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Pathogenic strains of Escherichia coli, a gram-negative bacterium, colonize 

the gastric mucosa and urinary tracts of birds, animals and human beings causing 

diseases like chronic gastritis, diarrhea, peptic ulceration, and urinary tract infections. 

Pathogenic strains cause a worldwide problem affecting 20% popuation in the U.S. 

The BarA-UvrY is a two-component system involved in bacterial adaptation and 

survival. The barA (bacterial adaptive response) gene, induced in uropathogenic E. 

coli upon contact with eukaryotic cell surface, plays a key role in attachment and 

colonizing urinary tract epithelia during infection and codes for the transmembrane 

sensor kinase, BarA. The UvrY protein, is a barA-regulated transcriptional modulator 

whose targets are yet to be determined.  

 

Determination of genes under regulation of BarA-UvrY signaling cascade 

under various stress conditions will help in better understanding the overall role of 

this pathway in metabolic adaptation and pathogenesis. Microarray work done in the 

  



laboratory shows that BarA-UvrY regulates several stress-response and membrane-

transport genes. One such gene identified from the microarray results, luxS, is 

involved in the detoxification of the S-adenosyl methionine in E. coli and produces a 

furanone, essential for cell density-dependent bacterial quorum sensing. LuxS is 

known to regulate virulence in E. coli. We chose to study the regulation of the luxS 

gene expression as it has not been studied in great detail. Using physiological 

approaches, we validated part of the microarray results.  
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CHAPTER 1 

Introduction 
1.1. Background 

1.1.1. Escherichia coli, a pathogen 

Escherichia coli is a Gram-negative bacterium and is a very important 

component of the biosphere. It colonizes gastric mucosa and urinary tracts of aquatic, 

avian and mammalian species including human beings. It is a facultative anaerobe 

and survives in the natural environment, thus allowing widespread dissemination to 

new hosts. Pathogenic strains of E. coli cause chronic gastritis, colisepticaemia, 

diarrhea, pericarditis, peptic ulceration, urinary tract infection (UTI) and various other 

diseases, which are often fatal. Pathogenic strains cause a worldwide problem 

affecting 80% of the adult population in the developing countries and 20% in the 

United States. The effectiveness of an infection depends on the ability of the 

bacterium to adapt and survive within the unfavorable environment of the gastric 

lumen or urinary tract. Several factors are required for effective and successful 

adaptation to the altering physiological conditions of the host during infection. Some 

of these are virulence factors, including specific structural components on the surface 

of the bacteria which play an important role in (i) motility of the bacteria towards 

mucosal surface to find a proper ecological niche, (ii) adherence and colonization of 

the bacteria to the epithelial tissue of the host system, (iii) invasion of the bacteria 

within the host cells, (iv) development of resistance towards the host immune system 

and most importantly (v) production of bacterial toxins that cause severe damage to 

host system.  
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Genes encoding the bacterial virulence factors are mostly clustered at specific 

regions known as the Pathogenicity Islands (PAI)(38,100), of the bacterial 

chromosome. These virulence-associated genes are often controlled by various 

regulatory systems of the bacteria. In most cases, these adaptive genes are regulated 

by two-component signal transduction systems in bacteria.  

1.1.2. Two-component signal transduction system   

In their natural environment, bacteria are often challenged by constant 

changes in nutrient availability and exposure to various forms of stress. Their 

adaptation to these environmental changes depends largely upon two-component 

signal transduction systems that act as sensory and response regulatory systems. Such 

two-component systems (TCS) have a membrane associated sensor kinase and its 

cognate Response Regulator (RR)(83). The transmembrane sensor histidine kinase 

(HK), also called Histidine Protein Kinase (HPK), consists of an N-terminal 

periplasmic sensing domain and a C-terminal cytoplasmic kinase domain (35). The 

HPK exists in a dimeric form and on detecting specific environmental stimuli it first 

undergoes ATP-dependent trans-autophosphorylation at conserved histidine residues, 

whereby one HK monomer phosphorylates a second monomer within the HK dimer 

complex (83). Subsequently, the phosphoryl group is then transferred to a conserved 

aspartic acid residue on the specific cognate RR molecule or to a different domain 

within the same HPK molecule (83, 35). Upon phosphorylation, the RR undergoes 

conformational changes and functions as a transcriptional regulator. Thus, these 

conformational changes activate specific transcription activators or repressors and 

initiate a response by modulating gene transcription, resulting in changes in the 
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physiology and metabolism of the bacteria to cope with the external environment 

(Figure 1). In E. coli, the BarA protein, encoded by bacterial adaptive response or 

barA gene, encodes a novel conserved HK regulatory switch for adaptation and 

modulation of metabolism (84). Tripartite HKs consist of a conserved aspartate 

residue at a phosphor receiver domain to which the phosphate group is first 

transferred and relayed to a final histidine residue before being transferred to a 

cognate RR (84). The BarA protein is highly conserved in most gram-negative 

bacteria and the UvrY in γ- subdivision of proteobacter, including E. coli.  
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Figure 1: A basic two-component system consisting of sensor  
     kinase and response regulator domains. 

  

  

  

  

  

  

  

 

 

 

Fig.1 When the sensory domain of the protein kinase receives an external signal, it 

autophosphorylates at a conserved Histidine residue in its kinase domain. This 

phosphoryl group is transferred to a conserved Aspartate residue on the regulatory 

domain of the response regulator, which in turn modulates gene expression. 
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1.1.3. BarA, a sensor kinase 

The BarA, a membrane associated protein, has been identified to have many 

orthologues and homologues in pathogenic yeast, fungi, moulds and plants. Some of 

them have been identified in Salmonella spp (BarA/SirA system) (4), Pseudomonas 

spp (GacA/GacS system) (18), Bordetella pertussis (BvgS virulence factor) (35), 

Legionella pneumophila (LetS/LetA) (39) and in some species of Vibrio (113). The 

barA gene, encoding BarA protein has been identified to phenotypically suppress the 

effect of a deletion mutation of envZ, which encodes the sensor domain of EnvZ-

OmpR two-component signal transduction system. EnvZ-OmpR system regulates 

ompC and ompF gene expression, encoding major outer membrane porins to maintain 

osmotic potential within the E. coli cell (69). The length of BarA is 918 amino acids 

and the calculated map position is 62.79 minutes. The nucleotide sequence of barA 

reveals that it encodes a 102kDa protein, which has both the ‘sensor kinase’ as well as 

the ‘response regulator’ domains. These domains have been found to undergo invitro 

phosphorylation by the characteristic three-step procedure of tripartite histidine 

kinases (Figure 2) (48). As BarA has a high degree of sequence similarity to both 

EnvZ and OmpR proteins, it has been implicated to be involved in bacterial adaptive 

response in E. coli. The barA gene is induced in uropathogenic E. coli upon contact 

with eukaryotic cell surface and plays a key role in the attachment and colonization of 

the urinary tract epithelia during infections (115). In S. typhimurium, BarA regulates 

the expression of invasion genes (4) and also regulates virulence functions of 

pathogenicity island II, essential for survival (79). BarA deficiency in E. coli has been 
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shown to impair catalase thus resulting in an oxidative stress sensitive phenotype 

(67). 
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Figure 2: Domain Organization of BarA sensor kinase 
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GAF         cGMP regulated cyclic phosphodiesterase, new class of  
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HAMP         Histidine kinases, Adenylyl cyclases, Methyl binding  
           proteins, phosphatase domain. 
 
HisKA          dimerization and phosphoacceptor domain. 
 
HATPase c   histidine kinase like ATPases. 
 
REC          Che-Y like h-t-h DNA binding domain. 
 
HPT Secondary Transmitter domain. 

 

 

 

http://smart.embl-heidelberg.de/smart/show_motifs.pl 
 

 

 

 7 
 

http://smart.embl-heidelberg.de/smart/show_motifs.pl


 

1.1.4. UvrY, the putative response regulator of BarA 

  UvrY (and its orthologue SirA in Salmonella) was identified as the cognate 

response regulator of BarA in E. coli in an invitro phospho-transfer reaction study 

(76). This 23kDa (218 amino acid) protein has a calculated map position of 42.95 

minutes. It has an N terminal phospho-acceptor domain with a conserved aspartic 

acid residue at position 54 followed by a helix-turn-helix DNA binding domain in the 

C terminal region (76) (Figure 3). The uvrY gene (615 bp) resides upstream to the 

uvrC gene, which encodes a DNA repair enzyme (66). UvrY orthologues are present 

in γ subdivision of proteobacteriae of the genera Pseudomonas (gacA), Erwinia 

(expA), Escherichia (uvrY), Vibrio (varA), and Salmonella (sirA) and belong to the 

FixJ family of regulators (64,76,34). These genes are not only encoded within an 

evolutionarily conserved region of the genome, but also have similar functions. UvrY 

orthologue, SirA, regulates bacterial motility in S. enterica (34,76). The complex 

regulatory network of the type III secretion system in S. enterica is required for 

modulating eukaryotic cellular physiology for uptake of bacteria and is, in part, 

regulated by BarA, probably by modulating the phosphorylation state of SirA (54). 

Whole genome transcription profiling in E.coli revealed that increased sdiA 

expression led to a 10-fold increase in uvrY transcription. This indicates the 

expression of uvrY gene is regulated by sdiA (107). The sdiA gene is involved in 

quorum sensing by monitoring small signaling molecules called autoinducers (61). 

Mouse infection assays indicate that a mutation in the sirA gene had a 10-fold 

attenuation of virulence compared to 4-fold attenuation by an isogenic barA mutant 

strain of S. typhimurium (54).  These findings suggest a significant role for 
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BarA/UvrY system in establishing early infection in certain pathogenic gram-

negative organisms.  

Recently it has been shown that the BarA/UvrY system plays a role in biofilm 

formation through the complex regulatory network of CsrA/CsrB/CsrC system 

(98,108). CsrA is a RNA binding protein that represses gluconeogenesis and biofilm 

formation. CsrA activates glycolysis, motility and flagellum biosynthesis. CsrA has 

been shown to indirectly activate CsrB via the BarA/UvrY system (98). CsrC, similar 

to CsrB, binds to and antagonizes CsrA. Both CsrA and UvrY have been shown to 

activate CsrC. UvrY restored csrC expression in csrA- but CsrA could not restore the 

expression in uvrY- background. These studies indicate a CsrA/CsrB/CsrC 

independent role of UvrY in modulating cellular metabolism (Figure 4). 

Previously it was thought that BarA/UvrY system is involved in the iron 

acquisition mechanism through siderophore system, by which enteric bacteria obtain 

the required amount of iron from the host system, in E. coli (77). However, later on it 

was established that BarA and not UvrY is directly involved in iron uptake of the 

same organism (75). Suzuki et al show that an autoregulatory loop exists between 

BarA and UvrY whereby UvrY positively autoregulates expression of barA (98). 
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 11 
 



 

 

1.1.5. Role of BarA-UvrY in stress response   

Pathogens have developed complex mechanisms to survive from normal host 

cellular processes, thereby inadvertently contributing to pathogenesis and disease 

outcome. To establish an infection within the host, enteropathogenic and 

enterohaemorrhagic bacteria must i) survive the acidic pH of the stomach, ii) progress 

into the small intestine and survive the bile salts, iii) adhere to intestinal epithelial 

cells, iii) finally enter into the blood stream and survive the oxidative stress faced 

during phagocytosis by macrophages. Similarly, in urinary tract infections, 

uropathogenic E. coli (UPEC) must modulate both their gene expression and 

metabolism in order to withstand the hostile condition in the host urinary tract. The 

bacteria have to i) withstand the fluid flow, ii) survive in the low nutrient 

environment and iii) survive the high osmotic stress and urea in the urinary tract. To 

adapt to and survive these potential stress situations, the bacteria require highly 

specific and temporal regulation of expression/repression of a number of sets of 

genes, which are probably governed by one or more global stress regulators. BarA 

protein, a sensor kinase of a two-component system, is one such potential global 

stress regulator. It has also been found that over expression of response regulators of 

bacterial two component systems confer drug resistance by controlling expression of 

some transporter genes (45). 

Acid stress response 

Membrane permeant organic acids not only endure stress upon the bacteria, 

but also their presence induces protective responses against increased acidic 
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environmental stress. E. coli and Salmonella can survive through the acidic pH of the 

stomach. Infact, they grow over a wide range of pH (4 to 9), and, depending on the 

availability of nutrients and electron acceptors, their metabolism shifts to compensate 

for an external pH change towards either extremity (28). Several regulatory proteins 

have been shown to play significant roles in acid mediated stress response e.g. 

alternate sigma factor RpoS, the iron regulatory protein Fur, a putative response 

regulator RssB that interacts with RpoS, a two-component signal transduction system 

PhoPQ, sodium/H+ transporter NhaA and its phosphorylated activator protein NhaR 

system etc. (28). BarA is also found to be a key factor in regulating oxidative stress 

response by enhancing catalase production through transcriptional activation of the 

rpoS gene. RpoS, the alternative sigma factor of E. coli, is involved in regulating gene 

expression in response to pH changes and changes in osmolarity, mainly carbon 

starvation. BarA along with its response regulator UvrY, may have an indirect or 

direct significant influence on these processes, as it is one of the transcriptional 

regulators of rpoS. BarA/UvrY system, being a putative global stress regulatory 

system might be a member of the acid-stress response regulon, an important regulon 

needed by all enteric pathogens for survival within the stomach and macrophages 

(88). 

Osmoregulation in presence of bile salts  

  If bacteria survive the acidic environment of the stomach, they move to the 

small intestine where they face the challenge from the bile salts. Bile salts are 

surfactants and are potent antimicrobial fluids causing osmotic imbalance (36). These 

pathogens survive the intestinal bile salt - stress by altering a wide range of 
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properties, including motility, biofilm formation (80), toxin and pili production (37), 

and the ability to invade eukaryotic cells (79). In response to change in temperature 

and osmolarity, bacteria can vary the pore diameter of their outer membrane porins to 

accommodate larger molecules (nutrients) or to exclude inhibitory substances. 

Membrane porins play this significant role in the regulation of osmotic balance by 

restricting the flow of different ions through the membranes (88). In E. coli, the role 

of BarA in regulation of the osmotic stress response has been shown (69).  S. enterica 

serovar Typhimurium, when grown in the presence of bile salts, showed severely 

reduced ability to invade epithelial cells probably by down regulating sirC. The 

invasion gene sirC, is controlled by SirA, the cognate response regulator of BarA 

sensor in Salmonella (79). This indicates that BarA, a putative global stress regulator, 

plays a highly significant role in the adaptation to the osmotic stress situation in 

Salmonella spp. and E. coli, by regulating the expression of the outer membrane 

proteins that are important in osmoregulation or by modifying the ability of the 

bacteria to invade the host cell during infection. 

Oxidative stress response 

Once the pathogens cross the epithelial barrier in both intestinal and urinary 

tract, they encounter macrophages.  Macrophages engulf the pathogens and challenge 

them with a burst of reactive oxygen species, low pH, lysozomes and proteases within 

the phagosomal complex (103). Bacteria survive this oxidative stress response mainly 

by two regulatory systems viz. OxyR system that is required for hydrogen peroxide 

stress and SoxRS system that is required for superoxide stress (33). There are two 

super oxide dismutases (SOD) in E. coli, one is Mn-Fe SOD that acts outside the 
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bacteria and the other is Cu-Fe SOD that acts inside the bacteria. As a part of the 

antioxidant regimen, E. coli and Salmonella possess two catalases, Hydroperoxidase I 

and Hydroperoxidase II (86,88). The first, encoded by the katG gene, exhibits dual 

catalase and peroxidase activity. The expression of katG is induced by OxyR (an 

autoregulator) at the level of transcription in response to exposure to the sub-lethal 

levels of hydrogen peroxide in vitro (68).  Hydroperoxidase II (HPII), encoded by 

katE gene, has catalase activity and constitutes a major anti-oxidative stress response 

system. Both HPI and HPII show a growth phase dependent expression, 10 fold 

higher expressions in stationary phase than in the exponential phase. This is largely 

dependent on RpoS, the alternative sigma factor for the RNA polymerase in the 

stationary phase of growth (86). The oxidative stress response mediated by 

hydroperoxidases is primarily regulated by the alternative sigma factor RpoS at the 

transcriptional level.  BarA functions as a transcriptional regulator of rpoS (67).  In 

fact it has been shown that barA is maximally expressed in early exponential phase 

immediately before the transcriptional induction of rpoS.  The regulation of RpoS 

itself is very complex process known to be controlled by multiple two-component 

systems and is not fully understood (72). In summary, BarA/RpoS system plays a 

major role in regulating oxidative adaptive stress response mainly mediated by 

hydroperoxidases. This signifies the importance of this system in the adaptation to 

potential oxidative stress challenges faced during the intracellular growth within the 

macrophage, during the course of infection.  

Iron is required as a cofactor for almost all of the antioxidant responsive 

enzymes including catalases. In the absence of functional BarA, the level of active 
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HP I peroxidase is very low, but the activity can be restored to a significant level by 

addition of exogenous iron to the culture medium (88). This suggests that besides 

BarA there are several other factors that may be involved in oxidative stress response. 

However, BarA may regulate not only the transcription of the major antioxidant 

genes via the RpoS pathway, but also Fe-transport and/or metabolism (88). UvrY 

does not appear to be involved in barA mediated activation of rpoS (43). Thus, BarA 

does this probably with the help of a yet unidentified response regulator. However, 

UvrY has been shown to negatively regulate rpoS (72). 

