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Explicit performance models of a transit system are often very useful in facilitating 

system design, optimization, alternative comparison, and gaining insights into the system 

relations. In this dissertation, three performance metamodels have been developed using 

the response surface metamodeling approach for the dynamic many-to-many dial-a-ride 

problem. The models predict, respectively, the minimum vehicle fleet size requirement, 

the average passenger time deviation from desired time, and the average passenger ride 

time ratio. The metamodeling approach incorporates in its simulation experiments a 

detailed vehicle routing algorithm and passenger time constraints, which are 

oversimplified or omitted by analytical approaches. 

 

A new rejected-reinsertion heuristic has been developed for the static dial-a-ride problem. 

The heuristic achieves vehicle reductions of up to 17% over the parallel insertion 

heuristic and of up to 12% over the regret insertion heuristic. The static heuristic has been 

extended to two online heuristics for the dynamic large-scale dial-a-ride problem, the 



 

immediate-insertion online heuristic and the rolling horizon online heuristic. The rolling 

horizon heuristic outperforms the immediate insertion heuristic by up to 10% vehicle 

reduction for demand scenario in which different demand lead times exist. Their 

computational efficiency makes them usable in real dynamic applications. The rolling 

horizon heuristic with an improvement procedure is employed in the simulation 

experiments upon which the metamodels are based. It is simple in concept, and it does 

not involve complex algorithm parameter calibration. 

 

The response surface methodology models the functional relation between an output of a 

process and its input factors through well designed experiments and statistical analysis. A 

face-centered central composite design is used in this study to determine the design 

points. Models are based on data collected from the simulation experiments and fitted 

using SPSS’s linear regression function. The metamodels are validated using an 

additional set of randomly generated data. The resulting models are relatively simple in 

structure, inexpensive to use and fairly robust. The applications of the performance 

models are illustrated through the parametric analysis and optimization of a dial-a-ride 

service considering the tradeoff between operator cost and user cost. 
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Chapter 1  Introduction 

 

1.1 Problem and Motivations 

At the planning or design stage of transportation systems, explicit performance models of 

a proposed system are often very useful in facilitating optimization of the system in terms 

of its controllable variables, comparing and/or selecting of alternatives, or gaining 

insights into the system relations. This dissertation develops performance models for 

dynamic many-to-many dial-a-ride (DAR) paratransit service. The main performance 

model is a vehicle resource requirement model, which predicts the minimum vehicle fleet 

size required to provide a given level of service to a given demand level. The other two 

models estimate level of service attributes, which predict respectively the average 

passenger time deviation from their desired pickup or delivery time and the average ratio 

of the passenger actual ride time to the direct ride time. 

 

There are always tradeoffs between operating cost and service quality for the transit 

service. As more active vehicles operate in the system, the operating cost and the service 

quality to the users also increase. For conventional bus services with fixed routes and 

schedules, the relation between operating cost and service quality are relatively 
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straightforward and easy to quantify. The average route spacing and headway for each 

route can determine the number of vehicles required. Average passenger access time, 

waiting time at bus stops and ride time can all be estimated, given the fixed routes and 

headways. For DAR services, the routes and schedules are not fixed; they are determined 

to accommodate the transportation requests with different origins and destinations and 

desired service times. In a dynamic system, the routes and schedules are determined in 

real-time to accommodate demand occurring during the service time period. The relations 

between operating cost and service quality for DAR services are not easy to quantify due 

to the complex nature of the DAR operations. Furthermore, the relations among the 

system parameters (e.g. vehicle operating speed, service area size, etc.) are not fully 

understood. With developed performance models, tradeoffs between service quality and 

operating cost can thus be evaluated quantitatively. 

 

The explicit performance models are intended to be used at the high-level system 

planning stage. Therefore, they should be inexpensive to use and not require excessive 

data which might not yet be available at the planning stage. Model prediction should be 

reasonably accurate and sensitive to relevant policy alternatives (i.e. maximum waiting 

time, vehicle operating speed and etc.). The form of the models should be relatively 

simple to use and facilitate the understanding the causal relations.  

 

The models can be used as part of the formulation of an optimization models for DAR 

systems or integrated systems (conventional bus and DAR) to determine the system 

parameters considering both operator cost and user cost. For example, the analyst could 
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determine the optimal upper limits for the passenger time deviation and ride time ratio 

and determine the resulting vehicle fleet requirement that would minimize the combined 

operator cost and user cost. In a potential integrated system (e.g. use the entire fleet for 

conventional bus service during peak hours and use the excess fleet during off-peak to 

provide DAR service with higher service quality to low-density surrounding areas), the 

performance models can be input to a vehicle resource allocation model to determine 

how many vehicles should be allocated at various times to the DAR and conventional bus 

services. 

 

The models can be used to determine the threshold demand level separating the domains 

in which DAR service and conventional bus service will operate more cost-effectively. It 

is generally thought that DAR services are suitable in areas or time periods with low 

demand densities. A threshold analysis can determine the approximate numerical value 

for the demand level. 

 

The performance models assist in the demand forecasting for DAR systems under a 

demand equilibrium environment. Since the demand for passenger transportation services 

is quite sensitive to the level of service provided (Wilson and Hendrickson, 1980), the 

level of service predicted by the performance models can be used to forecast the elastic 

demand. 

 

An explicit performance model is also useful in quantifying the effects of system 

parameters (such as vehicle speed and maximum ride time ratio) on the performance. For 
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example, the operator may increase the vehicle operating speed to lower the vehicle fleet 

requirement. With a performance model, the operator may estimate how many vehicles 

would be saved. Detailed knowledge or analysis of what interactions exist among the 

parameters and how these interactions affect the performance of a system would be 

available through sensitivity analysis. 

 

Few performance models for DAR systems have been developed. The literature on the 

existing performance models is reviewed in Section 2.1. The development of the 

performance models for DAR services is desirable and useful, especially for the service 

planning stage.  

 

 

1.2 Background of Dial-a-Ride Services 

DAR paratransit is one of the public transit services which can provide shared-ride door-

to-door service with flexible routes and schedules. DAR was initially designed for service 

to the general public. It generally provides a higher quality of service (e.g. negligible 

access time, wait at home and no transfers) but increases operating cost due to a lower 

vehicle productivity (e.g., passenger trips per vehicle hour) than conventional bus 

services. Due to the required subsidy, DAR service to the general public is usually 

limited to suburban areas or time periods with low demand densities and service as a 

feeder to line-haul systems, in those situations where they operate more cost-effectively. 

In some cities, DAR is limited to use by a special group of persons with mobility 
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difficulties (handicapped or elderly persons) who are not able to access other public 

transportation services.  

 

A DAR system is made up of a control center and a fleet of small vehicles (usually < 20 

seats) compared with conventional buses. The vehicles, operating with flexible routes and 

schedules, respond to requests for transportation as they are received by the control 

center. Each customer will provide information about the locations of his/her origin and 

destination, the desired time of pickup or delivery, and number of riders. The dispatcher 

in the control center will combine the customer information with information regarding 

vehicle positions and their tentative routes to plan the new routes for vehicle using 

manual or automated dispatching techniques. The passengers are provided the expected 

pickup time. Unlike taxi service, DAR services allow ridesharing and thus reduce cost 

per passenger. Early demand-responsive systems used manual dispatching techniques. 

With technological advances in computer hardware and software, automatic computer 

dispatching algorithms are available to many current services. Furthermore, Advanced 

Vehicle Location (AVL), Global Position Systems (GPS), Geographical Information 

Systems (GIS) and similar systems are making the real-time dispatching more feasible. 

 

In the existing systems or algorithms, two types of service requests are considered: 

advance requests and immediate requests. The advance requests usually refer to those 

received at least one day before the service is provided, so that routes and schedules can 

be planned at the start of the day of service. Service provided to handicapped persons 

often requires advance requests. If all the requests are advance requests (and assuming all 
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other factors, such as traffic conditions, are predictable), then the determination of the 

routes and schedules is a static Dial-A-Ride Problem (DARP). Immediate requests are 

those asking for service as soon as possible without a designated desired pickup or 

delivery time, such as in Wilson et al. (1971). In practice, a reasonable service provided 

to the general public would allow the service requests with specified desired pickup or 

delivery time throughout the service period (without the requirement of 24-hour 

reservation), probably at least some time in advance (e.g. 20 minutes) for the efficient 

route and schedule planning. This kind of service is considered in this study. Except 

when serving only previous-day advance requests, the routing and scheduling of a DAR 

service is a dynamic problem, in which decisions for requests coming throughout the 

operating period are made in real time.   

 

DAR services may be classified as many-to-many, many-to-few and many-to-one, 

depending on the demand patterns and the service quality to be achieved. Many-to-many 

means passengers can differ in their origins and destinations. If all the passengers are 

picked up or delivered at the same location (e.g. a shopping center), the service is many-

to-one. One example of many-to-one service is the feeder service in a local area, in which 

all passengers are collected to feed a metro station. Many-to-few lies between those two 

extreme conditions, where there are a few common origins and/or destinations.  
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1.3 Objectives and General Methodology 

The main research objective is to develop analytical performance models for dynamic 

many-to-many DAR services, which predict the fleet size requirement and the attributes 

related to passenger time. The main purpose of the models is to assist in system planning 

or alternative evaluation for DAR or integrated systems. Therefore, the models should be 

easy to acquire and use (e.g. in explicit form other than running the simulation to get the 

performance results), and comprehensively take into account the effect of various system 

parameters (e.g. area covered, maximum time deviation, vehicle operating speed, etc.) on 

the performance measures.  

 

The prediction of the performance measures for DAR services is not as straightforward as 

for fixed-route bus systems due to the complex nature of the DAR operations: passenger 

requests come-in in real-time, the DAR routes and schedules are flexible and change day 

by day, the operation of DAR requires solving the DARP problem considering special 

passenger precedence and travel time constraints, the solution of the problem is usually 

near-optimal, and the performance measures are closely related with vehicle operating 

speed, time constraints, service coverage etc. Manual dispatching is relatively simple for 

very small system, but is much less efficient than computerized dispatching with 

sophisticated algorithms, and seems obsolete especially when more powerful and 

inexpensive computers are available these days. From the literature review in Section 

2.1., it is found that some existing performance models were developed through 

theoretical analysis (e.g. based on geometric probability or queuing theory) and they 

generally suffer from the limitations by using manual or very simple vehicle routing 
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algorithm and not taking into account the passenger time constraints. Meanwhile, real 

DAR data are rare and not easy to acquire, and most of them are those for handicapped 

DAR services.  (The handicapped DAR services differ from the general DAR services in 

that the former have lower demand, and usually allow longer time deviation and require 

24-hour advance reservation.) Thus, regression models developed with extensive real 

data are not practical, at least yet. 

 

Simulation remains the most effective and accepted approach to represent complex 

systems. However, simulation models are not directly suitable for high-level decision 

making. In this dissertation, response surface metamodeling approach has been used to 

develop the performance models, in which simulation experiments are designed and 

executed, and simulation data are collected and used in the regression analysis. The 

metamodels developed are much less expensive to use than running simulations directly 

each time. On the other hand, more sophisticated computerized routing and scheduling 

algorithm can be incorporated into the simulation experiment to better represent the 

complex operation of the DAR service. 

 

Thus, the second main objective of this research is to develop an advanced online 

heuristic for the large-scale dynamic DARP, which could efficiently assign real-time 

requests into vehicle routes and determine their schedules. The dynamic algorithm should 

be advanced in terms of the performance, computationally efficient, and reasonably 

applicable to real dynamic systems. DARP algorithms have been proposed since the 70’s, 

mostly for the static version of the problem. In this study, two online heuristics, online 
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immediate insertion heuristic and online rolling horizon heuristics are developed and 

compared. Real-time requests with different lead times (a measure of how far in advance 

the request is made) are considered. The effect of lead time of the requests on the 

operating efficiency is also examined. 

 

Parametric analysis of the model is performed as a single parameter is varied to better 

understand the interrelations in the system. Especially important is the tradeoff relation 

between the vehicle fleet size requirement and the level of service provided, which are 

closely related with the system operating cost and user cost. The tradeoffs can be 

quantified and evaluated by the performance models. The models are also applied in the 

optimization of the service considering the combined operator cost and user cost. 

 

 

1.4 Organization of the Dissertation 

Chapter 2 is devoted to the literature review of the existing performance models and the 

algorithms for the static and dynamic DARPs. Chapter 3 develops an insertion-based 

rejected-reinsertion heuristic for the static dial-ride problem, which is the basis for the 

online heuristics developed for the dynamic version of the problem in Chapter 4. In 

Chapter 5, performance metamodels are developed using response surface metamodeling 

approach. Model validation is also addressed in this chapter. Chapter 6 analyzes the 

sensitivity of the performance to two of the assumptions made in the development of the 

models and illustrates two model applications. Finally, Chapter 7 provides the 

conclusions of the dissertation and discusses further research directions. 
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Chapter 2  Literature Review 

 

In this chapter the literature is reviewed in two areas: existing performance models for 

DAR services, and algorithms for both static and dynamic DARPs.  

 

 

2.1 Existing Performance Models for Dial-a-Ride Services 

Computer simulation is the first and the most generally accepted approach to predict 

system performance of demand responsive systems (Wilson and Hendrickson, 1980). 

Simulation models are capable of generating individual service requests from specified 

time and space distributions, employing the specified routing and scheduling algorithm 

and get disaggregate measures, which are summarized statistically to indicate the system 

performance. In this way, simulation models are able to replicate the complex nature of 

the DAR operating system and get a reliable estimate of the true performance measures. 

Simulation models for DAR systems have been developed by Heathington et al. (1968), 

Wilson et al. (1970, 1976), and Fu (2002a). However, simulation models tend to be 

difficult to acquire and typically require fairly sophisticated planners with no pressing 

time constraints to use successfully (Wilson and Hendrickson, 1980). They are also time-
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consuming to develop for specific cases. Especially if elastic demand is considered the 

simulation models must be executed repeatedly. The simulation models are not quite 

suitable at the planning level since no explicit relation exist between system outputs and 

inputs. Despite that, simulation still plays an important role in producing simulated data 

and calibrating analytical performance models, as will be seen in Section 2.1.2.  

 

The following literature review on existing performance models will be confined to 

analytical models. Research on analytical DAR performance models is limited. There are 

two general methods to obtain the analytical performance models: theoretical analysis 

and statistical methods based on real or simulated data. 

 

2.1.1 Theoretical analysis 

Stein (1978a, 1978b) conducted an analytic investigation into the lengths of optimal bus 

tours for the DAR transportation systems. He has developed asymptotic equation for a 

many-to-many DAR system with a single bus: 

 '2
3
4lim * nAbYnn

⋅=
∞→

                             (2-1) 

*
nY  is the length of an optimal bus tour through n  random demand pairs. b  is a constant.  

b  has been roughly estimated at 0.75 for the Euclidean distance by manually 

constructing tours for a 202- and 400-city instances by Beardwood et al. (1959).  The 

value was later corrected to be 0.7124 by more substantial experimental studies (Johnson 

et al., 1996). Furthermore, by assuming that transfers are permitted and take no time, 

Stein is able to develop an asymptotic equation for the multiple-bus case. 
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k
nY  is the length of an optimal bus tour for case with k  buses. The approach taken for the 

multiple-bus case is based upon the decomposition of the area into regions and upon the 

specialization of buses within these regions. The objective is to minimize time to 

completion as well as total travel time. Equation (2-2) is based on a quite idealized 

transfer condition and no user inconvenience is considered in the objective function.  

However, the equation is asymptotical in the number of demand points and does not take 

into account any user time constraints. 

 

Daganzo et al. (1977) present analytical models for waiting time, ride time and total 

service time of a many-to-one DAR system where buses periodically visit a fixed point, 

which is either the origin or the destination of every trip. The models are for zones 

instead of the whole service area, in which one vehicle operates in one zone. The 

approach taken is to develop a steady-state deterministic model of the single vehicle 

operation using a fluid queuing approximation with service rates derived from 

geometrical probability for the expected distance between a random point and the nearest 

of a set of randomly distributed points in a zone. The simple next-nearest routing 

algorithm is employed. The collected and distributed passengers are treated in two 

separate phases, which is not efficient. The resulting models are adjusted, to some extent, 

to reflect the stochastic nature of the demand process and the integer nature of customer 

service. The same expression for the expected distance is used to derive an approximate 

analytical model of many-to-many demand responsive service using three variants of the 

next-nearest strategy (Daganzo, 1978). He further approximately models the request 
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arrival process as a time-homogeneous Poisson process and the service rates as mutually 

independent negative exponential variables independent of the arrival process, in order to 

handle the stochastic nature of the problem. The use of the next-nearest routing algorithm 

in both studies is fairly restrictive, since it is not able to take into account the time 

distribution of the passenger requests. The passengers may experience intolerably long 

waiting time and ride time under the next-nearest routing strategy. 

 

Later, Daganzo (1984a, 1984b) provides an expression for predicting the tour length of a 

vehicle visiting a set of demand points in a zone served by a single vehicle by using a 

simple manual routing strategy. The depot influence area is first partitioned into districts 

containing clusters of stops; one vehicle route is then constructed to serve each cluster. 

For each vehicle route, first a swath is cut covering the whole zone, and then the tour 

moves forward along the swath. Again, the manual routing strategy seems too restrictive 

and no time constraints are considered. 

 

Lerman and Wilson (1974) have modeled the many-to-many service by using an M/M/1 

system, in which the mean of the exponentially distributed service time is based on a 

linear function of trip length and productivity. The linear function is calibrated using 

simulation results. Wait time is based on the average distance between the vehicle 

assigned and the passenger’s origin, which is assumed to be a liner function of the vehicle 

density and the demand density. The predictions are considered valid only in relatively 

uncongested systems, and an assumption of linearity in interstop distance with 

productivity certainly suggests that the model would at best be useful only within a 
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narrow range (Wilson and Hendrickson, 1980). The supply model is part of the first 

attempt to model demand responsive systems in an equilibrium framework. 

 

2.1.2 Statistical methods based on real or simulation data 

Wilson et al. (1971) have developed the first empirical model for many-to-many DAR 

service using an intuitive model form, calibrated with data from simulation experiments 

with combined many to several and many-to-many demands: 

2/1)1(
)072.068.0(

−
+

=
LOS

DAN                       (2-3) 

where N  = number of operating vehicles, A  = area size in square miles, D  = demand 

density in trips per square mile per hour, LOS  = mean ratio of total service time (waiting 

+ travel) to direct driving time ( LOS  > 1). The results are based on simulation 

experiments with limited variations in operating conditions (e.g. area sizes of 33×  and 

55×  square miles, minimum demand density as 10 demands per square miles per hour). 

The demands are assumed to be served as soon as possible. Furthermore, variations in 

vehicle speed, time constraints are not considered in Equation (2-3). 

 

Arillaga and Medville (1974) have developed demand, supply and cost models by fitting 

a simple linear form to observed operating data, based on results from thirteen existing 

systems (data of three of sixteen surveyed sites are not included in the models) of various 

operating types (i.e. many-to-many, many-to-few and many-to-one). Thus, the models do 

not reflect the differences in operating systems and the thirteen sets of data used for 

estimation are very limited. Furthermore, the models fail to capture the critically 
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important non-linear character of the performance relations (Wilson and Hendrickson, 

1980). 

 

The following models for many-to-many DAR service have been developed by Flusberg 

and Wilson (1976) with separate prediction of waiting time and ride time, and calibrated 

with the MIT simulation model (Wilson et al., 1971): 
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Ride time: 
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where af  = ratio of street distance to airline distance, effV  = effective vehicle speed 

including passenger loading and unloading times, λ  = vehicle productivity, L  = mean 

direct trip length. The model form is developed through observation of the relationship 

between service levels and the parameters, in both actual systems and experience with the 

simulation model. The model is developed as part of a combined 

supply/demand/equilibrium model of many-to-many DAR and shared ride taxi systems 

(Lerman et al., 1977; cited from Flusberg and Wilson, 1976). A set of adjustments are 

developed to model service times under manual dispatching and alternative computer 

control  algorithms, when waiting and ride time are not weighted equally, as well as for 

the degradation in service to immediate-request passengers due to the priority given to 

advanced request passengers (Menhard, et al., 1978).  
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Recently, Fu (2003) has developed an analytical model which predicts the minimum fleet 

size requirement for many-to-many static DAR service by calibrating the proposed model 

form with simulation data: 
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where FS  = minimum fleet size, Tλ  = peak trip  rate, E  = maximum allowable ratio of 

excess ride time (the difference between the actual ride time and the direct ride time) to 

direct ride time, τ  = boarding plus alighting time, A  = size of the service area, and T  = 

trip service (pickup/delivery) time window. A sequential insertion heuristic is used and 

the objective is to minimize the number of fleet size while satisfying all the demand for 

given service quality constraints (time window and ride time constraints). The model is 

based on three demand density settings of 1.29, 2.59 and 3.88 trips/mi2/hour (0.5, 1.0 and 

1.5 trips/km2/hour). All the origins and destinations are uniformly distributed in square 

areas. 

 

Tour length expression for a vehicle visiting a set of demand points in a zone served by a 

single vehicle has been developed from simulation experiments by Mason and Mumford 

(1972). The tour length expressions can assist the design of many-to-one systems, in 

which the whole service region may be partitioned into service zones each served by one 

vehicle. The limitation is that the partition is not always efficient if time constraints and 

dynamic demands are considered. 
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2.1.3 Findings 

1. Limited number of performance models for DAR systems are available and most 

of them were developed in the 70’s and 80’s.  

2. Theoretical analysis is usually based on notions of geometric probability or 

queuing theory and does not take into account the time constraints of passenger 

requests. Two of the difficulties in analytically modeling DAR systems are 

inability to represent the vehicle routing algorithm adequately and to 

accommodate the time constraints (i.e. simple next-nearest strategy without time 

constraints).  

3. Real data for DAR operations are rare and the operations differ considerably in 

operating conditions such as area covered, form of DAR implemented and routing 

algorithm used. 

4. Simulation is still a promising method to replicate the complex DAR operation 

since it can represent the vehicle routing algorithm and take into account other 

constraints and randomness in the system. It is useful to generate simulation data 

if real data are rare or unavailable. 

5. Available models based on statistical methods and simulation data are limited. 

They are developed for many-to-many service or combined service only. Most 

models are based on an MIT simulation model (Wilson et al., 1971), in which the 

passengers are assumed to be picked up as soon as possible. (In practice, 

passengers may want to be picked up or delivered close to their desired time.) 

Variations of some of the system parameters are not sufficiently considered. No 

relations on the tradeoff between cost and service have been analyzed for the 
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spectrum of DAR services from many-to-many to many-to-one, where demands 

are more clustered. 

