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Calibration weighting is widely used to decrease variance, reduce nonresponse bias, and 

improve the face validity of survey estimates. In the purely sampling context, Deville & 

Särndal (1992) demonstrate that many alternative forms of calibration weighting are 

asymptotically equivalent, so for variance estimation purposes, the generalized regression 

(GREG) estimator can be used to approximate some general calibration estimators with 

no closed-form solutions such as raking.  It is unclear whether this conclusion holds when 

nonresponse exists and single-step calibration weighting is used to reduce nonresponse 

bias (i.e., calibration is applied to the basic sampling weights directly without a separate 

nonresponse adjustment step).  

 

In this dissertation, we first examine whether alternative calibration estimators may 

perform differently in the presence of nonresponse.  More specifically, properties of three 

widely used calibration estimations, the GREG with only main effect covariates 



 
 

(GREG_Main), poststratification, and raking, are evaluated.  In practice, the choice 

between poststratification and raking are often based on sample sizes and availability of 

external data.  Also, the raking variance is often approximated by a linear substitute 

containing residuals from a GREG_Main model.  Our theoretical development and 

simulation work demonstrate that with nonresponse, poststratification, GREG_Main, and 

raking may perform differently and survey practitioners should examine both the 

outcome model and the response pattern when choosing between these estimators.  Then 

we propose a distance measure that can be estimated for raking or GREG_Main from a 

given sample.  Our analytical work shows that the distance measure follows a Chi-square 

probability distribution when raking or GREG_Main is unbiased.  A large distance 

measure is a warning sign of potential bias and poor confidence interval coverage for 

some variables in a survey due to omitting a significant interaction term in the calibration 

process.  Finally, we examine several alternative variance estimators for raking with 

nonresponse.  Our simulation results show that when raking is model-biased, none of the 

linearization variance estimators under evaluation is unbiased.  In contrast, the jackknife 

replication method performs well in variance estimation, although the confidence interval 

may still be centered in the wrong place if the point estimate is inaccurate.  
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Chapter 1.  Literature Review 

 

Calibration weighting was originally developed as a method for reducing sampling errors 

while retaining randomization consistency. Deville and Särndal (1992) introduce 

calibration estimators using the distance function approach.  Later work by Särndal (2007) 

points out that there are two different approaches to take account of auxiliary information 

in estimation – a “calibration approach” and a “regression approach”. The two 

approaches generate the same estimator, the generalized-regression (GREG) estimator, in 

the situation where the general least squares (GLS) distance function is used in the 

calibration approach and linear regression model is used in the regression approach. For 

the purpose of comparison, we use the term “general calibration estimators” to refer to 

the other estimators in the calibration estimator family covered by Deville and Särndal 

(1992), as opposed to the GREG estimator.  

 

Although almost all surveys in practice are subject to frame deficiencies and nonresponse, 

the theories in Deville and Särndal (1992) are developed for the ideal situation where 

non-sampling errors do not exist. In this context (i.e., in the situation where non-sampling 

errors do not exist), Deville and Särndal (1992) show that many alternative forms of 

calibration weighting are asymptotically identical. This leads to a breakthrough in our 

understanding of some commonly used calibration estimators that do not have closed-

form solutions, such as raking. As a result, the GREG estimator is often considered a 

good approximation of the general calibration estimators. However, non-sampling errors 

such as nonresponse almost always exist in real-world surveys. In the past decade, 
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Särndal and Lundström (1999, 2005), Kott (2006), Chang and Kott (2008), Kott and 

Chang (2010), and Kott and Liao (2012) have proposed different methods for using 

calibration to reduce nonresponse bias through one-step weighting, yet we still lack 

understanding of the empirical properties of the calibration estimators generated by these 

methods.  For example, it is unclear whether the GREG estimator and the general 

calibration estimators are asymptotically equivalent when nonresponse is present in a 

survey and single-step calibration weighting is used to reduce potential nonresponse bias 

(i.e., calibration is applied to the basic sampling weights directly without a separate 

nonresponse adjustment step).  In practice, the poststratification estimator (as a special 

case of the GREG estimator) and the raking estimator (as an example of the general 

calibration estimator) are both widely used in the government-sponsored surveys in the 

United States and European countries. Quite often survey practitioners choose between 

these two estimators based on the availability of the benchmark totals and the case counts 

in the survey requiring calibration.  Such a decision rule is fully justifiable only if 

poststratification and raking can reduce nonresponse bias to a similar extent. However, no 

systematic research has been conducted on comparing the performance of the 

poststratification estimator and the raking estimator when calibration is used to correct 

nonresponse bias.  

 

Our research expands the literature by relaxing the assumption of no non-sampling error.  

To keep the picture simple, we assume that the sampling frame has perfect coverage and 

there is no measurement error in surveys, so we can focus on the non-sampling error 

caused by nonresponse.  Our goal is to evaluate the properties of some calibration 



3 
 

estimators when calibration is used to reduce nonresponse bias through a one-step 

weighting approach. The rest of this chapter is organized as follows: Sections 1.1 through 

1.3 summarize the research on the properties of various calibration estimators, 

particularly those proposed by Deville and Särndal (1992), in the absence of nonresponse.  

Sections 1.4 describes the alternative single-step calibration methods in the literature.  

Section 1.5 explains the importance of choosing auxiliary variables to effectively reduce 

nonresponse bias.  Section 1.6 points out the gaps in the existing literature and describes 

our research aims. 

 

1.1  Two Approaches to Incorporate Auxiliary Information in Estimation 

 

There are two systematic ways to take account of auxiliary information in estimation, 

labeled as the “regression approach” and the “calibration approach”, although the 

distinction may not be completely clear-cut (Särndal 2007). In their original definition of 

the calibration estimator, Deville and Särndal (1992) require “minimum distance” 

between the calibration weights and the original sampling weights, subject to satisfying 

the calibration equation. In general, the term “calibration approach” often refers to 

creating estimators by benchmarking the auxiliary information to external controls. 

 

Let ky  be the value of the variable of interest, y, for the kth population element, which is 

associated with a vector of auxiliary variables T
1( , , ,   )k k kp kPx x x= … …x .  For the 

elements k s∈ , where s is the set of sample elements, we observe ( , )k ky x .  For 
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simplicity, the population total of x, x k
U

= ∑t x , which is often referred to as the 

benchmark control vector, is assumed to be accurately known.  

 

The objective is to estimate the population total y k
U

t y= ∑ . Let kd  be the basic sampling 

design weight calculated as the inverse of the inclusion probability kπ . The Horvitz-

Thompson estimator is /ŷ k k k k
s s

t y d yπ π= =∑ ∑ .  The calibration estimator is defined as 

ŷw k k
s

t w y= ∑ , with weights kw  as close as possible, in an average sense based on a 

distance function, to the basic design weights kd  while respecting the calibration 

equation 

k k x
s

w =∑ x t        (1.1) 

Under a chosen distance function ( ,  )k k kG w d , this becomes an optimization problem. The 

goal is to find a set of weights { }k k sw
∈ that minimizes ( ,  )k k kk s

G w d
∈∑  subject to (1.1). 

This leads to the Lagrange function  

( ) ( )T,k k x k kk s k s
G w d w

∈ ∈
Ψ = + −∑ ∑λ t x    (1.2) 

which is minimized to find the optimal set of weights { }k k sw
∈ .  

 

The calibration weights can be expressed as  

T( )k k k kw d F= x λ       (1.3) 
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where T
1( ,  ,   )Pλ λ= …λ  is the vector of Lagrange multipliers determined from (1.2). λ

corresponds to a realized sample, but for simplicity we often use λ  as the shorthand for 

sλ . T( )k kF x λ  is the inverse function of ( ,  ) ( ,  ) /k k k k k k kg w d G w d w= ∂ ∂ , the first partial 

derivative of the distance function taken with respect to the calibrated weight. ( )T
k kF x λ  

uniquely corresponds to ( ,  )k k kG w d .  It is assumed that kF  is non-negative and convex, 

and that (0) 1kF = , implying that when k kw d= the distance between the basic design 

weights and calibrated weights is zero.  Moreover, it is required that kF′  is continuous, 

one-to-one, and that (1) 0kF′ =  and (1) 0kF′′ > , which makes k kw d=  a local minimum.         

 

The Horvitz-Thompson estimator of xt  is ˆ
x k k

s

dπ = ∑t x , so the calibration equation can 

be expressed as 

T( ˆ)k k k k k k x x
s s

d F d π− = −∑ ∑x λ x x t t     (1.4) 

Define 

( ) ( ){ }T 1s k k k k
s

d FΦ = −∑λ x λ x      (1.5) 

Then (1.4) can be written as 

( ) ˆ
s x xπΦ = −λ t t      (1.6) 

 

The task of obtaining kw  boils down to solving (1.6) for λ . The calibration estimator of 

yt  is 
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T(ˆ )yw k k k k k k
s s

t w y d F y= =∑ ∑ x λ     (1.7) 

Depending on the distance function ( ,  )k k kG w d , iteration may be required to obtain a 

solution for λ. With full response, the Horvitz-Thompson estimator ˆ  yt π using basic 

sampling weights kd  is unbiased. If the calibration weights kw  are as close as possible, 

according to ( ,  )k k kG w d , to the basic sampling weights kd , then a realistic expectation is 

that the calibration weights will maintain near unbiasedness. 

 

Although several distance functions are discussed in Deville and Särndal (1992), most 

theoretical research has focused on the GLS distance function 2( ) /k k k k
s

w d d q−∑ , where 

1 kq  is the positive weight associated with the kth term and is unrelated to kd .  With this 

distance function, the calibration equation has a closed-form solution. We obtain

T TF ( 1k kk kq) = +x λ x λ , and the calibration estimator is the GREG estimator 

 

T T(1 ) ˆˆ ) ˆ(ˆ
yreg k k k k y x x s

s

t d q y t π π= + = + −∑ x λ t t B    (1.8) 

where     

1( )ˆ
s x xπ
−= −T t tλ                    (1.9) 

   1ˆ
s s k k k k

s

d q y−= ∑B T x        (1.10) 

   T
s k k k k

s

d q= ∑T x x        (1.11) 
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An alternative method for obtaining the calibration estimator is referred to as the 

“regression approach”. With the regression approach, estimators are calculated by using 

an assisting model that closely represents the relationship between the outcome variable 

and the auxiliary variables.  The assisting model is also referred to as the calibration 

model or the working prediction model by Kott (2006) to distinguish it from other models 

such as those used to address response propensity. The assisting model can have linear or 

nonlinear forms. When the assisting model is a linear regression model, the weight 

happens to be calibrated to the auxiliary controls and the estimator (which is the GREG 

estimator) is expressible as a linearly weighted sum with calibrated weights as a by-

product. One advantage of the GREG estimator is that the calibrated weights are 

independent of any particular outcome variable y  and can therefore be applied to all the 

variables of interest in a survey (Särndal, Swensson, and Wretman, 1992).   

 

In summary, the central idea for the regression approach is to find an assisting model that 

fits the population data well. In practice, we are often interested in estimating totals for a 

number of survey variables, and it is unreasonable to assume that different outcome 

variables fit the same model. This is probably why survey statisticians often adopt a 

model-assisted approach rather than a model-based approach. In contrast, the calibration 

approach does not refer explicitly to any models, but emphasizes the linear weighting of 

the observed y values with weights made to confirm computable aggregates. The 

resulting calibrated weights are functions only of the auxiliary variables and not any of 

the outcome variables, so one set of final analysis weights is created instead of requiring 

weights specific to each variable within a set of key outcome variables. The two 
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approaches generate the same estimator, the GREG estimator, under the special situation 

where the GLS distance function is used in the calibration approach and linear regression 

is used in the regression approach (Särndal 2007).   

 

Our research adopts the perspectives of both approaches. The weights are primarily 

justified by their consistency with the benchmark controls (which is the calibration 

approach). Although the calibration approach does not refer explicitly to any assisting 

models, we demonstrate that the performance of a calibration estimator in the presence of 

nonresponse depends on the choice of auxiliary vector and/or function form used in the 

calibration process, and this requires a modeling effort in some sense.  

 

1.2  Distance Function Method versus Function Form Method 

 

Under the umbrella of the calibration approach, two methods are discussed in the 

literature. Deville and Särndal (1992) initially require that the set of calibration weights 

{ }k k sw
∈ minimize some distance function ( ,  )k k kk s

G w d
∈∑  subject to satisfying the 

calibration equation — this is the “distance function method” described in Section 1.1.  

An alternative approach is the “function form method” (Estevao and Särndal 2006) or 

“instrument vector method” (Kott 2006).  Just as the distance function approach can 

result in different sets of weights associated with different distance functions, the 

function form method can generate alternative sets of weights calibrated to the same 

auxiliary information using different function forms.   
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The function form method removes the limitation that the calibration weights minimize a 

distance function, and requires only that { }k k sw
∈  satisfy the calibration equation and be of 

the function form T( )k k kw d F= z λ , where kd  is the design weight, and kz  is a vector with 

values defined for the units in the sample and sharing the dimension of the specified 

benchmark control vector kx . The vector kz  can be a specified function of kx  or of other 

background data about unit k (Särndal and Lundström 2005).  The vector λ  is 

determined from the calibration equation.  The function ( )F ⋅  plays a similar role as 

( ,  )k k kG w d  does in the distance minimization method. For easy reference, we refer to 

( )F ⋅  as “weight adjustment function” or “adjustment function” in our research. One 

possible form of the weight adjustment function is T(1 )k k kw d= + z λ , and the 

corresponding calibration estimator is  

T(1 )ŷcal k k k
s

t d y= +∑ z λ
     (1.12)

 

where 

T 1 )( ) (kk x
s

k k k
s

d d−= −∑ ∑λ x z xt      (1.13) 

The GREG estimator ŷregt defined in (1.8) is a special case of (1.12) obtained for 

k k kq=z x .   

 

We think that when nonresponse exists in a survey, it is more appropriate to understand 

the calibration process using the function form method rather than the distance function 

method.  This is because in the presence of nonresponse, the Horvitz-Thompson 

estimator for the total of an outcome variable y  using the basic design weights becomes 
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ŷ k k
r

t d yπ = ∑ , where r  represents the responding set.  This estimator is biased when 

r s≠ . If the calibration process aims to correct the nonresponse bias, it is neither 

necessary nor appropriate to require the calibrated weights to be “as close as possible” to 

the basic design weights based on a distance function.  

 

More discussions about the weighting adjustment function ( )F ⋅  are included in Section 

1.3. When applying the function form method, survey practitioners face some practical 

questions.  For example, is there any advantage to make the vector kz  in the weighting 

adjustment function ( )F ⋅  differ from the calibration vector kx ?  How should the variables 

be chosen to include in kx  and kz ?  These questions have not been clearly answered by 

the existing literature. Särndal (2007, Section 4.3) gives an example showing that “even 

‘deliberately awkward choices’ for kz  give surprisingly good results”.  However, the 

property of near-unbiasedness of the calibration estimator in this situation seems to 

depend on the assumption of no non-sampling error, which usually does not hold in 

practice.  

 

1.3 Relationship between GREG Estimator and General Calibration 
Estimators in the Absence of Nonresponse Error 

 

As described in Section 1.1, various calibration estimators can be derived with the aid of 

different distance measures under the same set of constraints on the auxiliary variables. 

Alternative distance functions are compared in Deville, Särndal, and Sautory (1993), 

Singh and Mohl (1996), and Stukel, Hidiroglou, and Särndal (1996). When there is no 
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non-sampling error, there are usually very small differences between the point estimates 

corresponding to the various distance functions, and changes in the distance function 

often have only a minor effect on the variance of the calibration estimator even if the 

sample size is rather small. The GREG estimator and the other members of the 

calibration estimator family (referred to as the “general calibration estimators”) are 

compared in Deville and Särndal (1992). They conclude that the GREG estimator is a 

first approximation to the general calibration estimators, all the general calibration 

estimators are asymptotically equivalent to the GREG, and the variance estimator for 

the GREG can be used for the general calibration estimators. 

 

Although the GREG estimator is a special case of the calibration estimator family when 

the function form is T T( ) 1k k kF q= +x λ x λ , we use ŷregt  to denote the GREG estimator and 

ŷwt  to denote the other calibration estimators (i.e., the general calibration estimators) for 

the purpose of comparison. 

 

Deville and Särndal (1992) consider a sequence of finite populations and sampling 

designs indexed by n, where n is the sample size (for a fixed-sized sampling design) or 

the expected sample size (for a random-sized sample design).  The finite population size, 

N, tends to infinity with n. Several assumptions are made about the auxiliary vector x: (i) 

lim 1
xN − t  exists; (ii) ( )1 1/2 )ˆ (x x pN O nπ

− −− =t t , where the subscript p means probability 

induced by repeated sampling; and (iii) 1/2 1 ˆ( )x xn N π
− −t t  converges in distribution to the 

multinormal ( , )N 0 A  where A is a covariance matrix. Two additional assumptions are 
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also made for proving their Results 3 through 5 (described in next paragraph): (iv) 

max k M= < ∞x , where max is over n as well as over k; and (v) max  (0)kF M′′ ′= < ∞ . 

Assumptions (i) through (iii) have two practical implications.  First, the components of 

( )1 ˆ
x xN π

− −t t  are considered small and qualities on the order of  2 2ˆ
x xN π

− −t t  are 

considered negligible. Second, ˆx xπ −t t  follows an approximately normal distribution with 

covariance matrix 1 2n N− A (where A can be viewed as a matrix that describes an 

asymptotic effect of the sampling design used for the survey), and this is to justify the use 

of the normal approximation in confidence intervals based on the point estimator. 

Assumption (iv) is usually satisfied in practice since covariates are bounded.  Assumption 

(v) is verified for all the calibration estimators given in Deville and Särndal (1992). 

 

Deville and Särndal (1992) show five results.  Result 1 states that the calibration equation 

(1.6) has a unique solution belonging to an open neighborhood of 0, with probability 

tending to 1 as n → ∞.  Results 2 and 3 are about the magnitude of the Lagrange 

multiplier. They prove that ( ) ( )1 1 1/2ˆ ( )s s x x p pO n O nπ
− − −= − + =λ T t t , where 

T
s k k k k

s
d q= ∑T X X .  So sλ  tends to 0 in design probability as n → ∞.  Result 4 indicates 

that the general calibration estimators are design-consistent, and the difference between 

the general calibration estimators and the Horvitz-Thompson estimator is asymptotically 

zero.  That is, ( )1 1/2ˆ ˆ ( ).yw y pN t t O nπ
− −− =

 
 Result 5 compares the general calibration 

estimators with the GREG estimator. For any weight adjustment function ( )  kF ⋅  obeying 

their assumptions, ŷwt  given by equation (1.7) is asymptotically equivalent to the GREG 



13 
 

estimator given by equation (1.8), in the sense that ( ) ( )1 1ˆ .ŷw yreg pN t t O n− −− =  Results 4 

and 5 together show that as n → ∞, the difference between the general calibration 

estimators and the GREG estimator approaches zero faster than the difference between 

the general calibration estimators and the Horvitz-Thompson estimator. The asymptotic 

variance of ŷwt  is, thus, the same as that of the GREG estimator. The proofs for these five 

results are summarized in Appendix A. 

 

These results have important practical implications because some general calibration 

estimators do not have a closed-form solution. For example, although the raking ratio 

estimator has a long history of use in survey practice, the variance of the raking 

estimator is difficult to derive even approximately.  Deville and Särndal (1992) resolve 

the problem by using the property that the general calibration estimators and the GREG 

estimator are asymptotically equivalent. Thus, the large-sample variance of the raking 

ratio estimator can be calculated using the same formula as that for the GREG estimator, 

given in Särndal, Swensson, and Wretman (1992).  

 

It is important to note that all the results in Deville and Särndal (1992) are derived under 

the assumptions i) ( )1 1/2 )ˆ (x x pN O nπ
− −− =t t ; and ii) 1/2 1 ˆ( )x xn N π

− −t t converges in 

distribution to a multinormal distribution with mean of 0. That is, they require the 

Horvitz-Thompson estimator of the population total of the auxiliary vector x with the 

basic design weights to be approximately unbiased and consistent. This unbiasedness 

assumption is true in the purely sampling context, i.e., one uncontaminated by 
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nonresponse or undercoverage error.  When non-sampling errors exist, the unbiasedness 

assumption above does not hold anymore, so it is unclear whether the GREG estimator is 

still asymptotically equivalent to other calibration estimators. 

 

1.4  Calibration for Nonresponse Bias Reduction 

 

There are several variations in the literature on how to adjust for nonresponse and 

calibrate the weights to benchmark controls. The conventional approach uses auxiliary 

information in two steps (Kalton and Flores-Cervantes 2003).  In step (i), a response 

model is formed based on the patterns of correlation between the response probabilities 

and available auxiliary variables. The aim is to derive good proxies of the unknown 

response probabilities, so as to limit the nonresponse bias as much as possible.  In step 

(ii), the goal is to select the auxiliary variables that best meet the dual purpose of 

reducing the sampling variance and of giving added protection against nonresponse bias.  

An alternative approach is to skip explicitly estimating the response propensity, but use 

calibration for nonresponse adjustment directly.  The basic design weights are modified 

in a single step with two simultaneous goals: to reduce the nonresponse bias and to 

ensure the consistency between survey estimates and known population totals.  The 

single-step weighting approach has the potential to simplify the derivation of the variance 

estimation formulas, so we adopt this approach in our work.  
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1.4.1 Alternative Single-Step Weighting Methods 

A single-step weighting approach through calibration is first proposed by Särndal and 

Lundström (1999, 2005). The literature is expanded by Kott (2006), Chang and Kott 

(2008), Chang and Kott (2010), Kott and Liao (2012), and D’Arrigo and Skinner (2010) 

in the past decade.   

 

Särndal & Lundström Method 

 

In the Särndal & Lundström method, auxiliary controls can be available at the population 

level, the sample level, or both.  At the level of the population U, let *
kx  denote a vector 

of dimension J* such that the population vector total *
kU∑ x  is known and for every 

k r∈ (where r is the set of respondents), the vector value *
kx  is known.  At the level of 

the sample s, let o
kx  denote a vector of dimension Jo such that for every k s∈ , the vector 

value o
kx  is known.  During calibration, all the auxiliary controls from the population 

and/or the sample are included in the calibration equation, with the dual purpose of 

reducing both sampling error and nonresponse bias. The auxiliary vector
*
k

k o
k

 
=   

 

x
x

x
 has 

dimension * oJ J+ . The corresponding information input is 
*
kU

x o
k ks

d

 
 =
 
 

∑
∑

x
t

x
.  We seek a 

weighting system kw  for k r∈ that satisfies the calibration equation k k xr
w =∑ x t . The 

calibrated weights are k k kw d v= , where kv  corresponds to the weighting adjustment 

function ( )F ⋅  described in Section 1.2 and can take different forms.  
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Although the distance function method is used in Lundström and Särndal (1999) for 

obtaining kw , their later work adopts the function form method, which seems more 

appropriate when nonresponse is present and calibration is used to correct nonresponse 

bias. The calibration equation poses only weak constraint on the weights.  Depending on 

the form kv  takes, there exist many sets of calibrated weights for a given auxiliary vector 

kx . Särndal and Lundström (2005) discuss two alternative schemes for defining the 

function form for kv : (i) as a function of the auxiliary vector kx ; and (ii) as a function of 

any vector kz  specified for k r∈ and with the same dimension as kx .  

 

Under scheme (i), kv  should reflect the known individual characteristics of the element 

k r∈ , summarized by the vector value kx . The calibration equation can be expressed as 

T( )k k r xr
d F =∑ x λ t , where rλ is a vector to be determined through the calibration 

equation. A simple function form is recommended that depends linearly on kx : 

T T( ) 1k r k rF = +x λ x λ , where T 1( ) ( )r k xk k kk
rr

d d−= −∑ ∑tλ x x x .  An alternative scheme (i.e, 

scheme (ii)) is to define the weighting adjustment function using a vector kz  specified for 

k r∈ and with the same dimension as kx .  The vector kz  can be a specified function of 

kx  or any background data about k .  Only a linear function form based on kz is 

considered by Särndal and Lundström (2005). The calibrated weights are 

T(1 )k k k rw d= + z λ , where T 1( ) ( )r k xk k kk
rr

d d−= −∑ ∑tλ x z x .  Särndal and Lundström (2005) 
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call the vector kz  an “instrument vector” for the calibration, but do not explain why an 

instrument vector kz  may be more desirable than the vector kx . Besides alerting the 

reader to this generality of the calibration approach, Särndal and Lundström (2005) give 

little information about how to choose kz  except to suggest that k k=z x  is the “standard 

choice”.  This gap is filled by some later work by Chang and Kott (2008), Kott and 

Chang (2010), and Kott and Liao (2012).   

 

We can see that scheme (ii) is the generalization of scheme (i) in Särndal and Lundström 

(2005). When k k=z x , the two schemes give identical estimators. Furthermore, when 

r s=  (indicating full response) and *
k k=x x  (meaning that the auxiliary vector contains 

information only from external benchmarks and not from the sampling frame), the 

calibration estimator T(1 )k k k rw d= + x λ and the GREG estimator defined in equation (1.8) 

are identical. 

 

Kott & Chang Method 

 

Recent developments by Kott (2006), Chang and Kott (2008), Kott and Chang (2010), 

and Kott and Liao (2012) emphasize two possibilities: 1) the set of variables modeling 

the response mechanism (referred to as “model variables”) being divergent from the 

benchmark variables in the calibration equation; and 2) using a nonlinear calibration 

weighting procedure to implicitly estimate a logistic response model. The vector for the 

benchmark controls in the calibration equation is still kx , with known population totals 
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xt . Unit nonresponse is viewed as an additional phase of Poisson sampling. Using the 

quasi-randomization perspective, each element k  in the original sample is assumed to 

have a response probability ( )kp ⋅ , which is a function of the response model covariate 

vector kz . Some components of the response-model vector kz governing the unit 

response mechanism need not coincide with the components on the calibration vector kx .  

The components of kz  that are not components of kx  are called instrument variables.  

The reason to use a vector kz  that may be different from kx  is that sometimes the 

variables the response mechanism depends on are known only for respondents, not for the 

whole sample.  For example, in an agriculture survey, the benchmark variables can be 

previous-census frame variables known for every farm in the population while the 

response model covariates are current-period variables known only for survey 

respondents.  Kott (2006) still requires that the dimensions of kz  and kx  coincide.  Chang 

and Kott (2008) expand the method such that it allows the number of benchmark 

variables (i.e., the dimension of kx ) to exceed the number of response model covariates 

(i.e., the dimension of kz ).   

 

The statisticians can specify the function form for the response probability ( )kp ⋅   and the 

unknown parameters in the function can be estimated during the calibration process. 

Although in theory, the response propensity ( )p ⋅  can take different forms, Kott and 

Chang’s discussions are restricted to linear function of the response model covariates. For 

example, the response propensity for each responding unit k  can be specified as T( )kp z β , 
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an unknown but estimable linear combination of the response model covariate vector kz . 

The input weight for the calibration equation is calculated as the product of basic design 

weight kd  and T1 ( )kp z β , where the vector β  can be estimated from the data using the 

calibration equation T( )
k

k rx k
k

d
p∈= ∑t x

z β
 through a nonlinear calibration process.  This 

equation is sufficient to determine β̂  if the dimension of kx equals the dimension of kz

(Kott 2006).  On the other hand, when the dimension of kx  exceeds the dimension of kz , 

the calibration equation can be modified into a nonlinear regression-type equation 

T( )
k

k rx k
k

d
p∈= +∑t x ε

z β
, where kz  and kx  denote the vectors for response model 

covariates and benchmark variables respectively, xt  is the vector of calibration target 

values comprising the known population totals, and ε  is the error term between the 

calibrated estimates and the population controls of the auxiliary variable (Chang and Kott 

2008). 

 

One main potential advantage of the Kott & Chang method is that it permits the use of 

variables that are observed only on the respondents, and thus may prove useful in the 

context of nonignorable nonresponse (Kott and Chang, 2010).   

 

1.4.2 Properties of Calibration Estimators in the Presence of Nonresponse 

 

Although several different calibration estimators are widely used in survey practice (e.g., 

poststratification and raking), there is not much literature about the properties of these 
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calibration estimators in the presence of nonresponse.  It is unclear whether and how the 

different estimators may perform differently when the nonresponse mechanism is not 

MCAR. 

 

In terms of bias, Särndal and Lundström (2005) claim that the single-step weighting 

through calibration approach meets the double objective of reducing sampling error and 

nonresponse error in the presence of powerful auxiliary information, but give little 

guidance about how to choose significant auxiliary variables.  Although nonlinear 

adjustment function forms can be considered such as T T( ) exp( )k r k rF =x λ x λ , Särndal and 

Lundström (2005) suggest that the linear form will suffice due to its considerable 

computational advantage and the fact that it fits the routine production environment.  

However, little theoretical or empirical justification is provided to support this statement.  

During the discussion of confidence interval estimates, Särndal and Lundström (2005) 

point out that to trust the confidence interval, one must be reasonably assured that the 

bias of the point estimator is nearly zero; otherwise the confidence interval tends to be 

off-center and this will cause damage to the coverage rate.  Kott and Liao (2012) claim 

that calibration weighting can provide “double protection” against the selection bias 

resulting from unit nonresponse.  A statistician needs to assume an outcome model 

(which they refer to as “prediction model”) and a response model (which they call 

“selection model”) during calibration weighting.  According to Kott and Liao (2012), if 

either an assumed linear prediction model or an implied unit selection model holds, the 

calibration estimator can be asymptotically unbiased “in some sense”.  It is unclear what 

Kott and Liao (2012) mean by “in some sense”, so their conclusion is vague and may 
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require some unverifiable model assumptions.  At the same time, the Kott & Chang 

method is computationally intensive, and thus may be difficult to implement in practice. 

 

Lesage, Haziza, and D'Hautlfoeuille (2016) refer to the Kott & Chang method as 

instrument vector calibration.  They lay out the conditions required for establishing the 

consistency of an instrumental calibration estimator.  Let kR denote the response indicator 

for unit k such that 1kR =  if unit k is a respondent and 0kR =  otherwise.  Let 

( ){ }T T
k,  ,  ,  ,k k ky r k U∈x z  be realizations of independent and identically distributed 

random vectors ( ){ }T T,  ,  ,  ,k k k kY R k U∈X Z .  Assume that the response mechanism is 

described as 

TE( | ) ( )k k kR p=Z Z β       (1.14) 

 

Lesage, Haziza, and D'Hautlfoeuille (2016) show that the instrumental vector calibration 

leads to negligible bias provided that the calibration function ( )F ⋅  is correctly specified 

and the following two conditions (referred to as exclusion restriction conditions) are 

satisfied 

|k k kR ⊥ X Z        (1.15) 

and 

|k k kR Y⊥ Z        (1.16) 
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That is, the response propensity is related to some instrument variables via (1.14) but, 

given the values of the instruments, kZ , response is unrelated to either the covariates, kX , 

or the analysis variables, kY .   

 

Lesage, Haziza, and D'Hautlfoeuille (2016) point out that although instrument vector 

calibration may be successful in reducing nonresponse bias, the estimator may be highly 

biased and/or unstable when the exclusion restriction conditions are not satisfied.  For 

example, a violation of (1.15) may occur when there exists an unobserved variable U , 

independent of Z  and Y , which is related to both R  and X .  In practice, it is not 

possible to validate the choice of ( )F ⋅  because the instrument variables are only available 

for the respondents.  Also, it is not possible to check whether or not (1.15) and (1.16) 

hold.  Ideally, the calibration variables should be those exhibiting a strong relationship 

with the instruments.  Alternatively, one may use the one-step calibration procedure 

solely based on calibration variables for which the population total is known.  Although 

one may not be successful in reducing the bias to the same extent as with instrument 

vector calibration in some situations, there is no risk of bias and variance amplification as 

the calibration variables coincide with the instruments, which in turn offer some 

protection against an unduly large bias and/or variance.  

 

Regarding variance estimation, Särndal and Lundström (2005) show that the variance of 

a single-step calibration estimator is estimated as the sum of two components.  That is, 

ˆ ˆ ˆˆ( )yw SAM NRV t V V= + .  The first component is the estimated sampling variance and the 

second component is the estimated nonresponse variance.  Both components involve 
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estimating residuals — the differences between the observed values and the estimated 

values for the outcome variable.  Using the notations defined for the Särndal & 

Lundström method in Section 1.4, the estimated sampling variance component is 

* * * 2ˆ ˆ ˆ ˆ( )( )( ) ( 1) ( 1)( )SAM k l kl k k l l k k k k kr r
V d d d v e v e d d v v e= − − − −∑∑ ∑    (1.17) 

and the estimated nonresponse variance component is 

2ˆ ˆ( 1)( )NR k k k kr
V v v d e= −∑     (1.18) 

with  

* * T *
;ˆ ( )k k k r dve y= − x B       (1.19) 

and  

T * T * T
; ; ;ˆ ( ) ( )o o

k k k r dv k k r dv k r dve y y= − = − −x B x B x B  (1.20) 

in which 

*
; T 1

;
;

( ) ( )r dv
r dv k k k k k k k ko r

r dv

d v d v y− 
= =  

 
∑

B
B z x z

B
  (1.21) 

where 1k kd π=  and 1kl kld π=  are the inverse of the first order inclusion probability and 

the inverse of the second order inclusion probability, respectively. 

   

This variance estimator in Särndal and Lundström (2005) is based on a linear adjustment 

function T T( ) 1k r k rF = +x λ x λ  so that the residual terms can be estimated using regression 

models. It is unclear how the variance should be estimated if a nonlinear function term is 

used for calibration (e.g., raking ratio adjustment).  
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D’Arrigo and Skinner (2010) evaluate the properties of the GREG estimator, raking ratio 

estimator, and maximum likelihood raking estimator as well as the performance of 

several linearization variance estimators in the presence of nonresponse.  They define 

alternative forms of linearization variance estimators via the choices of (1) the weights 

applied to the residuals from the regression model; and (2) the weights used in the 

regression model to estimate regression coefficients and residuals.  Their study displays 

few differences among the properties of the three calibration estimators for a given 

sampling scheme and nonresponse model.  Among the linearization variance estimators, 

the approach that weights residuals by the design weight can be severely biased in the 

presence of nonresponse.  The approach that weights residuals by the calibrated weight 

tends to display much less bias.  Varying the choice of weights used to construct the 

regression coefficients has little impact.  In the D’Arrigo and Skinner (2010) framework, 

the simulation is based on several variables from the British Labor Force Survey and 

German Survey of Income and Expenditure. Although the response model is discussed, 

there is no explicit information about the outcome variable model.  It is unclear whether 

their conclusion will hold under different outcome variable models.  More details about 

the forms of the linearization variance estimators in D’Arrigo and Skinner (2010) are 

included in Chapter 5. 

 

1.5 Choosing Auxiliary Variables to Reduce Nonresponse Bias 

 

In the single-step weighting approach, calibration is applied to the basic sampling 

weights directly without a separate nonresponse adjustment step, so Little and Vartivarian 
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(2005) offer a useful framework for thinking about how to choose auxiliary variables 

and/or calibration estimator.  The situation in Little and Vartivarian (2005) is a very 

simple one – simple random sampling (SRS) with a negligible sampling fraction and an 

outcome variable (Y) with two values.  This creates a 2 × 2 situation: response or 

nonresponse and the 2-value outcome variable.  Two distributions are considered: the 

response distribution and the Y distribution.  The properties of a nonresponse-adjusted 

mean estimator are evaluated across both the response and the superpopulation Y 

distributions.  As shown in Table 1.1, four scenarios are assessed in Little and Vartivarian 

(2005) based on the association of the auxiliary variables with response and outcome.  

The following conclusions (quoting the original text from Little and Vartivarian (2005)) 

are reached: 

 

L&V (i): “Substantial bias reduction requires adjustment cell variables that are related 

both to nonresponse and to the outcome of interest.”  

 

L&V (ii): “If the adjustment cell variables are unrelated to nonresponse, then weighting 

tends to have no impact on bias (an unweighted mean would also be unbiased), but 

reduces variance to the extent that the adjustment cell variables are good predictors of the 

outcome.” 

 

L&V (iii): “If adjustment cell variables are good predictors of nonresponse but unrelated 

to the outcome variable, then weighting increases variance without any reduction in bias.”  
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L&V (iv): “If the adjustment cell variables are related to neither outcome nor nonresponse, 

then weighting affects neither bias nor variance.” 

 

 

 

 

 
Table 1.1  Summary of Little and Vartivarian (2005) Conclusions 
Scenario Association with 

Outcome 
Association with 
Response 

Bias Variance 

L&V (i) High High ↓ ↓ 

L&V (ii) High  Low -- ↓ 

L&V (iii) Low High -- ↑ 

L&V (iv) Low Low -- -- 

 Source: Little and Vartivarian (2005), Table 1. 

 
 

However, the messages in Little and Vartivarian (2005) are not quite clear to the readers 

sometimes. For example, on the one hand, they assert that “[a] covariate for a weighting 

adjustment must have two characteristics to reduce nonresponse bias – it needs to be 

related to the probability of response, and it needs to be related to the survey outcome.” 

On the other hand, they state that “the most important feature of variables for inclusion in 

weighting adjustment is that they are predictive of survey outcome; prediction of 

propensity to respond is a secondary, though useful, goal.” The former statement seems 

to suggest that the outcome variable model and response model should play equally 

important roles in determining the appropriate covariates for nonresponse adjustment, 

while the latter seems to indicate that the outcome variable model should be the dominant 

factor.  We suspect that this is because the variables that are predictive of response only 

have the potential to reduce nonresponse bias, but the variables that are predictive of 
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outcomes have the potential to reduce both nonresponse bias and sampling variance. So, 

if a variable is predictive of outcome it will reduce mean squared error (MSE) even if it is 

not predictive of response.  But a variable that is only predictive of response will actually 

increase MSE. 

 

Moreover, the descriptions in the main text and in Table 1 of Little and Vartivarian (2005) 

are not quite consistent.  The text seems to address extreme conditions where the 

variables are either “related” or “not related” to the outcome and/or response, while Table 

1 shows “high” and “low” correlations, which are the middle-ground conditions that we 

are more likely to see in reality.   

 

Finally, Little and Vartivarian (2005) address only main effects and do not provide any 

explicit guidance about how to handle the interaction effects.  Since the interaction terms 

of the main effect variables are not completely new variables, the conclusions in Little 

and Vartivarian (2005) do not shed light on the differences between the GREG estimator 

with only main effect terms, the poststratification estimator, and the raking estimator.  

 

1.6 Gaps in the Literature and Research Aims 

 

In the context of using calibration as a single-step weighting approach to reduce potential 

nonresponse bias, little evaluation has been conducted on the asymptotic properties of 

different calibration. For example, both the raking ratio estimator and the 

poststratification estimator are widely used in practice, the former as an example of the 
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general calibration estimators and the latter as a special case of the GREG estimator.  

Based on Deville and Särndal (1992), these two estimators are asymptotically equivalent 

in the absence of non-sampling errors.  However, non-sampling errors such as 

nonresponse error almost always exist in surveys. It is important to re-examine 

conclusions in Deville and Särndal (1992) in the context of using calibration for 

nonresponse adjustment.   

 

If the conclusions in Deville and Särndal (1992) do not hold when calibration is used for 

nonresponse adjustment, then the existing literature provides neither a good framework 

for comparing the performances of different calibration estimators, nor practical guidance 

for choosing the appropriate auxiliary vectors and/or function forms for calibration 

weighting.  Although D’Arrigo and Skinner (2010) compare three calibration estimators 

in the presence of nonresponse, their conclusions are based on a limited number of 

outcome variables from two surveys, and thus may not hold up in terms of external 

validity.  To understand how a calibration estimator may perform in the presence of 

nonresponse, we need to go beyond the purely design-based approach used in Deville and 

Särndal (1992) and examine the underlying models for population structure (i.e., what 

variables are correlated with the key outcome variable) and response mechanism (i.e., 

what variables are corrected with response propensity). Survey practitioners need 

guidelines for how to select the appropriate calibration estimator(s) for nonresponse 

adjustment, but there is not much research in this area.  The work by Little and 

Vartivarian (2005) may help us define a framework for answering such questions, yet at 

discussed in Section 1.5, research is needed to address the issues about interaction terms 
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and refine the conclusions in Little & Vartivarian (2005) through some sensitivity 

analyses. 

 

In this dissertation, our first research question is whether and how alternative calibration 

estimators may perform differently in the presence of nonresponse.  More specifically, 

we want to evaluate the properties of three widely used calibration estimators over 

repeated sampling.  Two chapters are dedicated to answering this question.  The first 

chapter focuses on some design-based theoretical development.  The second chapter 

contains a simulation study that compares the performance of three widely used 

calibration estimators – poststratification, raking, and GREG with only the main effect 

covariates.  

 

The second research question is how the performance of a calibration estimator may vary 

by sample configuration.  In the real-world survey practice, only one sample can be 

fielded and all the estimates are based on that particular sample, so it is important to 

study the properties of the calibration estimators conditioning on sample configuration.  

We propose a distance measure that can be calculated for a particular sample and may be 

related to the potential bias of a calibration estimator, which can be used as a diagnostic 

tool by survey practitioners.  

 

The final chapter of this dissertation examines several alternative variance estimators for 

raking in the presence of nonresponse, including both the linearization method and 

replication method.  We specify the outcome variable models and response models 
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explicitly so that the impact of these models on the performance of the variance 

estimators can be detectable.  
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Chapter 2. Analytical Work for Comparing the GREG Estimator and 
General Calibration Estimators with Nonresponse 

 

Chapter 1 identifies some gaps in the existing literature on using calibration for reducing 

nonresponse bias.  In this chapter, we attempt to fill in one gap by comparing the 

asymptotic properties of the general calibration estimators and GREG estimator when 

calibration is used for nonresponse adjustment through a single-step weighting approach. 

Given the risk of bias and variance amplification associated with the instrument vector 

calibration weighting (Lesage, Haziza, and D'Hautlfoeuille 2016), we use the Särndal & 

Lundström Method described in Section 1.4.1 and focus on the situation where the vector 

kz  used in the weighting adjustment function ( )F ⋅  coincides with the calibration 

variable vector kx .  In the presence of nonresponse, the Horvitz-Thompson estimator of 

the total for the auxiliary vector using the basic design weights is a function of the 

respondent set and can therefore be “far” from the benchmark control total. This violates 

one of the key assumptions in Deville and Särndal (1992), so it is unclear whether their 

conclusions about the relationship between the GREG estimator and the general 

calibration estimators still hold.  

 

Section 2.1 below specifies the scope and assumptions underlying the theoretical 

derivation. Section 2.2 presents the analytical work using design-based approach and 

indicates that different calibration estimators are not necessarily asymptotically identical 

when calibration is applied on basic design weights directly to correct nonresponse bias. 

The setup and analytical work in this chapter largely follow the approach taken by 

Deville and Särndal (1992), which is purely design-based. The proofs in Deville and 
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Särndal (1992) are summarized in Appendix A, so we can refer to some of their equations 

during the presentation of our analytical work. We use the terms “new assumption” and 

“new result” to differentiate our assumptions and findings from those in Deville and 

Särndal (1992). Our theoretical results are applicable to a family of general calibration 

estimators discussed in Deville and Särndal (1992). At the end of the chapter, we point 

out the limitations of the purely design-based approach and emphasize the importance of 

examining the underlying models for the outcome variable and response propensity when 

comparing different calibration estimators.  

 

2.1 Scope and Assumptions 

 

First, we assume the analytic survey (i.e., the survey requiring calibration) and 

benchmark survey come from the same population U of size N .  Although the 

benchmark control totals are often estimated and subject to sampling and non-sampling 

errors in practice, we assume that the total for the auxiliary vector x  is accurately known 

and equal to the true population total.  

 

Second, we assume that the analytic survey has no coverage or measurement error, but 

may suffer from nonresponse error that can bias the estimated parameters such as 

population totals.  In the presence of nonresponse, the survey has a respondent set r  of 

size rn .  We assume that no separate nonresponse adjustment is conducted prior to 

calibration, so the pre-calibration population estimates are calculated using only the basic 

design weights kd .  That is, the Horvitz-Thompson estimators of the population totals of 
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the auxiliary vector and outcome variable are  ˆ
xr k k

r
d

π
= ∑t x  and ˆ

yr k k
r

t d y
π

= ∑  

respectively.  Under probability sampling, the Horvitz-Thompson estimator is unbiased if 

100 percent participation rate is achieved.   

 

Finally, although survey nonresponse is generally viewed as being caused by a random 

mechanism, for the simplicity of theoretical derivations in this chapter, we assume that 

each population member has fixed response propensity of either 1 or 0.  (In later chapters, 

we do allow the response for each unit to be random so that the response propensities can 

be values between 0 and 1.)  In the presence of nonresponse, the design-based 

expectation of the Horvitz-Thompson estimator reflects the characteristics of the 

“responding population” rU  of size rN . We define ˆ( )
x xr rE
ππ = tt  and ˆ( )

r ry y
E tt

ππ = , 

where Eπ  means design-based expectation, and 
xr

t  and yr
t  are the population totals of the 

auxiliary variable vector and the outcome variable for the respondent set rU .  

 

The theoretical derivation in this section requires the following assumptions.  We refer to 

these as “new assumptions” in contrast of those in Deville and Särndal (1992). 

  

New assumption (i): lim 1
xr rN − t  exist, but in general, 1 1lim 

xr r xN N− −≠t t . 

New assumption (ii): 1(ˆ )
x xr r rN
π

− −t t → 0 in design probability. ( )1 1/2( )ˆ
x xr r r p rN O n
π

− −− =t t . 
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New assumption (iii).  1 2 1 ˆ( )
x xr r r rn N
π

− −t t  converges in distribution to the multinormal 

( , )N 0 A , where A can be viewed as a matrix that describes an asymptotic effect of the 

sampling design used for the analytic survey.    

 

Recall that one of the key assumptions in Deville and Särndal (1992) is that in the purely 

sampling context, the Horvitz-Thompson estimators of the population totals of the 

auxiliary vector approach the true values of the population as the sample size increases. 

That is, ( )1 1/2 )ˆ (x x pN O nπ
− −− =t t . Based on our new assumption (ii), the Horvitz-

Thompson estimators from the respondent set approach only (ˆ )
x xr rE

ππ=t t .  We know 

that 
xr x≠t t in the presence of nonresponse.  This has important implications in the 

theoretical derivation in Section 2.2. 

 

2.2 Analytical Results Using Design-based Approach 

 

In this section we re-examine the results in Deville and Särndal (1992) in the context of 

using calibration for nonresponse adjustment through single-step weighting. The input 

weights for the calibration equation are the basic design weights kd . In this setup, the 

Horvitz-Thompson estimator ˆ  
yrt π

using the basic sampling weights kd  is biased due to 

nonresponse, so calibration is used to reduce such bias to the extent possible. 

Conceptually, it is more appropriate to understand calibration from the perspective of the 

function form method than that of the distance function method.  This is because our goal 

is not to obtain calibration weights that are as “close” to the basic design weights as 
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possible in order to maintain design unbiasedness, as required in Deville and Särndal 

(1992). We suspect that whether the calibration equation has a solution may depend on 

the how the response propensities differ by the benchmark control variables used in the 

calibration. We show that the vector for Lagrange multiplier determined from the 

calibration equation, rλ , consists of a term that is driven by the difference between the 

Horvitz-Thompson estimator of the auxiliary vector (using the basic design weights) for 

the respondent population total (denoted by ˆ
xr π

t ) and the benchmark control total 

(denoted by xt ). Unless nonresponse is negligible, this term does not decrease as the 

survey sample size increases, so rλ  may tend to a non-zero constant vector in design 

probability.  Our analytical work results in the formulae for: (1) the difference between a 

general calibration estimator and Horvitz-Thompson estimator in the presence of 

nonresponse; and (2) the difference between a general calibration estimator and the 

GREG estimator in the presence of nonresponse. We prove that when nonresponse exists 

and calibration is used to reduce nonresponse bias through single-step weighting, the 

general calibration estimators and the GREG estimator are not asymptotically equivalent 

in general situations.  

 

In the presence of nonresponse, the calibration equation is k k x
r

w =∑ x t  and the 

calibration estimator is ŷw k k
r

t w y= ∑ .  Equations (1.5) and (1.6) in Chapter 1 should be 

modified into 

( ) ( ){ }T 1r r k k k r k
r

d FΦ = −∑λ x λ x     
   

(2.1) 
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and 

( ) ˆ ˆ( ) ( )
x xx xrr r rx x rrπ π

Φ = − −= + −λ t t t t t t    (2.2) 

 

We know that 
xr x≠t t  in the presence of nonresponse, so the right-hand side of (2.2) 

contains a non-zero term that does not exist in equation (1.6) of Chapter 1.  This non-zero 

term plays an important role in the discussions below. We have five new results in 

parallel to the ones in Deville and Särndal (1992). 