Other stress responses 

 In E. coli, other potential stress situations in which BarA is involved include 

response to common preservatives like weak acids and common oxidative stress (68) 

and switching between gluconeogenic and glycolytic carbon sources (75). During 

macrophage-mediated killing, the bacteria are challenged with both NADPH oxidase 

and inducible nitric oxide synthase (iNOS). These challenges generate antimicrobial 

reactive oxygen and nitrogen intermediates (104), resistance against which in S. 

enterica serovar Enteritidis is controlled by a global regulator ArcA (57). A number 

of E.coli transcriptional regulators have been implicated in modulating gene 

expression in response to reactive nitrogen species. Under aerobic conditions, MetR 

(methionine biosynthesis transcriptional regulator) dependent NO-induction of the 

hmpA gene was reported (60). Reactive oxygen and nitrogen species share chemical 

properties. Two regulators of E. coli responses to oxidative stress are modified by 

reactive nitrogen species. The iron-sulfur cluster containing protein SoxR as well as 

the OxyR transcription factor can be activated by both reactive oxygen and nitrogen 
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generating compounds (74). This suggests, and also it has been shown that in E. coli, 

there is a common link between hydrogen peroxide, superoxide and nitric oxide 

mediated stress. Thus, being an oxidative stress regulator, BarA along with its 

response regulator UvrY may be involved in nitric oxide-mediated stress too (33, 22), 

as BarA is suggested to be a potential global stress regulator. 

 In summary, it can be suggested that BarA/UvrY system probably acts as a 

global sensor and regulatory mechanism, in a wide variety of stress situation, under 

both extracellular and intracellular growth condition in E. coli and Salmonella spp. 

1.1.6. Role of BarA/UvrY in virulence of Gram-negative organism 

 Bacteria disrupt the normal host cell function and utilize the cellular 

machinery in five major stages, for their own benefit. These are i) adhesion or 

specific attachment of the bacteria to the host cell surface, ii) invasion or bacteria 

induced entry into the host cell by a modified phagocytosis mechanism, iii) survival 

of the bacteria inside the host macrophage cell and/or bacterial defense against the 

host immune system, iv) extracellular colonization on the host tissue and v) cell 

toxication by bacterial toxins and other products (27).  Type I pili, curli fimbrae, 

extracellular polysaccharides, flagella and several other factors have been implicated 

in adhesion and invasion of different bacteria and hence their virulence properties (7, 

78, 59). A number of these virulence properties are regulated by two-component 

signaling systems such as the BarA/UvrY system (4, 3, 98). 

 In Pseudomonas spp, association traits and virulence are globally controlled 

by the GacS/GacA system. The BarA/UvrY system has similarity to the virulence 

factors of GacS/GacA system in Pseudomonas spp (82) and BvgS of B. pertussis 
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(101). It is known that the GacS/GacA system and their homologues are involved in 

several stages of infection, regulating important properties related to virulence in 

different species of Pseudomonas and other microorganisms. These include 

regulation of toxin production (82), regulation of type III secretion system (46), 

regulation of iron acquisition through siderophore system (56), alginate synthesis 

(16), biofilm formation (73), resistance to different antibiotics (73) and invasion (49). 

Previous studies in UPEC have demonstrated that barA (or airs) gene is activated 

only upon attachment of the pathogen to the urinary tract epithelial cells, suggesting 

its role in adhesion of the pathogen to the urinary tract against the flow of the urine 

(115). In Salmonella spp., the barA gene plays an important role in the invasion of the 

cultured epithelial cells as a deletion in the barA gene leads to a reduction in invasion 

(4). S. enterica serovar Typhimurium harbors two pathogenicity islands, SPI-1 and 

SPI-2, which encode the type III secretion system (47). The genes encoded by SPI-1 

have been shown to be essential for the invasion of epithelial cells (30) and for 

inducing cellular apoptosis (52, 65) whereas SPI-2 genes are required for systemic 

infection (88, 92, 44). A complex regulatory network of the type III secretion system 

is required by the bacteria for modulating eukaryotic cellular physiology during 

different stages of infection especially invasion. Therefore, the assumption that some 

global regulators might play significant role in modulating different sets of genes 

involved in a common network, is logical. In fact, in Salmonella it was found that 

SirA, a response regulator of BarA belonging to the FixJ family of RR, is involved in 

inducing the expression of type III secretion system and invasion of the epithelial 

cells to elicit bovine gastroenteritis (34). OmpR, known to be regulated by BarA in 
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absence of EnvZ in osmoregulation of E. coli has also been described to regulate 

another two-component system SsrA-SsrB in Salmonella SPI-2 (55). Moreover, the 

expression of hilA, a gene encoded by the Salmonella SPI-1, is found to be regulated 

by BarA/SirA and EnvZ/OmpR systems. In S. enterica serovar Typhimurium, HilA, a 

member of OmpR/ToxR family of transcription factor, is required for the expression 

of most of the genes that are integral components of the type III secretion system and 

are important for the invasion. Thus, BarA might have a very important and crucial 

role in regulating genes of both SPI-1 and SPI-2 in Salmonella. Hence, it may play a 

significant role in the formation and assembly of the type III secretion system, which 

is required for appropriate invasion into the eukaryotic epithelial cells during 

infection by Salmonella and other gram-negative organisms.  

 The BarA and UvrY independently are involved in the regulation of RpoS, the 

alternative sigma factor for the stationary phase of growth, regulating transcription of 

rpoS gene. RpoS, in turn modulates the expression of the spv genes present in the 

virulence plasmid of S. typhimurium required for lethal systemic infection (111, 26, 

70, 53). These findings indicate that BarA, and UvrY like its orthologues, may have 

an important role in the virulence mechanism, especially in the invasion of the 

organisms belonging to the γ−subdivision of proteobacteriae. Hence, BarA/UvrY 

probably affects the infection process as a whole. However, the specific and direct 

influence of BarA/UvrY in the pathogenesis is yet to be identified. 

1.1.7. Quorum sensing and BarA/UvrY system 

In bacteria, cell density-dependent gene regulation is known as Quorum 

sensing (10). Quorum sensing, also known as cell-cell signaling allows cells to 
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communicate using molecules that are produced, dispersed and then received. There 

are two types of quorum sensing systems in bacteria, intra-species and inter-species.  

The quorum sensing molecules, also known as autoinducers (AI), interact with 

bacterial transcriptional regulators once they reach a certain threshold concentration, 

thereby regulating gene expression. In V. harveyi, AI-1 is used for intraspecies and 

AI-2 for inter-species communication (8, 9, 97). The AI-1 has been purified and 

identified as acyl homoserine lactone (HSL) and its synthesis depends on luxL and 

luxM (97). In AI-2 synthesis, the enzyme Pfs converts S-adenosylhomocysteine 

(SAH) to S-ribosylhomocysteine (SRH). LuxS is responsible for the conversion of 

SRH to homocysteine and DPD. DPD is predicted to spontaneously rearrange into 

various furanones. The furanone predicted to lead to the formation of V. harveyi AI-2 

is the only one shown and is termed pro–AI-2. Borate adds to pro–AI-2 to form the 

active signaling molecule AI-2.  The chemical structure of AI-2 has been suggested to 

be a furanosyl borate diester (17). These hormone-like compounds interact with 

regulatory proteins, which regulate the transcription of several genes that are involved 

in a variety of phenotypes including production of antimicrobial agents, flagellation, 

motility (94). A reporter-fusion based assay indicated that the expression of the luxS 

gene is constitutive while the pfs expression is co-related to growth-phase dependent 

AI-2 production in Salmonella (12). Proteomic studies have shown that under low pH 

and in the presence of acetate, the LuxS protein is induced (96). The luxS family of 

genes has wide spread distribution in both pathogenic and non-pathogenic species of 

both gram-positive and gram-negative bacteria (92). The ecological role of luxS in 

bacteria is still poorly characterized, but one of its putative functions is to allow 
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bacteria to optimize gene expression in response to the density of all luxS-containing 

species occupying the same niche. There has been no homology reported of the luxS 

genes to any other gene known to be involved in AI production.  

Moreover, there is clear indication that BarA is important for virulence, 

especially the invasion and the attachment of the bacterial pathogen. Whole genome 

transcription profiling in E. coli K-12 revealed that increased sdiA expression led to a 

10-fold increase in uvrY transcription, the potential response regulator of BarA (107).  

The sdiA gene encodes a LuxR family of transcription activator involved in sensing 

and responding by quorum sensing mechanism to a mixed microbial population 

(103).  

In Pseudomonas, GacA/GacS regulate AI-1 synthesis (109). In V. fischerii, 

when GacA was mutated, AI-1 was not affected but the luminescence was severely 

reduced. On providing exogenous AI-1, the luminescence was not restored to it 

original level. Probably this was due to GacA regulating luminescence via AI-2. In E. 

coli, AI-1 has not been reported. So, we hypothesized that the GacA homologue of E. 

coli, UvrY, may regulate bioluminescence via AI-2.  

Quorum sensing regulates the expression of flagella and motility (34, 93) 

through a novel two-component system in E. coli (94). Quorum sensing has also been 

shown to regulate the transcription of genes regulating the type III molecular syringe 

system (92) and protein secretion in EHEC and EPEC (93). Sperandio et al recently 

have shown that E. coli also produces AI-3, which infact regulates flagellar driven 

motility and secretion of proteins into host cells using the type III secretion system. 

Like AI-2, the synthesis of AI-3 depends on the presence of a functional luxS gene 
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(111). Partially purified AI-3 when provided to a luxS mutant restored type III 

dependent protein secretion and motility, whereas in vitro synthesized AI-2 had no 

effect. BarA/UvrY, a putative global regulatory system, might have a role in 

regulating one or more of the above-mentioned physiological properties by regulating 

luxS expression through quorum sensing mechanism. Comparing transcripts of wt 

versus barA-, uvrY- and barA-uvrY- by Microarray hybridization shows that the ygaG 

(luxS) gene is down regulated in the mutants compared to the wild-type E. coli strain. 

This led us to further study how the BarA/UvrY system may influence the luxS gene 

expression, if it does. Our other preliminary chemiluminescence studies show that 

BarA regulates AI-2 accumulation (data not shown).   

1.1.8. Effect of motility in infection: role of BarA/UvrY 

The role of bacterial flagella driven motility in the virulence and pathogenesis 

has been reported (32). Adhesion and invasion possess a very complicated 

mechanism. The mechanism may involve regulation of a number of genes located in 

or outside the pathogenicity islands. In E. coli, flagella produced by EPEC contribute 

to the adherence properties of the bacteria and that a molecule secreted by eukaryotic 

cells induces their expression, which incidentally is epinephrine (32,111). In H. 

pylori, for colonization of mucous layer of the human stomach, a two-component 

system involving two CheY response regulators and a histidine kinase sensor CheA 

are essential for motility and chemotaxis (29). In Vibrio cholerae, the 

phosphorylation of the flagella regulatory protein FlrC that belongs to the FlrB/FlrC 

two component system is necessary for motility and colonization of the infant mouse 

small intestine (19).  In P. aeruginosa the adhesion process is under the control of the 
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rpoN gene, which also regulates pilin synthesis and flagellum formation. Another two 

component system FleS/FleR controls both motility and adhesion acting downstream 

of RpoN although it remains unclear whether the specific adhesin is a flagellar 

protein or another protein that uses flagellar export apparatus for localization (81). 

Another gene fliO is also identified, which is involved in flagellar biosynthesis and 

non-pilus mediated adherence (89).  Lateral flagella play an important role in 

swarming motility, biofilm formation, adhesion to and the invasion of the Hep-2 cells 

in Aeromonas species (31). Some researchers have demonstrated that in S. enterica 

serotype Enteritidis, both fimbrae and flagella are important for the association and 

the invasion of the cultured epithelial cells (23). Other groups have shown that the 

functional flagella and the flagella associated motility, but not the fimbriae, are 

important for the adherence of the S. enterica serotype Enteritidis to chick gut 

explants (2). The significance of flagellin gene fliC in invasion of the Caco-2 cells 

had also been demonstrated, although this gene is not important for adherence (102). 

Expression of E. coli flagella transcriptional cascade starts with the flagellar master 

operon flhD and flhC. The mutation in the flhD gene in S. enterica serovar 

Typhimurium has a differential effect on mouse model and cultured epithelial cells 

(87).  It has been found that neither the presence of flagella nor the synthesis of 

flagellar export machinery is required for the pathogenicity of the organism in the 

mouse. However, the presence of flagella is required for the full invasive potential of 

the bacterium in the tissue culture and flagellar secretory apparatus is also required 

for the maximum fluid secretion in the enterocolitis model (87). In EPEC, the 

flagellin gene has been shown to be essential for adherence and microcolony 
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formation on the cultured cells and the synthesis of flagella, in response to the 

presence of the eukaryotic cells. Flagellin is regulated by type IV pili, type III 

secretion pathways and quorum sensing (32). Recently it has been argued that in 

EPEC, besides the interaction between the major outer membrane adhesin intimin and 

its receptor on the host cell, other interactions are equally important for effective 

adhesion and effacing effect on the epithelial cells. These include the interactions 

between the bundle forming pilus or flagella and specific receptors on the host cell 

surface (71).  

The role of BarA/UvrY and their homologues in the motility and virulence has 

been studied in a few organisms. In L. pneuomophila, it has been found that the strain 

displayed poor expression of flagella when it had mutation in a two-component 

system LetA/LetS, which is homologous to GacA/GacS in Pseudomonas and 

SirA/BarA in Salmonella. This defect was also manifested when there is a mutation in 

the flagella sigma factor FliA and stationary phase sigma factor RpoS (39). The FliA 

is involved in motility, cytotoxicity and the ability of the organism to infect 

macrophages (39). The mutation in the orthologues of SirA, the potential response 

regulator of BarA, in various organisms including E. coli, V. cholerae, P. 

fluorescence and P. aeruginosa causes defect in motility suggesting the that the 

control of flagellar regulons may be an evolutionarily conserved function of SirA 

orthologues (34). In P. fluorescence F113, GacA, the SirA homologue, regulates both 

motility and virulence property during colonization on the alfalfa roots (85). 

GacA/GacS system, which is similar to BarA/UvrY, is also involved in the swarming 

motility, characterized by a dendritic pattern on semisolid agar plates, of P.  syringae 
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(50). However, the virulence factor BvgAS of B.  pertussis, which is similar to BarA, 

is found to have a repressing effect on the synthesis of flagella when expressed in E. 

coli (40). HilA is the major regulator of the invasion genes in Salmonella enterica 

serovar Typhimurium. HilA, encoded by SPI, is found to be regulated by several 

genes in SPI-1 (hilC/sirC/sprA and hilD) and outside the SPI-1 (phoP/phoQ, 

sirA/barA two component systems) (4, 25, 11). It has recently been shown that the 

flagellar genes like flhD, flhC and fliA exert their regulatory effect, in an independent 

way, on the expression of hilA in S. enterica serovar Typhimurium (58). These 

findings relate the regulatory effect of BarA/SirA and flagellar function to virulence 

gene expression. Recently, SirA was reported to directly activate virulence expression 

via hilA and hilC and repress the flagellar regulon indirectly via csrB (99).  

BarA/UvrY and their homologues may have regulatory roles in flagella related 

virulence properties. Thus, it can be summarized that functional flagella are involved 

in various stages of infection, particularly adhesion and invasion, in different 

organisms and are potent virulence determinants. 
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1.2. Objective 

The literature discussed in the previous chapter has suggested that   BarA/UvrY 

two-component system of Escherichia coli may be involved in some of the important 

physiological properties related to adaptation and virulence determination during 

infection. 

 Thus the main objective of this research is 

 “ Evaluation of the role of BarA/UvrY two-component system in 

adaptation in Escherichia coli ” 

1) A genome wide molecular approach: Microarray Analysis: To directly 

identify genes differentially expressed by mutation in the barA, uvrY and 

barA/uvrY genes compared to the wild type Escherichia coli. 

2) Molecular biological approach: To study the effect of barA and uvrY 

mutation on the expression of luxS gene. 

3) Physiological approach: To directly study the effect of mutation in the 

barA and uvrY genes on motility and survival under stress in Escherichia 

coli. 

 26 
 



 

CHAPTER 2 

Materials and Methods 

2.1 Construction of Bacterial Strains 

2.1.1. Transformation: 

Preparation of competent cells for transformation: Bacterial cells were grown 

overnight at 37 °C in 5 ml LB (Luria Bertani) media with appropriate antibiotic if 

required. The cells were then subcultured (1:100 dilution) in 100 ml LB media with 

antibiotic and allowed to grow up to an O.D600 of 0.7-0.9. The cultures were then kept 

on ice for 15 minutes after which they were centrifuged at 7000 rpm (rotations per 

minute) at 4 °C. The supernatant was discarded and the bacterial pellet was 

resuspended in half (50 ml) of chilled Magic Solution (60 mM CaCl2, 15% glycerol, 

10 mM MOPS (N-Morpholino propanesulfonic acid)). The cells were kept on ice for 

45 minutes and again centrifuged at 7000 rpm at 4 °C. The supernatant was discarded 

and the pellet was resuspended in fifteenth fraction (6.6 ml) of Magic Solution. 100 

µl of these cells were aliquot into sterile appendorf tubes and stored immediately at –

80 °C for further use. 

Transformation: 100 µl competent cells were thawed on ice. 2-3 µl (10-100 

ng) DNA was added to the cells and allowed to stand on ice for 30 minutes. Heat 

shock was given at 42 °C for 90 seconds and then immediately cells are kept on ice 

for 2 minutes. Then 200 µl of LB was added to the cells and allowed to grow at 37 °C 

for 1 hour. The cells were then plated on agar plates containing antibiotic and 
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incubated at 37 °C overnight. Next day, the transformants were restreaked for further 

purification.  

2.1.2. Electroporation: 

Competant cell preparation: Cells were grown overnight in SOC (2% Bacto-

tryptone, 0.5% Bacto yeast extract, 0.05% NaCl, 1% 250 mM KCl, after autoclaving-

0.5% 2 M MgCl2) media. When subculturing, 1mM arabinose was added and the cells 

were allowed to grow upto O.D600 of 0.7-0.9. The cultures were then allowed to cool 

on ice for 15 mins. The cells were then centrifuged at 4000 rpm for 20 mins at 4°C. 