 

 

2.2 Description of the Static and Dynamic Dial-A-Ride Problems  

In a DAR context, passengers specify transportation requests between given origins and 

destinations, either with a desired pickup time or delivery time. Transportation is supplied 

by a fleet of vehicles usually based at a common depot. The aim is to design a set of 

vehicle routes and schedules capable of accommodating the requests, in order to 

minimize a certain cost under a set of constraints. General objective functions include 

those that to minimize the total vehicle travel time/distance to service providers, to 

minimize passenger inconvenience or dissatisfaction represented by the desired time 

deviations and/or passenger excess ride times. The most common constraints relate to 

customer-desired time deviation (the difference between the desired pickup/delivery time 

and the actual pickup/delivery time should be less than or equal to a pre-specified value), 

excess ride time (the difference between the actual ride time and direct ride time should 

be less than or equal to a pre-specified value), and vehicle capacity. One other common 

constraint considered in the passenger service is that a vehicle is not allowed to wait 

while carrying passenger(s). Precedence constraints and pairing constraints are implied in 

the problem. Precedence constraints require that the pickup location of one passenger has 

to be visited before the delivery location of the same passenger. Pairing constraints 

require that the passenger should be picked up and delivered by the same vehicle. 
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The desired time deviation and excess ride time constraints can usually be transformed 

into time windows on pickups and deliveries as in Jaw et al. (1986). Since DAR is a 

highly restricted problem, it is possible that not all requests can be served without either 

violating the time constraints or increasing the given fleet size. Consequently, at least one 

of the following has to be allowed in the algorithm development:  

- increase of the fleet size 

- rejection of part requests  

- use of soft time windows. 

 

Researchers classify problems as static and dynamic based on whether the problem is 

fully known with all its input information (e.g. demand, travel times) for the time period 

considered. In a static version of DARP, all the requests are known in advance (e.g. all 

the passengers call at least one day before their desired trips in a DAR service) and travel 

times are predictable. The algorithm can be executed once at the beginning of service. In 

a dynamic version, passengers call for trip requests throughout the day. Thus, the vehicle 

routes and schedules are adjusted in real-time.  

 

The Dial-A-Ride Problem (DARP) is a generalization of the Pickup and Delivery 

Problem (PDP) and the Vehicle Routing Problem (VRP), which are NP-hard. The DARP 

is a PDP in which the loads to be transported represent people. In DARP, maximum 

excess ride time constraints are usually considered. The DARP is different from and 

somewhat more difficult than most other routing problems due to the above mentioned 

precedence and travel time constraints, and also because operator cost and user 
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inconvenience must be weighted against each other when designing a solution instead of 

considering the operator cost alone. For overviews, see Bodin et al. (1983) for general 

routing and scheduling of vehicles and crews, Solomon (1987) and Desrosiers et al. 

(1995) for vehicle routing and scheduling problems with time window constraints, 

Savelsbergh et al. (1995), Mitrovic-Minic (1998, 2001) and Desaulniers et al. (2002) for 

general pickup and delivery problem, and Cordeau and Laporte (2003) for DARP. The 

following review will focus on the scientific literature specific to the DARP.  

 

 

2.3 Dial-A-Ride Problem Algorithms 

Algorithms for the DARP can be categorized based on whether they are designed for the 

static or dynamic version of the problem, for single- or multiple-vehicle system, with or 

without time windows, and exact or heuristic. Below, algorithms for the single-vehicle 

problem will be reviewed first. Then the algorithms for the multiple-vehicle problem with 

time windows are categorized based on the general methods used: insertion-based, 

cluster-first route-second, metaheuristics and post-improvement. 

 

A single-vehicle problem is rarely applicable in practice. However, it is considered as a 

sub-problem of some multi-vehicle DARP (especially in cluster-first route-second 

algorithms). Psaraftis (1980) has developed an exact dynamic programming algorithm for 

the single-vehicle many-to-many static version of the problem without time window. 

User inconvenience is controlled through a “maximum position shift” constraint limiting 

the difference between the user’s position in the list of requests and that position in the 
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vehicle route. The objective function is a weighted combination of the time to service all 

customers and the total degree of dissatisfaction experienced by customers while waiting 

for service. The dissatisfaction is assumed to be a linear function of each customer’s 

waiting and ride times. The solutions for the dynamic version are based on reoptimization 

every time a new request was received. Psaraftis (1983) later modified the exact dynamic 

programming algorithm to be applicable to a similar problem with time windows on each 

pick-up and drop-off. The computational effort of both algorithms varies exponentially 

with the size of the problem, and therefore only very small problems can be handled. 

Less than 10 customers are considered in Psaraftis’ example.  

 

Sexton and Bodin (1985a, 1985b) propose a heuristic for a static single vehicle problem. 

They apply Benders’ decomposition procedure to a mixed binary nonlinear formulation 

of the problem, which separates the routing and scheduling components allowing each to 

be attacked individually. User inconvenience is measured as a weighted sum of two 

terms, the excess ride time and the deviation of the desired delivery time. One of the 

limitations is that all desired delivery times or all desired pickup times must be specified 

instead of mixing them. Results are reported for up to 7 vehicles and 20 users.  

 

Desrosiers et al. (1986) solve the single-vehicle problem by formulating it as an integer 

problem and solving it exactly through dynamic programming. It is applied to the 

solution of instances with up to 40 users. 
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The algorithms to solve the multi-vehicle DARP with time windows can be categorized 

into four groups: insertion-based, cluster-first route-second, meta-heuristics and 

improvement. Those methods might be combined and used in one algorithm (e.g. 

insertion + improvement). Note that all the following algorithms are exclusively heuristic 

due to the NP-hard nature of the problem.  

 

2.3.1 Insertion-based  

Insertion heuristics have proven to be popular methods for solving a variety of vehicle 

routing and scheduling problems. They are popular because they are fast, produce decent 

solutions, are easy to implement, and can easily be extended to handle complicating 

constraints (Campbell and Savelsbergh, 1998). 

 

In general, an insertion-based algorithm is a method that inserts one passenger request 

into the vehicle routes at a time, at a position that is feasible to the new passenger and all 

the passengers already assigned, and results a minimum increase of a pre-specified 

objective function. A sequential insertion procedure (Kikuchi and Rhee, 1989) constructs 

one route at a time until all customers are scheduled. A parallel insertion procedure (Jaw 

et al., 1986; Madsen et al., 1995; Toth and Vigo, 1997; Diana and Dessouky, 2004) is 

characterized by the simultaneous construction of a number of routes (Solomon, 1987). 

The disadvantage of the sequential insertion procedure is that workloads of vehicles are 

uneven: the vehicle whose schedule is built first tends to receive the maximum workload, 

while the following vehicles receive less workload gradually. 

  



 23

The DARP was first examined by Wilson et al. (1971, 1976 and 1977) in the 

development of real-time algorithms for the DAR systems of Haddonfield, Jew Jersey 

and Rochester, New York. The fundamental concept of sequential insertion of customers 

is developed in those studies. The main requests considered are immediate-requests, 

which makes the scheduling part of the problem trivial since the requests are satisfied as 

soon as possible. While these studies sought real-time solutions to the dynamic DARP, it 

seems that thereafter most work has concentrated on the static version. 

 

Jaw (1984) and Jaw et al. (1986) are among the first few to develop a parallel insertion 

heuristic for multi-vehicle advance request DARP with time windows. The quality of a 

solution is measured through a non-linear objective which is a weighted sum of disutility 

to the system’s customers due to excess ride times and desired time deviation and of 

system operator cost. The problem is solved by sequentially inserting passengers into 

vehicle routes so as to yield the least possible increase in the objective function value. 

The core parts of the algorithm are a feasibility check for the attempted insertion and an 

optimization process to determine the insertion position once the attempted insertion 

vehicle and insertion sequence have been given. The concept of a “schedule block” is 

proposed for facilitating the feasibility check. Computation results are included for a real-

time dataset with 2617 users and some 20 simultaneously active vehicles covering 16 

hours of operation. They also reported that none of the variations of the algorithm they 

attempted (e.g. considering a group of two or more customers as candidates for the next 

insertion) have resulted in significant and consistent improvements to the solution 

obtained through the basic version of the algorithm. 
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Potvin and Rousseau’s (1992) heuristic looks very similar to that of Jaw et al. (1986). 

The big difference is that instead of inserting the customer into the position with the 

minimum cost, they maintain the W (heuristic parameter, called as beam search width) 

best alternative solutions in parallel at each state and those W  solutions are considered 

for further expansion. The process is repeated and the best solution out of several final 

parallel solutions is selected as the result. The solution can be further improved by a post-

optimization phase. In this way, they try to alleviate the “myopia” of the insertion 

heuristic at the expense of greater computation time. The heuristic achieved slightly 

better solutions for small instances with 90 customers in terms of number of vehicles 

required, customer ride time and time deviation. The computation time is 2-5 times 

greater than in the heuristic of  Jaw et al. (1986). The performance of the heuristic on the 

large problems needs further exploration. 

 

Madsen et al. (1995) describe a system for the solution of a static DARP with multiple 

vehicle capacities and multiple objectives, based on the insertion heuristic proposed by 

Jaw et al. (1986). The requests are pre-ranked based on some priority parameters. The 

system does not operate a schedule consisting of blocks in order to reduce the running 

times for the algorithm. The computation time is relatively low (a few seconds for a 

problem with 300 customers and 7 vehicles), enabling the algorithm to be implemented in 

a dynamic environment for on-line scheduling. No detailed description is provided for the 

online implementation of the algorithm. 
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Toth and Vigo (1997) describe another parallel insertion heuristic.  The heuristic is based 

on the relaxation of the desired service time constraints by the introduction of a piecewise 

linear user inconvenience penalty in the objective function. They define a set of 

parameters which help to initialize a small set of routes each with a single pivot, and then 

iteratively insert unrouted trips into existing routes, solving at each iteration an 

assignment problem on a cost matrix obtained by using a modified cheapest insertion 

criterion based on locally optimal choices.  

 

Diana and Dessouky (2004) have developed a regret insertion heuristic for solving static 

DARP with time windows. The basic idea is, for all unrouted requests, to calculate a 

regret matrix, whose rows correspond to unrouted requests and whose columns 

correspond to routes. Each element of the matrix is defined as the incremental cost by the 

insertion of the unrouted request to the corresponding route. The request with the largest 

regret will be inserted into the previously computed position. The regret cost is a measure 

of the potential price that could be paid if a given request were not immediately inserted. 

The calculation of the regret matrix here and calculation of the cost matrix in Toth and 

Vigo (1997) are expensive. 

 

Teodorovic and Radivojevic (2000) combine fuzzy logic reasoning in the insertion 

procedure to make the decision about which vehicle will accept the new request and to 

design the new route and schedule for the vehicle chosen to serve the new request. The 

reasoning process needs the subjective perception of the dispatchers (e.g. extra distance 

to be traveled by the vehicle by inserting a new request into a vehicle route in terms of 
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small, medium and big). Though only the fuzzy judgment is needed, it is still beyond the 

capability of a person for a relatively large problem. 

 

The basic idea of the insertion method was applied in other research with special 

objectives (Dessouky et al., 2003; Fu, 2002b, 2003). Dessouky et al. (2003) jointly 

optimize the operator and user cost as well as environmental impact for demand 

responsive paratransit system. Fu (2002b) schedules the DAR paratransit for time-

varying, stochastic condition. 

 

2.3.2 Cluster-first route-second or cluster-based 

Cluster-first route-second is a commonly used technique in various VRPs. To be applied 

in DARP, the cluster phase needs special considerations due to the pairing constraints and 

time window constraints of DARP. 

  

Bodin and Sexton (1986) develop a cluster first, route and schedule second and swap the 

third heuristic for the problem, employing a space time heuristic to form a route for 

customers in a cluster. No detailed procedure is provided for the initial breakdown of 

customers into vehicle clusters. The heuristic can only handle the condition that every 

request has a desired pickup time or every request has a desired delivery time. The 

objective is to minimize total customer inconvenience, which is the weighted sum of the 

customer delivery time deviation and excess ride time. 
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Desrosiers et al. (1988) solve the multiple-vehicle DARP by mini-clustering first, routing 

second. At the first stage, mini-clusters group together nearby customers who can be 

transported by the same vehicle over a route segment. This grouping into mini-clusters of 

similar requests deals with local temporal and spatial considerations only. The mini-

clusters are obtained by breaking down the routes in an initial solution into segments each 

time the vehicle becomes empty. At the second stage, routes for all the vehicles are 

constructed simultaneously by column generation algorithm. This step deals with global 

considerations by assigning mini-clusters to vehicles.  Ioachim et al. (1995) improve the 

mini-clustering phase by using a mathematical optimization technique to form the mini-

clusters and solving the problem by column generation. Borndorfer et al. (1997) use a set 

partitioning approach for the solution of the problem in both of the clustering step and 

chaining step. Both set partitioning problems are solved by a branch-and-cut algorithm. 

Total vehicle travel distance is minimized in both steps. The customer inconvenience is 

not considered in the objective functions in either Ioachim et al. (1995) or Borndorfer et 

al. (1997). Incorporating the customer inconvenience is difficult because it is harder to 

formulate the passenger-related costs than link-related costs in the mathematical 

programming and also solve the problem efficiently. Baugh et al. (1998) approach the 

problem by using simulated annealing for clustering and a modified space-time nearest 

neighbor heuristic for developing the routes within the clusters. 

 

It should be mentioned that the methods of Desrosiers et al. (1988), Ioachim et al. (1995) 

and Borndorfer et al. (1997) can also be categorized as mathematical programming 

methods in that either the routing subproblem or both the clustering and routing 
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subproblems are formulated as an integer nonlinear programming problem or as a set 

partitioning problem. 

 

2.3.3 Metaheuristics 

Metaheuristics such as tabu search and simulated annealing have been tried by 

researchers in the area of DARP. In metaheuristics, the emphasis is on performing a deep 

exploration of the most promising regions of the solution space. The methods typically 

combine sophisticated neighborhood search rules and memory structures. The main 

disadvantages of such methods are that they are computationally expensive. Gendreau et 

al. (1992) pointed out that heuristics such as tabu search and simulated annealing are 

open-ended improvement procedures whose performance is directly related to running 

time. They are usually context-dependent and need careful calibration of the algorithm 

parameters to the specific problem in order to produce good results. Generally, those 

heuristics can produce near-optimal solution if the running time is long enough. 

Therefore, in absence of the optimal solution for the DARP, solutions obtained from 

modern heuristics might be used as comparison bases for solution obtained with other 

heuristics. 

 

Cordeau and Laporte (2003) use a tabu search heuristic for the static DARP. To model 

the time constraints, they assume that users impose a time window of a pre-specified 

width on the arrival time of their outbound trip or the departure time window of their 

inbound trip and that a maximum ride time is associated with each user. The scheduler 

determines the most suitable pickup and delivery times for the outbound and inbound 
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trips. The objective function during the search include the total routing cost of the vehicle 

and the total violation of load, duration, time window and ride time constraints.  The 

algorithm iteratively removes a request and reinserts it into another route. Intermediate 

infeasible solutions are allowed through the use of the penalized objective function.   

 

Toth and Vigo (1997) have also developed a tabu thresholding procedure, which can 

improve the solution obtained by their insertion solution. Tabu thresholding is based on 

the alternation of an improve phase used to reach a local optimum and a mixed phase 

used to try to escape from it. The neighborhood of the current solution used for the search 

is subdivided into subsets of moves. At each iteration, one of the subsets is chosen and 

the best admissible move belonging to the subset, if any, is performed. Trip insertion, trip 

exchange and trip double insertion are considered as the movements in the local search 

process. Baugh, et al. (1998) use the simulated annealing in the cluster stage of the 

cluster-first route-second strategy. Hart (1996) has developed a simulated annealing 

based solution heuristic for the DARP. The heuristic is computationally expensive (e.g. a 

30 or 40 customer problem will require thousands of seconds). The test cases are 

specially designed without time windows so that the optimal solution is known in order to 

compare the results. 

 

2.3.4 Local improvement procedures 

Local improvement procedures for the general vehicle routing problem are those that re-

sequence stops already assigned within the same route (intra-route) or reassign requests 

to different routes (inter-route) for a given solution in order to achieve a better solution. If 
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a given change improves the quality of the solution, it is made and a new solution is 

obtained. The procedure can be applied until the solution that can no longer be improved. 

Tour improvement procedures can be applied in the vehicle routing problem after the use 

of the constructive heuristics. 

 

Van Der Bruggen, et al. (1998) develop a local search method for the single-vehicle 

pickup and delivery problem with time windows based on a variable-depth search, 

similar to the Lin-Kernighan algorithm (Lin and Kernighan, 1973)  for the traveling 

salesman problem. They tested the algorithm for problems from 5 to 50 demand pairs 

with know optimal solutions. For 50-demand problems, the computation times range 

from 47 to 1035 seconds in increasing order of the time window width, and the maximal 

relative error compared with optimal value is 3.4%. 

 

Bodin and Sexton (1986) employ a swapper algorithm to reassign customers to form 

different vehicle clusters in their cluster-first route-second iterations. The swapper 

algorithm attempts to move customers among the specified vehicle clusters in order to 

find a final set of vehicle clusters with reduced customer inconvenience. Toth and Vigo 

(1996) describe local search refining procedures, which can be used to improve the 

solutions of large-size instances obtained by a parallel insertion heuristic. Intra-route 

movements are obtained by moving a single stop to a different position of the route, 

while preserving route feasibility. Inter-route movements include trip insertion, trip 

exchange and trip double insertion.  
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2.3.5 Dynamic dial-a-ride problem algorithms  

As in most combinatorial optimization problems, dynamic aspects of the DARP are not 

well studied. A straightforward method to deal with the dynamic aspects of the problem 

is to adapt the static approaches (Wilson et al., 1971; Psaraftis, 1980, 1988, 1995; 

Mitrovic-Minic et al. 2004; Attanasio et al., 2004). The dynamic problem is solved as a 

sequence of static problems. Each time an input update occurs, a modified instance of the 

static problem is solved to update the current solution. One practical problem with this 

approach is the difficulty of solving the problem in a shorter time interval than the 

updating interval.  

 

Algorithm variations exist where different updating mechanisms (e.g. eligible requests to 

be considered in the updated problem, time horizon) and different objective functions are 

used. In Psaraftis’s (1980) study, new passenger requests are automatically eligible for 

consideration at the time they occur. Psaraftis (1988) describes an algorithm for the 

dynamic routing of cargo ships. The algorithm is based on a rolling horizon principle. At 

kt , the time at the thk  iteration, the algorithm considers only those known cargoes whose 

earliest pickup times are between kt  and Ltk + , where L  is the length of the rolling 

horizon. It then makes a tentative assignment of those cargoes to eligible ships. Only 

cargoes within the front end of L , ],[ aLtt kk +  for )1,0(∈a , are considered for 

permanent assignment. In this way, the algorithm places less emphasis on the less reliable 

information on future cargo movements. A double-horizon based heuristic for the 

dynamic pickup and delivery problem with time windows has been developed based on 

the rolling horizon principle (Mitrovic-Minic, 2001; Mitrovic-Minic et al. 2004). The 
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heuristic solves a dynamic problem over two time horizons using two goals, with the 

short-term goal of reducing travel distance and long-term goal of maintaining the routes 

in a state that will enable them to easily respond to future requests. The heuristic is said to 

be useful in contexts where problem solutions span a significant part of the service period 

(e.g. same-day parcel pickup and delivery with wide time windows). 

 

Attanasio et al. (2004) use the parallel computing technique to speed up computation time 

of the tabu search heuristic of Cordeau and Laporte (2003) in order to be applicable in a 

dynamic environment. The dynamic algorithm works as follows. A static solution is 

constructed on the basis of the requests known at the start of the planning horizon. When 

a new request arrives, the algorithm searches for a feasible solution and then the 

algorithm performs a post-optimization which is the parallel implementation of the static 

tabu search of Cordeau and Laporte (2003). 

 

A summary of the main multi-vehicle DARP algorithms is provided in Table 2-1. The 

computation time of each algorithm (if available) is listed in order to evaluate the 

computational efficiency of the algorithms and help in choosing the basic category of 

algorithm to be used for this purposed research. 



 

Table 2-1. Comparison of multi-vehicle dial-a-ride algorithms 

Authors Method Features Time 
Window 

Objective 
function 

Problem Size 
 

Computer 
Used 

Computatio
n Time 

Jaw, et al. 
(1986) parallel insertion  static hard 

min weighted sum of disutility 
to the system’s customers and 

of operator costs 

2617 requests * 
some 20 vehs 

during 16 hours 
VAX 11/750 

12 minutes 
(<0.3 seconds 
per customer) 

Madsen et al. 
(1995) parallel insertion  static[a] hard 

min weighted goals of driving 
time, user waiting time, 
deviation, and capacity 

utilization 

300 requests *  
24 vehs 

HP-
735/9000 < 10 seconds 

Toth and Vigo 
(1997) parallel insertion static soft 

min fixed and routing costs 
(for taxis) and user 

inconvenience penalties 
(desired time deviation) 

about 300 
requests IBM 486/66 less than 30 

seconds 

Diana and 
Dessouky 

(2003) 
regret insertion static hard 

min weighted sum of travel 
distance, excess ride time and 

idle time 

500 requests 
1000 requests 

during 24 hours 
Pentium III 26 minutes 

3.25 hours 

Bodin and 
Sexton (1986) 

cluster first, route and 
schedule second, and 

swap third 
static 

hard, one 
–sided 

windows 

min total customer 
inconvenience (delivery time 
deviation, excess ride time) 

85 requests * 
7 vehs during the 

afternoon 
Univac 1108 roughly 2 or 3 

minutes 

Desrosiers  
et al. (1988) 

mini-cluster first, route 
second static hard min number of pieces of work 

and the travel time 
190 requests 
880 requests Cyber173 181 seconds 

1305 seconds 

Ioachim et al. 
(1995) 

optimization-based 
mini-clustering static hard min total travel time 250 requests 

2545 
SUN 4/330-

32 
5133 seconds 

N/A 

Borndorfer  
et al. (1997) 

cluster first, chain 
second (set partitioning 

for solutions) 
static hard min traveling distances up to 1771 

requests 

Sun Ultra 
Sparc 1 

Model 170E 

about 7200 
seconds 
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Table 2-1. Comparison of multi-vehicle dial-a-ride algorithms (Cont’) 

Authors Method Features Time 
Window 

Objective 
function 

Problem Size 
 

Computer 
Used 

Computatio
n Time 

Baugh et al. 
(1998) 

cluster first (simulated 
annealing), route 

second 
static soft 

min total travel distance, 
customer disutility, number of 

vehicles 

over 300 
requests a day N/A N/A 

Hart (1996) simulated annealing static soft 

multiple objective functions 
(e.g. min number of vehicles, 
min average customer travel 

time) 

40 customers  
IBM 

486DX2 50 
MHz 

6252 seconds 

Toth and Vigo 
(1997) 

parallel insertion + tabu 
thresholding static soft 

min fixed and routing costs 
(for taxis) and user 

inconvenience penalties 
(desired time deviation) 

about 300 
requests IBM 486/66 almost one 

hour 

Cordeau and 
Laporte 
(2003) 

tabu search static soft min total vehicle distance 
up to 295 

requests * 20 
vehs 

Pentium 4,  
2 GHz 

up to 29, 50, 
268 minutes[b] 

Atanasio et al. 
(2004) Parallel tabu search dynamic soft min total vehicle distance N/A N/A N/A 

   a.  Static algorithm is presented and it is implemented in a dynamic environment. 

    b. Times correspond to the two steps, six steps and full procedure algorithms. 
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2.3.6 Findings 

1. Exact solutions to the DARP have been limited to relatively small problems and 

heuristics are widely employed for medium and large problems. Heuristics will be 

developed in this research for the routing and scheduling of large scale DARP in 

which the service is provided to the general public. 

