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Chapter 1.0:  Introduction

This thesis is intended to explain one type of the aeroelastic 

phenomenon known as flutter.  The thesis examines two methods for 

determining the bending-torsion flutter frequency and speed of a one-

dimensional, two degree-of-freedom airfoil section.  It points out the 

assumptions, approximations and errors inherent in these methods, and 

demonstrates their use to determine the flutter frequency and speed of six 

example airfoil sections.  Finally, the thesis examines the effects of 

changing the section Center of Gravity (CG) location on the flutter 

frequency and speed of the six airfoil sections.

1.1  Motivation for the thesis

A good deal of information about flutter is readily available in the 

literature.  However, there is a need for an engineering analysis of the 

fundamental flutter mechanism combined with a convenient calculation 

program (in this case, a Mathcad 11 worksheet) that includes as program 

inputs all of the critical characteristics of an airfoil section and produces as 

the output the critical flutter frequency and speed.  The critical flutter 

speed is the speed of airflow that will result in simple harmonic vibration of 

the airfoil section, where the amplitude of vibration is neither increasing 
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nor decreasing.  The critical flutter frequency is the coupled frequency of 

vibration that accompanies this condition.  To provide a meaningful 

comparison of the effects of using quasi-steady or unsteady aerodynamic 

forces, this methodology must calculate the flutter frequency and speed 

using both methods of defining the aerodynamic forces and moments.  

(Section 3.6 provides details of the aerodynamic forces and moments for 

each case.)  This thesis seeks to fulfill this requirement by providing a 

parallel analysis of flutter characteristics for all six airfoil sections.  

1.2  Objectives of the thesis

The four primary goals of this thesis are: 1) To show how the 

elastic, inertial and aerodynamic forces and moments acting on a one-

dimensional airfoil section in two-dimensional airflow interplay to produce 

bending-torsion flutter; 2) To demonstrate two methods of calculating the 

critical flutter frequency and speed by the use of a programmed Mathcad 

11 worksheet; 3)  To determine the critical flutter frequency and speed of 

six example sections and compare the results of using quasi-steady and 

unsteady aerodynamic forces; and 4) To study the effects of Center of 

Gravity shift along the section chord for each section.
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1.3  Thesis Organization

In support of these primary goals, Section Two provides a 

description of the basic characteristics of flutter, with a particular emphasis 

on those which distinguish it from other types of vibrations.  The 

characteristics of the basic model and its limitations are described.  

Section Three derives two solution methods for determining the flutter 

frequency and speed.  Lagrange’s Equation provides the basis for the 

equations of motion.  With the applicable quasi-steady or unsteady 

aerodynamic forces, the characteristic equation is produced.  In both force 

cases, the solution to this equation yields the flutter frequency and speed.  

Additionally, the approximations, assumptions, limitations and sources of 

error in each of the two methods are identified and explained.  Section 

Four examines six example sections, with the flutter frequency and speed 

calculated using both quasi-steady and unsteady aerodynamic forces.  In 

support of the Center of Gravity study, plots of flutter speed as a function 

of CG position are provided for both cases.

1.4  Chapter Summary

It is hoped that this thesis will provide an overall understanding of 

what flutter is, how the critical flutter frequency and speed may be 
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mathematically determined, and how the structural, inertial, and 

aerodynamic parameters of the section determine the critical flutter 

frequency and speed.  Through knowledge of these relationships, better 

design choices are made and greater understanding of flutter is promoted.
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Chapter 2.0:  A Fundamental Description of Flutter

Many people have had firsthand opportunity to observe the 

phenomenon of aeroelasticity, which is the structural deformation of an 

airframe due to aerodynamic forces.  For example, as an airline 

passenger, one frequently witnesses the bending of the aircraft wing while 

in flight.  A less obvious aerodynamic structural deflection of the airframe, 

not so readily observed but equally real, is the torsional rotation of the 

wing under the same conditions.  It is the relationship between the 

bending and torsional motions of the wing that is the basis for bending-

torsion flutter.

2.1 Types of Aeroelasticity

To fully appreciate the forces and structural responses involved in 

flutter, it is important to distinguish it among the different types of possible 

aeroelasticity phenomena.  Figure 2.1, adapted from Reference 17, 

illustrates the multiple relationships that exist among the forces and 

responses involved in static and dynamic aeroelasticity.
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Aerodynamic
     Forces

Elastic
Forces

Inertial
ForcesStructural

Vibrations

   Dynamic
Aeroelasticity

Aircraft dynamic
      stability

     Static
Aeroelasticity

Flutter
Buffeting
Dynamic response
Aeroelastic effects on
dynamic stability

Static divergence
Load redistribution
Control reversal and
effectiveness
Aeroelastic effects on
static stability

Figure 2.1:  Summary of forces and responses.

This diagram is helpful in discerning between flutter (a dynamic 

structural response characterized by divergent oscillations) and the other 

types of aeroelastic structural responses possible, such as structural 

vibrations and static aeroelasticity.  The main difference is that flutter 

involves the interplay of all three forces shown (elastic, inertial, and 

aerodynamic), where the structural response is, as a function of the speed 

of the airflow, in the form of a harmonic (constant amplitude) oscillation or 

a divergent oscillation of the structure.

Since aircraft structures must be light, they are flexible.  

Additionally, the thin airfoils sections required for high design speeds 
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encourage flexibility.  This lack of stiffness leads to vibration, simply 

defined as any periodic motion of the structure. Vibration is the origin of 

flutter.  A vibratory mode is a particular way all the components of the 

airframe structure vibrate at the same frequency.  The vibratory modes of 

a given aircraft are often identified through a combination of analysis and 

ground vibration tests.  After predicting the natural frequencies of vibration 

analytically, the ground vibration tests confirm the actual natural 

frequencies arising as a function of the configuration of the airplane.  A 

conventionally configured airplane is defined in this thesis as a braced or 

cantilever monoplane with the tail assembly located at the aft end of the 

fuselage.  In such an airplane, the combination of bending and torsional 

vibrations of the wings, fuselage and control surfaces lead to the most 

common forms of flutter, as described below.  After the vibratory modes 

are determined, the analyst decides what degrees of freedom (DOF) will 

be necessary in a given analysis, and then uses generalized coordinates 

to mathematically define the motions of the structure.   A generalized

coordinate is defined as any coordinate required to completely specify the 

configuration of the system at any particular time.

Coupling unites the motions of the DOF to produce a new, unique 

coupled frequency of vibration, which is a function of the elastic, inertial 

and aerodynamic forces and moments in combination within the structure.  
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Thus, the vibratory modes of the components of the airframe are the 

foundations of the structural vibrations that lead to flutter.  Vibration itself 

is not flutter, but vibration, combined by coupling to affect energy transfer 

from the airstream, is required for two degree-of-freedom flutter to occur.   

This important distinction is made by Figure 2.1, since unforced structural 

vibrations alone are not the equivalent of flutter, because they lack the 

component of aerodynamic forces.  Similarly, static divergence lacks the 

inertial component, as it involves only aerodynamic and elastic forces.  

Although it shares many of the forces seen in flutter in its basic 

mechanics, it must be distinguished from flutter since it is not a dynamic 

aeroelastic phenomenon.  Only flutter, and the other forms of dynamic 

aeroelasticity shown, combine all three forces in the structural response.

2.2  Distinctive Characteristics of Classical Airfoil Section Flutter

Certain characteristics of the classical flutter of an airfoil section 

may be identified.  In this thesis, the flutter of a flag, or that of other 

systems which involve large deflections, is not considered.  Examples of 

these excluded types of flutter are stall flutter, vortex shedding from bluff 

bodies, and the effects of flow separation on structures.  This discussion is 

limited to the small deflections of a one-dimensional airfoil section in two-

dimensional potential (unseparated) flow.  Such flutter is:
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-a self-exciting phenomenon, where the airfoil’s own deflections 

induce the aerodynamic forces and moments that lead to further 

deflections;

-determined by the interplay of elastic, inertial and aerodynamic 

forces;

-dependent on the energy balance between the immediate 

airstream and the airfoil structure, and the subsequent energy transfer 

from the airstream to the structure;

-dependent on the phasing of the various motions of the structure;

-a dynamic instability, defined by a particular critical velocity of the 

airstream, at which the energy transferred from the airstream is equal to 

the structural damping.  Stability is defined as the tendency of the system 

to return to a state of equilibrium following a disturbance.  As the problem 

is mathematically a stability problem and not one of forced response, this 

critical stability condition defines a stability boundary.  The boundary may 

be located by finding the solution to the system of the linear differential 

equations of motion of the section, as it vibrates in simple harmonic 

motion.

-determined by the values of specific parameters, including:

-the locations of the section aerodynamic center (AC), center 

of gravity (CG), and elastic axis (EA);

-the section mass, and therefore its weight;
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-the section mass moment of inertia about the elastic axis 

( H ea ) and therefore the distribution of that weight, and,

-the section elastic properties, as defined by the bending 

( kb ) and torsional ( KT) stiffnesses. 

Thus, to understand exactly what flutter is, it is important to 

recognize what it is not.  Flutter must be distinguished from simpler forms 

of vibration.  The critical concept is the existence, for this simple system, 

of at least two degrees of freedom, which, due to the effects of increasing 

velocity, become mutually reinforcing through the phasing of their motions.  

Flutter, in its fully developed state, is a divergent structural response.  As 

such, the magnitude of the structural deflections increases without bound 

as time progresses.  This is to be distinguished from the case of non-

divergent structural vibrations, which do not constitute flutter because of 

the decreasing amplitude of deflections observed over time.

2.3 Types of Airfoil Section Flutter

The range of possible modes by which flutter may occur is 

extensive, limited only by the configuration of the airframe and its vibratory 

modes.  A few examples of the combinations of vibratory modes that 

typically lead to flutter are discussed below.
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2.3.1  Vibratory modes

 For airplanes of conventional configuration, some examples of 

possible combinations of natural vibratory modes which may lead to flutter 

include wing bending and torsion, fuselage bending and torsion, stabilizer 

bending and torsion, and control surface deflection modes.  The flutter 

may be symmetric or anti-symmetric about the primary axes of the aircraft.

2.3.2  Examples of Airfoil Section Flutter with Increasing Numbers of 

Types of Motion

Flutter modes involving two types of motion (binary flutter) are 

typified by wing bending-torsion, fuselage bending-elevator rotation, 

fuselage torsion-rudder rotation, fuselage torsion-elevator rotation, and 

stabilizer bending-torsion flutter.  For flutter involving three types of motion 

(ternary flutter), a control surface frequently provides the additional 

component of movement.  Examples are wing bending-torsion-aileron 

rotation, fuselage bending-rudder-tab rotation, fuselage bending-elevator-

tab rotation, fuselage torsion-rudder-tab rotation, fuselage torsion-

elevator-tab rotation, and stabilizer bending-torsion-elevator rotation.  