The supernatant was discarded and the pellet was resuspended in 10% chilled sterile 

glycerol. The cells were washed thrice each time using fresh 10% glycerol. Finally 

the pellet from the last was was resuspended in 100th volume (of starting culture) of 

10% glycerol. The now electrocompetant cells were stored at –80 °C or used 

immediately. 

Electroporation: 50 µl electrocompetant cells were thawed on ice. 100 ngm 

DNA to be electroporated was added to the cells and sit on ice for 1 minute. 

Immediately this was transferred to a prechilled cuvette and cells were shocked with 

1700-1900 mVolts. Immediately, 1 ml of SOC was added to the cells and they were 

allowed to grow for 1 hour before plating on respective antibiotic agar plates. 

2.1.3. Transduction 

The details of all the strains used in this study are listed in the Table 1. E. coli 

transductants were constructed by using P1 phage lysate of E. coli AKP014 (barA:: 

kan-lacZ) to transduce E. coli MG1655∆lac (wt K12). Wild type (wt) bacteria were 
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grown in 5 ml of Luria-Bertani (LB) media overnight with 0.005 M CaCl2 and 0.1 M 

MgSO4. The cells were subcultured (1:100) and allowed to grow till late log phase, 

pelleted down and re-suspended in 1 ml of MC buffer (0.1 M MgSO4, 0.005 M 

CaCl2). 200 µl of the re-suspended bacteria were incubated with 50 µl of the phage 

lysate of AKP014 for 20 minutes at 37 °C. The infection was stopped by adding 200 

µl of citrate buffer (0.1 M sodium citrate pH 5.5) and washed once with 200 µl of 

citrate buffer. Then 100 µl of the supernatant was disposed and the bacteria were re-

suspended in the remaining and plated on LB-kanamycin (50 µg/ml) plates along 

with the mock-infected cells. The plates were incubated at 37 °C overnight and the 

kanamycin resistant colonies were further purified. Purified colonies were then 

checked for proper deletion of the gene by PCR verification as mentioned later on. 

Similarly, barA- was transduced with P1 lysate of uvrY- to make barA-uvrY-. 

2.1.4. Screening 

The selected mutants were grown in micro-titer plates and replica plating was 

done on respective antibiotic agar plates. Only those colonies were selected which 

were resistant to the marker antibiotic, which was suspected to be moved into the 

strain. As barA::kan is related to relA-, it was screened on M9 minimal medium. 

Further, by conducting a 10% H2O2 sensitivity test, the probable mutants were 

screened.  

Also, overnight cultures of the wt and probable mutants were sub-cultured in 

LB-antibiotic and grown at 37 °C till mid-log phase. 500 µl of each culture was added 

to 5.0 ml of R-top Agar (0.01 gm/ml Bacto-tryptone, 0.001 gm/ml Bacto yeast 

 29 
 



 

extract, 0.008 gm/ml NaCl, 0.002 M CaCl2, 0.1% Glucose and 0.8% Bacto-agar), 

individually. This was mixed and poured onto R-agar plates (0.01 gm/ml Bacto-

tryptone, 0.001 gm/ml Bacto yeast extract, 0.008 gm/ml NaCl, 0.002 M CaCl2, 0.1% 

Glucose and 1.2% bactoagar). After allowing to solidify, a whattman paper-disc 

saturated with 10% H2O2 was placed on the center of each plate. The plates were 

incubated at 37 °C overnight. The zone of inhibition of the growth of the bacteria 

created by H2O2 would be more for the mutants than that for the wt. Only those 

mutants were selected that had zones of inhibition comparable to that of respective 

transducing strains.  

2.1.5. Complementation  

Competent cells of the mutants were prepared (as described earlier) and 

transformed with a plasmid carrying a functional wt copy of the respective mutated 

gene to complement the mutation in the mutant by following the same procedure as 

described earlier. The transformed cells selected on respective antibiotic agar plates. 

Screening: The selected transformants were grown in micro-titer plates and 

replica plating was performed on respective antibiotic agar plates to select for only 

resistant colonies. The complemented cells were screened also by performing a H2O2 

sensitivity test as described above. The zone of inhibition of the growth of the 

bacteria created by H2O2 would be more for mutants than the wt and complemented 

transformants. The transformants, whose zones of inhibition were comparable to the 

wt, were selected as effective complemented cells. All the bacterial strains that were 

used in the research are listed in Table 1. 
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2.1.6. Insertional mutation of a chromosomal gene with help of phage λ- 

recombinase enzyme 

Competent cells of E. coli were transformed with pKD46. The ampicillin 

resistant colonies were purified at 30 °C and stored. These cells were used to prepare 

electro-competent cells (as described above). The kan gene was PCR amplified using 

pairs of primers with ∼36 nucleotide homology extensions of barA gene flanked by 

~20-nt priming sequences for the template plasmids pKD3 or pKD4 with FRT (FLP 

recognition target) sites. The FRT sites are included so that after selection, the 

resistance gene can be eliminated from the mutants by using a helper plasmid 

expressing the FLP recombinase, which acts on the directly repeated FRT sites. Using 

Tgo DNA polymerase (Roche Diagnostics, Germany) along with the above 

mentioned primers and template, the PCR products were generated. Template pKD3 

gave a 1.1-kbp fragment while the pKD4 gave a 1.6-kbp fragment, which was seen on 

a 1% agarose gel by staining with ethidium bromide in 1X TAE buffer. The 

respective 1.1- or 1.6-kbp PCR products were purified with help of QIAquick PCR 

purification kit (Qiagen). Then the samples were digested with DpnI. This DNA (10-

100 ng) was then electroporated into electro-competent cells of bacteria (50 µl). The 

electro-competant cells harbored the Red recombinase gene in trans on a low copy 

number plasmid (pKD20). The plasmid harbors bacteriophage λ-Red recombination 

system under an arabinose inducible promoter that promotes recombination. Shocked 

cells were added to 1 ml of SOC media and incubated at 37 °C for one and half hour. 

100 µl of these cells were plated onto respective antibiotic agar plates to select for 

KanR or CmR transformants. If none grew within 24 hours at 30 °C, the remainder 
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was spread on larger plates. Mutants were selected on basis of KanR or CmR at 30 °C. 

After this first selection, the mutants were plated on medium without antibiotic. The 

Red (and FLP) helper plasmids are temperature sensitive replicons and could be cured 

by growing the cultures at 37 °C. Therefore, the mutants were colony purified non-

selectively at 37 °C and then tested for ampicillin sensitivity to test for loss of the 

helper plasmid. If the plasmid was not lost, then the mutants were colony-purified at 

43 °C and tested again similarly. CmR or KmR mutants, which were ampicillin 

sensitive, were then stored and used for further verification. The mutants were 

verified for having a correct mutation within the gene of interest (barA or uvrY) by 

PCR amplification. 

PCR verification: Probable mutants were grown overnight with respective 

antibiotic and used for genomic DNA isolation. A PCR reaction was set up using this 

DNA and test primers for the gene to be knocked out. Tgo DNA polymerase enzyme 

was used and as a control the DNA from wild-type strain was used. The PCR 

products were run on a 1% agarose gel in 1X TAE buffer for 1 hour at 100 volts. If 

the gene had been knocked out, compared to the wild-type size, the size of the band 

was 1.1- or 1.6- kbp larger. This confirmed that the antibiotic marker had insert in 

between the gene and knocked the gene out. These strains were used for all further 

experiments. 

2.1.7. Cloning  

Cloning of genes in TOPO vector: The gene of interest (barA, uvrY, luxS) was 

amplified using specific primers (Table 2), wild type MG1655 genomic DNA as 

template and Tgo DNA polymerase. The amplified product was checked by running 
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on a 1% agarose gel. The confirmed product was then cleaned using Qiagen PCR 

purification kit or by cutting the fragment from the agarose gel and extracting the 

DNA. This was then cloned into TOPO vector using the pCR2.1 TOPO-TA cloning 

kit for sequencing, Invitrogen Corporation, USA. 

Ligation: TOPO TA cloning kit was used. The PCR amplified DNA is first cleaned 

free of reagents by any appropriate method. 3’ A overhangs were then added to the 

PCR reagents free DNA with help of Taq polymerase at 72°C for 15 minutes. 4 µl of 

this DNA reaction was mixed with 1 µl salt solution provided in the kit and 1 µl of 

pCR® 4-TOPO vector (kit) in 0.5 µl microcentrifuge tube. The solutions were mixed 

by carefully pipetting up and down and incubated at room temperature for 15-45 

minutes for ligation and then placed in ice. 2 µl of the ligated products were used to 

transform one vial of one shot® TOPO10 chemically competent E. coli cells. A 

control reaction was also set up with pUC19 control plasmid provided in the kit. 

Transformation was followed same way as mentioned above and transformants were 

selected on appropriate (Kan/Amp) antibiotic agar plates. 

Isolation of the plasmids and sequencing: The clones were grown in LB kanamycin 

overnight and the plasmids containing the inserts were isolated by using QIAGEN® 

Plasmid Mini kit, QIAGEN, USA). They were sent to University of Maryland 

Sequencing Core facility for sequencing. The sequences were blasted using the 

BLAST tool at the NCBI home page http://www.ncbi.nlm.nih.gov. 

2.1.8. BarA mutant using suicide plasmid: 

The barA gene was first amplified using primers (Table 2, OSM1, OSM2) and 

cloned into pCR® 4-TOPO vector of the TA cloning kit, Invitrogen as mentioned 
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earlier. To disrupt the gene, a kan-gfp gene fusion (39) was introduced in ClaI site of 

the barA gene. Then the barA::kan-gfp gene was sub cloned into pCVD422 with help 

of restriction enzymes  PCVD422 is a suicide vector constructed to engineer 

mutations in host strains via allelic exchange (22). This vector can only grow in 

strains that have the pir gene encoding the Pi protein, which is necessary for 

replication of R6K plasmids. The pir gene is usually supplied in trans by a lambda 

lysogen, λ-pir. The vector with the barA::kan-gfp gene was transformed into 

competent cells and transformants were confirmed to carry this vector by cutting the 

gene with specific restriction enzymes and mapping its size on a 1% agarose gel. 

Since pCVD422 cannot multiply in a strain lacking pir protein, the only ampicillin 

resistant strains that arise have a chromosomally integrated copy of the plasmid. Only 

kanr and GFP expressing colonies that were ampr were selected. Further kanr, GFP 

expressing, amps colonies were selected that indicate the loss of the suicide vector. 

These putative mutants were confirmed by PCR amplification of the retained kan-gfp 

gene. 

2.1.9. Cloning of luxS gene (into low copy number plasmid) for 

transcriptional fusion with lacZ.  

The luxS gene was PCR amplified with primers (Table 2., OSM53, 54) 

containing specific restriction enzyme sites and using Tgo DNA polymerase. The 

amplified DNA was run on a 1.0% agarose gel and the ∼500 bp fragment was gel 

extracted. This DNA was digested with SmaI and SalI and ligated into the vector 

pSP417 digested with the same enzymes. The pSP417 is a plasmid containing a 

promoterless lacZ. The ligation mix was transformed into DH5α competent cells 
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using standard transformation procedure mentioned in materials and methods. The 

AmpR colonies are selected and further purified by restreaking on ampicillin 

containing agar plates. The transformants are then inoculated for plasmid isolation, 

and the isolated plasmids are then checked for presence of insert (luxS). The 

transformants containing the inserts are used for further experiments. 

To check the functionality of the luxS-lacZ fusion: The β-galactosidase 

activity was measured in the newly constructed fusion strains, using normal pSP417 

without insert, as a control. The clones that showed activity were used for further 

study. The plasmid with a functional gene was named pIRP046 and used for future 

studies. 

2.1.10. β-galactosidase assay: 

Bacterial cells are grown overnight in 5 ml of LB containing required 

antibiotic. The cells are diluted 1:100 the next day and allowed to grow to an OD600 ≈ 

0.5. Then the cells were resubcultured into 50 ml media with antibiotic such that the 

OD600 at time zero would be 0.05. Then at every 20-minute time interval, sample was 

collected into cuvettes and the time of sample collection was noted. At each time 

point, the OD600 was measured and 100 µl of cells were added to pre aliquot tubes 

containing 900 µl Z-buffer, 25 µl chloroform and 25 µl 0.1% SDS. The tubes were 

vortexed to break the cell wall and then 200 µl of 4 mg/ml ONPG (o-Nitrophenyl β-

D-Galactopyranoside) was added to the tubes. The tubes were vortexed again and 

incubated in 28 °C water bath till pale yellow color developed. Then 500 µl of 1 M 

Na2CO3 was added to the tubes to stop the reaction. The start time- time at which the 
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ONPG was added and the stop time- time at which Na2CO3 was added is noted too. 

The tubes were centrifuged at 11,000 rpm for 5 mins and then the OD420 was 

measured.  

The calculations were done as per the following formula 

β-gal activity in Miller Units=   OD420 × 1000    

     OD600 × Aliquot (0.1 ml) ×R eaction time in minutes 

 

2.1.11. Moving the fusion into the chromosome: 

Amplification of the lambda phage: E. coli host strain LE392 was grown in 

TBMM (Bacto tryptone 10 gm/lt, NaCl 8 gm/lt, 0.2% Maltose, 10 mM MgSO4) till 

saturation and 200 µl of these cells were added to 2.5 ml of top agar (with 0.01 M 

MgSO4, 0.2% Maltose, 0.05 M CaCl2) and overlayed on TB plates. With help of a 

sterile wire loop, lambda phage was streaked onto this plate after the top agar 

solidified. The plates were incubated at 37 °C overnight. The next day, clear zones 

are seen at the area where the phage was streaked. With help of a micropipette one 

plaque was picked and added to 0.1 ml overnight grown LE392 cells and incubated at 

37 °C for half hour. This was then added to 5 ml of LB (with 0.01 M MgSO4) and 

allowed to grow on rotor at 37 °C until lysis was seen (~5 hrs). Then a few drops of 

CHCl3 were added and after vortexing thoroughly the tube was allowed to sit at room 

temperature for a few minutes. Then the cells were centrifuged at 5000 rpm for 10 

mins and the supernatant was saved as phage lysate at 4 °C for future use. 
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Titer of the lysate: The lysate was first diluted serially in TMG (0.05 M Tris-

Cl pH 7.5, 0.01 M MgSO4, 5 ml 2% gelatin/lt of TM). 0.1 ml of the diluted lysate was 

added to 0.2 ml of LE392 and mixed. This mix was added to 2.5 ml of top agar (with 

0.01 M MgSO4, 0.05 M CaCl2) and poured onto TB agar plate and incubated at 30 °C 

overnight. The plaques were counted the next day, which are indicative of the titer.  

Moving the fusion: The host strain IRP046 (pSP417-luxS-lacZ) was grown in 

TBMM till saturation. The phage was diluted as per required in TMG. Then 0.1 ml of 

the phage was mixed with 0.2ml of the host and kept at 37°C for half hour. This was 

added to 5 ml LB and kept on rotor till lysis was seen (4 hrs). Then 50 µl CHCl3 was 

added and the mixture was vortexed and centrifuged at 5000 rpm for 10 mins. The 

supernatant was used as lysate. This lysate was diluted and mixed with 0.2 ml of 

LE392 cells and kept at 37°C for half hour. Then the cells were mixed with 2.5 ml of 

H-Top agar (with 0.01 M MgSO4, 0.05 M CaCl2) with X-Gal (40 mg/ml) and 

overlayed on TB plates and incubated at 37 °C overnight. Blue plaques were picked 

with micropipette and resuspended in 1 ml of Tris-Mg (0.01 M) the next day. This 

was diluted and used to infect LE392 cells as mentioned above and plated on TB 

plates with X-Gal. Blue plaques were purified till all the plaques were blue indicating 

the lysate was pure.  

To prepare lysogens: 0.1 ml of the above purified lac+ lysate mixed with 0.1 

ml saturated culture of host strains-wt and mutants. This was allowed to stand for 20 

minutes at 25°C and added to 2ml of TBMM. The culture was rotated at 37°C for two 

hours and the cells were then washed twice with TB and finally resuspended in 100µl 

TBMM and plated on TB-Xgal. Both light and dark blue plaques were seen which 
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were streaked out onto respective antibiotic agar plates. The next day the stable 

lysogens were further purified by restreaking. The pure colonies were stored as well 

as screened for selecting monolysogens. 

Ter assay or Immunity i434 assay to screen monolysogens: λ-DJ140 (λi434), 

which shows plaques with multiple lysogens and not monolysogens, was grown in 

TBMM. LE392 was used as a control. Saturated cultures of the above lysogens were 

used to make lysate with λ-DKC170 (lysate from NIH) following the same procedure 

as mentioned above. The lysates were then diluted and used to infect the DJ140 and 

LE392 cells. Using the same method as above, the cells were finally overlayed on TB 

plates and incubated at 37°C. The phage population, which formed plaques on λ-

DJ140 were multiple lysogens with more than one cos site and were not used for later 

studies. Only the ones with no plaques on DJ140 but with plaques on LE392 were 

selected for later use and stored.  