2. The pure insertion heuristics are generally quite fast, while metaheuristics or 

optimization-embedded methods (e.g. Optimization-based mini-clustering by 

Ioachim, et al. 1995) are computationally expensive. The performance of the 

metaheuristics or post-improvement procedures depends on the available running 

time. 

3. The dynamic aspects of the DARP are not very well studied, as in most 

combinatorial optimization problems. The basic idea underling the available 

dynamic algorithms for the DARP is to solve a static problem each time a new 

request arrives. The updating mechanism based on each new request might be 

appropriate for serving only immediate requests, as adopted by Wilson et al., 

(1971) and  Psaraftis (1980); however, it may not be the most efficient method if 

requests with different lead times (which indicate how advance the passengers 

make the requests compared with their earliest pickup times) are considered. In 

this research, the algorithm will be designed to use the advance information 

available. 

4. The insertion-based heuristics are most suitable for adaptation to the dynamic 

version, in which only waiting requests or some of the waiting requests need to be 
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inserted into the vehicle tours. In other methods, the whole problem with the 

updated information must be run again.  

5. Therefore, an insertion-based online heuristic for the dynamic DARP will be 

developed which will take into account the different lead times of the requests. 
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Chapter 3 A Rejected-Reinsertion Heuristic for the Static Dial-a-

Ride Problem 

 

In this chapter an insertion-based rejected-reinsertion heuristic for the multi-vehicle static 

DARP with service quality constraints is developed. It is the basis for the online 

heuristics developed for the dynamic DARP described in the next chapter. This study 

analyzes a static problem, in which all the demands are known at the time when the 

vehicle routes are planned. Most current DAR services for the elderly and disabled 

operate in the static mode. The main objective is to minimize the number of vehicles that 

satisfies all the demand, thus maximizing the vehicle productivity.  

 

This chapter is organized as follows. Section 3.1 describes the basic operating scenario of 

the DAR service.  Section 3.2 presents the proposed rejected-reinsertion heuristic, in 

which the rejected-reinsertion operator, improvement procedure, variable fleet size, 

feasibility check of inserting and removing a request, and scheduling are discussed. Two 

sets of problems are tested and the results are summarized in Section 3.3. The final 

Section 3.4 contains some concluding remarks. 
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3.1 Operating Scenario of the Service 

The operating scenario considered in this study is similar to the one described by Jaw et 

al. (1986). More specifically,  

1. Each passenger i  specifies either a desired pick-up time iDPT  at his/her origin or 

a desired delivery time iDDT  at his/her destination. 

2. Deviation constraint from desired time: A passenger with a desired pick-up time 

will be picked up during time period [ iDPT , ii TWDPT + ] and a passenger with a 

desired delivery time will be delivered during time period [ ii TWDDT − , iDDT ]. 

iTW  is the pre-specified maximum deviation from desired time and it is usually 

the same for all the passengers.  

3. Ride time constraint: A passenger’s actual ride (in-vehicle) time will not exceed a 

given maximum ride time iMRT , which is usually a function of the passenger’s 

direct ride time iDRT . 

4. A vehicle is not allowed to wait idly while carrying passengers. 

5. Vehicle capacity should not be violated. In the DAR context, due to the low 

vehicle productivity, the vehicle capacity is usually not a relevant constraint.  

 

The level of service is guaranteed by both the constraint on deviation from desired pickup 

or delivery time and maximum ride time constraint, which limit the worst case bounds for 

the service quality. The average service quality will be better than those bounds allow. 

The fourth constraint assures that the passengers do not sit in an idle vehicle during their 
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trips just waiting for other passengers (except to board or exit), which would deteriorate 

the DAR service quality.  

 

The deviation constraint from desired time and maximum ride time constraint are usually 

transformed into time windows for pickup and delivery for facilitating the feasibility 

check for the insertion (Jaw et al. 1986). Define iEPT  and iLPT  as the earliest and latest 

pickup times for request i , and iEDT  and iLDT  as the earliest and latest delivery times 

for request i . 

For customers specifying desired pickup time ( DPT ): 

ii DPTEPT =                       (3-1a) 

iii TWEPTLPT +=                      (3-1b) 

iii DRTEPTEDT +=                      (3-1c) 

iii MRTLPTLDT +=                      (3-1d) 

For customers specifying desired delivery time ( DDT ): 

ii DDTLDT =                       (3-2a) 

iii TWLDTEDT −=                      (3-2b) 

iii DRTLDTLPT −=                      (3-2c) 

iii MRTEDTEPT −=                      (3-2d) 

 

Figure 3-1 illustrates how the deviation constraint from desired time and maximum ride 

time constraint are transformed into time windows for pickup and delivery. 
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Figure 3-1.  Transformation of the time deviation and maximum ride time constraints into 

time windows 

 

 

3.2 Proposed Insertion-Based Rejected-Reinsertion Heuristic  

Before proceeding further, the basic parallel insertion algorithm (Jaw et al. 1986) is 

summarized first since it is the basis of the proposed algorithm. 
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Consider N  passenger requests for service and M  available DAR vehicles. The parallel 

insertion algorithm (Jaw et al. 1986) first sorts the passengers in sequence (i.e. based on 

their earliest pickup times). Then each customer is processed in the list in sequence, and 

assigned to a vehicle until the list of customers is exhausted. 

For each customer i ( =i 1, 2, …, N ), 

Step 1: For each vehicle j  ( =j 1, 2, …, M ) 

a) Find all the feasible insertion sequences in which customer i  can be inserted 

into the work-schedule of vehicle j . If it is infeasible to assign customer i to 

vehicle j , examine the next vehicle 1+j , and restart Step 1; Otherwise: 

b) Find the insertion of customer i into the work-schedule of vehicle j  that 

results in minimum additional cost. Call this additional cost jC . 

Step 2: If it is infeasible to insert i  into any vehicle j , then declare a “rejected 

customer”; otherwise, assign i  to the vehicle *j  for which jj
CC ≤*  for all j  ( =j 1, 

2, …, M ). 

 

Algorithm variations exist, depending mostly on the sorting scheme, insertion criteria and 

the determination of the vehicle schedules once an insertion sequence is determined.  We 

sort the passengers by their earliest pickup times. Insertion criteria and vehicle scheduling 

will be discussed in later sections. 

 

3.2.1 Rejected-reinsertion operator 

The main disadvantage of the insertion method is that it works in a myopic way in that 

each request is inserted into its current best position without having an overview of all the 
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requests. The regret insertion heuristic (Diana and Dessouky, 2004) alleviates the 

problem by calculating for each unassigned request its regret, which is a measure of the 

potential cost that could be paid if the given request were not immediately inserted, and 

inserting the request with the largest request. Local improvement procedures such as 

swapping the customers into different routes or reinserting the customer could also 

improve the routing and scheduling in terms of an explicit objective function (i.e. total 

vehicle travel distance).  

 

The basic idea of the rejected-reinsertion operation can be illustrated in Figure 3-2 using 

a simplified scenario. Consider the scenario in Figure 3-2(a) with two vehicle routes and 

two new requests 1 and 2 to be scheduled. ‘+’ and ‘-‘ represent the origin and destination 

of a request, respectively. Assume request 1 has the earlier pickup time so that it will be 

scheduled first.  Also assume that it is feasible to insert request 1 into either route 1 or 

route 2. Using the basic insertion method, request 1 is inserted into route 2 which 

produces a smaller insertion cost, as shown in Figure 3-2(b). When turning to schedule 

request 2, we might find that it is infeasible to insert request 2 into route 2 because the 

schedule of route 2 during the time windows of request 2 is filled. It might also not be 

inserted into route 1 because it is too far from route 1 to make that insertion feasible. 

Under this condition, request 2 is either rejected or more vehicles are needed. 
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Figure 3-2.  Illustration of the rejected-reinsertion method 
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In the case in Figure 3-2, whenever an infeasible insertion occurs (e.g., insertion of 

request 2), we attempt to vacate some slot for the infeasible request by removing another 

request that is similar in terms of time frame and geographic location from its current 

route and reinserting it into some other route. If the new request can be inserted into the 

available vacancy and the removed request can be reinserted somewhere else, then the 

insertion algorithm proceeds to schedule the next request. If either of the requests cannot 

be inserted, the above search is repeated with another previously assigned request. A 

deeper search, incorporated in all the heuristics tested below, considers all previously 

assigned requests, instead of stopping after finding the first feasible one. The “least cost” 

set of moves is selected for implementation. In Figure 3-2(c), using the rejected-

reinsertion operation, request 1 is removed from route 2 and reinserted into route 1 and 

request 2 is inserted into route 2. In this way, some of the myopic behavior of the 

insertion method is alleviated. The concept of rejected-reinsertion is simple and 

straightforward but is very effective in reducing the number of vehicles used, as will be 

shown in the computational study.  The detailed procedure for the rejected-reinsertion 

operation is as follows: 

 

Assume that requests up to 1−k  have been scheduled. For new request k , if it is 

infeasible to insert the new request, 

1. For each request i = 1, … , 1−k  

2. If request i  and request k  satisfy time proximity criterion 1 defined as 

ki LDTEPT ≤     and  ik LDTEPT ≤ , go to step 3; else go to step 1; 
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3. Remove request i  from its planned route iR , and calculate the associated removal cost 

as i
removeC . (It is actually a saving and the value should be negative); 

4. Insert request k  into route iR . If it is feasible, calculate the associated insertion cost as 

k
insertC ; else recover request i , go to step 1; 

5. Insert request i  considering all the available vehicles. If it is feasible, calculate the 

associated insertion cost as i
insertC , and the total cost i

insert
k
insert

i
removetotal CCCC ++= ; 

else recover requests i  and k ; 

6. Go to step 1. 

7. Make the move with the minimum total cost *
totalC . 

 

Note that it is still possible that a request may be infeasible to schedule. It will then be 

rejected or served by additional vehicles. 

 

3.2.2 Improvement procedure  

One option of the heuristic is to add a local improvement procedure periodically or after a 

certain number of insertions. Two inter-route reassignment operators (Toth and Vigo 

1996) are considered in the local improvement procedure: (1) Trip reinsertion operator: 

remove trip i  from its current route and reinsert it into all the vehicle routes (the final 

route could be the same as the current one); (2) Trip exchange operator: remove trip i  

from its route r and remove trip j  from its route s )( sr ≠ ; insert the two stops of trip i  

in the best positions of route s  and insert the two stops of trip j  in the best positions of 

route r . 
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In this study, one iteration of the trip reinsertion is implemented as follows: examine all 

assigned requests in sequence; when a trip reinsertion results a total cost below zero, 

apply it and examine the next assigned request. Due to the high computational cost, the 

trip exchange operation is performed only on the restricted neighborhoods.  For one 

iteration of the trip exchange procedure, we examine assigned requests i  from 1 to 

1−N . Only those assigned requests j  ( j = 1+i , … , N ) are considered for exchange 

that satisfy time proximity criterion 2 defined as: 

pickup time window overlap  ji LPTEPT ≤     and  ij LPTEPT ≤ ,  

delivery time window overlap ji LDTEDT ≤    and  ij LDTEDT ≤ ,  

Whenever the trip exchange results in a total cost less than zero, the trip exchange 

operation is implemented. The implementation of the improvement procedure consists of 

iterating the trip exchange procedure until no further improvement is possible, followed 

by the iteration of the trip reinsertion procedure until no further improvement is possible. 

The whole procedure is repeated until no change occurs or some prescribed number of 

iterations is reached. Based on our computational experiments, the number of iterations 

of the whole procedure is usually 2 to 4.  

 

3.2.3 Variable vs fixed fleet size 

In order to satisfy all the demand, either a sufficient fleet size should be provided initially 

if fleet size is fixed throughout the planning process, or fleet size should be increased 

during the insertion process to serve the infeasible demand. In the former case, the 

minimum number of vehicles required to serve all the demand is usually obtained by 

tentatively using different numbers of vehicles and running the algorithm repeatedly in 
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order to find the minimum number which satisfies all the demand. The algorithms with 

variable and fixed fleet size will be compared in the computational study. The initial fleet 

size for the variable fleet size will also be tested. 

 

3.2.4 Complete heuristic procedure 

The complete rejected-reinsertion heuristic procedure can be described as follows: 

1. Sort the passengers in the order of their earliest pickup times. 

2. Set the initial fleet size 0F . 

3. Insert the passengers in sequence.  

For each passenger, if insertion into the current fleet is infeasible, perform the 

rejected-reinsertion operation specified in Section 3.1. If it is still infeasible to insert 

the passenger into the current fleet, add one new vehicle into the fleet and insert the 

passenger into it. The new vehicle can serve all subsequent requests. 

4. (optional) Perform the improvement procedure periodically. 

 

The setting of the initial number of vehicles 0F  in step 2 is not essential. Sensitivity 

analysis in the computational study will show that the resulting minimum number of 

vehicles required to serve all the demand is quite insensitive to 0F . Basically, the value 

of 0F  should be less than the required number of vehicles to serve all the demand. 

 

3.2.5 Feasibility check for inserting a request 

For each insertion of the origin and destination stops of a request, all the constraints 

including those on vehicle capacity, time windows and maximum ride time of all 
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passengers should be satisfied. If n  is the average number of the stops in a vehicle route 

and M is the number of operating vehicles, the number of possible insertions is of 

)( 2nMO ⋅ .  Jaw et al. (1986) proposed four statistics to expedite the time window 

feasibility check (which is the most difficult and time-consuming). A “schedule block” 

(SB) concept was first proposed by Jaw et al. (1986) in facilitating the feasibility check of 

each attempted insertion. This concept applies to the version of DARP in which no 

vehicle can be idle while there are passengers onboard. It is defined as a continuous 

period of active vehicle time between two successive periods of vehicle slack (idling) 

time, starting and ending with empty vehicle. For each stop α within schedule block k  

they define four statistics αBUP , αBDOWN , αAUP  and αADOWN  to facilitate the 

feasibility check of inserting the origin and destination of a request into the same 

schedule block. αBUP  ( αBDOWN )  represents the maximum amount of time by which 

stop α  and all its preceding stops in the same schedule block can be advanced (delayed) 

without violating the time window constraints. αAUP  ( αADOWN ) similarly represents 

the maximum amount of time by which stop α  and all its following stops can be 

advanced (delayed).  

 

The statistics can only be used when inserting the origin and destination of a request into 

the same schedule block. The maximum shifts are bounded by the available slack times at 

the ends of the schedule block. However, the insertion of the origin and destination of a 

request should not be unnecessarily constrained to the same schedule block, especially 

for such a highly constrained problem. The statistics can be easily generalized for the 

case considering the whole route instead of one schedule block, as follows: 
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In the above definition, iBUP ( iBDOWN ) represents the maximum amount of time by 

which stop i  and all its preceding stops on the same vehicle route can be advanced 

(delayed) without violating the time window constraints. iAUP ( iADOWN ) represents the 

maximum amount of time by which stop i  and all its following stops can be advanced 

(delayed). iAT , iET  and iLT  are the actual, earliest and latest times (either pickup or 

delivery) for stop i , respectively. kIdle  is the idling (slack) time before schedule block 

k . 

 

If pickup stop i+  of a new request is inserted between stop p  and 1+p  and delivery 

stop i−  is inserted between stops p  and 1+p , then the necessary time window 

feasibility conditions include: 

iippp EPTTBDOWNT ≥++ +, ,  if stops p is not the last stop of one SB        (3-4) 

iippp LPTTBUPT ≤+− +,                       (3-5) 
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iqiqq EDTTADOWNT ≥−+ +−++ 1,11                       (3-6) 

iqiqq LDTTAUPT ≤−− +−++ 1,11 ,  if stops q is not the last stop of one SB           (3-7) 

1,11detour +++ ++≤ qpqp
i IdleADOWNBUPT                       (3-8) 

In Equations (3-4) to (3-7), iT  denotes the scheduled time for stop i  and jiT ,  denotes 

the direct ride time from stop i  to stop j . In Equation (3-8), 1,1 ++ qpIdle  is the total 

idling time between stop p  and 1+q . iT detour  is the additional travel time due to 

inserting both stops i+  and i− . 

1,1,,,detour ++−−++ −++= pppiiiip
i TTTTT ,          if qp =                  (3-9a) 

1,1,1,,1,,detour +++−−+++ −−+++= qqppqiiqpiip
i TTTTTTT ,  if qp ≠                (3-9b) 

 

Note that the idling time between stops 1+p  and 1+q should be eliminated if idling 

is not permitted while passengers are onboard. If insertion of both the origin and 

destination of a request are feasible in terms of time window constraints, the maximum 

ride time constraints of assigned passengers (and the capacity constraint if necessary) 

should also be checked by scanning through the list of customers and comparing the 

attempted ride times with the maximum ride times. 
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3.2.6 Feasibility check for removing a request 

The rejected-reinsertion, trip reinsertion and trip exchange operations all involve the 

removing of a request from its assigned route. Special caution should be taken when 

removing a request from its current route because it might cause a time window violation 

for some other passengers already assigned to the route. This only applies to the 

operating scenario considered in which a vehicle is not allowed to idle while carrying 

passengers. Figure 3-3 shows one complete schedule block from which one request is to 

be removed. For illustration purposes, only removal of one stop (stop b ) will be 

discussed and only the time windows of some stops are shown in Figure 3-3. Assume 

stop a  would not be the last stop of a possible new schedule block after stop b  is 

removed from the route, then stop c  should be visited directly from stop a  without 

idling. If there is more time between stop a  and c  than the direct ride time, the stops 

preceding stop a  could be pushed forward and/or the stops following stop c  could be 

pushed backward to reduce the time gap between a  and c . In Figure 3-3, the ‘max 

delay’ is the maximum amount of time that all stops preceding stop b  could be delayed 

without violating the time window constraints, and the ‘max pushback’ is the maximum 

amount of time that all stops following stop b could be pushed backward. If the direct 

travel time from stop a  to c  (plus the service time at stop a , if that is considered) is less 

than the time interval between stops a  and c (i.e., ac TT −  in Figure 3-3), then idling time 

before stop c  is necessary or the time window constraints of some stops within the 

current schedule block will be violated if no idling time between a  and c is provided. 

Thus, the removal of a request may cause a time window violation. 
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Figure 3-3.  Removing a request from one schedule block 

 

When the time window violation occurs in the removal process, the route may become 

feasible again if at least one stop is inserted into the same schedule block (i.e. after stop 

a ) in the reinsertion step (i.e. the insertion of the previously rejected passenger into the 

removed route in the rejected-reinsertion operation).  

 

3.2.7 Insertion criterion 

In the insertion heuristic, the insertion decision is made based on the additional increase 

of the objective function. The insertion with the least incremental cost will be chosen. In 

the context of service operations in the public sector, there are always tradeoffs between 

minimizing the operating cost and the passenger inconvenience cost. A general form of 

the objective function might include active vehicle travel time (moving time)/distance, 

excess ride time (the difference between the actual ride time and direct ride time) of all 

current passengers, time deviation (the difference between the actual pickup/delivery 

time and desired time) of all current passengers and vehicle idling time. 
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Although selecting the weights of components is up to the system operating managers 

and the proposed heuristic does not depend on the objective form chosen, the ultimate 

objective here is to minimize the number of vehicles required in order to maximize the 

vehicle productivity, which is usually very low for DAR systems due to their high quality 

of service (i.e. door-to-door service) and dispersed demand. Also, because the passenger 

inconvenience (i.e. waiting time, excess ride time) is already formulated through hard 

constraints, it seems unnecessary to include it in the objective function at the cost of more 

vehicles used.  However, the number of vehicles is an input to the algorithm and cannot 

be expressed in the objective function explicitly. A common alternative way is to 

minimize the vehicle travel time/distance. Some studies (e.g., Jaw et al. 1986) implicitly 

suggest including other components, such as vehicle idling time, in the objective 

function, as that reserves some flexibility for future demand. Thus, the components in the 

objective function work more like heuristic parameters.  

 

3.2.8 Vehicle scheduling  

Scheduling refers to the determination of the actual pickup and delivery times of the new 

insertion and the corresponding modification of the actual pickup and delivery times of 

the affected passengers assigned once the insertion sequence is determined. The 

scheduling will affect the passenger time deviation, but will not affect the passenger ride 

time and vehicle travel time/distance. The schedules can be formed as soon as possible 

(Diana and Dessouky 2004), or can be optimized based on the incremental cost (Jaw et 

al. 1986). For a congested system, the two methods may lead to similar results. Our 

experimental tests show that the above two scheduling methods achieve very similar 
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results. In this study, schedules are sought that minimize the time deviation of the 

passengers. A more detailed discussion of schedule optimization based on general cost 

functions can be found in Jaw (1984). 

 

 

3.3 Computational Study 

Although static DARPs have been studied by many researchers, there are very few 

benchmark problems available for comparison. One reason might be that there is far less 

research on DAR than on general VRPs. Another reason is that different operational 

scenarios (i.e. whether or not vehicles are allowed to be idle while carrying passengers) 

or objectives are considered for different studies, which further reduces the available test 

problems in each category. 

 

Below, we test our heuristics with our own randomly generated problems and with test 

problems from Diana and Dessouky (2004). The latter problems are the latest found in 

the literature that consider operational scenarios very similar to ours. The randomly 

generated problems have smaller service areas and average direct travel distances 

compared with the second set of problems. Although both problem categories consider 

the time-dependent demand, in the randomly generated problems, the demand is 

relatively stable, which might justify the usage of the same fleet size throughout the 

service period. To deal with the randomness of the demand, five replications are 

generated for each problem, and the statistics reported are the average over five 
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replications. The computer program is coded using visual C++ and is run on a personal 

laptop with a 1.6 GHz Pentium M and 768M of RAM. 

 

3.3.1 Randomly generated problems 

An 8 mile ×  8 mile service area with the depot located in the center of the area is studied. 