 

New Result 1.  As rn → ∞, whether equation (2.2) has a solution may depend on the 

difference between 
xr

t  and xt  as well as the function form ( )kF ⋅  used in the calibration. 

 

For this result, we give intuitive explanations instead of strict proof. In the presence of 

nonresponse, equating (2.1) and (2.2) gives  

 

( )1 1 1 1 1T( ˆ( ) ( ))
xx xr r r r r r r

r
r k k k r k k k x r r

r

N N Nd F Nd N
π

− − − − −= − + −Φ = −∑ ∑λ x λ x x t t t t   (2.3) 

 

The second term on the right-hand side of (2.3) is similar to that in Deville and Särndal 

(1992). 1/21 ˆ( () )
xx rr pr rnN O
π

− −=−t t  and is asymptotically 0.  However, when nonresponse 

exists, 
xx r≠t t and the first term is 1( ) (1)

xxr rN O− − =t t . Due to this additional term, the 

right-hand side of (2.3) does not tend to 0, but becomes a non-zero constant vector as rn  

increases. 
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A more intuitive way to understand this result is that in Deville and Särndal (1992), only 

“small” adjustments need to be made to the basic design weights to obtain the calibration 

weights, and that is essentially why the calibration equation almost always has a solution 

for large samples.  When nonresponse exists, the Horvitz-Thompson estimator k k
r

d∑ x  

may be “far” from the benchmark controls xt  and therefore “large” adjustments on the 

basic design weights may be required to satisfy the calibration constraints. In this 

situation, whether the calibration equation has a solution may depend on the difference 

between 
xr

t and xt  as well as the function form ( )kF ⋅  used in the calibration. An 

empirical example is that for the same calibration constraints and respondent set k r∈ , 

poststratification always has a solution but raking does not always converge.  

 

New Result 2.   Let rλ  be the solution to equation (2.3) if one exists.  If 
xx r− ≠t t 0 , then 

( )1r pO=λ  in general situations. This means that rλ tends to a non-zero vector in design 

probability.  

 

Proof: Define 1
1 ( )

xx rrN −= −z t t  and 1
2

ˆ( )
x xr r rN

π

−= −z t t , so 1
1 2

1( ) ( )r rN − −= Φ +λ z z  if a 

solution to (2.3) exists. Since ( )1 0 0rN − Φ = , we have 

( ) ( ) ( ) ( )1 11 1
1 20 0r r rN N

− −− −− = Φ + − Φλ z z .  Following the notations in Deville and 

Särndal (1992), the inequality (A.3) in their Result 2 (refer to Appendix A) becomes   

1 1 1
1 2 1 2(1 ) (1 ) (1 )r K K Kβ β β− − −+≤ + − ≤ − −λ z z z z     (2.4) 
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where K is defined in (A.1) and 10
2

β< < . 

 

Since 1 (1)O=z  and 1 2
2 ( )p rO n−=z , inequality (2.4) implies that 1 2(1) ( )rr pO O n−= +λ .  

The second term tends to 0 as rn  increases.  However, the first term is a non-zero 

constant vector in general situations, and does not decrease as rn  increases. 

 

New Result 3.  In general situations, ( )1 ˆ (1)
x xr r r r pO

π

− − +=λ T t t , where T
r k k k k

r

d q= ∑T x x . 

 

Proof: We use ( )T
k k rF x λ  to denote the adjustment function for a general calibration 

estimator.  For the GREG estimator, the adjustment function takes the form T1 k k rq+ x λ . 

The difference between the two adjustment functions is expressed as 

( ) ( )T T T  (1 )k k r k k r k k rF qθ = − +x λ x λ x λ     (2.5) 

  

From (2.1), (2.2), and (2.5), we obtain 

( ){ }T Tˆ( ) ( )
x xxx r r k k k k r k k r

r
r d q

π
θ+ −− = +∑t t t t x x λ x λ    (2.6) 

 

Multiplying both sides of (2.6) by 1
r
−T  and rearranging the terms, we obtain  

( )1 1 1 Tˆ ˆ( ) ( )
x xxr r r r x r r k kr k k r

r

d
π

θ− − −− = −−− ∑λ T t t T t t T x x λ   (2.7) 
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An important assumption in Deville and Särndal (1992) is that (0)kF ′′ is uniformly 

bounded, which is equivalent to ( ) ( ) ( )( )2T T Tmax k r k k r k rOθ θ= =x λ x λ x λ . Note that this 

assumption requires the condition that 1/2( )r p rO n−=λ  , which does not necessarily hold 

when 
xx r≠t t .  However, given that Tmax | |k r < ∞x λ , when nonresponse in the analytic 

survey is not extremely severe, we can still assume that for any 0ε > , there exists K′′  

such that, for all k, T| |k r ε<x λ  will imply that ( ) ( )2T T
k k r k rKθ ′′≤x λ x λ . 

 

Using (2.7) and the bound above on ( )T
k k rθ x λ , we have 

3 21 1 1 '' 1 1ˆ( ) ( )( )
x xxr r r r r r k k r r x r

r
r N K N d

π

− − − − −− +
 

− ≤ − 
 

∑λ T t t T x λ T t t       (2.8) 

 

We know that 1 1( ) (1)rr pN O− − =T  and 
31 (1)

r
r k k pN d O− =∑ x .  Based on the New Result 

2, ( )2 1r pO=λ , so the first term of the right-hand side of (2.8) is (1)pO . The second 

term of the right-hand side of (2.8) is also (1)pO .  Therefore we have 

( )1 ˆ (1)
xxrr r r pO
π

− −= +λ T t t .  Although ( )1 ˆ
x xr r rπ

− −T t t  tends to 0 as rn → ∞ , the magnitude 

of rλ  is (1)pO  in general situations.  Unless 
xx r=t t , rλ does not tend to 0 as rn → ∞ . 

 

New Result 4.  The difference between the general calibration estimator and the Horvitz-

Thompson estimator can be expressed in two ways. 
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In terms of totals:  

( ) ( )T T Tˆˆ ˆ ˆ ˆ(ˆ )
yw y x x xr r r x r r r r r r r rt t

π π
− = − + − + −B t t B t t Y Y D θ

  
 (2.9) 

where 

1
1

1

T Tˆ
r r r r r r k k k k

rp
k k k k

r

d q d q y−
−

×

 
=  


=


∑ ∑B T X D Q Y x x x

 

T T
r r r r k k k

r
r k

p p
d q

×
== ∑X D Q X x xT  

1

11 1

T T T T

1

( , , ,   )

r

k

r r

r

p

r
n p

n

n

n p

x x

x x×

 


= … …


=  

 
 

X

x x x

K

M O M

L
 

1 0

0r r

r

r
n n

n

q

q
×

 
 

=  
  
 

Q O

 

1 0

0r r

r

r
n n

n

d

d
×

 
 

=  
  
 

D O  

T
1( , , ,   )

rkr ny y y= … …Y  

ˆ ˆ
r r r=Y X B  

T
1( , , ,   )

rkr nθ θ θ= … …θ  

 

In terms of means:  

( ) ( )

1 1

T 1 T 1 Tˆ ˆ ˆˆ1 (1 )

ˆ ˆ

ˆ( ( ))
yw y

x y x x

r r r

r x r x r r r r r r r r

N t N t

N Np p
π

π π

− −

− −

−

= − − − + − + −B μ μ μ μ B t t Y Y D θ
 (2.10) 
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where 
xr

μ is the mean of the auxiliary vector for the respondent population, xμ  is the true 

population mean, ˆ
yr π

μ is the Horvitz-Thompson estimator of the mean for the outcome 

variable estimated from the respondent set, and p  is the response rate of the analytic 

survey.  

 

Proof: If the calibration equation has a solution rλ , then from (2.5) the difference 

between the general calibration estimator and the Horvitz-Thompson estimator can be 

written as 

T T{ (ˆ }ˆ )
yw yr r k k k k r k k r

r

t t d y q
π

θ− = +∑ x λ x λ     (2.11) 

 

From (2.7),  

( ) ( ) ( )1 1 1 Tˆ
x x xr r x r r r r r k k k k r

r

d
π

θ− − −= − + − − ∑λ T t t T t t T x x λ   (2.12) 

 

Replacing the first occurrence of rλ  in (2.11) by the right-hand side of (2.12), we obtain 
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( ) ( ) ( )

( ) ( )
( )

( ) ( )

T 1 1 1 T

T

T 1 T 1

T 1 T T

TT 1

ˆ

( )

( )

ˆ

ˆ

ˆ

yw y

x x x

x x x

x

r r

k k k k r x r r r k k k k r
r

k k k k r

k k k k r x r k k k k r r r

k k k k r k k k r k k k k k r
r

r r
r

r

r r

rr

r r r r r x r

t t

d y q d

d y

d y q d y q

d y q d d y

π

π

π

θ

θ

θ θ

− − −

− −

−

−

−

 
= − + − 

 
+

= − + −

− +

= −

−∑ ∑

∑

∑ ∑

∑ ∑ ∑

x T t t T t t T x x λ

x λ

x T t t x T t t

x T x λ x x λ

X D Q Y T t t ( ) ( )
( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

TT 1

TT 1 T T

T TT 1 T 1

T T T

T T T T

T T T

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ(

ˆ

ˆ

ˆ

ˆ )

x x

x x x

x x x

x x x

r r r r r r r

r r r r r r r r r r r

r r r r r x r r r r r r r r

r r r r r r r

r x r r r r r r r r r r

r x r r r r r r r r

π

π

π

π

−

−

− −

+ −

− +

= − + −

− +

= − + − − +

= − + − + −

X D Q Y T t t

X D Q Y T X D θ Y D θ

X D Q Y T t t X D Q Y T t t

B X D θ Y D θ

B t t B t t Y D θ Y D θ

B t t B t t Y Y D θ   (2.13) 

 

Then the difference between two means is 

( ) ( )

( )
( )

1 1

1 T T 1 1

1 T 1 T

1 T

T

1 T 1 T

{ ( )} ( )

ˆ( ) ( 1)

( )( ) ( 1)

ˆ(

ˆ ˆ

ˆ

ˆ

ˆ(

)

)

ˆ/ / ( )

ˆ

yw y

y

x x x

y

x y

x x

r r r

k k k k r k k r r r
r

r x r r r r

r r r

r

r r r r

r x r r

r r r r r

r r r

r

N N

N N

N t N t

N d y q N N t

N N

N

N N N

t N

N t N

N N

π

π

π

π

π

π

θ

− −

− − −

− −

−

− −

−

= + + −

= − + −

+ − + −

= − + −

+ − + −

∑ x λ x λ

B t t B t t

Y Y D θ

B t t

B t t Y Y D

) )

)

)

( ) ( )
( ) ( )

( ) ( )

T 1 T 1 T

T 1 T 1 T

T 1 T 1 T

ˆ ˆˆ( ) ( 1) ( )

ˆˆ (1 ) ( )

ˆˆ1 (1 ) ( )

ˆ( )

ˆ( )

x y x x

x y x x

x y x x

r

r x r r r r r r r r r

r x x r x r r r r r r r r

r x r x r r r r

r

r

r

r r r

N N N N

N

N N

p p

p

N

N Np

π π

π π

π π

− −

− −

− −

= − + − + − + −

= − − − + − + −

= − − − + − + −

θ

B μ μ μ B t t Y Y D θ

B μ μ μ μ μ B t t Y Y D θ

B μ μ μ μ B t t Y Y D θ

) )

) )

) )

  (2.14) 

where rp N N=  is the proportion of respondents in the population. 
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For the right-hand side of (2.14), the first two terms do not cancel out except in some 

special situations such as 
xr x=μ μ (indicating ignorable nonresponse) and T ˆ

yr x r π
=B μ μ

)

(meaning that the assisting linear regression model has perfect predicting power). The 

third term is ( )1/2
p rO n− .  The fourth term is a weighted sum of residuals ˆ( )r r−Y Y , which 

has model-expectation 0 if y follows a linear model on the x’s based on the responding 

sample but not otherwise.  Based on the New Result 3, we know (1)r pO=θ , so the fourth 

term does not necessarily diminish as rn  increases.  Instead, its magnitude seems to 

depend on the variation of the outcome variable, the predicting power of the regression 

model underlying the GREG estimator, and the form of the weight adjustment function 

used in calibration. In general, the difference between general calibration estimator and 

Horvitz-Thompson estimator does not necessarily decrease as rn  increases.   

 

New Result 5.   The difference between the general calibration estimator and the GREG 

estimator is  ( )1 1 Tˆ ˆ (1).
yw yregrr r r r pN t t N O− −− = =Y D θ    

 

Proof: From (2.5) and (2.14), the general calibration estimator can be expressed as 
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( )

( ) ( ) ( )

( )

( ) ( )
( )

T T

T 1 1 1 T

T

T 1 T 1

T 1 T

ˆ

ˆ

ˆ

x x

x x

yw

x

x

r k k k k k r k k k k r k
r r

k k k k k x r r k k k k r k
r

k k k r k
r

k k k k k r x r k k k k r k
r r

k k k k k k k r
r

r

r r r r
r r

r r
r

r
r

t d y d q y d y

d y d q d y

d y

d y d q y d q y

d q d

θ

θ

θ

θ

− − −

− −

−

+ +

 
+ − 



=

= − + −

=



+

+ +

−

− −

∑ ∑ ∑

∑ ∑ ∑

∑

∑ ∑ ∑

∑ ∑

x λ x λ

x T t t T t t T x x λ

x λ

x T t t x T t t

x T x x λ ( )

( ) ( )

T

T T T Tˆˆ ˆ
x rxy x

k k k k r k
r

r r x r rr r r r rr r

y d y

t
π

θ

= − + −

+

− ++

∑ x λ

B t t B t t Y D θ Y D θ
) )

  (2.15) 

 

But the first four terms of the right-hand side of (2.15) is the GREG estimator 

( ) ( )T T Tˆ ˆˆˆ
yreg y x x xr r r x r r r r rr rt t

π
= + − −+ −B t t B t t Y D θ

) )
   (2.16) 

 

So ( )1 1 Tˆ ˆ (1).
yw yregrr r r r pN t t N O− −− = =Y D θ    

 

The term rθ  captures the difference between the weight adjustment function for any 

general calibration estimator and the weight adjustment function for the GREG estimator. 

When calibration is used for nonresponse adjustment, (1)r pO=θ  in general situations 

and does not tend to zero as the sample size rn  increases.  As a result, the GREG 

estimator and the general calibration estimators are not asymptotically equivalent.  

 

2.3 Summary 

 

The results in this chapter are purely design-based and provide some initial insight on the 

difference between the general calibration estimators and the GREG estimator when 
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calibration is applied on the basic design weight directly to correct nonresponse bias.  In 

contrast to the findings of Deville and Särndal (1992) in the absence of nonresponse, our 

theoretical analysis shows that in the presence of nonresponse, the general calibration 

estimators and the GREG estimator are not asymptotically equivalent in general 

situations. At the same time, there are some questions yet to answer.  For example, what 

factors may affect the magnitude of the difference between two calibration estimators? 

Are there special situations where some forms of calibration estimators may yield 

asymptotically equivalent results?  To further understand what drives the differences 

between the various calibration estimators, we need to go beyond the design-based 

approach and examine the underlying models for the outcome variable and the response 

mechanism. For example, a set of variables may be correlated with the outcome variable 

of interest. Another set of variables may be correlated with the response propensity.  The 

question is how to incorporate these covariates in the calibration process to reduce 

potential nonresponse bias without increasing variance significantly. In the next chapter, 

we examine three widely used calibration estimators, poststratification, raking, and 

GREG estimator accounting for only the main effects of the auxiliary variables, in greater 

detail.  We aim to provide a framework for evaluating calibration estimators using both 

design-based and model-based approaches. 
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Chapter 3. Comparison of Three Widely Used Calibration Estimators for 
Nonresponse Adjustment over Repeated Sampling 

  

Chapter 2 contains some theoretical results about the difference between the GREG 

estimator and the general calibration estimators when nonresponse exists and calibration 

is used for nonresponse adjustment through a single-step weighting approach (i.e., 

calibration is applied to the basic sampling weights directly without a separate 

nonresponse adjustment step). The results in Chapter 2 show that the GREG estimator 

and general calibration estimators are not necessarily asymptotically equivalent when the 

nonresponse mechanism is not missing completely at random (MCAR).  At the same 

time, to further understand what drives the differences between the various calibration 

estimators, it is necessary to go beyond the purely design-based approach and examine 

the underlying models for the outcome variable and the response mechanism.   

 

In this chapter, we focus on three widely used calibration estimators in the situation 

where the auxiliary information is in the form of counts in a frequency table in two or 

more dimensions. We examine raking (as an example of the general calibration 

estimators), poststratification (as a special form of the GREG estimator that accounts for 

the interaction effects of the auxiliary variables), and the GREG estimator that accounts 

for only the main effects of the auxiliary variables.  In practice, the choice between these 

estimators is often based on the availability of external data and the counts of respondents 

in cells formed by variables that may drive response propensities. This chapter uses a 

systematic approach to evaluate the performance of these three estimators through a 

simulation study. We compare the empirical biases, empirical variances, and coverage 
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rates of the 95 percent confidence intervals of these estimators over repeated sampling.  

We also provide a comprehensive framework to evaluate the impact of sampling, 

outcome variable structure, and nonresponse mechanism simultaneously.  The findings 

demonstrate the importance of accounting for both the outcome variable model and the 

response model when choosing the appropriate calibration estimator.  The results of this 

chapter also provide survey practitioners with some guidance for choosing between these 

widely used calibration estimators.   

 

The content of this chapter is organized as follows: Section 3.1 defines the three 

calibration estimators in comparison.  Sections 3.2 through 3.4 describe the scope, 

conceptual framework, scenarios, and steps for the simulation study.  The evaluation 

criteria and anticipated results are presented in Sections 3.5 and 3.6.  Section 3.7 shows 

the simulation results over repeated sampling, followed by some sensitivity analysis in 

Section 3.8.  Section 3.9 summarizes the findings and discusses some potential work in 

the future.   

 

3.1 Poststratification, Raking, and the GREG without Interaction Effects 

 

Survey practitioners often face the issue of variable and function form selection when 

conducting calibration weighting to reduce nonresponse bias.  For example, a set of 

covariates 1X  may determine the outcome variable of interest while another set of 

covariates 2X  may drive the response propensity.  The relationship between 1X  and 2X  

can fall into one of the three situations: 1) 1X  and 2X  are exactly the same; 2) 1X  and 
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2X  are different but have overlapping components; or 3) 1X  and 2X  are completely 

different with no overlapping components.  In practice, some the covariates associated 

with the response propensity are not be correlated with an outcome variable (the second 

situation above), so the question is what covariates should be included in the calibration 

process to reduce nonresponse without increasing variance significantly.  In the single-

step weighting approach, calibration is applied to the basic sampling weights directly 

without a separate nonresponse adjustment step, so Little and Vartivarian (2005) offer a 

useful framework for thinking about how to choose auxiliary variables and/or calibration 

estimator (e.g., poststratification versus raking).  However, one of the limitations of Little 

and Vartivarian (2005) is that they address only main effects and do not provide any 

explicit guidance about how to handle the interaction effects.   

 

The theoretical results in Chapter 2 indicate that the GREG estimator and general 

calibration estimators are not necessarily asymptotically equivalent when calibration is 

used for nonresponse adjustment. To further investigate the factors that may affect the 

difference between the GREG estimator and a general calibration estimator, we focus on 

three widely used calibration estimators: (1) poststratification estimator as a special case 

of the GREG estimator where both main and interaction effects of the categorical 

auxiliary variables are taken account of; (2) raking ratio estimator as an example of the 

general calibration estimators; and (3) the GREG estimator when only the main effects of 

the auxiliary variables are accounted for.  For simplicity, we refer to the GREG estimator 

accounting for only main effects as “GREG_Main”.   
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3.1.1 Poststratification Estimator 

 

The poststratification estimator is model-unbiased under the group-mean assisting model. 

The auxiliary information consists of known cell counts in a frequency table in any 

number of dimensions. For simplicity, we consider a two-way table with r rows and c

columns, and thus r c× mutually exclusive cells.  The auxiliary vector kx  is composed of 

1rc −  entries of 0 and a single entry of 1 indicating the cell to which k belongs.  The 

population ijU  in cell ij contains ijN elements, i=1, …, r; j=1, …, c.  So 
1 1

r c

ij
i j

N N
= =

= ∑∑ .  

Let ijr  denote the set of survey respondents in cell ijU rI .  For every k in ijr , 

T ˆ)( j ijr rk iF N N=x λ , where ˆ
ij

rij kk r
N d

∈
= ∑ .  The calibration weights for all k in cell ij  

are calculated as 

( )ˆ ,         k k ij rij ijw d N N k r= ∈      (3.1) 

 

The poststratification estimator of a population total can be written as   

1 1

ˆ ij

ij

r c k kk r
yps ij

i j kk r

d y
t N

d
∈

= = ∈

=
∑

∑∑ ∑
     (3.2) 

 

  

  

3.1.2 Raking Estimator 

 

Sometimes survey practitioners do not have all the cell counts ijN , but only marginal 

counts for the benchmark controls.  In other cases, it may not be wise to use the full 
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cross-classification for adjusting the estimator when the sample sizes for some cells are 

small.  One way to utilize the auxiliary information is to calibrate on known marginal 

counts, referred to as generalized raking (Deville and Särndal, 1993). For example, in the 

situation with two auxiliary variables with r and c categories respectively, it is only 

necessary to know the marginal population counts. The auxiliary vector takes the form of 

T
1 , ..., ,  1 , ..., ( )k k r k k ckδ δ δ δ⋅ ⋅ ⋅ ⋅=x , where 1i kδ ⋅ =  if element k is in row i and 0 otherwise, and 

1jkδ ⋅ =  if k is in column j and 0 otherwise.  Consequently, the benchmark control vector 

is T
1 1( , ..., , ,..., )k r cN N N N+ + + +=∑ xU , where 

1

c

i ij
j

N N+
=

= ∑ ,  
1

r

j ij
i

N N+
=

= ∑ .  Define the 

vector of Lagrange multipliers T
1, ..., ,  1, ..., ( )r r cu u v v=λ , then T

ik jr u v= +x λ and 

T )( )(k r i jF F u v= +x λ whenever k belongs to cell ij .  With ˆ
ij

rij kk r
N d

∈
= ∑ , the calibration 

equations are 

1

ˆ ) ,   (        1,  ..., i

c

r jij i
j

N N iF ru v +
=

= =+∑        (3.3) 

and 

1

ˆ ) ,          1,  .( ..,  
r

j i jri j
i

F uN N j cv +
=

= =+∑       (3.4) 

 

These calibration equations do not have a closed-form solution for rλ . Deming and 

Stephan (1943) suggest an iterative proportional fitting procedure that adjusts one 

marginal at a time until convergence is achieved.  Once )( i jF u v+  has been determined, 

the calibrated cell counts can be estimated as 

ˆ ˆ ) ,     1,  .( .., , 1,  ...,  i
w
rij ri jjN N i r j cF u v= = =+    (3.5) 
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The calibrated weights for all k in cell ij  are 

ˆ ˆ ,              w
k k rij rij ijw d N N k r= ∈      (3.6) 

 

The corresponding calibration estimator of a population total is called raking ratio 

estimator 

1 1 1 1

ˆˆ ij

ij

ij

r c r c k kk rw
yrk k k rijk r

i j i j kk r

d y
t w y N

d
∈

∈
= = = = ∈

= =
∑

∑∑∑ ∑∑ ∑
   (3.7) 

 

3.1.3 GREG_Main Estimator 

 

An alternative approach to take advantage of the marginal counts is to use the GREG 

estimator (Särndal, Swensson, and Wretman, 1992)  

T ˆˆ ˆ ˆ( )
y xryg x rrt tt
π π

= + −t B     (3.8) 

where ˆ
xrπ

t  is the Horvitz-Thompson estimator of the population totals of the auxiliary 

vector from the respondent sample, ˆ
yr

t
π

is the Horvitz-Thompson estimator of the 

population total of the outcome variable from the respondent sample, and ˆ
rB  is estimated 

from the respondent sample as the solution of the weighted least squares equation. 

ˆ
xr k k

r
d

π
= ∑t x       (3.9) 

ˆ
yr k k

r

t d y
π

= ∑       (3.10) 
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1T T

2 2
ˆ k k k k

r
r rk k k k

y
σ π σ π

− 
=  

 
∑ ∑x x xB      (3.11) 

 

For the purpose of comparison, we examine the GREG estimator that accounts for only 

the main effects of the auxiliary variables, referred to as GREG_Main. 

 

Deville and Särndal (1993) show that all calibration estimators built from the same set of 

covariates are asymptotically equivalent when there is full response.  As a result, a GREG 

estimator that uses only main effects for a set of factor variables and a raking estimator 

that uses the margins for those factors should be approximately the same in large samples.  

Little and Wu (1991) and Little (1993) also show that the raking estimator has a Bayesian 

interpretation when cell means follow a main effects model and the probability of a unit’s 

responding in cell ij is the product of row and column probabilities of response.  Whether 

these results hold empirically when there is nonresponse is tested in subsequent sections.   

 

3.1.4 Comparison between Poststratification, Raking, and GREG_Main 

 

There are several motivations for comparing raking, GREG_Main, and poststratification.  

First, raking and GREG_Main share the same set of auxiliary variables, and their 

difference lies in the form of distance function ( )G ⋅  and the corresponding adjustment 

function ( )F ⋅ .  In the pure sampling context as discussed in Deville and Särndal (1992), 

these two estimators are asymptotically equivalent. That is, conditioning on the same set 

of auxiliary variables, the particular form of the distance function has negligible impact 
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on the asymptotic properties of the calibration estimator if non-sampling error does not 

exist.  However, the conclusion in Deville and Särndal (1992) does not necessarily hold 

when nonresponse exists and calibration is used to reduce nonresponse bias.  The 

theoretical results in Chapter 2 suggest that the difference between raking and 

GREG_Main could be as large as (1)pO .  The question is in what situation the two 

estimators tend to give very similar results and in what situations they tend to diverge 

significantly. 

   

Second, GREG_Main and poststratification both belong to the GREG estimator family, 

although poststratification is usually not thought of in terms of calibration constraints and 

a distance function. GREG_Main accounts for only the main effects of the auxiliary 

variables while poststratification accounts for the interaction effects as well. The 

comparison of these two estimators shows the impact of the interaction terms in the 

outcome variable model and/or response model. The results can help us refine the 

guidelines in Little and Vartivarian (2005) for choosing auxiliary variables in 

nonresponse adjustment weighting. 

 

Third, poststratification and raking are probably the two most commonly used calibration 

estimators in U.S. government surveys. From the practical perspective, a key difference 

between poststratification and raking is that the former fits a fully saturated model with 

both main and interaction effects of the auxiliary variables, while the latter fits a model 

including only the main effects. On the other hand, Deville, Särndal, and Sautory (1993) 

refer to poststratification as “complete poststratification” and raking ratio as “incomplete 
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poststratification”.  The literature shows that raking (through proportional fitting) 

preserves the multiplicative interaction effect in the sample data (Haberman 1979), 

although there is little theoretical or empirical research to suggest whether raking or 

GREG_Main may be superior in the situation that poststratification should be the most 

appropriate estimator.  We attempt to investigate whether and to what extent raking can 

get closer to poststratification compared to how GREG_Main does.  

 

3.2 Scope of Simulation Study 

 

The simulation study aims to evaluate the empirical properties of the poststratification 

estimator, raking estimator, and GREG_Main estimator for finite population totals and 

means when calibration is used for nonresponse adjustment in a one-step weighting 

approach. We measure the magnitude of their differences in terms of empirical bias, 

variance, MSE, and coverage rate of 95 percent confidence intervals, under different 

model assumptions for the outcome variable and the nonresponse mechanism. The 

research is conducted in the following scope. 

 

First, we evaluate estimates for population totals and means for a single outcome variable. 

In the presence of nonresponse, calibration is used to reduce the bias, variance, and MSE 

of the estimate for this single outcome variable.  

 

Second, although Chapter 1 points out that it is possible to use a covariate vector kz  for 

the calibration adjustment function ( )F ⋅  that is different from the auxiliary vector kx  in 
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the calibration equation, our evaluation focuses on the situation where k k=z x , which is 

the “standard choice” in Särndal and Lundström (2005).   

 

Third, the outcome variable model and the response model contain the same main effect 

covariates. We also assume that there are only two main effect covariates and they are 

both categorical variables. In some scenarios, there is interaction between the two 

categorical variables because the effect of one variable depends on the value of the other 

variable. In these scenarios, an interaction term, assessed through either an additive 

model or a multiplicative model (to be discussed in greater detail in Section 3.3), is also 

included in the outcome variable model and/or response model.  

 

Fourth, for the response mechanism, we assume missing at random (MAR). This means 

that the probability of response does not depend on the outcome variable once we control 

for the known covariates. The classes or cells defined by the covariates are response 

homogeneity groups. 

 

Finally, the results focus on overall estimates in the context of SRS. Although practical 

surveys almost always involve complex sample designs, the SRS assumption allows us to 

focus on the impact of population structure and response mechanism on the performance 

of a calibration estimator.  The findings about how to choose auxiliary variables and 

calibration estimators apply in general to complex designs, although the technical details 

become more complicated. 
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3.3 Outcome Variable Models and Response Models 

 

One question to be answered through the simulation study is whether and how the three 

calibration estimators account for the interaction term in the outcome variable model 

and/or response propensity model.  There are two types of interaction effects, referred to 

as “additive interaction” and “multiplicative” interaction respectively. Additive 

interaction model (also known as absolute difference model) evaluates whether the 

effects of one variable are the same across categories of another variable.  The 

multiplicative interaction model (also known as relative difference model) examines 

whether the odds ratios or risk ratios by one variable are homogeneous across categories 

of another variable.  In our simulation work, the interaction effect in the outcome variable 

model is assessed using an additive interaction model.  For the response propensity model, 

the interaction effect is assessed through both multiplicative interaction model and 

additive interaction model because we are interested in evaluating the impacts of both 

types of interaction effects.  

 

All the outcome variable models and response propensity models include two main effect 

covariates.  In some scenarios, the models also include an interaction term in addition to 

the main effects.  The alternative models for the outcome variable Y , Y_Main and 

Y_Additive_Interaction, are specified in (3.12) and (3.13).  

 

Y_Main:  

+ ,  1,  2; 1,  2; 1,  ... , ijk Y Yi Yj Yijk ijY i j k Nµ α β ε= + + = = =     (3.12) 
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Y_Additive_Interaction:  

,   1,  2; 1,  2; 1,  ... , ijk Y Yi Yj Yij Yijk ijY i j k Nµ α β γ ε= + + + + = = =   (3.13) 

where ijN is the population size in cell ij for the survey and 2~ (0, )Yijk Nε σ . 

 

We refer to (3.12) as the “Y_Main” model because there are only main effect terms in the 

model.  We refer to (3.13) as the “Y_Additive_Interaction” model because in addition to 

the main effects, a non-zero addictive interaction term is also included in the model. 

 

For response, we use two models to describe the association and interaction patterns 

between two categorical random variables – a linear model that allows us to study the 

effect of additive interaction and a log-linear model that allows us to study the effect of 

multiplicative interaction.  It matters what type of interaction (multiplicative versus 

additive) is included in the response model because the literature shows that raking forces 

the weights to conform to the marginal totals without perturbing the associations in the 

unadjusted table (Haberman 1979).  That is, the raking process is expected to preserve the 

multiplicative interaction effect, but not necessarily the additive interaction effect, that 

already exists in the cell counts before calibration. 

 

Linear response model: 

+ ,          1,  2; 1,  2ij R Ri Rj RijR i jµ α β γ= + + = =     (3.14) 

 

Log-linear response model: 

log( ) ,         1,  2; 1,  2ij R Ri Rj RijR i jµ α β γ= + + + = =     (3.15) 

where ijR is the response rate for cell ij . 
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In practice, both response models should satisfy the constraint 0 1ijR≤ ≤ .  During the 

simulation, we choose not to manipulate the parameters in (3.14) and (3.15) directly.  

Instead, we randomly assign response flags (1 indicating response and 0 indicating 

nonresponse) for all the cases in each of the four cells formed by the two random 

categorical variables using the binomial distribution with parameters ijN  and ijR , where 

ijN  and ijR are the population count and response rate, respectively, for the cell ij .  This 

method allows us to control the strength of both the main effects and the two types of 

interaction effects in the response model directly.   

 

We assess the strength of additive interaction effect in the response model using RRDIFF  

defined in (3.16), which measures the extent to which the effect of the two variables 

together exceeds the effect of each considered individually.  

 

22 11 21 11 12 11

22 21 12 11

( ) [( ) ( )]RRDIFF R R R R R R
R R R R

= − − − + −
= − − +

   (3.16) 

where 11R , 12R , 21R , and 22R  are the response rates for the four cells formed by the 

categories of the two random independent variables.   

 

Under model (3.14), equation (3.16) can be expressed as  

 
2 2 22 2 1 21

1 2 12 1 1 11

22 21 12 11

( + ) ( + )
( + ) ( + )

RR R R R R R R R R

R R R R R R R R

R R R R

DIFF µ α β γ µ α β γ
µ α β γ µ α β γ

γ γ γ γ

= + + − + +
− + + + + +

= − − +

                  (3.17) 
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The sufficient condition for 0RRDIFF =  is 22 21 12 11 0R R R Rγ γ γ γ− − + = .  One special 

situation is that when 0  ,  Rij i jγ = ∀  , we have 0RRDIFF = .  The nearer that RRDIFF  is to 

zero, the lower is the effect of additive interaction.  

 

To assess multiplicative interaction, we first define relative risks as in (3.18), (3.19), and 

(3.20). 

22 22 11RR R R=       (3.18) 

21 21 11RR R R=      (3.19) 

12 12 11RR R R=      (3.20) 

 

Then we calculate cross product ratio of response rates, RRCPR , as in (3.21).   

22 21 12

22 11

21 12

( )RRCPR RR RR RR
R R
R R

= ×
×

=
×

    (3.21) 

 

Under model (3.15), equation (3.21) can be expressed as 

2 2 22 1 1 11

2 1 21 1 2 12

22 21 12 11

22 11

21 12
+ +

+ +

R R R R R R R R

R R R R R R R R

R R R R

RR
R RCPR
R R

e e
e e
e

µ α β γ µ α β γ

µ α β γ µ α β γ

γ γ γ γ

+ + + +

+ + + +

− − +

×
=

×

=

=

    (3.22) 
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The sufficient condition for 1RRCPR =  is 22 21 12 11 0R R R Rγ γ γ γ− − + = .  One special 

situation is that when 0  ,  Rij i jγ = ∀ , we have 1RRCPR = , indicating that the 

multiplicative interaction effect is zero; otherwise the multiplicative interaction effect is 

non-zero.  The farther that RRCPR  is from one, the stronger is the effect of multiplicative 

interaction.  

 

Here is a hypothetical example for the simulation setup.  We are interested in a single 

outcome variable, income.  Both the outcome variable and the response propensities can 

be fully explained by two dichotomous variables, education (high versus low) and age 

(young versus old), and possibly an interaction term between education and age.  In the 

outcome variable and response rate models specified in (3.12) through (3.15), 

1 2( , )Y Y Yα α=α and 1 2( , )R R Rα α=α indicate the main effects of education on income and 

response rate respectively, 1 2( ,  )Y Y Yβ β=β and 1 2( ,  )R R Rβ β=β  indicate the main effects 

of age on income and response rate respectively, 11 12 21 22( , , , )Y Y Y Y Yγ γ γ γ=γ denotes the 

additive interaction effect between education and age on income, and 

11 12 21 22( , , , )R R R R Rγ γ γ γ=γ  denotes the interaction effect (measured on either additive or 

multiplicative scale) between education and age on response rate.  The interaction effect 

in the outcome variable model is assessed only on additive scale, so we have two 

scenarios: Y_Main and Y_Additive_Interaction.  For the response model, 17 scenarios 

are created with different combinations of RRDIFF  and RRCPR  values because we are 

interested in assessing the interaction term on both multiplicative scale and additive scale 

(see details in Section 3.4).  
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In poststratification, the weights are adjusted by four full-classification cells defined by 

the combinations of education and age. In raking, the weighting adjustment is conducted 

iteratively by using age and education as marginal controls until convergence is achieved. 

In GREG_Main, the calibration estimator is a function of the regression coefficient as the 

result of modeling the outcome variable income by only the main effects of education and 

age.  Through the simulation study, we examine the performance of poststratification, 

raking, and GREG_Main under the scenarios created by the different outcome variable 

model and response model combinations. We evaluate the consistency between our 

results and those in Little & Vartivarian (2005) and refine their conclusions. At the same 

time, we attempt to expand Deville and Särndal (1992) and shed light on the empirical 

difference between the GREG estimators (i.e., GREG_Main and poststratification) and 

the raking estimator (as an example of the general calibration estimator) in the presence 

of nonresponse.  

 

3.4 Simulation Scenarios and Steps 

 

Several factors may affect the properties of and differences between the three calibration 

estimators under evaluation, including: (1) the number of simulation samples; (2) the 

overall sample size for the respondent sample and the distribution across the four 

subpopulations; (3) the substantive and statistical significance of the additive interaction 

effect in the outcome variable model; and (4) the strength of the multiplicative and 

additive interaction effect in the response model, measured by RRCPR  and RRDIFF  
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respectively.  In this section, we choose the simulation parameters so as to minimize the 

factors that could cloud our comparison between the three calibration estimators: 

 

First, we use 1,000 simulation samples to evaluate the performance of the three 

calibration estimators over repeated sampling.  Due to the large number of simulation 

iterations, it is unlikely that any observed differences between the estimators are due to 

chance.   

 

Second, we know that the necessary condition for the additive interaction effect in the 

outcome variable model to be non-zero is 22 21 12 11 0Y Y Y Yγ γ γ γ− − + ≠ .  For Y_Main, we 

set 0  ,  Yij i jγ = ∀  for simplicity.  For Y_Additive_Interaction, the strength of the 

interaction effect can be controlled through the values for Yijγ .  Two criteria are followed 

when choosing the parameters for the outcome variable models.  First, the random error 

terms in (3.12) and (3.13) should be very small such that the models have very strong 

predictive power. Second, the interaction effect in the Y_Additive_Interaction model 

should be substantively and statistically significant.  Under these criteria, several sets of 

parameters for the outcome variable models have been used for test runs. The results 

associated with these different parameters lead to the same conclusions, so we choose to 

present the results based on only one set of parameters for Y_Main in (3.12) and 

Y_Additive_Interaction in (3.13), as shown below. 

 

1000Yµ =   

1 2( ,  ) ( 200,  300)Y Y Yα α= = −α   
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1 2( ,  ) ( 100,  150)Y Y Yβ β= = −β   

11 12 21 22( , , , ) (100,  300, 700, 1200)Y Y Y Y Yγ γ γ γ= =γ  

~ (0,900)Yijk Nε  

 

Using these parameters, finite populations with approximately 40,000 units are generated 

for Y_Main and Y_Additive_Interaction, respectively.  Then for each finite population, a 

regression model of the outcome variable is fitted (on both the main effect variables and 

the interaction term) to check the predictive power of the model as well as the strength of 

the interaction term.  Table 3.1 shows the cell means, the R-squared value of the 

regression model, and the p-values for the interaction term for each finite population.  

The R-squared values are close to one for both Y_Main and Y_Additive_Interaction, 

indicating almost perfect prediction power of the outcome models.  For Y_Main, the p-

value for the interaction term is close to one.  For Y_Additive_Interaction, the p-value for 

the interaction term is almost zero. 

 

Table 3.1 Two Finite Populations Corresponding to Two Outcome Variable Models 
Outcome Variable 
Model 11( )M kE y

 
12( )M kE y

 
21( )M kE y

 
22( )M kE y

 

R-squared 
for Overall 
Model 

p-value for 
Interaction 
Term 

Y_Main 700 950 1,200 1,450 0.9886 0.998 
Y_Additive_Interaction 800 1,250 1,900 2,650 0.9979 <0.0001 
 

Third, for the response model, we create 17 scenarios with different combinations of 

RRDIFF  and RRCPR  values, as shown in Table 3.2.  This is achieved by manipulating the 

four cell response rates ( 11 12 21 22, , ,R R R R ).  Models (3.14) and (3.15) are not used directly 

to generate responses.  However, given a set of ijR , RRCPR  and RRDIFF  can be computed 
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to measure the strength of multiplicative interaction effect and the strength of additive 

interaction effect respectively.  These scenarios can be divided into five categories: (1) 

full response (scenario S01), which serves as the evaluation baseline; (2) neither 

multiplicative nor additive interaction (scenario S02); (3) only additive interaction but no 

multiplicative interaction (scenario S03); (4) only multiplicative interaction but no 

additive interaction (scenarios S04 through S11); and (5) both types of interaction 

(scenarios S12 through S17).  The direction and strength of the multiplicative interaction 

also vary among scenarios S4 through S17.  These combinations allow us to understand 

whether and how these two different types of interaction effects in the response model 

affect the performance of poststratification, raking, and GREG_Main. 

 

For Scenario S02, to ensure both additive independency and multiplicative independency 

for the response rates in a 2×2 table, the two conditions shown in (3.23) and (3.24) need 

to be satisfied.  

 

11 22 12 21 0RRDIFF R R R R= + − − =      (3.23) 

22 11

21 12

1RR
R RCPR
R R

×
= =

×
      (3.24) 

 

Putting (3.23) and (3.24) together, we have  
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21 12
11 12 21

11

11 11 21 12 11 12 11 21

11 11 11 12 11 21 21 12

11 11 12 21 11 12

11 21 11 12

11 21 11 12

( ) ( )
( )( ) 0

 or  

R RR R R
R

R R R R R R R R
R R R R R R R R
R R R R R R
R R R R

R R R R

×
+ = +

⇔ ∗ + × = ∗ + ∗
⇔ ∗ − ∗ = ∗ − ×
⇔ − = −
⇔ − − =
⇔ = =

   (3.25) 

 

This means that the response rates should be independent of either the row variable or the 

column variable.  That is, the response model essentially contains only one covariate, not 

two covariates. 

 

Table 3.2 Scenarios for Response Models 

Category Scenario  
Number R11 R12 R21 R22 CPRRR DIFFRR 

Full Response S01 1.00 1.00 1.00 1.00 1.00 0.00 
Neither Additive Interaction 
Nor Multiplicative Interaction S02 0.45 0.45 0.30 0.30 1.00 0.00 

Only Additive Interaction S03 0.41 0.10 0.95 0.24 1.00 -0.41 

Only Multiplicative Interaction 

S04 0.12 0.48 0.02 0.38 4.75 0.00 
S05 0.26 0.94 0.06 0.74 3.41 0.00 
S06 0.28 0.92 0.08 0.72 2.74 0.00 
S07 0.32 0.88 0.12 0.68 2.06 0.00 
S08 0.40 0.80 0.20 0.60 1.50 0.00 
S09 0.46 0.74 0.26 0.54 1.29 0.00 
S10 0.54 0.66 0.34 0.46 1.11 0.00 
S11 0.56 0.64 0.36 0.44 1.07 0.00 

Both Types of Interaction 

S12 0.23 0.07 0.55 0.15 0.90 -0.24 
S13 0.20 0.10 0.52 0.18 0.69 -0.24 
S14 0.15 0.15 0.47 0.23 0.49 -0.24 
S15 0.09 0.21 0.41 0.29 0.30 -0.24 
S16 0.04 0.26 0.36 0.34 0.15 -0.24 
S17 0.02 0.58 0.66 0.74 0.04 -0.48 

 

Finally, the respondent sample sizes by cell are determined by both the overall SRS 

sample size n  and the response model.  For each outcome variable and response model 
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combination, we vary the respondent sample sizes by using three alternative SRS sample 

sizes: n=8,000, n=2,000, and n=200.  This allows us to not only evaluate the asymptotic 

properties of the calibration estimators, but also see the impact of small cell counts on 

poststratification in some scenarios. 

 

In summary, the simulation study covers 102 scenarios formed by crossing two outcome 

variable scenarios, 17 response model scenarios, and three alternative SRS sample sizes.  

The following steps are used to evaluate the properties of the three calibration estimators 

over repeated sampling. 

  

Step I: Generate two finite populations corresponding to the outcome variable models 

Y_Main and Y_Additive_Interaction in Table 3.1, respectively. Each finite population 

contains four subpopulations defined by the categories of the two auxiliary variables. The 

subpopulation sizes, ijN , are determined through Poisson distribution with mean of 

10,000. The overall size for each finite population is approximately 40,000, with 

approximately equal number of cases in each of the four cells. These two finite 

populations are used for repeated sampling in the steps that follow. 

 

Step II: From each finite population, first select a simple random sample of size n , and 

then select a subsample of respondents from the simple random sample using one of the 

response models shown in Table 3.2.  With the three alternative SRS sample sizes 

(n=8,000, n=2,000, and n=200) and 17 response model scenarios, this step results in 51 

respondent samples from each finite population for each simulation iteration. 
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Step III: Conduct calibration on each respondent sample using poststratification, raking, 

and GREG_Main, respectively. Obtain the estimates for the outcome variable associated 

with the three calibration estimators. 

 

Step IV: Repeat Steps II and III for 1,000 times.  This results in 1,000 iterations for each 

of the 102 simulation scenarios.   

 

Step V: For each of the 102 simulation scenarios, examine the empirical properties of 

poststratification, raking, and GREG_Main over repeated sampling using the 1,000 

simulation samples and the evaluation criteria described in Section 3.5.  

 

The simulation results over repeated sampling are reported in Section 3.7.  We then 

conduct some sensitivity analysis in Section 3.8 by varying the predictive power of the 

outcome variable model. 

 

The simulation is conducted in R (Lumley, 2005; R Development Core Team, 2015) 

because of its efficiency in handling matrix calculations and extensive capacity for 

analyzing survey data. The programs developed for the simulation studies are provided in 

Appendix B. 
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3.5 Evaluation Criteria 

 

We examine the empirical properties of the calibration estimators using the repeated 

sampling approach (i.e., averaging across the 1,000 simulation samples).  The empirical 

properties of the three calibration estimators under different outcome variable model, 

response model, and SRS sample size combinations are compared using several measures.  

The measures are described below in terms of totals.  A similar set of measures can be 

used to evaluate the properties of the estimators in terms of overall means. 

 

1. Relative bias 
1

ˆ ˆ( ) (1 / ) ( )
s

S
yw yw y ys

RelBias t S t t t
=

= −∑  

where s indicates a particular sample, S  is the total number of samples included. yt is 

the true population total, and ˆ
sywt is the estimate from sample s using one of the three 

calibration estimators.  

 

2. Empirical relative standard error 

( )2

1
ˆ ˆ ˆ ˆ( ) ( ) (1 / ) ( )

s s

S
yw yw y yw p yw ys

EmpRelSE t EmpVar t t S t E t t
=

= = −∑  

where 
1

ˆ ˆ( ) (1 / )
s

S
p yw yws

E t S t
=

= ∑ , the average value of ˆ
sywt over repeated sampling. 

ˆ( )ywEmpVar t  is the empirical variance across the S simulated samples, not the 

average of the S estimated variances computed by the R software for all the simulated 

samples. 
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3. Relative square root of MSE  

( ) ( )22

1 1

ˆ( )

ˆMSE( )

ˆ ˆ ˆ(1/ ) ( ) (1/ ) ( )
s s s

yw

yw y

S S
yw p yw yw y ys s

RelRMSE t

t t

S t E t S t t t
= =

=

= − + −∑ ∑

  

 

4. Coverage rate of the 95 percent confidence intervals 

( )1 21
ˆ ˆˆ ˆ(1/ ) ,  where 0.05 and ( ) ( )

s

S
j j yw y yws

S I z z z t t var tα α−=
≤ = = −∑  

where ˆ( )ywvar t  is the estimated variance for each simulated sample computed using 

the “calibrate” function in the R Survey package; ( )I g  is an indicator for whether 

1 2ˆ jz z α−≤ .  The method essentially estimates the variance of a linear substitute that 

is equivalent to the product of the calibrated weight and a residual calculated from a 

linear model of the outcome variable on a vector of auxiliary variables.  For raking, 

the residual is based on a main effect model with the covariates being indicators for 

the raking categories of each dimension.  We use ˆ( )ywvar t , the estimated variance 

from each simulated sample (instead of ˆ( )ywEmpVar t , the empirical variance  

estimated from all the simulated samples), to obtain the 95 percent confidence 

interval because only one sample can be obtained for any survey in practice.  The 

limitation of this approach is that it relies on the accuracy of the variance estimation 

method implemented in the “calibrate” function of the R Survey package.  More 

details about the impact of the variance estimation method is discussed in Chapter 5.   
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5. Bias ratio, calculated as the ratio of ˆ( )ywBias t and square root of ˆ( )ywEmpVar t   

( )2

1 1
ˆ ˆ ˆ ˆ( ) (1 / ) ( ) (1 / ) ( )

s s

S S
yw yw y yw p yws s

BiasRatio t S t t S t E t
= =

= − −∑ ∑  

 

3.6 Expected Results from Simulation 

 

We anticipate the results for the overall totals and those for the overall means to follow 

the same pattern because the denominator of the estimator for the overall mean is 

calibrated to the overall population count, which is a constant for any finite population.  