The wt, isogenic barA- mutant, isogenic uvrY- mutant and the double mutant 

now carrying the fusion were used for further luxS expression studies. The strains 

were named as shown in the (Table 1). The mutant strains were complemented with 

wild type copy of the gene and the galactosidase assay was performed to verify the 

mutants. 
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Table 1.A: List of strains of Escherichia coli 
 
Strains Genotype Sources/ references 

MG1655∆lac wt K-12 λ- rph-1 ∆lac D. J. Jin 

MC4100 F-araD139 ∆ (araF-lac) U169 λ -flhd5301 

fruA25 rpsL150 relA1 deoC1 ptsf25 rbsR22 

flb5301 

E.coli genetic stock 

center 

DH5α SupE44 [lacU169 Φ (80∆lacZ58(M15)] λ-rfbD1 

gyrA96 recA1 endA1 thi-1 hsdR17 

Laboratory collection 

LE392 F- hsdR514 supE44 supF58 Laboratory collection 

HS703  MC4100 barA::λplacMu53 [Φ (barA-

lacZ)1010] 

(84) 

HS8100  MC4100 rpoS::λplacMu53 [Φ (rpoS-lacZ)143] (84) 

MD-AI2 W3110 F- λ− ΙΝ (rrnD-rrhE) rph-1 luxS::TcR W. E. Bentley 

IRP011 MG1655 ∆lac barA::kan, P1 (AKP014) This study 

IRP014 MG1655 ∆lac uvrY::cm  This study 

IRP015 MG1655∆lac barA: kan, uvrY:: cm  This study 

IRP016 MG1655∆lac luxS::cm  This study 

IRP035 pluxS in IRP011 This study 

IRP041 pluxS in IRP014 This study 

IRP042 pANA001 in IRP014 This study 

IRP046 pSP417-luxS-lacZ in DH5 α This study 

IRP050 luxS in pCR2.1 Topo vector This study 

SM1005 luxS-lacZ in MG1655∆lac This study 
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SM1006 luxS-lacZ in IRP011 This study 

SM1007 luxS-lacZ in IRP014 This study 

SM1009 luxS-lacZ in IRP015 This study 

 
 

Table 1.B: List of Plasmids  
 
 
Plasmids  Genotype Sources/ references 

PANA001 pBR322 containing wt barA gene (87) 

PluxS14 pCR 2.1 containing wt luxS gene This Study 

pMMrpoS2 pBR322 with wt rpoS gene Laboratory collection 

pIRP046 luxS-lacZ in pSP417 This Study 

pSP417 lacZYA’ operon fusion vector (pBR322 origin, ApR) Podkovyrov and 

Larson (1995) 

pKD3 ApR KanR oriRγ Datsenko et al. 

(2000) 

pKD4 ApR CmR oriRγ Datsenko et al. 

(2000) 

pKD46 ApR, containing the Red recombinase of λ phage Datsenko et al. 

(2000) 

pVS182 flhD::lacZ in pRS551 (93) 

pVS183 fliAehK12::lacZ in pRS551 (93) 

PFDCZ6 flhDC::lacZ  in pMBL1034 (93) 
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Table 1.C: List of Bacteriophages 
 
 
Phages  Genotype Sources/ 

references 

lambda Temperate phage Campbell, A. 

(1961) 

P1 Temperate phage, generalized transducer Laboratory 

collection 
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Table 2: List of Primers used in this study 
 

Primer 
Name Sequence 
OSM 1 aGCATACGCCAAAATGAGGACAGb 
OSM 2 GAAACCAGCGTCATAAAAAGCC 
OSM 17 GTGCCCAGATGGGATTAGCTAGTAG 
OSM 18 GTCGAGTTGCAGACTCCAATCC 
OSM 19 CCCGGATCCCATATGATCAACGTTCTACTTGTTGATGACCACG 
OSM 34 GTGAAGCTTGTTTACTGACTAGAT 
OSM 35 GTGTCTAGAAAAACACGCCTGACAG 
OSM 43 TGGTGCGCGCAGGGATACGACGCATTCTGGAAGTTGCATATGAATATCCTCCTTAGT 
OSM 44 CATTTGTTGAGCGATGTCAGAAGCAATGTAACGCTGACCGTGTAGGCTGGAGCTGCTTC 
OSM 46 CCCTTCGAAATAATTTCATCGTAGGGCTTACTGTGA 
OSM 47 CCCCTGCAGATGCACGCCTGGCTGGCTGGTTAC 
OSM 48 CCCCTGCAGATGCATGCCGATTGCTACTCGACA 
OSM 49 TGCGCTTCTGCGTGCCGAACAAAGAAGTGATGCCAGTTGCATATGAATATCCTCCTTAGT 
OSM 50 CACGCTGCTCATCTGGCGTACCAATCAGACTCATATACTGTGTAGGCTGGAGCTGCTTCG 
OSM 51 CCCCCCGGGATAGCATTTGCAGAAGCCTACCGTA 
OSM 52 CCCCCATGGATACAAACAGGTGCTCCAGGGTATG 
OSM 53 CCCGTCGACATAGCATTTGCAGAAGCCTACCGTA 
OSM 54 CCCGGGCCCATACAAACAGGTGCTCCAGGGTATG 
OSM 64 CCCGAATTCATAATTTCATCGTAGGGCTTACTGTGA 
OSM 74 AGTGACTGAACTATTACAGAGGCGTAATGTGTCTGGCATATGAATATCCTCCTTAG 
OSM 75 ATCTACACGTCAAGGACGTTGAAGAGAAAGCCGTCACATATGAATATCCTCCTTAG 
OSM 76 GGATAAAGACCTCTATAAGGAAACTAGTTGCAAGATTGTGTAGGCTGGAGCTGCTT 
OSM 77 CAATGTAACGAAGACTATAGCGAGTTGTTTACCGCATGTGTAGGCTGGAGCTGCTT 
OSM 78 CAACAATCTATCGAAGTGTCAGCTAGTATGGGCCTATGTGTAGGCTGGAGCTGCTT 
OSM 82 CTGGAGATATTCCTTTGATCAACGTTCTAC 
OSM 83 ACGCTTTTGCGTCAAACTGATCACTCACTG 
OSM 170 TGCAATGGAAGAAGAAGTTAC 
OSM 171 AGCGTTAAGATTCAGTTCG 

 

a  5’ end of Primer 

b  3’ end of Primer 

 

 42 
 



 

2.2. Motility assay 

Assay for motility on soft agar: Overnight grown cultures of strains of E. coli 

wt MG1655∆lac, isogenic mutants and mutants complemented with wt copy of gene 

on plasmid, were tested for their ability to swarm. Cultures were diluted (1:100) in 

TB with the required antibiotic and grown at 37 oC for 4-5 hrs. The density of all the 

cultures was made approximately the same by bringing the O.D600 of all the cultures 

to ~0.20 by diluting with fresh TB. Motility agar plates with rich media (0.25 % 

Tryptone broth or 0.25 % LB) were prepared in 150 X 15 mm petri-plate. 5 µl of each 

of the bacterial cultures of adjusted O.D. was stabbed halfway through the agar in the 

plates after the plates were allowed to solidify. The plates were incubated at room 

temperature (~18-22 hours) or until the measurable motility zones were formed. 

2.3. Flagellar gene expression studies using reporter gene fusion vector: 

MG1655∆lac, the isogenic barA-, uvrY- and barA-uvrY- were transformed 

with a reporter gene fusion vector pVS182, pVS183 and pFDCZ6. Bacterial 

transformants were selected on the basis of antibiotic resistance. The transformants 

were grown overnight at 37 °C, diluted in fresh nutrient media and were allowed to 

grow. Throughout the growth cycle, at different time points, OD600 was noted and the 

sample cultures were collected the same way as explained earlier. The cultures were 

diluted 1:10 in Z-buffer and assayed for β-galactosidase activity as described 

previously (Miller, 1972). 
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2.4. Microarray chip hybridization protocol 

RNA isolation: The bacterial strains were grown overnight at 37 °C in 3 ml of 

LB without antibiotic. For each strain, 20 ml of Phenol-Ethanol solution (1.0 ml 

Acidic phenol, pH 4.3 + 19 ml 100 % Ethanol) was prepared. 9 ml was used in 41 ml 

of bacterial culture to arrest the RNA. All other steps of RNA isolation by Qiagen kit 

for MIDI column were followed. The RNA quality was checked by running a 1 % 

agarose gel and quantitated with help of NanoDrop spectrophotometer (version 1.0, 

NanoDrop Technologies Inc., Delaware, USA). The RNA was treated with DNase I 

to remove the contaminating DNA.  

 Removal of contaminating DNA from total RNA isolations: 250 µl of DNase 

I cocktail (154 µl water + 88 µl 10X RQ1 buffer + 11 µl RNAsin-Rnase inhibitor) 

was added to each RNA sample of ~550 µl. The sample was mixed gently by flicking 

the tubes several times and then spun briefly. This was incubated at 37 °C for 30 

mins. The RNA sample was then purified by phenol chloroform extraction. 

Phenol: chloroform extraction for purification of DNase treated RNA: DNase 

reaction tubes were kept on ice for 2 mins. 700 µl of acidic phenol was added to each 

tube and vortexed for 2 mins, and kept on ice for 1 min. The samples were then spun 

at room temperature for 3 mins. The top aqueous layer was collected in a new 

appendorf tube and another 700 µl of acidic phenol was added and the step was 

repeated. The aqueous layer was again taken to a new tube and 700 µl of chloroform 

was added and vortexed and spin was repeated. 35 µl of 5 M NaCl was then added 
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and vortexed and spun again. Then 700 µl of 100% Isopropanol was added to each 

tube and vortexed to mix and the tubes were then placed at –20 °C for 2 hrs atleast to 

precipitate RNA. The tubes were centrifuged at 4 °C for 30 mins at maximum speed. 

The supernatant was discarded and the pellet was washed with 750 µl of ice-cold 

70% Ethanol. Tubes were again centrifuged at 4 °C for 15 mins and pellet dried in 

Speed-Vac for ~5 mins. The pellet was resuspended in 200 µl of 1X TE (pH 7.4) and 

vortexed briefly and incubated at room temperature for ~10 mins. The concentration 

was checked using NanoDrop spectrophotometer. 

Labelling and Pre-hybridization: Then this RNA was labeled for the 

Microarray. 10 µg Random hexamers were annealed at 65 °C to 100 µg of total RNA. 

Labeling master mix cocktail was prepared-3.8 µl RNAsin (Rnase inhibitor) + 30.0 µl 

5x first strand buffer + 15.0 µl 0.1 M DTT + 7.5µl 20X dNTPs (low-T because RT 

replaces dUTP for T). This master mix was briefly spun and kept on ice. 8 µl Cy-3 

dUTP was added to the control (wild type) RNA-hexamer mix and 8 µl Cy-5 dUTP 

was added to the mutant RNA-hexamer mix. The tubes were now covered to maintain 

dark environment, as the dyes are light sensitive. 10µl Superscript II Enzyme reverse 

transcriptase was used for cDNA preparation. The reaction was initiated by adding 26 

µl of the master mix to each RNA sample and incubated at 42 °C for 1 hr. Then 

additional 2 µl enzyme was added to each tube and incubated again for 1 hr under 

same conditions. 6 µl of 1 M NaOH was added to degrade RNA and after 10 mins at 

65 °C, 6 µl of 1 M HCl was added to neutralize the reaction. This labeled cDNA was 

purified using Qiagen Qiaquick PCR purification kit. NanoDrop Spectrophotometer 

was used for the analysis of purified Cy-labeled DNA. The cDNA was then 
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concentrated in a Speed-Vac for ~15 mins. The sample volume was measured (should 

be around 20 µl). 

Pre-hybridization buffer- 12.5 ml Formamide + 12.5 ml 20X SSC + 500 µl 

10% SDS + 167 µl 30 mg/ml BSA + 24.3 ml nanopure water, was prepared in a 50 

ml Falcon tube and kept at 42 °C for ~5 mins. A single Microarray slide was placed 

into the tube and kept at 42 °C for one hour with intermittent mixing every 5 mins. 

The slide was then removed and placed into another fresh Falcon tube with 45 ml 

nanopure water. This was allowed to rock gently for 30 secs and the slide was 

removed and placed in an empty Falcon tube. The slide was dried by centrifuging for 

5 mins at 1500 X g at room temperature. 

Hybridization: 40µl of Hybridization buffer (23 µl Formamide + 25 µl 20X 

SSC + 1 µl 10% SDS + 1 µl 10 mg/ml Salmon Sperm DNA) was added to a 

combination of 20 µl Cy3-cDNA and 20 µl Cy5-cDNA in a 0.5 ml microfuge tube. 

The probe solution was incubated at 95 °C for 5 mins and then briefly spun and 

allowed to cool to room temperature. The array was placed in Corning Hybridization 

Chamber and 80 µl of probe was added onto the surface of the printed side of the 

slide without forming bubbles. Carefully a cover slip was placed on the slide and the 

chamber was assembled as described in its package. The chamber was then 

submerged in a 60 °C water bath overnight. The after overnight incubation, the array 

slides were carefully removed from the hybridization chamber and placed into 2X 

SSC, 0.1% SDS at 42 °C to wash off the coverslip. Then the slide was again washed 

with fresh 2X SSC, 0.1% SDS at 42 °C for 5 mins. The slide was then transferred into 

0.1X SSC, 0.1% SDS and with gentle shaking was kept at room temperature. The 
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next post-hybridization wash was with 0.1X SSC and this was repeated 4 times, using 

fresh buffer each time. Finally the slides were placed into a 50 ml Falcon screw cap 

tube without any buffer and spun for 5 mins at 2500 X g to dry. The slide was then 

placed in a new 50 ml Falcon screw cap tube and covered with foil. The slide was 

then scanned with ScanArray 4000XL (ScanArray Express, CT, USA). 

Analysis: Signal intensities for each spot representing a gene, were 

determined from the resulting pseudocolor image using the adaptive circle method for 

ScanArray Express. Quantitation is performed locally in a spot patch and pixels on 

each channel are selected separately. The software uses Lowess Normalization 

method and calculates the logarithmic ratio of Cy5 to Cy3 for each spot on the array. 

A representative experimental result is presented in the scatter plot in Fig. 5. The X-

axis and Y-axis represent gene expression in the wt and mutant strain respectively, as 

determined from the intensities of the Cy dyes. 

2.5. RT-PCR- Two tube two-step procedure: 

Equal amount, 5 µg of freshly isolated RNA of the different strains was used 

to set up a RT. In the first tube, first strand cDNA synthesis was performed under 

optimal conditions required for SuperScriptTM II Reverse Transcriptase (Invitrogen 

Inc., USA), using random hexamers, oligo (dT) primers (generating cDNA pool), or 

sequence specific primers. The primers were designed using PrimerSelect verion 5.06 

(DNASTAR Inc., USA) software. The RNA was first allowed to anneal with 2.0 ul 

random hexamers at 65 °C for 5 mins and immediately cooled on ice. Then the 

following cocktail was added to the RNA: 4.0 µl 5X RT buffer + 2.0 µl 0.1 M DTT + 

0.5 µl RNAsin + 0.5 µl 20 mM dNTPs + 5.0 µl water + 1.0 µl SuperScriptTM II RT. 
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The reaction was incubated at 42 °C for 1 hr and then additional 1.0 µl enzyme was 

added and incubated for an additional hour. The reaction was stopped by heating at 

72 °C for 15 mins. Then 0.1 M NaOH (final concentration) was added to the reaction 

and incubated for 10 mins at 65 °C to denature any RNA if present and neutralized 

with 0.1 M HCl. The cDNA was then column purified using Qiagen PCR purification 

kit. The purified cDNA concentration was then measured using NanoDrop 

Spectrophotometer. A real-time reaction was performed in LightCycler (Roche, Idaho 

Technologies Inc., ID, USA). The LightCycler FastStart DNA Master SYBR Green 

kit (Roche Applied Biosystems) was used to set up the reaction. 10 ng cDNA was 

used as template for each of the strains in a 10 µl reaction volume. The MgCl2 

concentration was first titrated and so was the template concentration. This reaction 

was loaded onto a capillary and briefly spun at 3000 rpm. The capillary was set to run 

in the LightCycler with 35 cycles of denaturation, annealing and extension, with 

florescence measured at the end of each extension segment. An additional step of 

melting curve analysis was added at the end to circumvent primer dimer interference. 

Fluorescence was measured continuously during the melting curve, ensuring that only 

the fluorescence of the desired amplicon (~300 bp in length) is detected at the high 

melting temperature, as the primers are single stranded. Water was used as template 

for the negative control and wt genomic DNA for positive control. The same reaction 

using the same amount of template was set with rrnA primers to make sure the 

loading of the template was same. 

The amplified product was run on a 1% agarose gel containing ethidium 

bromide to make sure that the product is of the right size. To quantitate, we used 
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comparative Ct method. The statistically significant increase in amount of amplicons 

is detected by choosing a fluorescence threshold level such that for all the samples the 

amplicons are in their linear range. The threshold cycle (Ct) is determined by drawing 

a line perpendicular to the set threshold fluorescence (relative light units). This 

method involves comparing the Ct values of the samples of interest (mutants) with a 

control (wt). The Ct values of both the control and the samples of interest are 

normalized to an appropriate endogenous housekeeping gene, we use the rrnA. 

The comparative Ct method is also known as the 2–[∆][∆]Ct method, where  

[∆][∆]Ct=[∆]Ct,sample-[∆]Ct,reference 

  Here, [∆]CT,sample is the Ct value for any sample normalized to the rrnA 

housekeeping gene and [∆]Ct, reference is the Ct value for the wild type also normalized 

to the endogenous housekeeping gene. For the [∆][∆]Ct calculation to be valid, the 

amplification efficiencies of the target and the endogenous reference must be 

approximately equal.   

        2.6. Northern Blot Analysis 

RNA was isolated as mentioned above. Equal concentrations of RNA from 

each sample was mixed with RNA loading dye (Invitrogen Inc., USA) and the 

volume of the loading mixture for each sample was adjusted to 45 µl. This was heated 

at 70 °C for 10 mins, cooled on ice for 5 mins and was loaded on a 1% formaldehyde 

gel (1.2% Agarose, 1X MOPS running buffer, 15 ml Formaldehyde). The gel was run 

at 100 volts in 1X MOPS buffer till position of dye was almost at the end of the gel 

(~2 hrs). The gel was then stained with ethidium bromide to check for presence of 
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RNA. The gel was washed twice with water and then with 0.05 N NaOH for 20 mins. 

Then the gel was soaked in 20X SSC buffer for half hour. 