Flutter involving four types of motion requires four components capable of 

movement.  Two examples of such flutter are wing bending-torsion-
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aileron-tab rotation and stabilizer bending-torsion-elevator-tab rotation 

flutter.  This list is intended to give a few examples of typical types of 

flutter possible on an aircraft of conventional configuration.  It is by no 

means all-inclusive.  Any two vibratory modes may theoretically combine 

to produce flutter if input energy and coupling are available.  Binary flutter 

is the basis for all higher flutter modes, such as those involving control 

surfaces and tabs.  It is for that reason examination of the binary case 

provides an adequate basis for understanding all flutter types and their 

solution methodologies.

2.4  Bending-torsion Flutter of an Airfoil Section as Described in this 

Thesis

The model used in this thesis describes an airfoil section, as 

representative of a complete wing, in bending-torsion flutter. It cannot be 

used to confidently evaluate the flutter characteristics of an entire wing, 

but can give insights into the fundamental mechanism of flutter.  Figure 

2.4 is a diagram of the one-dimensional (having the dimension of the 

chord length, c, only) airfoil section, showing the two degrees of freedom 

of motion: h, the vertical displacement; andα, the torsional displacement 

(Donaldson, 1993).  These degrees of freedom are further discussed in

Section 2.4.1.  Also, the locations of the aerodynamic center (AC), the 
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center of gravity (CG), and the elastic axis (EA) of the two-dimensional 

section are shown.  The airstream velocity (V), the lift force (L) generated 

by the section, the aerodynamic moment (M) and the bending and 

torsional stiffnesses are seen.   These parameters represent the 

properties of the system and in combination determine its dynamic 

response.  Since this model represents an airfoil section, it is necessary to 

make some assumptions in order to estimate the flutter properties of an 

entire wing.  The elastic (bending and torsional stiffness), inertial (mass 

and mass distribution), and dimensional (section chord length) properties 

of the entire infinite span, untapered wing are represented by those 

properties found at the 70-75% wing semi-span position.  This “rule of 

thumb” is the result of observation in testing of actual aircraft wings 

(Bisplinghoff, Ashley, and Halfman, 1955).  Since the wing is assumed to 

be of constant cross section, at all points along the span, the sections are 

identical and the stiffnesses are constant.  They are assumed to be 

perfectly linear, with the elastic restoring forces directly proportional to the 

structural displacements.  Also, the structure is perfectly elastic, in that it 

will return completely to its original shape after load application and 

removal.  Since the work of deformation is completely converted into strain 

energy, the elastic forces are conservative, as no frictional losses due to 

internal structural damping occur.
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Figure 2.4.  Two degree of freedom model for bending-torsion
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2.4.1.  Defining the Degrees of Freedom

In bending-torsion flutter, two fundamental vibratory modes may 

occur.  One is wing vertical bending, and the other is wing torsion about 

the wing’s elastic axis.  The two generalized coordinates required to 

completely and unambiguously describe the vibratory motions of this thin, 

one-dimensional airfoil section (a “thin” foil section is one having an 

infinitesimal thickness to chord ratio) in this two degree-of-freedom system 
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are (1) the section vertical translation, h, positive up for the quasi-steady 

case (and positive down for the unsteady case); and (2) the section 

rotation about the elastic axis, α, positive leading edge up.  The 

generalized coordinates specify the exact configuration3 of the system at 

any time.  The generalized coordinates are used with Lagrange’s Equation 

to form the equations of motion of the system.

2.5  Chapter Summary

Flutter is a divergent, coupled oscillation.  For clarity of 

understanding, one must be able to identify other types of vibrations and 

why they do not qualify as flutter since they lack one or more components 

of the three forces involved in flutter.  This simple flutter model is adequate 

to the task of describing airfoil section flutter, but falls short of being able 

to represent an actual wing without the sacrifice of accuracy.  The two 

degree of freedom model provides a complete description of the motions 

of the system through the generalized coordinates.  These are then used 

with Lagrange’s Equation to build the equations of motion.
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Chapter 3.0:  Solutions for the Flutter Frequency and Speed

This section describes two elementary means by which the flutter 

frequency and speed may be found.  By examining the derivation of the 

equations of motion and the solution of the resulting characteristic 

equation, the factors affecting the flutter solution are examined and 

explained.  In the first case, aerodynamic forces are described by quasi-

steady two dimensional (2-D) aerodynamics, while in the second, 

unsteady 2-D aerodynamics are used.  In each, the assumptions and 

limitations of the respective method are described, and the errors 

evaluated. 

As the objective of this thesis is to bring about an understanding of 

flutter, the process of determining the equations of motions and finding the 

solution to the flutter frequency and speed is essential.  Examining and 

comparing these two solution methods, and the errors that arise from 

them, support the goal of developing a comprehensive understanding of 

flutter and the factors that affect it.

3.1  Derivation of the Lagrange Equations of Motion

Solution of the classical two-degree-of-freedom bending-

torsion flutter problem requires the solution of a system of second-order 
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linear differential equations of motion.  By arranging this system of 

equations with the appropriate aerodynamic forces in matrix form, and 

requiring the resulting determinant to equal zero, a characteristic equation 

results.  The roots of this characteristic equation are then used to 

determine the flutter frequency and speed.  This solution method is limited 

to small displacements due to the requirement that the equations of 

motion be linear.  This is a result of the requirement that the elastic 

properties and the aerodynamic lift curve slope be linear.

Lagrange’s Equation, a restatement of Newton’s Second Law, 

provides the basis for forming the equations of motion using energy terms.  

Lagrange’s equation, in general, is:

where qi  is the i th generalized coordinated, T is the kinetic energy, U is 

the strain energy, and Qi is the i th generalized external force (Scanlon, 

Rosenbaum, 1968).

To write the Lagrange equations of motion, the kinetic energy and 

strain energy of the oscillating section are required.  These are easily 

obtained from inertial and elastic forces.  The external generalized forces, 
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which in this case will be aerodynamic forces and moments, are then 

determined by calculating the virtual work of bending and torsion.  After 

taking the appropriate derivatives and determining the generalized forces, 

these values are substituted into Lagrange's equation and the system of 

the equations of motion is formed.  

3.1.1  Strain Energy of Elastic Forces

Hooke’s Law is the constitutive law of the strain energy of the 

elastic forces when the deflections are small.  In terms of the DOF's h and 

α , the strain energy is (Hurty, Rubinstein, 1964):

U
1
2

kb⋅ h2⋅ 1
2

KT α2⋅+=

3.1.2  Kinetic Energy of Inertial Forces

The kinetic energy represents the inertial energy of the system 

(Bisplinghoff, Ashley, and Halfman, 1955):

or,
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3.1.3  Generalized Forces

The non-conservative external forces applied to the system are the 

aerodynamic forces and moments.  The generalized forces and moments 

in this system are calculated by determining the work done during a virtual 

displacement of each one of the generalized coordinates, while the other 

generalized coordinates remain undisplaced.  To obtain the generalized 

forces and moments acting on the airfoil section, the virtual work (δW) of 

the section is calculated.  In terms of DOF's h and α, the virtual work is 

the summation of work associated with the bending and torsional motions 

(Bisplinghoff, Ashley, and Halfman, 1955):

δW δWh δWα+=

For small bending displacements, Lift is the applied force:

For small torsional displacements, the product of Lift and the 

moment arm (a) is the applied moment.  As discussed in section 3.6.4.1, 

δWh Lδh=

Qh L=
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in the case of quasi-steady 2-D aerodynamics, the aerodynamic moment 

is a static moment and thus is omitted from this calculation of dynamic 

forces:

The total virtual work of the section is described by the 

superposition of the bending and torsional virtual work:

The detailed description of the quasi-steady and unsteady 

aerodynamic forces will be provided in sections 3.6.4 and 3.6.5.  These 

forces and moments will then be applied as appropriate to Lagrange’s 

Equation to complete the equations of motion, as applicable.

3.2  Writing the Lagrange Equations of Motion

In preparation for substitution into Lagrange's equation, we now 

take the partial derivatives of the strain energy with respect to DOF's h 

and α :

δWα L a⋅ δα⋅=

Qα L a⋅=

δW Lδh L a⋅ δα⋅+=
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h
U∂

∂
kb h⋅=

α
U∂

∂
KT α⋅=

Similarly, taking the partial derivatives of the kinetic energy with 

respect to DOF's h and α ,

Taking the time derivative of the variation of the kinetic energy with 

respect to DOF's h and α ,

Since T contains no h or α   terms,

q i
T∂

∂
=0

Substituting each of the above results into Lagrange's equation, 
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and including the generalized aerodynamic forces, the equations of motion 

are:

or, using the mass moment of inertia about the section elastic axis, the 

second equation of motion becomes
ordinary differential equations with constant coefficients, where 

Hea Hcg mb2+=  ,,

Inertial coupling may be readily observed in this system of 

equations of motion.  The coupling terms are , which couples 

torsion to the bending equation of motion, and , which couples 

bending to the torsional equation.  Inertial de-coupling therefore occurs 

when the “b” term, the lever arm distance from the Center of Gravity (CG) 

to the Elastic Axis (EA), is zero.  This is, of course, the case when the CG 

and the EA are co-located.
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3.3  Energy Transfer and Coupling

Energy transfer is required for flutter to occur, and coupling is the 

means by which energy transfer is facilitated.  Flutter cannot occur if either 

coupling or energy transfer is absent.

3.3.1  Energy Transfer from the Airstream

The fundamental driver of flutter is the energy transfer from the 

airstream to the structure via coupling of the two degrees of freedom.  The 

balance of the energies in the system, elastic (strain), inertial (kinetic), and 

aerodynamic (kinetic), governs the speed at which flutter will occur.  If 

viewed as a flutter engine, the wing can be observed to do net work on the 

airstream, or to have the airstream do net work upon it. (Fung, 1969). In 

the stable condition, the wing is doing net work on the airstream.  In this 

case, the elastic and inertial energies of the oscillating structure exceed 

the energy input of the airstream.  In the critical flutter condition, the 

energies of the airstream (aerodynamic) and the structure (elastic and 

inertial), are exactly balanced.  In the full flutter condition, the airstream is 

doing positive net work on the structure, since the aerodynamic energy 

input of the airstream exceeds the elastic restoring energy of the structure 

together with its inherent inertial energies.  Coupling is the interaction of 
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the two degrees of freedom which serves as the path by which energy 

transfer occurs.  In this system, both inertial and aerodynamic coupling are 

present.

3.3.2  Inertial coupling due to Center of Gravity location

In inertial coupling, the location of the section center of gravity 

(CG), determines whether the section’s flutter properties will be enhanced 

(higher flutter speed) or diminished (lower flutter speed).  Figures 3.3.2 (a) 

and (b) demonstrate the combinations of the bending motion, the torsional 

deflection and the inertial moment.  In Figure 3.3.2 (a), the CG is located 

ahead of the EA (defined here as “positive” inertial coupling).  When the 

section is displaced upward in bending, the inertial moment (M) opposes 

torsional rotation, reducing the angle of attack and thus the lift force.  

Figure 3.3.2(b), defined as “negative” inertial coupling, demonstrates the 

effect of the CG when it is located aft of the EA.  When the section is 

vertically displaced upward, the inertial moment (-M) acts to increase the 

torsional deflection.  Such torsional deflections, by increasing the angle of 

attack, lead to generation of greater aerodynamic forces and further 

bending and torsional deflections.  This is a very pro-flutter condition.