The properties of the three calibration estimators are expected to depend on the outcome 

variable model, response model, overall sample size, and existence of small cell counts. 

 

3.6.1 Expected Impacts of Outcome Variable Model and Response Model 

 

First of all, we anticipate the outcome variable model to be the primary driving factor for 

determining the performance of the calibration estimators.  When the outcome variable 

model contains only the main effect terms (in the Y_Main scenarios), we expect the three 

calibration estimators to perform similarly well regardless of the form of the response 

model.  The response model matters only when the outcome variable model includes an 

additive interaction term. In the Y_Additive_Interaction scenarios, the three calibration 

estimators are expected to perform differently.  Moreover, the response model is expected 

to play an important role in the properties of the raking estimator and GREG_Main 

estimator.  Out of the three estimators of interest, we find the exact theory about 
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GREG_Main difficult to develop.  By definition, the GREG_Main estimator accounts for 

only the main effects.  Under the Y_Additive_Interaction outcome model, GREG_Main 

is expected to be biased in all the response scenarios except S01 (with full response) and 

S02 (when the response model contains neither multiplicative interaction effect nor 

additive interaction effect, and thus depends on a single covariate essentially, as shown in 

(3.25)).   

 

3.6.2 Theoretical Development about Poststratification  

 

Poststratification accounts for the interaction term in the outcome variable model as 

shown below.  As long as all the respondent cell counts are reasonably large, the 

poststratification estimator is expected to perform well regardless of the response model.  

We can prove that the poststratification estimator is model-unbiased. 

 

Assume the simulation population is a realization of the super population generated by 

(3.13).  Let the population total of the outcome variable Y  be 
1 1 ij

r c

y k
i j k U

t y
= = ∈

= ∑∑ ∑ .  Then the 

expectation of yt  with respect to the outcome variable model is  
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M M
1 1

M
1 1

1 1

1 1

E ( ) E ( )

E ( )

= 

( )

ij

ij

ij

r c

y k
i j k U

r c

k
i j k U

r c

Y Yi Yj Yij
i j k U

r c

ij Y Yi Yj Yij
i j

t y

y

N

µ α β γ

µ α β γ

= = ∈

= = ∈

= = ∈

= =

=

=

+ + +

= + + +

∑∑ ∑

∑∑ ∑

∑∑ ∑

∑∑

         (3.26) 

 

Now define the following Horvitz-Thompson estimators 

ˆ
ij

ij k
k s

N d
∈

= ∑                                                                                   (3.27) 

ˆ
ij ij

rij k k k
k r k s

N d dδ
∈ ∈

= =∑ ∑           (3.28) 

ˆ
ij

ysij k k
k s

t d y
∈

= ∑            (3.29) 

ˆ
ij ij

yrij k k k k k
k r k s

t d y d yδ
∈ ∈

= =∑ ∑          (3.30) 

where kδ  is the response indicator and kd  is the basic design weight for unit k in cell ij. 

1 if response
0       if nonresponsekδ


= 


   

1k kd π=  , where kπ is the inclusion probability for unit k in cell ij. 

 

The expectations of ˆ
rijN  and ŷrijt  with respect to the response models (3.14) and (3.15) 

are 

R R R
ˆ ˆE ( ) E ( ) E ( )

ij ij ij

rij k k k k k ij ij ij
k s k s k s

N d d d R R Nδ δ
∈ ∈ ∈

= = = =∑ ∑ ∑      (3.31) 
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and 

R R R
ˆ ˆE ( ) E ( )= E ( )

ij ij ij

yrij k k k k k k k k ij ij ysij
k s k s k s

t d y d y d y R R tδ δ
∈ ∈ ∈

= = =∑ ∑ ∑    (3.32) 

 

The poststratification estimator in (3.2) can be expressed as 

1 1 1 1

ˆ ˆ
ˆ

ij

ij

k k kr c r c
k s ij

yps ij yrij
i j i jk k rijk s

d y
N

t N t
d N

δ

δ
∈

= = = =∈

= =
∑

∑∑ ∑∑∑
    (3.33) 

 

Then using linear approximation, we can obtain 

R
1 1 1 1

ˆ ˆ ˆE ( ) ˆ ˆ
r c r c

ij ij
yps ij ysij ysij

i j i jij ij ij

N N
t R t t

R N N= = = =

= =∑∑ ∑∑     (3.34) 

and 
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74 
 

So the poststratification estimator ŷpst is model-unbiased under the outcome models and 

response models specified in (3.12) through (3.15). 

 

3.6.3 Theoretical Development about Raking 

 

Implications of Raking Maintaining Multiplicative Interaction Effect 

 

Although raking does not explicitly account for the interaction term in the outcome 

variable model, the iterative proportional fitting algorithm forces the weights to conform 

to the marginal totals without perturbing the associations in the unadjusted table 

(Haberman 1979).  To understand the implications of this in the setting of a 2×2 table, 

we define several cross product ratios of unweighted and weighted cell counts, including 

popCPR  for the population cell counts, sCPR for the weighted sample cell counts using 

the basic design weights, rCPR for the weighted respondent cell counts using the basic 

design weights, and wCPR for the weighted respondent cell counts using the calibrated 

weights from raking, poststratification, or GREG_Main. 

 

    11 22

12 21
pop

N NCPR
N N

=       (3.36) 

11 22

12 21

11 22

12 21

ˆ ˆ
ˆ ˆ

k k
k s k s

s
k k

k s k s

d d
N NCPR

d dN N
∈ ∈

∈ ∈

= =
∑ ∑
∑ ∑

    (3.37) 
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11 22

12 21

11 22

12 21

ˆ ˆ
ˆ

k k
k r k rr r

r
k kr r

k r k r

d d
N NCPR

d dN N
∈ ∈

∈ ∈

= =
∑ ∑
∑ ∑

    (3.38) 

11 22

12 21

11 22

12 21

ˆ ˆ
ˆ ˆ

k kw w
k r k rr r

w w w
k kr r

k r k r

w w
N NCPR

w wN N
∈ ∈

∈ ∈

= =
∑ ∑
∑ ∑

    (3.39) 

where ˆ w
rijN  denotes the estimated population count in cell ij using the calibrated weights 

from raking, poststratification, or GREG_Main, and kw  is the calibrated weight for unit k 

in cell ij.   

 

First, the proportional fitting process for raking makes the weights conform to the row 

control totals during each row iteration and conform to the column control totals during 

each column iteration.  Let fim denote the weighting adjustment factor for the ith row 

during the mth row iteration and fjn denote the weighting adjustment factor for the jth 

column during the nth column iteration.  It is important to note that fim and fjn are 

independent of each other.  Assume that when raking converges, the total number of row 

iterations is M and the total number of column iterations is N.  Usually 1M N= ±  in 

practice.  Then the overall weighting adjustment factor for unit k in cell ij, shown as 

)( i jF u v+  in (3.5), can be calculated as 

1 1

,        1,2;  1,2
M N

ij im jn
m n

F f f i j
= =

= = =∏ ∏     (3.40) 

 

We can re-write (3.39) as  
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  (3.41) 

 

From (3.38) and (3.41), it is easy to see that, for raking, 

w rCPR CPR=      (3.42)   

 

That is, the cross product ratio of the weighted respondent cell counts before raking 

(using the basic design weights) is the same as that after raking (using the raked weights).  

Brick, Montaquila, and Roth (2003) also provide a numerical example showing that 

raking retains the cross product ratio of the observed case counts. 

 

Second, in the SRS setting where kd N n= , if ( )rij R rij ij ijn E n n R= = , then (3.38) can be 

re-expressed as   

  11 22

12 21

11 22 11 11 22 22

12 21 12 12 21 21

( )( )
( )( )

k k k k
k s k s r r

r s RR
k k k k r r

k s k s

d d
n n n R n RCPR CPR CPR

d d n n n R n R

δ δ

δ δ
∈ ∈

∈ ∈

= = = = ∗
∑ ∑
∑ ∑

   (3.43) 

where RRCPR is the cross product ratio of the response rates, as defined in (3.21).   
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Third, we know that sCPR  converges to popCPR  as the cell sample sizes

11 12 21 22, , ,n n n n → ∞ .  From (3.42) and (3.43), it is easy to see that, for raking, CPRw 

approaches the product of CPRpop and CPRRR as the cell sample sizes become large.   

 

Finally, in the special situation where there is no multiplicative interaction term in the 

response model (as in the response scenario S03), 1RRCPR = .  So for raking, wCPR

approaches popCPR  as 11 12 21 22, , ,n n n n → ∞ .  That is, raking maintains the internal 

interaction effect in the population cell counts.  Therefore we expect the raking estimator 

to perform almost as well as poststratification when 1RRCPR = .  At the same time, the 

relative bias of raking is expected to increase as the multiplicative interaction term in the 

response model becomes stronger and CPRRR becomes farther away from 1.  

 

A Sufficient Condition in Weighting Adjustment for Raking to Be Unbiased 

 

In the SRS setting, the Y-model expectation of the raking estimator is 
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     (3.44) 
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The Y-model expectation of the population total is 

( )
1

( )
ijNr c r c

M y ijk ij Y Yi Yj Yij
i j k i j

E t y N µ α β γ
=

= = + + +∑∑∑ ∑∑   (3.45) 

 

Therefore the Y-model bias of the raking estimator is 

( ) ( )( )ˆˆ
r c

w
M yrk y rij ij Y Yi Yj Yij

i j
E t t N N µ α β γ− = − + + +∑∑   (3.46) 

 

In a general situation, 0Yijγ ≠ .  A sufficient (but not necessary) condition for 

( )ˆ 0M yrk yE t t− =  is ˆ w
rij ijN N= .  This is true regardless of whether the outcome variable 

model contains the interaction effect.  

 

The response indicator for a unit k in cell ij is 
1   if response
0   if nonresponseijkδ


= 


 .  The base-

weighted estimate of the number of units in cell ij based on the respondents in the cell is 

1

ˆ
rijn

rij ijk
k

N d
=

= ∑ .  The expectation of ˆ
rijN  over the response model is  

( )
1 1

ˆ ˆ
ij ijn n

R rij R ijk ijk ijk ij ij ijij
k k

E N s E d d R R Nδ
= =

 
= = =  

 
∑ ∑     (3.47) 

where ijR is the response probability for all the units in cell ij.  

 

Also, from (3.40), we know ˆ ˆw
rij ij rijN F N= , so the expectation over repeated sampling 

distribution ( pE ) and response distribution ( RE ) is  
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( ) ( ) ( ) ( )ˆ ˆ ˆ ˆw
P R rij ij P R ij rij ij P ij ij rij ij P ij rij ij ij ijE E N s E E F N s E F R N R E F N F R N= = = =  (3.48) 

 

The derivation above treats ijF  as fixed, which is loose since the weighting adjustment 

actually varies from sample to sample.  This is probably acceptable if we think of ijF  as 

the converged value for a given initial sample, i.e., across the response distribution.   

 

The compound bias (i.e., over repeated sampling, outcome variable, and response 

distributions) for raking is  
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   (3.49) 

 

If 1
ij ijF R−=  (i.e., the raking adjustment factor in cell ij is the inverse of the cell response 

probability), then ŷrkt  is unbiased across all three distributions.  In this situation, raking 

achieves what poststratification does.  Note that this is the sufficient condition, but not 

necessary condition, for ( )ˆ 0P R M yrk yUE E E t t− = . 

 

3.6.4 Expected Impacts of Sample Sizes 

 

We expect the sample sizes to have two effects on the performance of the estimators.  

First, for a biased and inconsistent estimator, we suspect that purely increasing the 

sample size (without improving the calibration model) does not necessarily improve the 
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effective coverage rate of the confidence interval.  Although the variance tends to 

decrease as the sample size increases, the relative bias does not change with the sample 

size.  Thus, the confidence interval tends to become narrower as the sample size becomes 

larger and the variance becomes smaller.  As a result, the coverage rate of the 95 percent 

confidence intervals for a biased estimator is expected to become worse as the sample 

size increases. 

 

Second, assuming that both estimators are unbiased, one advantage of raking over 

poststratification is that when the marginal counts are large but some cell counts (formed 

by crossing the categories of the auxiliary variables) are small, raking may be more stable 

than poststratification.  We include some simulation scenarios to test this hypothesis.  For 

example, in the response scenarios S04 and S17 under the Y_Main model, the marginal 

response rates are high enough but the smallest cell-level response rates are only 2 

percent.  In these scenarios, particularly with SRS n=200, we expect the empirical 

relative standard errors for raking to be smaller than those for poststratification. 

 

3.7 Simulation Results  

 

In this section we examine the empirical properties of poststratification, raking, and 

GREG_Main over repeated sampling.  As expected, the results for the overall totals are 

almost exactly the same as those for the overall means; any differences are negligible and 

only due to rounding.  Therefore we only show the properties of the estimators for the 

totals in the discussions below.  
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Tables 3.3 and Table 3.4 show the relative bias, empirical relative standard error, relative 

square root of MSE, bias ratio, and coverage rate of the 95 percent confidence intervals 

for the three estimators under the outcome variable models Y_Main and 

Y_Additive_Interaction respectively.   In addition, the average respondent sample sizes 

by cell and average cross product ratios for various unweighted and weighted cell counts 

are also presented in the tables because the information helps explain the results.  For 

each outcome variable scenario, three sets of results are presented for SRS sizes n=8,000, 

n=2,000, and n=200, respectively. Although the results corresponding to full response (in 

scenario S01) are not our focus, they serve as the evaluation baselines, and are thus 

included in the tables.  

 

3.7.1 Impact of Outcome Variable Model and Response Model on Bias 

 

The relative bias is not only an important evaluation measure itself, but also a factor 

affecting the bias ratio and coverage rate of the 95 percent confidence intervals, which 

are discussed in Section 3.7.3 in greater detail.  Among all the simulation scenarios in 

Tables 3.3 and 3.4, none of the three estimators is associated with unacceptably high 

relative bias. The biggest relative bias is only approximately 4 percent – It occurs for 

GREG_Main (with SRS n=8,000 and n=2,000) when the outcome variable model 

contains a substantively and statistically significant additive interaction term 

(Y_Additive_Interaction) and the response model contains a strong interaction term 

(scenario S17 with 0.48RRDIFF = −  and 0.04RRCPR = ).  Overall, the three estimators 
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can all achieve significant bias reduction through accounting for at least the main effects 

of the auxiliary variables. 

 

At the same time, the data confirms our expectation that the performances of the 

estimators are affected by the outcome variable model and response model.  It is clear 

that the outcome variable model is the primary driving factor for determining whether 

there are any substantial differences between the relative biases of the estimators.  In 

Table 3.3 (for the Y_Main model), poststratification does not reduce the nonresponse bias 

further than raking or GREG_Main, and this is true regardless of the response model.  

The three calibration estimators yield very similar relative biases in all the response 

scenarios including those with strong interaction term, and any noticeable differences 

between them (such as in S17) can be attributed to random error, which is discussed in 

Section 3.7.2 in greater detail.  The key to understanding this data pattern is that if an 

auxiliary variable is correlated only to nonresponse but uncorrelated to the outcome 

variable, then the differential response related to the auxiliary variable does not cause any 

nonresponse bias.  For example, in a hypothetical survey targeting both males and 

females, if the outcome variable depends only on age, then differential response rates by 

gender do not make the overall estimate biased, as long as the distribution of age is 

independent of gender.  In our simulation setting, although the interaction effect is 

present in some response models, it does not affect the outcome variable, and thus does 

not introduce any nonresponse bias in addition to the nonresponse bias that has already 

been caused by the main effects. Since no bias has been caused by the interaction effect 

in the first place, it does not help to include the interaction term in the calibration process.  
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This is why raking and GREG_Main perform almost as well as poststratification in terms 

of relative bias in all the Y_Main scenarios regardless of the response model.   

 

In contrast, an interaction term in the response model plays an important role in the 

performance of a calibration estimator conditioning on the fact that the interaction effect 

is present in the outcome variable model.  Figure 3.1 shows the absolute values of the 

relative biases for poststratification, raking, and GREG_Main in the various response 

scenarios when the outcome model is Y_Additive_Interaction and the SRS sample size is 

8,000.  Using the absolute values allow us to better understand the relationship between 

the magnitude of relative bias and the strength of the interaction term in the response 

model.  We can see three patterns from Table 3.4 and Figure 3.1. 

 

First, the response scenarios S01 and S02 are two special situations. S01 is for full 

response.  S02 occurs only when the response rates are independent of either the row 

variable or the column variable, which means that the response rates are essentially 

driven by a single variable.  Not surprisingly, the three estimators perform similarly well 

in S01 and S02. 

 

Second, the response scenarios S03 (with 1RRCPR =  and 0.41RRDIFF = − ) and S04 (with 

4.75RRCPR =  and 0RRDIFF = ) form an interesting pair of contrasts because the former 

contains only additive interaction term and the latter contains only multiplicative 

interaction term.  For example, in the scenario S03 with n=2,000, the magnitude of the 

relative bias for poststratification (0.002 percent) and that for raking (0.043 percent) are 
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comparable, while the magnitude for GREG_Main (1.17 percent) is substantially higher.  

In the scenario S04 with n=2,000, the response model contains a strong multiplicative 

interaction term, and neither GREG_Main nor raking can match the performance of 

poststratification.  The absolute values of the relative biases for raking and GREG_Main 

are approximately 126 times and 215 times, respectively, as large as that for 

poststratification.  These results are consistent with our anticipation that under the 

outcome variable model Y_Additive_Interaction, the performance of raking is affected 

by the multiplicative interaction effect rather than the additive interaction effect in the 

response model, yet GREG_Main is biased if there is either type of interaction effect in 

the response model.   

 

Third, the results for the response scenarios S05 through S17 confirm our expectation that 

the biasedness of raking is associated with the strength of the multiplicative interaction 

term in the response model (measured by how far off CPRRR is from 1).  For example, in 

the Y_Additive_Interaction and n=8,000 scenario, the absolute value of the relative bias 

for raking increases from 0.06 percent to 1.71 percent as CPRRR increases from 1.07 to 

4.75, and increases from 0.04 percent to 3.09 percent as CPRRR decreases from 0.90 to 

0.04.  In the response scenarios S11 and S12 with relatively weak multiplicative 

interaction term, raking may be considered an acceptable estimator in terms of relative 

bias and coverage rate of the 95 percent confidence intervals (92 percent in S11 and 100 

percent in S12), but its performance becomes worse as CPRRR moves farther away from 1.  

The performance of GREG_Main for response scenarios S05 through S17 follows a 

similar pattern except that it is generally more biased than raking.   
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Figure 3.1 Absolute Values of Relative Biases for Poststratification, Raking, and GREG_Main for 

Outcome Model Y_Additive_Interaction, n=8,000, and Various Response Scenarios 

 

Although the benchmark controls for raking are marginal totals instead of cell counts as 

in poststratification, raking performs almost as well as poststratification in the response 

scenario S03 (with 1RRCPR = ).  The simulation results confirm our theoretical derivation 

about raking under Y_Additive_Interaction as discussed in Section 3.6.1.  For example, 

in the Y_Additive_Interaction, n=8,000, and S03 scenario, the average cross product 

ratios of the cell counts for the population, respondent sample, poststratification, and 

raking are 0.99, 1.02, 0.99, and 1.02 respectively.  For poststratification,

0.99w popCPR CPR= = . The poststratification process forces the weighted cell counts to 

strictly align with the population cell counts and thus reduces nonresponse bias most 

effectively.  For raking, 1.02w r popCPR CPR CPR= = B .  The difference between raking 
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and poststratification is caused by the random errors in the two-phase sampling process 

for selecting respondents, which is reflected in the difference between popCPR  and rCPR . 

This explains why raking performs almost as well (but not quite as well) as 

poststratification. 

 

In theory, the cross product ratios of the unweighted and weighted cell counts for a given 

response scenario are independent of the outcome variable model, and the data in Tables 

3.3 and 3.4 confirms this.  Raking achieves bias reduction by forcing the weights to 

conform to the marginal totals while maintaining the association in the cell counts of the 

respondent sample.  In contrast, GREG_Main fits a linear regression model for the 

outcome variable by accounting for only the main effects and excluding the interaction 

term.  When the outcome model contains an interaction term, as in 

Y_Additive_Interaction, GREG_Main generally performs worse than raking.  Raking and 

GREG_Main both include only main effects in their calibration equations, but are 

associated with different distance functions or function forms.  The comparison between 

raking and GREG_Main shows that the form of distance function or function form 

matters much in some situations.   

   

3.7.2 Impact of Outcome Variable Model and Small Cell Counts on 
Empirical Relative Standard Error 

 

Figure 3.2 shows the empirical relative standard errors of the three estimators for various 

response scenarios with n=8,000.  The top panel (a) is for the outcome variable model 

Y_Main and bottom panel (b) is for the outcome variable model Y_Additive_Interaction.  
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Before the simulation, we suspect that when the outcome variable model contains only 

main effects, using poststratification may increase the variance without reducing the bias 

further than raking and GREG_Main.  This is confirmed by the simulation results shown 

in Table 3.3 and Figure 3.2(a).  Under the Y_Main model, although the empirical relative 

standard errors for the three estimators in each response scenario are generally 

comparable, poststratification has a larger empirical relative standard error than raking 

and GREG_Main in the scenarios with small cell counts.  For example, in the response 

scenario S17, the respondent sample size in one of the four cells is significantly smaller 

than those in the other three.  The empirical relative standard errors for poststratification 

are significantly larger than those for raking and GREG_Main for all the SRS sample 

sizes (n=8,000, n=2,000, and n=200).  This means the point estimate for poststratification 

is significantly less stable than those for raking and GREG_Main, which makes the 

coverage rate of the 95 percent confidence intervals significantly worse for 

poststratification (e.g., 88 percent for n=2,000 and 77 percent for n=200) .  The results 

regarding Y_Main demonstrates that in the calibration process, including the interaction 

terms correlated only to the response propensity (but not to the outcome variable) can 

increase the variance without reducing the bias.  One important implication is that when 

choosing the appropriate calibration estimator, survey practitioners should first focus on 

the outcome variable model, not the response model.  We understand that in practice, 

survey practitioners not only need to create a single set of weights for a pool of outcome 

variables, but also often lack knowledge of the distribution of the outcome variables.  

This is probably why practitioners tend to model response and use that as the guidance 



88 
 

for choosing calibration covariates.  However, clarifying the theoretical understanding is 

still critical for us to inform the selection of calibration variables in real-world surveys.   

 

Table 3.4 shows that under the Y_Additive_Interaction outcome model, the empirical 

relative standard error for poststratification is noticeably smaller than those for raking and 

GREG_Main in all the response scenarios except S17 (where the small cell count makes 

poststratification unstable).  This is true even for SRS n=200, under which we see some 

very small cell counts such as those in S04 and S16.  Compared to raking and 

GREG_Main, the poststratification estimator is a better predictor of the outcome variable, 

and therefore is more stable as long as all the cell counts are large enough.  At the same 

time, even for the response scenario S17, the empirical relative standard error for 

poststratification is no higher than those for raking and GREG_Main.  Moreover, for the 

response scenarios S01, S02, and S03, although the three estimators perform similarly 

well in terms of bias reduction, poststratification outperforms the other two estimators in 

terms of variance reduction.  All this shows that when the outcome model has very high 

explanatory power and the interaction term in the model is substantively and statistically 

significant, poststratification almost always outperforms raking and GREG_Main in 

terms of both bias reduction and variance reduction.  Even in some situations with very 

small cell counts (e.g., the response scenario S17), using poststratification (when it is the 

most appropriate estimator based on the outcome model) does not necessarily lead to 

higher variance.  In all the response scenarios including S17, the relative square root of 

MSE for poststratification is smaller than those for raking and GREG_Main. 
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Finally, although GREG_Main and raking are asymptotically equivalent when there is no 

nonresponse, Figure 3.2(b) illustrates that under Y_Additive_Interaction, raking has a 

consistently smaller empirical relative standard error than GREG_Main.  In contrast, 

Figure 3.2(a) shows that the empirical relative standard errors for raking and 

GREG_Main under Y_Main are approximately equal.  This means that when 

nonresponse exists, whether GREG_Main and raking become indistinguishable is 

affected by the underlying outcome variable model. 
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(a) Outcome Variable Model Y_Main 

 

 
(b) Outcome Variable Model Y_Additive_Interaction 

 

Figure 3.2 Empirical Relative Standard Errors for Poststratification, Raking, and GREG_Main for n=8,000 
and Various Response Scenarios 
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3.7.3 Impact of Overall and Cell Sample Sizes on Bias Ratio and the 
Coverage Rate of 95 Percent Confidence Intervals 

 

As discussed in Section 3.7.1, despite the differences between the three calibration 

estimators under the Y_Additive_Interaction model, these estimators can all achieve 

effective bias reduction through accounting for at least the main effects of the auxiliary 

variables.  In Table 3.4, the relative biases are no more than approximately 4 percent even 

for the estimators that fail to appropriately account for the interaction term in the outcome 

variable model.  Then the question is: Should survey practitioners be concerned about 

such small relative biases in raking and GREG_Main? 

 

To answer this question, we should note that the coverage rate of the 95 percent 

confidence intervals can be poor even when the relative bias is small.  In Table 3.4, for 

the SRS sample sizes n=8,000 and n=2,000, the coverage rates of the 95 percent 

confidence intervals for GREG_Main and raking are unacceptable in most of the 

response scenarios from S04 through S17.  For example, the relative biases for raking and 

GREG_Main for n=8,000 and S10 are only approximately 1.0 percent and 2.3 percent 

respectively, but the coverage rates of the 95 percent confidence intervals are as low as 

77 percent and 16 percent respectively.  

 

Moreover, the coverage rate of the 95 percent confidence intervals becomes worse as the 

SRS sample size increases from 2,000 to 8,000.  For example, in the response scenario 

S13, the coverage rates of the 95 percent confidence intervals for poststratification, 

GREG_Main, and raking are 95 percent, 86 percent, and 85 percent respectively for 
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n=2,000, but drop to 93 percent, 39 percent, and 27 percent respectively for n=8,000.  

When the SRS sample size drops to 200, we can see two opposite patterns depending on 

whether the calibration weighting involves some small subgroup counts. For 

poststratification, the coverage rates of the 95 percent confidence intervals for n=200 are 

generally worse than those for n=8,000 and n=2,000 because the estimator becomes 

unstable under n=200 due to some very small cell counts.  For raking and GREG_Main, 

however, the coverage rates of the 95 percent confidence intervals for n=200 are 

noticeably better than those for n=8,000 and n=2,000 due to the larger variances under 

n=200 (which make the confidence intervals wider). 

 

Figures 3.3 and 3.4 present the absolute values of bias ratios and the coverage rates of the 

95 percent confidence intervals of the three estimators for the various response scenarios 

under the Y_Additive_Interaction model.  The three panels (a), (b), and (c) correspond to 

n=8,000, n=2,000, and n=200, respectively.  For raking and GREG_Main, the bias ratios 

increase as the SRS sample size increases (from 200 to 2,000, and then to 8,000), and this 

generally hurt the coverage rates of the 95 percent confidence intervals.  On the other 

hand, increasing the overall sample size from 200 to 2,000 helps eliminate the small cell 

problem for poststratification to some extent.  Given that the poststratification estimator 

is unbiased, eliminating the small cells during calibration weighting makes the estimate 

more stable, so the confidence interval is more likely to be centered at the population 

truth.  This is why for the poststratification estimator, the coverage rate of the 95 percent 

confidence intervals for n=2,000 is better that for n=200.  For example, for the response 
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scenario S17, the coverage rates of the 95 percent confidence intervals for 

poststratification are 78 percent for n=200 and 89 percent for n=2,000, respectively. 

 

How can the coverage rate of the 95 percent confidence intervals be unacceptably poor 

even when the relative bias is very low?  Why may increasing sample size hurt the 

coverage rate of the 95 percent confidence intervals?  The answer lies in the asymptotic 

property of the bias ratio.  We can re-write the t-statistic into the summation of two terms 

 

p M p M
ˆ ˆ ˆ ˆE E ( ) E E ( )

-
ˆ ˆ ˆVar( ) Var( ) Var( )

s syw y yw yw yw y

yw yw yw

t t t t t t
t statistic

t t t

− − −
= = +       (3.50)  

 

The first term on the right-hand side of (3.50) is asymptotically N(0, 1) under standard 

conditions.  The second term is the standardized bias or bias ratio. As the sample size 

increases, the denominator of the second term decreases. However, if the calibration 

estimator is model-biased as in the situation of GREG_Main and raking under 

Y_Additive_Interaction, the numerator in the second term of (3.50) stays constant instead 

of decreasing with the increase of sample size.  As a result, a larger sample size makes 

the bias ratio higher, and thus leads to the t-statistic not being centered at zero.  This hurts 

the coverage rate of the 95 percent confidence intervals.  An important message to survey 

practitioners is that unless the calibration weighting process can be improved by 

incorporating more meaningful covariates, purely increasing the sample size does not 

help improve the performance of a calibration estimator that is model-biased.  When the 

sample size is large, the coverage rate of the 95 confidence intervals for a biased 
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estimator can be unacceptably poor even when the relative bias is very small.  However, 

this does not mean that we are advocating for small sample sizes in surveys.  In practice, 

a bigger sample size allows for richer calibration models (e.g., with more variables, more 

categories for categorical variables, and more interaction terms), and thus more potential 

to reduce bias in practice. 
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(a) SRS Sample Size n=8,000 (b) SRS Sample Size n=2,000 (c) SRS Sample Size n=200 

Figure 3.3 Bias Ratios for Poststratification, Raking, and GREG_Main under Y_Additive_Interaction and Various Response Scenarios 
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(a) SRS Sample Size n=8,000 (b) SRS Sample Size n=2,000 (c) SRS Sample Size n=200 

Figure 3.4 Coverage Rates of 95 Percent Confidence Intervals for Poststratification, Raking, and GREG_Main under Y_Additive_Interaction and Various Response Scenarios
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Table 3.3 Properties of Poststratification, Raking, and GREG_Main under Y_Main Outcome Variable Model 
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SRS Sample Size n =8,000 

S01. DIFF RR =0.00, CPR RR =1.00 4.28 5.6 1.1 1.1 1.1 26.2 2.7 2.7 2.7 2.2 2.2 2.2 3.9 3.9 3.9 0.95 0.95 0.95 2,018   2,006   2,008   1,968   0.99 0.99 0.99 0.99 0.99
S02. DIFF RR =0.00, CPR RR =1.00 4.28 -64746.0 5.1 5.3 5.4 48.5 4.8 4.8 4.8 3.8 3.8 3.8 10.9 11.4 11.5 0.95 0.95 0.95 903      875      590     589     0.99 1.03 0.99 1.03 1.03
S03. DIFF RR =-0.41, CPR RR =1.00 4.28 -56529.3 -8.2 -0.4 -7.9 53.7 5.9 5.7 5.9 4.7 4.5 4.7 -13.9 -0.7 -13.4 0.95 0.95 0.95 818      196      1,909   469     0.99 1.03 0.99 2.84 1.03
S04. DIFF RR =0.00, CPR RR =4.75 4.28 -74513.6 15.6 7.7 11.0 46.6 11.2 8.6 9.1 9.0 7.0 7.4 15.7 9.3 13.1 0.93 0.94 0.94 244      940      40       741     0.99 4.87 0.99 23.78 4.87
S05. DIFF RR =0.00, CPR RR =3.41 4.28 -48537.4 -11.8 -28.6 -20.9 55.1 6.9 5.7 6.0 5.5 5.1 5.0 -17.2 -50.6 -35.2 0.94 0.92 0.93 519      1,894   123     1,453   0.99 3.26 0.99 11.12 3.26
S06. DIFF RR =0.00, CPR RR =2.74 4.28 -48673.9 -26.0 -28.0 -27.0 56.7 6.1 5.3 5.5 5.3 4.8 4.9 -42.6 -52.0 -48.5 0.92 0.92 0.92 559      1,857   163     1,416   0.99 2.62 0.99 7.18 2.62
S07. DIFF RR =0.00, CPR RR =2.06 4.28 -49079.2 -29.6 -24.1 -26.8 53.6 5.3 5.0 5.1 4.9 4.5 4.6 -56.3 -48.7 -53.3 0.91 0.93 0.92 639      1,774   240     1,345   0.99 2.03 0.99 4.21 2.03
S08. DIFF RR =0.00, CPR RR =1.50 4.28 -49882.8 -21.1 -18.8 -19.9 53.5 4.5 4.3 4.4 4.0 3.8 3.9 -46.6 -42.4 -44.8 0.93 0.94 0.94 801      1,624   393     1,190   0.99 1.50 0.99 2.29 1.50
S09. DIFF RR =0.00, CPR RR =1.29 4.28 -50524.2 -5.9 -5.7 -5.8 51.2 4.1 4.1 4.1 3.3 3.3 3.3 -13.9 -13.6 -13.7 0.96 0.95 0.96 921      1,508   513     1,070   0.99 1.28 0.99 1.67 1.28
S10. DIFF RR =0.00, CPR RR =1.11 4.28 -51530.5 -3.6 -2.9 -3.3 50.2 4.1 4.1 4.1 3.3 3.3 3.3 -8.9 -7.2 -8.1 0.95 0.95 0.95 1,096   1,353   673     896     0.99 1.08 0.99 1.21 1.08
S11. DIFF RR =0.00, CPR RR =1.07 4.28 -51667.1 -6.5 -6.0 -6.3 48.4 4.0 4.0 4.0 3.2 3.2 3.2 -16.1 -14.8 -15.6 0.95 0.96 0.95 1,138   1,316   713     860     0.99 1.04 0.99 1.13 1.04
S12. DIFF RR =-0.24, CPR RR =0.90 4.28 -74290.7 0.4 -5.4 0.6 46.6 7.6 7.4 7.6 6.1 6.0 6.1 0.4 -7.5 0.7 0.95 0.95 0.95 463      128      1,114   292     0.99 0.95 0.99 2.46 0.95
S13. DIFF RR =-0.24, CPR RR =0.69 4.28 -73816.2 -15.3 -16.1 -14.6 47.0 6.7 6.7 6.7 5.3 5.4 5.4 -22.8 -24.2 -21.6 0.94 0.93 0.94 402      194      1,053   357     0.99 0.71 0.99 1.35 0.71
S14. DIFF RR =-0.24, CPR RR =0.49 4.28 -73532.9 -37.6 -39.5 -40.9 48.0 6.1 6.1 6.1 5.8 5.8 5.9 -59.7 -63.0 -65.1 0.92 0.90 0.90 301      288      936     458     0.99 0.51 0.99 0.68 0.51
S15. DIFF RR =-0.24, CPR RR =0.30 4.28 -72932.5 -16.4 -22.6 -21.8 47.8 6.6 6.3 6.3 5.4 5.3 5.3 -24.9 -36.3 -34.9 0.94 0.92 0.93 188      402      816     572     0.99 0.33 0.99 0.27 0.33
S16. DIFF RR =-0.24, CPR RR =0.15 4.28 -72729.5 -68.8 -54.5 -58.5 49.6 8.6 6.9 7.0 9.0 7.1 7.4 -81.5 -82.2 -85.8 0.87 0.87 0.86 80        496      714     660     0.99 0.15 0.99 0.06 0.15
S17. DIFF RR =-0.48, CPR RR =0.04 4.28 -43222.1 -92.3 0.8 -21.8 56.4 10.8 4.9 5.5 11.6 3.9 4.7 -89.2 1.7 -40.1 0.84 0.95 0.93 41        1,190   1,336   1,455   0.99 0.04 0.99 0.00 0.04
SRS Sample Size n =2,000

S01. DIFF RR =0.00, CPR RR =1.00 4.28 0.0 -0.9 -0.9 -0.9 58.6 6.0 6.0 6.0 4.8 4.8 4.8 -1.5 -1.5 -1.5 0.95 0.95 0.95 504      502      502     492     0.99 0.99 0.99 0.99 0.99
S02. DIFF RR =0.00, CPR RR =1.00 4.28 -64709.5 10.9 11.1 11.1 102.5 9.7 9.7 9.7 7.8 7.8 7.8 10.7 10.8 10.8 0.96 0.96 0.96 225      220      147     147     0.99 1.03 0.99 1.04 1.03
S03. DIFF RR =-0.41, CPR RR =1.00 4.28 -56528.1 -10.1 -1.5 -9.5 112.3 12.7 12.1 12.6 10.3 9.8 10.2 -7.8 -1.1 -7.3 0.95 0.96 0.95 204      49       478     117     0.99 1.04 0.99 2.93 1.04
S04. DIFF RR =0.00, CPR RR =4.75 4.28 -74531.9 9.4 12.6 11.9 102.3 26.4 18.6 20.2 20.9 14.9 16.3 9.3 6.5 7.5 0.91 0.95 0.94 62        234      10       185     0.99 5.44 0.99 33.29 5.44
S05. DIFF RR =0.00, CPR RR =3.41 4.28 -48461.3 -7.0 -20.1 -13.9 117.3 15.6 12.4 13.3 12.4 10.2 10.6 -4.2 -16.5 -10.9 0.93 0.95 0.94 130      473      31       364     0.99 3.35 0.99 11.90 3.35
S06. DIFF RR =0.00, CPR RR =2.74 4.28 -48700.2 -28.7 -26.5 -27.7 121.0 13.5 11.7 12.2 10.8 9.5 9.8 -21.3 -22.5 -22.6 0.93 0.93 0.93 140      462      40       355     0.99 2.72 0.99 7.71 2.72
S07. DIFF RR =0.00, CPR RR =2.06 4.28 -49014.6 -27.9 -22.3 -25.0 118.2 11.4 10.8 10.9 9.4 8.8 9.0 -24.3 -20.6 -22.8 0.94 0.94 0.95 160      444      60       336     0.99 2.06 0.99 4.37 2.06
S08. DIFF RR =0.00, CPR RR =1.50 4.28 -49816.3 -24.6 -21.9 -23.1 121.7 9.8 9.5 9.5 8.0 7.7 7.9 -24.9 -22.7 -23.8 0.94 0.94 0.94 201      406      99       298     0.99 1.51 0.99 2.33 1.51
S09. DIFF RR =0.00, CPR RR =1.29 4.28 -50484.2 -6.2 -6.1 -6.2 115.9 9.5 9.4 9.4 7.6 7.5 7.5 -6.7 -6.6 -6.7 0.94 0.94 0.94 230      376      128     269     0.99 1.29 0.99 1.70 1.29
S10. DIFF RR =0.00, CPR RR =1.11 4.28 -51493.1 -1.4 -0.7 -1.1 108.6 8.9 8.9 8.9 7.1 7.1 7.1 -1.7 -0.9 -1.3 0.95 0.94 0.94 274      337      169     225     0.99 1.09 0.99 1.22 1.09
S11. DIFF RR =0.00, CPR RR =1.07 4.28 -51694.3 -3.6 -2.8 -3.3 111.2 8.7 8.7 8.7 6.9 6.9 6.9 -4.0 -3.1 -3.7 0.95 0.95 0.95 284      329      178     214     0.99 1.05 0.99 1.13 1.05
S12. DIFF RR =-0.24, CPR RR =0.90 4.28 -74290.5 -1.3 -2.5 -0.7 101.3 16.8 16.2 16.8 13.3 12.8 13.2 -0.9 -1.7 -0.6 0.95 0.95 0.95 116      32       279     73       0.99 0.98 0.99 2.63 0.98
S13. DIFF RR =-0.24, CPR RR =0.69 4.28 -73782.9 -18.6 -18.6 -17.8 103.5 14.7 14.7 14.8 11.9 11.9 11.9 -12.6 -12.7 -12.0 0.94 0.94 0.94 100      48       264     90       0.99 0.72 0.99 1.41 0.72
S14. DIFF RR =-0.24, CPR RR =0.49 4.28 -73554.5 -40.6 -42.4 -43.7 104.4 13.8 13.8 13.8 11.5 11.5 11.5 -29.6 -31.0 -31.9 0.95 0.94 0.94 75        72       234     114     0.99 0.52 0.99 0.69 0.52
S15. DIFF RR =-0.24, CPR RR =0.30 4.28 -72960.3 -18.9 -23.7 -23.0 110.1 14.8 13.8 13.9 12.0 11.3 11.3 -13.8 -17.9 -17.4 0.94 0.95 0.95 47        100      204     142     0.99 0.33 0.99 0.28 0.33
S16. DIFF RR =-0.24, CPR RR =0.15 4.28 -72620.7 -62.4 -50.3 -53.8 108.9 19.2 14.7 15.2 15.8 12.3 12.8 -35.3 -34.8 -36.4 0.91 0.93 0.93 20        125      179     166     0.99 0.15 0.99 0.06 0.15
S17. DIFF RR =-0.48, CPR RR =0.04 4.28 -43249.3 -91.0 8.9 -15.1 126.5 23.9 10.6 11.7 20.1 8.6 9.4 -44.1 8.3 -12.2 0.88 0.95 0.95 10        299      333     363     0.99 0.04 0.99 0.00 0.04

Coverage Rate of 95% 
Confidence Intervals

Average Respondent Sample 
Sizes by Cell

Average Cross Product Ratios of 
Unweighted or Weighted                      

Cell Counts

Relative Square Root of 
MSE

Bias Ratio 

 

Outcome Variable Model: Y_Main

Relative Bias 
Empirical Relative                       

Standard Error 

11rn 11rn 11rn 11rn

 710yt
−× 5ˆ( ) 10ywRelBias t × 4ˆ( ) 10ywEmpRelSE t × 4ˆ( ) 10ywRelRMSE t × 2ˆ( ) 10ywBiasRatio t ×
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Table 3.3 Properties of Poststratification, Raking, and GREG_Main under Y_Main Outcome Variable Model (Continued) 
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SRS Sample Size n =200

S01. DIFF RR =0.00, CPR RR =1.00 4.28 -102.8 -1.1 -1.4 -1.4 191.9 19.6 19.6 19.6 15.6 15.6 15.6 -0.7 -0.9 -0.8 0.95 0.95 0.95 51        50       50       49       0.99 1.04 0.99 1.04 1.04
S02. DIFF RR =0.00, CPR RR =1.00 4.28 -64820.9 5.5 6.3 5.8 349.0 33.3 33.1 33.2 26.7 26.6 26.6 1.8 2.0 1.8 0.94 0.95 0.95 23        22       15       15       0.99 1.18 0.99 1.21 1.18
S03. DIFF RR =-0.41, CPR RR =1.00 4.28 -56834.2 8.9 12.2 6.0 361.8 43.3 40.5 42.2 34.8 32.9 33.9 2.2 3.5 2.1 0.90 0.93 0.93 20        5         47       12       0.99 1.21 0.99 4.23 1.21
S04. DIFF RR =0.00, CPR RR =4.75 4.28 -74070.9 -8.8 -9.7 -7.2 339.2 57.3 54.1 54.7 45.8 42.7 43.5 2.8 -1.1 1.1 0.85 0.92 0.91 6         23       2         18       0.99 2.15 0.99 5.07 2.15
S05. DIFF RR =0.00, CPR RR =3.41 4.28 -48436.5 -17.6 -34.4 -27.4 396.0 48.6 41.5 43.0 38.5 32.9 34.1 -4.0 -8.8 -7.0 0.86 0.92 0.92 13        47       4         36       0.99 3.25 0.99 12.15 3.25
S06. DIFF RR =0.00, CPR RR =2.74 4.28 -48672.5 -41.5 -37.6 -38.6 393.4 44.5 38.6 40.0 35.4 30.8 32.0 -10.5 -9.6 -9.2 0.88 0.93 0.93 14        46       4         35       0.99 3.01 0.99 10.40 3.01
S07. DIFF RR =0.00, CPR RR =2.06 4.28 -49001.5 -37.5 -33.7 -36.0 377.3 39.9 35.9 36.8 32.1 28.7 29.7 -12.7 -11.0 -12.0 0.90 0.94 0.93 16        45       6         33       0.99 2.34 0.99 6.32 2.34
S08. DIFF RR =0.00, CPR RR =1.50 4.28 -49877.0 -28.6 -26.8 -28.2 366.1 32.3 31.0 31.3 25.8 24.6 25.0 -9.0 -8.6 -9.0 0.94 0.94 0.94 20        41       10       30       0.99 1.75 0.99 3.11 1.75
S09. DIFF RR =0.00, CPR RR =1.29 4.28 -50689.5 -4.3 -7.3 -5.5 371.1 31.2 30.5 30.5 25.0 24.4 24.5 -1.7 -2.6 -2.0 0.93 0.94 0.94 23        38       13       27       0.99 1.44 0.99 2.15 1.44
S10. DIFF RR =0.00, CPR RR =1.11 4.28 -51615.6 -3.8 -2.5 -2.8 361.7 29.4 29.0 29.0 23.6 23.3 23.3 -1.6 -1.2 -1.3 0.94 0.95 0.95 28        34       17       22       0.99 1.17 0.99 1.34 1.17
S11. DIFF RR =0.00, CPR RR =1.07 4.28 -51573.7 -7.0 -9.1 -9.1 363.6 29.0 28.8 28.9 23.2 23.2 23.2 -2.2 -2.9 -2.9 0.95 0.95 0.95 29        33       18       22       0.99 1.17 0.99 1.30 1.17
S12. DIFF RR =-0.24, CPR RR =0.90 4.28 -73980.4 -1.8 -10.7 -0.2 326.4 57.0 54.7 56.6 44.9 43.1 44.7 0.1 -2.6 -1.7 0.87 0.90 0.90 12        4         28       7         0.99 1.00 0.99 2.75 1.00
S13. DIFF RR =-0.24, CPR RR =0.69 4.28 -73757.2 -30.2 -30.7 -30.3 330.4 49.8 48.4 49.3 39.7 38.8 39.3 -7.6 -7.2 -6.9 0.91 0.92 0.92 10        5         26       9         0.99 0.86 0.99 1.95 0.86
S14. DIFF RR =-0.24, CPR RR =0.49 4.28 -73372.5 -24.2 -20.7 -22.7 347.6 47.6 46.5 46.6 37.8 36.9 37.2 -6.4 -4.9 -5.1 0.92 0.93 0.93 7         7         23       12       0.99 0.62 0.99 0.96 0.62
S15. DIFF RR =-0.24, CPR RR =0.30 4.28 -72749.4 -31.7 -36.1 -35.0 326.4 47.6 43.8 44.0 38.1 35.1 35.2 -7.7 -7.9 -7.7 0.91 0.94 0.94 5         10       20       14       0.99 0.41 0.99 0.39 0.41
S16. DIFF RR =-0.24, CPR RR =0.15 4.28 -72578.8 -100.6 -67.3 -77.4 336.7 56.4 47.1 48.0 45.6 37.6 38.6 -24.1 -15.4 -17.7 0.83 0.92 0.92 3         12       18       16       0.99 0.25 0.99 0.14 0.25
S17. DIFF RR =-0.48, CPR RR =0.04 4.28 -43295.2 -119.1 -17.2 -46.6 394.9 53.0 34.7 36.8 43.5 27.5 29.7 -35.9 -5.0 -12.5 0.77 0.93 0.92 2         29       33       36       0.99 0.09 0.99 0.02 0.09

Coverage Rate of 95% 
Confidence Intervals

Average Respondent Sample 
Sizes by Cell

Average Cross Product Ratios of 
Unweighted or Weighted                      

Cell Counts

Relative Square Root of 
MSE

Bias Ratio 

 

Outcome Variable Model: Y_Main

Relative Bias 
Empirical Relative              

Standard Error 

11rn 11rn 11rn 11rn

5ˆ( ) 10ywRelBias t × 710yt −× 4ˆ( ) 10ywEmpRelSE t × 4ˆ( ) 10ywRelRMSE t × 2ˆ( ) 10ywBiasRatio t ×