Transfer of RNA from gel to hybond nylon membrane: All apparatus were 

thoroughly cleaned with RNA zap. A tip box was placed in a tray and a glass slide 

was placed on top of it. Blotting paper was placed forming a cross sign as it would be 

acting as wicks. This wick was soaked with 2X SSC buffer and some 20X SSC buffer 

was added to the tray. One more blotting paper of the size of the glass plate was 

placed on top of the wicks. Then the gel was placed such that the topside faced the 

glass slide side. The nylon membrane was then soaked in water after cutting one edge 

of the membrane as a mark. The membrane was carefully placed onto the gel. To 

prevent leaking, Para film was aligned on all sides of the set apparatus. To make sure 

there was no air bubble between the membrane and gel, a glass rod was lightly rolled 

on. More 20X SSC buffer was poured onto this membrane. A filter paper was placed 

onto the membrane and also a thick stack of whattman paper was placed on top. 

Heavy weight was placed on top of this to create pressure. This apparatus was left 

overnight to allow transfer after making sure there was enough SSC buffer in the tray. 

To minimize evaporation whole apparatus was covered with saran wrap.   

After 18 hours, the membrane was placed onto a filter paper and allowed to 

cross link in a UV chamber twice at 12,000 Js-1 for 15 sec. The membrane was then 

placed in a special BRL bag and sealed for storing at –20 °C. 

Probe synthesis and Hybridization: To label the probe, GIBCO BRL RadPrime DNA 

labeling System was used. The DNA was denatured by heating for 5 mins in boiling 

water and immediately cooling on ice. Then to the tube 1 µl of 500 µM (dATP, 
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dGTP, dTTP) mix was added along with 20 µl 2.5X random primers solution, 5 µl 

α32P-dCTP, and water to make final volume 49 µl and 1 µl klenow fragment. The 

tube was centrifuged for 15 to 30 sec and kept at 37 °C for 10 mins. Then 5 µl of stop 

buffer was added. This mixture was loaded onto a sephadex G-25 column the same 

way as was done for the primer extension to remove unlabeled RNA. The membrane 

was prehybridized in 20 ml of prehybridization buffer (2 X SSC, 0.1 % SDS, 0.5g 

BSA) for 3 and half hrs. Then 50 µl of the labeled probe was added to the tube and 

allowed to hybridize at 42.5 °C overnight. The membrane was washed twice with 1% 

SDS the next day for 30 mins each time. Next the membrane was washed with 0.1% 

SDS for 15 mins and carefully take out onto saran wrap without allowing to dry. The 

membrane was then placed into a pre desensitized phosphoimager plate and left 

overnight at room temperature before scanning. 

2.7. Primer Extension & Sequencing: 

32P /33P end Primer Labeling: Primer (Table 2.) was labeled with γ32P-ATP 

(3000 Ci/mmol), with help of T4 PNK polynucleotide kinase. The reaction was set up 

in 10 µl volume at 37 oC for 20 minutes and then at 90 oC for 2 mins. Then 40 µl of 

DEPC treated water was added. A G25 column was spun down in a plastic tube at 

1000 rpm for 1 min and the drain was discarded.  The column was spin again and 

now placed into a new holder tube. The labeled primer was now added to the packed 

column and centrifuged at 1000 rpm for 4 mins. The liquid flow through or drain is 

stored at –20 oC. 
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Primer Extension reaction: The labeled primer was mixed with total RNA and 

2X AMV Reverse Transcriptase (RT) (Promega Corpotation, USA) and incubated to 

anneal at 58 oC for 20 mins. This mixture was cooled to room temperature for 15 

mins. Then AMV primer extension buffer, sodium pyrophosphate, AMVRT and 

water were added to the annealed sample and extension was allowed at 42 oC for 45 

mins. Then 10 µl of loading dye was added to the tube and stored at –20 oC. 

Sequencing reactions: Template DNA was mixed with labeled primer, 

sequencing buffer, Taq DNA polymerase (Invitrogen Inc., USA), water and 

nucleotide (A/T/G/C one in each tube). This reaction was denatured at 95 oC for 2 

mins and 95 oC for 30 sec, annealed at 54 oC for 30 sec and extended at 70 oC for 1 

min. Thirty cycles were preprogrammed in the PCR machine and at the end of the 

cycles; stop solution was added to each tube and stored at –20 oC. 

Urea-polyacrylamide gel electrophoresis (6% Sequencing gel): The gel 

apparatus was first thoroughly cleaned and dried. Then the plates of the apparatus 

were fixed together after choosing required size comb and spacers, carefully to make 

sure there is no chance of leakage while pouring the gel. The sides of the glass plates 

were taped together if required.  For a large gel, 80 ml of solution was required to 

pour a gel. 66 ml of 6% sequencing gel solution (SequaGel, National Diagnostics, 

GA, USA) was mixed with 14 ml of buffer reagent. Then ~300 µl of 10% APS 

(ammonium per sulfate) was added to this solution and mixed properly. Immediately 

this solution was poured into the gel apparatus with help of pipette carefully such that 

not bubbles were allowed to form. The gel was allowed to solidify before loading the 

samples. 
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The tubes containing the amplified samples were thawed. 15 µl of the loading 

dye was added to each tube and heated at 85 oC for 5 mins. 5 µl of this mixture was 

loaded on 6 % urea-polyacrylamide gel (SequaGel, National Diagnostics, GA, USA) 

and was run at 64 watt using 1X TBE (Tris-borate-EDTA, pH 7.0) as running buffer 

until the bromophenol blue dye front ran out of the gel. The gel was fixed in fixing 

solution (15 % ethyl alcohol, 5 % acetic acid) for 30 mins and dried in gel drier (Slab 

Gel Drier SGD4050 equipped with ThermoSavant UVS400 Universal vacuum 

systems, USA) for 2 hrs. The gel was then exposed to a phosphor imager film (Fuji 

film imaging plate, 35 X 43 cm) and kept in a closed cassette overnight. The film was 

scanned by a phosphor imager scanner (Fuji films FLA3000, Fuji medical systems, 

USA) and the gel was exposed to X ray film. The X ray film was developed after few 

days (depending upon the intensity of the radioactivity). Both the scanned image and 

the X ray plate were analyzed and band intensity was measured using Fuji Image 

Gauge 3.46 software.  

Loading the gel: The gel was clamped onto a vertical gel apparatus and 

running buffer 1X TBE was poured into both the upper and lower chambers of the 

apparatus. The gel was checked for any leakages. Then the wells in the gel were 

washed to make free of any gel material. The samples, both of primer extension and 

sequencing, were heated at 95 oC for 3 mins and cooled on ice and then loaded into 

the wells of the gel. The gel was prerun at 35 watts and then actually run at 64 watts 

using 1X TBE (Tris-borate-EDTA, pH 7.0) as running buffer until the bromophenol 

blue dye front ran out of the gel. The gel was fixed in fixing solution (15 % ethyl 

alcohol, 5 % acetic acid) for 30 mins and dried in gel drier (Slab Gel Drier SGD4050 
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equipped with ThermoSavant UVS400 Universal vacuum systems, USA) for 2 hrs. 

The gel was then exposed to a phosphor imager film (Fuji film imaging plate, 35 X 

43 cm) and kept in a closed cassette overnight. Using a phosphor imager scanner 

(Fuji films FLA3000, Fuji medical systems, USA), the film was scanned and the gel 

was exposed to X ray film. The X ray film was developed after few days (depending 

upon the intensity of the radioactivity). Both, the scanned image and the X ray plate 

were analyzed and with the help of Fuji Image Gauge 3.46 software, the band 

intensity was measured.  

2.8. Survival Assays 

The strains to be studied were transformed with pBR322 and purified. The 

IRP011 was additionally transformed with pANA001 (plasmid with wild-type copy 

of the barA gene) and pluxS14. The transformed strains were grown overnight in LB 

media with pH 7.0 and respective antibiotics. Subcultured samples were allowed to 

grow to midlog phase and then re-subcultured (O.D600 ~ 0.05) into media with neutral 

pH. Then the cells were allowed to grow till an O.D600 ~ 0.2 and then they were split 

into different flasks. One set of flasks was with pH 7.0 (control) and the other set of 

flasks were with media containing different stress challenges- pH 5.0, pH 5.0 + 

NaNO2, 5 % SDS and 1 M NaCl. At different time intervals, samples were collected, 

serially diluted and plated on their respective antibiotic plates. Plates were incubated 

overnight at 37 °C and the next day colonies were counted to determine bacterial 

concentration. The data were plotted on a graph to compare the percent survival with 

and without stress in the wild type compared to the mutants. 
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Sensitivity assays were also performed in microtiter plates. The bacterial 

cultures were grown overnight with respective antibiotics and subcultured and 

allowed to grow to an O.D600~0.5. Then the cultures were diluted such that the 

O.D600~0.05 when adding to the microtiter plate wells. Each plate had one strain. The 

different concentrations of the stress agent, SDS, bile salts or ethidium bromide was 

made in the plate by serial dilutions. The highest dilution was in column 1 and the 

least in 11. After diluting the stress agent in LB in the plate wells, equal aliquot of 

cells of equal O.D were added to each well. Column 12 was used as the negative 

control with neither stress agent nor any culture added. The plate was then read at 

both nm and nm in a micro-titer plate reader (Mediators PHL, Mediators diagnostic 

systems, Austria, Europe) in the chemi-luminescence intergral mode. The percentage 

survival was calculated. Plates were incubated at 30 °C shaker, and cell density was 

monitored similarly by following the absorption at 600nm every 6 hours. 

Concentrations required to inhibit 50 % of the growth (LD50) were determined.  

2.9. Scanning Electron Microscopy 

The surface physiology of the wt and mutants IRP011, IRP011, IRP014 and 

IRP015 was determined with the help of SEM. The strains were grown in LB media 

without shaking with two subcultures. Then the cells were washed at very low speed 

with 1X PBS (phosphate buffered saline) twice and handled on ice. The cells were 

then fixed with 2% gluteraldehyde. The cells were then post-fixed with osmium 

tettraoxide, sequentially dehydrated in ethanol, critical point dried, and coated with 

gold palladium. A Hitachi S4700 FESEM electron microscope (University of 

Maryland) was used to view the cell surface appendages. Individual cells were 
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carefully viewed at X 25,000 magnification where as clustered cells were viewed at X 

15,000 magnification to see the inter-cellular communicating linkages. 
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CHAPTER 3 

Results 

3.1. Genome wide approach: Microarray Analysis 

Objective: Global profiling of gene expression affected by mutations in the  

barA/uvrY genes in E. coli. 

Introduction and Rationale: To understand microbial adaptation, the molecular 

details of interaction between a pathogen and its host are of prime importance 

because this is the basis of establishment of an infection. Global profiling of gene 

expression is thus one approach to assess gene expression in organisms like E. coli, 

whose complete genomic sequence is known. DNA microarray technology can 

measure the expression of vast number of genes in a biological sample. DNA 

microarrays, under any given condition with a given control, use primary sequence 

data to measure differentially expressed transcript levels for every gene. A gene 

involved in adaptation is usually transcribed only when and where its function is 

required. Therefore, determining conditions under which a gene is expressed would 

allow one to predict its function in the adaptive process. This would be true for both 

known genes and yet uncharacterized open reading frames (ORF’s). Thus, by 

monitoring microbial gene expression, one can probe physiological adaptations made 

under various environmental stress situations, identify virulence genes, and test the 

effects of drugs (20). 

The key principle of all microarray experiments follows hybridization of 

labeled nucleic acid molecules in solution, to complementary genomic sequences 
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immobilized on a solid surface, with high sensitivity and specificity. This facilitates 

parallel quantitative measurement of many different sequences in a complex mixture 

(91). Although several methods for building microarrays have been developed (105), 

in this study the experiments were done using E. coli MG1655 DNA Microarray glass 

slides obtained from Frederick R. Blattner, E. coli Genome Project, University of 

Wisconsin-Madison. These arrays are constructed by physically spotting PCR 

amplified gene fragments representing the entire genome of E. coli MG1655 strain on 

a microscope slide. These arrays provide a rapid method to compare the expression of 

all representated genes (4405 genes in duplicate), in two given sets of conditions, in a 

single hybridization experiment. 

 Under laboratory conditions of growth, once can study adaptive gene 

expression using DNA microarrays. Gene expression studies may reveal key 

regulatory differences that lead to differing virulence between closely related 

pathogen strains. For example, variations in virulence of L. monocytogenes serotypes 

have been correlated with differential transcription of PrfA-regulated virulence genes. 

Also microarrays have been used to identify regions of variations within the E. coli 

species from the wild type E. coli K12 background (5). 

Microarray Hybridization and analysis: Total RNA was prepared from the wt 

E. coli MG1655 strain and the isogenic barA-, uvrY- and barA-uvrY- double mutants 

as described in materials and methods. Equal amount of RNA was reverse transcribed 

using different nucleotide conjugated dCTP cyanine fluorophores (dyes Cy3 and 

Cy5). Cy3 (green) was used in each experiment to label the wt cDNA where as Cy5 

(red) was used to label the mutant cDNA. The two-labeled cDNA mixtures were 
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hybridized simultaneously to one glass slide Microarray, washed and scanned using 

ScanArray 4000 XL scanner (Perkin Elmer). 

Signal intensities for each spot representing a gene, were determined from the 

resulting pseudocolor image using the adaptive circle method for ScanArray Express. 

Quantitation is performed locally in a spot patch and pixels on each channel are 

selected separately. The software uses Lowess Normalization Method (locally 

weighted scatterplot smoothing) and calculates the logarithmic ratio of Cy5 to Cy3 

for each spot on the array. A representative experimental result is presented in the 

scatter plot in Figure 5, which shows the average gene distribution was normal. The 

X-axis and Y-axis represent gene expression in the wt and mutant strain respectively, 

as determined from the intensities of the Cy dyes. The results indicate that the 

average gene expression was normal except for a subset of genes that indicated more 

than 2 fold induction/repression in the presence (wt)/absence (mutant) of a gene. Our 

preliminary results thus indicate that there is a considerable amount of difference in 

the level of genome wide expression between a wild type and its isogenic barA-, 

uvrY- and barA-uvrY- double mutant strains. The table shows a few of the many 

genes that were found to be differentially expressed. The positive values are genes 

over expressed in the mutant compared to the wild type, where as the negative values 

are the genes repressed in mutants compared to the wild type. 
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Figure 5. Representative Experiment Result showing normal  

      distribution of genes   
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X-axis represents the wild-type MG1655 genes 

Y-axis represents the mutant genes 
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Our aim was now to determine the effect of BarA and its response regulator 

UvrY on potential virulence determining genes observed to be differentially regulated 

in the microarray experiments.  We decided to choose the luxS gene because I) it 

plays a role in regulating virulence in EPEC and EHEC (92). II) In E. coli, the luxS 

gene is involved in quorum sensing, a very important phenomenon playing a major 

role in occurance of pathogenicity. The signaling molecule AI-2/AI-3 has been 

reported to regulate virulence, but who regulates AI-2/AI-3 expression is still under 

investigation. Both luxS and pfs genes are required for synthesis of an active AI-2 

molecule. They work towards metabolic detoxification and at the same time produce 

the signaling molecule. We decided to verify the results from the Microarray data 

analysis, which show down regulation of the luxS and pfs gene in the BarA mutant, 

UvrY mutant and double mutant. Firstly we adopted a Real Time PCR method to 

examine the expressional profile of luxS gene in different mutant strains and to 

provide information on differential expression patterns. Secondly, we decided to use 

Northern Blot analysis to verify differential gene expression in wild type E. coli and 

its isogenic barA-, uvrY- and barA-uvrY- mutants. We further performed primer 

extension studies to determine the location and the level of transcripts of the luxS 

gene. 
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Table 2. Partial Table for differentially regulated genes 
 
 

Negative numbers indicate (
 -5.7

a
-2.6

 ) genes downregulated, and positiv
 enzyme; Murein sacculus, peptidoglycan 

utant compared to the wild ty
meso-diaminopimelate-adding enzyme 

Gene   

   
     

    

  
   

    

   

  

   

ID BarA- UvrY- BarA- Function
Virulence determinants 

 
   

Pfs b0159 -2.4a -2.0 enzyme,AI-2 sysnthesis S-adenosylhomocysteine nucleosidase 
  YgaG b2687 -5.0 -1.5 enzyme,AI-2 sysnthesis autoinducer 2 synthase

flhDC regualted       
MglA b2149 -2.8 -8.0 -4.5 transport; small molecules: Carbohydrates, organic acids, alcohols ATP-binding component of methyl-galactoside transport 
MreD b3249 -8.9 -4.7 -2.7 structural component; Murein sacculus, peptidoglycan rod shape-determining protein 
NrfA b4070 -2.4  -7.5 carrier; Energy metabolism, carbon: Electron transport periplasmic cytochrome c(552): nitrite reduction 
Pta b2297 -1.8 -4.3 -4.9 enzyme; Degradation of small molecules: Carbon compounds 

 
phosphotransacetylase 

OppA b1243 -3.2 -2.2 -2.2 transport; Protein, peptide secretion oligopeptide transport; periplasmic binding protein 
OmpT b0565 7.4b 

 
2.0 2.0 enzyme; Outer membrane constituents outer membrane protein 3b (a), protease VII 

Male b4034 4.1 12.5 5.4 transport;small molecules: Carbohydrates, organic acids, alcohols periplasmic maltose-binding protein; transport chemotaxis 
Cell surface and outer membrane determinants  

OmpT b0565 7.4 2.0 4.0 enzyme; Outer membrane constituents outer membrane protein 3b (a), protease VII 
OmpF b0929 3.0  3.9 membrane; Outer membrane constituents outer membrane protein 1a (Ia;b;F) 
FhuA b0150 5.5  13.9 membrane; Outer membrane constituents omp receptor - ferrichrome, colicin M, phages T1, T5, phi80 
LpxD b0179 5.2  1.6 enzyme; Surface polysaccharides & antigens UDP-3-O-(3-hydroxymyristoyl)-glucosamine transferase 
FlgL b1083 3.7 2.0 structural component; Surface structures flagellar biosynthesis; hook-filament junction protein 

Transport proteins     
AccB b3255 -2.4 

 
-4.0 -2.0 carrier; biotin carboxyl carrier protein (BCCP)Biosynthesis of cofactors acetylCoA carboxylase, BCCP subunit; carrier of biotin 

Male b4034 4.1 6.5 transport;small molecules: Carbohydrates, organic acids, alcohols periplasmic maltose-binding protein; transport,chemotaxis 
Other metabolic pathways    

Fbp b4232 -4.0 -7.7 -5.6 enzyme; Central intermediary metabolism: Gluconeogenesis fructose-bisphosphatase
PckA b3403 -2.7 -2.0 -2.0 enzyme; Central intermediary metabolism: Gluconeogenesis phosphoenolpyruvate carboxykinase 
FadA b3845 -2.4 -5.4 -2.0 enzyme; Degradation of small molecules: Fatty acids thiolase I; 3-ketoacyl-CoA thiolase; acetyl-CoA transferase 
NirC b3367 -1.7  -2.4 enzyme; Energy metabolism, carbon: Anaerobic respiration nitrite reductase activity 
MurE b0085

e ( b ) genes upregulated in m pe.
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3.2. Objective: To determine if the BarA/UvrY system in E. coli differentially 

regulates the expression of luxS gene. 

