN -- Y _Main, R scenario 17: R11=0. 0200,
R12=0. 5800, R21=0.6600, R22=0.7400, DI FF=-0.4800,
OR=0. 0387"

val [18, "ID'] <- "MEAN -- Y Interaction, R scenario 1: R11=1.0000,
R12=1. 0000, R21=1.0000, R22=1.0000, DI FF=0.0000,
OR=1. 0000"

# R code not shown for filling in MEAN — Y _Interaction, R scenarios
2 through 16.

eval [34, "ID'] <- "MEAN -- Y_Interaction, R scenario 17: R11=0.0200,
R12=0. 5800, R21=0.6600, R22=0.7400, DI FF=-0.4800,
OR=0. 0387"
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eval [35, "ID'] <- "TOTAL -- Y_Main, R scenario 1. R11=1.0000,
R12=1. 0000, R21=1.0000, R22=1.0000, DI FF=0.0000,
OR=1. 0000"

# R code not shown for filling in TOTAL — Y_MAIN, R scenarios 2
t hr ough 16.

eval [51, "ID'] <- "TOTAL -- Y_Main, R scenario 17: R11=0.0200,
R12=0. 5800, R21=0.6600, R22=0.7400, DI FF=-0.4800,
OR=0. 0387"

eval [52, "ID'] <- "TOTAL -- Y_Interaction, R scenario 1
R11=1. 0000, R12=1.0000, R21=1.0000, R22=1.0000,
Dl FF=0. 0000, OR=1.0000"
# R code not shown for filling in TOTAL — Y_Interaction, R scenarios
2 through 16.
eval [68, "ID'] <- "TOTAL -- Y_Interaction, R scenario 17:
R11=0. 0200, R12=0.5800, R21=0.6600, R22=0.7400, Dl FF=-
0. 4800, OR=0.0387"

# Cbtain results
# Y main, R 100%

ymain.r0l.rslt <- all.info(datai n=ymain.r0l. out$rsit)
# R code not shown for ymain.r02.rslt through ymain.r16.rslt
ymain.rl7.rslt <- all.info(datain=ymain.rl7.out$rslt)

yint.r0l.rslt <- all.info(datain=yint.r01l.out$rslt)
# R code not shown for yint.r02.rslt through yint.r16.rslt
yint.rl7.rslt <- all.info(datain=yint.rl7.out$rslt)
eval [1,2:46] <- overall (datain=ymain.r01l.rslt, stat=1)
éQaI[17,2:46] <- overall (datain=ymain.rl17.rslt, stat=1)
eval [ 18, 2: 46] <- overall(datain=yint.r01.rslt, stat=1)
éQaI[34,2:46] <- overall (datain=yint.rl17.rslt, stat=1)
eval [ 35,2:49] <- overall (datain=ymain.r01l.rslt, stat=2)
éQaI[51,2:49] <- overall (datain=ymain.rl7.rslt, stat=2)
eval [ 52, 2:49] <- overall(datain=yint.r01l.rslt, stat=2)
éQaI[68,2:49] <- overall (datain=yint.rl7.rslt, stat=2)
overall.result <- data.frane(eval)
wite.csv(overall.result, file =

"D:\\Di ssertation\\ ConpareThreeCal i brati onEsti nmators\\Si m
ul ation\\ Overal | Result _Di st anceMeasur el ncl uded. csv")
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B.

5 A Program for Caling the Programsin B.1 and B.3 to Produce Results
Conditioning on Samples Grouped by Estimated Distance Measure

This program is used in Chpater 4.