The Euclidean distance metric is used with a circuity factor of 1.3 (by which each direct 

distance is multiplied). Vehicle speed is assumed to be constant at 15 mph. The locations 

of origins and destinations of all the demand are uniformly and independently distributed 

in the area. The time intervals between consecutive earliest pickup times follow a 

negative exponential distribution. We simulate 9 hours of service with the hourly demand 

as 120, 120, 160, 200, 200, 160, 160, 120, 120 requests per hour. The departure times 

from and return times to the depot are not restricted to the 9-hour period. Vehicle 

capacity is assumed to be a large number. The maximum number of passengers onboard 

simultaneously will be recorded, which indicates the minimum vehicle size should be 

provided. Four service quality scenarios as constrained by time window and maximum 

ride time are considered. The following linear maximum ride time equation is used:  

DRTaaMRT ⋅+= 10                      (3-10) 

Table 3-1 shows the parameter settings for the four scenarios ‘L’, ‘M’, ‘H’ and ‘VH’, 

which stand for low, medium, high and very high service quality, respectively. The 

service quality improves from ‘L’ to ‘VH’. 
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Table 3-1.  Constraint settings for four service quality scenarios 

Scenario 
Maximum time 

deviation 
(min) 

Constant term 0a  in 
Equation (3-10) 

(min) 

Slope 1a  in  
Equation (3-10) 

L 30 5 2.5 

M 20 5 2.0 

H 10 5 1.5 

VH 5 5 1.3 
 

 

We include active vehicle travel time (when the vehicle is moving) and passenger excess 

ride time in the objective function. The component of the passenger excess ride time 

works somewhat like a heuristic parameter. Based on some experimental tests, we found 

that the minimum number of vehicles used is not very sensitive to the weight assigned to 

the passenger excess ride component as long as the weight is below 0.5 for the two sets of 

problems. For the passenger excess ride time, a weight of 0.2~0.3 yields slightly better 

solutions than a weight of zero. The values of the weights used in this study are 0.7 for 

the active vehicle travel time and 0.3 for the passenger excess ride time.  

 

For each scenario considered, six algorithm variations are implemented and their results 

are shown in Tables 3-2 to 3-5. Algorithm 1 is the basic parallel insertion heuristic 

similar to that of Jaw et al. (1986) except that insertions across multiple schedule blocks 

are allowed and insertion schedules are determined to minimize the time deviation. The 

fleet size is fixed throughout the planning process. Algorithm 2 is similar to Algorithm 1. 

The difference is that one vehicle is added to the fleet each time it is infeasible to insert a 

new request into the current fleet. Algorithm 3 differs from Algorithm 1 in that rejected-
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reinsertion is implemented for those rejected requests. Algorithm 4 combines features of 

Algorithms 2 and 3, in which the rejected-reinsertion is implemented for rejected requests 

and fleet size is added after a request is rejected by the rejected-reinsertion operation. In 

Algorithms 2w and 4w, a periodical improvement procedure at 30-min time intervals is 

implemented upon Algorithms 2 and 4. The starting fleet sizes for Algorithms 2, 2w, 4 

and 4w are 30, 40, 50 and 65 for scenarios L, M, H and VH, respectively. For Algorithms 

1 and 3, the number of vehicles required is obtained by running the program repeatedly 

using different fleet sizes and finding the smallest fleet that satisfies all the demand. 

 

The notation in the following tables is as follows. ‘Vehicle miles’ is the total vehicle 

travel distance in miles. ‘Vehicle prod.’ is the vehicle productivity defined as the number 

of served trips divided by the total vehicle service time (including idling time), in trips 

per vehicle hour. The sixth column reports the total passenger miles. The average 

passenger time deviation from the desired times and average passenger ride ratio are 

reported in the next two columns. ‘Max passengers onboard’ indicates the vehicle 

capacity actually required since a large vehicle capacity is initially assumed. Finally, the 

last column indicates the average computation time in seconds. 
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Table 3-2.  Results of six algorithm variations for scenario L 

Algo. # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

1 40.2 4,813 3.95 11,328 14.21 1.475 10.2 16 

2 43.8 4,857 3.869 11,483 14.14 1.494 9.6 16 

2w 37.0 4,250 4.38 10,312 14.93 1.351 9.6 1,381 

3 37.6  4,769 4.07 11,507 14.38 1.496 9.6 31 

4 38.4  4,791 4.09 11,859 14.06 1.546 9.4 83 

4w 34.0  4,223 4.57 10,862 14.69 1.420 9.6 1,686 

 

 

Table 3-3.  Results of six algorithm variations for scenario M 

Algo. # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

1 49.4 5,323 3.40 10,414 8.89 1.362 8.0 13 

2 50.2 5,371 3.379 10,486 8.99 1.373 8.2 13 

2w 44.0 4,769 3.78 9,973 9.68 1.311 7.6 461 

3 45.4  5,319 3.54 10,555 9.04 1.380 7.4 19 

4 45.6  5,339 3.55 10,670 9.00 1.396 8.2 40 

4w 41.2  4,769 3.86 10,074 9.54 1.323 7.8 497 
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Table 3-4.  Results of six algorithm variations for scenario H 

Algo. # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

1 62.2 6,242 2.73 9,308 4.30 1.231 5.6 11 

2 63.4 6,302 2.725 9,314 4.22 1.232 5.6 11 

2w 58.8  5,846 2.91 9,180 4.49 1.216 6.2 120 

3 58.4  6,245 2.83 9,327 4.34 1.234 5.6 15 

4 58.0  6,298 2.85 9,394 4.26 1.243 5.8 23 

4w 55.4  5,885 3.00 9,252 4.51 1.224 6.2 126 

 

 

Table 3-5.  Results of six algorithm variations for scenario VH 

Algo. # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

1 78.2 7,101 2.23 8,589 1.85 1.146 4.2 11 

2 76.4  7,158 2.26 8,609 1.88 1.149 4.2 11 

2w 75.8 6,882 2.29 8,609 1.91 1.148 5.0 47 

3 72.8  7,138 2.32 8,603 1.9 1.148 4.0 14 

4 70.6  7,135 2.36 8,627 1.92 1.151 4.2 19 

4w 70.6  6,916 2.38 8,601 1.95 1.147 5.0 62 
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Results in Tables 3-2 to 3-5 are rearranged in Tables 3-6 and 3-8 and analyzed in the 

following sections for different comparison purposes. 

 

(1) Comparison of the rejected-insertion heuristics with basic insertion heuristic  

Table 3-6 only shows the results by the basic insertion heuristic (Algorithm 1) and the 

rejected-insertion heuristics without and with the periodical improvement (Algorithms 4 

and 4w). The performance differences between Algorithms 1 and 4 and between 

Algorithms 1 and 4w are also shown. Based on Table 3-6, Algorithm 4 outperforms 

Algorithm 1 in terms of number of vehicles (up to -9.7%) and vehicle productivity (up to 

+5.8%) at a cost of slightly increased passenger time deviation and ride time ratio. The 

vehicle productivity increases as the number of vehicles decreases. The average 

passenger time deviation is slightly less than half of the maximum deviation from desired 

time. As constraints become more restrictive, Algorithm 4 provides solutions increasingly 

superior to those of Algorithm 1. Algorithm 4 is still very efficient computationally, 

although its computation time is approximately doubled in the VH scenario and 

quintupled in the L scenario compared to Algorithm 1.  
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Table 3-6.  Comparison of the rejected-insertion heuristics with parallel insertion 

heuristic 

Scenario Algo. # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Comp. 
time 
(sec) 

1 40.2 4,813 3.95 11,328 14.21 1.475 16 

4 
4 vs 1 

38.4  
 -4.5% 

4,791 
-0.5% 

4.09 
+3.5% 

11,859 
+4.7% 

14.06 
-1.1% 

1.546 
+4.8% 83 

4w 
4w vs 1 

34.0  
-15.4% 

4,223 
-12.3% 

4.57 
+15.7% 

10,862 
-4.1% 

14.69 
+3.4% 

1.420 
-3.7% 1,686 

L 

4w vs 4 -11.5% -11.9% +11.7% -8.4%    

1 49.4 5,323 3.40 10,414 8.89 1.362 13 

4 
4 vs 1 

45.6  
 -7.7% 

5,339 
+0.3% 

3.55 
+4.4% 

10,670 
+2.5% 

9.00 
+1.2% 

1.396 
+2.5% 40 

4w 
4w vs 1 

41.2  
-16.6% 

4,769 
-10.4% 

3.86 
+13.5% 

10,074 
-3.3% 

9.54 
+7.3% 

1.323 
-2.9% 497 

M 

4w vs 4 -9.6% -10.7% +8.7% -5.6%    

1 62.2 6,242 2.73 9,308 4.30 1.231 11 

4 
4 vs 1 

58.0  
 -6.8% 

6,298 
+0.9% 

2.85 
+4.4% 

9,394 
+0.9% 

4.26 
-0.9% 

1.243 
+1.0% 23 

4w 
4w vs 1 

55.4  
-10.9% 

5,885 
-5.7% 

3.00 
+9.9% 

9,252 
-0.6% 

4.51 
+4.9% 

1.224 
-0.6% 126 

H 

4w vs 4 -4.5% -6.6% +5.3% -1.5%    

1 78.2 7,101 2.23 8,589 1.85 1.146 11 

4 
4 vs 1 

70.6  
 -9.7% 

7,135 
+0.5% 

2.36 
+5.8% 

8,627 
+0.4% 

1.92 
+3.8% 

1.151 
+0.4% 19 

4w 
4w vs 1 

70.6  
 -9.7% 

6,916 
-2.6% 

2.38 
+6.7% 

8,601 
+0.1% 

1.95 
+5.4% 

1.147 
+0.1% 62 

VH 

4w vs 4 0.0% -3.1% +0.8% -0.3%    
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Algorithm 4w further improves on the results of Algorithm 1 in terms of number of 

vehicles (-9.7% to -16.6%), vehicle miles (-2.3% to -12.3%), vehicle productivity (+6.7% 

to +13.3%), passenger miles and ride time ratio. The improvement is more prominent for 

the L and M scenarios than for the H and VH scenarios. This occurs because the DARP is 

a heavily constrained problem, and as the problem gets more restricted, the feasible 

region for improvement becomes more limited. This conclusion is based on scenarios in 

which vehicles are already heavily loaded. It is expected that if vehicles are less loaded or 

time windows are wider, the improvement will be greater but would require much more 

computation time. As the problem gets less constrained (from VH to L), the computation 

time increases nonlinearly. 

 

Table 3-7 shows the number of vehicles required for the five randomly generated 

replications. The average and standard deviation are shown in the last two columns. The 

results show that Algorithm 4 outperforms Algorithm 1 except for the second replication 

of scenario L. Algorithm 4a uses much fewer vehicles than Algorithm 1. Algorithm 4a 

outperforms Algorithm 4 except for the fourth replication of scenario VH. The standard 

deviation of Algorithm 4a increases as the problems get more restrictive. The standard 

deviations of algorithm 4a for all service scenarios are below 2.2 vehicles. From an 

operational point of view, this means that the fluctuations in the number of vehicles 

required for a given level of demand are not evident even if the demand is randomly 

distributed over time and space. Table 3-7 also reports in parentheses the computation 

time  in second for Algorithm 4w. 
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Table 3-7.  Variability of number of vehicles over five replications 

Replication 
Scenario Algo. 

1 2 3 4 5 
Average Standard 

deviation

1 42 40 40 38 41 40.2 1.48 

4 38 41 38 36 39 38.4 1.82 L 

4w 33 
(2168) 

34 
(1233)

35 
(1661) 

34 
(1480) 

34 
(1890) 

34 
(1686) 

0.71 
(361) 

1 47 54 50 47 49 49.4 2.88 

4 45 47 45 44 47 45.6 1.34 M 

4w 41 
(575) 

42 
(375) 

40 
(447) 

42 
(555) 

41 
(532) 

41.2 
(497) 

0.84 
(84) 

1 61 64 63 63 60 62.2 1.64 

4 57 60 57 58 58 58.0 1.22 H 

4w 53 
(127) 

57 
(119) 

56 
(108) 

56 
(122) 

55 
(156) 

55.4 
(126) 

1.52 
(18) 

1 78 77 76 83 77 78.2 2.77 

4 71 71 70 71 70 70.6 0.55 VH 

4w 71 
(62) 

71 
(55) 

67 
(57) 

73 
(62) 

71 
(73) 

70.6 
(62) 

2.19 
(7) 

 

 

(2) Test the effectiveness of the rejected-reinsertion operator 

Table 3-8 shows the minimum number of vehicles required for all demand that results 

from six algorithm variations. In Table 3-8, Algorithms 1 and 3, 2 and 4, 2w and 4w are 

comparison pairs. The rejected-reinsertion operator is implemented in the latter algorithm 

in each pair.  It is found that the rejected-reinsertion operator used in Algorithms 3, 4 and 

4w is very effective in reducing the vehicle fleet for all four scenarios. 
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Table 3-8.  Comparison of algorithms with and without rejected-reinsertion operator 

# of vehicles required for each scenario Algorithm 

L M H VH 

1 40.2 49.4 62.2 78.2 

2 43.8 50.2 63.4 76.4  

2w 37.0 44.0 58.8 75.8 

3    (3 vs 1) 37.6 (-6.5%) 45.4 (-8.1%) 58.4 (-6.1%) 72.8 (-6.9%) 

4    (4 vs 2) 38.4 (-
12.3%) 45.6 (-9.2%) 58.0 (-8.5%) 70.6 (-7.6%) 

4w (4w vs 2w) 34.0 (-8.1%) 41.2 (-6.4%) 55.4 (-5.8%) 70.6 (-6.9%) 

 

 

(3) Test of fixed vs variable fleet size 

Still in Table 3-8, comparing Algorithm 1 with 2, and 3 with 4, Algorithm 2 (variable 

fleet size) slightly underperforms Algorithm 1 (fixed fleet size) in the L scenario, but 

slightly outperforms it in the VH scenario. Algorithm 4 (variable fleet size) performs 

similarly with Algorithm 3 (fixed fleet size), except that in the VH scenario, Algorithm 4 

succeeds with slightly fewer vehicles. While the differences are small, a common trend is 

that as the problem gets more restricted, algorithms with variable fleet sizes become more 

preferable. One advantage of the algorithm using variable fleet size over the one using 

fixed fleet size is that there is no need to run the algorithm repeatedly each time trying a 

different fleet size and finding the smallest one that satisfies all demand. This implies that 

the advantage of using variable fleet size becomes more relevant if an algorithm needs 

much computation time (i.e. an algorithm with a periodical improvement procedure). 
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(4) Sensitivity analysis of initial fleet size 

Table 3-9 shows the fleet required to serve all demand by Algorithms 4 and 4w using 

different initial fleet sizes. It is found the results are quite insensitive to the initial fleet 

size. In general, using an initial fleet size close to the required fleet size achieves slightly 

better results, which also requires fewer rejected-reinsertion operations than using a 

smaller initial fleet size. The required fleet size can be easily estimated by running the 

algorithm once using any reasonable initial fleet size. 

 

Table 3-9.  Effects of initial fleet size on final fleet size with Algorithms 4 and 4w 

Initial fleet size 
Scenario Algo. 

10 20 30 40 50 65 

4 38.4 38.8 38.4    
L 

4w 35.0 34.6 34.0    

4  45.8 45.6 45.6   
M 

4w  42.4 42.4 41.2   

4   58.4 59.4 58.0  
H 

4w   57.0 56.8 55.4  

4    71.6 71.8 70.6 
VH 

4w    69.8 70.2 70.6 
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3.3.2 Diana and Dessouky’s test problems 

The main purposes of testing the second set of problems are to check that our algorithms 

are correctly implemented in software and to compare their performances with other 

available sources. 

 

(1) Input data characteristics 

The test problems of Diana and Dessouky (2004) include one 500-request problem and 

one 1000-request problem, each with five replications. The data are randomly generated, 

but based on data provided by a realistic DAR system run by Access Services, Inc. For 

example, the distribution from which the pickup times of the samples were drawn was 

based on the empirical distribution derived from Los Angeles County. Interested readers 

may find more information on the data generation in Diana and Dessouky (2004) and in 

Dessouky and Adam (1998). In this paper the 1000-request problem is tested and used to 

compare algorithms. 

 

The basic operational scenario is summarized as follows:  

Total service area: 150 mile ×150 mile 

Vehicle speed: 15 mph (the number has been corrected by the author during our 

correspondence) 

Probability of serving a wheelchair passenger: 0.2 

Service time distribution: uniform (1, 3) minutes for wheelchair passengers 

         30 seconds for others 

Simulation period: 0:00 ~ 23:59. 
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Figure 3-4 shows the demand distributions over time for one replication of the 500-

request problem and one replication of the1000-request problem. Figure 3-5 shows the 

direct travel time distributions for one of the replications of the 1000-request problem. 
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Figure 3-4.  Demand distribution over time 
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Req1000_a      Mean = 36.7 min  Std = 33.5 min
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Figure 3-5.  Direct travel time distribution 

 

 

For the 1000-request problem, three scenarios ‘L’, ‘M’ and ‘H’, whose constraint settings 

are defined in Table 3-10, are tested. (In Diana and Dessouky (2004), one base scenario 

was tested too, in which the service quality is between M and H.) Note that although the 

service qualities defined here are very similar to those defined in Table 3-1 for the 

randomly generated problems, the problems here are more constrained than the randomly 

generated ones. This occurs because the average direct travel time is longer and the area 

covered is larger in the problems defined by Diana and Dessouky (2004) than in the 

randomly generated problems. 
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Table 3-10.  Constraint settings for three service quality scenarios 

Scenario 
Maximum time 

deviation 
(min) 

Constant term 0a  in 
Equation (3-10) 

(min) 

Slope 1a  in  
Equation (3-10) 

L 30 20 2.0 

M 15 10 1.5 

H 5 5 1.2 

 

 

(2) Computational results 

In Tables 3-11 ~ 3-13, Algorithms Diana1 and Diana5 correspond to Algorithms 1 and 5 

in Diana and Dessouky (2004), which represent the basic parallel insertion algorithm 

(into same schedule block) and their proposed regret insertion algorithm (across multiple 

schedule blocks and schedule as soon as possible). For comparability, the same objective 

function is used; thus, the weights for vehicle travel distance, passenger excess ride time 

and vehicle idle times within the schedule are 0.45, 0.50 and 0.05. The definition of the 

time windows by Diana and Dessouky includes the stop service time, while ours does 

not. Their maximum ride time constraint is interpreted as the sum of the actual ride time 

and of the service times at the pickup and delivery stops must not exceed the maximum 

ride time, while in ours the service times are not counted in the maximum allowable ride 

time. Those small discrepancies have been adjusted in the problem definitions to make 

results comparable. 

 

Tables 3-11 ~ 3-13 shows the computational results for the 1000-request problem under 

the L, M and H scenarios.  ‘# of vehicles’,  ‘Vehicle miles’, ‘Ride time ratio’ and ‘Comp. 
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time’ are as previously defined . ‘Idle hours’ reports the total length of all the vehicle 

idling times. Based on correspondence with one of the authors, values of vehicle miles 

for Diana 1 and Diana 5 in Tables 3-11 ~ 3-13 have been adjusted due to a rounding 

problem  

 

Table 3-11.  Computational results for scenario L of the 1000-request problem 

Algorithm # of 
vehicles 

Vehicle
miles 

Idle 
hours 

Ride time 
ratio 

Comp. 
time 
(sec) 

Diana 1 63.2 15,675 288 1.395 n/a 

Diana 5 58.4 14,820 301 1.476 n/a 

1 
(1 vs Diana 1) 

60.8 
(-3.8%) 

13,917 
(-11.2%)

138 
(-52.1%) 

1.193 
(-14.5%) 8 

4 
(4 vs Diana 5) 

52.2 
(-10.6%)

13,788 
(-6.8%)

97 
(-67.8%)

1.271 
(-13.9%) 

16 

4w 
(4w vs Diana 5) 

51.6 
(-11.6%)

13,402 
(-9.6%) 

104 
(-65.4%) 

1.214 
(-17.8%) 74 

 

 

Table 3-12.  Computational results for scenario M of the 1000-request problem 

Algorithm # of 
Vehicles 

Vehicle
miles 

Idle 
hours 

Ride time 
ratio 

Comp. 
time 
(sec) 

Diana 1 77.2 17,655 350 1.173 n/a 

Diana 5 70.0 16,530 374 1.204 n/a 

1 
(1 vs Diana 1) 

72.0 
(-6.7%) 

15,811 
(-10.4%)

220 
(-37.1%) 

1.102 
(-6.1%) 9 

4 
(4 vs Diana 5) 

66.4 
(-5.1%)

15,771 
(-4.6%)

200 
(-46.5%)

1.105 
(-8.2%) 

11 

4w 
(4w vs Diana 5) 

65.6 
(-6.3%) 

15,462 
(-6.5%) 

200 
(-46.5%) 

1.101 
(-8.6%) 32 
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Table 3-13.  Computational results for scenario H of the 1000-request problem 

Algorithm # of 
Vehicles 

Vehicle
miles 

Idle 
hours 

Ride time 
ratio 

Comp. 
time 
(sec) 

Diana 1 92.8 20,160 464 1.034 n/a 

Diana 5 87.2 19,110 485 1.042 n/a 

1 
(1 vs Diana 1) 

91.6 
(-1.3%) 

18,386 
(-8.8%) 

368 
(-20.7%) 

1.022 
(-1.2%) 8 

4 
(4 vs Diana 5) 

86.8 
(-0.5%) 

18,443 
(-3.5%) 

346 
(-28.7%) 

1.023 
(-1.8%) 15 

4w 
(4w vs Diana 5) 

86.6 
(-0.7%) 

18,376 
(-3.8%) 

348 
(-28.2%) 

1.022 
(-1.9%) 24 

 

 

Comparing Algorithms 1 and Diana 1, both are basic parallel insertion heuristics but with 

variable and fixed fleet size. Algorithm 1 uses similar numbers of vehicles for the H 

scenario but slightly fewer vehicles for the L and M scenarios. However, Algorithm 1 

outperforms Diana 1 in terms of total vehicle miles, idle hours and ride time ratio. The 

big reduction of idle times by Algorithm 1 may be due to the use of a smaller initial fleet 

size because the demand level is low during the early service period and thus few 

vehicles are needed. 

 

Algorithm 4 outperforms Algorithm 1, as in the randomly generated test cases described 

earlier, with the vehicle reduction up to 14.1% for scenario L. Comparing Algorithm 4w 

(rejected-reinsertion with periodical improvement) with Diana 5 (regret insertion), 4w 

outperforms Diana 5 with up to 11.6% fewer vehicles used in the L scenario. Its 
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advantage decreases as the service quality increases (i.e. the problem gets more 

restricted). In their computational test, Diana and Dessouky (2004) found the regret 

insertion algorithm to perform better with medium to small time window constraints. 

Note that the advantage of Algorithm 4w over Algorithm 4 is relatively limited in this set 

of test problems compared to the set of randomly generated problems, since this set of 

problems is more restrictive in that 1000 requests are distributed in a very big area (i.e. 

150 mile ×150 mile) which makes the scheduling more difficult. For those more 

restrictive problems, Algorithm 4 yields similar results to those of Algorithm 4w, but 

with faster computation. 

 

Note that the ride time ratio in Table 3-13 is very low, even though the constant and slope 

terms for the maximum ride time (Equation 3-10) for this scenario are 5 minutes and 1.5, 

respectively. The obtained average ride time ratio is far below half of the maximum ride 

time ratio. The vehicle occupancy is around 0.51 for Algorithms 1, 4 and 4w. (It is not 

reported for Algorithm Diana 1 and Diana 5.) As the constraint on deviation from desired 

time and the maximum ride time constraint get more restrictive, more vehicles are 

required and vehicle productivity and vehicle occupancy decrease. The indicated 

tradeoffs between the vehicle resources and service quality (i.e. average time deviation 

and excess ride time) should be very useful to DAR planners.  