Introduction and rationale: Recent studies with DNA arrays have implicated AI-2 

in regulation of a large number of genes in E. coli (94, 20).  BarA/UvrY, a putative global 

regulatory system, might have a role in regulating one or more physiological properties 

by regulating luxS expression through quorum sensing mechanism. Preliminary results 

from the Microarray hybridization show that the ygaG (luxS) gene is down regulated in 

the mutants compared to the wild-type E.coli strain. This led us to further study if at all 

then how the BarA/UvrY system may influence the luxS gene expression. Our other 

preliminary chemiluminescence studies done in the lab (data not shown) show that BarA 

regulates AI-2 accumulation, required for quorum sensing. 

3.2.1. RT-PCR 

Sensitive methods for detection and analysis of small rare mRNA transcripts or 

other RNA present in low abundance are important aspect of most cell/ molecular 

biology studies. RNA cannot serve as a template for PCR, so it must be reverse 

transcribed into cDNA. Quantification of transcripts can be achieved either by real-time 

(RT)-PCR monitoring of product formation or competitive RT-PCR followed by gel 

analysis. The LightCycler (Roche Applied Science, Germany) allows detection of the 

PCR product during the entire course of amplification. Thus, sequence-specific detection 

is ensured by the use of internal hybridization probes and the kinetics obtained during the 

exponential phase of PCR is used for quantification. As a control, a ubiquitously 

expressed internal housekeeping gene is usually quantified at the same time, and the 
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number of copies of the gene of interest is normalized against the number of copies of the 

housekeeping gene. To determine temporal gene expression in bacteria, quantification of 

the 16S rRNA is often used as a reference. The advantage of the LightCycler is that 

several samples (upto 32) can be run at a time and the results are calculated directly by 

the integrated software. However, sources of error may include unspecific amplification 

or additional amplicons that do not hybridize to the fluorescence-labeled probes but 

compete with the specific PCR. Therefore, the PCR products have to be analyzed on 

agarose gels and, in cases of multiple bands; the PCR conditions should be optimized to 

avoid false priming. This method is useful for experiments where multiple transcripts 

have to be analyzed from the same RT reaction or for specific applications such as 

differential display reverse transcription (DDRT) or for Rapid amplification of cDNA 

Ends (RACE). 

The standard protocol for quantitative LightCycler PCR utilizing 35 cycles of 

denaturation, annealing and extension, with florescence measured at the end of each 

extension segment was used. An additional step of melting curve analysis was added at 

the end to circumvent primer dimer interference. Fluorescence was measured 

continuously during the melting curve, ensuring that only the fluorescence of the desired 

amplicon is detected at the high melting temperature, as the primers are single stranded. 

After the run was over the PCR product was run on a 1 % agarose gel to make sure the 

product was of the correct size. The fold difference in luxS and pfs transcript levels were 

calculated using the formula described in materials and methods. The threshold value was 

selected in the linear range of all the samples. The calculated differences are shown in 
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Table 3. Compared to the wt, barA-, uvrY- and double mutants have more than 3 fold less 

transcripts. 
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Figure 6. RT-PCR Results 
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Real time PCR results using LightCycler. 
X-axis represents PCR cycle number 
Y-axis represents Fluorescence in RLU (Relative light units)
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Table 3. The BarA-UvrY two-component system regulates luxS and pfs mRNA as 
determined by quantitative RT-PCR.  

 
 
Strain  Relevant    Ct values a     
    Fold b Difference(2−∆∆Ct) 

Genotype      rrnA   luxS  pfs             
 
 
MG1655 ∆lac    wild type    6.5 ± (0.5) c       23.5 ± (0.6)       23.0 ± (0.5)   1.0 
 
IRP011    barA::kan   6.5  ± (0.5)      26.0 ± (0.5)      25.5 ± (0.6)   5.6 / 5.6 d 
 
IRP014    uvrY::cm   6.5  ± (0.5)      25.5 ± (0.6)      25.5 ± (0.6)   4.0/ 4.7 
 
IRP015    barA::kan,    6.5  ± (0.5)      25.5 ± (0.6)      24.5 ± (0.6)   4.0/ 2.8 

   uvrY::cm 
 
 
a Ct values are the threshold values of PCR cycles where the SYBR-Green fluoresce was 
detected above the background in the linear range, taken at 7.0 Relative Light Units. 
 
b The fold down-regulation is calculated as 2−∆∆Ct.  Where ∆∆Ct = ∆(Ct sample - Ct rrnA) – 
∆(Ct reference - Ct rrnA). 
 
c Standard Deviation of three independent experiments. 
 
d Fold-difference of the luxS transcript / pfs transcript normalized with rrnA levels and 
compared to the wild type strain   
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We also PCR amplified the cDNA’s mentioned above and stopped the 

amplification of one tube of each sample at 10, 12, 14, 16, 18 and 20 cycles. The 

amplified product was run on a 1% agarose gel. Equal quantity of template was used to 

start the reaction and this was confirmed by using rrnA primers. The gel was stained with 

ethidium bromide and the pixel intensities of the amplified product were calculated. This 

method is less reliable than the real-time LightCycler method and more time consuming 

too. 

 However, the gel picture demonstrates (Figure 7) that indeed the luxS and pfs 

gene transcripts are lower in abundance in absence of the BarA/UvrY system. 
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Figure 7. PCR 
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Figure represents agarose gel images, equal amount of PCR product was loaded in each 
lane. 
Upper gels show that the luxS transcript starts amplifying at earlier cycles than the 
mutants. The lower gels show that the pfs transcripts start amplifying earlier in the wild 
type than the mutants. 
The numbers below the gels are the PCR cycle numbers and M is the marker. 
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3.2.2. Northern Blot Analysis 
 
RNA was freshly isolated from wild type, isogenic barA- mutant and mutant 

complemented with a plasmid borne copy of barA. The RNA was run on a 

formaldehyde gel with MOPS buffer, transferred to a hybond nylon membrane, and 

hybridized with α32P labeled luxS probe overnight as explained in Chapter 2. The 

membrane was then washed thoroughly with SDS and placed over a pre-desensitized 

phosphorimager plate and left overnight at room temperature.  

Next day the plate was scanned to get a digitized image. The bands were then 

quantified similarly as in primer extension using FUJIFILM Image Gauge version 

3.46 under the quant mode. The wt strain displayed a three fold higher mRNA 

expression than the barA- mutant. In other words, compared to the wt, in the barA- 

mutant, a 3 fold down regulation of the luxS transcript was observed, which was 

complemented by wild-type copy of the barA gene on a plasmid. 
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Figure 8. Northern Blot Analysis 
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a. The digitized image from the northern blot. Upper spots represent the luxS 
transcript and the lower spots are the internal loading control rrnA transcripts. 
b. Represents the quantitation results from the digitized image as    
    calculated by relative pixel intensities. 
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3.2.3. Primer Extension studies 

Primer extension is used to map the 5' ends of mRNA fragments and 

determine the putative transcription start sites. It is done by annealing a specific 

oligonucleotide primer to a position downstream of 5' end as explained in materials 

and methods. This is extended with reverse transcriptase, which can copy RNA 

template, making a fragment that ends at the 5' end of the template molecule. 

Sequencing reactions as well as the primer extension reactions were run on a 6 % 

sequencing gel. 

The gel was exposed to phosphor-imager plates for 24 hours and the plates 

were scanned to see the digitized image of the gel. The barA- mutant showed 2 fold 

fewer luxS transcripts than the wt visually. The bands from the digitized image were 

quantitated using FUJIFILM Image Gauge version 3.46 under the quant mode. The 

luxS transcript was found to be expressed two to three folds higher in the wt 

compared to the mutants as seen from the quantitation. We observed more than one 

putative transcription start sites, shown marked in the figure below. We quantitated 

the relative strengths for the putative transcription start sites from the digitized image. 

The results have to further be confirmed by using different sets of primers. One of the 

four may be a constitutive promoter and the others may be inducible. 
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Figure 9. Primer Extension Results 
 
Figure 9.A. Relative promoter strengths 
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Figure 9.B. Putatative transcriptional start sites in sequence 

GCATTTGCAGAAGCCTACCGTAATCTGCTGCGTGAAGAGCCGCTGGAAATTCTGC

GCGAAGAGGATTTTGTAGCCGAGCGCGAGGCGTCTGAACGCCGTCAGCAGGAAA

TGGAAGCCGCTGATACCGAACCGTTTGCGGTGTGGCTGGAAAAACACGCCTGAC

GCATTTGCAGAAGCCTACCGTAATCTGCTGCGTGAAGAGCCGCTGGAAATTCTGC

GCGAAGAGGATTTTGTAGCCGAGCGCGAGGCGTCTGAACGCCGTCAGCAGGAAA

TGGAAGCCGCTGATACCGAACCGTTTGCGGTGTGGCTGGAAAAACACGCCTGAC

AGAAAAGAAAAAGGCCACTCGTGAGTGGCCAAAATTTCATCTCTGGAATTCAGGG

ATGATGATAACAAATGCGCGTCTTTCATATACTCAGACTCGCCTGGGAAGAAAG

AGTTCAGAAAATTTTTAAAAAAATTACCGGAGGTGGCTAA

-10

AGAAAAGAAAAAGGCCACTCGTGAGTGGCCAAAATTTCATCTCTGGAATTCAGGG

ATGATGATAACAAATGCGCGTCTTTCATATACTCAGACTCGCCTGGGAAGAAAG

AGTTCAGAAAATTTTTAAAAAAATTACCGGAGGTGGCTAA

-10

ATGCCGTTGTTAGA

TAGCTTCACAGTCGATCATACCCGGATGGAAGCGCCTGCAGTTCGGGTGGCGAAA

ACAATGAACACCCCGCATGGCGACGCAATCACCGTGTTCGATCTGCGCTTCTGCG

TGCCGAACAAAGAAGTGATGCCAGAAAGAGGGATCCATACCCTGGAGCACCTGTT

TG

ATGCCGTTGTTAGA

TAGCTTCACAGTCGATCATACCCGGATGGAAGCGCCTGCAGTTCGGGTGGCGAAA

ACAATGAACACCCCGCATGGCGACGCAATCACCGTGTTCGATCTGCGCTTCTGCG

TGCCGAACAAAGAAGTGATGCCAGAAAGAGGGATCCATACCCTGGAGCACCTGTT

TG

 
9.A. Relative promoter strengths calculated from the digitized image represented  
        in pixel intensities. 
9.B. Promoter region of luxS, putative transcription start site are shown as boxes. 
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3.2.4. Reporter gene analysis 
 

To validate the above results obtained from RT-PCR, Northern blot studies, 

and primer extension, we adopted a genetic approach by creating a plasmid borne 

transcriptional fusion of the luxS and lacZ gene and moved this construct to the 

chromosome of the wt, isogenic barA-, uvrY- and barA-uvrY- double mutants. The 

chromosomal copy of the luxS fusion with the reporter gene would allow us to 

compare the difference in amount of luxS transcript formed in wt and the mutants 

with help of expression studies. 

The strategy used for preparing the luxS::lacZ fusion is shown in Figure 10.A. 

The luxS gene was cloned into the multiple cloning site of vector pSP417 using SalI 

and SmaI sites before a promoterless reporter gene, lacZ. This construct was 

transformed into competent cells. The plasmid was isolated from the transformants 

and cut with the same enzymes to make sure the ~500bp insert was ligated into the 

vector. 

 As shown in the Figure 10.B, the transformants harboring the construct 

showed ~2 log fold more regulation of the reporter gene. The plasmid DNA was then 

sequenced to check for mutations and to further confirm the luxS gene insert.  
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Figure 10. luxS::lacZ cloning and expression 
A .            
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Fig 10A. Multiple cloning site in pSP417 used to clone the promoter region of luxS in 
a promoterless lacZ vector. 
10B. β-galactosidase assay performed to check the activity of the clone. 
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This construct was then moved into the chromosome of the wt and mutant 

strains with help of λ-phage system as described in materials and methods. The fusion 

would have integrated at the att site in the E. coli chromosome. The pure meridiploid 

colonies were stored as well as screened for selecting monolysogens. Ter assay or 

Immunity i434 assay was used to screen monolysogens. DJ140 (λi434), which shows 

plaques with lysogens with more than one cos site (multiple lysogens) and not 

monolysogens, was used in this assay as control and LE392 cells were used as host. 

The lysogens, which showed colonies with both DH140 and LE392, were not used 

for further purification. The monolysogens were screened and stored for further use. 

The wt, isogenic barA mutant, isogenic uvrY- mutant and the double mutant now 

carrying the fusion were used for further luxS expression studies.  

The growth of the strains carrying chromosomal luxS-lacZ fusion were studied 

under various media conditions. The expression of the luxS gene was studied in 

presence and absence of 0.1 %glucose, 60 mM acetate and 500 mM NaCl in the 

SM1005 (wt) and isogenic mutants SM1006, SM1007, SM1009. This was done to 

study if BarA/UvrY play a role in regulating luxS expression in presence of different 

metabolic regulator. The mutant strains were complemented with wild type copy of 

the gene and the β-galactosidase assay was performed to verify the mutants (data not 

shown). 
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Figure 11. Expression of chromosomal copy of luxS::lacZ 
 
a. 

luxS::lacZ  Expression

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

Time in minutes

B
-g

al
 a

ct
iv

ity
 (M

ill
er

 u
ni

ts
)

wt
uvrY-
barA-
barA-uvrY-

β-galactosidase activity to study the difference in luxS::lacZ expression between wild 
type and mutant strains.  
 
b. Expression of luxS::lacZ in wild type compared to mutants in presence of metabolic 
regulators. 

 
Strain  Relevant    Fold Induction a 

Genotype   60mM Na-acetate  500mM NaCl 

 
SM1005  wild type,  2.3 ± (0.2)b  2.0 ± (0.2)  
   luxS-lacZ 
SM1006  barA::kan  1.5 ± (0.3)  1.7 ± (0.6) 
   luxS-lacZ 
SM1007  uvrY::cm  1.5 ± (0.5)  1.9 ± (0.4) 
   luxS-lacZ 
SM1009  barA::kan,   1.8 ± (0.6)  1.9 ± (0.2) 

             uvrY::cm 
            luxS-lacZ 

a Fold induction calculated by formula, induced 
    uninduced 
 b Standard deviation of two independent experiments 
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3.3. Objective: To determine if the barA/uvrY system in E.coli regulates motility 

via flagellar gene expression 

 Introduction and rationale: Earlier literature indicates flagellar synthesis and 

motility are regulated by type IV pili, type III secretion pathways and quorum sensing 

(32, 94). The BarA/UvrY two-component system has been shown to have important 

roles in motility and virulence of different organisms including Salmonella species 

(BarA/SirA) (34), P. aeruginosa (GacS/GacA) (85) and L. pneuomophila (LetA/LetS) 

(39). These systems being homologous to BarA/UvrY, may suggest that the 

BarA/UvrY two-component system may have an important role in motility. The 

direct role of BarA in the motility of E. coli is yet unknown. We observed from the 

preliminary data of the microarray analysis that certain flagellar genes and stress 

response genes in the barA mutant shows a difference in expression profile compared 

to the wild-type. LuxS mediated quorum sensing has a regulatory effect on motility 

(94).  Our preliminary chemiluminescence studies show that BarA regulates AI-2 

accumulation, required for quorum sensing. Also we have seen in our laboratory that 

BarA has a regulatory role in biofilm formation in E. coli K-12 by altering overall 

surface properties. Thus, it may be reasonable to hypothesize that BarA may have a 

regulatory effect on motility by modulating quorum sensing and surface properties. 

Our aim was thus to first determine the effect of BarA and its response regulator 

UvrY on motility of E. coli physiologically by measuring the diameter of swimming 

of the bacteria on soft agar. Secondly we adopted another physiological approach 

coupled to a molecular approach to study the flagellar gene expression by measuring 

reporter gene activity on a fusion vector. Thirdly, we decided to study the presence of 
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cell-surface appendages on the surface of wild type E. coli and isogenic barA-, uvrY- 

and barA-uvrY- mutants. 

3.3.1. Motility assay on TB media  

We studied the swimming motility of the E. coli MG1655∆lac (wild type), 

barA-, uvrY-, barA-/pANA001, barA-/pluxS uvrY-/puvrY, uvrY-/pluxS and barA-

uvrY- strains on 0.25 % Tryptone broth (TB) agar plate. The experiment was repeated 

thrice under similar conditions and comparable results were obtained. 