brary(Resour ceSel ecti on)

kk <- 10000 # kk: repetition of sinulation
nnl <- 200 # nnl, nn2, nn3: SRS sanple size

nn2 <- 2000

nn3 <- 8000

# Call pop.and.control to generate population (x, y and response nodel)
and control totals

# ynmu=1000, vyal pha=c(-200, 300), ybeta=c(-100, 150),
yganma=c( 100, 700, 300, 1200)

# W use only Y _Additive_Interaction nodel here.

# response scenari 0s:

# Scenario pll pl2 p21 p22 diff OR

# 11 0.56000. 6400 0.3600 0. 4400 0. 0000 1.0694

# Scenarios under "Y int":

# 11 0.56000. 6400 0. 3600 0. 4400 0. 0000 1.0694

=

HHHH H*

y

y

int.rll1 <- pop.and.control (seed=41151515, | anbda=10000, | anbda_i=c(0,

0), lanmbda_j=c(0, 0), lanbda_ij=matrix(c(0,0,0,0), nrow
2, ncol = 2), yseed=15157552, ynu=1000, yal pha=c(-
200, 300), ybeta=c(-100,150), ygamma=c(100, 700, 300, 1200),
ysi gma=30, rmeans = c¢(0.5600, 0.6400, 0.3600,

0. 4400))

Call function srs.resp.calib (select sanple, calibrate, and save
summary statistics)

popi nfo, srsinfo, respinfo: dataset plus some control totals

popdat a, srsdata: dataset

k: repetition of simulation

srs.size: SRS sanple size

int.rl11.out.200 <- srs.resp.calib (benchmark=yint.r11, k=kk

Srs. size=nnl)

nt.r1l. out.2000 <- srs.resp.calib (benchmark=yint.r11l, k=kk
Srs. si ze=nn2)

nt.r1l. out.8000 <- srs.resp.calib (benchmark=yint.r11, k=kk
Srs. si ze=nn3)

SRS n = 8000, Y_Interaction, response scenario Sl1
yint.rl1l.rslt.8000 <- all.info(datain=yint.r1l.out.8000%rslt)
grp. nean.rk <- groups.rk(datain=yint.r11l.rslt. 8000, stat=1)

grp. nean. greg <- groups.greg(datain=yint.r11.rslt.8000, stat=1)
grp.total .rk <- groups.rk(datain=yint.r11.rslt.8000, stat=2)
grp.total.greg <- groups.greg(datain=yint.rll.rslt. 8000, stat=2)

SRS n = 2000, Y_Interaction, response scenario Sl11
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yint.rl1ll.rslt.2000 <- all.info(datain=yint.r1l1.out.2000%rslt)
grp. nean.rk <- groups.rk(datain=yint.rl1l.rslt.2000, stat=1)

grp. nean. greg <- groups.greg(datain=yint.r11.rslt.2000, stat=1)
grp.total.rk <- groups.rk(datain=yint.r11.rslt.2000, stat=2)
grp.total.greg <- groups.greg(datai n=yint.rl1l.rslt. 2000, stat=2)

save(yint.rll.rslt. 8000, yint.r1l.rslt. 2000,
file="D:\\Dissertation\\ConpareThreeCalibrationEsti mators
\\ Si mul ati on\\ Condi t i oni ngOnSanpl e\ \ CondOnSnp. RDat a")

# raphs relative bias and bias ratio by type of sanples based on

di stance neasure. | do this only for totals because
don't plan to include graphs for the means in the
writing.

# Rel bias vs distance

png(file =
"D:\\Di ssertation\\ ConpareThreeCal i brati onEsti nmators\\Si m
ul ation\\ Conditioni ngOnSanpl e\\Yint _R11 Rel Bi as. png")

#wi n. netafile(fil ename="D:\\Di ssertation\\ConpareThreeCalibrationEstinma
tors\\ Si mul ati on\\ Condi ti oni ngOnSanpl e\\Yi nt _R11 Rel Bi as.
enf")

par (nmfrow=c(2,4), oma=c(2, 2, 2, 0), mar=c(3, 3, 2, 1), mgp=c(2, 0.5,
0))

attach(yint.r1l.rslt.8000)

t abl e(greg. grp)

greg. grp. max <- by (greg. D stance. Chap4. est, | NDI CES=greg. grp. num nax)
greg.v.lines.20 <- as.vector(greg.grp. nax)

greg.v.lines <- greg.v.lines.20[c(5, 10, 15)]

tabl e(rk. grp)

rk.grp. max <- by (rk.Di stance. Chap4. est, | NDI CES=rk.grp. num nax)
rk.v.lines.20 <- as.vector(rk.grp. mx)