 

The proposed heuristic is very efficient computationally. Without the periodical 

improvement procedure, Algorithm 4 solves a 1000-request problem within 16 seconds. 

The computation time for algorithms with the periodical improvement increases as the 
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problem gets less restricted. The low quality case of the 1000-request problem takes 

about 74 seconds. (The computational times reported by Diana and Dessouky (2004) are 

26 min for the 500-request problems and 195 min for the 1000-request problems on a 

Pentium III computer.) The computation times of the proposed heuristic are clearly fast 

enough for practical applications. 

 

 

3.4 Conclusions 

In this chapter, we propose a rejected-reinsertion heuristic for the multi-vehicle DARP 

with service quality constraints. The main innovation of the heuristic is a rejected-

reinsertion operator. Whenever the insertion of a new request is infeasible, this operator 

persists in inserting it by trying to move previously assigned requests elsewhere. The 

least cost set of moves is determined and implemented. The insertion process is tested 

with fixed and variable fleet sizes. A periodical improvement procedure involving trip 

reinsertion and trip exchange is also tested and implemented to further improve the 

solution. 

 

Through the computational study, the proposed heuristic is shown to be effective, 

especially in reducing the number of required vehicles and thus increasing vehicle 

productivity. The rejected-reinsertion heuristic without periodical improvement can 

achieve moderately better results than parallel insertion heuristics for all cases studied. 

The rejected-reinsertion heuristic with periodical improvement outperforms the parallel 

insertion heuristic by using up to 17% fewer vehicles. Among the problems considered 
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here, the periodical improvement procedure is more effective for the less constrained 

ones. The heuristic still maintains the advantages of an insertion-based method whose 

computational performance is quite good and which can be extended to a dynamic 

problem. Using a variable fleet size rather than fixed fleet size does not change the results 

much, but it eliminates the trial-and-error process for obtaining the minimum required 

fleet size.  

 

Based on its performance on the DARP studied in this research, the proposed rejected-

reinsertion operator seems promising for other vehicle routing problems with time 

windows, especially for heavily time-constrained problems (e.g., PDP or taxi 

scheduling). This operator alleviates the myopic behavior of an insertion method in an 

efficient way. The quality and computational efficiency of the heuristic also make it 

attractive for application in dynamic problems, in which at least some demand arises in 

real-time. In the next chapter, we will extend the heuristic to the dynamic version of the 

problem, and test its performance in dynamic applications.  
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Chapter 4 Online Heuristics for the Dynamic Dial-a-Ride 

Problem 

 

DAR services may operate according to one of the following two modes. In the static 

mode, all requests are known in advance (i.e. typically one day before the service actually 

takes place). In the dynamic mode, at least part of the requests are revealed and need to 

be scheduled in real-time. In this chapter, online heuristics for the dynamic DARP are 

presented and their performances are tested and compared through a computational study. 

 

 

4.1 Operating Scenario of the Dynamic Problem 

In a dynamic problem, it is assumed that the service requests are received throughout the 

service period. In addition to the operating scenario described for a static DARP in the 

last chapter, we define a term “lead time” for the dynamic DARP to describe the 

“dynamic” demand of the problem.  

We define that  

Lead Time is the time elapsed between the passenger’s request (calling) time and the 

earliest pickup time, no matter the request specifies desired pickup or delivery. 
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Figure 4-1 illustrates the relation of the lead time to other time components for both 

pickup- and delivery-specified passengers. The lead time is the measure indicating how 

far in advance the requests are made. The smaller the value of the lead time, the more 

immediate (urgent) the request is. If lead times of all the requests are very long (e.g. 24 

hours), then the problem reduces to the static problem. In an immediate DAR service, the 

request should be fulfilled as soon as possible. 
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Figure 4-1.  Definition of the lead time 



 77

4.2 Online Insertion Heuristics  

For the DAR service, a straightforward online heuristic is to repeat the static algorithm 

each time the system is updated (i.e. new call arrives). Thus, a short computation time is 

required for the algorithm. Based on the DARP algorithms reviewed in Section 2.3, 

insertion-based heuristics seem to be the most promising candidate for a large-scale 

DARP. An insertion-based heuristic is computationally efficient, and it could be well 

adapted to the dynamic version by freezing all the schedules that have already take place 

and continuously inserting the new requests. Its concept is straightforward and can easily 

handle many uncertainties involved in the DAR operation, such as vehicle breakdown 

and cancellation of trips, without reconsidering the whole problem. For example, assume 

a vehicle breaks down during the service with several passengers still on board to be 

delivered and several passengers waiting to be picked up. An insertion-based algorithm 

can sequentially re-insert those demands into other vehicles’ schedules in a very short 

time. 

 

Below, two online insertion-based heuristics for the dynamic DARP are presented.  

 

4.2.1 Immediate online insertion heuristic 

As mentioned, a straightforward online heuristic inserts the new request into the vehicle 

once the request is received, considering that pickup times of passengers already onboard 

cannot be changed and vehicle locations should be updated. Apparently, passengers 

delivered before the call time of the new request are no longer considered. Further 

requests are not predicted, due to the uncertainty in the positions of the stop locations, 
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and the uncertainty in the widths and starting times of their corresponding time windows. 

The immediate online insertion heuristic can be described as follows: 

 

Immediate Insertion Heuristic: 

Step 0: Initialize locations of available vehicles. 

      Set periodical improvement interval ∆ . 

Step 1: Wait until the appearance of the new request. 

Step 2: Update the locations of available vehicles. Freeze the route and schedules up 

to the current time instance. 

Step 3: Insert request into the vehicle routes and determine the schedules. Go to Step 

1. 

Step 4: (Optional) Perform improvement procedure at interval ∆ . 

 

In Step 2, ‘Freeze’ means that the pickup times of those passengers on-board cannot be 

changed and only their delivery times can be adjusted by the new insertions. Both the 

pickup and delivery times of those passengers still waiting at their origins can be adjusted 

by the new insertions. It is assumed that positions and status of the vehicles are known at 

all times (e.g. by automatic vehicle location technology).  

 

4.2.2 Rolling horizon online insertion heuristic 

The immediate online heuristic inserts the requests in the order of their calling times. 

However, in a system with requests having different lead times, the deferment of 

insertion of some requests whose desired time of service is relatively far away from the 
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current time may results better routing and scheduling decision because of the flexibility 

reserved to serve more urgent requests which may arise soon. For this purpose, a rolling 

horizon principle is applied to the dynamic DARP. The rolling horizon principle is 

illustrated in Figure 4-2. The new online heuristic can be described as follows: 

 

Rolling Horizon Insertion Heuristic  

Step 0: Initialize locations of available vehicles. 

      List all known unassigned requests P  in order of earliest pickup time. 

      Set length of the time horizon L  and the rolling interval α ( L≤α ). 

      Set periodical improvement interval ∆ . 

      Set 1=k , 0=kt  ( k  is the index of the iteration); 

Step 1: Next horizon is ),( Ltt kk + . 

      Form list of requests eligible for insertion 'P , PP ⊆'  (all requests in P  

whose earliest pickup times are between kt  and Ltk + ). 

Step 2: If φ∉'P ,  

      Update vehicle locations at time kt . 

      Freeze routes and schedules up to the current time instance kt . 

      Insert requests from 'P  to vehicles and determine the schedules.  

      Remove assigned requests from the unassigned requests list 'PPP −= . 

Step 3: Wait until the appearance of the new request at iT or until the rolling horizon 

time α+kt   is reached. If the new request appears, go to Step 4; else, go to 

Step 5. 
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Step 4: If the new request is an urgent request (i.e. LTEPT ii +< ), schedule the new 

request immediately; else, insert the new request into the unassigned list P  

according to the earliest pickup times. Go to Step 3. 

Step 5: Roll time horizon α+=+ kk tt 1 . Go to Step 1. 

Step 6: (Optional) Perform improvement procedure at interval ∆ . 

 

# of
iteration

Time horizon

new urgent request (i.e.                  )

kt Ltk +

iT

α

α+=+ kk tt 1 Ltk ++1

k

1+k

LtEPT ki +< , insert immediately

1+iT new non-urgent request , add into unassigned list

α

insert requests in the unassigned list whose LtEPT ki +< +1

∆

∆+= ktt apply improvement procedure

1+= ktt

 

Figure 4-2.   Schematic representation of the rolling horizon online insertion principle 
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4.3 Computational Study 

The heuristics are tested on the same randomly generated test problems introduced in 

Chapter 3 for the static DAR problem except that additional lead time information will be 

generated for the dynamic version of the problems. Five replications are generated for 

each problem, to deal with the randomness of the demand, and the statistics reported are 

the average over the five replications. We use the same objective function as in the static 

case. The computer program is coded using visual C++ and is run in a Pentium M, 1.6 

GHz laptop. 

 

The lead time distribution for all the test problems is generated as follows. It is assumed 

that half of the total requests are advance demand (i.e. call the service one day ahead). 

For the remaining half of the requests, the lead time follows a uniform distribution 

[60,120] minutes.  

 

Throughout this dissertation, the default parameter settings for the rolling horizon online 

insertion heuristics are as follows, except otherwise specified. The rolling horizon is set 

as 1 hour and the rolling interval is set as 10 minutes. The interval of the periodical 

improvement is 30 minutes. 

 

4.3.1 Comparison of rolling horizon and immediate online insertion heuristics 

For each scenario considered, four heuristic variations are implemented and compared. In 

Tables 4-1 to 4-3, Heuristics D1 and D1w (‘D’ represents dynamic algorithm) are the 

immediate insertion online heuristics without and with the periodical improvement. 
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Heuristics D2 and D2w are the rolling horizon online heuristics without and with the 

periodical improvement. For insertion, the rejected-reinsertion heuristic with variable 

fleet size is implemented. The initial fleet sizes are 30, 40 and 50 for scenarios L, M and 

H, respectively. The statistics reported in the tables of this chapter are the same as those 

defined in 3.3.1. The last column is the average computation time for each additional 

request. 

 



 

 

Table 4-1.  Comparison of rolling horizon vs immediate online insertion heuristics for scenario L 

Heuristic # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/veh hr) 

Pass. 
miles 

Avg dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

Comp. time 
per request 
(sec) 

D1 41.8 5,175 3.74 11,460 14.00 1.488 9.4 157 0.1 

D2 40.6 4,838 4.00 11,868 14.14 1.538 10.0 68 0.05 

D2 vs D1  -2.9% -6.5% +7.0% +3.6% +1.0% +3.4% +6.4% -57%  

D1w 37.4  4,436 4.12 10,381 14.61 1.356 9.2 8601 6.9 

D2w 35.6  4,230 4.46 10,709 14.87 1.401 9.6 1701 1.2 

D2w vs D1w -4.8% -4.6% +8.3% +3.2% +1.8% +3.3% +4.3% -80%  
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Table 4-2.  Comparison of rolling horizon vs immediate online insertion heuristics for scenario M 

Heuristic # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/veh hr) 

Pass. 
miles 

Avg dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

Comp. time 
per request 
(sec) 

D1 50.4 5,783 3.20 10,516 9.18 1.372 7.4 66 0.05 

D2 45.6 5,341 3.52 10,676 8.96 1.397 7.6 26 0.02 

D2 vs D1  -9.5% -7.6% +10.0% +1.5% -2.4% +1.8% +2.7% -61%  

D1w 45.6  5,100 3.44 9,861 9.54 1.293 7.6 2215 1.6 

D2w 41.8  4,808 3.82 10,094 9.59 1.325 7.6 597 0.44 

D2w vs D1w -8.3% -5.7% +11.0% +2.3% +0.5% +2.5% 0% -73%  
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Table 4-3.  Comparison of rolling horizon vs immediate online insertion heuristics for scenario H 

Heuristic # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/veh hr) 

Pass. 
miles 

Avg dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

Comp. time 
per request 
(sec) 

D1 66.2 6,942 2.51 9,200 4.22 1.218 6.2 29 0.02 

D2 59.6 6,346 2.78 9,347 4.18 1.236 5.8 17 0.01 

D2 vs D1  -10.0% -8.6% +10.8% +1.6% -0.9% +1.5% -6.5% -41%  

D1w 62.4 6,331 2.61 8,958 4.32 1.184 6.0 469 0.34 

D2w 56.8 5,936 2.88 9,204 4.36 1.216 6.2 141 0.10 

D2w vs D1w -9.0% -6.2% +10.3% +2.7% +0.9% +2.7% +3.3% -70%  
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Based on Tables 4-1 to 4-3, the rolling horizon online heuristics outperform the 

immediate online heuristics either without or with the periodical improvement (D2 vs D1, 

and D2w vs D1w) in terms of number of vehicles required, vehicle miles and vehicle 

productivity, for all three scenarios. The advantage of rolling horizon online heuristics 

over the immediate online heuristics increases as the problem gets more restrictive (from 

L to H). The differences in terms of passenger miles, average passenger time deviation 

and average passenger ride time ratio are relatively small. Besides, the rolling horizon 

online heuristics are more computationally efficient, i.e. for scenario L, the computation 

time of D2 versus D1 is 68 versus 157 seconds, and the computation time of D2w versus 

D1w is 1701 versus 8601 seconds. This occurs because the rolling horizon insertion 

method constructs the routes for the requests in the order of their urgency and the routes 

evolve as the time frames of the requests so that the number of rejected-reinsertion, trip 

reinsertion and trip exchange operations decreases, thus reducing the computation time. 

 

Table 4-4 shows the number of vehicles required for the five randomly generated 

replications. The average and standard deviation are shown in the last two columns. The 

results show that Heuristic D2w always uses the fewest vehicles for all individual 

replications. The standard deviations of all heuristics for all service scenarios are around 

one vehicle. From an operational point of view, this means that the fluctuations on the 

number of vehicles required for a given level of demand are not evident for a dynamic 

problem even if the demand is randomly distributed over time and space. Table 4-4 also 

reports in parentheses the computation time in seconds for Heuristic D2w. 
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Table 4-4.  Variability of number of vehicles over five replications 

Replication 
Scenario Algo. 

1 2 3 4 5 
Average Standard 

deviation

D1 42 43 42 40 42 41.8 1.10 

D1w 37 39 37 37 37 37.4 0.89 

D2 41 40 42 40 40 40.6 0.89 
L 

D2w 36 
(1670) 

36 
(1646) 

34 
(1704) 

35 
(1696) 

37 
(1788) 

35.6 
(1701) 

1.14 
(54) 

D1 51 53 48 50 50 50.4 1.82 

D1w 45 46 45 47 45 45.6 0.89 

D2 46 47 46 45 44 45.6 1.14 
M 

D2w 42 
(601) 

43 
(550) 

40 
(594) 

42 
(614) 

42 
(626) 

41.8 
(597) 

1.10 
(29) 

D1 65 68 65 66 67 66.2 1.30 

D1w 62 64 61 63 62 62.4 1.14 

D2 58 60 60 61 59 59.6 1.14 
H 

D2w 57 
(151) 

57 
(134) 

55 
(150) 

58 
(128) 

57 
(142) 

56.8 
(141) 

1.10 
(10) 

 

 

 

4.3.2 Performance of the periodical improvement procedure 

The results of Tables 4-1 to 4-3 are rearranged in Tables 4-5 to 4-7 to show the 

performance of the periodical improvement procedure in the dynamic problem. As shown 

in the tables, the periodical improvement procedure is effective in reducing the number of 

vehicles required (up to -12.3%), the total vehicle miles (up to -14.3%), and thus 

increasing the vehicle productivity (up to 11.5%). The improvement is more prominent 
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for the less restricted problem (i.e. scenario L) than the more restricted problem (i.e. 

scenario H). The periodical improvement is consistently effective in both the static and 

dynamic problems. 

 

Table 4-5.  Comparison of online heuristics without and with periodical improvement for 

scenario L 

Heuristic # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

D1 41.8 5,175 3.74 11,460 14.00 1.488 9.4 157 

D1w 37.4  4,436 4.12 10,381 14.61 1.356 9.2 8601 

D1w vs 
D1 -10.5% -14.3% +10.2%      

D2 40.6 4,838 4.00 11,868 14.14 1.538 10.0 68 

D2w 35.6  4,230 4.46 10,709 14.87 1.401 9.6 1701 

D2w vs 
D2 -12.3% -12.6% +11.5%      
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Table 4-6.  Comparison of online heuristics without and with periodical improvement for 

scenario M 

Heuristic # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

D1 50.4 5,783 3.20 10,516 9.18 1.372 7.4 66 

D1w 45.6  5,100 3.44 9,861 9.54 1.293 7.6 2215 

D1w vs 
D1 -9.5% -11.8% +7.5%      

D2 45.6 5,341 3.52 10,676 8.96 1.397 7.6 26 

D2w 41.8  4,808 3.82 10,094 9.59 1.325 7.6 597 

D2w vs 
D2 -8.3% -10.0% +8.5%      

 

Table 4-7.  Comparison of online heuristics without and with periodical improvement for 

scenario H 

Heuristic # of 
vehicles 

Vehicle 
miles 

Vehicle 
prod. 
(trips/ 
veh hr) 

Pass. 
miles 

Avg 
dev. 
(min) 

Ride 
time 
ratio 

Max 
pass. 
onboard 

Comp. 
time 
(sec) 

D1 66.2 6,942 2.51 9,200 4.22 1.218 6.2 29 

D1w 62.4 6,331 2.61 8,958 4.32 1.184 6.0 469 

D1w vs 
D1 -5.7% -8.8% +4.0%      

D2 59.6 6,346 2.78 9,347 4.18 1.236 5.8 17 

D2w 56.8 5,936 2.88 9,204 4.36 1.216 6.2 141 

D2w vs 
D2 -4.7% -6.5% +3.6%      
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4.3.3 Test of the effectiveness of the rejected-reinsertion operation 

To test the performance of the rejected-reinsertion operation in the dynamic version of 

the problem, we run four additional heuristics corresponding to Heuristics D1, D1w, D2 

and D2w, but without using the rejected-reinsertion operator in the insertion process. The 

minimum number of vehicles required by those heuristics without and with the rejected-

reinsertion operation are reported in Table 4-8.  

 

Table 4-8.  Comparison of heuristics without and with rejected-reinsertion operation 

# of vehicles (Comp. time in seconds) 
Heuristic Rejected-

reinsertion L M H 

without 49.8      (34) 58.6      (26) 74.0      (19) 

with 41.8      (157) 50.4      (66) 66.2      (29) D1 

difference -16.1% -14.0% -10.5% 

without 41.4      (7030) 49.4      (2070) 69.0      (414) 

with 37.4      (9394) 45.6      (2215) 62.4      (469) D1w 

difference -9.7% -7.7% -9.6% 

without 44.8      (25) 49.8      (16) 63.4      (10) 

with 40.6      (68) 45.6      (26) 59.6      (17) D2 

difference -9.4% -8.4% -6.0% 

without 36.8      (1606) 44.2      (567) 59.4      (141) 

with 35.6      (1701) 41.8      (597) 56.8      (141) D2w 

difference -3.3% -5.4% -4.4% 
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Based on Table 4-8, the rejected-reinsertion operation proposed for the static DARP is 

also very effective for the dynamic DARP. The results show that heuristics with the 

rejected-reinsertion operator require smaller vehicle fleets than heuristics without the 

operator, for all service quality scenarios. The improvement tends to be smaller when the 

periodical improvement procedure is implemented. For heuristics without the periodical 

improvement (i.e., D1 or D2), the rejected-reinsertion operation can reduce the number of 

vehicles by up to 16.1% for immediate online insertion heuristic (D1) and up to 9.4% for 

rolling horizon online insertion heuristic (D2). For heuristics with the periodical 

improvement (i.e., D1w or D2w), the rejected-reinsertion operation can reduce the 

number of vehicles by up to 9.7% for immediate online insertion heuristic (D1) and up to 

5.4% for rolling horizon online insertion heuristic (D2). The online rejected-reinsertion 

heuristic with periodical improvement achieves the best results. 

 

4.3.4 Effect of advance information 

In Section 4.2, a notation “lead time” is defined which is a measurement of how far in 

advance a passenger calls in for a trip request. In principle, the earlier the passengers 

make the trip requests, the more flexibility a planner can have to schedule the trips. With 

all other parameters fixed at their default values, we vary the average lead time advT . The 

lead time is uniformly distributed as ]2 ,0[~ advTU . Figure 4-3 to 4-5 shows the number 

of vehicles required by rolling horizon online heuristics, varying average lead time. ‘Best 

static result’ is the solution for the corresponding static problem. 
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Scenario H: TW = 10min, Max ride time ratio = 1.5
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Figure 4-3.  Vehicle fleet size requirement vs average lead time for scenario H 

 

 

Scenario M: TW = 20min, Max ride time ratio = 2.0

25

35

45

55

65

0 50 100 150 200 250 300

Average lead time (min)

N
um

be
r o

f v
eh

ic
le

s 
   

parallel insertion
rejected-reinsertion
rejected-reinsertion w/ improvement
best static result

 
Figure 4-4.  Vehicle fleet size requirement vs average lead time for scenario M 
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Scenario L: TW = 30min, Max ride time ratio = 2.5
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Figure 4-5.  Vehicle fleet size requirement vs average lead time for scenario L 

 

The results show that: 

• The performance of all three heuristics improves as the average lead time 

increases.  

• The performance is sensitive to a small lead time, especially for high service 

quality scenario H. This means that requests with very short trip notice will 

require a much larger vehicle fleet to satisfy the demand, especially for high 

service quality systems. For those systems, a minimum notice time (lead time) 

may be required. 

• The performance tends to be relatively constant when the average lead time 

exceeds 1 hour. 

advT
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• The rejected-reinsertion rolling horizon heuristic with periodical improvement 

performs the best and its results are close to the static results when average lead 

time exceeds 1 hour, which shows the effectiveness of the proposed online 

heuristic in dealing with dynamic demand. 

 

Figures 4-6 ~ 4-8 show the effect of minimum lead time min
advT  on the heuristic 

performance. Only the best rejected-reinsertion online heuristic with periodical 

improvement is tested. The lead time is uniformly distributed as ]2 ,[~ minmin
advadvadv TTTU − .  

The results show that the minimum lead time constraint can moderately improve the 

heuristic performance for high and medium service quality scenarios. No great 

improvement is observed when the minimum lead time increases from 15 to 30 minutes.  
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Figure 4-6.  Effect of minimum lead time for scenario H 
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Scenario M: TW = 20min, Max ride time ratio = 2.0
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Figure 4-7.  Effect of minimum lead time for scenario M 

 

Scenario L: TW = 30min, Max ride time ratio = 2.5

20

30

40

50

0 50 100 150 200 250 300

Average lead time (min)

N
um

be
r o

f v
eh

ic
le

s 
   

min lead time = 0 min
min lead time = 15 min
min lead time = 30 min
best static result

 
Figure 4-8.  Effect of minimum lead time for scenario L 



 96

The results in this section are useful for DAR policy makers in determining the minimum 

trip notice time the passengers should be asked to provide. A minimum notice time of 15-

30 minutes is suggested in order to lower the system operating cost. 