After incubation at room temperature for 20 hours, the wt E. coli cells were 

found to swim through the soft agar creating a zone of cloudy growth, the diameter of 

which was measured with a ruler. The zone of growth created by swimming motility 

of wt was observed to be larger than barA-, uvrY- and barA-uvrY- (Figure 12). In the 

isogenic barA- mutant, the zone of swimming was decreased by ~2 times, which was 

complemented when wild type barA gene or luxS gene was expressed from a plasmid 

in trans. This suggests barA may regulate motility in a luxS independent or dependent 

way.  

In the isogenic uvrY- mutant, the zone of swimming was also decreased by 

~1.5 times and was infact further decreased when wild type uvrY or luxS gene was 

expressed from a plasmid. These results support the fact that UvrY doesnot have a 

direct role in binding and regulating flagellar gene expression (101). Thus, uvrY may 

regulate motility via both a CsrA/CsrB/CsrC independent and dependent pathway.  
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Figure 12. Swimming motility in soft agar  
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Table 4. Swimming motility results 

 
 

 

Strains  Average Diameter of growth 
region due to swimming  (mm) 

Wild type 34.0 + 0.5 

barA- 16.5 + 0.5 

uvrY- 28 + 0.05 

barA-uvrY-  15.5 + 0.5 

barA-/pbarA 32.5. + 0.5 

barA-/pluxS 33 + 0.5 

uvrY- /puvrY 0.5 + 0.25 

uvrY-/pluxS 18.0+ 0.5 

 82 
 



 

3.3.2. Flagellar gene expression 

Introduction and rationale: We transformed E. coli MG1655∆lac (wt), with a 

reporter gene fusion vector pVS182, pVS183 and pFDCZ6 (a kind gift from Vanessa 

Sperandio). AmpR transformants were selected and restreaked to purify for future use. 

The strains were grown overnight and subcultured twice before sampling. The 

experiment was repeated thrice under similar conditions and comparable results were 

obtained. 

The overnight grown strains were subcultured twice and then samples were 

collected at different time intervals and the β-galactosidase activity was measured as 

explained in materials and methods. The flhD::lacZ expression, determined from the 

β-galactosidase activity, was found to be reduced by approximately 2.0 folds in the 

barA-,1.5 fold in uvrY-, mutants as compared to the wild type E. coli cells (Figure 

13). The flhDC::lacZ expression was found to be reduced 2.5 folds in barA- and 2 

fold in uvrY-. The fliA::lacZ expression was seen to be reduced 1.5 fold in all the 

mutants as determined from the β-galactosidase activity. These results support the 

motility assay results, showing uvrY- swarming more than the barA-. The master 

regulator of flagellar operon is seen down-regulated supporting BarA/UvrY play a 

role in flagellar driven motility. 
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Figure 13. Flagellar gene expression 
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3.3.3. Electron Microscopy Studies 
 

type), its isogenic barA- mutant, uvrY- mutant 

nd barA-uvrY double mutant were grown at 37°C with very mild shaking, to avoid 

rupture of flagella. We used an AMRAY 1820D Scanning Electron Microscope to 

examine the cell surfaces of the bacteria. The SEM pictures (Figure 14) showed that 

the numbers of cell surface appendages on the surface of the isogenic barA-, uvrY- 

and barA-uvrY- mutants are lower compared to the wild type bacteria. Although the 

nature of these appendages was not characterized in this study, the results 

demonstrate that the scarcity of cell surface appendages may be a cause of impaired 

motility in the barA-, uvrY- and barA-uvrY- mutants of E. coli. 

 

The E. coli MG1655∆lac (wild 

a
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Figure 14. Electron Microscopy Study 

 
 

 
 
 
 
 
Upper lane pictures of individual cells at X 25,000 magnification and other lanes of 
clustered cells at X 15,000 magnification using Hitachi S4700 FESEM electron 
microscope (University of Maryland) to see the intercellular communicating linkages. 

 
 
 

wt barA- barA- uvrY-uvrY-wt barA- barA- uvrY-uvrY-
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3.4. Stress Assays 

Objective: To determine if the barA-uvrY system in E.coli alters surface 

properties and plays a role in stress response. 

To adapt to and survive potential stress situations, the bacteria require highly 

specific and temporal regulation of expression/repression of a number of sets of 

genes, which are probably governed by one or more global stress regulators. Studying 

some of these genes that may be involved in regulating survival directly or indirectly 

under any of the stress challenges may be highly informative.  BarA protein, a sensor 

kinase of a two-component system, is one such potential global stress regulator. It has 

also been found that over expression of response regulators of bacterial two 

component systems confer drug resistance by controlling expression of some 

transporter genes (45).  

The strains were challenged with acidic pH 5.0 as that is the environment 

ced in the host macrophages. Along with low pH, the bacteria are challenged with 

active nitric oxide species. Therefore, we challenged the wt, barA-, uvrY- strains to 

r 

mutant would survive. We also found out that in absence of either BarA or UvrY, the 

strains grow as well as the wt at pH 5.0. But, when challenged with 15 mM NaNO2 

(from the titration) at that pH, the mutants are more sensitive to the NaNO2 than the 

wild type.  

The strains were also challenged with osmotic stress and other stressors like NaCl, 

Bile salts, SDS, and Ethidium bromide. NaCl was used as a charged osmotic stressor, 

fa

re

NaNO2 at low pH to see if survival under stress is affected by deletion of the barA o

uvrY genes. First we titrated the minimum concentration of NaNO2 that the barA- 
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bile salts are uncharged osmotic stressors, SDS as a general membrane stressor and 

Ethidium Bromide to study charged molecules membrane transport. 
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Figure 15. Stress Assay Results 
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b. 

Fig.15.a. Percent survival of the different strains when challenged with pH 5.0 and 
pH 5.0 + NaNO2 calculated by the formula, 
 number of bacteria (at different time interval) X 100

1M NaCl

0
10
20
30
40
50
60
70
80
90

100

wt barA- uvrY-

Strains

Pe
rc

en
t S

en
si

tiv
ity

1% Bile Salts

0
10
20
30
40
50
60

0
0

wt barA- uvrY-

Strains

Pe
rc

en
t S

en
si

tiv
ity

100
9
8
70

 
 

100 ug/ml Ethidium bromide 

0
10
20
30
40
50
60
70
80
90

100

wt barA- uvrY-

Strains

Pe
rc

en
t S

en
si

tiv
ity

5% SDS

0
10
20
30
40
50
60
70
80
90

100

wt barA- uvrY-

Strains

Pe
rc

en
t S

en
si

tiv
ity

 
number of bacteria before adding the stressor 
 
b. Percent sensitivity of the different strains when challenged to different stressors 
caculated by, 
decrease in number of bacteria (at different time interval) X 100 
number of bacteria before adding the stressor 
 



 

As seen from the graphs, the barA- and uvrY- are sensitive to NaCl stress. The 

resistance to this osmotic stress is recovered in the barA- partly when wt copy of the 

gene is provided in trans and fully when luxS gene is provided in trans on a plasmid 

(data not shown). Thus, barA and uvrY may both play a role in providing resistance 

against charged osmotic stress. The barA- and the uvrY- are almost as resistant to 5 % 

SDS challenge as wt. BarA and UvrY may not play a significant role in resistance to 

general membrane stress. Further, Ethidium Bromide as seen 24 hrs post challenge, 

has a greater effect on the uvrY- mutant than the wt. UvrY may play a significant role 

in charged molecule membrane transport as suggested by these results. We see that 

 salts do not have a great effect on the growth or survival of the bacteria in 

resence or absence of the BarA/UvrY.  

bile

p
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CHAPTER 4 

Discussion & Summary 

BarA/UvrY two-component signal transduction system has been found in E. 

coli. Biochemical and genetic studies demonstrate direct phosphotransfer from BarA 

to UvrY (76) demonstrating UvrY to be the cognate response regulator for BarA. 

BarA in E. coli was reported to activate transcription of the rpoS gene, which encodes 

a sigma factor involved in the expression of stationary phase and stress response 

genes. UvrY, independent of BarA, has been shown to negatively regulate rpoS (72). 

The regulation of rpoS is very complex, but BarA regulates it probably with the help 

of a yet unidentified response regulator (43). 

Two-component systems homologous to BarA/UvrY have been identified in 

other gram-negative species like BarA/SirA in S. enterica, ExpS/ExpA or GacS/GacA 

in E. carotovora, and GacS/GacA in Pseudomonas (41). Some of these TCSs have 

been shown to be involved in regulation of virulence traits. SirA was recently shown 

to regulate motility and virulence through independent pathways in S. enterica (99). 

The hypothesis tested in this study was that BarA/UvrY TCS plays a role in 

adaptation in E. coli. The studies were done using wild type E. coli MG1655 invitro. 

The BarA/UvrY system is shown to be needed for metabolic switching 

between glycolytic and gluconeogenetic carbon sources, a function for adaptation to 

new environments (75). UvrY recently is reported to autoregulate the expression of 

barA gene. BarA/UvrY plays a role in biofilm formation via the CsrA/CsrB/CsrC 

system (98). The global regulator CsrA (carbon storage regulator) activity in E. coli is 
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antagonized by CsrB and CsrC. UvrY and CsrA play a role in activation of CsrC. 

Their studies also indicate a CsrA/CsrB/CsrC independent role of UvrY in 

modulating cellular meta ession of the uvrY gene 

(106). It has been shown that Salmonella can detect AHL produced by other species 

with help of SdiA (90). E. coli is not yet known to synthesize AHL. In Pseudomonas, 

UvrY homologue GacA regulates production of AHLs for QS.  

bolism. The SdiA regulates expr
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 Figure 15. Methyl cycle and BarA/UvrY 
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The QS molecule AI-2 has been suggested to have a role in virulence in E. 

coli. Type III secretion apparatus of EPEC and EHEC, which lead to formation of 

attachment and effacing lesions, have been shown to be dependent on luxS (94). DNA 

microarray analysis in E. coli suggested that 5-10% of the genome is affected by AI-2 

signaling (21). In V. cholerae, both AI-2 and AI-1 are used to control virulence gene 

expression and biofilm formation. The hypothesis of part of this study was that the 

BarA/UvrY TCS may regulate AI-2 production in E. coli via luxS.  

We used Microarray technology, which allows global comparative analyses of 

gene content among different bacterial strains, to study differential gene expression in 

the wt and barA-, uvrY- and barA-uvrY- strains. From analysis of the microarray 

results, we see several membrane transport genes and genes related to stress response 

to be differentially regulated. We also see that the ygaG gene and pfs genes involved 

in synthesis of the active AI-2 molecule are down regulated in barA- and barA-uvrY-. 

We chose to study the luxS gene not only because there is no known regulatory 

mechanism for it, but also because it plays a role in regulating virulence in EPEC and 

EHEC (94,102,32).  

To validate the results from the microarray, we used three independent genetic 

experiments. The RT-PCR results using LightCycler indicate that both the luxS and 

pfs gene transcripts are lower in fold abundance in the mutant strains compared to the 

wt. We also performed reverse transcription followed by PCR and ran the samples on 

agarose gels. The pixel quantitation using this method, though crude, also shows a 

difference in the transcript level when comparing the wt and the mutants. As seen in 

the results section, we saw ~6-fold less luxS transcript in barA-, and 4-fold in uvrY- 
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and barA/uvrY- compared to the wild type. We also checked if expression of pfs gene, 

which is also involved in AI-2 synthesis like luxS, is affected by the BarA/UvrY 

system. Results show that the pfs gene is ~6, 5 and 3-fold less expressed in the barA, 

uvrY and barA/uvrY mutants respectively compared to the wild type E. coli. Further, 

the results from quantitation of the image of the Northern blots indicate a ~2.5 fold 

abundance in luxS transcript in the wt compared to the barA mutant. The transcript 

level is comparable again to the wild type when a wild type copy of the barA gene is 

complemented on a plasmid in the mutant. We did not perform the northern blot 

analysis for the uvrY mutant and the double mutant due to lack of time. The results 

from the RT-PCR and Northern blot encouraged us to check if the promoter strength 

of the luxS gene is actually affected by the BarA/UvrY system. To do this, we 

performed Primer Extension studies. Both the RT-PCR and Northern blot studies 

support the microarray data that suggest that the BarA/UvrY TCS indirectly or 

directly play a role in regulation of luxS. The primer extension results show more than 

one transcription start sites. This may be a real result but to confirm that it is not an 

artifact of non-specific primer annealing, experiments with different sets of primers 

have to be performed in future. Also the altered levels of sequence-specific basal 

transcription factors may contribute to the understanding of the role of BarA/UvrY in 

affecting luxS expression. As we see the strengths of the putative promoters are 

different in the wt and mutants, we suspect that only one promoter must be 

constitutive, and the others inducible. But, as we could not standardize this 

experiment, we moved to a more suitable genetic approach. 
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To validate the above results obtained from RT PCR, northern blot studies, 

and primer extension, we adopted another genetic approach by creating a plasmid 

borne transcriptional fusion of the promoter of luxS and promoter-less lacZ gene and 

moved this construct to the chromosome of the wt, isogenic barA- and uvrY-. The 

chromosomal copy of the luxS fusion with the reporter gene would allow us to 

compare the difference in amount of luxS transcript formed in wt and the mutants 

with help of expression studies in vitro. From the results we see that the luxS 

expression as determined from the lacZ activity, is reduced in the wild type E. coli 

compared to its isogenic barA, uvrY and double mutants ~2 folds as shown in the 

graphs. It is not completely absent which indicates that this BarA/UvrY play a role 

above the basal level. This result encouraged us to check whether this regulatory 

effect of the BarA/UvrY on luxS is also growth phase dependent like AI-2. Surette 

and Bassler (1999) have shown that AI-2 is produced in growth media rich in 

glucose. As luxS is involved in AI-2 synthesis, we decided to check the effect of 

deletion of barA and uvrY on the expression of luxS in presence of glucose. Further, it 

has been reported that when high levels of acetate are provided exogenously to 

growth medium, the LuxS protein is up regulated (51). Entry into stationary phase 

coincides with the loss of glucose and accumulation of acetate. Therefore, we decided 

to also compare the effect of such metabolic regulators, acetate, glucose and NaCl 

upon expression of luxS in the wt versus the mutants. Our results show that in 

presence of acetate in the media, the expression of the luxS::lacZ is induced in the wt 

as well as the barA- and uvrY- strains. This suggests that acetate mediated expression 

of luxS is independent of BarA/UvrY. In presence of osmotic shock (500 mM NaCl), 
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we see BarA/UvrY independent regulation, reducing the expression of the luxS (data 

not shown). In presence of glucose, we see repression of luxS::lacZ in exponential 

phase in the wt strain. This repression was relieved in the uvrY- strain and not in the 

barA- strain suggesting a stronger role of UvrY in affecting expression of the 

luxS::lacZ fusion. 

The role of BarA in the regulation of flagella biosynthesis and motility has yet 

not been clearly defined in E. coli. The orthologues/homologues of BarA are involved 

not only in regulation of the flagellar biosynthesis but also in attachment/invasion 

process during infection. In E. coli, quorum sensing through signaling molecule AI-2 

is found to be involved in motility and flagellar gene expression. The microarray 

results also showed some flagella assembly genes to be differentially regulated in the 

mutants compared to the wt. Our preliminary chemiluminiscence studies on quorum 

sensing had shown that BarA regulates AI-2 accumulation which is required for 

quorum sensing. We performed some physiological studies to see if swimming 

motility of E. coli in 0.25 % TB Agar is altered in the barA -, uvrY- and barA-uvrY- 

strains. The isogenic barA- mutant showed a 2.0 fold, uvrY- mutant 1.5 fold and 

barA-uvrY- double mutant 2.5 fold decrease in motility when compared to the wild 

type. This defect in swimming motility in barA- is restored when we express the wt 

copy of barA gene on a plasmid. Also, the defect of the barA- is restored when the 

mutant is complemented with luxS on a plasmid. Thus, BarA probably induces the 

production of the AI-2 in the medium, by transcriptionally activating luxS gene 

expression. This increase in the AI-2 production modulates the quorum sensing 

mechanism of the bacteria and that in turn regulates the motility through some other 
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two-component system.  Surprisingly, when uvrY is transformed on a plasmid in 

uvrY-, the strain does not swim at all. Moreover, luxS gene doesnot restore the 

motility in uvrY- either. Thus, from the swimming results we see that UvrY probably 

regulates motility partially by a BarA independent pathway, with yet unidentified 

intermediates. 

The flhDC flagellar gene expression studies in the wt and isogenic mutant 

strains also show that in the barA and uvrY mutants, the flhDC::lacZ expression is 

less than that in the wt. Results show that barA, more than uvrY affects motility and 

flagellar gene expression of the flhDC operon. The array results support the 

expression studies. From the array we see genes like mglA and oppA, which are 

repressed by FlhD/FlhC, are found to be repressed in the mutants. The over 

expression of the flhDC may probably due to over expression of csrA, in absence of 

barA/uvrY, which activates the flhDC operon (100). It has been shown that the uvrY 

does not directly bind to and affect flagellar gene expression via flhDC (101). 

Probably uvrY has an effect on flhDC via another pathway independent of the 

csrA/csrB/csrC system.  Another important observation from studies in the lab 

suggests that the regulatory effect of BarA is not mediated through RpoS, the 

response regulator of BarA-mediated signal transduction under several stress 

conditions including oxidative stress.  

This observation was confirmed by studies done using culture supernatant of 

the wild type bacteria from a specific phase of growth, which is rich in AI-2 

molecules. All the strains showed greater extent of motility than that when the culture 

media was collected from a luxS deficient strain. Moreover, when the percentage of 
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motility is compared with the wild type, it was observed that barA mutant had 

restored its motility defect to a considerable extent when AI-2 rich media was used 

instead of nutrient media.   

Thus, it can be concluded that BarA/UvrY system is involved in the swimming 

motility of the E. coli and it exerts its effect by modulating luxS gene expression and 

thereby quorum sensing. However, further work on the regulatory effect of 

BarA/UvrY on the specific subunits of flagella or its motor apparatus will clearly 

define the exact role of BarA in the flagella derived swimming motility of E. coli. 