rk.v.lines <- rk.v.lines.20[c(5, 10, 15)]

h.lines <- c¢(-1.96, -1.64, -1.28, 0, 1.28,1.64, 1.96)

pl ot (rk. Di stance. Chap4.est, ps.rel.bias.total, ylab="SRS n = 8, 000"

xlab="", ylimec(-0.025, 0.025), cex=0.3)

abline(v=rk.v.lines, col = "lightgray")

title(main="1) Poststratification", col.min="purple", font.min=2
line=1)

pl ot (greg. Di stance. Chap4.est, ps.rel.bias.total, ylab="", xlab=""
yl i mec(-0.025, 0.025), cex=0.3)

abline(v=greg.v.lines, col = "lightgray")

title(main="2) Poststratification", col.nmain="purple", font.min=2,
line=1)

pl ot (rk. Di stance. Chap4.est, rk.rel.bias.total, ylab="", xlab=""
yl i mec(-0.025, 0.025), cex=0.3)

abline(v=rk.v.lines, col = "lightgray")

title(mai n="3) Raking", col.nmain="purple", font.min=2, |ine=1)
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pl ot (greg. Di stance. Chap4.est, greg.rel.bias.total, ylab="", xlab=
ylimec(-0.025, 0.025), cex=0.3)

abline(v=greg.v.lines, col = "lightgray")

title(mai n="4) GREG Main", col.main="purple", font.min=2, |ine=1)

detach(yint.r11.rslt.8000)

# R code for SRS sanple size 2000 is not shown here, but sinmilar to the
R code for SRS sanple size 8000.

nt ext (" Absol ute Val ue of Relative Bias", side=2, font=2, |ine=1
out er =TRUE)
nt ext (" Di stance Measure", side=1, font=2, |ine=1, outer=TRUE)

dev. of f ()

# Bias ratio vs Distance. Chap4. est

png(file =
"D:\\Dissertation\\ ConpareThreeCal i brati onEsti nators\\Si m
ul ation\\ Conditioni ngOnSanpl e\\Yint _R11 BiasRatio.png")

#wi n. netafile(fil ename="D:\\Di ssertation\\ConpareThreeCalibrationEsti nma
tors\\ Si mul ati on\\ Condi ti oni ngOnSanpl e\\Yi nt _R11 Bi asRat i
o.enf")

par (nmfrow=c(2,4), oma=c(2, 2, 2, 0), mar=c(3, 3, 2, 1), nmgp=c(2, 0.5,
0))

HERHHHHH PR HH PR H TR H T
attach(yint.r11.rslt.8000)

tabl e(greg. grp)

greg. grp. max <- by (greg.Di stance. Chap4. est, | NDI CES=greg. grp. num nax)
greg.v.lines.20 <- as.vector(greg.grp. max)

greg.v.lines <- greg.v.lines.20[c(5, 10, 15)]

tabl e(rk. grp)

rk.grp. max <- by (rk.Di stance. Chap4. est, | NDI CES=rk.grp. num nax)
rk.v.lines.20 <- as.vector(rk.grp. mx)

rk.v.lines <- rk.v.lines.20[c(5, 10, 15)]

h.lines <- c(-1.96, -1.64, -1.28, 0, 1.28,1.64, 1.96)

pl ot (rk. Di stance. Chap4. est, ps.bias.ratio.total, ylab="SRS n = 8, 000"

xlab="", ylimec(-6, 6), cex=0.3)

abline(v=rk.v.lines, col = "lightgray")

title(main="1) Poststratification", col.nain="purple", font.min=2,
line=1)

pl ot (greg. Di st ance. Chap4. est, ps.bias.ratio.total, ylab="", xlab=""
ylimec(-6, 6), cex=0.3)

abline(v=greg.v.lines, col = "lightgray")

title(main="2) Poststratification", col.nmain="purple", font.min=2,
[ine=1)

pl ot (rk. Di stance. Chap4.est, rk.bias.ratio.total, ylab="", xlab=""
ylimec(-6, 6), cex=0.3)

abline(v=rk.v.lines, col = "lightgray")
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title(mai n="3) Raking", col.nmain="purple", font.min=2, |ine=1)

pl ot (greg. Di st ance. Chap4. est, greg.bias.ratio.total, ylab="", xlab=""
ylimec(-6, 6), cex=0.3)
abline(v=greg.v.lines, col = "lightgray")

title(mai n="4) GREG Main", col.nmain="purple", font.main=2, |ine=1)
detach(yint.r11.rslt.8000)