99 
 

Table 3.4 Properties of Poststratification, Raking, and GREG_Main under Y_Additive_Interaction Outcome Variable Model 
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SRS Sample Size n =8,000 

S01. DIFF RR =0.00, CPR RR =1.00 6.56 6.4 0.5 2.9 2.9 39.3 1.8 4.9 4.9 1.4 4.0 4.0 2.6 5.8 5.8 0.95 0.95 0.95 2,018  2,003  2,009  1,969   0.99 0.99 0.99 0.99 0.99
S02. DIFF RR =0.00, CPR RR =1.00 6.56 -64934.7 3.9 44.5 45.8 55.1 3.1 8.9 8.5 2.5 7.9 7.6 12.8 51.3 52.8 0.94 0.91 0.92 902     878    590    587     0.99 1.02 0.99 1.02 1.02
S03. DIFF RR =-0.41, CPR RR =1.00 6.56 -61333.8 -5.1 1162.2 31.8 48.9 3.8 14.2 10.1 3.0 116.2 8.4 -13.3 812.1 16.9 0.95 0.00 1.00 816     197    1,909  469     0.99 1.02 0.99 2.82 1.02
S04. DIFF RR =0.00, CPR RR =4.75 6.56 -71372.7 8.5 2982.1 1712.3 55.2 7.3 19.7 17.0 5.8 298.2 171.2 13.2 1537.0 522.0 0.94 0.00 0.00 244     941    41      738     0.99 4.81 0.99 23.37 4.81
S05. DIFF RR =0.00, CPR RR =3.41 6.56 -42358.2 -6.8 2444.8 1314.2 64.7 4.5 13.6 10.6 3.6 244.5 131.4 -15.3 1786.9 668.7 0.94 0.00 0.00 519     1,892  123    1,456   0.99 3.28 0.99 11.17 3.28
S06. DIFF RR =0.00, CPR RR =2.74 6.56 -42899.6 -18.4 2074.0 1078.7 63.1 4.0 13.2 9.9 3.5 207.4 107.9 -46.3 1573.1 625.5 0.92 0.00 0.00 560     1,855  163    1,418   0.99 2.64 0.99 7.22 2.64
S07. DIFF RR =0.00, CPR RR =2.06 6.56 -44017.1 -18.7 1576.0 799.7 63.5 3.4 12.3 9.1 3.1 157.6 80.0 -54.5 1319.9 567.8 0.92 0.00 0.00 640     1,775  239    1,345   0.99 2.04 0.99 4.25 2.04
S08. DIFF RR =0.00, CPR RR =1.50 6.56 -46330.6 -13.5 936.0 462.2 58.7 3.0 9.6 7.9 2.6 93.6 46.2 -45.7 958.1 441.7 0.93 0.00 0.00 802     1,624  392    1,188   0.99 1.50 0.99 2.30 1.50
S09. DIFF RR =0.00, CPR RR =1.29 6.56 -48051.7 -4.7 593.7 288.3 57.3 2.7 8.5 7.3 2.2 59.4 28.8 -17.2 690.5 324.8 0.95 0.00 0.06 921     1,508  513    1,071   0.99 1.28 0.99 1.67 1.28
S10. DIFF RR =0.00, CPR RR =1.11 6.56 -50614.7 -3.4 228.9 101.6 54.8 2.7 7.8 7.3 2.2 22.9 10.7 -12.7 296.3 130.6 0.94 0.16 0.77 1,096  1,352  674    897     0.99 1.08 0.99 1.21 1.08
S11. DIFF RR =0.00, CPR RR =1.07 6.56 -51108.0 -5.0 143.7 56.6 57.4 2.6 7.6 7.0 2.2 14.6 7.4 -19.2 188.5 73.9 0.96 0.52 0.92 1,138  1,317  714    859     0.99 1.04 0.99 1.12 1.04
S12. DIFF RR =-0.24, CPR RR =0.90 6.56 -76999.7 -1.0 1013.4 -41.6 43.8 5.0 17.7 13.0 4.0 101.3 11.0 -1.8 567.7 -21.2 0.95 0.00 1.00 464     128    1,113  292     0.99 0.96 0.99 2.48 0.96
S13. DIFF RR =-0.24, CPR RR =0.69 6.56 -75908.1 -10.8 334.8 -394.3 45.0 4.4 14.8 11.5 3.6 33.6 39.4 -24.9 221.3 -243.3 0.93 0.39 0.27 401     194    1,053  357     0.99 0.71 0.99 1.35 0.71
S14. DIFF RR =-0.24, CPR RR =0.49 6.56 -74650.8 -26.6 -457.6 -770.9 48.0 4.1 13.0 10.8 3.9 45.8 77.1 -64.9 -355.2 -594.7 0.90 0.06 0.00 301     288    937    458     0.99 0.51 0.99 0.68 0.51
S15. DIFF RR =-0.24, CPR RR =0.30 6.56 -73004.1 -10.6 -1445.9 -1247.2 49.8 4.2 12.4 10.1 3.5 144.6 124.7 -24.6 -1115.4 -931.1 0.94 0.00 0.00 188     403    817    570     0.99 0.33 0.99 0.27 0.33
S16. DIFF RR =-0.24, CPR RR =0.15 6.56 -71838.2 -47.0 -2817.3 -2036.1 55.5 5.8 14.5 12.1 6.1 281.7 203.6 -85.1 -1990.6 -1056.1 0.86 0.00 0.00 81       497    714    660     0.99 0.15 0.99 0.06 0.15
S17. DIFF RR =-0.48, CPR RR =0.04 6.56 -40220.0 -59.3 -4058.7 -3089.0 66.2 7.0 7.7 9.7 7.4 405.9 308.9 -88.0 -5346.8 -1567.3 0.85 0.00 0.00 40       1,191  1,335  1,457   0.99 0.04 0.99 0.00 0.04
SRS Sample Size n =2,000

S01. DIFF RR =0.00, CPR RR =1.00 6.56 -36.5 -1.1 -7.6 -7.6 85.1 3.9 10.5 10.4 3.1 8.3 8.3 -2.6 -7.1 -7.1 0.95 0.96 0.96 504     503    502    491     0.99 0.98 0.99 0.98 0.98
S02. DIFF RR =0.00, CPR RR =1.00 6.56 -64879.4 6.1 51.9 54.1 114.9 6.7 19.0 18.0 5.4 15.7 15.0 9.2 27.5 28.6 0.95 0.95 0.96 226     219    148    147     0.99 1.04 0.99 1.04 1.04
S03. DIFF RR =-0.41, CPR RR =1.00 6.56 -61350.0 -2.1 1173.1 42.8 110.3 8.6 31.9 23.3 6.9 117.3 19.0 -2.5 374.6 8.3 0.94 0.03 1.00 205     49      477    117     0.99 1.04 0.99 2.95 1.04
S04. DIFF RR =0.00, CPR RR =4.75 6.56 -71308.3 14.0 3014.4 1759.1 121.7 16.1 43.4 38.0 12.7 301.4 175.9 13.7 733.3 242.6 0.91 0.00 0.15 61       235    10      185     0.99 5.40 0.99 32.81 5.40
S05. DIFF RR =0.00, CPR RR =3.41 6.56 -42333.9 -5.2 2451.4 1324.8 138.0 9.6 30.8 24.4 7.7 245.1 132.5 -4.9 826.7 307.0 0.95 0.00 0.01 130     473    31      364     0.99 3.39 0.99 12.16 3.39
S06. DIFF RR =0.00, CPR RR =2.74 6.56 -42936.4 -15.2 2059.4 1071.8 139.6 9.1 29.9 22.7 7.2 205.9 107.2 -17.3 717.9 283.9 0.92 0.00 0.06 139     464    41      354     0.99 2.66 0.99 7.49 2.66
S07. DIFF RR =0.00, CPR RR =2.06 6.56 -43992.0 -18.7 1560.0 789.6 134.7 7.2 26.8 19.9 5.9 156.0 79.0 -24.6 599.0 256.1 0.95 0.00 0.14 160     444    60      336     0.99 2.04 0.99 4.32 2.04
S08. DIFF RR =0.00, CPR RR =1.50 6.56 -46301.0 -11.7 938.1 463.6 134.7 6.6 21.6 17.5 5.3 93.8 46.4 -18.3 439.2 201.9 0.94 0.01 0.48 201     406    98      297     0.99 1.51 0.99 2.33 1.51
S09. DIFF RR =0.00, CPR RR =1.29 6.56 -48077.9 -3.0 599.7 294.6 131.3 5.8 18.4 15.9 4.6 60.0 29.8 -5.0 318.4 151.2 0.96 0.09 0.71 230     376    128    268     0.99 1.29 0.99 1.70 1.29
S10. DIFF RR =0.00, CPR RR =1.11 6.56 -50583.2 -4.4 235.2 105.6 128.3 6.0 17.1 15.9 4.7 25.0 15.6 -7.6 138.5 61.5 0.94 0.72 0.93 274     338    168    225     0.99 1.09 0.99 1.23 1.09
S11. DIFF RR =0.00, CPR RR =1.07 6.56 -51081.1 -3.2 151.0 65.5 117.1 5.7 16.0 14.9 4.5 18.2 13.2 -5.5 90.5 39.0 0.95 0.87 0.96 285     328    179    215     0.99 1.05 0.99 1.14 1.05
S12. DIFF RR =-0.24, CPR RR =0.90 6.56 -76925.1 -7.6 1018.6 -46.0 92.2 11.1 40.0 28.8 8.8 101.9 23.2 -6.4 259.0 -13.7 0.94 0.26 1.00 116     32      280    73       0.99 0.98 0.99 2.67 0.98
S13. DIFF RR =-0.24, CPR RR =0.69 6.56 -75919.3 -9.3 320.4 -405.8 98.9 9.4 31.8 24.7 7.6 36.8 41.9 -9.7 94.4 -117.2 0.95 0.86 0.85 101     49      264    89       0.99 0.71 0.99 1.37 0.71
S14. DIFF RR =-0.24, CPR RR =0.49 6.56 -74698.1 -22.9 -453.0 -765.6 104.8 9.2 28.4 23.7 7.5 46.6 76.6 -25.5 -162.8 -271.4 0.94 0.63 0.21 75       72      234    114     0.99 0.52 0.99 0.69 0.52
S15. DIFF RR =-0.24, CPR RR =0.30 6.56 -72982.5 -11.1 -1436.1 -1236.8 109.6 9.4 28.1 23.2 7.5 143.6 123.7 -12.2 -507.8 -422.4 0.94 0.00 0.00 47       101    204    143     0.99 0.33 0.99 0.28 0.33
S16. DIFF RR =-0.24, CPR RR =0.15 6.56 -71851.7 -46.7 -2821.4 -2041.0 111.4 12.4 31.9 26.1 10.6 282.1 204.1 -40.5 -916.7 -482.0 0.92 0.00 0.00 20       124    179    165     0.99 0.15 0.99 0.06 0.15
S17. DIFF RR =-0.48, CPR RR =0.04 6.56 -40277.1 -60.2 -4058.9 -3103.3 143.4 15.3 16.3 21.3 13.2 405.9 310.3 -44.9 -2504.9 -721.5 0.89 0.00 0.00 10       298    334    363     0.99 0.04 0.99 0.00 0.04

Average Respondent Sample 
Sizes by Cell

Average Cross Product Ratios of 
Unweighted or Weighted                      

Cell Counts 

Coverage Rate of 95% 
Confidence Intervals

Relative Bias 
Empirical Relative                       

Standard Error 
Relative Square Root of 

MSE
Bias Ratio 

11rn 11rn 11rn 11rn

 710yt
−× 5ˆ( ) 10ywRelBias t × 4ˆ( ) 10ywEmpRelSE t × 4ˆ( ) 10ywRelRMSE t × 2ˆ( ) 10ywBiasRatio t ×
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Table 3.4 Properties of Poststratification, Raking, and GREG_Main under Y_Additive_Interaction Outcome Variable Model (Continued) 
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SRS Sample Size n =200 

S01. DIFF RR =0.00, CPR RR =1.00 6.56 -13.4 5.9 6.1 6.3 281.4 13.3 35.0 34.8 10.6 27.9 27.8 4.7 1.7 1.8 0.93 0.95 0.95 50       50      50      49       0.99 1.03 0.99 1.03 1.03
S02. DIFF RR =0.00, CPR RR =1.00 6.56 -64875.6 4.7 59.2 56.3 361.4 21.2 63.9 59.4 17.0 50.7 47.0 2.3 9.4 9.0 0.95 0.95 0.97 22       22      15      15       0.99 1.17 0.99 1.20 1.17
S03. DIFF RR =-0.41, CPR RR =1.00 6.56 -61223.1 5.3 1148.4 42.3 344.1 28.5 94.5 71.5 22.4 125.9 57.4 2.1 111.4 -3.2 0.90 0.81 1.00 20       5        48      12       0.99 1.21 0.99 4.23 1.21
S04. DIFF RR =0.00, CPR RR =4.75 6.56 -71024.8 10.1 1476.0 713.2 373.4 38.4 89.6 74.1 30.6 155.8 88.1 7.0 112.4 45.0 0.84 0.89 1.00 6        23      2        18       0.99 2.16 0.99 5.04 2.16
S05. DIFF RR =0.00, CPR RR =3.41 6.56 -41934.6 -9.0 2191.6 1179.2 464.2 30.6 78.3 62.3 24.2 219.7 119.8 -1.4 234.3 88.0 0.86 0.35 1.00 13       47      4        37       0.99 3.36 0.99 12.27 3.36
S06. DIFF RR =0.00, CPR RR =2.74 6.56 -42853.4 -16.1 1935.2 1014.8 440.7 28.6 83.1 63.2 22.8 194.4 104.3 -5.8 212.4 81.6 0.89 0.45 0.99 14       46      4        36       0.99 2.91 0.99 9.68 2.91
S07. DIFF RR =0.00, CPR RR =2.06 6.56 -44064.6 -13.4 1584.5 833.6 440.5 25.4 83.3 62.8 20.3 161.0 89.2 -4.7 189.7 78.5 0.91 0.52 0.99 16       44      6        34       0.99 2.46 0.99 6.72 2.46
S08. DIFF RR =0.00, CPR RR =1.50 6.56 -46327.7 -15.5 935.2 462.0 424.5 22.1 71.3 57.5 17.6 98.5 59.4 -7.0 131.6 57.4 0.92 0.75 0.98 20       41      10      30       0.99 1.70 0.99 3.03 1.70
S09. DIFF RR =0.00, CPR RR =1.29 6.56 -48007.3 5.2 590.2 283.3 422.2 20.4 63.7 54.6 16.2 70.0 49.5 2.7 92.1 40.9 0.93 0.86 0.97 23       38      13      27       0.99 1.40 0.99 1.98 1.40
S10. DIFF RR =0.00, CPR RR =1.11 6.56 -50734.8 -1.2 252.9 123.3 409.6 19.2 56.6 51.3 15.3 48.9 42.0 0.0 43.0 20.2 0.93 0.94 0.97 27       33      17      23       0.99 1.20 0.99 1.39 1.20
S11. DIFF RR =0.00, CPR RR =1.07 6.56 -50924.1 9.7 171.3 81.8 404.5 19.1 55.0 51.1 15.3 45.5 41.2 5.1 30.1 14.1 0.94 0.94 0.96 28       33      18      22       0.99 1.15 0.99 1.27 1.15
S12. DIFF RR =-0.24, CPR RR =0.90 6.56 -76696.3 2.7 729.0 -197.3 303.5 35.8 104.2 81.9 28.2 106.5 67.2 0.6 56.4 -19.2 0.88 0.95 0.99 11       4        28      7         0.99 1.03 0.99 2.84 1.03
S13. DIFF RR =-0.24, CPR RR =0.69 6.56 -75889.2 -7.1 280.6 -429.4 321.9 33.6 103.7 82.2 26.8 86.0 74.2 -3.1 18.6 -43.8 0.89 0.95 0.95 10       5        26      9         0.99 0.83 0.99 1.90 0.83
S14. DIFF RR =-0.24, CPR RR =0.49 6.56 -74643.7 -29.9 -491.7 -779.8 326.6 31.5 99.8 81.3 25.2 90.9 93.8 -11.4 -58.5 -86.6 0.91 0.89 0.89 7        7        23      12       0.99 0.64 0.99 0.98 0.64
S15. DIFF RR =-0.24, CPR RR =0.30 6.56 -72937.3 -7.8 -1428.3 -1249.4 353.7 32.6 89.9 74.6 25.9 147.9 128.0 -3.7 -158.6 -130.6 0.90 0.66 0.80 5        10      21      14       0.99 0.38 0.99 0.36 0.38
S16. DIFF RR =-0.24, CPR RR =0.15 6.56 -71873.2 -46.3 -2235.1 -1642.0 356.8 36.7 72.9 65.6 29.3 223.9 165.0 -17.8 -229.6 -140.0 0.86 0.35 0.82 3        12      18      16       0.99 0.26 0.99 0.15 0.26
S17. DIFF RR =-0.48, CPR RR =0.04 6.56 -40296.6 -64.3 -3437.8 -2476.1 436.3 34.0 34.6 38.5 27.5 343.8 247.6 -29.4 -531.6 -220.0 0.78 0.00 0.32 2        30      33      36       0.99 0.09 0.99 0.02 0.09

Average Respondent Sample 
Sizes by Cell

Average Cross Product Ratios of 
Unweighted or Weighted                      

Cell Counts 

Coverage Rate of 95% 
Confidence Intervals

Relative Bias 
Empirical Relative                       

Standard Error 
Relative Square Root of 

MSE
Bias Ratio 

11rn 11rn 11rn 11rn

5ˆ( ) 10ywRelBias t × 710yt
−× 4ˆ( ) 10ywEmpRelSE t × 4ˆ( ) 10ywRelRMSE t × 2ˆ( ) 10ywBiasRatio t ×
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3.8 Sensitivity Analysis 

 

In Section 3.7, the parameters for the models Y_Main and Y_Additive_Interaction are 

chosen in a way to maximize the possibility of detecting the impact of the outcome model.  

The R-squared values for the outcome variable models shown in Table 3.1 are 

exceptionally high.  In the real world, however, it is often unrealistic to expect the 

outcome variable models to have such strong predictive power.   

 

In this section, we use the Y_Additive_Interaction scenario to conduct some sensitivity 

analysis by lowering the overall predictive power of the outcome variable model while 

keeping the response propensity models unchanged.  Operationally, we achieve this by 

increasing the variance of the random error terms in outcome variable model.  That is, we 

set ~ (0,250000)Yijk Nε for the Y_Additive_Interaction model in (3.13) while keeping the 

values for Yµ , Yα , Yβ , and Yγ  the same as specified in Section 3.4.  As a result, the 

expected cell means for the outcome variable used in the sensitivity analysis remain the 

same as those shown in the Y_Additive_Interaction row of Table 3.1.  The R-squared 

value for the overall model drops to 0.6348 and the p-value for the interaction term 

remains less than 0.0001 (meaning that the interaction term is still highly statistically 

significantly in an overall model with less explanatory power).  The response scenarios 

for the sensitivity analysis are the same as those shown in Table 3.2.  Using these model 

specifications, the simulation steps described in Section 3.5 are repeated. Then the 

properties of the three calibration estimators over repeated sampling are evaluated using 
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the criteria described in Section 3.6.  The detailed results from the sensitivity analysis are 

presented in Table 3.5.   

 

Figures 3.5 through 3.8 compare the results in Section 3.7 (shown in Table 3.4 for the 

Y_Additive_Interaction model) and those from the sensitivity analysis for the SRS 

sample size n=8,000.  The four figures show the impact of the overall predictive power of 

the outcome variable model (measured by R-squared value) on the absolute value of 

relative bias, empirical relative standard error, absolute value of the bias ratio, and 

coverage rate of the 95 percent confidence intervals, respectively.  For simplicity, we 

sometimes refer to the Y_Additive_Interaction model in Section 3.7 (with R2= 0.9979) as 

the “high R-squared setup” and the Y_Additive_Interaction model for the sensitivity 

analysis (with R2=0.6348) as the “medium R-squared setup”.  In Figures 3.5 through 3.8, 

the results for the medium R-squared setup are shown on the top panel and the results for 

the high R-squared setup are shown on the bottom panel.  In general, these figures show 

that as the predictive power of the outcome model Y_Additive_Interaction decreases, the 

differences between poststratification and the other two estimators become smaller.  We 

see several patterns from Table 3.4, Table 3.5, and Figures 3.5 through 3.8. 

 

First, when the R-squared value for the Y_Additive_Interaction model decreases from 

0.9979 to 0.6348, the impact on the empirical relative biases for raking and GREG_Main 

are generally negligible; any noticeable changes can be attributed to simulation variation 

(especially for the SRS sample size n=200).  In contrast, the empirical relative biases for 

poststratification increase approximately 17 times for all the response scenarios.  This is 
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because the variance of the random error term in the outcome variable model increases 

from 900 for the high R-squared setup to 250,000.  The square root of the ratio between 

250,000 and 900 is approximately 17.  In general, the empirical relative bias for 

poststratification moves farther away from zero as the R-squared value for the 

Y_Additive_Interaction model decreases.  We know that the poststratification estimator 

is model-unbiased, so any change in the empirical relative bias is actually a reflection of 

increased empirical variance.  

 

Second, the empirical relative standard errors increase for all the three calibration 

estimators as the predictive power of the outcome variable model decreases, yet the 

biggest increases occur in poststratification.  The differences in the empirical relative 

standard errors between the three estimators diminish almost completely from the high R-

squared setup to the medium R-squared setup.  Moreover, in some situations with small 

cell counts (e.g., the response scenarios S16 and S17), the empirical relative standard 

errors for poststratification are larger than those for raking and GREG_Main in the 

medium R-squared setup, which are not seen in the high R-squared setup.  Recall that in 

the R-squared setup, poststratification almost always outperforms raking and 

GREG_Main in terms of both bias reduction and variance reduction.  In the medium R-

squared setup, the effect of further bias reduction may not outweigh the drawback of 

increased variance for poststratification when the calibration process involves some small 

cells.  For example, in the response scenario S17, the relative square root of MSE for 

poststratification is larger than those for raking and GREG_Main.  
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Third, the bias ratio for poststratification remains unchanged for each response scenario 

as the R-squared value for the outcome variable model changes.  This, again, is because 

in theory, poststratification is model-unbiased, so the observed empirical relative bias for 

poststratification actually reflects the magnitude of the empirical relative standard error.  

For raking and GREG_Main, the bias ratio decreases as the R-squared value for the 

outcome variable model decreases because the empirical relative standard error increases 

to a greater extent than the increase in empirical relative bias.  

 

Finally, the coverage rate of the 95 percent confidence intervals is independent of the R-

squared value of the outcome variable model for poststratification, but improves for 

raking and GREG_Main as the predictive power of the Y_Additive_Interaction model 

becomes weaker.  The latter is largely due to increased standard errors of the estimators, 

which make the bias ratios smaller and confidence intervals wider. 

 

The sensitivity analysis shows that the results in Section 3.7 may be highly sensitive to 

the model specifications for the outcome variable, or more specifically, the predictive 

power of the outcome variable model.  Although the differences between 

poststratification, raking, and GREG_Main under the Y_Additive_Interaction model in 

Section 3.7 are very revealing, those conclusions are based on the assumptions that the 

outcome variable models have almost perfect predictive power (R-squared value being 

approximately 0.99).  When the R-squared value for the Y_Additive_Interaction model 

drops to a reasonably high level (approximately 0.65), the poststratification estimator still 

outperforms raking and GREG_Main in terms of bias and MSE (except in the situations 
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with small cell counts), although the differences between poststratification and the other 

two estimators decrease significantly.  In the real world, it is not rare to have an outcome 

model with the R-squared value being under 0.50.  This is probably why survey 

practitioners often use raking or GREG_Main in place of poststratification, and the 

differences between poststratification and the other two estimators are not expected to be 

detrimental.  Moreover, raking and GREG_Main may have smaller MSEs than 

poststratification when small cells are involved in the poststratification weighting.           

 

 
Figure 3.5  Impact of Predictive Power of Outcome Variable Model on Absolute Value of Relative Bias for 

Y_Additive_Interaction Model and n=8,000 
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Figure 3.6 Impact of Predictive Power of Outcome Variable Model on Empirical Relative Standard Error 

for Y_Additive_Interaction Model and n=8,000 

 

 
Figure 3.7 Impact of Predictive Power of Outcome Variable Model on Absolute Value of Bias Ratio for 

Y_Additive_Interaction Model and n=8,000 
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Figure 3.8 Impact of Predictive Power of Outcome Variable Model on Coverage Rate of 95 Percent 

Confidence Intervals for Y_Additive_Interaction Model and n=8,000 
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Table 3.5 Properties of Poststratification, Raking, and GREG_Main under the Y_Additive_Interaction Model for Sensitivity Analysis 
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SRS Sample Size n =8,000 

S01. DIFF RR =0.00, CPR RR =1.00 6.57 14.0 8.0 10.4 10.4 48.7 30.2 30.3 30.3 24.0 24.2 24.2 2.6 3.4 3.4 0.95 0.96 0.96 2,018  2,003  2,009  1,969   0.99 0.99 0.99 0.99 0.99
S02. DIFF RR =0.00, CPR RR =1.00 6.57 -64913.2 65.1 107.5 108.9 58.4 52.2 52.8 52.8 41.4 42.5 42.4 12.8 20.9 21.1 0.94 0.93 0.93 902     878    590    587     0.99 1.02 0.99 1.02 1.02
S03. DIFF RR =-0.41, CPR RR =1.00 6.57 -61312.0 -84.8 1162.5 -44.8 52.3 62.5 61.6 62.1 50.1 117.9 49.4 -13.3 182.3 -6.7 0.95 0.56 0.96 816     197    1,909  469     0.99 1.02 0.99 2.82 1.02
S04. DIFF RR =0.00, CPR RR =4.75 6.57 -71344.2 141.6 3046.7 1806.0 57.2 120.7 94.7 99.2 96.5 304.7 183.2 13.2 325.2 178.0 0.94 0.11 0.59 244     941    41      738     0.99 4.81 0.99 23.37 4.81
S05. DIFF RR =0.00, CPR RR =3.41 6.57 -42445.9 -113.5 2142.6 1102.1 68.6 74.6 64.2 66.5 60.6 214.3 112.5 -15.3 342.0 166.0 0.94 0.08 0.62 519     1,892  123    1,456   0.99 3.28 0.99 11.17 3.28
S06. DIFF RR =0.00, CPR RR =2.74 6.57 -42981.3 -306.7 1772.8 783.7 65.9 66.8 59.3 61.1 58.4 177.3 84.4 -46.3 296.7 125.5 0.92 0.16 0.77 560     1,855  163    1,418   0.99 2.64 0.99 7.22 2.64
S07. DIFF RR =0.00, CPR RR =2.06 6.57 -44070.4 -311.8 1339.1 535.4 66.9 57.3 54.5 54.8 51.7 134.1 63.4 -54.5 243.0 94.9 0.92 0.31 0.86 640     1,775  239    1,345   0.99 2.04 0.99 4.25 2.04
S08. DIFF RR =0.00, CPR RR =1.50 6.57 -46394.2 -223.9 752.5 265.2 62.2 49.3 49.1 49.2 43.7 77.8 44.6 -45.7 153.5 53.8 0.93 0.66 0.91 802     1,624  392    1,188   0.99 1.50 0.99 2.30 1.50
S09. DIFF RR =0.00, CPR RR =1.29 6.57 -48076.7 -79.0 517.9 213.3 60.3 44.2 44.7 44.6 35.8 57.7 39.9 -17.2 111.6 45.8 0.95 0.81 0.95 921     1,508  513    1,071   0.99 1.28 0.99 1.67 1.28
S10. DIFF RR =0.00, CPR RR =1.11 6.57 -50622.4 -55.9 183.9 52.5 58.2 44.9 45.4 45.4 36.6 39.2 36.8 -12.7 41.2 11.8 0.94 0.93 0.95 1,096  1,352  674    897     0.99 1.08 0.99 1.21 1.08
S11. DIFF RR =0.00, CPR RR =1.07 6.57 -51133.6 -83.9 71.5 -19.6 60.9 43.6 44.0 43.9 35.8 36.1 35.6 -19.2 16.1 -4.4 0.96 0.96 0.96 1,138  1,317  714    859     0.99 1.04 0.99 1.12 1.04
S12. DIFF RR =-0.24, CPR RR =0.90 6.57 -76975.9 -16.5 938.8 -53.7 46.4 83.9 82.3 84.3 66.9 103.4 67.5 -1.8 115.4 -6.0 0.95 0.78 0.96 464     128    1,113  292     0.99 0.96 0.99 2.48 0.96
S13. DIFF RR =-0.24, CPR RR =0.69 6.57 -75900.0 -180.2 156.7 -555.7 47.2 73.0 73.4 73.9 59.8 59.3 75.3 -24.9 21.2 -74.4 0.93 0.94 0.88 401     194    1,053  357     0.99 0.71 0.99 1.35 0.71
S14. DIFF RR =-0.24, CPR RR =0.49 6.57 -74742.4 -442.6 -890.4 -1215.1 49.7 68.3 69.1 68.8 64.9 94.9 123.2 -64.9 -128.9 -175.4 0.90 0.75 0.61 301     288    937    458     0.99 0.51 0.99 0.68 0.51
S15. DIFF RR =-0.24, CPR RR =0.30 6.57 -73035.1 -176.3 -1669.5 -1463.0 51.6 70.7 67.9 67.6 58.2 167.0 146.6 -24.6 -242.1 -211.5 0.94 0.32 0.44 188     403    817    570     0.99 0.33 0.99 0.27 0.33
S16. DIFF RR =-0.24, CPR RR =0.15 6.57 -71912.1 -783.1 -3358.0 -2632.3 57.8 95.9 75.9 78.2 101.5 335.8 263.2 -85.1 -460.0 -346.4 0.86 0.00 0.08 81       497    714    660     0.99 0.15 0.99 0.06 0.15
S17. DIFF RR =-0.48, CPR RR =0.04 6.57 -40225.6 -987.8 -4029.6 -3291.9 69.8 117.2 52.6 59.0 123.9 403.0 329.2 -88.0 -761.7 -549.5 0.85 0.00 0.00 40       1,191  1,335  1,457   0.99 0.04 0.99 0.00 0.04
SRS Sample Size n =2,000

S01. DIFF RR =0.00, CPR RR =1.00 6.57 -52.9 -17.5 -23.9 -23.9 108.5 65.4 65.8 65.8 52.1 52.4 52.4 -2.6 -3.6 -3.5 0.95 0.95 0.95 504     503    502    491     0.99 0.98 0.99 0.98 0.98
S02. DIFF RR =0.00, CPR RR =1.00 6.57 -64845.5 101.5 150.2 152.4 121.8 112.0 112.8 112.7 89.7 91.1 91.0 9.2 13.4 13.6 0.95 0.95 0.95 226     219    148    147     0.99 1.04 0.99 1.04 1.04
S03. DIFF RR =-0.41, CPR RR =1.00 6.57 -61321.9 -35.5 1226.8 13.1 118.7 143.3 139.6 143.9 114.8 152.8 114.7 -2.5 88.4 1.3 0.94 0.87 0.95 205     49      477    117     0.99 1.04 0.99 2.95 1.04
S04. DIFF RR =0.00, CPR RR =4.75 6.57 -71255.5 233.3 3172.3 1944.1 124.6 267.6 205.1 215.7 210.8 328.5 238.4 13.7 157.1 92.3 0.91 0.64 0.86 61       235    10      185     0.99 5.40 0.99 32.81 5.40
S05. DIFF RR =0.00, CPR RR =3.41 6.57 -42416.9 -86.6 2160.9 1128.3 148.4 160.4 135.4 140.4 128.6 222.2 145.1 -4.9 158.5 79.0 0.95 0.65 0.89 130     473    31      364     0.99 3.39 0.99 12.16 3.39
S06. DIFF RR =0.00, CPR RR =2.74 6.57 -43002.7 -253.5 1760.6 801.7 146.8 151.1 135.6 139.8 120.0 189.3 129.1 -17.3 135.8 60.1 0.92 0.72 0.90 139     464    41      354     0.99 2.66 0.99 7.49 2.66
S07. DIFF RR =0.00, CPR RR =2.06 6.57 -44043.7 -311.4 1335.3 531.8 142.8 119.6 115.9 115.2 98.8 149.0 102.7 -24.6 110.9 43.5 0.95 0.81 0.95 160     444    60      336     0.99 2.04 0.99 4.32 2.04
S08. DIFF RR =0.00, CPR RR =1.50 6.57 -46353.8 -195.5 781.4 293.1 143.7 109.7 110.4 110.0 88.1 109.4 90.7 -18.3 73.2 27.4 0.94 0.87 0.93 201     406    98      297     0.99 1.51 0.99 2.33 1.51
S09. DIFF RR =0.00, CPR RR =1.29 6.57 -48092.7 -50.3 553.1 247.6 138.0 97.3 96.6 96.4 77.2 90.5 79.9 -5.0 54.7 24.4 0.96 0.93 0.96 230     376    128    268     0.99 1.29 0.99 1.70 1.29
S10. DIFF RR =0.00, CPR RR =1.11 6.57 -50601.6 -73.6 174.6 41.3 139.4 99.1 101.0 100.6 78.1 80.8 79.3 -7.6 17.9 4.2 0.94 0.92 0.94 274     338    168    225     0.99 1.09 0.99 1.23 1.09
S11. DIFF RR =0.00, CPR RR =1.07 6.57 -51087.4 -52.5 107.2 18.2 127.3 94.3 95.1 95.0 74.9 75.8 75.3 -5.5 11.1 1.9 0.95 0.95 0.95 285     328    179    215     0.99 1.05 0.99 1.14 1.05
S12. DIFF RR =-0.24, CPR RR =0.90 6.57 -76913.1 -127.2 860.4 -164.5 98.0 183.9 177.6 183.8 145.7 158.7 145.6 -6.4 48.8 -7.9 0.94 0.93 0.94 116     32      280    73       0.99 0.98 0.99 2.67 0.98
S13. DIFF RR =-0.24, CPR RR =0.69 6.57 -75889.9 -154.5 174.5 -548.1 104.9 157.3 157.7 160.1 126.0 126.9 135.2 -9.7 10.8 -33.5 0.95 0.95 0.94 101     49      264    89       0.99 0.71 0.99 1.37 0.71
S14. DIFF RR =-0.24, CPR RR =0.49 6.57 -74779.3 -381.1 -826.9 -1152.5 111.7 153.6 153.0 152.9 125.3 139.1 155.6 -25.5 -54.9 -76.2 0.94 0.91 0.87 75       72      234    114     0.99 0.52 0.99 0.69 0.52
S15. DIFF RR =-0.24, CPR RR =0.30 6.57 -73016.3 -185.4 -1662.5 -1455.8 113.4 156.1 152.4 151.4 124.9 187.2 172.6 -12.2 -111.1 -97.1 0.94 0.80 0.83 47       101    204    143     0.99 0.33 0.99 0.28 0.33
S16. DIFF RR =-0.24, CPR RR =0.15 6.57 -71935.2 -777.0 -3434.6 -2687.6 116.9 207.0 164.3 167.9 176.9 345.3 276.5 -40.5 -215.9 -163.0 0.92 0.43 0.64 20       124    179    165     0.99 0.15 0.99 0.06 0.15
S17. DIFF RR =-0.48, CPR RR =0.04 6.57 -40290.2 -1001.8 -4031.8 -3309.8 151.3 255.2 111.9 124.5 220.4 403.2 331.0 -44.9 -350.1 -257.7 0.89 0.06 0.30 10       298    334    363     0.99 0.04 0.99 0.00 0.04

Relative Bias Empirical Relative Standard Error Relative Square Root of MSE Bias Ratio 
Average Respondent Sample 

Sizes by Cell

Average Cross Product Ratios of 
Unweighted or Weighted Cell 

Counts 

Coverage Rate of 95% 
Confidence Intervals

11rn 11rn 11rn 11rn

5ˆ( ) 10ywRelBias t × 710yt
−× 4ˆ( ) 10ywEmpRelSE t × 4ˆ( ) 10ywRelRMSE t × 2ˆ( ) 10ywBiasRatio t ×
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Table 3.5 Properties of Poststratification, Raking, and GREG_Main under the Y_Additive_Interaction Model for Sensitivity Analysis (Continued) 
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SRS Sample Size n =200 

S01. DIFF RR =0.00, CPR RR =1.00 6.57 78.9 97.7 94.8 94.8 347.5 222.0 223.7 223.7 175.9 177.3 177.3 4.7 4.4 4.4 0.93 0.93 0.93 50       50      50      49       0.99 1.03 0.99 1.03 1.03
S02. DIFF RR =0.00, CPR RR =1.00 6.57 -64867.7 78.9 112.6 109.5 384.2 353.6 354.2 353.5 283.6 285.0 284.5 2.3 3.2 3.2 0.95 0.95 0.95 22       22      15      15       0.99 1.17 0.99 1.20 1.17
S03. DIFF RR =-0.41, CPR RR =1.00 6.57 -61156.2 88.7 1321.7 135.7 379.9 474.5 448.3 464.3 372.9 371.9 366.1 2.1 29.4 4.8 0.90 0.94 0.93 20       5        48      12       0.99 1.21 0.99 4.23 1.21
S04. DIFF RR =0.00, CPR RR =4.75 6.57 -70950.0 168.8 1682.9 885.0 392.5 639.1 609.9 616.3 508.6 504.7 494.9 7.0 33.5 21.5 0.84 0.91 0.92 6        23      2        18       0.99 2.16 0.99 5.04 2.16
S05. DIFF RR =0.00, CPR RR =3.41 6.57 -42044.0 -150.6 1955.5 990.2 485.3 509.7 442.9 453.3 402.9 387.0 370.5 -1.4 48.4 27.6 0.86 0.90 0.92 13       47      4        37       0.99 3.36 0.99 12.27 3.36
S06. DIFF RR =0.00, CPR RR =2.74 6.57 -42929.7 -268.2 1753.3 809.7 465.6 476.7 416.0 428.5 378.9 361.3 348.6 -5.8 44.0 22.6 0.89 0.92 0.93 14       46      4        36       0.99 2.91 0.99 9.68 2.91
S07. DIFF RR =0.00, CPR RR =2.06 6.57 -44090.7 -222.8 1408.9 647.6 461.7 423.5 392.6 395.5 338.6 332.5 319.5 -4.7 37.7 18.8 0.91 0.92 0.94 16       44      6        34       0.99 2.46 0.99 6.72 2.46
S08. DIFF RR =0.00, CPR RR =1.50 6.57 -46395.2 -257.2 723.4 234.7 457.4 367.8 360.8 361.2 293.0 288.6 286.5 -7.0 21.5 7.8 0.92 0.92 0.93 20       41      10      30       0.99 1.70 0.99 3.03 1.70
S09. DIFF RR =0.00, CPR RR =1.29 6.57 -47975.4 86.9 677.7 370.3 442.5 340.0 340.8 339.5 270.3 273.4 270.1 2.7 20.7 11.5 0.93 0.93 0.93 23       38      13      27       0.99 1.40 0.99 1.98 1.40
S10. DIFF RR =0.00, CPR RR =1.11 6.57 -50730.3 -19.6 223.8 98.5 444.6 319.2 322.0 321.6 254.8 258.0 257.7 0.0 7.6 3.7 0.93 0.94 0.94 27       33      17      23       0.99 1.20 0.99 1.39 1.20
S11. DIFF RR =0.00, CPR RR =1.07 6.57 -50851.5 161.1 324.3 235.2 433.0 318.6 321.0 320.7 254.6 257.0 256.1 5.1 10.0 7.2 0.94 0.95 0.95 28       33      18      22       0.99 1.15 0.99 1.27 1.15
S12. DIFF RR =-0.24, CPR RR =0.90 6.57 -76648.1 45.0 765.6 -166.2 324.5 596.7 574.4 590.2 468.8 453.3 463.6 0.6 14.1 -1.0 0.88 0.92 0.91 11       4        28      7         0.99 1.03 0.99 2.84 1.03
S13. DIFF RR =-0.24, CPR RR =0.69 6.57 -75865.7 -117.4 205.2 -525.4 344.3 558.4 551.0 558.3 445.9 438.3 446.5 -3.1 3.9 -9.2 0.89 0.92 0.91 10       5        26      9         0.99 0.83 0.99 1.90 0.83
S14. DIFF RR =-0.24, CPR RR =0.49 6.57 -74721.9 -496.9 -1019.3 -1303.7 343.9 523.7 520.1 518.5 420.0 421.5 425.3 -11.4 -22.6 -28.0 0.91 0.92 0.92 7        7        23      12       0.99 0.64 0.99 0.98 0.64
S15. DIFF RR =-0.24, CPR RR =0.30 6.57 -72944.8 -129.5 -1486.2 -1302.0 366.5 543.0 507.9 509.3 431.9 424.5 420.6 -3.7 -32.1 -28.6 0.90 0.92 0.92 5        10      21      14       0.99 0.38 0.99 0.36 0.38
S16. DIFF RR =-0.24, CPR RR =0.15 6.57 -71996.3 -770.4 -2876.9 -2303.7 369.9 610.8 510.8 522.1 488.2 465.7 454.9 -17.8 -60.6 -50.1 0.86 0.89 0.90 3        12      18      16       0.99 0.26 0.99 0.15 0.26
S17. DIFF RR =-0.48, CPR RR =0.04 6.57 -40384.3 -1070.7 -3603.0 -2883.7 465.6 566.0 356.4 381.0 458.5 416.0 381.4 -29.4 -101.3 -80.8 0.78 0.85 0.87 2        30      33      36       0.99 0.09 0.99 0.02 0.09

Average Respondent Sample 
Sizes by Cell

Average Cross Product Ratios of 
Unweighted or Weighted Cell 

Counts 

Coverage Rate of 95% 
Confidence Intervals

Relative Bias Empirical Relative Standard Error Relative Square Root of MSE Bias Ratio 

11rn 11rn 11rn 11rn

5ˆ( ) 10ywRelBias t × 710yt
−× 4ˆ( ) 10ywEmpRelSE t × 4ˆ( ) 10ywRelRMSE t × 2ˆ( ) 10ywBiasRatio t ×
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3.9 Summary of Findings 

 

This chapter compares the empirical properties of three widely used calibration 

estimators – poststratification, raking, and GREG_Main.  The simulation results show 

that in the presence of nonresponse, the conclusions in Deville and Särndal (1992) that all 

the calibration estimators should perform approximately the same in large samples do not 

necessarily hold.  The speed at which the calibration estimators that use the same set of 

covariates but different adjustment functions become equivalent also depends on the 

underlying outcome variable model.  The differences between poststratification, raking, 

and GREG_Main can be either substantive or negligible depending on the outcome 

variable model and response model.  We demonstrate the importance of accounting for 

the outcome variable model and response model when choosing the appropriate 

calibration estimator. The outcome variable model should be the driving factor.  If a 

significant and strong interaction effect is present in the outcome variable model and the 

overall predictive power of the model is very strong (with R-squared value being close to 

1), then poststratification outperforms the other two calibration estimators except in the 

special situation that the response model does not include a multiplicative interaction 

term, in which case raking performs almost equally well as poststratification.  Raking 

preserves the multiplicative interaction effect that is internal in the data before calibration 

while GREG_Main does not, and this is why raking can be less biased than GREG_Main 

when the response model contains a strong multiplicative interaction term.   
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One interesting finding is that for a large sample, a small relative bias associated with an 

inappropriate calibration estimator can still lead to very poor coverage rate of the 95 

percent confidence intervals.  This is because the bias remains constant while the 

standard error decreases as the sample size increases, so a larger sample size tends to 

make the bias ratio higher.  

 

The sensitivity analysis suggests that the differences between poststratification, raking, 

and GREG_Main are highly sensitive to the model specifications for the outcome 

variable.  As the predictive power of the outcome variable model decreases, the 

advantage of poststratification over raking and GREG_Main becomes less substantial.  

 

We understand that in practice, response propensity model often tends to drive the 

selection of auxiliary variables to be used in calibration.  Quite often, survey practitioners 

either lack the knowledge of the outcome variable(s) or need to create a single set of 

weights for analyzing a range of outcome variables.  Despite the practical limitations, a 

better understanding of the impacts of the outcome variable model and response model 

can provide a good framework for us to examine the variable and function form selection 

issues in calibration weighting.  For example, using paradata for nonresponse adjustment 

has been a popular topic in the recent survey literature (Kreuter et al. 2010, Kreuter 

2013).  It is important to evaluate to what extent the paradata (for example, the number of 

call attempts to reach a target respondent) may be correlated with the outcome variable(s) 

(for example, employment status, tobacco use, mental health status).  Including in the 

calibration model any paradata that correlates only to the response propensities but not to 

the outcome variable(s) does not help reduce potential nonresponse bias.  
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Chapter 4.  A Proposed Distance Measure Related to the Potential Bias of 
Raking and GREG_Main 

 

Chapter 3 compares the empirical properties of the poststratification, raking, and 

GREG_Main estimators over repeated sampling.  In the real-world survey practice, only 

one sample can be fielded and all the estimates are based on that particular sample, so it 

is important to understand the properties of the calibration estimators conditioning on 

sample configuration.  In this chapter, we propose a distance measure that is related to the 

magnitude of bias for raking and GREG_Main when the outcome variable model 

contains an interaction term (referred to as Y_Additive_Interaction in Chapter 3).  For a 

particular sample, survey practitioners can use this distance measure as a diagnostic tool 

to gauge the potential impact of failing to incorporate a significant interaction term in the 

calibration process.  Section 4.1 presents the general theory of the proposed distance 

measure.  Section 4.2 discusses the application of the proposed distance measure in the 

SRS 2×2 table setting.  Sections 4.3 and 4.4 show the simulation results over repeated 

sampling and conditioning on samples grouped by the proposed distance measure, 

respectively, followed by a summary of conclusions and limitations in Section 4.5. 

 

4.1 General Theory 

 

The distance measure we propose applies to raking and GREG_Main.  It helps gauge the 

potential impact of omitting a significant interaction term between two auxiliary 

covariates in the calibration process.  Assume that the two main effect variables have I 

and J categories, respectively.  Based on (3.49), the potential bias of the raking estimator 
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is related to how much the estimated cell counts using the raked weights differ from the 

population counts (i.e., ˆ w
ij ijN N− ).  A statistic that summarizes the differences is the 

distance measure DIST, defined as 

( ) ( ) ( ) ( )
T T1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )DIST m m− −= − − = − −N N V N N N p p V p p p    (4.1) 

where 

( )T

11 1( 1), 21, 2( 1), ( 1)( 1), , , , , , ,J J ij I JN N N N N N− − − −=N K K K K  is the vector of population 

benchmark totals for the cells defined by the two auxiliary variables, assuming that the 

cross-classification between the two variables are available; 

( )T

11 1( 1), 21, 2( 1), ( 1)( 1)
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,w w w w w w

J J ij I JN N N N N N− − − −=N K K K K  is the vector of estimated 

population totals from raking or GREG_Main for the cells defined by the two auxiliary 

variables; 

( )T

11 1( 1), 21, 2( 1), ( 1)( 1), , , , , , ,J J ij I Jp p p p p p− − − −=p K K K K , 

in which 
1 1

I J

ij ij ij
i j

p N N
= =

= ∑∑ ; 

( )T

11 1( 1), 21, 2( 1), ( 1)( 1)ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,J J ij I Jp p p p p p− − − −=p K K K K , 

in which  
1 1 1 1

ˆ ˆ ˆˆ
I J I J

w w w
ij ij ij ij ij

i j i j
p N N N N

= = = =

= ≈∑∑ ∑∑ because 
1 1 1 1

ˆ
I J I J

w
ij ij

i j i j
N N

= = = =

≈∑∑ ∑∑ for raking 

(when the process converges) and GREG_Main; and  

ˆ( ) mV N  and ˆ( ) mV p  are the true variance-covariance matrices for N̂  and p̂ , in which 

m is the number of sampled primary sampling units in a complex sample design and the 

sample size in an SRS design.  That is, ˆ ˆVar( ) ( ) m=N V N  and ˆ ˆVar( ) ( ) m=p V p .  
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Note that there are only ( 1) ( 1)I J− × −  elements, but not I J×  elements, in ˆ −N N  and 

ˆ −p p  because 
1

ˆ( ) 0
J

w
ij ij

j
N N

=

− ≈∑  and 
1

ˆ( ) 0
I

w
ij ij

i
N N

=

−∑ B  after the raking process (when the 

process converges) or the GREG_Main calibration process.  DIST has a similar form as a 

generalized Wald statistic (Rao and Scott 1981).  Whether the distance measure has the 

same value regardless of which set of ( 1) ( 1)I J− × −  categories are used to construct the 

statistic needs to be further examined through some analytical work. 