 

4.3.5 Sensitivity analysis of parameter settings of the rolling horizon online 

heuristic 

The rolling horizon online heuristic involves a few heuristic parameters (i.e. the length of 

the horizon, the rolling interval, and the improvement period if periodical improvement is 

implemented). This section tests the sensitivity of those parameters. 

 

Table 4-9 shows the number of vehicles required as we only vary the length of the 

horizon (at 30, 60, and 90 minutes) with other parameters fixed at their default values, 

using heuristic D2 and D2w (rolling horizon heuristic without and with periodical 

improvement ). It is found that the computation time increases with the horizon. This 

occurs because the longer the horizon, the more reinsertion or exchange operations may 

be involved in the computation. The number of vehicles is not very sensitive to the 

horizon. Slightly more vehicles are needed for a horizon of 30 minutes rather than a 

horizon of 60 or 90 minutes. Therefore, horizon values are not very critical for the rolling 

horizon heuristic. A horizon of 60 minutes seems appropriate and is used in this study. 
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Table 4-9.  Sensitivity to the horizon 

# of vehicles (computation time in seconds) Heuristic Horizon 
(min) L M H 

30 41.2 (42) 47.2 (19) 61.2 (11) 

60 40.6 (68) 45.6 (26) 59.6 (17) D2 

90 40.0 (81) 46.4 (35) 59.6 (19) 

30 36.4 (717) 43.6 (248) 59.4 (54) 

60 35.6 (1,701) 41.8 (597) 56.8 (141) D2w 

90 35.0 (2,975) 42.0 (1011) 57.0 (232) 

 

 

Table 4-10 shows the number of vehicles required when we only vary the rolling interval 

α  (at 5, 10, and 20 minutes), while other parameters stay at their default values, using 

Heuristic D2 and D2w (rolling horizon heuristic without and with periodical 

improvement ). The results show no effect of the rolling interval on the number of 

vehicles. The computation time is comparable as well. Again, it is not very critical to set 

the rolling interval value for the rolling horizon heuristic. A rolling interval of 10 minutes 

is used in this study. 
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Table 4-10.  Sensitivity to the rolling interval α  

# of vehicles (computation time in seconds) Heuristic Rolling 
interval α  
(min) L M H 

5 40.4 (69) 46.8 (31) 59.6 (17) 

10 40.6 (68) 45.6 (26) 59.6 (17) D2 

20 40.2 (62) 46.2 (28) 59.4 (16) 

5 35.4 (2041) 42.6 (581) 57.0 (139) 

10 35.6 (1701) 41.8 (597) 56.8 (141) D2w 

20 35.4  (1991) 42.0 (558) 56.0 (148) 

 

 

Table 4-11 shows the number of vehicles required when we only vary the time interval 

(at 15, 30, and 60 minutes) at which the periodical improvement procedure is 

implemented, while other parameters stay at their default values, using Heuristic D2w 

(rolling horizon heuristic with periodical improvement ). The general trend is that as the 

time interval decreases, the computation time increases nonlinearly with very limited 

improvement in the results. An improvement interval of 30 minutes is used in this study. 

 

Table 4-11.  Sensitivity to the improvement interval 

# of vehicles (computation time in seconds) Heuristic Interval 
(min) L M H 

15 34.0 (3225) 42.0 (969) 56.4 (227) 

30 35.6 (1701) 41.8 (597) 56.8 (141) D2w 

60 36.2 (1030) 42.2 (348) 57.4 (96) 
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4.3.6 Comparison of two vehicle scheduling policies 

In Section 3.2.8, we have mentioned the vehicle scheduling which refers to the 

determination of the actual pickup and delivery times of the new insertion and the 

corresponding modification of the actual pickup and delivery times of the affected 

passengers assigned once the insertion sequence is determined. Two scheduling policies 

are analyzed and compared. The first policy is to schedule the new request as soon as 

possible. In the second policy, schedules are sought that minimize the time deviation of 

the passengers from their desired pickup or delivery times. 

 

Tables 4-12 and 4-13 show the comparison of the number of vehicles required and 

average passenger time deviation by the two scheduling policies. As expected, the results 

from the two scheduling policies are quite similar. This occurs because, for a heavily 

loaded system, there is not much slack time available for shifting the schedule block in 

which the new request has been inserted. However, the second policy always yields 

slightly less average passenger time deviation from desired times. In this dissertation, the 

second scheduling policy is adopted. 
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Table 4-12.  Effects of two scheduling policies on fleet size 

Number of vehicles required 
Heuristic Scheduling 

Policy L M H 

(1) ASAP 42.2 51.6 65.4 
D1 

(2) Min time 
     deviation 41.8 50.4 66.2 

(1) ASAP 37.0 46.0 61.8 
D1w 

(2) Min time  
     deviation 37.4 45.6 62.4 

(1) ASAP 40.0 44.8 58.4 
D2 

(2) Min time  
     deviation 40.6 45.6 59.6 

(1) ASAP 36.0 41.6 56.6 
D2w 

(2) Min time  
     deviation 35.6 41.8 56.8 

 

Table 4-13.  Effects of two scheduling policies on average passenger time deviation  

Average passenger time deviation (min)  
Heuristic Scheduling 

policy L M H 

Min time 
deviation 14.00  9.18  4.22  

D1 
ASAP 14.19  9.41  4.76  

Min time 
deviation 14.61  9.54  4.32  

D1w 
ASAP 14.96  10.04  4.50  

Min time 
deviation 14.14  8.96  4.18  

D2 
ASAP 14.41  9.30  4.71  

Min time 
deviation 14.87  9.59  4.36  

D2w 
ASAP 15.08  10.01  4.84  
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4.4 Conclusions 

In this chapter, two online insertion heuristics (with four variations) are developed for the 

dynamic DARP. These are the immediate insertion online heuristic and the rolling 

horizon online heuristic. The rejected-reinsertion heuristic for the static problem is 

incorporated in the online heuristics. The performances of the heuristics are tested and 

compared for a set of randomly generated problems. 

 

The rolling horizon online heuristic outperforms the immediate insertion online heuristic 

for demand scenario in which different demand lead times exist. The heuristic is 

computationally efficient. It is simple in concept, and it does not involve complex 

algorithm parameters which need to be tested for specific problems. The rolling horizon 

online heuristic with periodical improvement, the best among those heuristic variations 

developed, is used in the simulation experiments for the development of the performance 

models. 
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Chapter 5  Development of Performance Metamodels 

 

The routing and scheduling heuristics developed in the last two chapters to solve the 

DARP for a given operational scenario can be thought of as a mechanism that turns the 

settings of a group of experimental factors (i.e. demand, service area, time constraints, 

vehicle characteristics, etc.) into output performance measures (i.e. number of vehicles 

required). However, the explicit functional form of the relation of outputs with respect to 

the input parameters is unknown. Response surface methodology (Box and Draper, 1987; 

Khuri and Cornell, 1996; Myers and Montgomery, 2002) is a very popular metamodeling 

technique used to approximate this kind of functional relation. The resulting functions (or 

models) are usually called metamodels in that they provide a “model of the model” 

(Kleijnen, 1987). The approximate formula or equations could be used to predict the 

performance for different number of input parameter combinations.   

 

In this chapter, performance metamodels are developed using the response surface 

methodology. In Section 5.1, response surface metamodeling technique is introduced. 

Section 5.2 describes the design of the experiments, in which the main input factors, 

region of interest of the factors, a face-centered central composite design and generation 
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of the demand scenarios are discussed in details. Monte Carlo simulation is used to 

generate demand scenarios. Then for each scenario, the dynamic routing and scheduling 

algorithm assigns demands to routes and schedules their pickup and delivery times. The 

output performance measures are collected. Section 5.3 contains the regression analysis 

for the experiment data and the models development. Validation of the metamodels using 

a set of new generated data is performed in Section 5.4. Finally, the metamodels are 

summarized in the last section. 

 

 

5.1 Introduction of Response Surface Methodology 

Response surface methodology is a collection of statistical and mathematical techniques 

useful for developing, improving, and optimizing processes (Myers and Montgomery, 

2002). It is based on the work of Box (1954) and Hunter (1958, 1959a, 1959b), and has 

been used effectively in other areas (Box & Draper, 1987; Box, Hunter, & Hunter, 1978). 

The most extensive applications of responsive surface methodology are in situations 

where several input variables potentially influence some performance measure of quality 

characteristic of the product or process. This performance measures or quality 

characteristic is called the response. It is typically measured on a continuous scale. The 

input variables are sometimes called independent variables. For a relationship between a 

response and less than three input variables, the responses for different combinations of 

input variables constitute a response surface, which has led the term response surface 

methodology. One typical application of the response surface methodology is to map or 

approximate a response surface over a particular region of interest. 
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Response surface methodology is a set of techniques that encompasses (Khuri and 

Cornell, 1996):  

1. Setting up a series of experiments that will yield adequate and reliable 

measurements of the response of interest. 

2. Determining a mathematical model that best fits the data collected from the 

design. 

3. Determining the optimal settings of the experimental factors that produce the 

optimal value of the response. 

The first two techniques are employed in this dissertation to develop the performance 

metamodels.  

 

The approximate empirical functions or models are usually built using statistical 

regression methods. The most common models used in response surface methodology are 

the polynomial first-order and second-order response surface models. Note that response 

surface methods are additional techniques employed before, while, and after a regression 

analysis is performed on the data (Khuri and Cornell, 1996). The experiment must be 

designed, that is, the input parameters must be selected and their value during 

experimentation must be designated before the regression analysis. After the regression 

analysis is performed, certain model testing procedures are applied. 

 

The general form of a first-order model in k  input variables 1X , 2X , …, kX  is 

∑
=

++=
k

i
ii XY

1
0 εββ                        (5-1) 
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where Y  is an observable response variable, 0β , 1β , …, kβ  are unknown parameters, 

and ε  is a random error term. The general form of a second-order model is 

∑ ∑∑
= = =

+++=
k

i

k

i
ji

k

j
ijii XXXY

1 1 1
0 εβββ                     (5-2) 

where iβ  ( i  = 1, 2, … , k ), ijβ  ( i  = 1, 2, … , k ;  j  = 1, 2, … , k )  are unknown 

parameters. If no interaction term is considered, Equation (5-2) becomes  

∑ ∑
= =

+++=
k

i

k

i
iiiii XXY

1 1

2
0 εβββ                                (5-3) 

 

Note that the following multiplicative model (5-4) is intrinsically linear (Draper and 

Smith, 1998) and can be transformed into a linear model (5-5) by a logarithmic 

transformation  

∏
=

=
k

i
io

iXY
1

εβ β                        (5-4) 

εββ 10
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01010 loglogloglog ++= ∑
=

i

k

i
i XY                     (5-5) 

The multiplicative model is also used in the regression analysis of this study. 

 

 

5.2 Experimental Design 

In experimental-design terminology, the input parameters and structural assumptions 

composing a model are called factors, and the output performance measures are called 

responses (Law and Kelton, 2000). The main tasks in the experimental design include: 
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• Selection of the input factors (parameters) which mostly affect the interested 

response 

• Setting the interested range of the factors 

• Determination of the number and values of the experimental points (one point 

corresponds one combination of the factors) 

• (If the experiment includes simulation ), setting the simulation parameters (i.e. 

length of the simulation, number of replications) 

 

5.2.1 Input factors 

In this dissertation, the output performance measure we are mostly concerned with is the 

vehicle resource requirement given demand and service quality level. Other measures 

include average passenger time deviation (waiting time if passengers specify desired 

pickup time) and average passenger ride time ratio.  

 

Since the main purpose of the performance models is to aid in the planning stage and it is 

the most important to understand the tradeoff relation between the vehicle resource 

requirement and the level of service provided, we identify the following six factors as the 

main contributors to the vehicle resource requirement: 

• Demand density 

• Service area size 

• Maximum time deviation 

• Maximum ride time ratio 

• Vehicle operating speed 
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• Passenger boarding and alighting time  

Note that the road circuity (ratio of the actual distance to the direct distance) affects the 

vehicle travel time. However, the effect of increasing road circuity on the vehicle travel 

time is equivalent to the effect of decreasing vehicle operating speed on the vehicle travel 

time. Therefore, road circuity is not treated as a separate factor. Instead, its effect will be 

incorporated with the vehicle operating speed into the final models. The speed can then 

be defined as the average speed based on Euclidean distances rather than actual distances 

through road networks. 

 

The average passenger time deviation is expected to be mostly affected by the maximum 

time deviation and the average passenger ride time ratio is expected to be mostly affected 

by the maximum ride time ratio. 

 

There are other input parameters and assumptions which are considered as fixed aspects 

of the models: 

• Demand distribution in space may also have some effect on the performance 

measures. However, the demand pattern in space differs considerably in each 

practical scenario and it is difficult to fully describe it quantitatively (i.e. must 

specify uniform, Poisson or other distribution qualitatively). A uniform 

distribution of all origins and destinations is used to represent the most general 

case. A sensitivity analysis of non-uniform distribution in one direction of the 

area is performed in Section 6.1.2. 
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• For the demand distribution in time, the calling time interval between successive 

passenger requests is assumed to have a negative exponential distribution. 

• The service area is assumed to be square. Simulation results by Eilon et al. (1971) 

suggest that minor variations in the shapes of zones (e.g. square, circle and 

equilateral triangle) with uniform internal demand do not greatly affect the length 

of traveling salesman tours within them. A sensitivity analysis of area shape 

(rectangular with different width length ratio) is provided in Section 6.1.1. 

• It is assumed that half of the total requests are advance demand and the lead time 

for the remaining real-time requests is uniformly distributed as ]120 ,0[~U  

minutes. In a rolling horizon scheme, actually the advance demand is equivalent 

to the demand with lead time more than the rolling horizon. The effect of the 

advance information analyzed in Section 4.3.4 shows that the performance is not 

particularly sensitive to the distribution of the lead time for a medium or low 

service quality system. It also shows that it is costly for a high service quality 

system to allow short trip notice times for most customers. A mixed demand with 

some urgent and some non-urgent requests is considered. 

• The rejected-reinsertion rolling horizon online heuristic with periodical 

improvement is used for the routing and scheduling, which is efficient in solving 

the large-scale dynamic DARP and is the best available. 

• The probability that a passenger specifies a desired pick up or delivery time 

follows a binary distribution with 0.5 probability. 

• A 1.15 road circuity factor is used. 
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5.2.2 Region of interest 

Table 5-1 shows the lower and upper values of the six factors considered. They are 

considered to cover the general region of interest for a DAR service. 

 

Table 5-1. Lower and upper values of the factors 

i Factor Lower value Upper value 

1 Service area (sq. mi.) 9 81 

2 Demand density (trips/hr/sq. mi.) 1 10 

3 Maximum time deviation (min) 10 30 

4 Maximum ride time ratio 1.5 2.5 

5 Vehicle operating speed (mph) 10 40 

6 Boarding or alighting time (min) 0.5 1.5 

 

 

5.2.3 Factorial design and face-centered central composite design 

Factorial designs are widely used in experiments involving several factors where it is 

necessary to study the joint effect of the factors on a response (Montgomery, 2001). 

Assume that the input variable is coded to take the value -1 when at its low lever and +1 

when at its high, a k2  factorial design is such a design that requires k2222 =×××  

observations with each factor chosen at the -1 and +1 levels. The k2  factorial design is an 

economic strategy to measure factor interactions and screen out unimportant factors.  

Since only two levels are measured for each factor, the k2  factorial design is one of the 

first-order designs that are used to estimate first-order models. Similarly, a k3  factorial 
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design requires k3333 =×××  observations with each factor chosen at the -1, 0 and +1 

levels. The k3  factorial design is one of the second-order designs that are used to 

estimate second-order models. k3  factorial design requires a large number of design 

points even for moderate value of k . For example, for 6=k  as in this study, k3  factorial 

design requires 63  = 6,561 design points. If one design point needs 5 replications in a 

simulation experiment context, the total number of simulation runs would be 32,805, 

which is computationally expensive. 

 

The class of central composite designs introduced by Box and Wilson (1951) is an 

alternative class of designs to the k3  factorial design. A central composite design consists 

of a k2  factorial design points augmented with k2  axial points at )0 ., . . ,0 ,0 ,( α± , 

)0 ., . . ,0 , ,0( α± , …, ) ., . . ,0 ,0 ,0( α±  and )1( ≥cc nn  center points )0 ., . . ,0 ,0 ,0( . In 

Figure 5-1a for 3=k , a central composite design consists of a 823 =  factorial design 

points augmented with 632 =⋅  axial points and cn  center points. If the region of interest 

is cuboidal, a useful variation of the central composite design is the face-centered 

composite design with 1=α  (Figure 5-1b).  
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X2

X3

X1

(a) (b)
 

Figure 5-1. Central composite design (CCD) for 3=k  

(a) general CCD,  (b) face-centered CCD 

 

The face-centered central composite design is chosen for this study. Since the number of 

factors considered is 6, the design consists of  6426 =  factorial design points and 

1262 =⋅  axial points. The number of center points is set as 6. Table 5-2 shows an 

example of the factor combinations for a face-centered composite design when 3=k  and 

2=cn . 
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Table 5-2.   Factor combinations for a face-centered CCD for 3=k  

# of Experiment Factor 1 Factor 2 Factor 3 

1 -1 -1 -1 

2 -1 -1 +1 

3 -1 +1 -1 

4 -1 +1 +1 

5 +1 -1 -1 

6 +1 -1 +1 

7 +1 +1 -1 

8 +1 +1 +1 

9 -1 0 0 

10 +1 0 0 

11 0 -1 0 

12 0 +1 0 

13 0 0 -1 

14 0 0 +1 

15 0 0 0 

16 0 0 0 
 

 

5.2.4 Generation of demand scenarios  

Monte Carlo simulation is used to generate specific demand attributes such as the origin, 

destination and calling time of each request. Here Monte Carlo simulation means a 

scheme employing random numbers to generate scenarios of demand configurations. It is 

assumed that origins and destinations of requests are uniformly distributed over the 

service area. The inter-arrival times of calls have a negative exponential distribution. 

Requests are generated for a three-hour service period, which represents a typical peak 
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hour period. To deal with the randomness of the demand, each experiment (each of the 

factor combination) is repeated five times. The average performance over those five 

replications represents one design point. 

 

 

5.3 Regression Analysis 

The notation used for the performance models is defined as follows: 

Responses: 

- F  Minimum number of operating vehicles which satisfy all demand 

for given time constraints 

- R  Average passenger ride time ratio (actual ride time divided by 

direct ride time) 

- devT  Average passenger time deviation from desired time (min) (the 

absolute value of the difference between the desired 

pickup/delivery time and the actual pickup/delivery time) 

Factors: 

- A  Service area size (sq. mi.) 

- b  Total boarding and alighting time per person (min) 

- D  Demand density (trips/sq. mi./hr) 

- R  Maximum ride time ratio 

- V  Vehicle operating speed (mph) 

- W  Maximum time deviation (min) 
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5.3.1 Vehicle resource requirement model 

In the first step, a first-order linear model as in Equation 5-1 is fitted to the response, 

which is the vehicle fleet size F . However, residual analysis suggests the transformation 

of the response F  may result in better fit.  A multiplicative form is hypothesized for the 

vehicle resource requirement model as follows: 

543

621

0 ααα

ααα

α
VRW
bDAF =                        (5-6) 

Equation (5-6) can be transformed into the following linear form: 

VRWDAF 10510410310210101010 logloglogloglogloglog αααααα −−−++=   

           b106 logα+                      (5-7) 

Polynomial first-order and second-order models with transformed response F10log  are 

also analyzed and their regression results along with the multiplicative model are 

compared. They are shown in Equations (5-8) and (5-9), respectively. No interaction 

terms are considered in the second-order model. 

bVRWDAF 654321010log βββββββ +−−−++=                   (5-8)  

bVRWDAF 654321010log γγγγγγγ ++++++=   

                    bVRWDA 665544332211 γγγγγγ ++++++                    (5-9) 

 

All three models are estimated using linear regression with SPSS software (version 11.0). 

The estimated parameters with standard errors in the parentheses, the corresponding 

adjusted 2R  values, F  values, the normal probability plots (Figures 5-2, 5-6 and 5-10 ) 

and the plots of residual against the predicted value (Figures 5-3, 5-7 and 5-11)  are 

shown for each of the three models. The normal probability plot is used to check the 
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normality assumption of the error term in the least squares regression. The normal 

probability plot in SPSS plots the cumulative proportion of a single numeric variable 

against the cumulative proportion expected if the sample were from a normal distribution 

(SPSS, v11.0). If the sample is from a normal distribution the points will cluster around a 

straight line. The plots of residual vs the predicted value provide one way of checking the 

model’s adequacy. If the model is adequate, the residual should contain no obvious 

patterns (Montgomery, 2001). Figures 5-4, 5-8, and 5-12 show the comparison of the 

observed F10log  from the simulation experiments with the estimated ones by the 

regression models. Figures 5-5, 5-9, and 5-13 show the comparison in terms of the 

number of vehicles instead of taking the logarithm. The comparisons indicate graphically 

how well the models describe the data. 

 

(1) multiplicative Model F1 

RWDAF 1010101010 log370.0log287.0log723.0log074.1680.0log −−++=  
               (0.044)  (0.012)             (0.011)             (0.023)              (0.050) 

bV 1010 log205.0log678.0 +−                   (5-10) 
(0.018)                (0.014)              

adjusted 2R  = 0.989,  F  = 2,442 

Equation (5-10) can be transformed back to the multiplicative form as  

68.037.029.0

21.072.007.1

79.4
VRW
bDAF
⋅⋅
⋅⋅

=                               (5-11) 

 

(2) first-order Model F2 fitted to F10log   

bVRWDAF 0512.00144.00913.000784.00755.00136.0891.0log10 +−−−++=  
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               (0.056) (0.0003)    (0.0024)     (0.0011)       (0.022)     (0.0007)   (0.0088) 

                                        (5-12) 
adjusted 2R  = 0.959,   F  = 606 

 

(3) second-order Model F3 fitted to F10log   

bVRWDAF 0637.0033.00819.000684.0198.00358.0584.0log10 +−−−++=  
               (0.047)  (0.0024)    (0.018)    (0.0005)       (0.010)     (0.006)    (0.004) 

222 000387.00107.000024.0 VDA +−−                                      (5-13) 
  (0.000025)    (0.0017)      (0.00012) 

adjusted 2R  = 0.991,  F  = 1906 
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Figure 5-2.  Normal probability plot of F10log  of the multiplicative Model F1 
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Figure 5-3.  Residual vs the predicted F10log  of the multiplicative Model F1 
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Multiplicative model 
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Figure 5-4.  Estimated vs observed F10log  of the multiplicative Model F1 
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Figure 5-5.  Estimated vs observed F  of the multiplicative Model F1 
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Figure 5-6.  Normal probability plot of F10log  of the first-order Model F2  
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Figure 5-7.  Residual vs the predicted F10log  of the first-order Model F2  
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First-order model 
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Figure 5-8.  Estimated vs observed F10log  of the first-order Model F2  
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Figure 5-9.  Estimated vs observed F  of the first-order Model F2  
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Figure 5-10.  Normal probability plot of F10log  of the second-order Model F3 
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Figure 5-11.  Residual vs the predicted F10log  of the second-order Model F3 
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Figure 5-12.  Estimated vs observed F10log  of the second-order Model F3 

 

Second-order model

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Observed # of vehicles

E
st

im
at

ed
 #

 o
f v

eh
ic

le
s 

 

 
Figure 5-13.  Estimated vs observed F  of the second-order Model F3 
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The observations from the above results are as follows: 

• F  values of all three models are significant at the 01.0=α  level. 