# R code for SRS sanple size 2000 is not shown here, but sinmilar to the
R code for SRS sanple size 8000.

nt ext (" Absol ute Val ue of Bias Ratio", side=2, font=2, |ine=1
out er =TRUE)
nt ext (" Di stance Measure", side=1, font=2, |ine=1, outer=TRUE)

dev. of f ()

B.6 A Function to Adapt the Program in B.1 for Comparing Measures from Different
Raking Variance Estimation Methods

Thisfunction isused in Chapter 5.

HRABHHHAB R HH AR HH AR HHN R HH R R R AR R 1
# Function for SRS sanpling from popul ati on and respondent sanpling
HERHHHHH BT

srs.snmp <- function(srsseed, popdata, n, repnun {
srs. bad <- FALSE

N <- nrow popdat a)

s <- srswor(n, N)
bwgt <- rep (N'n, n)
fl1 <- rep (n/N, n)

srs.snmp <- data.frane(popdata[s==1,], bwgt, f1)
srs.totals <- xtabs(~xvarl + xvar2, data = srs.snp)

# Form desi gn object for JKn

# random ze the order of the sanple (although this nmay not be
necessary for SRS sanple, but | did this to nake sure)

# "sanpl e" can random ze the order of the vector

# "1:n" add a sequential nunber indicating the order of the record
after random sorting

nunmber <- 1:n

srs.snmp.JK1 <- data.frane(srs.snp[sanple(l:n), ], nunber
psu=cei |l i ng( nunber/ (n/ repnum))

# TS design
TS. dsgn <- svydesi gn(
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ids = ~0, # No cluster
strata = NULL, # No strata
# fpc = ~f1,

wei ghts = ~bwgt,

data = srs.snp)

#IK1

dsgn <- svydesign(
ids = ~psu,
strata = NULL, # No strata
# fpc = ~f1,

wei ghts = ~bwgt,
data = srs.snp.JK1)

JK1.dsgn <- as.svrepdesi gn(desi gn=dsgn, type="JK1")
if (srs.totals[1, 1]<2 | srs.totals[1l, 2]<2 | srs.totals[2, 1]<2 |

srs.total s[2, 2]<2){
srs. bad <- TRUE

return(list(srs. bad=srs. bad, srs.snp=srs.snp, srs.total s=srs.totals,

TS. dsgn=TS. dsgn, JKI1. dsgn=JK1. dsgn))
}

resp.snmp <- function (srsdata, TS.dsgn, JKI.dsgn){
resp. bad <- FALSE

resp.indic <- srsdata["respflag"] > 0
resp.snp <- srsdata[resp.indic==1, ]

resp.totals <- xtabs(~xvarl + xvar2, data = resp.snp)
# design objects for response sanple

TS. dsgn.resp <- subset (TS. dsgn, respflag>0)
JK1.dsgn.resp <- subset (JK1.dsgn, respflag>0)

if (resp.totals[1, 1]<2 | resp.totals[1, 2]<2 | resp.totals[2, 1]<2

resp.total s[2, 2]<2){
resp. bad <- TRUE

return(list(resp. bad=resp. bad, resp.snp=resp.snp,
resp.total s=resp.totals, TS.dsgn.resp=TS. dsgn.resp
JK1. dsgn. resp=JK1. dsgn. resp))

}

HERHHHHH T R
# Function for calibration and obtaining summary statistics
HRABHHHA TR AR AR A AR AR R AR R R

calib <- function(respinfo, popinfo, srsinfo, TS.dsgn.resp
JK1. dsgn. resp){

# Calibration TS approach

TS. ps.dsgn <- postStratify(design = TS.dsgn.resp, strata = ~xvarl +

xvar 2, popul ati on = popi nfo$t ot al s. xvar 1xvar 2,
parti al =TRUE)
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TS. ps.wgt <- wei ght s(TS. ps. dsgn)