26

Elastic axis

Center of gravity

Figure 3.3.2.  Inertial coupling as a function of CG position.
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3.3.3  Phasing of the Motions

Phasing, (the variation of the phase angle between the degrees of 

freedom as a function of coupling) is the result of combining the elastic, 

inertial, and aerodynamic forces in such a way so as to either suppress or 

encourage flutter.  The phase angle indicates whether the motions of each 

separate DOF opposes or reinforces the other’s deflections.

3.3.4  Aerodynamic Coupling via Phasing

Aerodynamic coupling may occur as the result of the action of 

either the bending or torsional degree of freedom.  The aerodynamic 

coupling resulting from the action of the bending degree of freedom is 
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always stable.  When the wing is bending down, the effective angle of 

attack is increased by the vertical velocity, increasing the lift force, and 

assisting the elastic forces in restoring the wing to its point of zero vertical 

displacement.  Conversely, when the wing is bending up, the upward 

velocity reduces the effective angle of attack.  This decreases the lift force, 

and once again helps the elastic forces restore the wing to its point of zero 

vertical displacement.

Aerodynamic coupling of the torsional degree of freedom can be 

stabilizing, neutral, or destabilizing, depending on the phase angle 

between the bending and torsional degrees of freedom.  An example of 

the stable condition is when the phase angle is 180 degrees.  Such a case 

occurs when the angle of attack is at its maximum negative value when 

the bending is at its maximum positive value.  The stable condition exists 

when the phase angle is from 180 to just over 90 degrees.  The neutral 

(critical flutter) condition occurs when the phase angle is precisely 90 

degrees, where the torsional displacement (angle of attack) is maximum 

when the bending displacement is zero; and zero when the bending 

displacement is maximum (Fung, 1968).  This condition is marked by the 

sinusoidal, harmonic motions of the DOF’s.  The unstable full flutter 

condition occurs as a result of aerodynamic coupling when the phase 

angle is less than 90 degrees.  In this condition, the angle of attack 
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increases as the bending increases, leading to further bending, and so on.  

In this divergent condition, the amplitudes of the DOF’s can increase 

rapidly, leading to structural failure in a few cycles of motion.

Torsion is the unstable vibratory mode in this system, and it is 

through the torsional DOF that energy passes to the bending mode.  This 

is the energy transfer that leads to structural failure as the divergent cycle 

in the full flutter condition progresses (Fung, 1969).

 3.4  Frequency Coalescence

Frequency coalescence, or the convergence of the coupled 

frequencies of each DOF towards each other, is also exhibited in flutter.  

Fundamental to the process is the uncoupled natural frequency of each 

DOF.  In a two-degree-of-freedom system, there are two natural, 

uncoupled frequencies of vibration.  These two distinct frequencies are 

functions of, for bending, the bending stiffness and the mass; and for 

torsion, the torsional stiffness, and the mass moment of inertia.  As the 

velocity of the airflow increases and the energy input to the system 

increases, the coupled vibratory frequency of each DOF converges 

towards, or coalesces upon, a common coupled flutter frequency.  The 

flutter frequency determined by the Mathcad worksheet, ωfQS or ωfl ,is 
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this coupled frequency.

3.5  Phasing Diagrams

Three phasing diagrams are provided below to depict the process 

of phase shift as the velocity of the airflow increases and frequency 

coalescence occurs.  In each diagram, the stable, critical, and unstable 

flutter conditions are depicted.

3.5.1  Stable Condition

The stable condition is depicted in Figure 3.5.1, a phase and 

frequency diagram of the vertical and torsional oscillations of the section, 

where the coupled frequency ratio of the bending oscillation to the 

torsional oscillation is equal to 0.5.  In other words, the cyclic torsional 

motion is twice as fast as the cyclic vertical motion.  The diagram shows 

that the torsional oscillation completes two cycles, from zero deflection, to 

positive maximum, to zero, and negative maximum and back to zero, in 

the same amount of time that the vertical oscillation completes one full 

cycle.
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Figure 3.5.1.  Stable vertical and torsional oscillations, where the natural torsional
frequency is equal to twice the natural bending frequency (Frequency ratio
equal to 0.5).
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As airflow velocity increases, the stable bending mode coupled 

frequency remains relatively constant, but the unstable torsional coupled 

frequency decreases.  This occurs as the strength of the “aerodynamic 

spring” approaches the torsional stiffness of the wing as a result of the 

increased aerodynamic force (Fung, 1969).  The torsion to bending 

frequency ratio thus reduces, in this example, from 2.0 to approaching 

unity.

3.5.2  Critical Flutter Condition

The critical flutter condition is shown in Figure 3.5.2, a phase and 

frequency diagram of the DOF oscillations where the motions are 90 

degrees out of phase and the frequency ratio is 1.0, in the condition of 

frequency coalescence.  In this diagram, the two DOF’s are reaching their 

maximum displacements, either positive or negative, at different times (90 
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degrees out of phase), while the coupled frequencies of the bending and 

torsional oscillations are equal or nearly equal.  Any increase in velocity 

will cause the phase angle between the DOF’s to become less than 90 

degrees, allowing aerodynamic coupling, and hence divergent oscillations, 

to occur.   This phase shift occurs quite rapidly as the coupled frequency 

ratio approaches unity.  In fact, in the case of no damping, as assumed in 

this case, the phase shift is instantaneous (Scanlon, Rosenbaum, 1968).

0 degrees 90 180 270 360

h
+

_

+

-

Figure 3.5.2:  Critical flutter (stability boundary) condition, where the vertical and
torsional oscillations are 90 degrees out of phase, and where the coupled torsional
frequency nearly equals the coupled bending frequency (Frequency Coalescence).
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3.5.3  Full Flutter Condition

In the unstable full flutter condition, both degrees of freedom are 

reaching their maximum displacements at the same time (moving in-

phase), and each DOF is aerodynamically reinforcing the motions of the 

other.  Figure 3.5.3 is a phase and frequency diagram of the full flutter 

condition, where the two DOF’s are moving in-phase and at the same 

coupled frequency.  Such angular displacement at its maximum tends to 
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drive the vertical displacement h even higher with each cycle. 
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Figure 3.5.3.  Full flutter condition, where the vertical and torsional oscillations are
moving in phase at the flutter frequency.
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3.6  Aerodynamic Forces

All of the aerodynamic forces and moments generated by the 

section arise only as a result of the section’s oscillation.  The aerodynamic 

forces and moments included in this analysis are thus limited to dynamic 

forces and moments, and any static forces and moments required to 

maintain equilibrium are excluded (Scanlon, Rosenbaum, 1968).

Also, in both the quasi-steady and unsteady cases, a number of 

simplifying assumptions regarding the air have been made.  Fluid 

properties, two-dimensional flow and lift curve slope are all simplified as 

follows.
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3.6.1  Fluid Properties

In this analysis, the air is considered to be a perfect fluid.  As such, 

the air is an inviscid (frictionless) fluid, leading to an overstatement of the 

aerodynamic forces.  The Reynolds Number, which is the non-dimensional 

ratio of the fluid’s inertial forces to its viscous forces, is infinite.  This 

means that at every point on the airfoil, no boundary layer is formed, so 

potential flow is assured, and no separation of the air from the airfoil 

occurs.  The potential flow lift curve slope of the airfoil is also slightly 

overstated as a consequence.  This fictitious efficiency of the airflow leads 

to an overstatement of the aerodynamic forces generated.  The inviscid 

assumption also means that no drag forces are generated by this model 

(Milne-Thompson, 1958).

Also, since here the air is considered incompressible, no changes 

in air density occur as the flow velocity increases.  The Mach Number, the 

ratio of the airflow velocity to the local speed of sound, is therefore zero.  

This assumption will limit the range of valid speeds to those below about 

250 knots.  This non-conservative error would progressively degrade the 

accuracy of flutter speed predictions at higher speeds.

Environmental conditions are assumed to be International Standard
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Atmospheric (ISA) conditions of sea level pressure and the standard 

temperature of 15 degrees centigrade.  Neglecting compressibility effects, 

the flutter speed, as a true airspeed, is inversely proportional to the 

density ratio (the ratio of the density of air at a given altitude to the 

standard air density), and so a higher altitude, having a lower density ratio 

than sea level, results in a higher flutter speed.  ISA conditions are thus 

the most conservative in terms of the resulting critical flutter speed.  See 

Section 4.2.3 for an example of flutter calculations at increasing altitudes.  

Finally, an inviscid fluid provides no fluid damping to impede the 

vibrations of the structure.  This conservative error is considered 

acceptable due to the minimal amount of damping that would occur as the 

section oscillates in a real fluid, and also since the calculated critical flutter 

speed will be below the actual flutter speed.  Basic section flutter behavior 

is not profoundly influenced by the lack of fluid damping, since flutter 

arises from the energy transfer that occurs via the coupling between the 

DOF, rather than from the energy dissipation that accompanies damping.
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3.6.2  Basic strip theory

Two-dimensional (2-D) aerodynamic theory, where the flow occurs 

in the xy plane only, is used in both the Quasi-steady and Unsteady 

cases.  Figure 3.6.2 depicts the external, non-conservative aerodynamic 

forces estimated by basic strip theory.

Figure 3.6.2.  Basic strip theory.
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Strip theory is a means of approximating the lift force generated by 

a wing of finite span using two-dimensional flow over a strip of arbitrary 

width.  By dividing the wing into such strips, and then using two-

dimensional flow properties to generate the lift force attributable to that 
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strip’s width, vertical motion and local angle of attack, the strip’s tributary 

lift force is determined.  Adding the lift force of all the strips for the entire 

wing would yield the wing’s total lift force, but would neglect the effects of 

true three dimensional flow, such as those resulting from tip vortices.   

This one-dimensional structural model thus approximates a wing of infinite 

length.   These assumptions cause conservative errors in the calculations 

of the aerodynamic forces since there is no accounting for interference 

effects of adjacent structures and flow patterns (Smilg, Wasserman, 

1942).  

3.6.3  Two Dimensional Airfoil Section Properties

The following table is provided as a reference of representative 

airfoil properties, where aerodynamic center (AC) location is in tenths of 

chord length, and where the lift curve slope and aerodynamic moment are 

per degree (Perkins, Hage, 1949):

Section 

Number

AC 

Location

Lift Curve 

Slope

Aerodynamic 

Moment

0009 0.250 0.110 0.000

1412 0.252 0.103 -0.023

2412 0.247 0.104 -0.040

4412 0.247 0.106 -0.090

23012 0.247 0.104 -0.013
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64-012 0.262 0.110 0.000

64-412 0.267 0.112 -0.073

64-415 0.264 0.114 -0.070

64A212 0.262 0.108 -0.040

64A215 0.265 0.111 -0.037

65-212 0.261 0.108 -0.035

65-412 0.265 0.109 -0.070

65-415 0.268 0.107 -0.068

Table 3.6.3  Airfoil Section Properties

These two-dimensional properties include no corrections for finite 

span effects and are valid for a Reynolds Number of 6,000,000, and are 

thus appropriate for use in this two-dimensional analysis using basic strip 

theory.  Aerodynamic center location is seen to be typically in the quarter-

chord region, and the lift curve slope is assumed to be constant and linear 

within the small range of angle of attack (+/- 10 degrees).   The rigid airfoil

profile is considered to remain undeformed, and thus there is no variation 

in the lift force generated as a result of section deflections. 