• The probability plot of Model F3 falls very close to the 45-degree line, indicating 

strong conformity to the normality assumption. The probability plots of Models 

F1 and F2 deviate somewhat from the 45-degree line. However, no strong 

indications are observed that the normality assumption is violated. 

• There is no clear pattern observed from the plot of residual against the predicted 

value for each model. Model F2 shows a slightly abnormal pattern with a few 

points clustered. 

• According to the plot of the estimated vs observed values, Models F1 and F3 

predict better than Model F2. Models F1 and F3 are comparable. However, Model 

F1 is preferred to Model F3 because of its relatively simple form and few 

parameters. 

 

5.3.2 Time deviation model 

The time deviation model predicts the average passenger time deviation from their 

desired pickup or delivery time. Since the maximum time deviation is imposed as a hard 

constraint in the routing and scheduling algorithm, the output average passenger time 

deviation is expected to be mostly related with the maximum time deviation set as an 

operating policy. The experiment results also indicate that the average passenger time 

deviation is linearly related to the maximum time deviation. Other factors such as 

demand density and area size have been identified to contribute to the response through 

regression analysis considering all the six factors, however, their contributions are far less 
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important than the maximum time deviation. The comparisons of the models considering 

different combinations of these three factors are shown in Equations (5-14) through (5-

16) and Figures 5-14 through 5-22. All three models are first-order polynomial models 

since regression analysis shows that the first-order polynomial models fit the data well. 

  

(1) Model D1 

WDAT dev 50.00942.000564.060.1 +++−=                  (5-14) 
          (0.118)    (0.001)      (0.010)      (0.004) 

adjusted 2R  = 0.988,  F  = 4,200 

(2) Model D2 

WDT dev 50.00957.037.1 ++−=                    (5-15) 
           (0.115)  (0.010)     (0.005) 

adjusted 2R  = 0.986,  F  = 5,564 

(3) Model D3 

WT dev 50.090.0 +−=                              (5-16) 
          (0.127)  (0.006) 

adjusted 2R  = 0.979,  F  = 7,189 
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Figure 5-14.  Normal probability plot of time deviation of Model D1 
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Figure 5-15.  Residual vs the predicted time deviation of Model D1 
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Figure 5-16.  Estimated vs observed time deviation of Model D1 
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Figure 5-17.  Normal probability plot of time deviation of Model D2 
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Figure 5-18.  Residual vs the predicted time deviation of Model D2 
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Figure 5-19.  Estimated vs observed time deviation of Model D2 
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Figure 5-20.  Normal probability plot of time deviation of Model D3 
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Figure 5-21.  Residual vs the predicted time deviation of Model D3 
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Figure 5-22.  Estimated vs observed time deviation of Model D3 

 

Note that in Figure 5-22, the points fall within three horizontal clusters. This occurs 

because the maximum time deviation is the only factor contributing to the Model D3 

(Equation 5-16) and we only use three values for each factor in the simulation 

experiments. 

 

• F  values of all three models are significant at the 01.0=α  level. 

• The adjusted 2R  values are close for all three models. 

• The probability plot of Models D1 and D2 falls very close to the 45-degree line, 

indicating strong conformity to the normality assumption. The probability plots of 

Model D3 deviate somewhat from the 45-degree line. However, no strong 

indications are observed that the normality assumption is violated. 
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• The regression standardized residual skews somewhat to the upper part of the 

figure when the regression standardized predicted value falls within -0.5 to 0.0. 

(Figures 5-15, 5-18 and 5-21), which indicates that adding second-order terms 

might improve the model fit. However, a first-order model might still be preferred 

because of its simplicity. Its prediction accuracy might be sufficient for a 

particular planning purpose. 

• From the plot of the estimated vs observed values, all three models fit the data 

well. Model D3 is the simplest model with only one factor.  

• Average time deviation is a little less than half of the maximum time deviation. 

This is expected for a tightly constrained DARP with the restriction of no vehicle 

idling when carrying passengers. The time deviation for each passenger can range 

from 0 to the maximum limit, thus the average is approximately the half. 

 

5.3.3 Ride time ratio model 

The ride time ratio model predicts the average passenger ride time ratio, which is the 

actual ride time divided by the direct ride time. It is expected that the output average 

passenger ride time ratio is mostly related with the maximum ride time ratio, which is 

imposed as a hard constraint in the routing and scheduling algorithm for the DARP. First-

order models, second-order models and multiplicative models are all fitted considering all 

the six factors. The experiment results indicate that the average ride time ratio is mostly 

related with maximum ride time ratio, demand density and area size, in the order of 

importance. The most promising models identified during regression analysis are shown 

in Equations (5-17) to (5-20). The corresponding normal probability plot, residual plot 
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and the plot of observed versus predicted response value are shown in Figures 5-23 to 5-

34. 

 

(1) First-order Model R1 

RDAR 424.00120.000120.0428.0 +++=                                     (5-17) 
      (0.028)  (0.0001)      (0.001)      (0.013) 

adjusted 2R  = 0.890,  F  = 420 

 

 

(2) First-order Model R2 

RR 429.0532.0 +=                                                (5-18) 
      (0.035)  (0.017)       

adjusted 2R  = 0.802,  F  = 630 

 

(3) Second-order Model R3 

RDDAR 426.000589.00783.000136.0336.0 2 +−++=                 (5-19) 
              (0.029)  (0.0001)      (0.011)        (0.001)        (0.012) 

adjusted 2R  = 0.910,  F  = 395 

 

 (4) Multiplicative Model R4 

RDAR 10101010 log605.0log0374.0log0342.0106.0log +++−=                  (5-20) 
                 (0.007)  (0.004)               (0.003)       (0.015) 

adjusted 2R  = 0.921,  F  = 606 

Equation (5-20) can be transformed back to the multiplicative form as  

605.003737.00342.0106.010 RDAR ⋅⋅⋅= −                    (5-21) 



 133

Observed Cum Prob

1.00.75.50.250.00

E
xp

ec
te

d 
C

um
 P

ro
b

1.00

.75

.50

.25

0.00

 

Figure 5-23.  Normal probability plot of ride time ratio of the first-order Model R1 
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Figure 5-24.  Residual vs the predicted ride time ratio of the first-order Model R1 
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Figure 5-25.  Estimated vs observed ride time ratio of the first-order Model R1 
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Figure 5-26.  Normal probability plot of ride time ratio of the first-order Model R2 

 

 

Regression Standardized Predicted Value

1.51.0.50.0-.5-1.0-1.5

R
eg

re
ss

io
n 

S
ta

nd
ar

di
ze

d 
R

es
id

ua
l

3

2

1

0

-1

-2

-3

-4

 

Figure 5-27.  Residual vs the predicted ride time ratio of the first-order Model R2 
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Figure 5-28.  Estimated vs observed ride time ratio of the first-order Model R2 
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Figure 5-29.  Normal probability plot of ride time ratio of the second-order Model R3 
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Figure 5-30.  Residual vs the predicted ride time ratio of the second-order Model R3 
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Figure 5-31.  Estimated vs observed ride time ratio of the second-order Model R3 
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Figure 5-32.  Normal probability plot of ride time ratio of the multiplicative  
Model R4 
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Figure 5-33.  Residual vs the predicted ride time ratio of the multiplicative Model R4 
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Figure 5-34.  Estimated vs observed ride time ratio of the multiplicative Model R4 

 
 

• F  values of all four models are significant at the 01.0=α  level. 

• No strong indications are observed for any of these models that the normality 

assumption is violated. 

• No clear pattern is observed from the plot of residual against the predicted value 

for Models R1, R3 and R4. The regression standardized residual is larger when 

the predicted value is higher for Model R2 (Figure 5-27), indicating some degree 

of non-constant variance of the residual. 

• Comparing Models R1, R3 and R4, each involving three factors, Model R4 has 

the highest adjusted 2R  value and the Model R3 has the second highest adjusted 

2R  value. However, the values for three models are close and no significant 

difference has been observed from the plots of estimated versus observed ride 
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time ratio for the three models. All the models are tested again using the new 

design points in the model validation (Section 5.4). 

• Model R2 has the simplest form with adjusted 2R  value 0.802. 

 

 

5.4 Metamodel Validation 

Regression analysis, used to develop the general linear metamodel, is very much a data-

based technique. It finds the model with the best possible fit to the data. Models thus 

estimated might not perform well on new data. In this dissertation the motamodels are 

validated against 30 new design points other than the ones that were used to build the 

metamodels. The new design points are randomly generated within the region of interest, 

as shown in Table 5-1. More specifically, values for each factor are generated from 

uniform distributions bounded by their respective lower and upper values. In the face-

centered composite design, most design points used to develop the metamodels are 

located in the “corner” or “boundary” of the design space. The metamodel validation, in 

some sense, tests how well the models fit the points that are more internally distributed in 

the design space. 
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5.4.1 Vehicle resource requirement model 

Figure 5-35 shows the estimated versus predicted number of vehicles of the 

multiplicative Model F1 

68.037.029.0

21.072.007.1

79.4
VRW
bDAF
⋅⋅
⋅⋅

=                               (5-11) 

The plots falls very close to the 45-degree line, indicating that the above model fits the 

new randomly generated design points very well. 
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Figure 5-35.  Model validation: Estimated vs observed vehicles of  

the multiplicative Model F1 
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5.4.2 Time deviation model 

Figure 5-36 shows the estimated versus predicted average passenger time deviation of 

Model D3 

WT dev 50.090.0 +−=                              (5-16) 

The plots fall very close to the 45-degree line. However, most of the points fall on the 

lower side of the line, indicating that the time deviations are slightly underestimated (-

4.9% on average) by the metamodel. This underestimation maybe due to the omission of 

the possible second-order terms in the model. However, the model accuracy should be 

acceptable for planning purposes. 
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Figure 5-36.  Model validation: Estimated vs observed time deviation of Model D3 
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5.4.3 Ride time ratio model 

In Section 5.3.3, four metamodels are developed and compared. They are the first-order 

Model R1 (Equation 5-17), the first-order Model R2 (Equation 5-18), the second-order 

Model R3 (Equation 5-19), and the multiplicative Model R4 (Equation 5-21). 

RDAR 424.00120.000120.0428.0 +++=                                     (5-17) 

RR 429.0532.0 +=                                                (5-18) 

RDDAR 426.000589.00783.000136.0336.0 2 +−++=                 (5-19) 

605.003737.00342.0106.010 RDAR ⋅⋅⋅= −                    (5-21) 

The statistical performance of Models R1, R3 and R4 are comparable. Model R2 has the 

simplest form with the little inferior statistical performance. Since there is no clear 

indication that which model dominates the others, the average passenger ride time ratio 

predicted by those four models are compared with the observed values using the new data 

sets. The results are shown in Figures 5-37 through 5-40. 

 

Comparing Models R1, R3 and R4, Model R3 (the second-order model) fits the new data 

points best, since its data points fall around the 45-degree line while the other two 

underestimate the response values. The omission of the area size and demand density 

variables from Model R2 compare to Model R1 does not greatly deteriorate the 

prediction.  
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Figure 5-37.  Model validation:  

Estimated vs observed ride time ratio of the first-order Model R1 
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Figure 5-38.  Model validation:  

Estimated vs observed ride time ratio of the first-order Model R2  
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Second-order model
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Figure 5-39.  Model validation:  

Estimated vs observed ride time ratio of the second-order Model R3 
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Figure 5-40.  Model validation:  

Estimated vs observed ride time ratio of the multiplicative Model R4 
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Table 5-3 shows the estimated and observed response values for the multiplicative 

vehicle requirement Model F1, the time deviation Model D3, and the ride time ratio 

second-order Model R3 for the 30 experiments with new design points. 

 

Due to the randomness of the demand nature, each design point is replicated five times. 

From the statistical viewpoint, these repeated runs can be used to estimate the pure error 

variance 2σ . The pure error represents the error due to the random variation of the 

experiments such as the randomness of the demand. More information on this is provided 

in statistics books such as Draper and Smith (1998), and Kleinbaum et al. (1988). The 

estimated standard deviations of the error σ  due to the random variation of the 

experiments for Models F1, D3, and R3 shown in Table 5-3 are 1.61 vehicles, 0.42 

minutes, and 0.018, respectively.  

 



 

 

Table 5-3. Observed vs estimated values from the performance models for the 30 validation experiments 

Number of vehicles Average time deviation Average ride time ratio 
Experiment 

Observed Model 
F1 Difference Observed Model 

D3 Difference Observed Model 
R3 Difference

1 16.8 19.3 14.8% 7.7 7.0 -9.8% 1.50 1.50 0.3% 

2 20.8 22.6 8.7% 8.7 8.3 -4.9% 1.38 1.36 -1.9% 

3 50.6 50.3 -0.6% 10.5 9.9 -5.1% 1.26 1.32 4.3% 

4 96.2 94.2 -2.1% 14.1 13.7 -2.3% 1.63 1.62 -0.2% 

5 27.4 31.7 15.6% 4.7 4.6 -3.9% 1.46 1.48 1.6% 

6 13.6 15.1 10.8% 11.5 10.7 -6.8% 1.64 1.51 -7.5% 

7 41.4 43.7 5.5% 5.0 4.5 -10.3% 1.69 1.71 0.9% 

8 43.8 46.7 6.6% 7.1 7.0 -1.9% 1.58 1.56 -1.1% 

9 23.2 25.6 10.1% 6.2 5.7 -7.5% 1.63 1.61 -1.4% 

10 3.6 3.5 -2.2% 10.4 10.8 3.4% 1.56 1.52 -2.7% 

11 71.6 65.1 -9.1% 11.8 11.2 -4.9% 1.25 1.24 -1.0% 

12 10.6 11.8 11.8% 7.8 7.8 -0.6% 1.48 1.48 0.2% 

13 71 68.4 -3.6% 10.8 10.3 -4.8% 1.24 1.34 7.7% 

14 8.4 9.9 17.6% 13.5 13.1 -2.9% 1.39 1.39 0.0% 

15 120.4 118.3 -1.7% 6.7 6.4 -4.5% 1.55 1.67 7.8% 
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Table 5-3. Observed vs estimated values from the performance models for the 30 validation experiments (Cont’) 

Number of vehicles Average time deviation Average ride time ratio 
Experiment 

Observed Model 
F1 Difference Observed Model 

D3 Difference Observed Model 
R3 Difference

16 2.8 2.4 -14.8% 13.9 13.5 -3.2% 1.53 1.49 -3.1% 

17 100.8 106.8 6.0% 4.6 4.1 -10.3% 1.32 1.40 6.0% 

18 17.2 19.6 14.0% 8.5 7.9 -7.2% 1.35 1.33 -1.8% 

19 42.6 46.4 8.9% 6.9 6.3 -8.2% 1.35 1.36 1.3% 

20 24.2 22.5 -6.9% 13.6 13.3 -1.9% 1.65 1.54 -6.6% 

21 14 15.7 12.0% 7.4 7.0 -5.2% 1.47 1.43 -2.9% 

22 55.4 53.6 -3.3% 5.9 5.4 -8.4% 1.60 1.57 -1.9% 

23 33 36.6 11.1% 8.4 7.8 -6.2% 1.50 1.53 2.1% 

24 37.2 40.8 9.7% 5.5 5.0 -8.8% 1.57 1.58 0.8% 

25 93.4 98.5 5.5% 12.1 11.8 -2.4% 1.58 1.59 1.0% 

26 6.8 7.2 6.0% 4.5 4.3 -4.6% 1.28 1.35 5.7% 

27 44.6 48.0 7.7% 8.2 8.0 -2.0% 1.41 1.43 0.8% 

28 33.2 35.2 5.9% 8.1 8.0 -1.6% 1.24 1.30 4.3% 

29 60.4 63.9 5.8% 7.7 7.4 -3.8% 1.40 1.43 2.0% 

30 22.4 24.1 7.5% 14.1 13.3 -5.1% 1.26 1.29 2.6% 
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5.5 Model Summary 

Based on the results presented and discussed in Section 5.3-5.4, the following 

performance models are recommended: 

(1) Vehicle resource requirement Model F1 

68.037.029.0

21.072.007.1

79.4
VRW
bDAF
⋅⋅
⋅⋅

=                               (5-11) 

To incorporate the effect of road circuity cf  on the vehicle resource requirement (a 1.15 

circuity factor is used in all experiments for metamodel development), the model (Model 

F1a) would be 

68.037.029.0

21.072.007.1

)/15.1(
79.4

cfVRW
bDAF

⋅⋅

⋅⋅
=               (5-22) 

 

(2) Time deviation Model D3 

WT dev 50.090.0 +−=                              (5-16) 

 

(3) Ride time ratio model 

First-order Model R2    

RR 429.0532.0 +=                                       (5-18) 

Second-order Model R3 

RDDAR 426.000589.00783.000136.0336.0 2 +−++=                    (5-19) 

For the ride time ratio model, the first-order model is also included because of its 

simplicity. 
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Vehicle productivity can be estimated from the vehicle fleet size requirement Model F1a 

by dividing the hourly demand by the number of vehicles. The passenger in-vehicle travel 

time can be estimated by the ride time ratio estimated by Model R2 or R3 multiplied by 

the direct trip time, which might be estimated through demand forecasting analysis. 
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Chapter 6  Sensitivity Analysis and Model Applications 

 

In Chapter 5, performance metamodels have been developed using the response surface 

methodology. The models assume a square service area and uniformly distributed 

demand in the area. It is also assumed that half of the users specify desired pickup time 

and the remaining half specify desired delivery time. In this chapter, the effects of these 

assumptions on the performance are investigated. Simulation experiments are performed 

(1) on rectangular areas with different aspect ratios (defined as the ratio of the length to 

width of a rectangular area), (2) with linearly distributed demand along one side of the 

area representing a graduate decreasing demand density, and (3) with different 

percentages of users specifying desired pickup time. 

 

Two of the model applications have been demonstrated in Section 6.2. Parametric 

analysis of the model results as a single parameter is varied has been performed to better 

understand the interrelationships of the system. Questions such as how many additional 

vehicles are required if the maximum time deviation decreases from 20 minutes to 10 

minutes can be answered by such analysis. Tradeoffs between the service quality and 

vehicle resource requirement can thus be evaluated. The performance models are also 
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applied in the optimization of the service considering the combined operator and user 

costs. 

 

 

6.1 Sensitivity Analysis 

 

6.1.1 Shape of the service area 

As the service area becomes more irregular or elongated in shape, the expected straight 

line travel distance between random points increases. Thus, one might expect that the 

increased average travel distance of the passengers may results in more vehicles required. 

In this section, the effect of the service area shape on the number of vehicles is 

investigated. Other assumptions such as the uniformly distributed demand locations 

defined in Chapter 5 are retained. Denote the length and width of a rectangular area as l  

and w  and let aspect ratio wlr /= . Rectangular areas with various aspect ratios from 1 

to 4 are tested. 

 

Test instances of the dynamic DARPs have been generated by Monte Carlo simulation 

and are similar as those described in Section 3.3.1. An 8 mile ×  8 mile service area with 

the depot located in the center of the area is studied. The Euclidean distance metric is 

used with a circuity factor of 1.3. Vehicle speed is 15 mph. The instances have 9 hours of 

demand with 120, 120, 160, 200, 200, 160, 160, 120, 120 requests per hour. Half of the 

requests are advance requests. The lead time for remaining requests is uniformly 

distributed as ]120,60[~U  minutes. The boarding and alighting times are not considered. 
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It is expected that the more the boarding and alighting times contribute to a passenger’s 

total trip time the less the area shape will affect the performance. Each test scenario is 

replicated five times using different streams of random seeds. The same stream of 

random seeds is used for scenarios with different aspect ratios. 

 

The expected Euclidean distance D  between two randomly-chosen points uniformly 

distributed in a rectangular area can be obtained from Lazoff and Sherman (1994). The 

values of D  for rectangles of constant area 1 with selected aspect ratios are listed in 

Table 6-1. 1 The expected travel time can then be obtained given the vehicle speed and 

road circuity. The expected direct travel times for passengers with origins and 

destinations uniformly distributed in the 8 mile ×  8 mile area are drawn as the aspect 

ratio increases in Figure 6-1. The expected travel time increases approximately linearly as 

the aspect ratio increases from 1 to 4. 

 

Table 6-1.  Expected Euclidean distance D  with different aspect ratios  

(Lazoff and Sherman, 1994) 

wl /  l  w  D  

1 1.0000 1.0000 0.5214 

2 1.4142 0.7071 0.5691 

4 2.0000 0.5000 0.7137 

8 2.8284 0.3536 0.9642 
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Figure 6-1. Average direct travel time vs aspect ratio 

 

Figures 6-2 through 6-4 show how the area shape in terms of aspect ratio affects the 

number of vehicles required for three service quality scenarios H, M and L as the time 

constraints get more restrictive. The results indicate that the number of vehicles is quite 

insensitive to the aspect ratio of the service area for all three service quality scenarios 

analyzed with the rolling horizon heuristics. The fluctuation of the results obtained with 

the rolling horizon heuristic without the improvement procedure is actually caused by the 

randomness of the demand and it is observed that the heuristic with the improvement 

procedure can produce results with less variance. The insensitivity to the aspect ratio of 

the area might be explained as follows: The elongated area might ease the routing and 

scheduling process for the DARP and more shared rides become available. In the extreme 

case imagine a narrow stripe area.  Most passengers must travel in the elongated 
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direction. Vehicles may just move in one direction and pickup or delivery passengers if 

the time constraints are satisfied. Since most passengers traveled in the approximate same 

direction, more shared rides are then available. Therefore, the increased direct travel 

distance with elongated area might just be offset by the increase in shared rides, which 

decreases sensitivity to the aspect ratio of the area. 
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Figure 6-2. Effect of area shape on vehicles needed for service scenario H 
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Figure 6-3. Effect of area shape on vehicles needed for service scenario M 
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Figure 6-4. Effect of area shape on vehicles needed for service scenario L 
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6.1.2 Demand distribution in space 

The metamodels developed in the last chapter rely upon the assumption of uniformly and 

randomly distributed demand origins and destinations over the service area. In this 

section, the effect of typical non-uniform demand patterns on the vehicle fleet size 

requirement is examined. In practice, the most usual non-uniformity of spatial demand 

consists of declining density as one moves away from the central city. The following 

experiments use a square service area in which demand density declines in one direction 

but is uniform in the other direction. Other operation settings are the same as those 

described in Section 6.1.1. 