TS.rk.dsgn <- calibrate(design = TS.dsgn.resp, fornula = ~xvarl +
xvar 2, population = c(' (Intercept)'=nrow popi nfo$pop),
xvar 12=sun( popi nf o$t ot al s. xvar 1xvar2[2,]),
xvar 22=sun{ popi nf o$t ot al s. xvar 1xvar2[, 2])),
cal fun="raki ng")

TS.rk.wgt <- wei ghts(TS. rk. dsgn)

TS. greg.dsgn <- calibrate(design = TS.dsgn.resp, formula = ~xvarl +
xvar 2, population = c('(Intercept)' =nrow popi nfo$pop),
xvar 12=sun( popi nf o$t ot al s. xvar 1xvar2[2,]),
xvar 22=sun( popi nf o$t ot al s. xvar 1xvar2[, 2])),
cal fun="1inear")

TS. greg. wgt <- wei ghts(TS. greg. dsgn)

# Calibration JKL approach

JK1. ps.dsgn <- postStratify(design = JK1.dsgn.resp, strata = ~xvarl +
xvar 2, popul ation = popinfo$totals.xvar 1xvar2,
parti al =TRUE)

JK1. ps.wgt <- wei ght s(JKL. ps. dsgn)

JK1.rk.dsgn <- calibrate(design = JK1.dsgn.resp, formula = ~xvarl +
xvar 2, population = c(' (I ntercept)'=nrow popi nfo$pop),
xvar 12=sun( popi nf o$t ot al s. xvar 1xvar2[2,]),
xvar 22=sun( popi nf o$t ot al s. xvar 1xvar2[, 2])),
cal fun="raki ng")

JK1.rk.wgt <- weights(JKL.rk.dsgn)

JK1.greg.dsgn <- calibrate(design = JKIL.dsgn.resp, fornmula = ~xvarl +
xvar 2, population = c('(Intercept)' =nrow popi nfo$pop),
xvar 12=sun( popi nf o$t ot al s. xvar 1xvar2[2,]),
xvar 22=sun( popi nf o$t ot al s. xvar 1xvar2[, 2])),
cal fun="1inear")

JK1.greg. wgt <- wei ghts(JK1. greg. dsgn)

HHHHBHHH B H B H R

# Summary statistics

HA#HHHHBHAH AT H R R

# Tot al

pop.total <- sun{popinfoS$pop[,"y"])

rk.total <- rk.total <- svytotal (~y, TS.rk.dsgn)

rk. Nrc <- svytabl e(~xvarl + xvar2, TS.rk.dsgn)
rk.Diff.Nrc = rk.Nrc - popi nfo$totals.xvarlxvar2

#H### TS approach ####

TS.rk.total.se <- SE(svytotal (~y, TS.rk.dsgn)) # SE using
Lum ey TS approach
TS.rk.total.Cl <- confint(svytotal (~y, TS.rk.dsgn)) # Cl

using Lum ey TS approach

TS.rk.total.Cl.coverage <- ifelse(TS.rk.total.Cl[1] <=pop.total &
pop.total <=TS.rk.total .Cl[2], 1, 0) # Cl coverage
using Lum ey TS approach

TS.rk.Distance <- (rk.Diff.Nrc[1,1]/SE(svytotal (~x11, TS.rk.dsgn)))"2
# Di stance neasure Lunley TS approach
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#H### JK1 approach ####

JKl.rk.total.se <- SE(svytotal (~y, JK1.rk.dsgn)) # SE using
JK1 approach
JKl.rk.total.Cl <- confint(svytotal (~y, JKI1.rk.dsgn)) # C

usi ng JK1 approach

JKl.rk.total.Cl.coverage <- ifelse(JKl.rk.total.Cl[1l] <=pop.total &
pop.total <=JKl.rk.total.CI[2], 1, 0) # Cl coverage
usi ng JK1 approach