3.6.4  Development of the Quasi-steady Aerodynamic Forces

In this thesis, the lift force is described in two fundamental ways.  It 

may be considered as a force generated by the airfoil at a particular angle 

of attack, with the wing bending at a particular rate in a certain airstream 
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velocity, without regard for the fact that the airfoil section is torsionally 

oscillating in the flow.  This is the basic scenario employed in quasi-steady 

2-D aerodynamics, where the effects of the wake downstream of the airfoil 

are disregarded (Bisplinghoff, Ashley, 1962).  As will be explained in 

Section 3.6.5.1, this results in an overstated lift force and a conservative 

calculation of the flutter speed.

3.6.4.1  Aerodynamic Moment

An asymmetrical airfoil section generates changes in both the lift 

force and an aerodynamic moment (the pitching moment), about the 

quarter chord point, as a result of changes in the angle of attack while in 

an airflow.  In quasi-steady 2-D aerodynamics, the lift force varies with 

time as the section oscillates vertically and torsionally.  The quasi-steady 

lift therefore produces dynamic deflections and is thus included as a 

dynamic force in this analysis.  The aerodynamic pitching moment of the 

airfoil, however, is essentially a constant with respect to changes in angle 

of attack, as demonstrated by the low value of the slope of the pitching 

moment coefficient in Figure 3.6.3 below.  Therefore, in quasi-steady flow, 

the pitching moment is a static moment and is thus omitted from the 

aerodynamic forces and moments.  The only moment attributable to 

aerodynamic forces in the quasi-steady analysis is that due to the 
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application of the section lift force (L) at the distance (a) from the elastic 

axis (EA).  

In unsteady flow, the section aerodynamic moment is a dynamic 

moment producing dynamic deflections as a function of the reduced 

frequency of oscillation of the section.  The unsteady aerodynamic 

moment is not a static moment and is therefore included in the dynamic 

forces and moments acting on the oscillating section.  Unsteady 

aerodynamic forces are further considered in Section 3.6.5.

Figure 3.6.3, from Reference 18, illustrates the low value of the 

aerodynamic moment curve slope for a NACA 23012 airfoil.  Moreover, for 

symmetrical airfoil sections, the aerodynamic moment curve slope is zero.
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Figure 3.6.3  Lift curve and aerodynamic moment curve slopes

3.6.4.2  Forming the Lagrange Equations of Motion using Quasi-steady 

Aerodynamic Forces

The quasi-steady lift force (L) of the airfoil section is defined as the 

product of dynamic pressure (q), section planform area (S), the quasi-

steady lift curve slope (Clα), and the angle of attack (α).  Stating the 
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quasi-steady lift force as a function of time, and defining the effective lift 

force as a function of h and α :

L t( )
1
2
ρ⋅ S⋅ Clα⋅ V2⋅ αeff⋅=

where α eff  is:

The above equation reflects the fact that the geometric angle of 

attack between the airstream and the section chord line is not the only 

variable important in determining the lift force.  The vertical motion of the 

section affects the local angle of attack as well.  Including the vertical 

translation of the airfoil section due to bending, the lift force becomes:

Substituting for constants, the aerodynamic lift factor is:

A0
1
2
ρ⋅ S⋅ Clα⋅=

The dynamic lift force resulting from bending and torsion is thus:
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Adding this expression to the equations of motion completes the 

system of linear ordinary differential equations with constant coefficients 

for the quasi-steady case:

Rearranging and transposing, the homogeneous equations of 

motion for the quasi-steady case are:

3.6.5  Development of the Unsteady Aerodynamic Forces

The alternative to quasi-steady flow is to account for the torsional 

oscillations of the airfoil in the calculation of the lift force.  In that case, 

unsteady 2-D aerodynamics is used, where the magnitude of the lift force 

is dependent on the frequency of the oscillation of the airfoil section.  The 
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unsteady lift force is a function of the reduced frequency (k), which is the 

non-dimensionalized oscillation rate of the airfoil.  The reduced frequency 

may be regarded as a measure of the unsteadiness of the airflow.  As the 

reduced frequency increases, the error inherent in quasi-steady 2-D 

aerodynamics becomes greater and greater, and the use of unsteady 2-D 

aerodynamics becomes increasingly significant in the calculation of an 

accurate flutter speed.

3.6.5.1  Forming the Lagrange Equations of Motion using Unsteady 

Aerodynamic Forces and Moments

In unsteady flow, the reduced frequency of the section's oscillation 

is used to determine the effect that motion has on the lift force generated.  

As the airfoil section oscillates in the airstream, a changing trailing vortex 

is generated.  This vortex acts in opposition to the circulation around the 

section.  For example, when the section pitches nose up, the wake curls 

around the trailing edge in a direction opposite to the pitching motion.  

This reduces the lift force by reducing the circulation (Bisplinghoff, Ashley, 

1962).  Theodorsen’s circulation function is a means of quantifying this 

wake-induced lift loss, where the values range from 1.0 to 0.5 as a 

function of the reduced frequency.  In contrast, no reduction in lift force 

due to section oscillation occurs in quasi-steady flow, since the out-of-
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phase component of lift force that results from the effects of the trailing

vortices is, as we have seen in Section 3.6.4, omitted.  Two basic 

approaches, both based on the determinant method for solving for the 

system’s eigenvalues, are used to solve for the flutter frequency and 

speed when using unsteady 2-D aerodynamics.  

3.6.5.1.1  Finding the flutter frequency and speed – Theodorsen’s Method

Theodorsen's method is based on the simultaneous solution of the 

real and imaginary parts of the flutter determinant.  The flutter determinant 

arises from the same equations of motion used in the quasi-steady case, 

with the modification of the lift forces by the use of unsteady 2-D 

aerodynamics.  The basic solution procedure is to choose a series of 

values of reduced frequency and find the corresponding roots of the real 

and imaginary characteristic equations.  These roots, the eigenvalues of 

the system of equations of motion, are then plotted as functions of the 

reciprocal of the reduced frequency, (1/k).  The point on the graph where 

the two plots of the roots intersect is the point where the required condition 

of both the real and imaginary determinants equaling zero is 

simultaneously satisfied.  Both the flutter frequency and the flutter speed 

are found at the intersection of the real and imaginary plots (Fung, 1969).
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3.6.5.1.2  Finding the flutter frequency and speed – Materiel Center 

Method

In Smilg and Wasserman's “Materiel Center” method, an artificial 

damping factor, g, (equal for both bending and torsional degrees of 

freedom) is introduced into the equations of motion.  The attached 

Mathcad worksheets use this method, where the solution to the flutter 

frequency and speed is found when the artificial damping changes sign 

from negative to positive as a function of the reciprocal of the reduced 

frequency (1/k).  When the artificial damping factor is positive, the system 

is unstable, and therefore in a condition of flutter.  This is due to the 

balance of forces needed to maintain system stability, as a positive 

artificial damping factor indicates a need for positive damping to be 

present in order to prevent instability.  A negative artificial damping factor 

indicates a stable system, since there is, in its presence, an excess of 

damping available in the system.  An artificial damping factor of zero 

implies the critical flutter condition (Donaldson, 1993).

The artificial damping factor is applied to the stiffness matrix, where 

it effectively supplements the system's resistance to deflection.    It is 

inserted into the same equations of motion developed in Section 3.2, with 

the substitution of the lift and moment of unsteady aerodynamic forces.  It 
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should be noted that in these equations, DOF h is oriented positive down 

(Smilg, Wasserman, 1942).  The equations of motion for the case of 

unsteady 2-D aerodynamics are thus:

The lift and moment expressions for unsteady 2-D aerodynamics 

are further discussed in Section 3.7.1.2.  After rearranging to make the 

system of equation homogeneous, the equations of motion are thus:

3.7  Solution of the Double Eigenvalue Problem

Having derived the equations of motion, it is now necessary to 

solve the system of the equations of motion for its two eigenvalues.  

These are the values which cause the characteristic equation to equal 

zero, and are the squares of the flutter frequency and speed.
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3.7.1  Placing the System in Simple Harmonic Motion

In both the quasi-steady and the unsteady 2-D aerodynamics case, 

the objective of the analysis is to locate the system's stability boundary, 

which is the airfoil section's critical flutter speed.  This is determined by the 

critical speed of airflow at which the magnitudes of the bending and 

torsional oscillations are neither increasing nor decreasing.  Since the 

neutral stability condition is to be tested, a logical approach is to insert 

solutions for simple harmonic motion into the equations of motion and then 

solve the system for the eigenvalues which will cause this condition to be 

satisfied.  In the critical flutter condition, the bending and torsional 

motions, being constant in amplitude, are neither increasing nor 

decreasing, so it is appropriate to represent them as sinusoidal motions,  

as shown below, where A1 A2,  , and B1 are the amplitudes of the 

torsional and bending motions, respectively.  The motions of the two DOF 

are described by the sine function, and the cosine function provides a 

component with a 90-degree phase angle between the bending and 

torsional motions:

To be clear on the matter pf phase angles, note that if:

h t( ) B 1 sin ω t⋅=

α t( ) A 1 sin ω t⋅ A 2 cos⋅ ω t⋅+=
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A1 A0 cos⋅ φ⋅=

and

A 2 A 0 sin φ⋅=

Then,

α t( ) A0 sinω t cos⋅ φ⋅ cos ω t⋅ sinφ⋅+( )⋅=

or

α t( ) A 0 sinω t φ+( )⋅=

where φ  can be seen as the phase angle between bending and torsion.

Alternately, using complex notation, the multiplication of A2 by i 

also provides the 90-degree phase angle component between the bending 

and torsional motions:

Using the complex algebra form, and taking the first and second 

time derivatives of the two DOF:

h B 1 e iω t⋅=

α A 1 i A 2⋅+( ) eiω t⋅=
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Substituting these solutions into the equations of motion, canceling 

eiωt for all terms, and casting in matrix form results in the matrix equations 

of motion.   The solution to this system satisfies the condition of simple 

harmonic motion. 

3.7.1.1 Flutter Solution in the case of Quasi-steady Aerodynamic Forces

Using the Equations of Motion derived in Section 3.2, forming the 

determinant, and separating into real and imaginary parts:

m− ω 2⋅ b⋅ A0 V2⋅−
KT Hea ω 2⋅− a A0⋅ V2⋅−

kb m ω 2⋅−
mω2− b⋅






A1

B1



⋅

i
ω A0⋅ V⋅

a ω⋅ A0⋅ V⋅
m ω 2⋅ b⋅ A0 V2⋅+

KT Hea ω 2⋅− a A0⋅ V2⋅−( )



⋅ B1

A2



⋅+

...