 

Figure 6-5 shows the probability density function for the distribution of the demand 

density along one side of the service area. As one moves away from 0 to a , the 

probability density function of the demand density decreases linearly from c  to cf ⋅  

)10( ≤≤ f . 1=f  represents a special case when demand is uniformly distributed. As f  

decreases from 1 to 0, the slope of the demand density increases. 

 

Values from 0 to 1 for the f  are tested. Each test scenario is replicated five times using 

different streams of random seeds. The same stream of random seeds is used for 

scenarios with different f  values. Figures 6-6 through 6-8 show the results. Just for 

clarity, f−1  instead of f  is plotted as x -axis. The number of vehicles is quite constant 

as f−1  rises from 0 to 0.7 and decreases when f  is larger than 0.7.  
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Figure 6-5. Probability density function for linear distribution of demand density along 

one side of the service area 
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Figure 6-6. Effect of non-uniform demand distribution on vehicles needed for service 

scenario H 
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Figure 6-7. Effect of non-uniform demand distribution on vehicles needed for service 

scenario M 
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Figure 6-8. Effect of non-uniform demand distribution on vehicles needed for service 

scenario L 
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6.1.3 Percentage of passengers specifying desired pickup time 

The metamodels developed in the last chapter assume that half of the passengers specify 

desired pickup time and the remaining half specify desired delivery time. In this section, 

the effects of that assumption on the vehicle fleet size requirement and average time 

deviation are examined. The percentage of passengers who specify desired pickup time 

ranges from 0% to 100% in the following tests. The experiments use an 8 mile ×  8 mile 

service area and a uniform demand distribution with a demand density of 4 trips/sq. 

mi./hr. The service period is 3 hours. The dwell time for each pickup or delivery stop is 1 

minute. The vehicle operating speed is 20 mph and the circuity factor is 1.15. It is 

assumed half of the trips are requested in advance and the lead time distribution for the 

remaining half is uniformly distributed as ]120 ,0[~U  minutes. 

 

Values from 0% to 100% for the percentage of passengers specifying desired pickup time 

are tested. Each test scenario is replicated five times using different streams of random 

seeds. The same stream of random seeds is used for scenarios with different f  values. 

Figure 6-9 shows the results for the number of vehicles required and Figure 6-10 shows 

the results for the average passenger time deviation.  
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Figure 6-9. Effect of percentage of passengers with desired pickup time on vehicles 
required  
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Figure 6-10. Effect of percentage of passengers with desired pickup time on average time 
deviation  
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Figure 6-9 shows that the number of vehicles required is not sensitive to the percentage 

of passengers specifying desired pickup time. For all three service quality scenarios, the 

number of vehicles decreases very slightly. Figure 6-10 shows that the average time 

deviation tends to be slightly lower at higher percentages of passengers specifying 

desired delivery time. In practice, the percentage would most probably be around 0.3 ~ 

0.7. Therefore, the average time deviation is not very sensitive to the percentage of 

passengers specifying desired pickup time within the practical range. 

 

The slightly lower average time deviation when most requests specify a desired delivery 

time is due to the way the passengers are scheduled. In the experiments, passengers are 

scheduled to minimize the time deviations. For a system with most trips having a desired 

delivery time, the service time is scheduled as late as possible to minimize the time 

deviation to the desired delivery time. In this way, some of the flexibility is lost by 

postponing the service schedules in a dynamic context. A slightly larger fleet size is 

required with more idling time left within the schedules, which results in slightly lower 

time deviation. Therefore, in a dynamic context, the ASAP scheduling policy might be 

preferred over the policy minimizing the time deviation if most requests specify a desired 

delivery time. 

 

The results in Section 6.1 indicate that the performance metamodels are fairly robust, in 

that deviation from the assumptions of square service area, uniform demand distribution 

and 50% desired pickup-specified passengers would not greatly affect the accuracy of the 

predictions.  
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6.2 Model Applications 

The direct application of the developed performance models is to predict the vehicle 

resource requirement and the resulting passenger time deviation and ride time for a given 

demand and operating scenario. Other applications include the parametric analysis of the 

model results as a single parameter is varied to better understand the interrelations of the 

system, and the optimization of the service in terms of the policy variables such as the 

maximum time deviation. The performance models with predicted time deviation and 

ride time can be used in conjunction with models of travel demand to find the equilibrium 

or expected level of demand and system attributes. Section 6.2.1 presents the results of 

varying a single or two input parameter(s). Section 6.2.2 optimizes the system in order to 

minimize the system cost including both the operator cost and user cost. 

 

6.2.1 Parametric analysis 

An economic analysis of a DAR transit system must determine the best operating 

configuration and environment in relation to other competing modes. To achieve the goal 

it is important to understand the effect on the system of changes in the critical input 

parameters. This section presents the variation of the expected vehicle fleet requirement 

as input parameter(s) vary. Unless otherwise specified, the following default values are 

used for the analysis: 

− Service area   64 sq. mi. 

− Demand density   4 trips/sq. mi./hr 

− Maximum time deviation  20 min 

− Maximum ride time ratio  2.0 
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− Vehicle speed    20 mph 

− Boarding and alighting time 2 min 

− Road circuity factor  1.2 

 

(1) Demand density 

Figure 6-11 shows the number of vehicles required with varying demand density and 

other parameters fixed at default values. The number of vehicles increases with the 

demand density, at a decreasing rate. This implies that as the demand density increases, 

the opportunity for shared rides increases and fewer vehicles are required for additional 

trips. However, that saving is limited due to the difficulty of combining the trips with 

different time and geographical constraints.  
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Figure 6-11.   Effect of service demand density on vehicles required 
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Figure 6-12 shows vehicle productivity instead of the number of vehicles required by 

dividing the number of  trips per hour by the number of vehicles for an area of 64 square 

miles. Vehicle productivity increases with increasing demand density, at a decreasing 

rate. Taxis show a relatively constant vehicle productivity since they usually can only 

carry one passenger party at any time. Conventional fixed-route buses, conversely, are 

well suited to take advantage of the economies of scale and their vehicle productivity 

would continue rising with increasing demand level. The results suggest that the DAR 

would be more suitable for a service area with low demand density. Once the demand 

density reaches a certain level, the conventional bus is more productive. 
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Figure 6-12.   Effect of service demand density on vehicle productivity 
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(2) Area size 

The second series of tests investigates the effect of area size, holding the demand density 

and service constraints at their default values.  Figure 6-13 shows the results in terms of 

number of vehicles required. It illustrates that the required number of vehicles increases 

approximately linearly with increasing service area size 
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Figure 6-13.   Effect of service area size on vehicles required 

 

(3) Maximum time deviation 

Figures 6-14 and 6-15 investigates the effect of one of the time constraints, maximum 

time deviation, while holding the demand density and service area fixed at 4 trips/sq. 

mi./hr and 64 sq. mi., respectively.  Figure 6-14 shows the tradeoff relation between the 

operator cost in terms of vehicle fleet size requirement and the user cost in terms of 

maximum time deviation. Figure 6-15 shows the results in terms of vehicle productivity 

instead of number of vehicles. Figure 6-14 indicates a nonlinear relation between the 
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number of vehicles and the maximum time deviation. The decrease in number of vehicles 

when maximum time deviation increases from 10 to 15 minutes is larger than that when 

maximum time deviation increases from 25 to 30 minutes. And the corresponding vehicle 

productivity gained when maximum time deviation increases from 10 to 15 minutes is 

larger than that when maximum time deviation increases from 25 to 30 minutes. The 

results are more sensitive to shorter than longer maximum time deviations.  
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Figure 6-14.   Effect of maximum time deviation on vehicles required 
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Figure 6-15.   Effect of maximum time deviation on vehicle productivity 

 

(4) Maximum ride time ratio 

Figures 6-16 and 6-17 investigate the effect of maximum ride time ratio, holding the 

demand density and service area fixed at 4 trips/sq. mi./hr and 64 sq. mi. respectively.  

Figure 6-16 shows the results in terms of number of vehicles required while Figure 6-17 

shows the results in terms of vehicle productivity. Results in Figure 6-16 indicate an 

approximately linear relationship between the number of vehicles and the maximum ride 

time ratio. The vehicle productivity in Figure 6-17 increases approximately linearly as the 

maximum ride time ratio increases. Figure 6-18 shows the vehicle productivity as the 

maximum time deviation and maximum ride time ratio vary simultaneously. The vehicle 

productivity increases from about 3 to 5 trips per vehicle hour as both time constraints get 

less restrictive and service quality decreases. 



 170

55

60

65

70

75

1.25 1.5 1.75 2 2.25 2.5 2.75
Maximum ride time ratio

# 
of

 v
eh

ic
le

s 
   

 

 

Figure 6-16.   Effect of maximum ride time ratio on vehicles required 
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Figure 6-17.   Effect of maximum ride time ratio on vehicle productivity 
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Figure 6-18.   Effect of both time constraints on vehicle productivity 

 

6.2.2 Optimization of the dial-a-ride service 

This section illustrates the application of the developed performance models in the 

optimization of the DAR service considering the tradeoffs between the service quality 

and operating cost. In the planning stage of a DAR, given a demand level, service area 

characteristics and vehicle operating characteristics, decisions to be made include the 

determination of the fleet size and service level provided which is constrained and/or 

measured by the maximum time deviation and maximum ride time ratio. As the service 

level increases, the passenger time deviation and passenger ride time decrease while the 

vehicle resource requirement and operating cost increases. The tradeoffs between the 

service quality and operating cost should be well balanced in a public transit system. In 

the following case study, a total system cost is minimized, which takes into account both 
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the operator cost and user cost. The total cost function can be interpreted as a weighted 

sum of operator cost and disutility to the system’s customers due to the time deviation 

from users’ desired time and the in-vehicle travel time. 

 

The following notation is used and baseline values are provided after the definitions for 

the case study: 

A  Area size, 88×  sq. mi. 

B :  Bus operating cost, 60 $/hr 

b  Total boarding and alighting time, 2 min 

oC :  Operator cost, in $/hr 

tC :  Total cost, in $/hr 

uvC :  User in-vehicle cost, in $/hr 

uwC :  User time deviation cost, in $/hr 

D  Demand density, 4 trips/sq. mi./hr 

cf  Roadway circuity, 1.2 

R  Maximum ride time ratio 

V  Vehicle operating speed, 20 mph 

inv :  Value of passenger in-vehicle time, 12 $/passenger/hr 

wv :  Value of passenger time deviation,  20 $/passenger/hr 

W  Maximum time deviation, in min 
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Note that all of the cost calculations are on a hourly basis. The operator cost oC  is the 

fleet size F  multiplied by the hourly operating cost B  (which can incorporate the 

vehicle depreciation or rental cost). The fleet size F  is estimated with Equation (5-11).  

BFCo ⋅=                               (6-1) 

68.037.029.0

21.072.007.1

)/15.1(
79.4

cfVRW
bDAF

⋅⋅

⋅⋅
=                             (5-22) 

  

The user cost consists of passenger in-vehicle cost uvC  (disutility due to in-vehicle travel 

time) and passenger time deviation cost uwC  (disutility due to time deviation from desired 

time). The total passenger in-vehicle cost uvC  in $/hr can be estimated as the total 

passenger in-vehicle travel time per hourly demand inT , multiplied by the value of in-

vehicle time inv . The total passenger in-vehicle travel time inT  can be estimated as the 

average ride time ratio R  multiplied by the total direct travel time per hourly demand 

∑
i

idT , .  

ininuv TvC =                                   (6-2) 

∑⋅=
i

idin TRT ,                        (6-3) 

RDDAR 426.000589.00783.000136.0336.0 2 +−++=                         (5-19) 

This total direct travel time may usually be estimated from the demand analysis. In this 

case study, the total direct travel time is approximately estimated by using the average 

direct distance for two randomly generated points in a square area which is estimated to 
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be l512.0  ( l  is length of area side). The second-order ride time Model R3 (Equation 5-

19) is employed in this study. 

 

The passenger time deviation cost uwC  is the average passenger time deviation, 

multiplied by hourly demand and the value of time deviation wv . 

devinuw TDAvC =                        (6-4) 

WT dev 50.090.0 +−=                              (5-16) 

The total cost is the sum of the three cost components defined above. 

  uwuvot CCCC ++=                       (6-5) 

 

Figure 6-19 shows the cost components (in $/trip), which are obtained by dividing the 

costs in $/hr by hourly demand, when both the maximum time deviation and maximum 

ride time vary accordingly. The maximum ride time ratio varies from 1.5 to 2.5 linearly 

as the maximum time deviation varies from 10 min to 30 min to provide consistent level 

of service. (Note that the maximum time deviation and ride time ratio can also vary 

independently and be optimized as two decision variables.) From the Figure 6-19, user 

cost increases and the operator cost decreases as the level of service decreases. (Both the 

maximum time deviation and maximum ride time ratio increase.) Figure 6-20 shows the 

total cost per trip as summing up three cost components. For this case study, the 

optimized maximum time deviation is 28 minutes and the optimal maximum ride time 

ratio is 2.4. The corresponding number of vehicles is 54.  
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Figure 6-19.   Cost components of the dial-a-ride service in the case study 
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Figure 6-20.   Total cost of the dial-a-ride service in the case study 
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Figure 6-21 plots the optimized cost components versus demand density using the 

baseline parameter values defined early in this section. The total cost per trip decreases as 

the demand density increases from 1 to 10 trips/sq. mi./hr. The decrease is steeper when 

the demand density is low (i.e. 1-3 trips/sq. mi./hr).  
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Figure 6-21.   Costs vs demand density of the dial-a-ride service in the case study 

 

Unlike a DAR service with its flexible route and schedule, fixed route conventional bus 

services are characterized by their fixed routes and schedules. They can provide relatively 

high passenger-carrying capacities at relatively low average costs to system operators. 

However, their service quality is limited since passengers must somehow reach some 

predetermined stations, wait for a vehicle, possibly transfer several times, and then travel 
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from their exit stations to their destinations. Thus, conventional transit services are least 

disadvantaged in areas and time periods with high demand densities, which can sustain 

high network densities and service frequencies. Information such as in Figure 6-21 

provides very useful insights in determining the system operating configuration at the 

planning stage (i.e. whether fixed route conventional bus service or flexible route and 

schedule DAR service should be provided). If combined with similar information for a 

fixed route conventional bus service, a threshold analysis (as in Chang and Schonfeld, 

1991) can be used to determine which service type is preferable under given 

circumstances.  

 

 



 178

 

 

 

Chapter 7  Conclusions and Future Research 

 

7.1 Conclusions 

In this dissertation, three performance metamodels have been developed using the 

response surface metamodeling approach for dynamic many-to-many DARP. The models 

predict, respectively, the minimum vehicle fleet size requirement, the average passenger 

time deviation from desired time, and the average passenger ride time ratio.  

 

The metamodeling approach can incorporate in its simulation experiments detailed 

vehicle routing algorithm and passenger time constraints, which are oversimplified or 

omitted by an analytical approach. The technique used for developing the performance 

models is summarized as follows: 

• Develop an online routing and scheduling heuristic for the dynamic DARP 

• Design simulation experiments (which include the determination of input factors, 

their ranges of interest and selection of design points) 

• Execute experiments (apply heuristic to solve simulated scenarios) 

• Collect data from experiments 
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• Develop relations among performance and input factors through statistical 

estimation 

• Validate the metamodels 

 

This work also contributes to the development of heuristics for the static and dynamic 

DARPs with time constraints. A new heuristic, which is named a rejected-reinsertion 

heuristic, has been developed for the static multi-vehicle DARP. This method improves 

the conventional parallel insertion heuristic with a new rejected-reinsertion operation and 

a periodical improvement procedure involving trip reinsertion and trip exchange 

operations. Tables 7-1 and 7-2 show the vehicle reduction due to rejected-reinsertion 

heuristics compared with parallel insertion and/or regret insertion of Diana and Dessouky 

(2004). The proposed heuristics are very efficient computationally. 

 

Table 7-1.  Vehicle reductions due to rejected-reinsertion heuristics for static problem 

 Parallel insertion Diana 5 

Rejected-reinsertion -5% ~ -10% -1% ~ -11% 

Rejected-reinsertion with 
improvement -10% ~ -17% -1% ~ -12% 

 

Table 7-2.  Vehicle reductions due to rejected-reinsertion rolling horizon heuristics for 

dynamic problem  

 Parallel insertion 

Rejected-reinsertion -6% ~ -9% 

Rejected-reinsertion with 
improvement -10% ~ -21% 
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The static heuristic has been extended to two online heuristics for the dynamic large-scale 

DARP, namely, the immediate-insertion online heuristic and the rolling horizon online 

heuristic. The immediate-insertion heuristic re-solves the static problem upon the 

appearance of the new request, while the rolling horizon heuristic uses a rolling horizon 

scheme which defers the insertion of the non-urgent requests in order to reserve more 

flexibility for future requests. The rolling horizon heuristic outperforms the immediate 

insertion heuristic for demand scenario in which different lead times for demand exist. 

The heuristic is computationally efficient, which makes it usable in real dynamic 

applications. It is simple in concept, and it does not involve complex algorithm 

parameters which must be tested for specific problems. The rolling horizon online 

heuristic with periodical improvement, the best among those heuristic variations 

developed here, is employed in the simulation experiments for the development of the 

performance models. Table 7-3 shows the vehicle reduction due to rolling horizon 

heuristics compared with immediate insertion heuristics. 

 

Table 7-3.  Vehicle reductions due to rolling horizon heuristics for dynamic problem  

 Immediate insertion Immediate insertion 
with improvement 

Rolling horizon -3% ~ -10%  

Rolling horizon 
with improvement  -5% ~ -9% 

 

 

The response surface metamodeling approach is applied in the development of the 

performance model. The functional relation between an output (i.e. number of vehicles) 
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of the DAR operation process and its input factors is modeled through well designed 

simulation experiments and post statistical analysis based on data collected from the 

experiments. A face-centered central composite design is used in this study to determine 

the design points (the value of input factors). Data collected from the simulation 

experiments are fitted through linear regression with SPSS software. Polynomial first-

order, second-order and multiplicative models are estimated and their statistical results 

are analyzed and compared. The best models in terms of both statistical properties and 

simplicity of the model form are suggested. The metamodels are validated using an 

additional set of randomly generated data.  

 

The developed metamodels are as the follows:  

(1) Vehicle resource requirement Model F1a 

68.037.029.0

21.072.007.1

)/15.1(
79.4

cfVRW
bDAF

⋅⋅

⋅⋅
=                             (5-22) 

(2) Time deviation Model D3 

WT dev 50.090.0 +−=                              (5-16) 

(3) Ride time ratio Model R3 

RDDAR 426.000589.00783.000136.0336.0 2 +−++=                         (5-19) 

 

The variables in the above equations are defined in Section 5.3. The resulting models are 

relatively simple in structure and inexpensive to use. Sensitivity analysis also indicates 

that the performance metamodels are fairly robust, in that deviation from the assumptions 

of square service area, uniform demand distribution and percentage of passengers 
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specifying desired pickup time in the practical range would not affect much the accuracy 

of the predictions. They are approximate in nature, and mostly suited for use at the high-

level planning stage of a system. The applications of the performance models are 

illustrated through the parametric analysis and optimization of a DAR service considering 

the tradeoff between operator cost and user cost. 

 

 

7.2 Future Research 

The developed performance models might be applied to optimize an integrated system 

including both flexibly and fixed route transit services. Fixed conventional bus services 

are least disadvantaged in areas and time periods with high demand densities, which can 

sustain high network densities and service frequencies, while flexible route DAR services 

are suitable for suburban areas or time periods with low demand densities. When 

operated separately both services suffer from the variability of demand over time. In an 

integrated system, the entire fleet might be used to provide conventional bus service 

during peak hours and the excess fleet is used during off-peak to provide DAR service 

with higher service quality to low-density surrounding areas. The vehicle resource 

allocation can be optimized to obtain the best combination of cost and service quality 

based on the performance of the two systems. 

 

The performance models are developed for many-to-many DAR service. When some of 

the origins and/or destinations coincide and when the requests of pickup and/or delivery 

at the same place are within a certain time period, the system can then accommodate 
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multiple pickups and/or deliveries at one place and is expected to operate more 

efficiently. The research can be extended to investigate the appropriate measurements for 

the cluster of the demand in both space and time and its effect on the performance.  

 

Similar performance models can also be developed for PDP (e.g. pickup and delivery 

mails or packages), which usually has more applications than DARP. 

 

Field operating data from similar systems should be collected, if they become available, 

in order to further compare and evaluate the developed models. Note that comparison 

with one single real system from a specific location might not mean much since the 

models are developed for the high-level planning purpose and are based on some general 

assumptions such as the square area. 

 

The rejected-reinsertion operation, developed to accommodate those requests that are 

infeasible by direct insertion, improves the parallel insertion with very little additional 

computational cost. It can be applied and further tested in other related vehicle routing 

problems, especially for the dynamic problems because of its computational efficiency.  
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Notation 

 
A    Service area size (sq. mi.) 

0a   Constant term in maximum ride time Equation (3-10) (min) 

1a   Slope in maximum ride time Equation (3-10) 

iAT  Actual pickup or delivery time for stop i  

iAUP ( iADOWN )  Maximum amount of time by which stop i  and all its following 

stops can be advanced (delayed) without violating the time 

window constraints. 

B     Bus operating cost ($/hr) 

iBUP ( iBDOWN )  Maximum amount of time by which stop i  and all its preceding 

stops on the same vehicle route can be advanced (delayed) without 

violating the time window constraints 

b    Total boarding and alighting time per person (min) 

oC     Operator cost ($/hr) 

tC    Total cost ($/hr) 

uvC    User in-vehicle cost ($/hr) 

uwC     User time deviation cost ($/hr) 

D    Demand density (trips/sq. mi./hr) 

iEDT  ( iLDT )  Earliest (latest) delivery time for request i  

iEPT  ( iLPT )  Earliest (latest) pickup time for request i  
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iET  ( iLT )  Earliest (latest) pickup or delivery time for stop i  

F  Minimum number of operating vehicles  

cf    Roadway circuity 

kIdle   Idling time before schedule block k  

l    Length of a rectangular area 

iMRT    Maximum ride time for request i  

R    Maximum ride time ratio 

R  Average passenger ride time ratio  

r    Aspect ratio wlr /=  

devT    Average passenger time deviation from desired time (min) 

iT   Scheduled time for stop i  

iT detour   Additional travel time due to inserting both stops i+  and i−  

jiT ,   Direct ride time from stop i  to stop j  

iTW     Maximum deviation from desired time for request i  

V    Vehicle operating speed (mph) 

inv     Value of passenger in-vehicle time ($/passenger/hr) 

wv    Value of passenger time deviation ($/passenger/hr) 

W    Maximum time deviation (min) 

w    Width of a rectangular area 
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