JK1.rk.Di stance <- (rk.Diff.Nrc[1,1]/SE(svytotal (~x11
JK1.rk.dsgn)))"2 # Di stance neasrue JK1 approach

#### SEs using four different approaches in DArrigo and Skinner ####
# obtain residuals #
resp.resid <- data.frame(respi nfo$resp.snp, TS.rk.wgt)

# residuals fromregression nodel using base weights
bwgt.reg.resid <- residual s(svygl my~xvar 1+xvar 2,
desi gn=TS. dsgn. resp))

# residuals fromregression nodel using raked wei ghts
rkwgt.reg.resid <- residual s(svygl n(y~xvar 1+xvar 2,
desi gn=(svydesign(ids = ~0, # No cluster

strata = NULL, # No strata
# fpc = ~f1,

wei ghts = ~TS. rk. wgt,

data = resp.resid))))

# Create design objects #
resp.resid.wgt <- data.franme(resp.resid, bwgt.reg.resid
rkwgt . reg. resid)

# Design object with base weights (to be used for weighting
resi dual s)
bwgt . resi d. dsgn <- svydesign(ids = ~0, # No cluster
strata = NULL, # No strata
# fpc = ~f1,
wei ghts = ~bwgt,
data = resp.resid.wgt)

# Design object with raked weights (to be used for weighting
resi dual s)
rkwgt.resid.dsgn <- svydesign(ids = ~0, # No cluster
strata = NULL, # No strata
# fpc = ~f1,
wei ghts = ~TS. rk. wgt,
data = resp.resid.wgt)

# base wei ghts for weighting residuals & base wei ghts for regression
nodel

Bresid.Breg.rk.total.se <- SE(svytotal (~bwgt.reg.resid,
bwgt . resi d. dsgn))
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# base wei ghts for weighting residuals & raked weights for regression
nodel

Bresid. RKreg.rk.total.se <- SE(svytotal (~rkwgt.reg.resid,
bwgt . r esi d. dsgn))

# raked weights for weighting residuals & base weights for regression
nodel

RKresid.Breg.rk.total.se <- SE(svytotal (~bwgt.reg.resid,
rkwgt . resi d. dsgn))

# raked weights for weighting residuals & raked weights for
regressi on nodel

RKresi d. RKreg.rk.total.se <- SE(svytotal (~rkwgt.reg.resid,
rkwgt . resi d. dsgn))

# vector to return, for estimates of totals
results.total <- vector(length=19)

results.total[1] <- pop.total
results.total[2] <- rk.total
results.total[3] <- TS.rk.total.se
results.total[4] <- TS.rk.total.Cl.coverage
results.total[5] <- TS.rk.D stance

results.total[6] <- JKl.rk.total.se
results.total[7] <- JKl.rk.total.Cl.coverage
results.total [8] <- JKI1.rk.Di stance

results.total[9] <- Bresid.Breg.rk.total.se

results.total[10] <- Bresid.RKreg.rk.total.se
results.total[11] <- RKresid.Breg.rk.total.se
results.total[12] <- RKresid.RKreg.rk.total.se

results.total [13] <- nean(bwgt.reg.resid)
results.total [14] <- var(bwgt.reg.resid)
results.total [15] <- mean(bwgt.reg.resid"2)

results.total [16] <- nean(rkwgt.reg.resid)
results.total [17] <- var(rkwgt.reg.resid)
results.total [18] <- mean(rkwgt.reg.resid"2)

results.total[19] <- rk.D ff.Nrc[1, 1]
return (t(results.total))

}

HERHHHHH T R
# Function for calling srs.snmp, resp.snp, calib during each sinmulation
HHRHHHH B HTH R HH R HH R R R R R R R R R AR

srs.resp.calib <- function (benchmark, k, srs.size, repnum{

S < kK # nunber of good sanples to keep
s <- 1
bad.snp <- 0

# An enpty natrix to store results.
rslt <- matrix(nrow=S, ncol =19)

212



col names(rslt) <- c("pop.total",
"rk.total ",

"TS.rk.total .se",
"TS.rk.total.Cl.coverage",
"TS.rk. D stance",

"JKl.rk.total.se",
"JKl.rk.total.Cl.coverage",
"JK1.rk. D stance",

"Bresid.Breg.rk.total.se",
"Bresid. RKreg.rk.total.se",
"RKresid.Breg.rk.total.se",
"RKresid. RKreg.rk.total .se",