0

0



=

It is now necessary to determine the eigenvalues of this system, 

that is, the frequency and velocity for which the required condition of both 
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the real and imaginary determinants equaling zero, is true.  For this two 

DOF system, the determinant method is a convenient means of finding the 

eigenvalues.  After expanding the complex determinant and solving the 

characteristic equation, the flutter frequency is:

ω f
KT

Hea m a⋅ b⋅−=

Similarly, the real determinant yields the flutter speed:

V f
kb m ω f

2⋅−( ) K T Hea ω f
2⋅−( )⋅ m b⋅ ω f

2⋅( )2
−

A 0 a kb m ω f
2⋅−( )⋅ m b⋅ ω f

2⋅+ ⋅
=

It should be noted here that when the CG is co-located with the EA, 

the lever arm distance (b) will be zero.  In that case, the flutter frequency 

will be equal to the uncoupled torsional frequency, and the flutter speed 

will be zero.  This result is compared with the flutter speed calculated by 

use of unsteady aerodynamics below, and illustrates a fundamental flaw in 

the use of quasi-steady aerodynamics.
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3.7.1.2  Flutter Solution in the Case of Unsteady Aerodynamic Forces and 

Moments

The homogeneous equations of motion using the Materiel Center 

method were derived in Section 3.6.5.1.2.  They are:

The lift force and the aerodynamic moment per unit span moment 

about the elastic axis resulting from the use of unsteady 2-D 

aerodynamics are functions of α V, ω,  , and Theodorsen's 

circulation function, C(k) (Scanlon, Rosenbaum, 1968) :
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Using the reduced frequency (k), Theodorsen's circulation function

is calculated by use of Bessel Functions.  The values for the lift and 

moment determined are then used to determine the values of the 

coefficients in the flutter determinant (Theodorsen, 1934).

C k( ) F k( ) i G k( )⋅+=

Again assuming harmonic motion, we use the substitutions of:

h h0 eiωt⋅=

and

F k( )
J1 k( ) J1 k( ) Y0 k( )+( )⋅ Y1 k( ) Y1 k( ) J0 k( )−( )⋅+

J1 k( ) Y0 k( )+( )2 Y1 k( ) J0 k( )−( )2+
=

G k( )
Y1 k( )− Y0 k( )⋅ J1 k( ) J0 k( )⋅−

J1 k( ) Y0 k( )+( )2 Y1 k( ) J0 k( )−( )2+
=
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α α0 eiωt⋅= and their derivatives to replace the terms in the Lift and 

Moment equations, resulting in the equation of motion being stated in 

terms of the non-dimensional DOF 

h
b' and α   .  The lift and moment 

coefficients for bending and torsion are functions of the reduced frequency 

(Kussner, Schwartz, 1935):

In these equations, Lh , Lα , and M α are the lift and aerodynamic 

moment coefficients about the elastic axis as functions of the reduced 

frequency, while Mh is a constant, ½.  These values are also substituted 

into the equations of motion:

L π− ρb'
3 ω 2

L h
h
b'
⋅ Lα 1

2
a h+


 L h⋅−

 α⋅+
⋅=

Lh k( ) 1 2 i⋅ 1
k



 C k( )⋅−=

Lα k( )
1
2

i
1
k



⋅ 1 2 C k( )⋅+( )⋅− 2

1
k





2
⋅ C k( )⋅−=

M h
1
2

=

Mα k( )
3
8

i
1
k



⋅−=
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M π ρb'
4⋅ ω 2⋅ Mh( 1

2
ah+

 Lh⋅−


h
b'
⋅

Mα 1
2

ah+

 Lα Mh+( )⋅−

1
2

ah+



2
Lh⋅+

...



α⋅+

...



⋅=

Dividing out π ρ b'
3⋅ ω 2⋅  from the bending equation, and 

π ρb
4⋅ ω 2⋅  from the torsional equation to express the Lift and Moment 

coefficients in non-dimensional form:

L Lh
h
b'
⋅ Lα 1

2
ah+

 Lh⋅−

 α⋅+
−=

M Mh
1
2

ah+

 Lh⋅−


h
b'
⋅

Mα 1
2

ah+

 Lα Mh+( )⋅− 1

2
ah+



2
Lh⋅+


 α⋅+

...=

Defining the complex variable Z:

Z
ωT

ω





2

1 i g⋅+( )⋅=
 (Smilg, Wasserman, 1942).

and substituting into the equations of motion, after transposing, results in:
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µ 1 Z
ω b

ω T





2

⋅ 1 i g⋅+( )⋅−



⋅ L h k( )⋅ h

b'
⋅

µ xα⋅ L α k( )+ L h k( )
1
2

a h+

⋅−
 α⋅+

...




0=

µ xα⋅ Mh+ Lh k( )
1
2

ah+

⋅−


h
b'
⋅

µ rα 2⋅ 1 X 1 i g⋅+( )⋅−[ ]
1
2

1
2

ah+

⋅−

Mα k( ) Lα k( )
1
2

ah+

⋅− Lh k( )

1
2

ah+



2
⋅++

...



α⋅+

...





0=

Casting the system of equations of motion in matrix form,

µ 1 Z
ωb

ωT





2

⋅ 1 i g⋅+( )⋅−



⋅ Lh k( )⋅

µ xα⋅ Mh+ Lh k( )
1
2

ah+

⋅−

µ xα⋅ Lα k( )+ Lh k( )
1
2

ah+

⋅−

µ rα2⋅ 1 X 1 i g⋅+( )⋅−[ ]⋅ 1
2

1
2

ah+

⋅−

Mα k( ) Lα k( )
1
2

ah+

⋅− Lh k( )

1
2

ah+



2
⋅++

...





h
b'

α






⋅ 0=
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Setting the determinant equal to zero, 

µ 1 Z
ωb

ωT





2

⋅ 1 i g⋅+( )⋅−



⋅ Lh k( )⋅

µ xα⋅ Mh+ Lh k( )
1

2
ah+

⋅−

µ xα⋅ Lα k( )+ Lh k( )
1
2

ah+

⋅−

µ rα2⋅ 1 X 1 i g⋅+( )⋅−[ ]⋅ 1

2

1

2
ah+

⋅−

Mα k( ) Lα k( )
1
2

ah+

⋅− Lh k( )

1
2

ah+



2
⋅++

...





0=

The flutter determinant elements may be simplified by using the 

following substitutions (A, B, D & E):

A µ 1 Z
ωb

ωT





2

⋅ 1 i g⋅+( )⋅−



⋅ Lh k( )⋅=

B µ xα⋅ Lα k( )+ Lh k( )
1
2

ah+

⋅−=

E µ rα 2⋅ 1 X 1 i g⋅+( )⋅−[ ]
1
2

1
2

ah+

⋅− Mα k( )+ Lα k( )

1
2

ah+

⋅−

Lh k( )
1
2

ah+



2
⋅+

...=

D µ xα⋅ Mh+ Lh k( )
1
2

ah+

⋅−=
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The equations of motion, in terms of the above, are thus:

Casting in matrix form:

A

D

B

E





h
b'

α







⋅ 0=

Setting the determinant of the system to zero:

A

D

B

E



 0=

The characteristic equation, including the real and imaginary 

values, is thus:

A E⋅ B D⋅− 0=

The Mathcad worksheet calculates the values of the determinant 

elements A, B, D and E instead of using the tabular values found in 

A
h
b'
⋅ Bα+ 0=

D
h
b'
⋅ Eα+ 0=
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USAAF Technical Report 4798.  The complex characteristic equation is 

then formed, and the Polyroots function of Mathcad is used to determine 

the real and complex roots of the resulting quadratic equation.  The lesser 

of these two roots, which represents the unstable torsional motion, will 

always contain the imaginary component which changes sign from 

negative to positive as the reciprocal of the reduced frequency increases 

(Bisplinghoff, Ashley, and Halfman, 1955).

Since ω and g always appear together in the determinantal 

elements A and E, by solving for Z, both ω and g can be determined.  

Representing the unstable torsional motion, the first root of Z, as a 

function of reduced frequency (k), Z k( )1, is used in the calculation of the 

artificial damping.  The system damping is determined by taking the ratio 

of the imaginary part to the real part of the first root of the frequency 

quadratic.  When the sign of g changes from negative to positive as a 

function of the sign of Z k( )1, instability is indicated, where a positive g 

indicates flutter:

g
Im Z k( )1( )
Re Z k( )1( )=
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Since

X
ωT

ω





2

=
, and X is the real part of Z, the flutter frequency is found 

using the uncoupled torsional frequency and the real part of the first root 

of the characteristic equation: 

The flutter speed is then found by using the flutter frequency, the 

section semi-span, and the reduced frequency, using the relation:

Using the Materiel Center method, the goal is to find the airspeed 

that causes the artificial damping factor to go from negative artificial 

damping (stability) to zero (criticality), the point of neutral stability, and 

thus determine the critical flutter speed.  This is accomplished by varying 

the reciprocal of the reduced frequency (1/k) over a suitable range and 

solving the system for the value of the artificial damping.  The value of the 

reciprocal of the reduced frequency that causes the artificial damping to 

go from negative to zero is then used to calculate the flutter frequency and 

velocity.  The values of artificial damping (g) versus reduced frequency 

Vfl
ωfl b'⋅

k
=

ωfl
ωT

Re Z k( )1( )
=
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may be plotted to observe the trend in damping as the reduced frequency 

is increased.  This is illustrated in Figure 3.7.1.2.1.
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Figure 3.7.1.2.1  Artificial damping versus reduced frequency

The slope of the damping curve gives an indication of the severity 

of the onset of flutter in that the rate of the instability may be predicted.  A 

shallow slope indicates a less severe onset of flutter, whereas a steep 

slope implies that a violent encounter with flutter may be expected 

(Bisplinghoff, Ashley, and Halfman, 1955).  The attached Mathcad 

worksheets carry out these calculations as a result of the input variables 
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provided.  Figure 3.7.1.2.2 depicts the artificial damping versus the speed 

of the airflow in knots.
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Figure 3.7.1.2.2  Artificial damping versus velocity

3.8  Chapter Summary

The basic means of establishing the equations of motion is the 

same in both the quasi-steady and the unsteady cases.  Using Lagrange’s 

equation and the appropriate expressions for (1) the strain energy, (2) the 

kinetic energy, and (3) the aerodynamic forces leads to the homogeneous 

equations of motion.  The two descriptions of the aerodynamic forces 

considered here are quasi-steady and unsteady 2-D aerodynamic forces 
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and moments.  Both the quasi-steady and unsteady 2-D cases use the 

determinant method to establish the characteristic equation, which is then 

solved for its roots.  Accuracy is improved by the use of the unsteady 

aerodynamic forces and moments, while the quasi-steady solution 

method, within its range of validity with respect to CG position, is more 

rapidly solved and results in a conservative calculation (Bisplinghoff, 

Ashley, and Halfman, 1955).
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Chapter 4.0:  Calculation of Flutter Properties by Mathcad 

Worksheets

This section describes the calculation methodology used in the 

attached Mathcad worksheet to determine the flutter frequency and the 

critical flutter speed of six example sections.  Using both quasi-steady and 

unsteady aerodynamics, flutter properties of the example sections are 

calculated in the worksheet using a common set of section parameters.  