 

Our first goal is to obtain the probability distribution of the proposed distance measure in 

(4.1) under the null hypothesis oH : ˆ( )E =N N or ˆ( )E =p p , so we can use the statistical 

properties of the known probability distribution to make inference.    

 

Based on Krewski and Rao (1981), we have ( )ˆ ~ ,m Np p V  asymptotically (i.e., as N  

approaches infinity) under the null hypothesis.  Their result does apply to multistage 

sample design with potentially varying probabilities at each stage but with the assumption 

that the primary sampling units are selected with replacement.  Now define a vector 

( )ˆm= −z p p .  Under the null hypothesis ˆ( )E =p p , we have ( )ˆ~ , ( )ANz 0 V p .  The 

distance measure DIST can be expressed as a quadratic form in z  and 1ˆ( )−V p .  Also, 

since ˆ( )V p  is positive definite and symmetric, it can be factored as Tˆ( ) =V p LL , where 

L is a nonsingular, lower triangular matrix.  Assuming that ˆ( )V p  is invertible, the 

distance measure in (4.1) can be re-written as 
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( )
( )

T 1

1T T

TT 1 1

ˆ( )DIST −

−

− −

=

=

=

z V p z

z LL z

z L L z

    (4.2) 

 

We further define ( )1 1 ˆm− −= = −w L z L p p .  Then, (4.2) can be re-written as 

1 1
T 2

1 1

I J

ij
i j

DIST W
− −

= =

= = ∑∑w w     (4.3) 

 

Under the null hypothesis ˆ( )E =p p , we have 

( ) ( )( )1 ˆE E m −= − =w L p p 0     (4.4) 

and 

( ) ( )( )
( )( )
( )( )

( ) ( )

( )

1

T1 1

T1 1

T1 1

T1 T 1

ˆVar Var

ˆVar

ˆVar

ˆ

m

m

m

m
m

−

− −

− −

− −

− −

= −

= −

=

=

=

=

w L p p

L p p L

L p L

V p
L L

L LL L

I

   (4.5) 

 

Under the null hypothesis ˆ( ) 0E − =p p , we know ( ) ( )ˆ ~ ,m AN= −z p p 0 V .  Therefore, 

( )~ ,ANw 0 I  and 2
ijW  in (4.3) are independent Chi-square(1) random variables.  The 
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probability distribution of the distance measure DIST  is the same as that of 
1 1

2

1 1

I J

ij
i j

W
− −

= =
∑∑ , 

which is central 2χ  with ( 1) ( 1)I J− × −  degrees of freedom. 

 

Our second question is: if ˆ( )E − =p p Δ  for some non-zero Δ  (i.e., the null hypothesis 

should be rejected), then what is the distribution of DIST  defined in (4.1)?  At a given 

relative bias level, the distance measure tends to increase with the sample size.  So the 

question is how large the distance measure should be to make it practically important.  

This involves the power theory about the distance measure. 

 

Suppose that ( ) ( )ˆ ~ ,m AN−p p Δ V .  Define ( )ˆm= −z p p , Tˆ( ) =V p LL , and 

1−=w L z  as in the earlier proof, where L is a nonsingular, lower triangular matrix.  When 

ˆ( )E − =p p Δ  for some non-zero Δ , the distance measure still has the forms shown in 

(4.2) and (4.3), where the variance-covariance matrix for w  is shown in (4.5) and the 

mean of w  is  

( ) ( ) ( ) ( )1 1 1 1ˆE E E mE m− − − −= = = − =w L z L z L p p L Δ   (4.6) 

 

That is, ( )1~ ,  AN m−w L Δ I .  According to Searle (1971, Section 2.4h), DIST :  

noncentral 2χ  with ( 1) ( 1)I J− × −  degrees of freedom when ˆ( )E − =p p Δ  for some non-

zero Δ .  A noncentral 2χ  distribution involves the noncentrality parameter δ  (which is a 

scaler) as shown in (4.7). 
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( )( ) ( )

( ) ( )
( )

T

T
1 1

TT 1 1

T -1

T -1

1
2
1
2
1
2
1 ˆ( )
2
1 ˆVar( )
2

E E

m m

m

m

δ

− −

− −

=

=

=

=

=

w w

L Δ L Δ

Δ L L Δ

Δ V p Δ

Δ p Δ

     (4.7) 

 

In practice, we can specify a level of relative bias (for an estimator of  cell population 

count) that is important to detect, say b=0.10 (i.e., 10 percent relative bias).  For 

simplicity, we assume that the same b value is specified for all the cells ij.  That is, 

ˆ( ) /ij ij ij ij ijb E p p p p= − = ∆  and ˆ( )E b= − =Δ p p p .  Then, we can evaluate how much 

power the DIST test has at the specified relative bias level b.   

 

We can calculate the noncentrality parameter for a given b using 

T 1

2
T 1

2
T 1

1 ˆ( ) ( ) ( )
2

ˆ( )
2

ˆVar( )
2

m b b

mb

mb

δ −

−

−

=

=

=

p V p p

p V p p

p p p

    (4.8) 

 

Then, 2
( 1)( 1),Power Pr( ) Pr( )I JDIST c cδχ − −= > = > , where c is a critical point for a central 

2χ  with ( 1) ( 1)I J− × −  degrees of freedom and 2
( 1)( 1),I J δχ − −  is a noncentral 2χ  with 

( 1) ( 1)I J− × −  degrees of freedom and the noncentral parameter in (4.7).  In practice, we 
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can evaluate the power for a range of specified relative bias levels, such as 0.2 0.2b− ≤ ≤ , 

using the corresponding δ ’s calculated through (4.8).  Note that p  has to be obtained 

from external sources.  We do not know the true variance-covariance matrices ˆVar( )N  

and ˆVar( )p , and thus need to estimate the values from an achieved sample.  For a 

consistent variance estimator, the estimated variance approaches the true variance as the 

sample size approaches infinity.  At the same time, survey practitioners may face small 

sample size problems in the real world sometimes, which make the estimated variance 

unstable.  In our simulation study, we include some small sample size scenarios (with 

SRS n=200) to help us understand whether the proposed distance measure can really be 

useful in practice. 

 

4.2 Application in the 2×2 Table Setting 

 

In the 2×2 table setting, conditions (4.9) through (4.12) are satisfied as the result of 

raking or GREG_Main calibration. 

11 12 11 12
ˆ ˆw wN N N N+ = +        (4.9) 

11 21 11 21
ˆ ˆw wN N N N+ = +      (4.10) 

12 22 12 22
ˆ ˆw wN N N N+ = +      (4.11) 

21 22 21 22
ˆ ˆw wN N N N+ = +      (4.12) 

 

That is,  

11 11 12 12 21 21 22 22
ˆ ˆ ˆ ˆ( ) ( )w w w wN N N N N N N N− = − − = − − = −     (4.13) 
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Given that ˆ ˆ( ) ( )w w
ij ij ijVar N N Var N− = , we have 

11 12 21 22
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )w w w wVar N Var N Var N Var N= = =     (4.14) 

 

As the result of (4.13) and (4.14), 
( )

2ˆ( )
ˆVar

w
ij ij

w
ij

N N
DIST

N

−
=  is the same regarless of which 

category is deleted in a 2×2 table.  

 

As discussed in Chapter 3, the outcome variable model may be Y_Main or 

Y_Additive_Interaction depending on whether the model contains an interaction term.  

To facilitate the discussions in this chapter, we use ijk Y Yi Yj Yij YijkY µ α β γ ε= + + + +  as the 

general form for both Y_Main and Y_Additive_Interaction.  That is, 0Yijγ =  for Y_Main 

and 0Yijγ ≠  for Y_Additive_Interaction. 

 

A poststratification, raking, or GREG_Main calibration estimator for a total associated 

with a 2×2 table can be expressed as 

 
2 2

1 1 1

ˆ
ijn

yw ij ijk
i j k

t w y
= = =

= ∑∑ ∑                                                     (4.15) 

where ijw is the calibrated weight for a unit k in cell ij .  

 

Under the general form for the outcome variable model, the model expectation of the 

calibration estimator ŷwt  can be expressed as 
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M

2 2

M
1 1 1

2 2

M
1 1 1

2 2

1 1 1

2 2 2 2 2 2 2

1 1 1 1 1 1 1

ˆ   E ( )

E ( )

E ( )

( )

ij

ij

ij

yw

n

ij ijk
i j k

n

ij Y Yi Yj Yij Yijk
i j k

n

ij Y Yi Yj Yij
i j k

Y ij ij Yi ij ij Yj ij ij Yij ij ij
i j i j j i i j

t

w y

w

w

w n w n w n w n

µ α β γ ε

µ α β γ

µ α β γ

= = =

= = =

= = =

= = = = = = =

=

= + + + +

= + + +

= + + +

∑∑ ∑

∑∑ ∑

∑∑ ∑

∑ ∑ ∑ ∑ ∑ ∑∑
2

1

2 2 2 2

1 1 1 1

ˆ ˆ ˆ ˆw w w w
Y Yi i Yj j Yij ij

i j i j
N N N Nµ α β γ

=

⋅ ⋅
= = = =

= + + +

∑

∑ ∑ ∑∑

             (4.16) 

 

Then the model bias of the estimator ŷwt  is 

M

2 2 2 2

1 1 1 1

ˆ   E ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

yw y

w w w w
Y Yi i i Yj j j Yij ij ij

i j i j

t t

N N N N N N N Nµ α β γ⋅ ⋅ ⋅ ⋅
= = = =

−

= − + − + − + −∑ ∑ ∑∑
             (4.17) 

 

During the calibration process, raking (when converged), poststratification, and 

GREG_Main can all force the estimated row totals and column totals to be equal or 

approximately equal to the marginal control totals.  That is, the terms ˆ( )wN N− , 

ˆ( )w
i iN N⋅ ⋅− , and ˆ( )w

j jN N⋅ ⋅−  are expected to be zero regardless of which of the three 

calibration estimators is used, making the first three terms in (4.17) zero.  However, 

whether the fourth term in (4.17) is zero may depend on the outcome variable model, 

response model, and calibration process.  If the outcome model is Y_Main, then 0Yijγ =  

and the fourth term is zero regardless of the value for ˆ( )w
ij ijN N− . If the outcome variable 
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model is Y_Additive_Interaction (with 0Yijγ ≠ ), then poststratification forces ˆ( )w
ij ijN N−  

to be zero and therefore is model-unbiased, but GREG_Main and raking are model-biased 

except in some special situations.  One special situation is 11 12 21 21 0Y Y Y Yγ γ γ γ− − + = , 

which makes 
2 2

1 1

ˆ( ) 0w
Yij ij ij

i j
N Nγ

= =

− =∑∑  due to the condition in (4.13). 

 

Although we normally do not know the values for Yµ , Yiα , Yjβ , and Yijγ  in the outcome 

variable model, we can compute ˆ( )w
ij ijN N−  as long as the classification and 

corresponding cell totals for the population are available.  The larger the magnitude of 

ˆ( )w
ij ijN N−  is, the more severe the potential bias is for raking and GREG_Main.  In a 

national survey of general population, for example, the marginal control totals iN ⋅  and 

jN ⋅  can probably be obtained from either the Census or the Census population 

projections or estimates.  The cross-classification control totals Nij may be estimated from 

some large samples such as American Community Survey and Current Population Survey.  

These estimated totals are often treated as known population truth during the calibration 

process (Dever 2008).  However, quite often, raking or GREG_Main is used in practice 

mainly because only the marginal control totals, but not the cross-classification cell totals, 

are available.  In this situation, the proposed distance measure is still useful for 

conducitng sensitivity analysis.  For example, survey practitioners can create a set of 

hypothetical cross-classification cell totals based on various assumptions about the 

interaction effect between the auxiliary variables, and then use the hypothetical cross-

clasification cell totals to compute the distance measures.  The range of the estimated 
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distance measure can help us gauge the potential impact of the interaction effect tin the 

control totals.  

 

Given the conditions in (4.13) and (4.14), we can use the information from any of the 

four cells to compute the distance measure.  The estimated distance measure in the SRS 

2×2 table setting is 

( ) ( ) ( ) ( )
2 2 2 2

11 11 12 12 21 21 22 22

11 12 21 22

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ
ˆ ˆ ˆ ˆvar var var var

w w w w

s w w w w

N N N N N N N NDIST
N N N N

− − − −
= = = =       (4.18) 

where ( )ˆvar w
ijN  is the estimated value of ( )ˆVar w

ijN  from the sample, i=1, 2; j=1, 2. 

 

The distance measure in (4.18) follows a Chi-square distribution with one degree of 

freedom.  On the one hand, the term in (4.17) that is related to the potential bias of the 

calibration estimator, ˆ( )w
ij ijN N− , is not a function of sample size for any particular 

sample (since ˆ w
ijN  is fixed for a given sample).  On the other hand, the estimated distance 

measure in (4.18) is a function of the sample size because its denominator is the 

estimated variance of the estimated population size for cell ij.  As contradictory as this 

may seem, we choose to define the distance measure in the general form shown in (4.1) 

for two main reasons.  First, although we can obtain the distribution of ˆ( )w
ij ijN N−  across 

all the iterations in a simulation study, only one sample can be obtained in practice.  We 

have no knowledge of the distribution of ˆ( )w
ij ijN N− , and thus no decision rule for 

determining whether a value is “too large” or not.  The distance measure we propose, 

however, follows a known probability distribution (i.e., Chi-square distribution) under the 
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null hypothesis, so it allows us to make statistical inference from a single sample.  

Second, as discussed in Chapter 3, bias ratio may be a more important indicator of the 

performance of a calibration estimator than absolute or relative bias.  The former can be 

more revealing than the latter because a large bias ratio often means an unacceptable 

coverage rate of the 95 percent confidence intervals even when the bias is small.  The 

bias ratio is a function of the sample size, with the order of the square root of the order 

for the proposed distance measure.  That is, we suspect that the proposed distance 

measure has the advantage of being highly correlated to the bias ratio under 

Y_Additive_Interaction. 

 

One way to use the proposed distance measure is to compare the estimated distance 

measure from a given sample to the critical values of the Chi-square distribution.  For 

example, 2Prob(0.004 (1) 3.84) 0.95χ< < =  and 2Prob(0.000 (1) 6.63) 0.99χ< < = , so 

the upper tail critical values for Chi-square distribution with one degree of freedom is 

3.84 at 5 percent significance level and 6.63 at 1 percent significance level.  If the 

estimated distance measure from a SRS 2×2 table, ˆ
sDIST , is 5.0, then we consider it “too 

large” at 5 percent significant level, but not “too large” at 1 percent significance level.  

Knowing whether the estimated distance measure is “too large” can help us determine 

whether the raking estimator or GREG_Main estimator is potentially biased.  On the one 

hand, it is important to note that “ ˆ
sDIST  not being too large” is a sufficient yet not a 

unnecessary condition for the model-unbiasedness of raking and GREG_Main estimators.  

As (4.17) shows, in the Y_Main scenario, 0Yijγ = , so raking and GREG_Main are 
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unbiased regardless of the value of ˆ( )w
ij ijN N−  or the estimated distance measure.  The 

bias (or more accurately, bias ratio) of a raking estimator or GREG_Main estimator is 

associated with the distance measure only under Y_Additive_Interaction outcome model.  

On the other hand, a real-world survey contains a number of key outcome measures and it 

is rare that none of the outcome measures is governed by a Y_Additive_Interaction 

model.  If raking or GREG_Main is used for the calibration weighting of a given sample, 

then a large value of the estimated distance measure is probably a warning sign of 

potential bias for some variables due to omitting a significant interaction term in the 

calibration process. 

 

4.3 Simulation Results over Repeated Sampling 

 

This section demonstrates the properties of the proposed distance measure and its 

relationships with bias and bias ratio over repeated sampling.  All the simulation work is 

based on the Y_Additive_Interaction model with R2=0.9979 (shown in Table 3.1) 

because it is under this outcome model that raking and GREG_Main may be severely 

biased.  We do not cover the Y_Additive_Main scenario because when the outcome 

variable model does not include an interaction term, all the three calibration estimators 

are expected to be unbiased despite the magnitude of the proposed distance measure.  

Section 4.3.1 examines the empirical distributions of the proposed distance measures for 

raking and GREG_Main under full response, in which the null hypothesis ˆ( )E =N N or 

ˆ( )E =p p  is true.  Section 4.3.2 evaluates the relationships between the strength of the 

multiplicative interaction term in the response model, the proposed distance measure, and 
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the empirical bias and bias ratio of the calibration estimator over repeated sampling (i.e., 

averaging across the 1,000 simulated samples for each response scenario).  The 

simulation scenarios and procedure are very similar to what is described in Chapter 3, 

with all the 17 response scenarios included.  Two alternative SRS sample sizes, n=8,000 

and n=200, are used to evaluate whether a small sample size may affect the usefulness of 

the proposed distance measure.  In addition to the evaluation parameters described in 

Chapter 3, the distance measures for raking and GREG_Main are also estimated from 

each simulated sample using (4.18). 

 

4.3.1 Distribution of Estimated Distance Measure under Full Response 

 

When there is full response, raking and GREG_Main are both unbiased regardless of the 

outcome variable model.  If the theory presented in Section 4.1 holds, then we expect that 

in the response scenario S01 (which is full response, as described in Chapter 3), the 

estimated distance measure should follow Chi-squared distribution with one degree of 

freedom.  Figure 4.1 shows the histograms of the estimated distance measures for raking 

and GREG_Main over the 1,000 simulated samples.  Panels (a) and (b) are for two SRS 

sample sizes, n=8,000 and n=200, respectively.  The distributions of the estimated 

distance measures seem to align well with the 2 (1)χ  distribution curve shown in red.   
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(a) SRS Sample Size n=8,000 

 

(b) SRS Sample Size n=200 

Figure 4.1 Histograms of Estimated Distance Measures for Raking and GREG_Main under Full Response 
against Chi-square Distribution with One Degree of Freedom 
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Table 4.1 shows some key statistics of the estimated distance measures for raking and 

GREG_Main under full response, for SRS sample sizes n=8,000 and n=200, respectively.  

First, we examine the empirical mean 
1

ˆ ˆ( ) (1 / ) S
p ss

E DIST S DIST
=

= ∑ and the empirical 

variance ( )2

1
ˆ ˆ ˆ( ) (1/ ) ( )S

s ps
EmpVar DIST S DIST E DIST

=
= −∑ .  The empirical means of the 

estimated distance measures range from approximately 0.98 to approximately 1.02.  The 

empirical variances of the estimated distance measures range from approximately 1.84 to 

approximately 1.93.  These values are reasonably close to the mean and the variance of 

the 2 (1)χ  probability distribution (i.e., the mean should be one and the variance should 

be two).  Second, for n=8,000, the 95th percentiles of the estimated distance measures are 

very close to 3.84 (approximately 3.88 for raking and approximately 3.84 for 

GREG_Main) and the 99th percentiles are reasonably close to 6.63 (approximately 6.22 

for both raking and GREG_Main).  For n=200, the numbers are slightly more off 

(approximately 3.80 and 5.72 for raking and approximately 3.96 and 6.12 for 

GREG_Main) probably due to a smaller sample size.  Across the simulation iterations, 

the proportions of samples with the estimated distance measure larger than 3.84 are close 

to 5 percent (ranging from approximately 5.0 percent to approximately 5.5 percent).  The 

estimated proportions of samples with the estimated distance measure larger than 6.63 are 

not far from 1 percent (all approximately 0.7 percent).  Finally, we use a one-sample 

Kolmogorov-Smirnov test to compare the distribution of the estimated distance measure 

to the 2 (1)χ  probability distribution.  The p-values are all larger than 0.05, so the 

distributions of these estimated distance measures are not significantly different (at the 5 
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percent significance level) from the 2 (1)χ  distribution.  The p-values for n=8,000 

(approximately 0.16 for raking and approximately 0.12 for GREG_Main) are lower than 

those for n=200 (approximately 0.33 for both raking and GREG_Main) mainly because 

they are associated with a larger sample. 

 

Table 4.1 Statistics of Estimated Raking and GREG_Main Distance Measures under Full Response 
 SRS Sample Size 

n=8,000 
SRS Sample Size 

n=200 

Raking GREG_Main Raking GREG_Main 
Empirical Mean ˆ( )pE DIST  1.02 1.02 0.98 1.00 

Empirical Variance ˆ( )EmpVar DIST  1.84 1.84 1.86 1.93 

95th percentile of ˆDIST  3.88 3.84 3.80 3.96 

99th percentile of ˆDIST  6.22 6.22 5.72 6.12 

Percent of samples with ˆ 3.84sDIST >  5.1% 5.0% 5.0% 5.5% 

Percent of samples with ˆ 6.63sDIST >  0.7% 0.8% 0.7% 0.7% 
p-value for One-Sample Kolmogorov-Smirnov 
Test of ˆDIST Distribution against 2 (1)χ  0.16 0.12 0.33 0.33 

 

4.3.2 Interaction Effect in Response Model, Distance Measure, and Bias 

 

For each SRS sample size and response scenario combination, we calculate the average 

relative bias, average bias ratio, coverage rate of the 95 percent confidence intervals, and 

some statistics about the estimated distance measures over the 1,000 simulated samples.  

The results are shown in Table 4.2 and Figures 4.2 through 4.4, from which we can draw 

four conclusions. 

 

The first conclusion is that the magnitude of distance measure is positively correlated 

with the strength of the interaction term in the response model.  This relationship is 
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clearly manifested in the scenarios with SRS sample size n=8,000.  The expectations of 

the estimated distance measures are close to one for raking (which is the mean of the 

2 (1)χ  distribution) when 1RRCPR =  (in the response scenarios S01, S02, and S03).  As 

RRCPR  moves away from one, the estimated distance measures for raking generally 

become larger.  For example, the expectation of the estimated distance measures is 12.7 

when 1.29RRCPR =  (in the response scenario S09), but increases to 28.0 when 

4.75RRCPR =  (in the response scenario S04) and to 243.9 when 0.04RRCPR =  (in the 

response scenario S17). The GREG_Main distance measure follows a similar pattern 

except that it is driven by not only the multiplicative interaction effect, but also the 

additive interaction effect, in the response model.  The correlation between the distance 

measure and the strength of the interaction term in the response model can also be 

observed for the response scenarios under the SRS sample size n=200, although the range 

of the estimated distance measures are much smaller for n=200 than that for n=8,000.  

The smaller range is due to two reasons.  First, the numerator of the distance measure 

does not depend on the sample size, but the denominator (which is the variance of an 

estimator) increases as the sample size becomes smaller.  Second, the variance in the 

denominator of the distance measure is estimated using a linearization method 

implemented in the R Survey package.  This method tends to overestimate the variance 

for raking as the multiplicative interaction effect in the response model becomes stronger 

(more details are provided in Chapter 5), and the impact of such overestimation seems 

more noticeable for n=200 than for n=8,000. 
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The second conclusion is that the proportion of samples with extreme distance measure 

also depends on the strength of the interaction effect in the response model.  For S01 and 

S02, only approximately four to eight percent of the simulated samples have estimated 

distance measures larger than 3.84 and approximately one to two percent of the simulated 

samples have estimated distance measures larger than 6.63.  These percentages largely 

reflect the magnitude of Type I error.  As the interaction effect in the response model 

becomes stronger, the proportion of samples with extreme distance measure increases.  

For raking with SRS sample size n=8,000, when 1.07RRCPR =  (in the response scenario 

S11), only approximately 11 percent of the samples have ˆ 3.84
srakingDIST > and 

approximately 3 percent of the samples have ˆ 6.63
srakingDIST > .  This means that for the 

majority of the simulated samples, the estimated distance measures fall within the range 

of the 95 percent or 99 percent confidence interval of the 2 (1)χ  distribution.  For these 

majority of samples, the raking estimator does a reasonably good job in terms of reducing 

bias and producing accurate confidence interval estimate.  When RRCPR  increases to as 

large as 1.50 or decreases to as small as 0.49, the expectation of the estimated distance 

measure for SRS sample size n=8,000 becomes much larger than 3.84 or 6.63 (being 22.9 

for 1.50RRCPR =  and 37.5 for 0.49RRCPR = ).  This indicates noticeable bias, large bias 

ratio, and unacceptable coverage rate of the 95 percent confidence intervals for raking 

and GREG_Main.  

 

The third conclusion is that there is positive correlation between the magnitude of bias as 

well as bias ratio and the distance measure.  To demonstrate this more clearly, we take 
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the absolute values of the relative biases and bias ratios for raking and GREG_Main, and 

then plot them against the corresponding distance measures for all the response scenarios 

except S17.  The magnitude of bias and distance measure for S17 is much larger than that 

for the other response scenarios, so we exclude such extreme data points to improve the 

representational value of the graphs.  Figure 4.2 shows the relationship between the 

absolute value of relative bias and the distance measure.  Figure 4.3 shows the 

relationship between the absolute value of bias ratio and the distance measure.  For both 

figures, panel (a) is for the SRS sample size n=8,000 and panel (b) is for the SRS sample 

size n=200.  The data patterns for the two sample sizes are similar.  Although the absolute 

value of the relative bias and the absolute value of the bias ratio both increase as the 

distance measure becomes larger, the distance measure is a more precise predictor of the 

latter (shown in Figure 4.3) than the former (shown in Figure 4.2).   As discussed in 

Section 4.2, the bias ratio and the distance measure are both functions involving both 

absolute bias and sample size.  This is why the data points in Figure 4.3 reveal a clearer 

pattern than those in Figure 4.2.  We suspect that if we plot the square of the bias ratio 

against the distance measure, we are likely to see a positive linear relationship between 

the two. 

 

The fourth conclusion is that, as shown in Figure 4.3, in each response scenario with 

CPRRR being away from one, the distance measure for the SRS sample size n=200 is 

substantially smaller than that for n=8,000.  This is due to the larger variance in the 

denominator of the distance measure for a smaller sample size.  The same pattern holds 

for the bias ratio. That is, although the magnitude of the bias does not depend on the 
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sample size, the distance measure and bias ratio both decrease as the sample size 

decreases, resulting in a better coverage rate of the confidence intervals under the given 

bias level.  As shown in Figure 4.4 (a), the coverage rates of the 95 percent confidence 

intervals are unacceptable for most response scenarios under n=8,000.  In contrast, the 

coverage rates of the 95 percent confidence intervals for n=200 are close to 95 percent 

except for a few response scenarios with CPRRR being far away from one.  Instead of 

predicting the bias level, the proposed distance measure is actually a good indicator of the 

bias ratio and the quality of the coverage rate of the 95 percent confidence intervals.  If 

the estimated distance measure is “too large”, then the survey practitioner should be 

warned of the possibly poor coverage rate of the confidence intervals. 

 

  

(a) SRS Sample Size n=8,000 (b) SRS Sample Size n=200 

Figure 4.2 Absolute Values of Relative Biases versus Estimated Distance Measures under 
Y_Additive_Interaction and Various Response Scenarios 
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(a) SRS Sample Size n=8,000 (b) SRS Sample Size n=200 

Figure 4.3 Absolute Values of Bias Ratios versus Estimated Distance Measures under 
Y_Additive_Interaction and Various Response Scenarios 

 

 

(a) SRS Sample Size n=8,000 (b) SRS Sample Size n=200 

Figure 4.4 Coverage Rates of 95% Confidence Intervals versus Estimated Distance Measures under 
Y_Additive_Interaction and Various Response Scenarios 
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Table 4.2 Relative Bias, Bias Ratio, Coverage Rate of 95 Percent Confidence Intervals, and Statistics about Estimated Distance Measure over Repeated Sampling 

 

Relative Bias Bias Ratio Distance Measure Relative Bias Bias Ratio Distance Measure

Sample Size and Response Scenario

SRS Sample Size n =8,000
S01. DIFF RR =0.00, CPR RR =1.00 2.9 5.8 95% 1.0 5% 1% 2.9 5.8 95% 1.0 5% 1%
S02. DIFF RR =0.00, CPR RR =1.00 45.8 52.8 92% 1.2 7% 1% 44.5 51.3 91% 1.3 8% 2%
S03. DIFF RR =-0.41, CPR RR =1.00 31.8 16.9 100% 0.4 0% 0% 1162.2 812.1 0% 72.3 100% 100%
S04. DIFF RR =0.00, CPR RR =4.75 1712.3 522.0 0% 28.0 100% 100% 2982.1 1537.0 0% 257.9 100% 100%
S05. DIFF RR =0.00, CPR RR =3.41 1314.2 668.7 0% 47.1 100% 100% 2444.8 1786.9 0% 347.7 100% 100%
S06. DIFF RR =0.00, CPR RR =2.74 1078.7 625.5 0% 42.5 100% 100% 2074.0 1573.1 0% 272.2 100% 100%
S07. DIFF RR =0.00, CPR RR =2.06 799.7 567.8 0% 36.0 100% 100% 1576.0 1319.9 0% 193.5 100% 100%
S08. DIFF RR =0.00, CPR RR =1.50 462.2 441.7 0% 22.9 100% 100% 936.0 958.1 0% 104.3 100% 100%
S09. DIFF RR =0.00, CPR RR =1.29 288.3 324.8 6% 12.7 97% 88% 593.7 690.5 0% 54.8 100% 100%
S10. DIFF RR =0.00, CPR RR =1.11 101.6 130.6 77% 2.9 28% 10% 228.9 296.3 16% 11.2 88% 72%
S11. DIFF RR =0.00, CPR RR =1.07 56.6 73.9 92% 1.6 11% 3% 143.7 188.5 52% 5.3 57% 29%
S12. DIFF RR =-0.24, CPR RR =0.90 -41.6 -21.2 100% 0.4 0% 0% 1013.4 567.7 0% 35.6 100% 100%
S13. DIFF RR =-0.24, CPR RR =0.69 -394.3 -243.3 27% 6.6 74% 42% 334.8 221.3 39% 6.6 68% 44%
S14. DIFF RR =-0.24, CPR RR =0.49 -770.9 -594.7 0% 37.5 100% 100% -457.6 -355.2 6% 13.6 94% 82%
S15. DIFF RR =-0.24, CPR RR =0.30 -1247.2 -931.1 0% 94.5 100% 100% -1445.9 -1115.4 0% 136.9 100% 100%
S16. DIFF RR =-0.24, CPR RR =0.15 -2036.1 -1056.1 0% 112.7 100% 100% -2817.3 -1990.6 0% 423.8 100% 100%
S17. DIFF RR =-0.48, CPR RR =0.04 -3089.0 -1567.3 0% 243.9 100% 100% -4058.7 -5346.8 0% 3379.6 100% 100%

SRS Sample Size n =200
S01. DIFF RR =0.00, CPR RR =1.00 6.3 1.8 95% 1.0 5% 1% 6.1 1.7 95% 1.0 6% 1%
S02. DIFF RR =0.00, CPR RR =1.00 56.3 9.0 97% 0.9 4% 1% 59.2 9.4 95% 1.0 5% 1%
S03. DIFF RR =-0.41, CPR RR =1.00 42.3 -3.2 100% 0.3 0% 0% 1148.4 111.4 81% 2.1 19% 5%
S04. DIFF RR =0.00, CPR RR =4.75 713.2 45.0 100% 0.4 0% 0% 1476.0 112.4 89% 1.8 12% 2%
S05. DIFF RR =0.00, CPR RR =3.41 1179.2 88.0 100% 1.0 0% 0% 2191.6 234.3 35% 6.9 69% 43%
S06. DIFF RR =0.00, CPR RR =2.74 1014.8 81.6 99% 0.9 1% 0% 1935.2 212.4 45% 5.9 59% 35%
S07. DIFF RR =0.00, CPR RR =2.06 833.6 78.5 99% 0.9 1% 0% 1584.5 189.7 52% 5.0 49% 26%
S08. DIFF RR =0.00, CPR RR =1.50 462.0 57.4 98% 0.9 2% 0% 935.2 131.6 75% 2.9 29% 10%
S09. DIFF RR =0.00, CPR RR =1.29 283.3 40.9 97% 0.8 3% 0% 590.2 92.1 86% 1.9 16% 5%
S10. DIFF RR =0.00, CPR RR =1.11 123.3 20.2 97% 0.8 3% 1% 252.9 43.0 94% 1.2 6% 2%
S11. DIFF RR =0.00, CPR RR =1.07 81.8 14.1 96% 0.8 3% 1% 171.3 30.1 94% 1.0 6% 1%
S12. DIFF RR =-0.24, CPR RR =0.90 -197.3 -19.2 99% 0.4 1% 0% 729.0 56.4 95% 1.1 4% 0%
S13. DIFF RR =-0.24, CPR RR =0.69 -429.4 -43.8 95% 0.7 4% 1% 280.6 18.6 95% 0.9 4% 1%
S14. DIFF RR =-0.24, CPR RR =0.49 -779.8 -86.6 89% 1.5 10% 4% -491.7 -58.5 89% 1.5 10% 3%
S15. DIFF RR =-0.24, CPR RR =0.30 -1249.4 -130.6 80% 2.4 20% 7% -1428.3 -158.6 66% 3.7 38% 18%
S16. DIFF RR =-0.24, CPR RR =0.15 -1642.0 -140.0 82% 2.3 15% 4% -2235.1 -229.6 35% 6.1 69% 37%
S17. DIFF RR =-0.48, CPR RR =0.04 -2476.1 -220.0 32% 4.9 68% 16% -3437.8 -531.6 0% 30.9 100% 100%

Raking GREG_Main
% samples with extreme distance measure% samples with extreme distance measureCoverage Rate of 95% 

Confidence Intervals
Coverage Rate of 95% 
Confidence Intervals5ˆ( ) 10ywRelBias t × 2ˆ( ) 10ywBiasRatio t × ˆ( )p rakingE DIST 5ˆ( ) 10ywRelBias t × 2ˆ( ) 10ywBiasRatio t × _

ˆ( )p GREG MainE DISTˆ 6.63
srakingDIST > _

ˆ 6.63
sGREG MainDIST >ˆ 3.84

srakingDIST > _
ˆ 3.84

sGREG MainDIST >
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4.4 Simulation Results Conditioning on Samples Grouped by Distance 
Measure 

 

Both Chapter 3 and Section 4.3 show that under the outcome variable model 

Y_Additive_Interaction, the average relative bias and coverage rate of the 95 percent 

confidence intervals for raking over repeated sampling may be acceptable in some 

response scenarios with weak multiplicative interaction effort (e.g., S11 and S12).  

However, we have only one sample for a survey in the real world, so it is important to 

understand how a calibration estimator may perform for a given sample.  That is, 

although a calibration estimator may perform reasonably well on average (over repeated 

sampling), we may still end up with an “unlucky” sample with poor performance in 

practice.  In this section, we demonstrate the value of the proposed distance measure in 

helping identify such samples. We use the combination of the outcome variable model 

Y_Additive_Interaction and response scenario S11 to evaluate the properties of 

poststratification, raking, and GREG_Main conditioning on samples defined by the 

proposed distance measure.  Given the fact that the coverage rates of the 95 percent 

confidence intervals are acceptable for most of the response scenarios with SRS sample 

size n=200 (discussed in Section 4.3), the simulation work in this section is based on 

only two SRS sample sizes: n=8,000 and n=2,000.  The simulation setup is similar to 

that in Section 4.3 except that the total number of simulated samples is increased to 

10,000 to warrant a large number of samples in each group defined by the range of 

distance measures.  The 10,000 simulated samples are sorted by the estimated distance 

measure for the calibration estimator of interest and then partitioned into 20 groups.  For 

example, to compare raking with poststratification, we first estimate the raking distance 
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measure for each sample, ˆ
srakingDIST .  Then we sort all the 10,000 samples ascendingly 

by ˆ
srakingDIST  and partition the sorted samples into 20 groups with approximately 500 

samples in each group.  These groups are referred to as “0th-5th percentile distance 

measure group”, “5th-10th percentile distance measure group”, …, and “95th-100th 

percentile distance measure group”.  Finally, we examine the properties of the 

poststratification estimator and raking estimator for the samples in each of the 20 

distance groups using the evaluation parameters described in Chapter 3.  A similar 

procedure is used to compare GREG_Main and poststratification conditioning on 

samples defined by the GREG_Main distance measure _
ˆ

sGREG MainDIST .  The results in 

this section warn us of the potential consequence of using an “almost appropriate but not 

quite appropriate” calibration estimator for a possibly “unlucky” sample in the real 

world.  

 

Figure 4.5 illustrates the properties of the three calibration estimators conditioning on 

samples grouped by the distance measure for the Y_Additive_Interaction and S11 

combination.  The response model S11 has 0RRDIFF =  and 1.07RRCPR = , meaning 

there is no additive interaction effect and almost no multiplicative interaction effect in 

the model.  The top panel (a) of Figure 4.5 shows the relationship between the relative 

bias and the distance measure, and the bottom panel (b) shows the relationship between 

the bias ratio and the distance measure.  Within Figure 4.5(a), the two rows from top to 

bottom correspond to SRS sample sizes n=8,000 and n=2,000 respectively.  The four 

columns from left to right show the relationships: 1) between poststratification relative 

bias and raking distance measure; 2) between poststratification relative bias and 



137 
 

GREG_Main distance measure; 3) between relative bias and distance measure for raking; 

and 4) between relative and distance measure for GREG_Main.  The three grey lines in 

each of the eight embedded subfigures indicate the upper limits of the distance measures 

for the 25th percentile, 50th percentile, and 75th percentile, respectively, of the 10,000 

sorted samples.  The two left columns (both labeled “Poststratification”) in Figure 4.5(a) 

demonstrate that the relative bias for poststratification remains very small (actually zero 

in theory) and is independent of the magnitude of the raking and GREG_Main distance 

measure.  The two right columns (labeled “Raking” and “GREG_Main”) show that for 

both raking and GREG_Main, there is a positive relationship between the absolute value 

of relative bias and the distance measure.  For all the three estimators, the “bands” of the 

relative biases become wider as the SRS sample size decreases because the variances of 

the estimators become larger.  

 

Figure 4.5(b) has the same structure as Figure 4.5(a) except that the y-axis for each 

subfigure in Figure 4.5(b) is bias ratio instead of relative bias.  The bias ratios for 

poststratification generally fall within the range of [-2, 2] and are independent of the 

distance measures.  For raking and GREG_Main, the absolute value of the bias ratio 

increases as the distance measure becomes larger.  For example, Table 4.2 above shows 

that for the combination of Y_Additive_Interaciton, S11, and n=8,000, the average bias 

ratios over all the simulated samples are approximately 0.74 for raking and 

approximately 1.89 for GREG_Main.  When the samples are sorted ascendingly by the 

estimated distance measure and divided into 20 distance groups, the average absolute 

values of the average bias ratios by distance group range from 0.04 (for the 0th-5th 
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percentile distance group) to 2.49 (for the 95th-100th distance group) for raking and from 

0.11 to 3.80 for GREG_Main.  As discussed earlier, the absolute value of the bias ratio 

increases as the SRS sample size increases because the larger sample size decreases 

sample variances.  This is reflected in Figure 4.5(b) by the ranges of bias ratios for 

raking and GREG_Main being wider with n=8,000 than with n=2,000.  

 

The coverage rates of the 95 percent confidence intervals by distance group under the 

Y_Additive_Interaction, n=8,000, and S11 combination are presented in Table 4.3 for 

raking and Table 4.4 for GREG_Main, respectively.  Although the average coverage rate 

of the 95 percent confidence intervals over all the simulated samples is as good as 

approximately 92 percent for raking (see Table 3.4 in Chapter 3), Table 4.3 

demonstrates that the coverage rates for raking vary substantially by the distance 

measure.  For samples in the 0th to 60th percentile distance groups, the average coverage 

rates of the 95 percent confidence intervals are 100 percent (i.e., over coverage).  

However, the coverage rates drop to under 84 percent for the samples in the 80th to 100th 

percentile distance groups (corresponding to ˆ 2.76
srakingDIST > ).  If a survey practitioner 

happens to obtain a sample from the 95th-100th percentile distance group (corresponding 

to ˆ 5.56
srakingDIST > ), then the coverage rate of the 95 percent confidence intervals is 

only 9 percent.  In contrast, the coverage rates of the 95 percent confidence intervals for 

poststratification are essentially independent of the groups of samples defined by the 

raking distance measure. 
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(a) Relationship between Relative Bias and Distance Measure 

 
 

 
(b) Relationship between Bias Ratio and Distance Measure 

 

Figure 4.5 Properties of Poststratification, Raking, and GREG_Main Conditioning on Samples Grouped 
by Distance Measure under Outcome Model Y_Additive_Interaction and Response Model S11 
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Table 4.3 Properties of Raking and Poststratification Conditioning on Estimated Raking Distance Measure 
under Outcome Model Y_Additive_Interaction, SRS n=8,000, and Response Model S11 

Distance Group  
Based on ˆ

srakingDIST  Range of ˆ
srakingDIST  

Mean of
ˆ

srakingDIST  

 
Coverage Rate of  

95% Confidence Intervals 

Poststratification Raking 

     
0th – 5th percentile  (6.23×10-9,0.00784] 0.00 96% 100% 
5th – 10th percentile (0.00784,0.034] 0.02 96% 100% 
10th – 5th percentile  (0.034,0.0749] 0.05 95% 100% 
15th – 20th percentile (0.0749,0.138] 0.10 95% 100% 
20th – 25th percentile (0.138,0.215] 0.17 97% 100% 
25th – 30th percentile (0.215,0.312] 0.26 95% 100% 
30th – 35th percentile (0.312,0.432] 0.37 95% 100% 
35th – 40th percentile (0.432,0.556] 0.49 95% 100% 
40th – 45th percentile (0.556,0.699] 0.63 95% 100% 
45th – 50th percentile (0.699,0.879] 0.79 95% 100% 
50th – 55th percentile (0.879,1.09] 0.98 94% 100% 
55th – 60th percentile (1.09,1.32] 1.20 95% 100% 
60th – 65th percentile (1.32,1.57] 1.45 95% 99% 
65th – 70th percentile (1.57,1.9] 1.74 96% 99% 
70th – 75th percentile (1.9,2.27] 2.08 95% 96% 
75th – 80th percentile (2.27,2.76] 2.51 95% 92% 
80th – 85th percentile (2.76,3.33] 3.03 94% 84% 
85th – 90th percentile (3.33,4.18] 3.71 95% 71% 
90th – 95th percentile (4.18,5.56] 4.81 95% 46% 
95th – 100th percentile (5.56,16.3] 7.60 96% 9% 
 
 

Table 4.4 shows the coverage rates of the 95 percent confidence intervals for 

GREG_Main and poststratification for the various groups defined by the GREG_Main 

distance measure.  The average coverage rate of the 95 percent confidence intervals over 

the 10,000 simulated samples is only approximately 52 percent for GREG_Main (see 

Table 3.4 in Chapter 3).  In Table 4.4, the coverage rates become unacceptable for the 

samples in the 45th to 100th percentile distance groups (corresponding to 

_
ˆ 3.86

sGREG MainDIST > ) due to the combined effect of a biased estimator (so the 

confidence interval is centered at a wrong point) and very small variance associated with 

large sample size (so the confidence interval is very narrow).   
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Table 4.4 Properties of GREG_Main and Poststratification Conditioning on Estimated GREG_Main 
Distance Measure under Outcome Model Y_Additive_Interaction, SRS n=8,000, and Response Model 
S11 

Distance Group Based 
on _

ˆ
sGREG MainDIST  

Range of 

_
ˆ

sGREG MainDIST  
Mean of

_
ˆ

sGREG MainDIST  

 
Coverage Rate of  

95% Confidence Intervals 

Poststratification GREG_Main 

     
0th – 5th percentile  (2.43×10-7, 0.231] 0.08 97% 100% 
5th – 10th percentile (0.231,0.667] 0.44 96% 100% 
10th – 5th percentile  (0.667,1.13] 0.90 94% 100% 
15th – 20th percentile (1.13,1.58] 1.35 95% 100% 
20th – 25th percentile (1.58,2] 1.79 96% 99% 
25th – 30th percentile (2,2.5] 2.24 94% 96% 
30th – 35th percentile (2.5,2.92] 2.71 96% 90% 
35th – 40th percentile (2.92,3.39] 3.15 96% 86% 
40th – 45th percentile (3.39,3.86] 3.63 96% 72% 
45th – 50th percentile (3.86,4.39] 4.13 94% 61% 
50th – 55th percentile (4.39,4.96] 4.67 95% 46% 
55th – 60th percentile (4.96,5.52] 5.25 94% 35% 
60th – 65th percentile (5.52,6.12] 5.82 98% 21% 
65th – 70th percentile (6.12,6.8] 6.46 93% 14% 
70th – 75th percentile (6.8,7.58] 7.20 96% 6% 
75th – 80th percentile (7.58,8.51] 8.03 95% 3% 
80th – 85th percentile (8.51,9.68] 9.06 95% 1% 
85th – 90th percentile (9.68,11.2] 10.41 94% 0% 
90th – 95th percentile (11.2,13.6] 12.26 97% 0% 
95th – 100th percentile (13.6,30.8] 16.94 94% 0% 
 

4.5 Conclusions and Limitations 

 

Chapter 3 may give the readers the impression that raking should be a good calibration 

estimator even for the outcome variable model Y_Additive_Interaction as long as the 

multiplicative interaction term in the response model is weak. Such a conclusion is only 

based on the average properties of the estimator over repeated sampling, and thus can be 

misleading.  This is because in the real world, a survey practitioner can usually obtain 

only one sample and all the outcome measures must be estimated from this sample.  
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This chapter shows that choosing an “almost appropriate but not quite appropriate” 

estimator can be detrimental to the bias ratio and the coverage rate of the 95 percent 

confidence intervals for some “unlucky” samples, especially when the sample size is 

large (assuming that the same calibration weighting strategy is used regardless of the 

sample size).  The distance measure we propose can help identify such “unlucky” 

samples to some extent.  Through both theoretical development and simulation work, we 

prove that the proposed distance measure follows Chi-square probability distribution 

under the null hypothesis that the expected values of the estimated cell counts equal the 

cell benchmark controls.  The proposed distance measure can be estimated from an 

achieved sample, and then compared to the critical values in a Chi-square distribution 

table to determine whether it is “too large”.  On the one hand, we need to emphasize that 

the outcome variable model is the most critical factor and a large distance measure does 

not necessarily indicate significant bias for raking or GREG_Main.   On the other hand, 

a real-world survey usually contains multiple key outcome measures, and it is often 

unlikely that the interaction term exists in none of the key outcome variable models.  If 

the estimated distance measure is “too large”, then it is a warning sign of potential bias 

for raking or GREG_Main due to excluding a significant interaction term during 

calibration.   

 

Finally, we need to point out that the variance term ( )11
ˆvar wN  in (4.18) is estimated from 

each simulated sample, so the conclusions in Sections 4.3 and 4.4 may depend on the 

accuracy of the variance estimation method implemented in the “calibrate” function of 

the R Survey package.  To check the validity of these conclusions, the empirical 
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variance of 11N̂  is calculated over all the simulated samples and compared to the 

estimated variance for some response scenarios.  It is found that for raking, the estimated 

variance tends to be noticeably larger than the empirical variance under the response 

models with strong multiplicative interaction effect, making the estimated distance 

measure smaller than the true value.  Despite this limitation, the conclusions about the 

relationships between the strength of the interaction effect in the response model, the 

distance measure, and the bias and bias ratio of the calibration estimator under the 

Y_Additive_Interaction model still hold.  We plan to further investigate the variance 

estimation issue for raking in Chapter 5. 
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Chapter 5. Comparison of Alternative Variance Estimators for Raking 

 

Several evaluation measures presented in Chapters 3 and 4 involve estimated variances 

using the “calibrate” function in the R Survey package.  For example, the estimated 

variance from the sample, ˆ( )ywvar t , is used to obtain the 95 percent confidence interval 

for each simulated sample in Chapter 3.  This approach (instead of using the empirical 

variance from all the simulation samples) is chosen because in practice, only one sample 

can be obtained for a survey and the variance has to be estimated from the sample.  The 

“calibrate” function in the R Survey package estimates the variance of a linear substitute 

that is equivalent to the product of the calibrated weight and a residual calculated from a 

linear model of the outcome variable on a vector of auxiliary variables.  For raking, the 

residual is based on a main effects model with the covariates being indictors for the 

raking categories of each dimension.  The limitation of using the estimated variance 

from the sample is that the results rely on the accuracy of the variance estimation 

method implemented in the “calibrate” function.   