“mean. bwgt . reg. resi d",
"var. bwgt.reg.resid",
"mean. bwgt . reg. resi d. squar ed",

"mean. rkwgt.reg.resid",
"var.rkwgt.reg.resid",

"mean. rkwgt . reg. resi d. squar ed"”,
"rk.Diff.Ncl1l")

while (s <= S){
keep.sw <- TRUE

# draw srs sanpl e and respondent sanple
srssnp <- srs.snp(popdat a=benchmar k$pop, n=srs.size, repnumerepnun
if (srssnp$srs. bad==TRUE) {

bad. snp <- bad.smp + 1

keep.sw <- FALSE
}
el se {

# assign respondent

respsnp <- resp.snp (srsdata=srssnp$srs. snp,

TS. dsgn=sr ssnp$TS. dsgn, JKI1.dsgn=srssnp$IK1l. dsgn)

}

if (respsmp$resp. bad==TRUE) {
bad. snp <- bad.smp + 1
keep.sw <- FALSE

}

el se {

# calibration and save sumary statisticis

rslt[s, ] <- calib(respinfo=respsnp, popinfo=benchnark,
srsi nfo=srssnp, TS. dsgn.resp=respsnp$TS. dsgn. resp,
JK1. dsgn. resp=r espsnp$IK1. dsgn. r esp)

# increase sanple counter

s <-s +1

}
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return (list(bad. snp=bad.snp, rslt=rsit))
}

B.7 A Program in Chapter 5 for Calling the Program That is Adopted from the
Program in B.1 with the Function in B.6.

i brary(sanpling)
library(survey)

HERHHHHH B R
# Function for creating neasures fromthe S good sanpl es
HRASHHHH TR H AR H AR IR RN RN R R R R

all.info <- function(datain){

dat ai n <- data. frame(dat ai n)
attach(datai n)

# Total: relative bias
rk.rel.bias.total <- (rk.total - pop.total)/pop.total

# Total: relative square root of nse
rk.rel.sqrt.nse.total <- sqrt((rk.total - pop.total)”2)/pop.total

# Total: bias ratio or t-statitics using TS
TS.rk.bias.ratio.total = (rk.total - pop.total) / TS.rk.total.se

# Total: bias ratio or t-statitics using JK1
JKl.rk.bias.ratio.total = (rk.total - pop.total) / JKL. rk.total.se

# Di stance Measure using enpirical variance fromsinmulation, for
Chapter 4
Enp.rk. Distance <- rk.Diff.Ncll”2/var(rk.D ff.Nrcll)

TS.rk. Di stance. LG384 <- ifelse(TS.rk.Di stance>3.84, 1, 0)
TS.rk. Di stance. LG663 <- ifelse(TS.rk. D stance>6.63, 1, 0)

JK1.rk.Di stance. LG384 <- ifelse(JKl.rk.Distance>3.84, 1, 0)
JK1.rk.Di stance. LG663 <- ifel se(JKI1l.rk.Di stance>6.63, 1, 0)

dat af i nal <- data.frame( datain,
rk.rel.bias.total,
rk.rel.sqrt.nse.total,
TS.rk.bias.ratio.total,
JK1.rk.bias.ratio.total,
Enp. rk. Di st ance,
TS.rk. D stance. LG384,
TS.rk. Di stance. LG663,
JK1. rk. Di stance. LG384,
JK1.rk. D stance. LG663)

det ach(dat ai n)
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return(datafinal)

}

HH#HHHHBHTH R HH R AR TR AR R AR AR R
# Function for generating overall summary statitics
HERHHHHH

overall <- function (datain){
attach(datain)

# For total: relative bias, relative standard error, relative square
root of mse, bias ratio
pop.total <- nean(pop.total)

rk.rel.bias.total <- mean(rk.rel.bias.total) # relative bias
rk.rel.sqgrt.mse.total <- mean(rk.rel.sqrt.nse.total) # MSE