The objective is to input the key structural and inertial parameters that 

affect the value of the flutter frequency and speed and compare the 

section’s flutter properties using quasi-steady and unsteady aerodynamic 

forces.  For the case of center of gravity (CG) variation, results are plotted 

for both cases and compared.   An example of flutter speed variation with 

altitude is also performed in one example. 

4.1  Mathcad Worksheet Methodology

The Mathcad Worksheet processing flow follows the pattern of 

inputs, intermediate or supporting calculations, and outputs.  The means 

by which each of these is carried is as follows.
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4.1.1  Program inputs

User inputs (the boxed quantities on the worksheet) define the 

primary airfoil section elastic, inertial and aerodynamic parameters 

common to both the quasi-steady and unsteady cases.  The basic section 

parameters of section chord, section aerodynamic center, center of gravity 

and elastic axis location, the section weight per inch of span length (Wt), 

the section mass moment of inertia about the center of gravity per inch 

( Hcg ), and the section bending and torsional stiffnesses per inch are 

input.  For the quasi-steady calculation, the section lift curve slope for a 

given airfoil ( Clα ), drawn from Table 3.6.3, and the strip width (w, an 

arbitrary value) are also inputs.  Additionally, the air properties are 

included as inputs, such as the International Standard Atmosphere (ISA) 

air density (ρ) and the density ratio (δ) as required for test altitude.  The 

user may vary any input as desired to test for flutter frequency and speed 

sensitivity with respect to that particular parameter or any combination of 

input parameters.
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4.1.2  Supporting calculations

The worksheet prepares intermediate calculations for use in both 

the quasi-steady and unsteady cases.  The lever arm distances from the 

section aerodynamic center to the elastic axis (a), and from the section 

elastic axis to the center of gravity (b), the section mass (m), and the 

section mass moment of inertia about the elastic axis ( Hea ) are calculated 

for internal program use.  The air density ratio as a function of altitude and 

the air density at test condition are provided to allow test altitudes above 

Sea Level.

4.1.2.1 Quasi-steady Case

For the quasi-steady case, the strip properties of strip area, 

stiffness and mass moment of inertia are calculated.  These are used to 

define the elastic, inertial and aerodynamic forces arising from any given 

strip width.

4.1.2.2 Unsteady Case

For the unsteady case, several additional non-dimensional 

quantities are derived from the basic program inputs.  These include the 
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section semi-chord (b`), the uncoupled bending and torsional natural 

frequencies (ωb  ,ωT ), the dimensionless center of gravity ( xα ) and 

elastic axis positions (ah ), the dimensionless radius of gyration ( rα ) and 

the section mass ratio (µ).  Many of the references cited in this thesis use 

the uncoupled bending-torsional natural frequency ratio to define the 

section properties.  It is thus calculated in order to cross check these 

values with the section input parameters.  The section static 

imbalance, Sα , similarly provides an input cross-check.  As these 

quantities are often presented in the literature in this non-dimensional 

form, this feature allows convenient comparison of dimensional and non-

dimensional inputs, as applicable.  It also allows direct entry of all non-

dimensional parameters, if desired.

A final supporting calculation useful for both cases is the check of 

the section static divergence speed (VD ).  This value provides an upper 

limit on the range of flutter speeds to be evaluated, as any flutter speed 

calculated above this value would be unattainable, since the section would 

have failed in static divergence prior to experiencing flutter.
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4.1.3  Primary calculations

4.1.3.1  Quasi-steady Case

The flutter frequency and speed are found by direct calculation of 

the closed form equations of Section 3.7.1.1.  For the CG variation study, 

the CG position is varied from the aerodynamic center location at the 

quarter chord to the trailing edge of the airfoil and plotted.

4.1.3.2  Unsteady Case

For the unsteady flutter calculation, the program uses an initial 

value of the reduced frequency (k).  It calculates the value of 

Theodorsen’s function, C(k), and the unsteady lift and moments due to 

section bending and torsion.  The determinant elements are then 

calculated and the resulting characteristic quadratic equation solved for its 

roots using the Polyroots root finder function of Mathcad.  This process is 

carried out for a series of reciprocals of the reduced frequency until the 

program finds the reciprocal of the reduced frequency (1/k) that causes 

the artificial damping (g) to become zero.  These values are plotted to 

show the trend of damping versus the reciprocal of the reduced frequency.  

A similar calculation loop is carried out to find the flutter frequency and 
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speed, both graphically and numerically.  A plot of damping versus 

velocity of airflow then is used to depict the artificial damping and also the 

flutter speed.

CG variation is again accomplished by the use of the same 

program operating on a series of CG change increments.  The results of 

the flutter speed as a function of CG position is plotted.

4.1.4  Program Outputs

The program outputs are shown as the boxed and shaded 

quantities on the Mathcad worksheet.  The quasi-steady flutter frequency 

and speed are the imaginary and real eigenvalues of the system of the 

equations of motion of the section.  Unsteady case program outputs (all 

functions of reduced frequency) are the artificial damping (g), the phase 

angle at zero artificial damping (φ), the flutter frequency (ωfl ), and the 

critical flutter speed (Vfl ).



69

4.2  Example Calculations

The following six airfoil sections were evaluated using the Mathcad 

worksheet to determine their flutter characteristics.  The sources for these 

sections range from published technical reports and textbooks to 

information located on the Internet in the case of a newly-designed 

aircraft.  In all cases, a check of the static divergence speed confirmed 

that all sections would experience flutter at speeds below the divergence 

speed.



70

4.2.1  Example One:  Ryan NYP prototype (Blevins, 1990)

4.2.1.1  Inputs, Intermediate Calculations and Outputs

Program Inputs

Section Chord 84 Inch

Strip Width 10 Inch

AC location 0.25 Tenths of chord

CG Location 0.4 Tenths of chord

EA Location 0.26 Tenths of chord

Section Bending Stiffness 12.25 Pounds per Inch

Section Torsional Stiffness 6084 Inch-Pounds per 

Radian

Section Weight per unit span 0.81 Pounds per Inch

Section Mass Moment of Inertia 

about CG

8.75 Slug-inch^2 per 

inch

Air Density at ISA conditions 0.002378 Slugs/cubic foot

Test Altitude 0 (Sea 

Level)

Feet

Airfoil Lift Curve Slope 0.084 Per degree

Intermediate Calculations

Air Density Ratio at Test 

Condition

1.0 Non Dimensional

Uncoupled Natural Bending 

Frequency

22.1 Radians/Sec

Uncoupled Natural Torsional 

Frequency

22.3 Radians/Sec

CG Position 0.28 Non Dimensional

EA Position -0.48 Non Dimensional

Section Static Imbalance 0.296 Slug-inch

Radius of Gyration 0.525 Non Dimensional

Mass ratio 3.3 Non Dimensional
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Static Divergence Speed 252.1 Knots

Program Outputs

Quasi-steady (QS) Flutter 

Frequency

22.08 Radians/Sec

Quasi-steady (QS) Flutter 

Speed

35.6 Knots

Reduced Frequency (k) at Zero 

Damping

1.0 Non Dimensional

Unsteady (US) Flutter 

Frequency

27.32 Radians/Sec

Unsteady (US) Flutter Speed 53.5 Knots

Ratio of QS to US flutter 

frequency

0.81 Non Dimensional

Ratio of QS to US flutter speed 0.63 Non Dimensional

4.2.1.2 Section Characteristics

This wing section is the preliminary design of wood and fabric 

construction for the single-engine, special-purpose aircraft, “The Spirit of 

St. Louis”.  It is typical of the design and construction methodology of the 

late 1920’s.  The braced wing section is composed of two main spars, 

both made of wood, with a covering of doped fabric which acts as the non-

load bearing skin.  The parameters listed are found on pages 141-144 of 

Reference Nine.  The section is exceptionally light, with the mass ratio of 

3.3 being the lowest of all sections tested.  A low mass ratio typically 
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indicates a low flutter speed due to the high propensity for the section to 

experience flow-induced vibration.  The torsional natural frequency is the 

lowest of all the example sections.  Also, little frequency separation 

between the natural bending and torsional frequencies is present, 

suggesting the possibility of a low flutter speed.  Finally, the section has 

the most aft CG of all the sections.

4.2.1.3.  Flutter Calculations for the Quasi-steady Case

The flutter frequency of 22.08 Rad/sec is approximately equal to 

the natural bending frequency.  The flutter speed of 35.6 knots is within 

4% of that published in Reference Nine of 37.0 knots.  

4.2.1.4  Flutter Calculations for the Unsteady Case

The reduced frequency at zero damping is found to be 1.0.  This 

indicates a relatively slow rate of section oscillation.  Notably, the coupled 

flutter frequency of 27.14 Rad/sec is greater than both the natural bending 

and torsional frequencies.   This is unusual, but not unheard of 

(Bisplinghoff, Ashley, and Halfman, 1955).  The critical flutter speed of 

56.3 knots falls short of the design requirement of 112 knots.  In this case, 

it is necessary to make changes in the section torsional stiffness and /or 
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the CG position to increase the critical flutter speed.

The low flutter speed found in this example shows how flutter may 

occur at low speeds.  A common misconception is that if an aircraft is 

“slow”, it will not be subject to the effects of flutter.  This is seen to be 

false, as the combination of the elastic, inertial and aerodynamic forces 

are responsible for flutter occurrence, and not merely the range of 

airspeed values attainable.

4.2.1.5  Comparison of Results in the Quasi-steady and Unsteady Cases

The quasi-steady flutter frequency is 81% of the unsteady flutter 

frequency, while the quasi-steady flutter speed is 63% of the unsteady 

flutter speed.  These are typical values for this comparison (Bisplinghoff, 

Ashley, and Halfman, 1955).

4.2.1.6    CG Variation Survey

The sharp decrease in the critical flutter speed indicates a great 

sensitivity to CG position.  Also, at the design condition of CG at 0.4c, the 

flutter speed using quasi-steady aerodynamics is seen.  The two speeds 

are equal at a CG position of about 0.6c.
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4.2.2  Example Two:  Ryan NYP Final Design (Blevins, 1990)

4.2.2.1  Inputs, Intermediate Calculations and Outputs

Program Inputs

Section Chord 84 Inch

Strip Width 10 Inch

AC location 0.25 Tenths of chord

CG Location 0.4 Tenths of chord

EA Location 0.26 Tenths of chord

Section Bending Stiffness 49 Pounds per Inch

Section Torsional Stiffness 24336 Inch-Pounds per 

Radian

Section Weight per unit span 0.81 Pounds per Inch

Section Mass Moment of Inertia 

about CG

8.75 Slug-inch^2 per 

inch

Air Density at ISA conditions 0.002378 Slugs/cubic foot

Test Altitude 0 (Sea 

Level)

Feet

Airfoil Lift Curve Slope 0.084 Per degree

Intermediate Calculations

Air Density Ratio at Test 

Condition

1.0 Non Dimensional

Uncoupled Natural Bending 

Frequency

44.14 Radians/Sec

Uncoupled Natural Torsional 

Frequency

44.61 Radians/Sec

CG Position 0.28 Non Dimensional

EA Position -0.48 Non Dimensional

Section Static Imbalance 0.296 Slug-inch

Radius of Gyration 0.525 Non Dimensional

Mass ratio 3.3 Non Dimensional

Static Divergence Speed 504.1 Knots
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Program Outputs

Quasi-steady (QS) Flutter 

Frequency

44.16 Radians/Sec

Quasi-steady (QS) Flutter 

Speed

71.1 Knots

Reduced Frequency (k) at Zero 

Damping

1.06 Non Dimensional

Unsteady (US) Flutter 

Frequency

54.64 Radians/Sec

Unsteady (US) Flutter Speed 107.1 Knots

Ratio of QS to US flutter 

frequency

0.81 Non Dimensional

Ratio of QS to US flutter speed 0.66 Non Dimensional

4.2.2.2  Section Characteristics

In this case, the same input parameters given in Example One are 

repeated, with the design modification of the bending and torsional 

stiffnesses.  These have been quadrupled by the addition of four external 

wing struts in order to meet the design requirement of a maximum speed 

of 107 knots, as described in Reference Nine.