 

In Chapter 4, the denominator of the distance measure shown in (4.18), ˆ( )w
ijvar N , is also 

computed from each simulation sample, so the conclusions about the distance measure 

may depend on the accuracy of the variance estimation method as well.  During the 

validity check (described in Section 4.5 of Chapter 4), it is found that for raking, the 

estimated variance tends to be significantly larger than the empirical variance for the 

response scenarios with strong multiplicative interaction effect (see more details in 

Section 5.6 of this chapter).  Although the bias in the estimated variance does not change 
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the general conclusions in Chapter 4, it motivates us to further investigate the variance 

estimation issue for raking.  

 

5.1 Background and General Research Method 

 

Since iteration is needed to solve the calibration equations for raking, survey 

practitioners often approximate the variance of the estimated total ŷrkt  by the variance of 

the “converged” estimator, i.e., the hypothetical estimator arising from an infinite 

number of iterations, represented by var( )i i
r

w y∑ , where iw  is the “converged” weights 

(Deville, Särndal, and Sautory 1993).  In practice, a linear model, 

2,  ~  (0,  )k k k ky iid Nε ε σ= +Bx , is fitted for the outcome variable y  on a vector of 

auxiliary variables x  .  For raking, the linear model is a main effects model with the 

covariates being indictors for the raking categories of each dimension.  A linearization 

variance estimator is obtained by approximating var( )i i
r

w y∑  by ˆvar( )i i
r

d z∑  for a 

“linearized variable” iz  , where ˆˆ ( )i i i iz y f= − Bx  , with if  being the weighting 

adjustment factor applied to the basic design weight id  when weighting (Deville 1999, 

D’Arrigo and Skinner 2010).  Several choices of the factor if  are available and 

discussed later in this chapter.  D’Arrigo and Skinner (2010) define alternative forms of 

linearization variance estimators for an estimated total via different choices of weights 

applied to not only the residuals but also the estimated regression coefficients used in 

calculating the residuals.  Their empirical work results in two conclusions.  First, the 
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approach that weights residuals by the basic design weight can be severely biased in the 

presence of nonresponse.  In contrast, the approach that weights residuals by the 

calibrated weight tends to display much less bias.  Second, varying the choice of weights 

used to construct the regression coefficients has little impact.  In the D’Arrigo and 

Skinner (2010) framework, however, the simulation is based on a few selected variables 

from the British Labor Force Survey and German Survey of Income and Expenditure.  It 

is unclear what models may govern the outcome variables (i.e., whether there are strong 

interaction effects in the outcome models and/or whether the outcome models have very 

strong explanatory power).  Although response models are discussed in their work, there 

is no explicit manipulation of the strength of the multiplicative interaction term in the 

response model.  We know from Chapter 3 that both the outcome model and the 

response model may affect the performance of a raking estimator.  Now the question is 

whether and how these models may impact the performance of a variance estimator for 

raking.  The existing literature does not provide a clear answer to this question. 

 

Given the perceived bias of the linearization variance estimator for raking in Chapter 4, 

it is worthwhile to evaluate how alternative variance estimators for raking may perform 

in the presence of nonresponse under different outcome models and response models.  

We will specify the outcome models and response models explicitly to show the impacts 

of these models on the performance of the variance estimators.  We will also vary the R-

squared values of the outcome variable models to help us understand how the results 

may hold in practice.     
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One challenge in the attempt to obtain a variance estimator for raking is that the raking 

ratio estimator does not have a closed form solution.  Because of this, it is unclear how 

to obtain an analytical solution for the linearization variance estimator.  Therefore our 

approach is to use a simulation to obtain the empirical approximation to the distribution 

of the variance of a raking estimator.  During the simulation study, we repeatedly draw a 

sample, rake, and compute an estimate and estimated variances using the variance 

estimators under evaluation.  Then for each variance estimator, we compute the mean 

(across simulation iterations) of the variance estimates, and then estimate the empirical 

bias of the variance estimator by comparing the mean of the variance estimates to the 

empirical variance of the estimates.   

 

5.2 Variance Estimators under Evaluation 

 

Shao (1996) and Wolter (2007) provide detailed discussions of both replication and 

linearization approximation methods used for variance estimation from sample surveys.  

In this research, we first re-evaluate the properties of the four linearization variance 

estimators proposed by D’Arrigo and Skinner (2010), and then examine the performance 

of a replication variance estimator for raking.   

 

5.2.1 Four Linearization Variance Estimators 

 

D’Arrigo and Skinner (2010) show that the linearization variance estimator for a raking 

estimator for a total ŷrkt  can be expressed as  
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ˆ ˆvar( ) var( )yrk i i
r

t d z≈ ∑     (5.1) 

where ˆˆ ( )i i i iz y f= − Bx  is treated as a fixed variable.  That is, the variance of the raking 

estimator ŷrkt  is approximately equal to the variance of ( )ˆ
i i i i

r
d y f−∑ Bx .  id  is the 

basic design weights.  B̂  is the vector for the regression coefficients in the weighted 

regression model for obtaining the GREG estimator.  if  is the weighting adjustment 

factor applied to the basic design weight id  when weighting the residuals ˆ
i i ie y= − Bx  

from the regression model.  Therefore, the variance of ŷrkt  depends on not only the 

variance of the residuals ie , but also the weighting adjustment factor if .   

 

A number of choices of B̂  and if  are discussed in D’Arrigo and Skinner (2010).  Two 

options are considered for B̂  depending on what weights are used in the regression 

model: 

 

1) T T 1ˆ )( )(bwt
i i i i i i

rr

d y d −= ∑ ∑B x x x  when the regression model uses base weights.  

The corresponding residual from the regression model is ˆbwt bwt
i i ie y= − B x . 

2) T 1Tˆ )( )(rkwt
i i i ii i

rr

y ww −= ∑ ∑B x x x  when the regression model uses raked weights 

T ˆ( )i i iw d F= x λ .  The corresponding residual from the regression model is 

ˆrkwt rkwt
i i ie y= − B x . 
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The weighting adjustment factor if  determines how the residuals are weighted.  Two 

natural choices are: 

 

1) base-weighted residuals, where 1if = , and  

2) calibration-weighted residuals, where T ˆ( )i i i if F w d= =x λ . 

 

In summary, the variance of a raking ratio estimator can be estimated as 

2
1ˆvar( ) var( )

1
r

yrk i i i i i i i i ii r
r i rr r

nt d f e d f e d f e
n n ′ ′ ′′∈

∈

 
= = − −  

∑ ∑ ∑   (5.2) 

where  

1
i

i i

f
w d


= 


  

ˆ

ˆ

bwt
i i

i rkwt
i i

y
e

y

 −= 
−

B x

B x
 

 

As part of this research, we will obtain the mean of the variance estimates (over all the 

simulation iterations) for raking using each of the following four linearization variance 

estimators discussed in D’Arrigo and Skinner (2000).  These estimators are based on 

different choices for B̂  and if , as summarized in Table 5.1.  Among these four 

estimators, “BWT.Residual_RKWT.Regression” is probably the least intuitive one, so 

we include it mainly for completeness. 
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Table 5.1 Four Linearization Variance Estimators and Their Labels 
Description of how weights are used in 
variance estimator 

Choice 
for if  

Choice 
for B̂  

Label for Easy Reference 

Base weights to weight up residuals & 
base weights to obtain regression 
coefficients 

1 ˆ bwtB  BWT.Residual_BWT.Regression 

Base weights to weight up residuals & 
raked weights to obtain regression 
coefficients 

1 ˆ rkwtB  BWT.Residual_RKWT.Regression 

Raked weights to weight up residuals & 
base weights to obtain regression 
coefficients 

i iw d  ˆ bwtB  RKWT.Residual_BWT.Regression 

Raked weights to weight up residuals & 
raked weights to obtain regression 
coefficients 

i iw d  ˆ rkwtB  RKWT.Residual_RKWT.Regression 

 

 

5.2.2 Replication Variance Estimator 

 

Replication variance estimation consists of repeatedly calculating estimates for 

subgroups of the full sample and then computing the variance among these “replicate” 

estimates.  One main advantage of the replication method is that it provides a simple 

way to account for adjustments that are made in weighting.   By separately computing 

the weighting adjustments for each replicate, it is possible to reflect the effect of 

variability of weight adjustments in the estimates of variance.  Replication also has some 

disadvantages.  For example, the method is computationally intensive and, in the case of 

the jackknife, inappropriate for quantile estimation.   

 

The key motivation for considering the replication method is that the raking ratio 

estimator does not have a closed form solution, so that the linearization method of 

variance estimation may not correctly account for all sources of variation in an estimator.  

A good alternative may be to use the replication method to approximate the variance.   
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The Jackknife 1 (JK1) method is appropriate for our simulation study because the 

sample design (described in Chapter 3) involves no explicit stratification. To implement 

the JK1 method for raking, we first form replicates that are random subsets of equal or 

nearly equal size, with each subset resembling the full sample.  Then raking is 

performed separately on the full sample as well as on each replicate, and the estimate of 

interest is calculated from the full sample and each replicate.  Finally, the variation 

between the replicate estimates and the full-sample estimate is used to estimate the 

variance for the full sample.  Assuming that the finite population correction factor can 

be ignored, the JK1 variance estimator for an estimated total (using a raking estimator) 

takes the form 

2
( )

1

1ˆ ˆ ˆvar( ) ( )
G

yrk yrk g yrk
g

Gt t t
G =

−
= −∑     (5.3) 

where ŷrkt  is the full-sample estimate, ( )ŷrk gt  is the estimate of yt  based on the 

observations included in the g-th replicate, and G is the total number of replicates 

formed. 

 

5.3 Simulation Setup 

 

5.3.1 Simulation Scenarios 

 

The simulation study aims to compare the properties of several alternative variance 

estimators for raking for the estimate of a finite population total under different outcome 
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variable models and response scenarios.  The scope of the study is described in Section 

3.3 of Chapter 3.  The SRS sample size is 8,000 for the simulation conducted in this 

chapter.  The simulation scenarios are determined by the combination of three factors. 

 

First, there are two outcome variable models: Y_Main as specified in (3.12) versus 

Y_Additive_Interaction, as specified in (3.13).   The Y_Main model contains only main 

effect terms, while the Y_Additive_Interaction model contains a non-zero additive 

interaction term in addition to the main effects.     

   

Second, the predictive power of each outcome variable model is varied as in the 

sensitivity analysis in Chapter 3.  The R-squared value of the model is either close to 

one (i.e., the high R-squared setup) or approximately 0.65 (i.e., the medium R-squared 

setup). 

 

Third, the strength of the multiplicative interaction effect in the response model is varied 

because the simulation results in Chapter 3 shows that it is the multiplicative interaction 

effect (not the additive interaction effect) in the response model that affects the 

performance of the raking estimator under the Y_Additive_Interaction outcome variable 

model.  For the evaluation of the variance estimators, we choose only seven of the 17 

response scenarios from Table 3.3 because the replication method is computationally 

intensive.  These seven response scenarios still represent a gradual change of the 

strength of the multiple interaction effect, with the CPRRR ranging from 0.04 to 4.75. 
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The total number of simulation scenarios is 2×2×7=28.  Table 5.2 summarizes these 28 

scenarios defined by four outcome variable models and seven response models.  

 

Table 5.2 Simulation Scenarios for Comparing Variance Estimators 
Scenario Model Parameters 

O
ut

co
m

e 
V

ar
ia

bl
e 

M
od

el
 

Y_Int with 

R2=0.9979 
1 2 1 2

11 12 21 22

1000,  ( ,  ) ( 200,  300), ( ,  ) ( 100,  150),
( , , , ) (100,  300, 700, 1200),  ~ (0,900)

Y Y Y Y Y Y Y

Y Y Y Y Y Yijk N
µ α α β β

γ γ γ γ ε
= = = − = = −
= =

α β
γ

 

Y_Main with 

R2=0.9886 
1 2 1 21000,  ( ,  ) ( 200,  300), ( ,  ) ( 100,  150),

~ (0,900)
Y Y Y Y Y Y Y

Yijk N
µ α α β β
ε

= = = − = = −α β
 

Y_Int with 

R2=0.6348 
1 2 1 2

11 12 21 22

1000, ( ,  ) ( 200,  300), ( ,  ) ( 100,  150),
( , , , ) (100,  300, 700, 1200), ~ (0,250000)

Y Y Y Y Y Y Y

Y Y Y Y Y Yijk N
µ α α β β

γ γ γ γ ε
= = = − = = −
= =

α β
γ

 

Y_Main with 

R2=0.6813 
1 2 1 21000,  ( ,  ) ( 200,  300), ( ,  ) ( 100,  150),

~ (0,40000)
Y Y Y Y Y Y Y

Yijk N
µ α α β β
ε

= = = − = = −α β
 

R
es

po
ns

e 
M

od
el

 

S04.CPR=4.75 R11=0.12, R12=0.48, R21=0.02, R22=0.38 

S06.CPR=2.74 R11=0.28, R12=0.92, R21=0.08, R22=0.72 

S08.CPR=1.50 R11=0.40, R12=0.80, R21=0.20, R22=0.60 

S11.CPR=1.07 R11=0.56, R12=0.64, R21=0.36, R22=0.44 

S15.CPR=0.30 R11=0.09, R12=0.21, R21=0.41, R22=0.29 

S16.CPR=0.15 R11=0.04, R12=0.26, R21=0.36, R22=0.34 

S17.CPR=0.04 R11=0.02, R12=0.58, R21=0.66, R22=0.74 

 

5.3.2 Simulation Steps and Evaluation Criteria 

 

We compare the properties of six variance estimators for raking, including the four 

linearization variance estimators in Table 5.1, the JK1 variance estimator (with 80 

replicate groups), and the variance estimator implemented in the “calibrate” function of 

the R Survey package.  The last one is referred to as “Lumley estimator”; it is included 

in the evaluation because the existing documentation does not provide much technical 

detail about the method.  For each of the 28 simulation scenarios, the following steps are 

used to evaluate each of the variance estimators.  
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First, we repeatedly draw a sample, rake, and compute an estimate and estimated 

variance ˆvar( )yrkt  using the variance estimators under evaluation.  We also compute the 

estimated relative standard error, ˆ ˆ( ) var( )yrk yrk yRelSE t t t= . 

 

Second, we compute the mean (across the S simulation iterations) of the estimated 

relative standard errors.  This mean is denoted ˆ( ( ))p yrkE RelSE t . 

 

Third, we compute the empirical relative standard error across the S simulated samples, 

( )2

1
ˆ ˆ ˆ ˆ( ) ( ) (1/ ) ( )

s

S
yw yw y yw p yw ys

EmpRelSE t EmpVar t t S t E t t
=

= = −∑  , where 

1
ˆ ˆ( ) (1 / )

s

S
p yw yws

E t S t
=

= ∑ , the average value of ˆ
sywt over repeated sampling. 

 

Finally, we compare ˆ( ( ))p yrkE RelSE t  against ˆ( )ywEmpRelSE t  by calculating the ratio 

between ˆ( ( ))p yrkE RelSE t  and ˆ( )ywEmpRelSE t  (referred to as “ratio of estimated 

standard error versus empirical standard error).  

 

5.4 Theoretical Development and Expected Results from Simulation 
 

5.4.1 General Formula for Raking Variance 
 

In the presence of nonresponse, the variance comes from three sources, including the 

outcome variable, response, and sampling distributions.  We are interested in finding 
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ˆ( )P R M yrkE E V t , the expectation of the model variance for raking over both response 

distribution ( RE  ) and sampling distribution ( PE  ). 

 

To obtain the variance formula for raking, a linear model, 

2,  ~  (0,  )k k k ky iid Nε ε σ= +Bx , is fitted for the outcome variable y  on a vector of 

auxiliary variables x  .  Then as shown in (5.1), the model variance for raking 

(conditioning on sampling and response) can be approximated by the variance of a linear 

substitute 

2 2

ˆ( , )

( , )

( )

( )

M yrk

M k k
k r

M k k k
k r

k k M k
k r

V t s r

V d z s r

V d f

d f V

ε

ε

∈

∈

∈

≈

=

=

∑

∑

∑

      (5.4) 

where id  is the basic design weight, kf  is the weighting adjustment factor applied to id , 

and k k kyε = −Bx .  Both id  and kf  are treated as fixed variables. 

 

Now define the response indicator 
1   if response
0   if nonresponseRkδ


= 


 .  The expectation of the 

model variance for raking over response distribution (still conditioning on the initial 

random sample) is 

( )
2 2

2 2

ˆ( )

( )

( )

R M yrk

R Rk k k M k
k s

k k k M k
k s

E V t s

E d f V

R d f V

δ ε

ε
∈

∈

 ≈  
 

=

∑

∑

     (5.5) 
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where kR  is the response propensity for unit k.  

 

Finally, define the sampling indicator 
1   if sampled
0   if not sampledpkδ


= 


.  The expectation of the 

model variance for raking over response and random sampling distributions is  

 

2 2

2 2

2

ˆ( )

( )

1 ( )

( )

P R M yrk

P pk k k k M k
k U

k k k M k
k U k

k k k M k
k U

E E V t

E R d f V

R d f V
d
R d f V

δ ε

ε

ε

∈

∈

∈

 ≈  
 

=

=

∑

∑

∑

     (5.6) 

This is the general formula for the variance for raking. 

 

5.4.2 Variance Estimator for a Special Situation When Raking Is Unbiased 
 

In Chapter 3, we prove that if 1
ij ijF R−=  (i.e., the raking adjustment factor in cell ij is the 

inverse of the cell response probability), then ŷrkt  is unbiased across the outcome 

variable, response, and repeated sampling distributions.  Note that this is a sufficient 

condition, but not necessary condition, for ( )ˆ 0P R M yrk yUE E E t t− = . 

 

In our simulation setup, all the units k in cell ij have the same response propensity.  Also, 

when raking is converged, all the units k in cell ij also have the same weighting 

adjustment factor.  Therefore a sufficient condition for the raking estimator to be 
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unbiased would be 1
k kf R−= , which is essentially Condition C in D’Arrigo and Skinner 

(2010).    

 

When 1
k kf R−= , we can simplify (5.6) into two forms 

ˆ( ) ( )P R M yrk k k M k
k U

E E V t d f V ε
∈

≈ ∑     (5.7) 

or 

1ˆ( ) ( )P R M yrk M k
k U k k

E E V t V
R

ε
π∈

≈ ∑     (5.8) 

where k kRπ  is the product of selection probability and response propensity.  That is, 

k kRπ  represents the probability of the unit being observed.  

 

In practice, if  and ( )M kV ε  can be estimated from the responding sample, so (5.7) can be 

used to estimate the variance for raking under a sufficient condition in which the raking 

estimator is unbiased (as discussed in Section 5.4.2).  Under this sufficient condition, 

the approach in (5.7) is consistent with the RKWT.Residual_BWT.Regression approach 

and the RKWT.Residual_RKWT.Regression approach (see Table 5.1) in D’Arrigo and 

Skinner (2010). 

 

There are two remaining questions.  First, when the sufficient condition for raking to be 

unbiased is not satisfied or when the raking estimator is biased, how do the four 

linearization variance estimators in D’Arrigo and Skinner (2010) perform?  Second, 

although we know that ( )M kV ε  can be estimated using 2
ie , it is unclear whether basic 
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design weights or raked weights should be used in the regression model for obtaining the 

residual ie .  The simulation results can help shed light on these two questions. 

 

5.5 Simulation Results 

 

Table 5.3 compares the estimated relative standard errors using different variance 

estimation methods.  The first column shows all the simulation scenarios defined by 

different outcome variable model specifications and response models with varying 

strength of multiplicative interaction effect.  The second column is for the empirical 

relative standard error.  The remaining columns show the ratio of the estimated relative 

standard error versus the empirical relative standard error for each of the four 

linearization variance estimators in D’Arrigo and Skinner (2010), the Lumley result 

using the “calibrate” function in the R Survey package, and the result using JK1 

replication method with 80 replicate groups, respectively.  Some cells are shown in color 

font to help us identify and explain the data pattern.  Recall that when the outcome 

variable model contains a significant interaction term, the raking estimator ŷrkt  is 

unbiased only in the response scenarios with CPRRR being close to 1.  Several 

conclusions can be drawn from Table 5.3. 

 

First, the BWT.Residual_BWT.Regression estimates and 

BWT.Residual_RKWT.Regression estimates are much smaller than the estimates in the 

“Empirical” column.  The underestimation is due to the basic design weights not 

weighting the sum in (5.2) to a high enough level to account for nonresponse.  As a 
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result, using the basic design weights to weight up the squared residuals from the 

regression model (regardless of what weights are used in the regression model to obtain 

the coefficients) results in underestimating the variance for an estimated total.  For 

example, the ratio of BWT.Residual_BWT.Regression to the empirical relative standard 

error for the outcome model “Y_Int with R-squared = 0.9979” and response model S04 

combination is only 0.09. 

 

Second, under the outcome models “Y_Main with R-squared = 0.9886”, “Y_Int with R-

squared = 0.6348”, and “Y_Main with R-squared = 0.6813”, the 

RKWT.Residual_BWT.Regression estimates (using basic design weights to obtain 

regression coefficients and raked weights to weight up the residuals from the regression 

model) align well with the “Empirical” estimates (shown in purple font).  That is, the 

RKWT.Residual_BWT.Regression approach performs well under two types of outcome 

variable models: (1) when the outcome variable model contains only the main effect 

covariates; or (2) when the outcome variable model contains both main effect and 

interaction terms, but the overall explanatory power of the model is not close to being 

perfect.  In contrast, using raked weights in the regression model to obtain residuals (the 

RKWT.Residual_RKWT.Regression estimates) leads to over-estimated relative standard 

errors under these outcome variable models unless the response model contains almost 

no multiplicative interaction effect (shown in green font).   

 

Third, under the outcome variable model “Y_Int with R-squared = 0.9979”, both 

RKWT.Residual_BWT.Regression and RKWT.Residual_RKWT.Regression are biased 
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variance estimators except for the response model S11 with CPRRR=1.07 (shown in red 

font).  That is, unless the response model contains almost no multiplicative interaction 

effect, none of the linearization variance estimators in D’Arrigo and Skinner (2010) 

performs well when the outcome variable model contains strong interaction effect and 

the model has almost perfect prediction power. 

 

Fourth, for the scenarios in which the RKWT.Residual_BWT.Regression variance 

estimator and RKWT.Residual_RKWT.Regression variance estimator are biased (shown 

in green font and red font), the magnitude of the bias seems to be positively correlated 

with the strength of the multiplicative interaction effect in the response model.   

 

Fifth, the “Lumley” column shows the estimates using the “calibrate” function in the R 

Survey package.  Our simulation results show that Lumley estimates are consistent with 

the RKWGT.Residual_BWGT.Regression approach.   

 

Finally, the replication method clearly outperforms all the linearization variance 

estimation methods in D’Arrigo and Skinner (2010) in the scenarios that the raking 

estimator is biased.  The JK1 relative standard error aligns well with the empirical 

relative standard error regardless of the outcome variable model and response model.  

However, despite the unbiased variance estimator using JK1, the confidence intervals do 

not cover at the correct rate when the raking estimator ŷrkt  is biased.  This is because the 

confidence intervals tend to center at the wrong place due to the bias of the point 

estimator. 
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Table 5.3 Comparison of Estimated Relative Standard Errors Using Different Variance Estimation Methods for SRS sample size n=8,000 

 

BWT.Residual_ 
BWT.Regression

BWT.Residual_  
RKWT.Regression

RKWT.Residual_
BWT.Regression

RKWT.Residual_ 
RKWT.Regression

Y_Int with R-squared = 0.9979
S04: R11=0.12, R12=0.48, R21=0.02, R22=0.38, CPR=4.75 17.26 0.09 0.15 2.17 2.83 2.18 1.10
S06: R11=0.28, R12=0.92, R21=0.08, R22=0.72, CPR=2.74 10.80 0.25 0.35 1.80 1.97 1.80 1.02
S08: R11=0.40, R12=0.80, R21=0.20, R22=0.60, CPR=1.50 8.57 0.40 0.45 1.35 1.30 1.35 1.02
S11: R11=0.56, R12=0.64, R21=0.36, R22=0.44, CPR=1.07 7.62 0.50 0.51 1.11 1.09 1.11 1.04
S15: R11=0.09, R12=0.21, R21=0.41, R22=0.29, CPR=0.30 11.11 0.22 0.24 1.35 1.31 1.35 1.06
S16: R11=0.04, R12=0.26, R21=0.36, R22=0.34, CPR=0.15 12.80 0.16 0.19 1.69 1.68 1.70 1.01
S17: R11=0.02, R12=0.58, R21=0.66, R22=0.74, CPR=0.04 10.59 0.19 0.28 2.10 2.81 2.10 1.04
Y_Main with R-squared = 0.9886
S04: R11=0.12, R12=0.48, R21=0.02, R22=0.38, CPR=4.75 10.03 0.15 0.15 1.01 2.27 1.01 1.01
S06: R11=0.28, R12=0.92, R21=0.08, R22=0.72, CPR=2.74 6.09 0.36 0.36 1.01 1.79 1.01 1.00
S08: R11=0.40, R12=0.80, R21=0.20, R22=0.60, CPR=1.50 5.08 0.43 0.43 0.98 1.23 0.98 0.98
S11: R11=0.56, R12=0.64, R21=0.36, R22=0.44, CPR=1.07 4.29 0.52 0.52 1.05 1.10 1.05 1.06
S15: R11=0.09, R12=0.21, R21=0.41, R22=0.29, CPR=0.30 6.26 0.25 0.25 1.10 1.32 1.10 1.10
S16: R11=0.04, R12=0.26, R21=0.36, R22=0.34, CPR=0.15 7.19 0.22 0.22 1.03 1.46 1.03 1.04
S17: R11=0.02, R12=0.58, R21=0.66, R22=0.74, CPR=0.04 5.91 0.37 0.37 1.01 1.99 1.01 1.01
Y_Int with R-squared = 0.6348
S04: R11=0.12, R12=0.48, R21=0.02, R22=0.38, CPR=4.75 109.16 0.15 0.16 1.07 2.31 1.07 1.02
S06: R11=0.28, R12=0.92, R21=0.08, R22=0.72, CPR=2.74 66.92 0.36 0.36 1.04 1.80 1.04 1.00
S08: R11=0.40, R12=0.80, R21=0.20, R22=0.60, CPR=1.50 56.26 0.43 0.43 0.98 1.22 0.98 0.97
S11: R11=0.56, R12=0.64, R21=0.36, R22=0.44, CPR=1.07 47.08 0.52 0.52 1.06 1.11 1.06 1.06
S15: R11=0.09, R12=0.21, R21=0.41, R22=0.29, CPR=0.30 68.79 0.25 0.25 1.11 1.32 1.11 1.10
S16: R11=0.04, R12=0.26, R21=0.36, R22=0.34, CPR=0.15 79.85 0.21 0.21 1.05 1.46 1.05 1.03
S17: R11=0.02, R12=0.58, R21=0.66, R22=0.74, CPR=0.04 65.75 0.36 0.36 1.03 1.99 1.03 1.00
Y_Main with R-squared = 0.6813
S04: R11=0.12, R12=0.48, R21=0.02, R22=0.38, CPR=4.75 66.92 0.15 0.15 1.01 2.27 1.01 1.01
S06: R11=0.28, R12=0.92, R21=0.08, R22=0.72, CPR=2.74 40.63 0.36 0.36 1.01 1.79 1.01 1.00
S08: R11=0.40, R12=0.80, R21=0.20, R22=0.60, CPR=1.50 33.88 0.43 0.43 0.98 1.23 0.98 0.98
S11: R11=0.56, R12=0.64, R21=0.36, R22=0.44, CPR=1.07 28.60 0.52 0.52 1.05 1.10 1.05 1.06
S15: R11=0.09, R12=0.21, R21=0.41, R22=0.29, CPR=0.30 41.75 0.25 0.25 1.10 1.32 1.10 1.10
S16: R11=0.04, R12=0.26, R21=0.36, R22=0.34, CPR=0.15 47.98 0.22 0.22 1.03 1.46 1.03 1.04
S17: R11=0.02, R12=0.58, R21=0.66, R22=0.74, CPR=0.04 39.39 0.37 0.37 1.01 1.99 1.01 1.01

Outcome Variable Model and Response Model

Ratio of Estimated Relative Standard Error versus Empirical Relative Standard Error
Linearization Method in D'Arrigo and Skinner (2010)

Lumley JK1

Empirical 
Relative 

Standard Error
 x 104
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To illustrate the data distribution, we plot the ratio of the estimated (relative) standard 

error versus the empirical (relative) standard error, ˆ ˆ( ( )) ( )p yrk ywE RelSE t EmpRelSE t , for 

RKWGT.Residual_BWGT.Regression and RKWGT.Residual_RKWGT.Regression 

under each of the 28 simulation scenarios.  Figure 5.1 shows the distribution of these 

ratios grouped by the outcome variable model and reveal three patterns.   

 

First, for the response model S11 with CPRRR=1.07 (when the raking estimator is almost 

unbiased regardless of the outcome variable model), the ratio of the estimated standard 

error versus the empirical standard error is close to 1 regardless of the outcome variable 

model.   

 

Second, for the outcome variable models “Y_Main with R-squared = 0.9886”, “Y_Int 

with R-squared = 0.6348”, and “Y_Main with R-squared = 0.6813”, all the ratios for 

RKWT.Residual_BWT.Regression are close to 1 while the ratio for 

RKWT.Residual_RKWT.Regression increases as the CPR value moves away from 1 to 

either 0.04 or 4.75. 

 

Finally, for the outcome variable model “Y_Int with R-squared = 0.9979”, the ratio for 

RKWT.Residual_BWT.Regression and the ratio for RKWT.Residual_RKWT.Regression 

both increase as the CPR value moves away from 1 to either 0.04 or 4.75.   
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Figure 5.1 Ratio of Estimated (Relative) Standard Error versus Empirical (Relative) Standard Error for 
RKWGT.Residual_BWGT.Regression and RKWGT.Residual_RKWGT.Regression under Different 

Outcome Variable Models and Response Models 

 

The results in Valliant, Dorfman, and Royall (2000, Section 5.6) on model-based 

variance estimation are relevant to the results for “Y_Int with R-squared = 0.9979”.  The 

outcome model has almost perfect explanatory power and contains a substantively and 

statistically significant interaction term.  However, the raking estimator implicitly fits a 

Y-model with main effects only, which is a misspecified model.   In this case, a variance 

estimator based on squared residuals from a misspecified model is expected to have two 

properties.  First, the variance estimator is expected to overestimate the variance of the 
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raking estimator, but still be the same order of magnitude as the variance.  Second, the 

MSE of the raking estimator is expected to be of a higher order of magnitude than the 

variance estimator due to the bias of ˆyrkt .   

 

The results in Table 5.3 and the plots in Figure 5.1 are consistent with the first point 

above.  Both RKWGT.Residual_BWGT.Regression and 

RKWGT.Residual_RKWGT.Regression produce standard error estimates that are larger 

than the empirical standard error, although, as noted above, the degree of overestimation 

is substantially larger for the latter.  

 

Table 5.4 shows the ratio of the estimated (relative) standard error versus the square root 

of empirical (relative) MSE, ˆ ˆ( ( )) ( )p yrk ywE RelSE t RelRMSE t , for 

RKWGT.Residual_BWGT.Regression and RKWGT.Residual_RKWGT.Regression 

under the outcome model “Y_Int with R-squared = 0.9979” and various response models.  

The only response scenario with these ratios larger than one is S11.  This is because when 

the CPRRR is close to one (i.e., CPRRR=1.07 for S11), the bias of the raking estimator is 

negligible, so the empirical MSE is approximately the same as the empirical variance.  

For all the other rows, the data pattern is consistent with the second point above.  The 

estimated variance based on RKWGT.Residual_BWGT.Regression and 

RKWGT.Residual_RKWGT.Regression are less than the empirical MSE.  That is, 

overestimating the standard error is not sufficient to produce good estimates of the actual 

MSE because the MSE has a higher order than the variance due to the bias of the raking 

estimator.   
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Table 5.4 Ratio of Estimated (Relative) Standard Error versus Square Root of Empirical (Relative) MSE 
for RKWGT.Residual_BWGT.Regression and RKWGT.Residual_RKWGT.Regression under Outcome 
Model “Y_Int with R-squared = 0.9979” and Various Response Models 

Y_Int with R-squared = 0.9979 
ˆ ˆ( ( )) ( )p yrk ywE RelSE t RelRMSE t  

RKWGT.Residual_
BWGT.Regression 

RKWGT.Residual_ 
RKWGT.Regression 

S04: R11=0.12, R12=0.48, R21=0.02, R22=0.38, CPR=4.75 0.22 0.28 
S06: R11=0.28, R12=0.92, R21=0.08, R22=0.72, CPR=2.74 0.18 0.20 
S08: R11=0.40, R12=0.80, R21=0.20, R22=0.60, CPR=1.50 0.25 0.24 
S11: R11=0.56, R12=0.64, R21=0.36, R22=0.44, CPR=1.07 1.14 1.13 
S15: R11=0.09, R12=0.21, R21=0.41, R22=0.29, CPR=0.30 0.12 0.12 
S16: R11=0.04, R12=0.26, R21=0.36, R22=0.34, CPR=0.15 0.11 0.11 
S17: R11=0.02, R12=0.58, R21=0.66, R22=0.74, CPR=0.04 0.07 0.10 
 

D’Arrigo and Skinner (2010) conclude that both RKWT.Residual_BWT.Regression and 

RKWT.Residual_RKWT.Regression are nearly unbiased estimators.  However, their 

research does not explicitly investigate the impact of the outcome variable model or the 

strength of the multiplicative interaction term in the response model.  The conclusions 

from our simulation study can help refine those in D’Arrigo and Skinner (2010).   It is 

interesting that using the raked weights in the regression model to obtain regression 

coefficient is actually proposed by Deville and Särndal (1992, equation 3.4).  A similar 

idea is also reflected in formula (1.21).  D’Arrigo and Skinner (2000) explain that this 

approach may be more practical than using the basic design weights to compute B̂  

because the users of survey data files usually have access to the raked weights, but not 

the basic design weights.  However, the linearization variance estimator 

RKWT.Residual_RKWT.Regression is biased in all our simulation scenarios except 

when CPRRR is approximately 1 (i.e., there is almost no multiplicative interaction effect 

in the response model).  This has two indications for the survey organizations in practice.  

First, serious consideration should be given to producing replicate weights.  Second, the 
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basic design weights should be included in the public use file to facilitate the correct 

implementation of the linearization variance estimation method.  

 

5.6 Re-Examination of Conclusions about Raking in Chapters 3 and 4 

 

In this chapter, our simulation results show that under some outcome variable model and 

response model combinations, all of the linearization variance estimators in D’Arrigo and 

Skinner (2010) perform poorly, one of which (i.e., RKWGT.Residual_BWGT.Regression) 

appears to be the variance estimation method implemented in the “calibrate” function of 

the R Survey package (referred to as “Lumley method”).  On the other hand, the variance 

estimator using the JK1 replication method is unbiased regardless of the outcome variable 

model and response model.  

 

Some conclusions about raking in Chapters 3 and 4 are based on the Lumley variance 

estimation method.  In this section, we re-examine those results by using the JK1 

replication method to estimate the variance for raking.  The measures of interest include 

relative standard error, bias ratio, coverage rate of the 95 percent confidence intervals, 

and distance measure.  Due to the intensive computational work involved in the 

replication method, we select only a limited number of scenarios for re-evaluation: 

“Y_Main with R2=0.9886” and “Y_Int with R2=0.9979” combined with the response 

models shown in Table 5.2 for the SRS sample size n=8,000.  Two new finite populations 

are generated using the outcome model parameters described in Section 3.4 of Chapter 3.  

Then simulated samples are drawn from the new finite populations for this re-evaluation 
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study.  Due to the variation across simulation iterations, it is normal that the results using 

the Lumley method in this Section may not be exactly the same as those in Tables 3.4 and 

Table 3.5 in Chapter 3.  

 

Table 5.5 compares the evaluation measures involving variance estimation using the 

Lumley method to those using the JK1 replication method.  The first several columns in 

Table 5.5 are about the relative standard error, bias ratio, and coverage rate of the 95 

percent confidence intervals for the estimated total for the outcome variable ŷt  .  Whether 

there is any nonegligible difference between the Lumley method and the JK1 replication 

method depends on the outcome variable model and response model.  Under “Y_Main 

with R2=0.9886”, the raking estimator is nearly unbiased regardless of the response 

model (as shown in Chapter 3).  The Lumley method and JK1 replication method yield 

approximately equal estimates for the relative standard error, bias ratio, and effective 

confidence interval coverage rate. Under “Y_Int with R2=0.9979”, the magnitude of the 

bias of the raking estimator is positively correlated with the strength of the multiplicative 

interaction effect in the response model (as shown in Chapter 3).  Table 5.5 shows that 

when the CPRRR is away from 1 for the response model, the Lumley method tends to 

over-estimate the variance for raking.  This makes the estimated relative standard error 

too big, the estimated bias ratio too small, and the estimated confidence interval too wide.  

Despite these inaccurate estimates due to the bias in the variance estimator for raking, all 

the conclusions about raking in Chapter 3 still hold in general.  
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The last three columns in Table 5.5 are about the estimated distance measure.  The data 

patterns for “Y_Main with R2=0.9886” and “Y_Int with R2=0.9979” are essentially the 

same because the distance measure depends on only the estimated totals for the auxiliary 

variables, but not the outcome variable.  When the CPRRR is away from 1 for the response 

model, the estimated variances for the estimated cell counts using the Lumley method 

tend to be noticeably larger than the estimated variances using the JK1 replication 

method (which are close to the empirical variances).  This makes the estimated distance 

measure using the Lumley method noticeably smaller than that using the JK1 replication 

method.  For example, the ratio of the latter to the former is approximately 3.2 for the 

response scenario S16 with CPRRR being 0.15.  For the SRS sample size n=8,000, the 

estimated distance measures are larger than the critical value 3.84 for rejecting the null 

hypothesis (i.e., 2Prob(0.004 (1) 3.84) 0.95χ< < = ), regardless of the variance estimation 

method, for all the response models with CPRRR being away from one.  Thus, the Lumley 

results and JK1 results (despite their difference in the specific values for the estimated 

distance measure) are likely to lead to the same conclusions.  For the SRS sample size 

n=200, however, the conclusions about the distance measure and potential bias for raking 

may be sensitive to the variance estimation method.  For example, Table 4.2 in Chapter 4 

shows that for n=200, the estimated distance measure using the Lumley method is 

approximately 2.3 for the response scenario S16, which is smaller than the critical value 

3.84.  However, if we do a crude adjustment by using the ratio between the JK1 method 

and Lumley method for the SRS sample size n=8,000 (which is 3.2 as described above), 

then the “corrected” distance measure should be approximately 7.3.  This corrected 

distance measure is larger than the critical value 3.84, and thus can probably explain why 
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the effective coverage rate of the 95 percent confidence intervals is only 82 percent.  

Despite the limitation in Chapter 4 that is caused by the variance estimation method, the 

conclusions about the properties of the distance measure in Chapter 4 still hold.  That is, 

the distance measure can help identify particular samples where the raking estimator is 

likely to be biased, and consequently, the confidence interval coverage is likely to be 

poor.  
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Table 5.5 Comparison of Some Evaluation Measures in Chapters 3 and 4 Using Lumley Method and JK1 Replication Method for SRS Sample Size n=8,000 

 
 

Empirical Lumley JK1 Lumley JK1 Lumley JK1 Empirical Lumley JK1

Y_Main with R2=0.9886 S04. CPR RR =4.75 10.1 10.1 10.1 21.8 21.8 96% 94% 101.9 21.4 94.9
S06. CPR RR =2.74 6.1 6.1 6.1 23.6 23.5 95% 95% 133.4 36.0 124.4
S08. CPR RR =1.50 4.9 5.0 5.0 -17.5 -17.7 96% 95% 33.8 17.4 33.2
S11. CPR RR =1.07 4.4 4.5 4.5 5.9 6.0 96% 95% 2.0 1.6 1.9
S15. CPR RR =0.30 6.5 6.9 6.9 -29.7 -29.7 95% 95% 154.4 87.7 155.7
S16. CPR RR =0.15 7.3 7.4 7.4 -41.8 -41.8 94% 93% 310.1 98.0 307.4
S17. CPR RR =0.04 5.7 5.9 6.0 4.0 3.6 96% 96% 933.9 193.6 893.6

Y_Int with R2=0.9979 S04. CPR RR =4.75 18.6 37.5 19.0 457.7 907.5 0% 0% 95.1 21.3 93.1
S06. CPR RR =2.74 10.4 19.5 11.1 592.3 1048.0 0% 0% 138.7 36.0 125.3
S08. CPR RR =1.50 8.5 11.6 8.8 389.9 518.0 0% 0% 34.9 17.5 33.3
S11. CPR RR =1.07 7.9 8.4 8.0 84.2 90.0 89% 85% 1.9 1.7 2.0
S15. CPR RR =0.30 11.7 15.0 11.8 -901.7 -1153.3 0% 0% 146.7 88.3 155.6
S16. CPR RR =0.15 12.8 21.7 12.9 -968.5 -1634.2 0% 0% 306.9 97.4 307.7
S17. CPR RR =0.04 10.6 22.4 11.1 -1376.1 -2796.6 0% 0% 971.6 193.2 890.6

Properties of Raking Estimator Depending on How                 Is Estimated Distance Measure Depending on 
How                 Is Estimated

Outcome Variable model Response Scenario Relative Standard Error Bias Ratio Coverage Rate of 95% 
Confidence Intervals4ˆ( ) 10ywRelSE t × 2ˆ( ) 10ywBiasRatio t ×

ˆ( )pE DIST

ˆ( )ywVar t
11

ˆ( )wVar N



171 
 

Chapter 6. Conclusions and Future Work 

 

6.1 Conclusions 

 

This dissertation investigates the properties of several widely used calibration estimators 

in the presence of nonresponse.  In the purely sampling context, Deville & Särndal (1992) 

demonstrate that many alternative forms of calibration weighting are asymptotically 

equivalent, so the GREG estimator can be used to approximate some general calibration 

estimators with no closed-form solutions such as raking.  Our research in this dissertation 

shows that this conclusion does not necessarily hold when nonresponse exists and single-

step calibration weighting is used to reduce nonresponse bias. With nonresponse, the 

differences between poststratification, raking, and GREG_Main can be either substantive 

or negligible depending on the outcome variable model and response model, so it is 

important to examine these models to the extent possible when choosing the appropriate 

calibration estimator.  First, the outcome variable model is the dominant factor.  If a 

significant interaction effect is present in the outcome model and the overall predictive 

power of the model is very strong (with R-squared value being close to 1), then 

poststratification (which is comparable to a GREG model with interaction terms) 

outperforms raking and GREG_Main except in the special situation that the response 

model does not include a multiplicative interaction term, in which case raking performs 

almost equally well as poststratification.  Second, raking preserves the multiplicative 

interaction effect that is internal in the data before calibration while GREG_Main does 

not, so raking tends to be less biased than GREG_Main when the response model 
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contains a strong multiplicative interaction term.  Third, for a large sample, a small 

relative bias associated with an inappropriate calibration estimator can still lead to very 

poor coverage rate of the 95 percent confidence intervals.  Finally, as the predictive 

power of the outcome variable model decreases, the advantage of poststratification over 

raking and GREG_Main in bias reduction becomes less substantial.  Moreover, if the 

predictive power of the outcome model with the interaction term is not extremely high 

and poststratification involves some very small cell counts, then the MSE may be higher 

for poststratification than for raking and/or GREG_Main.   

 

Our research also yields a proposed distance measure that can help gauge the potential 

bias of raking and GREG_Main for a given sample.  The distance measure follows the 

Chi-square probability distribution when raking or GREG_Main is unbiased.  In practice, 

the distance measure is computable as long as the classification and corresponding cell 

totals for the population are available.  A large estimated distance measure is a warning 

sign of potential bias and poor confidence interval coverage for some variables in a 

survey due to omitting a significant interaction term in the calibration process.   

 

The last part of our research is an empirical evaluation of several variance estimators for 

raking with nonresponse, including linearization and replication methods.  Our simulation 

results refine the conclusions in D’Arrigo and Skinner (2010) by demonstrating the 

impact of outcome model and response model on the performance of several linearization 

variance estimators.  We show that when raking is model-biased, none of the 

linearization variance estimators in D’Arrigo and Skinner (2010) is unbiased.  In contrast, 
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the jackknife replication method performs well in variance estimation, although the 

confidence interval may still be centered in the wrong place if the point estimate is biased.  

Our research has two indications for the survey organizations in practice.  First, serious 

consideration should be given on producing replicate weights.  Second, the basic design 

weights should be included in the public use file to facilitate the correct implementation 

of the linearization variance estimation method.  

 

6.2 Future Work 

 

Our dissertation presents a comprehensive framework for comparing the various 

calibration estimators in the presence of nonresponse.  We choose a limited scope for our 

empirical work (as described in Section 3.2 of Chapter 3) such that the results can clearly 

demonstrate the impact of outcome models and response models.  The real-world surveys 

often involve complex sample design and calibration estimators based on an array of 

variables with multiple categories.  Future improvement and extension to our work may 

include: 

  

1. Empirical research on the settings that are more complicated than a 2×2 table.  In 

such settings, in addition to 2
( 1)( 1)I Jχ − −  statistic, the Cramér's V may be used to 

measure association between variables with more than two categories. 

 

2. Empirical investigation on how the power theory for the distance measure may 

work. 
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3. Theoretical and empirical work to show whether and why the choice of categories 

does not affect the value of the proposed distance measure under complex sample 

designs (because under a complex sample design, each cell estimate may have a 

different design effect).  Chapter 4 shows that the choice of the cell does not 

matter for a 2×2 table, but further work is needed for tables with more categories.  

 

4. Theoretical development for the raking variance estimators when the main effects 

outcome model does not hold. 

 

5. Examination of domain estimators for total and mean.   
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Appendix A. Summary of Proofs in Deville & Särndal (1992) 

 

Deville & Särndal (1992) consider a sequence of finite populations and sampling designs 

indexed by n, where n is the sample size (for a fixed-sized sampling design) or the 

expected sample size (for a random-sized sample design).  The finite population size, N, 

tends to infinity with n. The calibration weight is calculated as T( )k k k kw d F= x λ , where 

T( )k kF x λ is non-negative and convex with (0) 1kF = and ' (0) 0kF > .  Several assumptions 

are made about the auxiliary vector x: (i) lim 1
xN − t  exists; (ii) ( )1 1/2 )ˆ (x x pN O nπ

− −− =t t ; 

and (iii) 1/2 1 ˆ( )x xn N π
− −t t converges in distribution to the multinormal ( , )N 0 A , where A

can be reviewed as a matrix that describes an asymptotic effect of the sampling design 

used in the survey. Two more assumptions are added for proving Results 3-5: (iv)

max k M= < ∞x , where max is over n as well as over k; and (v) '' 'max  (0)kF M= < ∞ . 

All the distance functions given in Deville & Särndal (1992) satisfy these conditions. 

 

Result 1. The calibration equation has a unique solution belonging to the open 

neighborhood of 0, with probability tending to 1 as n → ∞. 

 

Proof: ( ,  )kG w d is defined on an interval ( )kD d  containing d . ( ,  ) ( ,  ) /k kg w d G w d w= ∂ ∂

maps ( )kD d  onto an interval ( )kIm d  in a one-to-one fashion.  T( )k k k kw d F= x λ , where 

( ) kF ⋅  is the reciprocal mapping of (   ,  )kg d⋅  that maps ( )kIm d  onto ( )kD d . 
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Equation (1.4) defines a function of λ  on T{ :  ( )}
n

n k k k
k U

C Im d
∈

= ∈λ x λI , where I  is over 

nk U∈ , the finite population associated with the (expected) sample size n.  The interior 

0
nC  of nC  is an open convex set containing 0 for every n.  Then * 0

1
n

n

C C
∞

=

= I  is convex, 

and we assume it is also open. Let ( )nE ⋅ denote expectation with respect to the sampling 

design indexed by n. For *C∈λ , ( ){ }1
n sN E− Φ λ  is a well defined continuously 

differentiable function. Assumption (iii) is that 1/2 1 ˆ( )x xn N π
− −t t converges in distribution 

to the multinormal ( , )N 0 A .  For equation (1.4) to hold, it is necessary that for *C∈λ , 

( ){ }1
n sN E− Φ λ  converges to a fixed function denoted Φ , and the convergence is uniform 

on every compact set in *C . Let ( )' ( ) /s sΦ = ∂Φ ∂λ λ λ . We can obtain ( )1 0 0sN − Φ = , 

( )1 ' 10s sN N− −Φ = T , ( ) ( )' 1 T0 0,  0 lim k k
U

N −Φ = Φ = = ∑T x x .  