Enp.rk.rel.se.total <- sqgrt(var(rk.total))/pop.total # SE's
TS.rk.rel.se.total <- nean(TS.rk.total.se)/pop.total
JKl.rk.rel.se.total <- nean(JKl.rk.total.se)/pop.total

TS.rk.bias.ratio.total <- nmean(TS.rk.bias.ratio.total) # Bi as
ratios
JK1l.rk.bias.ratio.total <- nean(JK1l.rk.bias.ratio.total)

TS.rk. Cl.coverage.total <- nean(TS.rk.total.Cl.coverage) # Cl
cover age
JK1.rk.Cl.coverage.total <- nmean(JKLl.rk.total.Cl.coverage)

Enp. rk. Di stance <- nean(Enp.rk. Di stance) # Di stance neasure and
extreme val ues

TS.rk. Di stance <- nmean(TS. rk. Di stance)

JK1.rk. D stance <- nean(JK1.rk. Di stance)

TS.rk. Di stance. LG384 <- nean(TS. rk. Di stance. LG384)
JK1.rk. D stance. LG384 <- nean(JKL1.rk. Di stance. LG384)

TS.rk. Di stance. LG663 <- nean(TS. rk. D stance. LG563)
JK1.rk. D stance. LG663 <- nean(JKL1.rk. Di stance. LG663)

#H##H#H###H Four SEs based on DArrigo and Skinner and di agnostics for
residual s fromregressi on node

# Usi ng base wei ghts on residuals

Bresid.Breg.rk.rel.se.total <-
nean(Bresid. Breg.rk.total.se)/pop.total

Bresid. RKreg.rk.rel.se.total <-
mean(Bresid. RKreg.rk.total .se)/pop.tota

# Usi ng raked wei ghts on residuals
RKresid.Breg.rk.rel.se.total <-

mean( RKresi d. Breg.rk.total .se)/ pop.tota
RKresid. RKreg.rk.rel.se.total <-

nmean( RKresi d. RKreg. rk. total . se)/ pop. total

# Mean of residuals fromregression nodel
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}

nmean. bwgt . reg. resid <- nean(nean. bwgt.reg.resid)
nmean. rkwgt. reg.resid <- nmean(nean.rkwgt.reg.resid)

# Variance of residuals fromregressi on nodel
var. bwgt.reg.resid <- nmean(var.bwgt.reg.resid)
var.rkwgt.reg.resid <- nean(var.rkwgt.reg.resid)

# Mean of squared residuals fromregression nodel (we calculate this
because we are not sure if the residuals would sumup to
zer o)

nmean. bwgt . reg. resi d. squared <- nean(nean. bwgt.reg.resid. squared)

mean. r kwgt . reg. resi d. squared <- nean(nean. rkwgt.reg.resid.squared)

det ach(dat ai n)

HHUHBHHHBHHH B H B H B PR H R R R R R R
evaltotal <- chind (pop.total, rk.rel.bias.total,
rk.rel.sqrt.nmse.total,
Enmp.rk.rel.se.total, TS.rk.rel.se.total,
JKLl.rk.rel.se.total,
TS.rk.bias.ratio.total, JKLlL.rk.bias.ratio.total,
TS.rk. Cl.coverage.total,
JK1.rk.Cl.coverage.total,
Enp. rk. Di stance, TS.rk.Di stance, JK1.rk.Di stance,
TS.rk. Di stance. LG384, JK1.rk. Di stance. LG384,
TS.rk. Di stance. LG663, JKI1.rk. Di stance. LG563,
Bresid.Breg.rk.rel.se.total,
Bresid. RKreg.rk.rel.se.total,
RKresid.Breg.rk.rel.se.total,
RKresid. RKreg.rk.rel .se.total,
nean. bwgt . reg. resi d, nean.rkwgt.reg.resid,
var. bwgt.reg.resid, var.rkwgt.reg.resid,
mean. bwgt . r eg. resi d. squar ed,
mean. r kwgt . r eg. resi d. squar ed)

return(evaltotal)
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