4.2.2.3  Flutter Calculations for the Quasi-steady Case

The flutter frequency of 44.16 rad/sec is twice that found in 
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Example One, as a result of the quadrupled stiffnesses.  This value 

remains approximately equal to the natural bending frequency.  The flutter 

speed of 107 knots is also twice that found in Example One.

4.2.2.4  Flutter Calculations for the Unsteady Case

The reduced frequency for zero artificial damping in the unsteady 

case is 1.06.  The unsteady flutter frequency remains greater than both 

the natural bending and torsional frequencies at 54.64 rad /sec.  The 

flutter speed of 107 knots now meets the design requirement of 120 miles 

per hour as a result of the quadrupled stiffnesses.  These results may be 

generalized to conclude that flutter speed increases as the square root of 

the stiffness.
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4.2.2.5  Comparison of Results in the Quasi-steady and Unsteady Cases.

The quasi-steady flutter frequency is 81% of unsteady flutter 

frequency, while the quasi-steady flutter speed is 63% of the unsteady 

flutter speed.  This is identical to the results found in the prototype 

(Example 1) despite the quadrupled bending and torsional stiffnesses.

4.2.2.6  CG Variation Survey

The increased flutter speeds for all CG positions is noted.  Again 

the quasi-steady and unsteady flutter speeds are equal at about 0.6c.
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4.2.3  Example Three:  MD3-160 Aircraft  Section (Usmani, Ho, 2003)

4.2.3.1  Inputs, Intermediate Calculations and Outputs

Program Inputs

Section Chord 60 Inch

Strip Width 10 Inch

AC location 0.25 Tenths of chord

CG Location 0.5 Tenths of chord

EA Location 0.4 Tenths of chord

Section Bending Stiffness 114 Pounds per Inch

Section Torsional Stiffness 132756 Inch-Pounds per 

Radian

Section Weight per unit span 0.83 Pounds per Inch

Section Mass Moment of Inertia 

about CG

13.74 Slug-inch^2 per 

inch

Air Density at ISA conditions 0.002378 Slugs/cubic foot

Test Altitude 0 (Sea 

Level)

Feet

Airfoil Lift Curve Slope 0.104 Per degree

Intermediate Calculations

Air Density Ratio at Test 

Condition

1.0 Non Dimensional

Uncoupled Natural Bending 

Frequency

66.5 Radians/Sec

Uncoupled Natural Torsional 

Frequency

95.14 Radians/Sec

CG Position 0.2 Non Dimensional

EA Position -0.2 Non Dimensional

Section Static Imbalance 0.155 Slug-inch

Radius of Gyration 0.7952 Non Dimensional

Mass ratio 6.62 Non Dimensional

Static Divergence Speed 382.5 Knots
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Program Outputs

Quasi-steady (QS) Flutter 

Frequency

90.92 Radians/Sec

Quasi-steady (QS) Flutter 

Speed

112.6 Knots

Reduced Frequency (k) at Zero 

Damping

0.85 Non Dimensional

Unsteady (US) Flutter 

Frequency

91.34 Radians/Sec

Unsteady (US) Flutter Speed 159.3 Knots

Ratio of QS to US flutter 

frequency

1.00 Non Dimensional

Ratio of QS to US flutter speed 0.71 Non Dimensional

4.2.3.2  Section Characteristics

This section is from a light two-place, single-engine sport and 

training aircraft.  It uses an all-aluminum, semi-monocoque (stressed skin, 

load bearing) cantilever wing design.  This section is the least statically 

imbalanced of all the sections tested, while the radius of gyration is the 

highest.  The CG position for the test case is located fairly far aft at 0.5c.  

In addition to the CG study, this section is used to carry out an altitude 

variation study.  The increase in the critical flutter speed as test altitude is 

increased is determined and plotted.
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4.2.3.3  Flutter Calculations for the Quasi-steady Case

The flutter frequency 90.92 Rad/sec, falling between the bending 

and torsional uncoupled natural frequencies as expected.  The flutter 

speed is 112.6 knots.

4.2.3.4  Flutter Calculations for the Unsteady Case

The reduced frequency for zero artificial damping in the unsteady 

case is 0.9.  The flutter frequency is 91.34 rad/sec, and the flutter speed  

is calculated at 159.3 knots.
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4.2.3.5  Comparison of Results in the Quasi-steady and Unsteady Cases

The quasi-steady flutter frequency is 100% of the unsteady flutter 

frequency, while the quasi-steady flutter speed is 71% of the unsteady 

flutter speed.  This was the closest conformance of quasi-steady to 

unsteady flutter speed calculations of all six examples.

The design criteria stated in Reference 15 was for freedom from 

flutter for airspeeds up to 120 knots.  These results indicate that design 

target has been achieved.  Flight testing would be required to verify these 

calculations.

4.2.3.6  Altitude Variation Survey

The increase in flutter speed predicted in Section 3.6.1 is 

demonstrated in Table 4.2.3 7 and Figure 4.2.3 7.  Both the quasi-steady 

and unsteady flutter speeds (as true airspeeds) increase as altitude 

increases from Sea Level to 25,000 feet.  The quasi-steady flutter speed 

remains approximately 71% of the unsteady flutter speed throughout this 

altitude range.
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Table 4.2.3.7

Flutter Speed Variation with Altitude

Test 

Altitude 

(feet)

Quasi-steady 

(QS) Flutter 

Speed 

(KTAS)

Unsteady 

(US) Flutter 

speed (KTAS)

QS/US 

Speed 

Ratio

Unsteady 

(US) Flutter 

speed 

(KIAS)

0 112.6 159.3 0.71 159.3

5000 121.3 167.3 0.73 155.3

10000 131.1 178.1 0.74 153.0

15000 142.0 192.6 0.74 152.8

20000 154.3 209.6 0.74 153.0

25000 168.3 229.8 0.73 153.8

Figure 4.2.3.7
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4.2.3.7  CG Variation Survey 
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4.2.4  Example Four:  Example from NACA Technical Report 685,   

(Theodorsen, Garrick, 1938)

4.2.4.1  Inputs, Intermediate Calculations and Outputs

Program Inputs

Section Chord 144 Inch

Strip Width 10 Inch

AC location 0.25 Tenths of chord

CG Location 0.4 Tenths of chord

EA Location 0.3 Tenths of chord

Section Bending Stiffness 45.4 Pounds per Inch

Section Torsional Stiffness 948572 Inch-Pounds per 

Radian

Section Weight per unit span 2.9 Pounds per Inch

Section Mass Moment of Inertia 

about CG

97.6 Slug-inch^2 per 

inch

Air Density at ISA conditions 0.002378 Slugs/cubic foot

Test Altitude 0 (Sea 

Level)

Feet

Airfoil Lift Curve Slope 0.104 Per degree

Intermediate Calculations

Air Density Ratio at Test 

Condition

1.0 Non Dimensional

Uncoupled Natural Bending 

Frequency

22.45 Radians/Sec

Uncoupled Natural Torsional 

Frequency

90.32 Radians/Sec

CG Position 0.2 Non Dimensional

EA Position -0.4 Non Dimensional

Section Static Imbalance 1.297 Slug-inch

Radius of Gyration 0.499 Non Dimensional
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Mass ratio 4.02 Non Dimensional

Static Divergence Speed 737.9 Knots

Program Outputs

Quasi-steady (QS) Flutter 

Frequency

86.9 Radians/Sec

Quasi-steady (QS) Flutter 

Speed

201.2 Knots

Reduced Frequency (k) at Zero 

Damping

0.4 Non Dimensional

Unsteady (US) Flutter 

Frequency

56.32 Radians/Sec

Unsteady (US) Flutter Speed 500.8 Knots

Ratio of QS to US flutter 

frequency

1.54 Non Dimensional

Ratio of QS to US flutter speed 0.40 Non Dimensional

4.2.4.2  Section Characteristics

The section characteristics are taken from the subject NACA report.  

The type of aircraft and its construction is unknown.  Notably, the section 

had the broadest chord and the highest torsional stiffness in the series, 

although not the highest natural torsional frequency.
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4.2.4.3  Flutter Calculations for the Quasi-steady Case

The flutter frequency is 86.9 Rad/sec, coalescing between the 

bending and torsional uncoupled natural frequencies.  The flutter speed is 

calculated at 201.2 knots.

4.2.4.4  Flutter Calculations for the Unsteady Case

In contrast to previous examples, a significantly lower reduced 

frequency (k) at zero artificial damping is found for this airfoil section.  The 

reduced frequency is found to be 0.4 at zero artificial damping.

The unsteady flutter frequency is greater than both the natural 

bending and torsional frequencies at 56.32 rad/sec.  The flutter speed is

500.8 knots, well into the compressible range and above the valid range of 

incompressible speeds for which this methodology is intended.  

Corrections for compressibility would be required.

4.2.4.5  Comparison of Results in the Quasi-steady and Unsteady Cases

The quasi-steady flutter frequency is 154% of the unsteady flutter 

frequency, while the quasi-steady flutter speed is just 40% of the unsteady 

flutter speed.  These results thus differ the most of all the examples 
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presented.  Nevertheless, the unsteady flutter speed calculation is within 

2% of that published in NACA TR 685 (Reference 14) of  492.7 knots.