 

Φ  maps *C  onto an open neighborhood of 0 in JR . Let B be a closed sphere with radius 

r contained in this neighborhood, and let A be the compact set 1  ( )B−Φ . The inverse 

function 1  −Φ is defined on B, continuous and continuously differentiable. 1  ( )−Φ x  is 

bounded on B. All functions ( )1 '
sN − Φ λ  are defined on *C and therefore on A.  Let nP

denote probability with respect to the sampling design indexed by n.  For everyε > 0 , 

1( ) 1n s A
P N ε− Φ − Φ < →  when n increases.   

 

Let  
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1 'max ( ) ( )BK −
∈= Φ xx      (A.1) 

 

Let 1
1 sN −Φ = Φ  for some functions verifying 1 A rβΦ − Φ ≤ , ' '

1 A
KβΦ − Φ ≤ , with 

10
2

β< < .  The probability of this event tends to 1 as n increases. 

 

Let B1 be the sphere (1 )rβ< −x  in JR . Now 1Φ  maps the frontier of A onto the crown

(1 ) (1 )r rβ β− ≤ ≤ +x .  Consequently, 1( )AΦ  covers the sphere B1. In other words, for 

every 1B∈x , the equation ( )1Φ =λ x  has a (unique) solution.  Because ' '
1 A

KβΦ − Φ ≤  

for every λ  in C, ( )'1
1 ( )−Φ x  exists for every 1B∈x .  Moreover, 

1 1
1 ( ) (1 )K β− −Φ ≤ −x x       (A.2) 

 

Conclusion: ( )1  ˆ
x xN π

− −t t belongs to B1 with a probability tending to 1.  ( )1
sN − Φ λ  has 

an inverse function on B1 with a probability tending to 1. Equation (1.5) can be written as

( )1 1( )ˆ
s x xN N π

− −Φ = −λ t t , which has a unique solution with probability tending to 1. 

 

Result 2. Let sλ  be the solution to equation (1.5) if one exist; otherwise let sλ  be an 

arbitrary fixed value. 1/2( )s pO n−=λ , so sλ  tends to 0 in design probability.  
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Proof: Define ( )1 ˆ
x xN π

−= −z t t . Let ( ) 11 ( )s sN
−−= Φλ z  if z belongs to B1; otherwise sλ  

is arbitrarily defined.  Since ( )1 0 0sN − Φ = , we have

( ) ( ) ( ) ( )
1 11 10 0s s sN N

− −− −− = Φ − Φλ z , so 

1(1 )s K β −≤ −λ z      (A.3) 

 

Inequality (A.3) holds with probability tending to 1 when n increases.  Since

1/2( )pO n−=z , there exists a constant 'K  such that ' 1/2( ) 1nP K n−≤ →z .  Applying this to 

(A.3), we obtain ' 1 1/2( (1 ) ) 1n sP K K nβ − −≤ − →λ , which implies 1/2( )s pO n−=λ .  

 

Result 3. ( ) ( )1 1ˆ
s s x x pO nπ

− −= − +λ T t t .  

 

Proof: Let the difference between the adjustment functions for a general calibration 

estimator and the GREG estimator be 

( ) ( )T T T  (1 )k k k k k kF qθ = − +x λ x λ x λ     (A.4) 

where 1 T
k kq+ x λ  is the adjustment function for the GREG estimator.  

 

The assumption is that ( ) ( )( )2T T
k k kOθ =x λ x λ  holds uniformly, which is equivalent to the 

assumption that ( )'' 0kF  is uniformly bounded. Thus ( ) ( ) ( )( )2T T Tmax k k k kOθ θ= =x λ x λ x λ . 
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Otherwise, for any 0ε > , there exists ''K  such that, for all k, T| |k ε<x λ  will imply that 

( ) ( )2T '' T
k k kKθ ≤x λ x λ . 

 

From (1.3) and (A.4), the calibration equation can be rewritten as 

( ){ }T Tˆ
x x k k k k k k

s

d qπ θ− = +∑t t x x λ x λ    (A.5) 

 

Multiplying both sides of (A.5) by 1
s
−T  and rearranging the terms, we obtain  

( ) ( )1 1 Tˆ
s s x x s k k k k s

s

dπ θ− −− − = − ∑λ T t t T x x λ    (A.6) 

For sλ  sufficiently small,  

( ) 3 21 1 1 '' 1( )ˆ
s s x x s k k s

s

N K N dπ
− − − − 

− − ≤  
 

∑λ T t t T x λ    (A.7) 

 

We know that 1 1( ) (1)s pN O− − =T , and assumption (ii) indicates 31 (1)k k p
s

N d O− =∑ x .  

From Result 2, ( )2 1
s pO n−=λ .  So Result 3 follows. 

 

Result 4. The calibration estimator given in (1.6) is design-consistent, and 

( )1 1/2ˆ ˆ ( ).yw y pN t t O nπ
− −− =   

 

Proof: If equation (1.5) has a solution sλ , then from (A.4) 

T T TF ( ) { ( )ˆ }ˆ
yw y k k k k s k k k k k k s k k s

s s s

t t d y d y d y qπ θ− = − = +∑ ∑ ∑x λ x λ x λ   (A.8) 
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Given the assumption that ( ) ( )( )2T Tmax k k kOθ =x λ x λ  , we obtain 

( )

1

1 T 1 T

1 1(

ˆ ˆ

( )

)

yw y

k k k k k k k k
s s

k k k k p
s

N t t

N d y q N d y

N d q y O n

π

θ

−

− −

− −

−

≤

 
≤ + 

 

+∑ ∑

∑

x λ x λ

x λ

   (A.9) 

where 1 (1)k k k k p
s

N d q y O−  
= 

 
∑ x  and 1/2( )s pO n−=λ .   

Then, Result 4 follows. 

 

Result 5. For any ( )  kF ⋅  obeying the assumptions, ŷwt  given by (1.6) is 

asymptotically equivalent to the regression estimator given by (1.7), in the sense that 

( ) ( )1 1ˆ .ŷw yreg pN t t O n− −− =    

 

From (1.6) and (A.4),  

( ) ( )1 1 1 T 1 1 T( ) ˆˆˆ ˆ
yw y x x s p k k k k s

s

N t N t N O n N d yπ π θ− − − − −= + − + + ∑t t B x λ   (A.10) 

 

The first two terms of the right side equal 1
ŷregN t−  as given in equation (1.7).  The last 

term is ( )1 .pO n−   Therefore, ( )1/2 1 ˆ ˆ
yw yreg pn N t t O− − = ( 1/ 2n− ), with zero asymptotic 

variance.
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Appendix B.  R Programs and Functions for Simulation Work 

 

B.1 A Program for Creating the Population, Conducting Simple Random Sampling, 
Respondent Sampling, and Calibration, and Obtaining Evaluation Measures 

 

This program is used in Chapters 3 and 4. 

library(sampling) 
library(survey) 
library(plyr) 
require(MASS) 
 
####################################################################### 
#Function for generating population, control totals, response indicator 
####################################################################### 
 
pop.and.control <- function (seed, lambda, lambda_i, lambda_j, 

lambda_ij, yseed, ymu, yalpha, ybeta, ygamma, ysigma, 
rmeans) { 

 
  # popcnt -- population count in each of the four cells 
  # pop -- a "dataset" for the population  
  # totals.xvar1xvar2 -- a 2*2 matrix showing the crosstab of 

xvar1*xvar2, xvar1 and xvar2 are both categorical 
variables 

  # totals.xvar1 -- a vector showing the tab of xvar1 
  # totals.xvar2 -- a vector showing the tab of xvar2 
  
# Generate popcnt 
  set.seed(seed) 
  popcnt <- matrix(nrow = 2,ncol = 2)  # population counts in cells 
  popcnt[1,1] <- rpois(n=1, 

lambda=lambda+lambda_i[1]+lambda_j[1]+lambda_ij[1,1]) 
  popcnt[1,2] <- rpois(n=1, 

lambda=lambda+lambda_i[1]+lambda_j[2]+lambda_ij[1,2]) 
  popcnt[2,1] <- rpois(n=1, 

lambda=lambda+lambda_i[2]+lambda_j[1]+lambda_ij[2,1]) 
  popcnt[2,2] <- rpois(n=1, 

lambda=lambda+lambda_i[2]+lambda_j[2]+lambda_ij[2,2]) 
   
# Generate pop 
  pop <- matrix(nrow = sum(popcnt), ncol = 5) # dataset for population  
  colnames(pop) <- c("xvar1", "xvar2", "xvar12", "y", "respflag") 
  pop <- as.data.frame(pop) 
 
  # xvar1 and xvar2 are both categorical variables 
  # Values for xvar1 
  pop[1:sum(popcnt[1,]), "xvar1"] <- 1 
  pop[sum(popcnt[1,],1):sum(popcnt), "xvar1"] <- 2 
  # Values for xvar2 
  pop[1:popcnt[1,1], "xvar2"] <- 1 
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  pop[sum(popcnt[1,1],1):sum(popcnt[1,]), "xvar2"] <- 2 
  pop[sum(popcnt[1,],1):sum(popcnt[1,],popcnt[2,1]), "xvar2"] <- 1 
  pop[sum(popcnt[1,],popcnt[2,1],1):sum(popcnt), "xvar2"] <- 2 
    
  # Create xvar12 for QC  
  pop$xvar12 <- pop$xvar1*10 + pop$xvar2 
 
  # Create x11 for obtainging variance of N11 later 
 
  # For standardized distance measure later 
  pop$x11 <-ifelse(pop$xvar12==11, 1, 0) 
   
  # Turn xvar1 and xvar2 into factor vars to be used for calibration 
  pop$xvar1 <- as.factor(pop$xvar1) 
  pop$xvar2 <- as.factor(pop$xvar2) 
   
  totals.xvar1xvar2 <- xtabs(~xvar1 + xvar2, data = pop) 
   
  rk.control.xvar1<-data.frame(xvar1=c(1,2), Freq = c(sum(popcnt[1,]), 

sum(popcnt[2,]))) 
  rk.control.xvar2<-data.frame(xvar2=c(1,2), Freq = c(sum(popcnt[,1]), 

sum(popcnt[,2]))) 
  
  # greg.control.xvar1 <- table(pop$xvar1) 
  # greg.control.xvar2 <- table(pop$xvar2) 
 
  # Generate values for y (ygamma vector index: 1=[1,1], 2=[1,2], 

3=[2,1], 4=[2,2]) 
  set.seed(yseed) 
  pop[1:popcnt[1,1],"y"] <- rnorm(n = popcnt[1,1], mean = ymu + 

yalpha[1] + ybeta[1] + ygamma[1], sd = ysigma) 
  pop[sum(popcnt[1,1],1):sum(popcnt[1,]),"y"] <- rnorm(n = popcnt[1,2], 

mean = ymu + yalpha[1] + ybeta[2] + ygamma[2], sd = 
ysigma) 

  pop[sum(popcnt[1,],1):sum(popcnt[1,],popcnt[2,1]),"y"] <- rnorm(n = 
popcnt[2,1], mean = ymu + yalpha[2] + ybeta[1] + 
ygamma[3], sd = ysigma) 

  pop[sum(popcnt[1,],popcnt[2,1],1):sum(popcnt),"y"] <- rnorm(n = 
popcnt[2,2], mean = ymu + yalpha[2] + ybeta[2] + 
ygamma[4], sd = ysigma) 

   
  # Generate values for response flag (rmean index: 1=[1,1], 2=[1,2], 

3=[2,1], 4=[2,2]) 
  pop[1:popcnt[1,1], "respflag"] <- rbinom(n = popcnt[1,1], size=1, 

prob = rmeans[1]) 
  pop[sum(popcnt[1,1],1):sum(popcnt[1,]), "respflag"] <- rbinom(n = 

popcnt[1,2], size=1, prob = rmeans[2]) 
  pop[sum(popcnt[1,],1):sum(popcnt[1,],popcnt[2,1]),"respflag"] <- 

rbinom(n = popcnt[2,1], size=1, prob = rmeans[3]) 
  pop[sum(popcnt[1,],popcnt[2,1],1):sum(popcnt),"respflag"] <- rbinom(n 

= popcnt[2,2], size=1, prob = rmeans[4]) 
  return(list(pop=pop, totals.xvar1xvar2=totals.xvar1xvar2,  
              rk.control.xvar1=rk.control.xvar1, 

rk.control.xvar2=rk.control.xvar2)) 
}   
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####################################################################### 
# Functions for simple random sampling and for sampling of respondents 
####################################################################### 
 
srs.smp <- function(srsseed, popdata, n){ 
  srs.bad <- FALSE 
   
  N <- nrow(popdata) 
  s <- srswor(n, N) 
  bwgt <- rep (N/n, n) 
  f1 <- rep (n/N, n) 
   
  srs.smp <- data.frame(popdata[s==1,], bwgt, f1) 
  srs.totals <- xtabs(~xvar1 + xvar2, data = srs.smp) 
   
  if (srs.totals[1, 1]<2 | srs.totals[1, 2]<2 | srs.totals[2, 1]<2 | 

srs.totals[2, 2]<2){ 
    srs.bad <- TRUE 
  } 
  return(list(srs.bad=srs.bad, srs.smp=srs.smp, srs.totals=srs.totals)) 
} 
 
resp.smp <- function (srsdata){ 
  resp.bad <- FALSE 
   
  resp.indic <- srsdata["respflag"] > 0  
  resp.smp <- srsdata[resp.indic==1, ]   
   
  resp.totals <- xtabs(~xvar1 + xvar2, data = resp.smp) 
   
  if (resp.totals[1, 1]<2 | resp.totals[1, 2]<2 | resp.totals[2, 1]<2 | 

resp.totals[2, 2]<2){ 
    resp.bad <- TRUE 
  } 
  return(list(resp.bad=resp.bad, resp.smp=resp.smp, 

resp.totals=resp.totals)) 
} 
  
####################################################################### 
# Function for calibration and obtaining summary stats from each sample 
####################################################################### 
  
calib <- function(respinfo, popinfo, srsinfo){ 
   
  # Form design object 
  dsgn <- svydesign( 
    ids = ~0, # No cluster  
    strata = NULL, # No strata 
    fpc = ~f1, 
    weights = ~bwgt, 
    data = respinfo$resp.smp) 
     
  # Calibration 
  ps.dsgn <- postStratify(design = dsgn, strata = ~xvar1 + xvar2, 

population = popinfo$totals.xvar1xvar2, partial=TRUE) 
  ps.wgt <- weights(ps.dsgn)   
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  rk.dsgn.rake <- rake(design = dsgn, sample.margins = 
list(~xvar1,~xvar2), population.margins = 
list(popinfo$rk.control.xvar1, popinfo$rk.control.xvar2), 
control = list(maxit = 50)) 

  rk.wgt.rake <- weights(rk.dsgn.rake) 
   
  rk.dsgn <- calibrate(design = dsgn, formula = ~xvar1 + xvar2, 

population = c('(Intercept)'=nrow(popinfo$pop), 
xvar12=sum(popinfo$totals.xvar1xvar2[2,]), 
xvar22=sum(popinfo$totals.xvar1xvar2[,2])), 
calfun="raking") 

  rk.wgt <- weights(rk.dsgn) 
   
  greg.dsgn <- calibrate(design = dsgn, formula = ~xvar1 + xvar2, 

population = c('(Intercept)'=nrow(popinfo$pop), 
xvar12=sum(popinfo$totals.xvar1xvar2[2,]), 
xvar22=sum(popinfo$totals.xvar1xvar2[,2])), 
calfun="linear") 

  greg.wgt <- weights(greg.dsgn) 
   
  # fit regression models and get R-squared 
  # Models including only main effects 
  ps.xx.main <- lm(y ~ xvar1+xvar2, data=respinfo$resp.smp, weights = 

ps.wgt) 
  ps.yy.main <- summary(ps.xx.main) 
  ps.R2.main <- ps.yy.main$r.squared 
   
  rk.xx.main <- lm(y ~ xvar1+xvar2, data=respinfo$resp.smp, weights = 

rk.wgt) 
  rk.yy.main <- summary(rk.xx.main) 
  rk.R2.main <- rk.yy.main$r.squared 
   
  greg.xx.main <- lm(y ~ xvar1+xvar2, data=respinfo$resp.smp, weights = 

greg.wgt) 
  greg.yy.main <- summary(greg.xx.main) 
  greg.R2.main <- greg.yy.main$r.squared 
   
  # Model including main effect and interaction   
  ps.xx.int <- lm(y ~ xvar1*xvar2, data=respinfo$resp.smp, weights = 

ps.wgt) 
  ps.yy.int <- summary(ps.xx.int) 
  ps.R2.int <- ps.yy.int$r.squared 
   
  rk.xx.int <- lm(y ~ xvar1*xvar2, data=respinfo$resp.smp, weights = 

rk.wgt) 
  rk.yy.int <- summary(rk.xx.int) 
  rk.R2.int <- rk.yy.int$r.squared 
   
  greg.xx.int <- lm(y ~ xvar1*xvar2, data=respinfo$resp.smp, weights = 

greg.wgt) 
  greg.yy.int <- summary(greg.xx.int) 
  greg.R2.int <- greg.yy.int$r.squared 
   
   # SSW page 266 variance estimate formula for PS 
  Nc <- as.vector(popinfo$totals.xvar1xvar2) 
  nc <- as.vector(respinfo$resp.totals) 
  sc2data <- aggregate(y~xvar1*xvar2, data=respinfo$resp.smp, FUN=var) 
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  sc2 <- as.vector(sc2data$y) 
  ps.total.se.SSW <- sqrt(sum((Nc*Nc/nc)*sc2))    # estimate using SSW 
   
  # ybarc <- as.vector(aggregate(y~xvar1*xvar2, data=respinfo$resp.smp, 

FUN=mean)) 
     
  ##################### 
  # Summary statistics 
  ##################### 
   
  # Estimate for outcome variable, associated SE, CI, and CI coverage 
  # Mean   
  pop.mean <- mean(popinfo$pop[,"y"]) 
  resp.mean <- svymean(~y, dsgn) 
  ps.mean <- svymean(~y, ps.dsgn) 
  rk.mean <- svymean(~y, rk.dsgn) 
  rk.mean.rake <- svymean(~y, rk.dsgn.rake) 
  greg.mean <- svymean(~y, greg.dsgn) 
       
  resp.mean.se <- SE(svymean(~y, dsgn)) 
  ps.mean.se <- SE(svymean(~y, ps.dsgn)) 
  rk.mean.se <- SE(svymean(~y, rk.dsgn)) 
  rk.mean.se.rake <- SE(svymean(~y, rk.dsgn.rake)) 
  greg.mean.se <- SE(svymean(~y, greg.dsgn)) 
                                                       
  ps.mean.CI <- confint(svymean(~y, ps.dsgn)) 
  rk.mean.CI <- confint(svymean(~y, rk.dsgn)) 
  greg.mean.CI <- confint(svymean(~y, greg.dsgn)) 
     
  ps.mean.CI.coverage  
 <- ifelse(ps.mean.CI[1]<=pop.mean & pop.mean<=ps.mean.CI[2], 

1, 0) 
  rk.mean.CI.coverage  
 <- ifelse(rk.mean.CI[1]<=pop.mean & pop.mean<=rk.mean.CI[2], 

1, 0) 
  greg.mean.CI.coverage  
 <- ifelse(greg.mean.CI[1]<=pop.mean & 

pop.mean<=greg.mean.CI[2], 1, 0) 
 
  # Total 
  pop.total <- sum(popinfo$pop[,"y"]) 
  resp.total <- svytotal(~y, dsgn) 
  ps.total <- svytotal(~y, ps.dsgn) 
  rk.total <- svytotal(~y, rk.dsgn) 
  rk.total.rake <- svytotal(~y, rk.dsgn.rake) 
  greg.total <- svytotal(~y, greg.dsgn) 
     
  resp.total.se <- SE(svytotal(~y, dsgn))   # Lumley estimates of SEs.   
  ps.total.se <- SE(svytotal(~y, ps.dsgn)) 
  rk.total.se <- SE(svytotal(~y, rk.dsgn)) 
  rk.total.se.rake <- SE(svytotal(~y, rk.dsgn.rake)) 
  greg.total.se <- SE(svytotal(~y, greg.dsgn)) 
    
  ps.total.CI <- confint(svytotal(~y, ps.dsgn)) 
  ps.total.CI.SSW <- c(ps.total-1.96*ps.total.se.SSW, 

ps.total+1.96*ps.total.se.SSW)    
  # estimate using SSW 
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  rk.total.CI <- confint(svytotal(~y, rk.dsgn)) 
  greg.total.CI <- confint(svytotal(~y, greg.dsgn)) 
     
  # CI coverage 
  ps.total.CI.coverage<- ifelse(ps.total.CI[1]<=pop.total & 

pop.total<=ps.total.CI[2], 1, 0)   
  ps.total.CI.coverage.SSW <- ifelse(ps.total.CI.SSW[1]<=pop.total & 

pop.total<=ps.total.CI.SSW[2], 1, 0)  # estimate using 
SSW 

  rk.total.CI.coverage <- ifelse(rk.total.CI[1]<=pop.total & 
pop.total<=rk.total.CI[2], 1, 0)   

  greg.total.CI.coverage <- ifelse(greg.total.CI[1]<=pop.total & 
pop.total<=greg.total.CI[2], 1, 0) 

    
  # Estimate N, Nr, Nc, Nrc as well as the difference from population 

truth 
  ps.Nrc <- svytable(~xvar1 + xvar2, ps.dsgn) 
  rk.Nrc <- svytable(~xvar1 + xvar2, rk.dsgn) 
  greg.Nrc <- svytable(~xvar1 + xvar2, greg.dsgn) 
   
  ps.Diff.Nrc = ps.Nrc - popinfo$totals.xvar1xvar2  
  rk.Diff.Nrc = rk.Nrc - popinfo$totals.xvar1xvar2 
  greg.Diff.Nrc = greg.Nrc - popinfo$totals.xvar1xvar2 
  
  # Odds ratios 
   
  pop.OR  <-

(popinfo$totals.xvar1xvar2[1,1]*popinfo$totals.xvar1xvar2
[2,2])/(popinfo$totals.xvar1xvar2[1,2]*popinfo$totals.xva
r1xvar2[2,1]) 

  resp.OR  <- 
(respinfo$resp.totals[1,1]*respinfo$resp.totals[2,2])/(re
spinfo$resp.totals[1,2]*respinfo$resp.totals[2,1]) 

 
  ps.OR  <- (ps.Nrc[1,1]*ps.Nrc[2,2])/(ps.Nrc[1,2]*ps.Nrc[2,1]) 
  rk.OR  <- (rk.Nrc[1,1]*rk.Nrc[2,2])/(rk.Nrc[1,2]*rk.Nrc[2,1]) 
  greg.OR  <- 

(greg.Nrc[1,1]*greg.Nrc[2,2])/(greg.Nrc[1,2]*greg.Nrc[2,1
]) 

     
  # Distance measure for Chapter 3 (We experimented with this) 
  ps.Distance.Chap3 = sqrt(sum(ps.Diff.Nrc^2)) 
  rk.Distance.Chap3 = sqrt(sum(rk.Diff.Nrc^2)) 
  greg.Distance.Chap3 = sqrt(sum(greg.Diff.Nrc^2)) 
  
  # Distance measure for Chapter 4 (This is what we propose) 
  ps.Distance.Chap4.est <- (ps.Diff.Nrc[1,1]/SE(svytotal(~x11, 

ps.dsgn)))^2 
  rk.Distance.Chap4.est <- (rk.Diff.Nrc[1,1]/SE(svytotal(~x11, 

rk.dsgn)))^2 
  greg.Distance.Chap4.est <- (greg.Diff.Nrc[1,1]/SE(svytotal(~x11, 

greg.dsgn)))^2 
     
  # vector to return, for estimates of means 
  results.mean <- vector(length=14) 
   
  results.mean[1] <- pop.mean 
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  results.mean[2] <- resp.mean 
  results.mean[3] <- ps.mean 
  results.mean[4] <- greg.mean 
  results.mean[5] <- rk.mean   
  results.mean[6] <- rk.mean.rake   
   
  results.mean[7] <- resp.mean.se 
  results.mean[8] <- ps.mean.se 
  results.mean[9] <- greg.mean.se 
  results.mean[10] <- rk.mean.se 
  results.mean[11] <- rk.mean.se.rake 
   
  results.mean[12] <- ps.mean.CI.coverage 
  results.mean[13] <- greg.mean.CI.coverage 
  results.mean[14] <- rk.mean.CI.coverage 
    
  # vector to return, for estimates of totals 
  results.total <- vector(length=16) 
   
  results.total[1] <- pop.total 
  results.total[2] <- resp.total 
  results.total[3] <- ps.total 
  results.total[4] <- greg.total 
  results.total[5] <- rk.total 
  results.total[6] <- rk.total.rake 
         
  results.total[7] <- resp.total.se 
  results.total[8] <- ps.total.se 
  results.total[9] <- ps.total.se.SSW 
  results.total[10] <- greg.total.se 
  results.total[11] <- rk.total.se 
  results.total[12] <- rk.total.se.rake 
     
  results.total[13] <- ps.total.CI.coverage 
  results.total[14] <- ps.total.CI.coverage.SSW 
  results.total[15] <- greg.total.CI.coverage  
  results.total[16] <- rk.total.CI.coverage  
 
    
  # vector to return, for sample sizes, auxiliary info, and diff term 
  results.common <- vector(length=33) 
   
  results.common[1] <- respinfo$resp.totals[1,1] 
  results.common[2] <- respinfo$resp.totals[1,2] 
  results.common[3] <- respinfo$resp.totals[2,1] 
  results.common[4] <- respinfo$resp.totals[2,2] 
  
  results.common[5] <- ps.Distance.Chap3 
  results.common[6] <- rk.Distance.Chap3 
  results.common[7] <- greg.Distance.Chap3 
   
  results.common[8] <- ps.Distance.Chap4.est 
  results.common[9] <- rk.Distance.Chap4.est 
  results.common[10] <- greg.Distance.Chap4.est 
   
   
  results.common[11] <- pop.OR 
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  results.common[12] <- resp.OR  
  results.common[13] <- ps.OR 
  results.common[14] <- greg.OR 
  results.common[15] <- rk.OR 
   
  results.common[16] <- ps.Diff.Nrc[1,1] 
  results.common[17] <- ps.Diff.Nrc[1,2] 
  results.common[18] <- ps.Diff.Nrc[2,1] 
  results.common[19] <- ps.Diff.Nrc[2,2] 
   
  results.common[20] <- rk.Diff.Nrc[1,1] 
  results.common[21] <- rk.Diff.Nrc[1,2] 
  results.common[22] <- rk.Diff.Nrc[2,1] 
  results.common[23] <- rk.Diff.Nrc[2,2] 
   
  results.common[24] <- greg.Diff.Nrc[1,1] 
  results.common[25] <- greg.Diff.Nrc[1,2] 
  results.common[26] <- greg.Diff.Nrc[2,1] 
  results.common[27] <- greg.Diff.Nrc[2,2] 
   
  results.common[28] <- ps.R2.main 
  results.common[29] <- rk.R2.main 
  results.common[30] <- greg.R2.main 
   
  results.common[31] <- ps.R2.int 
  results.common[32] <- rk.R2.int 
  results.common[33] <- greg.R2.int 
   
  return (t(c(results.mean, results.total, results.common))) 
} 
 
###################################################################### 
# Function for calling srs.smp, resp.smp, calib during each simulation 
###################################################################### 
 
srs.resp.calib <- function (benchmark, k, srs.size){ 
   
  S <- k      # number of good samples to keep 
  s <- 1 
  bad.smp <- 0 
   
  # An empty matrix to store results 
   
  rslt <- matrix(nrow=S, ncol=  sum(14, 16, 33)) 
  colnames(rslt) <- c("pop.mean", 
                      "resp.mean",  
                      "ps.mean",    
                      "greg.mean", 
                      "rk.mean", 
                      "rk.mean.rake", 
                       
                      "resp.mean.se", 
                      "ps.mean.se", 
                      "greg.mean.se", 
                      "rk.mean.se", 
                      "rk.mean.se.rake", 
                       



189 
 

                      "ps.mean.CI.coverage", 
                      "greg.mean.CI.coverage", 
                      "rk.mean.CI.coverage", 
                       
                      "pop.total", 
                      "resp.total",  
                      "ps.total",    
                      "greg.total", 
                      "rk.total",                     
                      "rk.total.rake", 
                       
                      "resp.total.se", 
                      "ps.total.se", 
                      "ps.total.se.SSW", 
                      "greg.total.se", 
                      "rk.total.se", 
                      "rk.total.se.rake", 
                       
                      "ps.total.CI.coverage", 
                      "ps.total.CI.coverage.SSW", 
                      "greg.total.CI.coverage", 
                      "rk.total.CI.coverage", 
                                             
                      "respcnt11", 
                      "respcnt12", 
                      "respcnt21", 
                      "respcnt22", 
                       
                      "ps.Distance.Chap3", 
                      "rk.Distance.Chap3", 
                      "greg.Distance.Chap3", 
                       
                      "ps.Distance.Chap4.est", 
                      "rk.Distance.Chap4.est", 
                      "greg.Distance.Chap4.est", 
                       
                      "pop.OR", 
                      "resp.OR", 
                      "ps.OR", 
                      "greg.OR", 
                      "rk.OR", 
                       
                      "ps.Diff.Nrc11", 
                      "ps.Diff.Nrc21", 
                      "ps.Diff.Nrc12", 
                      "ps.Diff.Nrc22", 
                       
                      "rk.Diff.Nrc11", 
                      "rk.Diff.Nrc21", 
                      "rk.Diff.Nrc12", 
                      "rk.Diff.Nrc22", 
                       
                      "greg.Diff.Nrc11", 
                      "greg.Diff.Nrc21", 
                      "greg.Diff.Nrc12", 
                      "greg.Diff.Nrc22", 
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                      "ps.R2.main", 
                      "rk.R2.main", 
                      "greg.R2.main", 
                      "ps.R2.int", 
                      "rk.R2.int", 
                      "greg.R2.int") 
  while (s <= S){ 
   
  keep.sw <- TRUE 
   
  # draw srs sample and respondent sample 
  srssmp <- srs.smp(popdata=benchmark$pop, n=srs.size) 
  if (srssmp$srs.bad==TRUE){ 
    bad.smp <- bad.smp + 1 
    keep.sw <- FALSE 
  }    
  else { 
    # assign respondent 
    respsmp <- resp.smp (srsdata=srssmp$srs.smp)  
  } 
   
  if (respsmp$resp.bad==TRUE){ 
    bad.smp <- bad.smp + 1 
    keep.sw <- FALSE   
  } 
   
  else { 
     
  # calibration and save summary statisticis 
  rslt[s, ] <- calib(respinfo=respsmp, popinfo=benchmark, 

srsinfo=srssmp) 
  
  # increase sample counter 
  s <- s + 1 
  } 
 } 
 return (list(bad.smp=bad.smp, rslt=rslt)) 
} 
 
 
B.2 A Program Calling the Program in B.1 
 

This program is used in Chapters 3 through 5. 

 
library(ResourceSelection) 
# kk: repetition of simulation 
# nn: SRS sample size 
kk <- 1000 
nn <- 8000 
 
# Call pop.and.control to generate population (x, y and response model) 

and control totals  
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# Scenarios under "Y main": 
 
# 1 100% response rate 
ymain.r01 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(1, 1, 1, 1)) 

summary (ymain.r01$pop) 
ddply(ymain.r01$pop,~xvar12,summarise,mean=mean(y)) 
ddply(ymain.r01$pop,~xvar12,summarise,mean=mean(respflag)) 
 
# check additive independence in Y model 
ymain.fit <- lm(y ~ xvar1*xvar2, data=ymain.r01$pop) 
summary(ymain.fit) 
 
############################################### 
# 2  0.45000.4500 0.3000 0.3000 0.0000 1.0000 
ymain.r02 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.4500, 0.4500, 0.3000,  0.3000)) 

summary (ymain.r02$pop) 
ddply(ymain.r02$pop,~xvar12,summarise,mean=mean(y)) 
ddply(ymain.r02$pop,~xvar12,summarise,mean=mean(respflag)) 
 
# check additive independence in R model 
rmain.fit <- lm(respflag ~ xvar1*xvar2, data=ymain.r02$pop) 
summary(rmain.fit) 
 
# check multiplicative independence in R model 
logistic.rmain.fit <- glm(respflag ~ xvar1 + xvar2 + xvar1*xvar2, 

family=binomial(link='logit'), data=ymain.r02$pop) 
summary(logistic.rmain.fit) 
 
anova(logistic.rmain.fit, test="Chisq") 
 
# Hosmer-Lemeshow Goodness of Fit: computed on data after the 

observations have been segmented into groups  
# based on having similar predicted probabilities. It examines whether 

the observed proportions of events  
# are similar to the predicted probabilities of occurence in subgroups 

of the data set using a pearson chi square test.  
# Small values with large p-values indicate a good fit to the data 

while large values with p-values below 0.05 indicate a 
poor fit.  

 
hoslem.test(ymain.r02$pop$respflag, fitted(logistic.rmain.fit)) 
 
############################################### 
# 3  0.40800.1020 0.9520 0.2380 -0.4080 1.0000 
ymain.r03 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
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ysigma=30, rmeans = c(0.4080,  0.1020, 0.9520,
 0.2380)) 

 
# 4  0.12000.4800 0.0200 0.3800 0.0000 4.7500 
ymain.r04 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.1200,  0.4800, 0.0200,
 0.3800)) 

 
# 5  0.26000.9400 0.0600 0.7400 0.0000 3.4113 
ymain.r05 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.2600,  0.9400, 0.0600,
 0.7400)) 

 
# 6  0.28000.9200 0.0800 0.7200 0.0000 2.7391 
ymain.r06 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.2800,  0.9200, 0.0800,
 0.7200)) 

 
# 7  0.32000.8800 0.1200 0.6800 0.0000 2.0606 
ymain.r07 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.3200,  0.8800, 0.1200,
 0.6800)) 

 
# 8  0.40000.8000 0.2000 0.6000 0.0000 1.5000 
ymain.r08 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.4000,  0.8000, 0.2000,
 0.6000)) 

 
# 9  0.46000.7400 0.2600 0.5400 0.0000 1.2911 
ymain.r09 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.4600,  0.7400, 0.2600,
 0.5400)) 

 
# 10  0.54000.6600 0.3400 0.4600 0.0000 1.1070 
ymain.r10 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
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ysigma=30, rmeans = c(0.5400,  0.6600, 0.3400,
 0.4600)) 

 
# 11  0.56000.6400 0.3600 0.4400 0.0000 1.0694 
ymain.r11 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.5600,  0.6400, 0.3600,
 0.4400)) 

 
# 12  0.23000.0700 0.5500 0.1500 -0.2400 0.8961 
ymain.r12 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.2300,  0.0700, 0.5500,
 0.1500)) 

 
# 13  0.20000.1000 0.5200 0.1800 -0.2400 0.6923 
ymain.r13 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.2000,  0.1000, 0.5200,
 0.1800)) 

 
# 14  0.15000.1500 0.4700 0.2300 -0.2400 0.4894 
ymain.r14 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.1500,  0.1500, 0.4700,
 0.2300)) 

 
# 15  0.09000.2100 0.4100 0.2900 -0.2400 0.3031 
ymain.r15 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.0900,  0.2100, 0.4100,
 0.2900)) 

 
# 16  0.04000.2600 0.3600 0.3400 -0.2400 0.1453 
ymain.r16 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
ysigma=30, rmeans = c(0.0400,  0.2600, 0.3600,
 0.3400)) 

 
# 17  0.02000.5800 0.6600 0.7400 -0.4800 0.0387 
ymain.r17 <- pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(0,0,0,0), 
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ysigma=30, rmeans = c(0.0200,  0.5800, 0.6600,
 0.7400)) 

 
 
# The procedure is repeated for 17 response scenarios under "Y int".   
# The R code is not shown here. 
 
##################################################################### 
# Call function srs.resp.calib (select sample, calibrate, and save 

summary statistics) 
##################################################################### 
 
# popinfo, srsinfo, respinfo: dataset plus some control totals 
# popdata, srsdata: dataset 
# k: repetition of simulation 
# srs.size: SRS sample size 
 
ymain.r01.out <- srs.resp.calib (benchmark=ymain.r01, k=kk, 

srs.size=nn) 
# Repeated for ymain.r02.out through ymain.r17.out.  R code is not 

shown. 
 
yint.r01.out <- srs.resp.calib (benchmark=yint.r01, k=kk, srs.size=nn) 
# Repeated for yint.r02.out through yint.r17.out.  R code is not shown. 
 
save(ymain.r01, ymain.r02, ymain.r03, ymain.r04, ymain.r05, ymain.r06, 

ymain.r07, ymain.r08, ymain.r09, ymain.r10, ymain.r11, 
ymain.r12, ymain.r13, ymain.r14, ymain.r15, ymain.r16, 
ymain.r17, 

     yint.r01, yint.r02, yint.r03, yint.r04, yint.r05, yint.r06, 
yint.r07, yint.r08, yint.r09, yint.r10, yint.r11, 
yint.r12, yint.r13, yint.r14, yint.r15, yint.r16, 
yint.r17, 

     ymain.r01.out, ymain.r02.out, ymain.r03.out, ymain.r04.out, 
ymain.r05.out, ymain.r06.out, ymain.r07.out, 
ymain.r08.out, ymain.r09.out, ymain.r10.out, 
ymain.r11.out, ymain.r12.out, ymain.r13.out, 
ymain.r14.out, ymain.r15.out, ymain.r16.out, 
ymain.r17.out, 

     yint.r01.out, yint.r02.out, yint.r03.out, yint.r04.out, 
yint.r05.out, yint.r06.out, yint.r07.out, yint.r08.out, 
yint.r09.out, yint.r10.out, yint.r11.out, yint.r12.out, 
yint.r13.out, yint.r14.out, yint.r15.out, yint.r16.out, 
yint.r17.out,     
file="D:\\Dissertation\\CompareThreeCalibrationEstimators
\\Simulation\\SRS1.RData") 
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B.3 A Program for Saving Results from Each Simulated Sample and Evaluation 
Measures over All the Simulated Samples 

 

This program is used in Chapters 3 and 4. 

 
library(sampling) 
library(survey) 
 
################################################################## 
# Function for creating measures from the S good samples 
################################################################## 
 
all.info <- function(datain){   
  datain <- data.frame(datain)   
  attach(datain) 
   
  # For mean: relative bias 
  resp.rel.bias.mean <- (resp.mean - pop.mean)/pop.mean 
  ps.rel.bias.mean <- (ps.mean - pop.mean)/pop.mean 
  rk.rel.bias.mean <- (rk.mean - pop.mean)/pop.mean 
  rk.rel.bias.mean.rake <- (rk.mean.rake - pop.mean)/pop.mean 
  greg.rel.bias.mean <- (greg.mean - pop.mean)/pop.mean 
   
  # For mean: relative square root of mse 
  ps.rel.sqrt.mse.mean <- sqrt((ps.mean - pop.mean)^2)/pop.mean 
  rk.rel.sqrt.mse.mean <- sqrt((rk.mean - pop.mean)^2)/pop.mean 
  greg.rel.sqrt.mse.mean <- sqrt((greg.mean - pop.mean)^2)/pop.mean 
   
  # For mean: bias ratio or t-statitics 
  ps.bias.ratio.mean = (ps.mean - pop.mean) / ps.mean.se 
  rk.bias.ratio.mean = (rk.mean - pop.mean) / rk.mean.se 
  greg.bias.ratio.mean = (greg.mean - pop.mean) / greg.mean.se 
   
  # Total: relative bias 
  resp.rel.bias.total <- (resp.total - pop.total)/pop.total 
  ps.rel.bias.total  <- (ps.total - pop.total)/pop.total 
  rk.rel.bias.total <- (rk.total - pop.total)/pop.total 
  rk.rel.bias.total.rake <- (rk.total.rake - pop.total)/pop.total 
  greg.rel.bias.total <- (greg.total - pop.total)/pop.total 
   
  # Total: relative square root of mse 
  ps.rel.sqrt.mse.total <- sqrt((ps.total - pop.total)^2)/pop.total 
  rk.rel.sqrt.mse.total <- sqrt((rk.total - pop.total)^2)/pop.total 
  greg.rel.sqrt.mse.total <- sqrt((greg.total - pop.total)^2)/pop.total 
   
  # Total: bias ratio or t-statitics 
  ps.bias.ratio.total = (ps.total - pop.total) / ps.total.se  
  rk.bias.ratio.total = (rk.total - pop.total) / rk.total.se 
  greg.bias.ratio.total = (greg.total - pop.total) / greg.total.se 
   
  # Distance Measure using empirical variance, for Chapter 4   
  ps.Distance.Chap4.EmpVar <- ps.Diff.Nrc11^2/var(ps.Diff.Nrc11) 
  rk.Distance.Chap4.EmpVar <- rk.Diff.Nrc11^2/var(rk.Diff.Nrc11) 
  greg.Distance.Chap4.EmpVar <- greg.Diff.Nrc11^2/var(greg.Diff.Nrc11) 
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  rk.Distance.est.LG384 <- ifelse(rk.Distance.Chap4.est>3.84, 1, 0) 
  rk.Distance.est.LG663 <- ifelse(rk.Distance.Chap4.est>6.63, 1, 0) 
   
  greg.Distance.est.LG384 <- ifelse(greg.Distance.Chap4.est>3.84, 1, 0) 
  greg.Distance.est.LG663 <- ifelse(greg.Distance.Chap4.est>6.63, 1, 0) 
   
  ################################################################## 
  # variable for examing samples by groups  
   
  rk.ranges <- quantile(rk.Distance.Chap4.est, c(0, .05, .10, .15, .20, 

.25, .30, .35, .40, .45, .50, .55, .60, .65, .70, .75, 

.80, .85, .90, .95, 1), na.rm=TRUE)  
  rk.grp <- cut(rk.Distance.Chap4.est, rk.ranges, include.LOWEST=TRUE) 
  rk.grp.num <- as.numeric(rk.grp) 
   
  greg.ranges <- quantile(greg.Distance.Chap4.est, c(0, .05, .10, .15, 

.20, .25, .30, .35, .40, .45, .50, .55, .60, .65, .70, 

.75, .80, .85, .90, .95, 1), na.rm=TRUE)  
  greg.grp <- cut(greg.Distance.Chap4.est, greg.ranges, 

include.LOWEST=TRUE) 
  greg.grp.num <- as.numeric(greg.grp) 
   
  datafinal <- data.frame(  datain, 
                            resp.rel.bias.mean,  
                            ps.rel.bias.mean,  
                            rk.rel.bias.mean, 
                            rk.rel.bias.mean.rake, 
                            greg.rel.bias.mean, 
                             
                            ps.rel.sqrt.mse.mean, 
                            rk.rel.sqrt.mse.mean, 
                            greg.rel.sqrt.mse.mean, 
                             
                            ps.bias.ratio.mean, 
                            rk.bias.ratio.mean, 
                            greg.bias.ratio.mean, 
                             
                            resp.rel.bias.total, 
                            ps.rel.bias.total, 
                            rk.rel.bias.total, 
                            rk.rel.bias.total.rake, 
                            greg.rel.bias.total, 
                             
                            ps.rel.sqrt.mse.total, 
                            rk.rel.sqrt.mse.total, 
                            greg.rel.sqrt.mse.total, 
                             
                            ps.bias.ratio.total, 
                            rk.bias.ratio.total, 
                            greg.bias.ratio.total, 
                             
                            ps.Distance.Chap4.EmpVar, 
                            rk.Distance.Chap4.EmpVar, 
                            greg.Distance.Chap4.EmpVar, 
                             
                            rk.Distance.est.LG384, 
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                            rk.Distance.est.LG663, 
                            greg.Distance.est.LG384, 
                            greg.Distance.est.LG663, 
                             
                            rk.grp, 
                            rk.grp.num, 
                            greg.grp, 
                            greg.grp.num) 
  detach(datain) 
   
  return(datafinal)   
} 
 
###################################################### 
# Function for generating overall summary statitics 
###################################################### 
 
overall <- function (datain, stat){ 
   
  attach(datain) 
   
  # For mean: relative bias, relative standard error, relative square 

root of mse, bias ratio 
  pop.mean <- mean(pop.mean) 
  resp.rel.bias.mean <- mean(resp.rel.bias.mean) 
  ps.rel.bias.mean <- mean(ps.rel.bias.mean) 
  rk.rel.bias.mean <- mean(rk.rel.bias.mean) 
  rk.rel.bias.mean.rake <- mean(rk.rel.bias.mean.rake) 
  greg.rel.bias.mean <- mean(greg.rel.bias.mean) 
   
  resp.rel.se.mean <- sqrt(var(resp.mean))/pop.mean  # empirical 
  ps.rel.se.mean <- sqrt(var(ps.mean))/pop.mean 
  rk.rel.se.mean <- sqrt(var(rk.mean))/pop.mean 
  rk.rel.se.mean.rake <- sqrt(var(rk.mean.rake))/pop.mean 
  greg.rel.se.mean <- sqrt(var(greg.mean))/pop.mean 
   
  ps.rel.sqrt.mse.mean <- mean(ps.rel.sqrt.mse.mean) 
  rk.rel.sqrt.mse.mean <- mean(rk.rel.sqrt.mse.mean) 
  greg.rel.sqrt.mse.mean <- mean(greg.rel.sqrt.mse.mean) 
   
  ps.bias.ratio.mean <- mean(ps.bias.ratio.mean) 
  rk.bias.ratio.mean <- mean(rk.bias.ratio.mean) 
  greg.bias.ratio.mean <- mean(greg.bias.ratio.mean) 
                              
  # For total: relative bias, relative standard error, relative square 

root of mse, bias ratio 
  pop.total <- mean(pop.total) 
  resp.rel.bias.total <- mean(resp.rel.bias.total) 
  ps.rel.bias.total <- mean(ps.rel.bias.total) 
  rk.rel.bias.total <- mean(rk.rel.bias.total) 
  rk.rel.bias.total.rake <- mean(rk.rel.bias.total.rake) 
  greg.rel.bias.total <- mean(greg.rel.bias.total) 
                              
  resp.rel.se.total <- sqrt(var(resp.total))/pop.total  # empirical 
  ps.rel.se.total <- sqrt(var(ps.total))/pop.total 
  rk.rel.se.total <- sqrt(var(rk.total))/pop.total 
  rk.rel.se.total.rake <- sqrt(var(rk.total.rake))/pop.total 
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  greg.rel.se.total <- sqrt(var(greg.total))/pop.total 
                              
  ps.rel.sqrt.mse.total <- mean(ps.rel.sqrt.mse.total) 
  rk.rel.sqrt.mse.total <- mean(rk.rel.sqrt.mse.total) 
  greg.rel.sqrt.mse.total <- mean(greg.rel.sqrt.mse.total) 
                              
  ps.bias.ratio.total <- mean(ps.bias.ratio.total) 
  rk.bias.ratio.total <- mean(rk.bias.ratio.total) 
  greg.bias.ratio.total <- mean(greg.bias.ratio.total) 
   
  CheckLumley.ps.rel.se.total <- mean(ps.total.se/pop.total)   # Lumley 

estimate for QC. 
  CheckLumley.ps.rel.se.total.SSW <- mean(ps.total.se.SSW/pop.total)  # 

SSW for QC. 
                                                          
  # respondent Sample sizes 
  respcnt11 <- mean(respcnt11) 
  respcnt12 <- mean(respcnt12) 
  respcnt21 <- mean(respcnt21) 
  respcnt22 <- mean(respcnt22) 
   
  # Odds ratios 
  pop.OR = mean (pop.OR) 
  resp.OR = mean (resp.OR) 
  ps.OR = mean (ps.OR) 
  rk.OR = mean (rk.OR) 
  greg.OR = mean (greg.OR) 
                                                          
  # CI coverage 
  ps.CI.coverage.mean <- mean(ps.mean.CI.coverage) 
  rk.CI.coverage.mean <- mean(rk.mean.CI.coverage) 
  greg.CI.coverage.mean <- mean(greg.mean.CI.coverage) 
                                                          
  ps.CI.coverage.total <- mean(ps.total.CI.coverage) 
  ps.CI.coverage.total.SSW <- mean(ps.total.CI.coverage.SSW) 
  rk.CI.coverage.total <- mean(rk.total.CI.coverage) 
  greg.CI.coverage.total <- mean(greg.total.CI.coverage) 
   
  # Distance Measure (using empirical variance)   
  ps.Distance.Chap4.EmpVar <- mean(ps.Distance.Chap4.EmpVar) 
  rk.Distance.Chap4.EmpVar <- mean(rk.Distance.Chap4.EmpVar) 
  greg.Distance.Chap4.EmpVar <-mean(greg.Distance.Chap4.EmpVar) 
   
  # Distance Measure -- estimated from sample, and then taking average 
  ps.Distance.Chap4.est <- mean(ps.Distance.Chap4.est) 
  rk.Distance.Chap4.est <- mean(rk.Distance.Chap4.est) 
  greg.Distance.Chap4.est <- mean(greg.Distance.Chap4.est) 
   
  rk.Distance.est.LG384 <- mean(rk.Distance.est.LG384) 
  rk.Distance.est.LG663 <- mean(rk.Distance.est.LG663) 
   
  greg.Distance.est.LG384 <- mean(greg.Distance.est.LG384) 
  greg.Distance.est.LG663 <- mean(greg.Distance.est.LG663) 
   
  # R-squared for main-effect model and full model (including 

interaction term) 
  ps.R2.main <- mean(ps.R2.main) 
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  rk.R2.main <- mean(rk.R2.main) 
  greg.R2.main <- mean(greg.R2.main) 
  ps.R2.int <- mean(ps.R2.int) 
  rk.R2.int <- mean(rk.R2.int) 
  greg.R2.int <- mean(greg.R2.int) 
                                                            
  # compare analytical results and simulation results 
  # ratio.rk_greg = mean(rk.total - greg.total ) / mean(diff.rk_greg) 
  # ratio.rk_ps = mean(rk.total - ps.total ) / mean(diff.rk_ps) 
                                                          
  evalmean <- cbind (pop.mean, resp.rel.bias.mean, ps.rel.bias.mean, 

greg.rel.bias.mean, rk.rel.bias.mean, 
rk.rel.bias.mean.rake, resp.rel.se.mean, ps.rel.se.mean, 
greg.rel.se.mean, rk.rel.se.mean, rk.rel.se.mean.rake,  

                     ps.rel.sqrt.mse.mean, greg.rel.sqrt.mse.mean, 
rk.rel.sqrt.mse.mean, ps.bias.ratio.mean, 
greg.bias.ratio.mean, rk.bias.ratio.mean,  

                     ps.CI.coverage.mean, greg.CI.coverage.mean, 
rk.CI.coverage.mean, respcnt11, respcnt12, respcnt21, 
respcnt22, pop.OR, resp.OR, ps.OR, greg.OR, rk.OR,  

                     ps.Distance.Chap4.EmpVar, 
rk.Distance.Chap4.EmpVar, greg.Distance.Chap4.EmpVar,  

                     ps.Distance.Chap4.est, rk.Distance.Chap4.est, 
greg.Distance.Chap4.est, 

                     rk.Distance.est.LG384, rk.Distance.est.LG663, 
greg.Distance.est.LG384, greg.Distance.est.LG663, 

                     ps.R2.main, rk.R2.main, greg.R2.main, ps.R2.int, 
rk.R2.int, greg.R2.int) 

                                                          
  evaltotal <- cbind (pop.total, resp.rel.bias.total, 

ps.rel.bias.total, greg.rel.bias.total, 
rk.rel.bias.total, rk.rel.bias.total.rake,  

                     resp.rel.se.total, ps.rel.se.total, 
greg.rel.se.total, rk.rel.se.total, rk.rel.se.total.rake,   

                     ps.rel.sqrt.mse.total, greg.rel.sqrt.mse.total, 
rk.rel.sqrt.mse.total, 

                     ps.bias.ratio.total, greg.bias.ratio.total, 
rk.bias.ratio.total,  

                     ps.CI.coverage.total, greg.CI.coverage.total, 
rk.CI.coverage.total,  

                     respcnt11, respcnt12, respcnt21, respcnt22, 
                     pop.OR, resp.OR, ps.OR, greg.OR, rk.OR,  
                     ps.Distance.Chap4.EmpVar, 

rk.Distance.Chap4.EmpVar, greg.Distance.Chap4.EmpVar, 
                     ps.Distance.Chap4.est, rk.Distance.Chap4.est, 

greg.Distance.Chap4.est, 
                     rk.Distance.est.LG384, rk.Distance.est.LG663, 

greg.Distance.est.LG384, greg.Distance.est.LG663, 
                     ps.R2.main, rk.R2.main, greg.R2.main, ps.R2.int, 

rk.R2.int, greg.R2.int, 
                     CheckLumley.ps.rel.se.total, 

CheckLumley.ps.rel.se.total.SSW, 
ps.CI.coverage.total.SSW) 

                                                          
  detach(datain) 
  ifelse(stat==1, return(evalmean), return(evaltotal)) 
} 
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########################################################### 
# Function for calculating group summary statistics 
########################################################### 
 
groups.rk <- function (datain, stat){ 
   
  attach(datain) 
   
  ps.grp.Distance.rkgrp <- 

by(datain$ps.Distance.Chap4.est,INDICES=rk.grp, mean) 
  rk.grp.Distance <- by(datain$rk.Distance.Chap4.est,INDICES=rk.grp, 

mean) 
   
  # Odds ratio 
  pop.grp.OR.rkgrp <- by(datain$pop.OR,INDICES=rk.grp, mean)  
  resp.grp.OR.rkgrp <- by(datain$resp.OR,INDICES=rk.grp, mean)   
  ps.grp.OR.rkgrp <- by(datain$ps.OR,INDICES=rk.grp, mean)   
  rk.grp.OR <- by(datain$rk.OR,INDICES=rk.grp, mean)   
   
  # R-squared 
  ps.grp.R2.main.rkgrp <- by(datain$ps.R2.main,INDICES=rk.grp, mean)  
  ps.grp.R2.int.rkgrp <- by(datain$ps.R2.int,INDICES=rk.grp, mean)  
  rk.grp.R2.main <- by(datain$rk.R2.main,INDICES=rk.grp, mean)  
  rk.grp.R2.int <- by(datain$rk.R2.int,INDICES=rk.grp, mean)  
   
  # For mean: bias 
  ps.grp.rel.bias.mean.rkgrp <- 

by(datain$ps.rel.bias.mean,INDICES=rk.grp, mean) 
  rk.grp.rel.bias.mean <- by(datain$rk.rel.bias.mean,INDICES=rk.grp, 

mean)   
   
  # For mean: bias ratio  
  ps.grp.bias.ratio.mean.rkgrp <- 

by(datain$ps.bias.ratio.mean,INDICES=rk.grp, mean)   
  rk.grp.bias.ratio.mean <- 

by(datain$rk.bias.ratio.mean,INDICES=rk.grp, mean)   
   
  # For mean: CI coverage  
  ps.grp.CI.coverage.mean.rkgrp <- 

by(datain$ps.mean.CI.coverage,INDICES=rk.grp, mean)   
  rk.grp.CI.coverage.mean <- 

by(datain$rk.mean.CI.coverage,INDICES=rk.grp, mean)   
   
  bygroup.mean <- data.frame(cbind(ps.grp.rel.bias.mean.rkgrp, 

rk.grp.rel.bias.mean, ps.grp.bias.ratio.mean.rkgrp, 
rk.grp.bias.ratio.mean, ps.grp.CI.coverage.mean.rkgrp, 
rk.grp.CI.coverage.mean, ps.grp.Distance.rkgrp, 
rk.grp.Distance, pop.grp.OR.rkgrp, resp.grp.OR.rkgrp, 
ps.grp.OR.rkgrp, rk.grp.OR, ps.grp.R2.main.rkgrp, 
ps.grp.R2.int.rkgrp, rk.grp.R2.main, rk.grp.R2.int)) 

   
   
  # For total: bias 
  ps.grp.rel.bias.total.rkgrp <- 

by(datain$ps.rel.bias.total,INDICES=rk.grp, mean) 
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  rk.grp.rel.bias.total <- by(datain$rk.rel.bias.total,INDICES=rk.grp, 
mean) 

   
  # For total: bias ratio  
  ps.grp.bias.ratio.total.rkgrp <- 

by(datain$ps.bias.ratio.total,INDICES=rk.grp, mean)   
  rk.grp.bias.ratio.total <- 

by(datain$rk.bias.ratio.total,INDICES=rk.grp, mean)   
   
  # For total: CI coverage 
  ps.grp.CI.coverage.total.rkgrp <- 

by(datain$ps.total.CI.coverage,INDICES=rk.grp, mean)   
  rk.grp.CI.coverage.total <- 

by(datain$rk.total.CI.coverage,INDICES=rk.grp, mean) 
   
  ps.grp.CI.coverage.total.rkgrp.SSW <- 

by(datain$ps.total.CI.coverage.SSW,INDICES=rk.grp, mean)   
   
  bygroup.total <- data.frame(cbind(ps.grp.rel.bias.total.rkgrp, 

rk.grp.rel.bias.total, ps.grp.bias.ratio.total.rkgrp, 
rk.grp.bias.ratio.total, ps.grp.CI.coverage.total.rkgrp, 
rk.grp.CI.coverage.total, ps.grp.Distance.rkgrp, 
rk.grp.Distance, pop.grp.OR.rkgrp, resp.grp.OR.rkgrp, 
ps.grp.OR.rkgrp, rk.grp.OR, ps.grp.R2.main.rkgrp, 
ps.grp.R2.int.rkgrp, rk.grp.R2.main, rk.grp.R2.int, 
ps.grp.CI.coverage.total.rkgrp.SSW)) 

  detach(datain) 
   
  ifelse(stat==1, return(bygroup.mean), return(bygroup.total)) 
} 
 
groups.greg <- function (datain, stat){ 
   
  attach(datain) 
   
  ps.grp.Distance.greggrp <- 

by(datain$ps.Distance.Chap4.est,INDICES=greg.grp, mean) 
  greg.grp.Distance <- 

by(datain$greg.Distance.Chap4.est,INDICES=greg.grp, mean)   
   
  # Odds ratio 
  pop.grp.OR.greggrp <- by(datain$pop.OR,INDICES=greg.grp, mean)  
  resp.grp.OR.greggrp <- by(datain$resp.OR,INDICES=greg.grp, mean)   
  ps.grp.OR.greggrp <- by(datain$ps.OR,INDICES=greg.grp, mean)   
  greg.grp.OR <- by(datain$greg.OR,INDICES=greg.grp, mean)  
   
  # R-squared 
  ps.grp.R2.main.greggrp <- by(datain$ps.R2.main,INDICES=greg.grp, 

mean)  
  ps.grp.R2.int.greggrp <- by(datain$ps.R2.int,INDICES=greg.grp, mean)  
  greg.grp.R2.main <- by(datain$greg.R2.main,INDICES=greg.grp, mean)  
  greg.grp.R2.int <- by(datain$greg.R2.int,INDICES=greg.grp, mean)  
   
  # For mean: bias 
  ps.grp.rel.bias.mean.greggrp <- 

by(datain$ps.rel.bias.mean,INDICES=greg.grp, mean) 
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  greg.grp.rel.bias.mean <- 
by(datain$greg.rel.bias.mean,INDICES=greg.grp, mean)  

   
  # For mean: bias ratio  
  ps.grp.bias.ratio.mean.greggrp <- 

by(datain$ps.bias.ratio.mean,INDICES=greg.grp, mean)   
  greg.grp.bias.ratio.mean <- 

by(datain$greg.bias.ratio.mean,INDICES=greg.grp, mean)   
   
  # For mean: CI coverage  
  ps.grp.CI.coverage.mean.greggrp <- 

by(datain$ps.mean.CI.coverage,INDICES=greg.grp, mean)   
  greg.grp.CI.coverage.mean <- 

by(datain$greg.mean.CI.coverage,INDICES=greg.grp, mean)   
   
  bygroup.mean <- data.frame(cbind(ps.grp.rel.bias.mean.greggrp, 

greg.grp.rel.bias.mean, ps.grp.bias.ratio.mean.greggrp, 
greg.grp.bias.ratio.mean,ps.grp.CI.coverage.mean.greggrp, 
greg.grp.CI.coverage.mean, ps.grp.Distance.greggrp, 
greg.grp.Distance, pop.grp.OR.greggrp, 
resp.grp.OR.greggrp, ps.grp.OR.greggrp, greg.grp.OR, 
ps.grp.R2.main.greggrp, ps.grp.R2.int.greggrp, 
greg.grp.R2.main, greg.grp.R2.int)) 

   
   
  # For total: bias 
  ps.grp.rel.bias.total.greggrp <- 

by(datain$ps.rel.bias.total,INDICES=greg.grp, mean) 
  greg.grp.rel.bias.total <- 

by(datain$greg.rel.bias.total,INDICES=greg.grp, mean)   
   
  # For total: bias ratio  
  ps.grp.bias.ratio.total.greggrp <- 

by(datain$ps.bias.ratio.total,INDICES=greg.grp, mean)   
  greg.grp.bias.ratio.total <- 

by(datain$greg.bias.ratio.total,INDICES=greg.grp, mean)   
   
  # For total: CI coverage 
  ps.grp.CI.coverage.total.greggrp <- 

by(datain$ps.total.CI.coverage,INDICES=greg.grp, mean)   
  greg.grp.CI.coverage.total <- 

by(datain$greg.total.CI.coverage,INDICES=greg.grp, mean)  
   
  ps.grp.CI.coverage.total.greggrp.SSW <- 

by(datain$ps.total.CI.coverage.SSW,INDICES=greg.grp, 
mean)   

   
  bygroup.total <- data.frame(cbind(ps.grp.rel.bias.total.greggrp, 

greg.grp.rel.bias.total, ps.grp.bias.ratio.total.greggrp, 
greg.grp.bias.ratio.total, 
ps.grp.CI.coverage.total.greggrp, 
greg.grp.CI.coverage.total, ps.grp.Distance.greggrp, 
greg.grp.Distance, pop.grp.OR.greggrp, 
resp.grp.OR.greggrp, ps.grp.OR.greggrp, greg.grp.OR, 
ps.grp.R2.main.greggrp, ps.grp.R2.int.greggrp, 
greg.grp.R2.main, greg.grp.R2.int, 
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ps.grp.CI.coverage.total.greggrp.SSW)) 

  detach(datain) 
   
  ifelse(stat==1, return(bygroup.mean), return(bygroup.total)) 
} 
 
 

B.4 A Program for Calling the Program in B.3 to Produce Results over Repeated 
Sampling 

 

This program is used in Chapters 3 and 4. 

 
# Set up an empty matrix to store overall summary statistics 
eval <- matrix (nrow=68, ncol=49) 
  colnames(eval) <- c("ID", "pop.truth", 
                      "resp.bias", "ps.bias",  "greg.bias", "rk.bias", 

"rk.bias.rake", "resp.se", "ps.se", "greg.se", "rk.se", 
"rk.se.rake", "ps.sqrt.mse",  "greg.sqrt.mse", 
"rk.sqrt.mse", "ps.bias.ratio", "greg.bias.ratio", 
"rk.bias.ratio", "ps.CI.coverage", "greg.CI.coverage", 
"rk.CI.coverage", "respcnt11", "respcnt12", "respcnt21", 
"respcnt22", "pop.OR", "resp.OR", "ps.OR", "greg.OR", 
"rk.OR", "ps.Distance.Chap4.EmpVar", 
"rk.Distance.Chap4.EmpVar", "greg.Distance.Chap4.EmpVar", 

               "ps.Distance.Chap4.est", "rk.Distance.Chap4.est", 
"greg.Distance.Chap4.est","rk.Distance.est.LG384", 
"rk.Distance.est.LG663", "greg.Distance.est.LG384", 
"greg.Distance.est.LG663","ps.R2.main", "rk.R2.main", 
"greg.R2.main", "ps.R2.int", "rk.R2.int", "greg.R2.int", 

               "CheckLumley.ps.se", "CheckLumley.ps.se.SSW", 
"ps.CI.coverage.total.SSW") 

   
  eval[1, "ID"] <-  "MEAN -- Y_Main, R_scenario  1: R11=1.0000, 

R12=1.0000, R21=1.0000, R22=1.0000, DIFF=0.0000, 
OR=1.0000" 

  # R code not shown for filling in MEAN – Y_Main, R_scenarios 2 
through 16.   

  eval[17, "ID"] <- "MEAN -- Y_Main, R_scenario 17: R11=0.0200, 
R12=0.5800, R21=0.6600, R22=0.7400, DIFF=-0.4800, 
OR=0.0387" 

   
  eval[18, "ID"] <-  "MEAN -- Y_Interaction, R_scenario  1: R11=1.0000, 

R12=1.0000, R21=1.0000, R22=1.0000, DIFF=0.0000, 
OR=1.0000" 

   # R code not shown for filling in MEAN – Y_Interaction, R_scenarios 
2 through 16.   

   eval[34, "ID"] <- "MEAN -- Y_Interaction, R_scenario 17: R11=0.0200, 
R12=0.5800, R21=0.6600, R22=0.7400, DIFF=-0.4800, 
OR=0.0387" 
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   eval[35, "ID"] <-  "TOTAL -- Y_Main, R_scenario  1: R11=1.0000, 
R12=1.0000, R21=1.0000, R22=1.0000, DIFF=0.0000, 
OR=1.0000" 

   # R code not shown for filling in TOTAL – Y_MAIN, R_scenarios 2 
through 16.   

   eval[51, "ID"] <- "TOTAL -- Y_Main, R_scenario 17: R11=0.0200, 
R12=0.5800, R21=0.6600, R22=0.7400, DIFF=-0.4800, 
OR=0.0387" 

 
   eval[52, "ID"] <-  "TOTAL -- Y_Interaction, R_scenario  1: 

R11=1.0000, R12=1.0000, R21=1.0000, R22=1.0000, 
DIFF=0.0000, OR=1.0000" 

   # R code not shown for filling in TOTAL – Y_Interaction, R_scenarios 
2 through 16.   

   eval[68, "ID"] <- "TOTAL -- Y_Interaction, R_scenario 17: 
R11=0.0200, R12=0.5800, R21=0.6600, R22=0.7400, DIFF=-
0.4800, OR=0.0387" 

 
 
# Obtain results  
# Y main, R 100%   
  ymain.r01.rslt <- all.info(datain=ymain.r01.out$rslt) 
  # R code not shown for ymain.r02.rslt through ymain.r16.rslt 
  ymain.r17.rslt <- all.info(datain=ymain.r17.out$rslt) 
 
 
  yint.r01.rslt <- all.info(datain=yint.r01.out$rslt) 
  # R code not shown for yint.r02.rslt through yint.r16.rslt 
  yint.r17.rslt <- all.info(datain=yint.r17.out$rslt) 
 
  eval[1,2:46] <- overall(datain=ymain.r01.rslt, stat=1) 
  … 
  eval[17,2:46] <- overall(datain=ymain.r17.rslt, stat=1) 
 
  eval[18,2:46] <- overall(datain=yint.r01.rslt, stat=1) 
  … 
  eval[34,2:46] <- overall(datain=yint.r17.rslt, stat=1) 
 
  eval[35,2:49] <- overall(datain=ymain.r01.rslt, stat=2) 
  … 
  eval[51,2:49] <- overall(datain=ymain.r17.rslt, stat=2) 
 
  eval[52,2:49] <- overall(datain=yint.r01.rslt, stat=2) 
  … 
  eval[68,2:49] <- overall(datain=yint.r17.rslt, stat=2) 
 
overall.result <- data.frame(eval) 
write.csv(overall.result, file = 

"D:\\Dissertation\\CompareThreeCalibrationEstimators\\Sim
ulation\\OverallResult_DistanceMeasureIncluded.csv") 
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B.5 A Program for Calling the Programs in B.1 and B.3 to Produce Results 
Conditioning on Samples Grouped by Estimated Distance Measure 

 

This program is used in Chpater 4. 

 
library(ResourceSelection) 
 
kk <- 10000   # kk: repetition of simulation 
nn1 <- 200   # nn1, nn2, nn3: SRS sample size 
nn2 <- 2000 
nn3 <- 8000 
 
# Call pop.and.control to generate population (x, y and response model) 

and control totals  
# ymu=1000, yalpha=c(-200,300), ybeta=c(-100,150), 

ygamma=c(100,700,300,1200) 
# We use only Y_Additive_Interaction model here. 
 
# response scenarios: 
# Scenario  p11 p12 p21 p22 diff OR 
# 11 0.56000.6400 0.3600 0.4400 0.0000 1.0694 
 
# Scenarios under "Y int": 
# 11  0.56000.6400 0.3600 0.4400 0.0000 1.0694 
yint.r11 <-  pop.and.control(seed=41151515, lambda=10000, lambda_i=c(0, 

0), lambda_j=c(0, 0), lambda_ij=matrix(c(0,0,0,0), nrow = 
2, ncol = 2), yseed=15157552, ymu=1000, yalpha=c(-
200,300), ybeta=c(-100,150), ygamma=c(100,700,300,1200), 
ysigma=30, rmeans = c(0.5600,  0.6400, 0.3600,
 0.4400)) 

 
# Call function srs.resp.calib (select sample, calibrate, and save 

summary statistics) 
# popinfo, srsinfo, respinfo: dataset plus some control totals 
# popdata, srsdata: dataset 
# k: repetition of simulation 
# srs.size: SRS sample size 
 
yint.r11.out.200 <- srs.resp.calib (benchmark=yint.r11, k=kk, 

srs.size=nn1) 
yint.r11.out.2000 <- srs.resp.calib (benchmark=yint.r11, k=kk, 

srs.size=nn2) 
yint.r11.out.8000 <- srs.resp.calib (benchmark=yint.r11, k=kk, 

srs.size=nn3) 
 
# SRS n = 8000, Y_Interaction, response scenario S11 
  yint.r11.rslt.8000 <- all.info(datain=yint.r11.out.8000$rslt) 
  grp.mean.rk <- groups.rk(datain=yint.r11.rslt.8000, stat=1)  
  grp.mean.greg <- groups.greg(datain=yint.r11.rslt.8000, stat=1)  
  grp.total.rk <- groups.rk(datain=yint.r11.rslt.8000, stat=2)  
  grp.total.greg <- groups.greg(datain=yint.r11.rslt.8000, stat=2)  
 
# SRS n = 2000, Y_Interaction, response scenario S11 
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  yint.r11.rslt.2000 <- all.info(datain=yint.r11.out.2000$rslt) 
  grp.mean.rk <- groups.rk(datain=yint.r11.rslt.2000, stat=1)  
  grp.mean.greg <- groups.greg(datain=yint.r11.rslt.2000, stat=1)  
  grp.total.rk <- groups.rk(datain=yint.r11.rslt.2000, stat=2)  
  grp.total.greg <- groups.greg(datain=yint.r11.rslt.2000, stat=2)  
 
  save(yint.r11.rslt.8000, yint.r11.rslt.2000, 

file="D:\\Dissertation\\CompareThreeCalibrationEstimators
\\Simulation\\ConditioningOnSample\\CondOnSmp.RData") 

   
# Graphs relative bias and bias ratio by type of samples based on 

distance measure.  I do this only for totals because I 
don't plan to include graphs for the means in the 
writing. 

 
# Rel bias vs distance 
 
png(file = 

"D:\\Dissertation\\CompareThreeCalibrationEstimators\\Sim
ulation\\ConditioningOnSample\\Yint_R11_RelBias.png") 

#win.metafile(filename="D:\\Dissertation\\CompareThreeCalibrationEstima
tors\\Simulation\\ConditioningOnSample\\Yint_R11_RelBias.
emf") 

par(mfrow=c(2,4), oma=c(2, 2, 2, 0), mar=c(3, 3, 2, 1), mgp=c(2, 0.5, 
0)) 

 
attach(yint.r11.rslt.8000) 
 
table(greg.grp) 
greg.grp.max <- by (greg.Distance.Chap4.est, INDICES=greg.grp.num, max) 
greg.v.lines.20 <- as.vector(greg.grp.max) 
greg.v.lines <- greg.v.lines.20[c(5, 10, 15)] 
 
table(rk.grp) 
rk.grp.max <- by (rk.Distance.Chap4.est, INDICES=rk.grp.num, max) 
rk.v.lines.20 <- as.vector(rk.grp.max) 
rk.v.lines <- rk.v.lines.20[c(5, 10, 15)] 
 
h.lines <- c(-1.96, -1.64, -1.28, 0, 1.28,1.64, 1.96) 
 
plot(rk.Distance.Chap4.est, ps.rel.bias.total, ylab="SRS n = 8,000", 

xlab="", ylim=c(-0.025, 0.025), cex=0.3) 
abline(v=rk.v.lines, col = "lightgray") 
title(main="1) Poststratification", col.main="purple", font.main=2, 

line=1) 
 
plot(greg.Distance.Chap4.est, ps.rel.bias.total, ylab="", xlab="", 

ylim=c(-0.025, 0.025), cex=0.3) 
abline(v=greg.v.lines, col = "lightgray") 
title(main="2) Poststratification", col.main="purple", font.main=2, 

line=1) 
 
plot(rk.Distance.Chap4.est, rk.rel.bias.total, ylab="", xlab="", 

ylim=c(-0.025, 0.025), cex=0.3) 
abline(v=rk.v.lines, col = "lightgray") 
title(main="3) Raking", col.main="purple", font.main=2, line=1)  
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plot(greg.Distance.Chap4.est, greg.rel.bias.total, ylab="", xlab="", 
ylim=c(-0.025, 0.025), cex=0.3) 

abline(v=greg.v.lines, col = "lightgray") 
title(main="4) GREG_Main", col.main="purple", font.main=2, line=1)  
 
detach(yint.r11.rslt.8000) 
 
# R code for SRS sample size 2000 is not shown here, but similar to the 

R code for SRS sample size 8000.  
 
mtext("Absolute Value of Relative Bias", side=2, font=2, line=1, 

outer=TRUE) 
mtext("Distance Measure", side=1, font=2, line=1, outer=TRUE) 
 
dev.off() 
 
# Bias ratio vs Distance.Chap4.est 
 
png(file = 

"D:\\Dissertation\\CompareThreeCalibrationEstimators\\Sim
ulation\\ConditioningOnSample\\Yint_R11_BiasRatio.png") 

#win.metafile(filename="D:\\Dissertation\\CompareThreeCalibrationEstima
tors\\Simulation\\ConditioningOnSample\\Yint_R11_BiasRati
o.emf") 

par(mfrow=c(2,4), oma=c(2, 2, 2, 0), mar=c(3, 3, 2, 1), mgp=c(2, 0.5, 
0)) 

 
######################################### 
attach(yint.r11.rslt.8000) 
 
table(greg.grp) 
greg.grp.max <- by (greg.Distance.Chap4.est, INDICES=greg.grp.num, max) 
greg.v.lines.20 <- as.vector(greg.grp.max) 
greg.v.lines <- greg.v.lines.20[c(5, 10, 15)] 
 
table(rk.grp) 
rk.grp.max <- by (rk.Distance.Chap4.est, INDICES=rk.grp.num, max) 
rk.v.lines.20 <- as.vector(rk.grp.max) 
rk.v.lines <- rk.v.lines.20[c(5, 10, 15)] 
 
h.lines <- c(-1.96, -1.64, -1.28, 0, 1.28,1.64, 1.96) 
 
plot(rk.Distance.Chap4.est, ps.bias.ratio.total, ylab="SRS n = 8,000", 

xlab="", ylim=c(-6, 6), cex=0.3) 
abline(v=rk.v.lines, col = "lightgray") 
title(main="1) Poststratification", col.main="purple", font.main=2, 

line=1) 
 
plot(greg.Distance.Chap4.est, ps.bias.ratio.total, ylab="", xlab="", 

ylim=c(-6, 6), cex=0.3) 
abline(v=greg.v.lines, col = "lightgray") 
title(main="2) Poststratification", col.main="purple", font.main=2, 

line=1) 
 
plot(rk.Distance.Chap4.est, rk.bias.ratio.total, ylab="", xlab="", 

ylim=c(-6, 6), cex=0.3) 
abline(v=rk.v.lines, col = "lightgray") 
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title(main="3) Raking", col.main="purple", font.main=2, line=1)  
 
plot(greg.Distance.Chap4.est, greg.bias.ratio.total, ylab="", xlab="", 

ylim=c(-6, 6), cex=0.3) 
abline(v=greg.v.lines, col = "lightgray") 
title(main="4) GREG_Main", col.main="purple", font.main=2, line=1)  
 
detach(yint.r11.rslt.8000) 
 
# R code for SRS sample size 2000 is not shown here, but similar to the 

R code for SRS sample size 8000.  
 
mtext("Absolute Value of Bias Ratio", side=2, font=2, line=1, 

outer=TRUE) 
mtext("Distance Measure", side=1, font=2, line=1, outer=TRUE) 
 
dev.off() 
 
 

B.6  A Function to Adapt the Program in B.1 for Comparing Measures from Different 
Raking Variance Estimation Methods 

 

This function is used in Chapter 5. 

 
############################################################### 
# Function for SRS sampling from population and respondent sampling 
############################################################### 
 
srs.smp <- function(srsseed, popdata, n, repnum){ 
   
  srs.bad <- FALSE 
   
  N <- nrow(popdata) 
  s <- srswor(n, N) 
  bwgt <- rep (N/n, n) 
  f1 <- rep (n/N, n) 
   
  srs.smp <- data.frame(popdata[s==1,], bwgt, f1) 
  srs.totals <- xtabs(~xvar1 + xvar2, data = srs.smp) 
   
  # Form design object for JKn   
  # randomize the order of the sample (although this may not be 

necessary for SRS sample, but I did this to make sure) 
  # "sample" can randomize the order of the vector 
  # "1:n" add a sequential number indicating the order of the record 

after random sorting 
  number <- 1:n 
  srs.smp.JK1 <- data.frame(srs.smp[sample(1:n), ], number, 

psu=ceiling(number/(n/repnum))) 
   
  # TS design 
  TS.dsgn <- svydesign( 
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    ids = ~0, # No cluster  
    strata = NULL, # No strata 
    # fpc = ~f1, 
    weights = ~bwgt, 
    data = srs.smp) 
 
  #JK1  
  dsgn <- svydesign( 
    ids = ~psu,  
    strata = NULL, # No strata 
    # fpc = ~f1, 
    weights = ~bwgt, 
    data = srs.smp.JK1) 
   
  JK1.dsgn <- as.svrepdesign(design=dsgn, type="JK1") 
 
  if (srs.totals[1, 1]<2 | srs.totals[1, 2]<2 | srs.totals[2, 1]<2 | 

srs.totals[2, 2]<2){ 
    srs.bad <- TRUE 
  } 
  return(list(srs.bad=srs.bad, srs.smp=srs.smp, srs.totals=srs.totals, 

TS.dsgn=TS.dsgn, JK1.dsgn=JK1.dsgn)) 
} 
 
resp.smp <- function (srsdata, TS.dsgn, JK1.dsgn){ 
   
  resp.bad <- FALSE 
   
  resp.indic <- srsdata["respflag"] > 0  
  resp.smp <- srsdata[resp.indic==1, ]   
   
  resp.totals <- xtabs(~xvar1 + xvar2, data = resp.smp) 
   
  # design objects for response sample 
  TS.dsgn.resp <- subset(TS.dsgn, respflag>0) 
  JK1.dsgn.resp <- subset(JK1.dsgn, respflag>0) 
   
  if (resp.totals[1, 1]<2 | resp.totals[1, 2]<2 | resp.totals[2, 1]<2 | 

resp.totals[2, 2]<2){ 
    resp.bad <- TRUE 
  } 
  return(list(resp.bad=resp.bad, resp.smp=resp.smp, 

resp.totals=resp.totals, TS.dsgn.resp=TS.dsgn.resp, 
JK1.dsgn.resp=JK1.dsgn.resp)) 

} 
  
################################################################ 
# Function for calibration and obtaining summary statistics  
################################################################ 
 
calib <- function(respinfo, popinfo, srsinfo, TS.dsgn.resp, 

JK1.dsgn.resp){ 
   
  # Calibration TS approach 
  TS.ps.dsgn <- postStratify(design = TS.dsgn.resp, strata = ~xvar1 + 

xvar2, population = popinfo$totals.xvar1xvar2, 
partial=TRUE) 
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  TS.ps.wgt <- weights(TS.ps.dsgn)   
 
  TS.rk.dsgn <- calibrate(design = TS.dsgn.resp, formula = ~xvar1 + 

xvar2, population = c('(Intercept)'=nrow(popinfo$pop), 
xvar12=sum(popinfo$totals.xvar1xvar2[2,]), 
xvar22=sum(popinfo$totals.xvar1xvar2[,2])), 
calfun="raking") 

  TS.rk.wgt <- weights(TS.rk.dsgn) 
   
  TS.greg.dsgn <- calibrate(design = TS.dsgn.resp, formula = ~xvar1 + 

xvar2, population = c('(Intercept)'=nrow(popinfo$pop), 
xvar12=sum(popinfo$totals.xvar1xvar2[2,]), 
xvar22=sum(popinfo$totals.xvar1xvar2[,2])), 
calfun="linear") 

  TS.greg.wgt <- weights(TS.greg.dsgn) 
   
  # Calibration JK1 approach 
  JK1.ps.dsgn <- postStratify(design = JK1.dsgn.resp, strata = ~xvar1 + 

xvar2, population = popinfo$totals.xvar1xvar2, 
partial=TRUE) 

  JK1.ps.wgt <- weights(JK1.ps.dsgn)   
   
  JK1.rk.dsgn <- calibrate(design = JK1.dsgn.resp, formula = ~xvar1 + 

xvar2, population = c('(Intercept)'=nrow(popinfo$pop), 
xvar12=sum(popinfo$totals.xvar1xvar2[2,]), 
xvar22=sum(popinfo$totals.xvar1xvar2[,2])), 
calfun="raking") 

  JK1.rk.wgt <- weights(JK1.rk.dsgn) 
   
  JK1.greg.dsgn <- calibrate(design = JK1.dsgn.resp, formula = ~xvar1 + 

xvar2, population = c('(Intercept)'=nrow(popinfo$pop), 
xvar12=sum(popinfo$totals.xvar1xvar2[2,]), 
xvar22=sum(popinfo$totals.xvar1xvar2[,2])), 
calfun="linear") 

  JK1.greg.wgt <- weights(JK1.greg.dsgn) 
   
  ##################### 
  # Summary statistics 
  ##################### 
  # Total 
  pop.total <- sum(popinfo$pop[,"y"]) 
  rk.total <- rk.total <- svytotal(~y, TS.rk.dsgn) 
   
  rk.Nrc <- svytable(~xvar1 + xvar2, TS.rk.dsgn) 
  rk.Diff.Nrc = rk.Nrc - popinfo$totals.xvar1xvar2 
   
  #### TS approach #### 
  TS.rk.total.se <- SE(svytotal(~y, TS.rk.dsgn))           # SE using 

Lumley TS approach 
  TS.rk.total.CI <- confint(svytotal(~y, TS.rk.dsgn))          # CI 

using Lumley TS approach 
  TS.rk.total.CI.coverage <- ifelse(TS.rk.total.CI[1]<=pop.total & 

pop.total<=TS.rk.total.CI[2], 1, 0)     # CI coverage 
using Lumley TS approach 

  TS.rk.Distance <- (rk.Diff.Nrc[1,1]/SE(svytotal(~x11, TS.rk.dsgn)))^2   
# Distance measure Lumley TS approach 
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  #### JK1 approach #### 
  JK1.rk.total.se <- SE(svytotal(~y, JK1.rk.dsgn))         # SE using 

JK1 approach 
  JK1.rk.total.CI <- confint(svytotal(~y, JK1.rk.dsgn))          # CI 

using JK1 approach 
  JK1.rk.total.CI.coverage <- ifelse(JK1.rk.total.CI[1]<=pop.total & 

pop.total<=JK1.rk.total.CI[2], 1, 0)     # CI coverage 
using JK1 approach 

  JK1.rk.Distance <- (rk.Diff.Nrc[1,1]/SE(svytotal(~x11, 
JK1.rk.dsgn)))^2   # Distance measrue JK1 approach 

   
  #### SEs using four different approaches in DArrigo and Skinner #### 
  # obtain residuals #  
  resp.resid <- data.frame(respinfo$resp.smp, TS.rk.wgt) 
 
  # residuals from regression model using base weights   
  bwgt.reg.resid <- residuals(svyglm(y~xvar1+xvar2, 

design=TS.dsgn.resp)) 
   
  # residuals from regression model using raked weights   
  rkwgt.reg.resid <- residuals(svyglm(y~xvar1+xvar2, 

design=(svydesign(ids = ~0, # No cluster 
                                                                       

strata = NULL, # No strata 
                                                                       

# fpc = ~f1, 
                                                                       

weights = ~TS.rk.wgt, 
                                                                       

data = resp.resid)))) 
   
  # Create design objects #  
  resp.resid.wgt <- data.frame(resp.resid, bwgt.reg.resid, 

rkwgt.reg.resid) 
   
  # Design object with base weights (to be used for weighting 

residuals) 
  bwgt.resid.dsgn <- svydesign(ids = ~0, # No cluster 
                             strata = NULL, # No strata 
                             # fpc = ~f1, 
                             weights = ~bwgt, 
                             data = resp.resid.wgt) 
   
  # Design object with raked weights (to be used for weighting 

residuals) 
  rkwgt.resid.dsgn <- svydesign(ids = ~0, # No cluster 
                              strata = NULL, # No strata 
                              # fpc = ~f1, 
                              weights = ~TS.rk.wgt, 
                              data = resp.resid.wgt) 
   
  # base weights for weighting residuals & base weights for regression 

model  
  Bresid.Breg.rk.total.se <- SE(svytotal(~bwgt.reg.resid, 

bwgt.resid.dsgn))  
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  # base weights for weighting residuals & raked weights for regression 
model 

  Bresid.RKreg.rk.total.se <- SE(svytotal(~rkwgt.reg.resid, 
bwgt.resid.dsgn)) 

   
  # raked weights for weighting residuals & base weights for regression 

model  
  RKresid.Breg.rk.total.se <- SE(svytotal(~bwgt.reg.resid, 

rkwgt.resid.dsgn)) 
   
  # raked weights for weighting residuals & raked weights for 

regression model 
  RKresid.RKreg.rk.total.se <- SE(svytotal(~rkwgt.reg.resid, 

rkwgt.resid.dsgn)) 
   
  # vector to return, for estimates of totals 
  results.total <- vector(length=19) 
   
  results.total[1] <- pop.total 
  results.total[2] <- rk.total 
  results.total[3] <- TS.rk.total.se 
  results.total[4] <- TS.rk.total.CI.coverage 
  results.total[5] <- TS.rk.Distance 
   
  results.total[6] <- JK1.rk.total.se 
  results.total[7] <- JK1.rk.total.CI.coverage 
  results.total[8] <- JK1.rk.Distance 
   
  results.total[9] <- Bresid.Breg.rk.total.se 
  results.total[10] <- Bresid.RKreg.rk.total.se 
  results.total[11] <- RKresid.Breg.rk.total.se 
  results.total[12] <- RKresid.RKreg.rk.total.se  
   
  results.total[13] <- mean(bwgt.reg.resid) 
  results.total[14] <- var(bwgt.reg.resid) 
  results.total[15] <- mean(bwgt.reg.resid^2) 
   
  results.total[16] <- mean(rkwgt.reg.resid) 
  results.total[17] <- var(rkwgt.reg.resid) 
  results.total[18] <- mean(rkwgt.reg.resid^2) 
   
  results.total[19] <- rk.Diff.Nrc[1,1] 
  return (t(results.total)) 
} 
 
####################################################################### 
# Function for calling srs.smp, resp.smp, calib during each simulation 
####################################################################### 
 
srs.resp.calib <- function (benchmark, k, srs.size, repnum){ 
   
  S <- k      # number of good samples to keep 
  s <- 1 
  bad.smp <- 0 
   
  # An empty matrix to store results.   
  rslt <- matrix(nrow=S, ncol=19) 
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  colnames(rslt) <- c("pop.total",  
                      "rk.total", 
                       
                      "TS.rk.total.se", 
                      "TS.rk.total.CI.coverage", 
                      "TS.rk.Distance", 
                       
                      "JK1.rk.total.se", 
                      "JK1.rk.total.CI.coverage", 
                      "JK1.rk.Distance", 
                       
                      "Bresid.Breg.rk.total.se", 
                      "Bresid.RKreg.rk.total.se", 
                      "RKresid.Breg.rk.total.se", 
                      "RKresid.RKreg.rk.total.se", 
                       
                      "mean.bwgt.reg.resid", 
                      "var.bwgt.reg.resid", 
                      "mean.bwgt.reg.resid.squared", 
                       
                      "mean.rkwgt.reg.resid", 
                      "var.rkwgt.reg.resid", 
                      "mean.rkwgt.reg.resid.squared", 
                      "rk.Diff.Nrc11") 
   
  while (s <= S){ 
   
  keep.sw <- TRUE 
   
  # draw srs sample and respondent sample 
  srssmp <- srs.smp(popdata=benchmark$pop, n=srs.size, repnum=repnum) 
  if (srssmp$srs.bad==TRUE){ 
    bad.smp <- bad.smp + 1 
    keep.sw <- FALSE 
  }    
  else { 
    # assign respondent 
    respsmp <- resp.smp (srsdata=srssmp$srs.smp, 

TS.dsgn=srssmp$TS.dsgn, JK1.dsgn=srssmp$JK1.dsgn)  
  } 
   
  if (respsmp$resp.bad==TRUE){ 
    bad.smp <- bad.smp + 1 
    keep.sw <- FALSE   
  } 
   
  else { 
     
  # calibration and save summary statisticis 
  rslt[s, ] <- calib(respinfo=respsmp, popinfo=benchmark, 

srsinfo=srssmp, TS.dsgn.resp=respsmp$TS.dsgn.resp, 
JK1.dsgn.resp=respsmp$JK1.dsgn.resp) 

  
  # increase sample counter 
  s <- s + 1 
  } 
 } 
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 return (list(bad.smp=bad.smp, rslt=rslt)) 
} 
 
 

B.7 A Program in Chapter 5 for Calling the Program That is Adopted from the 
Program in B.1 with the Function in B.6. 

 
 
library(sampling) 
library(survey) 
 
################################################################## 
# Function for creating measures from the S good samples 
################################################################## 
 
all.info <- function(datain){ 
   
  datain <- data.frame(datain)  
  attach(datain) 
   
  # Total: relative bias 
  rk.rel.bias.total <- (rk.total - pop.total)/pop.total 
   
  # Total: relative square root of mse 
  rk.rel.sqrt.mse.total <- sqrt((rk.total - pop.total)^2)/pop.total 
 
  # Total: bias ratio or t-statitics using TS 
  TS.rk.bias.ratio.total = (rk.total - pop.total) / TS.rk.total.se 
 
  # Total: bias ratio or t-statitics using JK1 
  JK1.rk.bias.ratio.total = (rk.total - pop.total) / JK1.rk.total.se 
   
  # Distance Measure using empirical variance from simulation, for 

Chapter 4   
  Emp.rk.Distance <- rk.Diff.Nrc11^2/var(rk.Diff.Nrc11) 
   
  TS.rk.Distance.LG384 <- ifelse(TS.rk.Distance>3.84, 1, 0) 
  TS.rk.Distance.LG663 <- ifelse(TS.rk.Distance>6.63, 1, 0) 
   
  JK1.rk.Distance.LG384 <- ifelse(JK1.rk.Distance>3.84, 1, 0) 
  JK1.rk.Distance.LG663 <- ifelse(JK1.rk.Distance>6.63, 1, 0) 
   
  datafinal <- data.frame(  datain,                             
                            rk.rel.bias.total, 
                            rk.rel.sqrt.mse.total, 
                            TS.rk.bias.ratio.total, 
                            JK1.rk.bias.ratio.total, 
                            Emp.rk.Distance, 
                            TS.rk.Distance.LG384, 
                            TS.rk.Distance.LG663, 
                            JK1.rk.Distance.LG384, 
                            JK1.rk.Distance.LG663) 
   
  detach(datain) 



215 
 

  return(datafinal)   
} 
 
###################################################### 
# Function for generating overall summary statitics 
###################################################### 
 
overall <- function (datain){ 
   
  attach(datain) 
   
  # For total: relative bias, relative standard error, relative square 

root of mse, bias ratio 
  pop.total <- mean(pop.total) 
   
  rk.rel.bias.total <- mean(rk.rel.bias.total)   # relative bias 
   
  rk.rel.sqrt.mse.total <- mean(rk.rel.sqrt.mse.total)  # MSE 
   
  Emp.rk.rel.se.total <- sqrt(var(rk.total))/pop.total      # SE's 
  TS.rk.rel.se.total <- mean(TS.rk.total.se)/pop.total 
  JK1.rk.rel.se.total <- mean(JK1.rk.total.se)/pop.total 
   
  TS.rk.bias.ratio.total <- mean(TS.rk.bias.ratio.total)     # Bias 

ratios 
  JK1.rk.bias.ratio.total <- mean(JK1.rk.bias.ratio.total) 
   
  TS.rk.CI.coverage.total <- mean(TS.rk.total.CI.coverage)   # CI 

coverage 
  JK1.rk.CI.coverage.total <- mean(JK1.rk.total.CI.coverage) 
   
  Emp.rk.Distance <- mean(Emp.rk.Distance)   # Distance measure and 

extreme values 
  TS.rk.Distance <- mean(TS.rk.Distance) 
  JK1.rk.Distance <- mean(JK1.rk.Distance) 
 
  TS.rk.Distance.LG384 <- mean(TS.rk.Distance.LG384) 
  JK1.rk.Distance.LG384 <- mean(JK1.rk.Distance.LG384) 
 
  TS.rk.Distance.LG663 <- mean(TS.rk.Distance.LG663) 
  JK1.rk.Distance.LG663 <- mean(JK1.rk.Distance.LG663) 
   
  ########## Four SEs based on DArrigo and Skinner and diagnostics for 

residuals from regression model   
  # Using base weights on residuals 
  Bresid.Breg.rk.rel.se.total <- 

mean(Bresid.Breg.rk.total.se)/pop.total                 
  Bresid.RKreg.rk.rel.se.total <- 

mean(Bresid.RKreg.rk.total.se)/pop.total 
   
  # Using raked weights on residuals 
  RKresid.Breg.rk.rel.se.total <- 

mean(RKresid.Breg.rk.total.se)/pop.total 
  RKresid.RKreg.rk.rel.se.total <- 

mean(RKresid.RKreg.rk.total.se)/pop.total 
 
  # Mean of residuals from regression model   
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  mean.bwgt.reg.resid <- mean(mean.bwgt.reg.resid) 
  mean.rkwgt.reg.resid <- mean(mean.rkwgt.reg.resid) 
 
  # Variance of residuals from regression model 
  var.bwgt.reg.resid <- mean(var.bwgt.reg.resid) 
  var.rkwgt.reg.resid <- mean(var.rkwgt.reg.resid) 
   
  # Mean of squared residuals from regression model (we calculate this 

because we are not sure if the residuals would sum up to 
zero) 

  mean.bwgt.reg.resid.squared <- mean(mean.bwgt.reg.resid.squared) 
  mean.rkwgt.reg.resid.squared <- mean(mean.rkwgt.reg.resid.squared) 
   
  detach(datain) 
 
  ################################################### 
  evaltotal <- cbind (pop.total, rk.rel.bias.total, 

rk.rel.sqrt.mse.total, 
                      Emp.rk.rel.se.total, TS.rk.rel.se.total, 

JK1.rk.rel.se.total, 
                      TS.rk.bias.ratio.total, JK1.rk.bias.ratio.total, 
                      TS.rk.CI.coverage.total, 

JK1.rk.CI.coverage.total, 
                      Emp.rk.Distance, TS.rk.Distance, JK1.rk.Distance, 
                      TS.rk.Distance.LG384, JK1.rk.Distance.LG384, 
                      TS.rk.Distance.LG663, JK1.rk.Distance.LG663, 
                      Bresid.Breg.rk.rel.se.total, 

Bresid.RKreg.rk.rel.se.total, 
                      RKresid.Breg.rk.rel.se.total, 

RKresid.RKreg.rk.rel.se.total, 
                      mean.bwgt.reg.resid, mean.rkwgt.reg.resid, 
                      var.bwgt.reg.resid, var.rkwgt.reg.resid, 
                      mean.bwgt.reg.resid.squared, 
                      mean.rkwgt.reg.resid.squared) 
                       
  return(evaltotal) 
} 
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