4.2.4.6  CG Variation Survey 

This section shows a markedly lower slope for the flutter speed 

variation curve.  This indicates a reduced sensitivity to CG shift due to the 

high torsional stiffness.  The quasi-steady and unsteady flutter speeds are 

seen to agree at the CG position of about 0.7c.
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4.2.5  Example Five:  Example from USAAF Technical Report 4798,  

(Smilg, Wasserman, 1942)

4.2.5.1  Inputs, Intermediate Calculations and Outputs

Program Inputs

Section Chord 132 Inch

Strip Width 10 Inch

AC location 0.25 Tenths of chord

CG Location 0.39 Tenths of chord

EA Location 0.31 Tenths of chord

Section Bending Stiffness 114 Pounds per Inch

Section Torsional Stiffness 279963 Inch-Pounds per 

Radian

Section Weight per unit span 8.5 Pounds per Inch

Section Mass Moment of Inertia 

about CG

198 Slug-inch^2 per 

inch

Air Density at ISA conditions 0.00237

8

Slugs/cubic foot

Test Altitude 10000 Feet

Airfoil Lift Curve Slope 0.109 Per degree

Intermediate Calculations

Air Density Ratio at Test 

Condition

0.7383 Non Dimensional

Uncoupled Natural Bending 

Frequency

20.78 Radians/Sec

Uncoupled Natural Torsional 

Frequency

35.08 Radians/Sec

CG Position 0.16 Non Dimensional

EA Position -0.38 Non Dimensional

Section Static Imbalance 2.788 Slug-inch
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Radius of Gyration 0.4447 Non Dimensional

Mass ratio 18.98 Non Dimensional

Static Divergence Speed 453.9 Knots

Program Outputs

Quasi-steady (QS) Flutter 

Frequency

33.5 Radians/Sec

Quasi-steady (QS) Flutter 

Speed

135.0 Knots

Reduced Frequency (k) at Zero 

Damping

0.4 Non Dimensional

Unsteady (US) Flutter 

Frequency

27.08 Radians/Sec

Unsteady (US) Flutter Speed 220.7 Knots

Ratio of QS to US flutter

frequency

1.24 Non Dimensional

Ratio of QS to US flutter speed 0.61 Non Dimensional

4.2.5.2  Section Characteristics

This section appeared to be taken from an all-aluminum, semi-

monocoque  construction multi-engine transport or bomber aircraft.

This section has the highest mass ratio of the series, suggesting 

greater flutter resistance.  The section is also the most massive of the 

series sections, probably due to contribution of the wing mounted engine 

in the section weight.  Test altitude was 10,000 feet.  No published results 

for the bending-torsion flutter frequency or speed for this airfoil section 
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were available in Technical Report 4798.

4.2.5.3  Flutter Calculations for the Quasi-steady Case

The flutter frequency of 33.5 rad/sec is between the bending and 

torsional natural frequencies.  The flutter speed is calculated at 135 knots.

4.2.5.4  Flutter Calculations for the Unsteady Case

The reduced frequency at zero artificial damping is 0.4.  The 

unsteady flutter frequency is between both the natural bending and 

torsional frequencies, coming in at 27.08 rad/sec.  This section had the 

lowest coupled flutter frequency of the series.  The flutter speed is 220.7 

knots.  

4.2.5.5  Comparison of Results in the Quasi-steady and Unsteady Cases

The quasi-steady flutter frequency is 124% of the unsteady flutter 

frequency, while the quasi-steady flutter speed is 61% of the unsteady 

flutter speed.  This continues the typical trend of results for the quasi-

steady case of about 60% of the calculated critical flutter speed when 

compared to the unsteady case. 
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4.2.5.6  CG Variation Survey 

The section shows profound sensitivity to CG location.  The high 

mass of the section seems to predominate among the three forces as far 

as sensitivity to flutter speed change.
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4.2.6  Example Six:  Example from Reference 5, page 203   (Scanlan, 

Rosenbaum, 1968)

4.2.6.1  Inputs, Intermediate Calculations and Outputs

Program Inputs

Section Chord 75 Inch

Strip Width 10 Inch

AC location 0.25 Tenths of chord

CG Location 0.46 Tenths of chord

EA Location 0.35 Tenths of chord

Section Bending Stiffness 210 Pounds per Inch

Section Torsional Stiffness 409875 Inch-Pounds per 

Radian

Section Weight per unit span 1.75 Pounds per Inch

Section Mass Moment of Inertia 

about CG

36.7 Slug-inch^2 per 

inch

Air Density at ISA conditions 0.002378 Slugs/cubic foot

Test Altitude 20000 Feet

Airfoil Lift Curve Slope 0.104 Per degree

Intermediate Calculations

Air Density Ratio at Test 

Condition

0.5326 Non Dimensional

Uncoupled Natural Bending 

Frequency

62.16 Radians/Sec

Uncoupled Natural Torsional 

Frequency

100.73 Radians/Sec

CG Position 0.22 Non Dimensional

EA Position -0.3 Non Dimensional

Section Static Imbalance 0.488 Slug-inch

Radius of Gyration 0.727 Non Dimensional

Mass ratio 16.79 Non Dimensional

Static Divergence Speed 902.4 Knots
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Program Outputs

Quasi-steady (QS) Flutter 

Frequency

96.78 Radians/Sec

Quasi-steady (QS) Flutter 

Speed

250.2 Knots

Reduced Frequency (k) at Zero 

Damping

0.4 Non Dimensional

Unsteady (US) Flutter 

Frequency

89.29 Radians/Sec

Unsteady (US) Flutter Speed 384.7 Knots

Ratio of QS to US flutter 

frequency

1.08 Non Dimensional

Ratio of QS to US flutter speed 0.65 Non Dimensional

4.2.6.2  Section Characteristics

This section is taken from the textbook listed above.  The aircraft 

type is unknown.  Test altitude was 20,000 feet.  The section has the 

highest natural torsional frequency of the six section tested.

4.2.6.3  Flutter Calculations for the Quasi-steady Case

Flutter frequency is 96.78 rad/sec, falling between the bending and 

torsional natural frequencies.  The flutter speed is 250.2 knots.
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4.2.6.4   Flutter Calculations for the Unsteady Case

The reduced frequency for zero artificial damping in the unsteady case is 

0.4.  The flutter frequency is 89.29 Rad/sec, and the flutter speed is 384.7 

knots.  The flutter speed range is above the range of validity for 

incompressible flow.  Further evaluation would be required to refine the 

flutter speeds determined here.

4.2.6.5  Comparison of Results in the Quasi-steady and Unsteady Cases

The quasi-steady flutter frequency is 108 % of the unsteady flutter 

frequency, while the quasi-steady flutter speed is 61% of the unsteady 

flutter speed for the given conditions.

4.2.6.6  CG Variation Survey

The high natural torsional frequency here seems to reduce the 

slope of the flutter speed variation curve.  This section had the highest 

Divergence speed, the highest quasi-steady flutter frequency and the 

highest quasi-steady flutter speed of all the tested sections.
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4.3  Chapter Summary

The attached spreadsheet summarizes the results of five test 

sections.    Comparison of the quasi-steady to the unsteady flutter speeds 

typically shows the quasi-steady speeds to be about 60-65% of those 

when unsteady aerodynamic forces are used.  In one case the quasi-

steady flutter speed was only 40% of the unsteady flutter speed.

The results of the CG study were in agreement only when the value 

of the lever arm distance from the CG to the EA was about 0.25 in non-

dimensional terms.  For this range, the 60-70% trend found in the quasi-

steady to unsteady flutter speeds is supported.

The Mathcad worksheet may be used to investigate potential 

solutions to unacceptably low flutter speeds.  The results of trial 

calculations may then be reviewed by use of the worksheets to determine 

the most favorable method to change the flutter speed according to the 

design requirements and the options available to the designer.

Prevention or mitigation of flutter can be accomplished by 

adjustment of key structural and aerodynamic parameters, such as:
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1.  Section geometric properties, including section chord and airfoil 

section profile;

2.  Structural properties, including the bending and the torsional 

stiffnesses and elastic axis location;

3.  Inertial properties, including section mass, mass moment of 

inertia, and center of gravity position.

4.  Aerodynamic properties for the desired test condition, i.e., Sea 

Level or at altitude.

Active flutter suppression measures, such a smart structures, can 

alter stiffness on demand, thereby altering the structural variables as 

required by operational conditions.  This increases flutter speed while 

keeping weight growth in control.  This approach has been investigated 

using a wind tunnel model in the Piezoelectric Aeroelastic Response 

Tailoring Investigation (PARTI) program cited in Reference 16.
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Table 4.3

Summary of Program Inputs, Calculations and Outputs

Ryan 

NYP 

Proto-

type 

(1)

MD3-

160 (3)

Ref 14, 

p. 108 

(4)

Ref 11, 

p. 155 

(5)

Ref 5, 

p. 203 

(6)

Unit

Program Inputs

Section Chord 84 60 144 132 75 Inch

Strip Width 10 10 10 10 10 Inch

AC location 0.25 0.25 0.25 0.25 0.25 Tenths of 

chord

CG Location 0.4 0.5 0.4 0.39 0.46 Tenths of 

chord

EA Location 0.26 0.4 0.3 0.31 0.35 Tenths of 

chord

Section Bending 

Stiffness

12.25 114 45.4 114 210 Pounds 

/Inch

Section Torsional 

Stiffness

6084 132756 948572 279963 409875 Inch-

Pounds 

/Radian

Section Weight per 

unit span

0.81 0.83 2.9 8.5 1.75 Pounds 

/Inch

Section Mass 

Moment of Inertia 

about CG

8.75 13.74 97.6 198 36.7 Slug-

inch^2 

per inch

Air Density at ISA 

conditions

0.0024 0.0024 0.0024 0.0024 0.0024 Slugs

/cubic ft

Test Altitude 0 0 0 10000 20000 Feet

Airfoil Lift Curve 

Slope

0.084 0.104 0.104 0.109 0.104 Per 

degree
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Intermediate Calculations

Air Density Ratio 

at Test Condition

1.0 1.0 1.0 0.7383 0.5326 Non 

Dimens.

Uncoupled Natural 

Bending 

Frequency

22.1 66.5 22.45 20.78 62.16 Radians 

/Sec

Uncoupled Natural 

Torsional 

Frequency

22.3 95.14 90.32 35.08 100.73 Radians 

/Sec

CG Position 0.28 0.2 0.2 0.16 0.22 Non 

Dimens.

EA Position -0.48 -0.2 -0.4 -0.38 -0.3 Non 

Dimens.

Section Static 

Imbalance

0.296 0.155 1.297 2.788 0.488 Slug-inch

Radius of Gyration 0.525 0.7952 0.499 0.4447 0.727 Non 

Dimens.

Mass ratio 3.3 6.62 4.02 18.98 16.79 Non 

Dimens.

Static Divergence 

Speed

252.1 382.5 737.9 453.9 902.4 Knots

Program Outputs

Quasi-steady 

Aerodynamics

Quasi-steady (QS) 

Flutter Frequency

22.08 90.92 86.9 33.5 96.78 Radians 

/Sec

Quasi-steady (QS) 

Flutter Speed

35.6 112.6 201.2 135.0 250.2 Knots
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Unsteady Aerodynamics

Reduced 

Frequency (k) at 

Zero Damping

1.06 0.85 0.40 0.40 0.43 Non 

Dimens.

Phase Angle at 

Zero Damping

8.3 60.2 68.00 72.00 72.50 Degrees

Unsteady (US) 

Flutter Frequency

27.32 91.34 56.32 27.08 89.29 Radians/

Sec

Unsteady (US) 

Flutter Speed

53.5 159.3 500.8 220.7 384.7 Knots

Ratio of QS to US 

flutter frequency

0.81 1.00 1.54 1.24 1.08 Non 

Dimens.

Ratio of QS to US 

flutter speed

0.67 0.71 0.40 0.61 0.65 Non 

Dimens.
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Appendix

Sample Mathcad Bending-Torsion Flutter Worksheet....................... 105
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