The role of quorum sensing mechanism in the motility and its link with the BarA 

mediated signal transduction also needs to be extensively studied in the future.    

Since our swimming motility and flagellar gene expression results suggest that 

BarA/UvrY is involved in regulating motility of E. coli, we speculated that it might 

alter those properties by altering cell surface appendages. Thus, we proceeded to 

study the presence of flagellar appendages on the surface of wild type and barA-, 

uvrY- and barA-uvrY- double mutant of E. coli by SEM. The SEM images 

demonstrate that barA-, uvrY- and barA-uvrY- mutants have fewer cell surface 

appendages than the wild type bacteria. We, however, do not have an idea about the 

type of cell surface appendages, i.e. the actual identity of those cell surface 

appendages that showed a decrease in the appearance upon mutation in the barA 

gene. We also did not find out whether barA/uvrY system regulates the number of the 

cell surface appendages by modulating their biosynthetic genes or their assembly 

process. Further studies using immuno-electron microscopy with help of antibodies 

specific to one or more of the subunits of the different cell surface appendages may 
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reveal their identities. Thus the site of action of BarA/UvrY in regulating the 

appearance of cell surface appendages needs to be studied. 

Further, experiments were done to study the difference in survival and growth 

of MG1655 wt E. coli and its isogenic barA- and uvrY- mutants under different 

potential stresses found within the host. Nitric oxide (NO), an intermediate in 

microbial denitrification, is a free radical with multiple and diverse biological 

functions. NO, secreted by host immune cells, also serves as broad-spectrum 

antibiotic, anti-viral and anti-tumor agent. Nitric oxide reductases and dioxygenases 

in many pathogenic bacteria convert NO to N2O or nitrate respectively. E. coli and 

related organisms contain norR orthologues which may control defense again NO and 

its reactive nitrogen intermediates (RNI’s). Microarray data showed nirC, a 

membrane protein affecting nitrite reductase to be down regulated in mutants. We 

therefore challenged the strains with NaNO2 stress as the NO generator, to study the 

effect physiologically. Results show that overall the NO stress reduces the survival of 

all the strains when pH of the growth medium is acidic. The mutants are more 

sensitive to this stress environment than the wt. We also challenged the wt and 

mutants to osmotic stress using 1M NaCl. As seen from the results, the barA- and 

uvrY- are sensitive to NaCl stress, whereas they wild type is resistant. The resistance 

to this osmotic stress is recovered in the barA- partly when wt copy of barA gene is 

provided and fully when luxS gene is provided in trans on a plasmid 

Pathogenic bacteria are resistant to bile salts, probably due to both low 

permeability of outer bilayer membrane as well as due to active efflux mechanisms. 

Cholate and Deoxycholate are the most abundant bile salts in humans. We therefore 
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tried to determine if the mutants were sensitive to these bile salts once the barA and 

uvrY are deleted. It is seen from the results that the wt and the mutants have almost 

the same survival rate in presence of bile salts. This suggests that the bile salt 

resistance of E. coli is independent of the BarA/UvrY system.   

Multidrug resistance (Mdr) proteins have drawn attention of many researchers 

in the past few years. Till date, the basics of transport related Mdr are still not clear. 

Some bacterial Mdr proteins recognize antibiotics that are uncharged in physiological 

solutions as well as cationic drugs. Ethidium Bromide, which represents charged 

substrates, has been used in this study. Mutations that cause alteration in outer 

membrane permeability of the cells, result in higher susceptibility to hydrophobic 

antibiotics and detergents (13). This is probably due to leakage of periplasmic 

proteins into the medium Ethidium bromide, as seen 24 hrs post challenge, has a 

greater effect on the uvrY- and barA-uvrY- mutants than the wt.  The sensitivity of the 

mutants to SDS was studied to examine the permeability of the outer membrane to 

hydrophobic agents. The barA- is more sensitive than the uvrY- and wt to SDS 

challenge. 

Our array results show that several genes encoding membrane transporters 

like the malE, dppA, ptsG, were over expressed in the mutants compared to the wild 

type bacteria. This may mean that the barA and uvrY system directly or indirectly 

regulate some transporters which may help in resistance towards stress. From the 

survival assays we see that the sensitivity to certain types of stressors is increased in 

mutants, which may be partly due to the over expression of some of the transport 

proteins and other regulators involved in the adaptation process. Thus probably 
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BarA/UvrY may affect membrane transport and thereby overall metabolism of the 

organism. The mechanism is still illusive and further details of the genetic players 

have to be delineated. This studies help give an idea that the BarA and UvrY 

individually as well as together could be potential target to study bacterial stress 

resistance mechanisms. 

The QS molecule AI-2 has been suggested to have a role in virulence in E. 

coli. Type III secretion apparatus of EPEC and EHEC, which lead to formation of 

attachment and effacing lesions, have been shown to be dependent on luxS (94). 

DNA microarray analysis in E. coli suggested that 5-10% of the genome is affected 

by AI-2 signaling (21). In V. cholerae, both AI-2 and AI-1 are used to control 

virulence gene expression and biofilm formation. The hypothesis of part of this study 

was that the BarA/UvrY TCS may regulate AI-2 production in E. coli via luxS.  

We used Microarray technology, which allows global comparative analyses of 

gene content among different bacterial strains, to study differential gene expression in 

the wt and barA-, uvrY- and barA-uvrY- strains. From analysis of the microarray 

results, we see several membrane transport genes and genes related to stress response 

to be differentially regulated. We also see that the ygaG gene and pfs genes involved 

in synthesis of the active AI-2 molecule are down regulated in barA- and barA-uvrY-. 

We chose to study the luxS gene not only because there is no known regulatory 

mechanism for it, but also because it plays a role in regulating virulence in EPEC and 

EHEC (94,102,32).  

To validate the results from the microarray, we used three independent genetic 

experiments. The RT-PCR results using LightCycler indicate that both the luxS and 
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pfs gene transcripts are lower in fold abundance in the mutant strains compared to the 

wt. We also performed reverse transcription followed by PCR and ran the samples on 

agarose gels. The pixel quantitation using this method, though crude, also shows a 

difference in the transcript level when comparing the wt and the mutants. As seen in 

the results section, we saw ~6-fold less luxS transcript in barA-, and 4-fold in uvrY- 

and barA/uvrY- compared to the wild type. We also checked if expression of pfs gene, 

which is also involved in AI-2 synthesis like luxS, is affected by the BarA/UvrY 

system. Results show that the pfs gene is ~6, 5 and 3-fold less expressed in the barA, 

uvrY and barA/uvrY mutants respectively compared to the wild type E. coli. Further, 

the results from quantitation of the image of the Northern blots indicate a ~2.5 fold 

abundance in luxS transcript in the wt compared to the barA mutant. The transcript 

level is comparable again to the wild type when a wild type copy of the barA gene is 

complemented on a plasmid in the mutant. We did not perform the northern blot 

analysis for the uvrY mutant and the double mutant due to lack of time. The results 

from the RT-PCR and Northern blot encouraged us to check if the promoter strength 

of the luxS gene is actually affected by the BarA/UvrY system. To do this, we 

performed Primer Extension studies. Both the RT-PCR and Northern blot studies 

support the microarray data that suggest that the BarA/UvrY TCS indirectly or 

directly play a role in regulation of luxS. The primer extension results show more than 

one transcription start sites. This may be a real result but to confirm that it is not an 

artifact of non-specific primer annealing, experiments with different sets of primers 

have to be performed in future. Also the altered levels of sequence-specific basal 

transcription factors may contribute to the understanding of the role of BarA/UvrY in 
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affecting luxS expression. As we see the strengths of the putative promoters are 

different in the wt and mutants, we suspect that only one promoter must be 

constitutive, and the others inducible. But, as we could not standardize this 

experiment, we moved to a more suitable genetic approach. 

To validate the above results obtained from RT PCR, northern blot studies, 

and primer extension, we adopted another genetic approach by creating a plasmid 

borne transcriptional fusion of the promoter of luxS and promoter-less lacZ gene and 

moved this construct to the chromosome of the wt, isogenic barA- and uvrY-. The 

chromosomal copy of the luxS fusion with the reporter gene would allow us to 

compare the difference in amount of luxS transcript formed in wt and the mutants 

with help of expression studies in vitro. From the results we see that the luxS 

expression as determined from the lacZ activity, is reduced in the wild type E. coli 

compared to its isogenic barA, uvrY and double mutants ~2 folds as shown in the 

graphs. It is not completely absent which indicates that this BarA/UvrY play a role 

above the basal level. This result encouraged us to check whether this regulatory 

effect of the BarA/UvrY on luxS is also growth phase dependent like AI-2. Surette 

and Bassler (1999) have shown that AI-2 is produced in growth media rich in 

glucose. As luxS is involved in AI-2 synthesis, we decided to check the effect of 

deletion of barA and uvrY on the expression of luxS in presence of glucose. Further, it 

has been reported that when high levels of acetate are provided exogenously to 

growth medium, the LuxS protein is up regulated (51). Entry into stationary phase 

coincides with the loss of glucose and accumulation of acetate. Therefore, we decided 

to also compare the effect of such metabolic regulators, acetate, glucose and NaCl 

 106 
 



 

upon expression of luxS in the wt versus the mutants. Our results show that in 

presence of acetate in the media, the expression of the luxS::lacZ is induced in the wt 

as well as the barA- and uvrY- strains. This suggests that acetate mediated expression 

of luxS is independent of BarA/UvrY. In presence of osmotic shock (500 mM NaCl), 

we see BarA/UvrY independent regulation, reducing the expression of the luxS (data 

not shown). In presence of glucose, we see repression of luxS::lacZ in exponential 

phase in the wt strain. This repression was relieved in the uvrY- strain and not in the 

barA- strain suggesting a stronger role of UvrY in affecting expression of the 

luxS::lacZ fusion. 

The role of BarA in the regulation of flagella biosynthesis and motility has yet 

not been clearly defined in E. coli. The orthologues/homologues of BarA are involved 

not only in regulation of the flagellar biosynthesis but also in attachment/invasion 

process during infection. In E. coli, quorum sensing through signaling molecule AI-2 

is found to be involved in motility and flagellar gene expression. The microarray 

results also showed some flagella assembly genes to be differentially regulated in the 

mutants compared to the wt. Our preliminary chemiluminiscence studies on quorum 

sensing had shown that BarA regulates AI-2 accumulation which is required for 

quorum sensing. We performed some physiological studies to see if swimming 

motility of E. coli in 0.25 % TB Agar is altered in the barA -, uvrY- and barA-uvrY- 

strains. The isogenic barA- mutant showed a 2.0 fold, uvrY- mutant 1.5 fold and 

barA-uvrY- double mutant 2.5 fold decrease in motility when compared to the wild 

type. This defect in swimming motility in barA- is restored when we express the wt 

copy of barA gene on a plasmid. Also, the defect of the barA- is restored when the 
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mutant is complemented with luxS on a plasmid. Thus, BarA probably induces the 

production of the AI-2 in the medium, by transcriptionally activating luxS gene 

expression. This increase in the AI-2 production modulates the quorum sensing 

mechanism of the bacteria and that in turn regulates the motility through some other 

two-component system.  Surprisingly, when uvrY is transformed on a plasmid in 

uvrY-, the strain does not swim at all. Moreover, luxS gene doesnot restore the 

motility in uvrY- either. Thus, from the swimming results we see that UvrY probably 

regulates motility partially by a BarA independent pathway, with yet unidentified 

intermediates. 

The flhDC flagellar gene expression studies in the wt and isogenic mutant 

strains also show that in the barA and uvrY mutants, the flhDC::lacZ expression is 

less than that in the wt. Results show that barA, more than uvrY affects motility and 

flagellar gene expression of the flhDC operon. The array results support the 

expression studies. From the array we see genes like mglA and oppA, which are 

repressed by FlhD/FlhC, are found to be repressed in the mutants. The over 

expression of the flhDC may probably due to over expression of csrA, in absence of 

barA/uvrY, which activates the flhDC operon (100). It has been shown that the uvrY 

does not directly bind to and affect flagellar gene expression via flhDC (101). 

Probably uvrY has an effect on flhDC via another pathway independent of the 

csrA/csrB/csrC system.  Another important observation from studies in the lab 

suggests that the regulatory effect of BarA is not mediated through RpoS, the 

response regulator of BarA-mediated signal transduction under several stress 

conditions including oxidative stress.  
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This observation was confirmed by studies done using culture supernatant of 

the wild type bacteria from a specific phase of growth, which is rich in AI-2 

molecules. All the strains showed greater extent of motility than that when the culture 

media was collected from a luxS deficient strain. Moreover, when the percentage of 

motility is compared with the wild type, it was observed that barA mutant had 

restored its motility defect to a considerable extent when AI-2 rich media was used 

instead of nutrient media.   

Thus, it can be concluded that BarA/UvrY system is involved in the 

swimming motility of the E. coli and it exerts its effect by modulating luxS gene 

expression and thereby quorum sensing. However, further work on the regulatory 

effect of BarA/UvrY on the specific subunits of flagella or its motor apparatus will 

clearly define the exact role of BarA in the flagella derived swimming motility of E. 

coli. The role of quorum sensing mechanism in the motility and its link with the BarA 

mediated signal transduction also needs to be extensively studied in the future.    

Since our swimming motility and flagellar gene expression results suggest that 

BarA/UvrY is involved in regulating motility of E. coli, we speculated that it might 

alter those properties by altering cell surface appendages. Thus, we proceeded to 

study the presence of flagellar appendages on the surface of wild type and barA-, 

uvrY- and barA-uvrY- double mutant of E. coli by SEM. The SEM images 

demonstrate that barA-, uvrY- and barA-uvrY- mutants have fewer cell surface 

appendages than the wild type bacteria. We, however, do not have an idea about the 

type of cell surface appendages, i.e. the actual identity of those cell surface 

appendages that showed a decrease in the appearance upon mutation in the barA 
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gene. We also did not find out whether barA/uvrY system regulates the number of the 

cell surface appendages by modulating their biosynthetic genes or their assembly 

process. Further studies using immuno-electron microscopy with help of antibodies 

specific to one or more of the subunits of the different cell surface appendages may 

reveal their identities. Thus the site of action of BarA/UvrY in regulating the 

appearance of cell surface appendages needs to be studied. 

Further, experiments were done to study the difference in survival and growth 

of MG1655 wt E. coli and its isogenic barA- and uvrY- mutants under different 

potential stresses found within the host. Nitric oxide (NO), an intermediate in 

microbial denitrification, is a free radical with multiple and diverse biological 

functions. NO, secreted by host immune cells, also serves as broad-spectrum 

antibiotic, anti-viral and anti-tumor agent. Nitric oxide reductases and dioxygenases 

in many pathogenic bacteria convert NO to N2O or nitrate respectively. E. coli and 

related organisms contain norR orthologues which may control defense again NO and 

its reactive nitrogen intermediates (RNI’s). Microarray data showed nirC, a 

membrane protein affecting nitrite reductase to be down regulated in mutants. We 

therefore challenged the strains with NaNO2 stress as the NO generator, to study the 

effect physiologically. Results show that overall the NO stress reduces the survival of 

all the strains when pH of the growth medium is acidic. The mutants are more 

sensitive to this stress environment than the wt. We also challenged the wt and 

mutants to osmotic stress using 1M NaCl. As seen from the results, the barA- and 

uvrY- are sensitive to NaCl stress, whereas they wild type is resistant. The resistance 
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to this osmotic stress is recovered in the barA- partly when wt copy of barA gene is 

provided and fully when luxS gene is provided in trans on a plasmid 

Pathogenic bacteria are resistant to bile salts, probably due to both low 

permeability of outer bilayer membrane as well as due to active efflux mechanisms. 

Cholate and Deoxycholate are the most abundant bile salts in humans. We therefore 

tried to determine if the mutants were sensitive to these bile salts once the barA and 

uvrY are deleted. It is seen from the results that the wt and the mutants have almost 

the same survival rate in presence of bile salts. This suggests that the bile salt 

resistance of E. coli is independent of the BarA/UvrY system.   

Multidrug resistance (Mdr) proteins have drawn attention of many researchers 

in the past few years. Till date, the basics of transport related Mdr are still not clear. 

Some bacterial Mdr proteins recognize antibiotics that are uncharged in physiological 

solutions as well as cationic drugs. Ethidium Bromide, which represents charged 

substrates, has been used in this study. Mutations that cause alteration in outer 

membrane permeability of the cells, result in higher susceptibility to hydrophobic 

antibiotics and detergents (13). This is probably due to leakage of periplasmic 

proteins into the medium Ethidium bromide, as seen 24 hrs post challenge, has a 

greater effect on the uvrY- and barA-uvrY- mutants than the wt.  The sensitivity of the 

mutants to SDS was studied to examine the permeability of the outer membrane to 

hydrophobic agents. The barA- is more sensitive than the uvrY- and wt to SDS 

challenge. 

Our array results show that several genes encoding membrane transporters 

like the malE, dppA, ptsG, were over expressed in the mutants compared to the wild 
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type bacteria. This may mean that the barA and uvrY system directly or indirectly 

regulate some transporters which may help in resistance towards stress. From the 

survival assays we see that the sensitivity to certain types of stressors is increased in 

mutants, which may be partly due to the over expression of some of the transport 

proteins and other regulators involved in the adaptation process. Thus probably 

BarA/UvrY may affect membrane transport and thereby overall metabolism of the 

organism. The mechanism is still illusive and further details of the genetic players 

have to be delineated. This studies help give an idea that the BarA and UvrY 

individually as well as together could be potential target to study bacterial stress 

resistance mechanisms. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 112 
 



 

4.2 Summary 

In summary, this study demonstrates that BarA/UvrY TCS in Escherichia coli 

K-12 is involved in several important processes that are required for adaptation of the 

organism to unfavorable environments. BarA/UvrY regulates these processes by 

altering genes involved in adaptive processes. These genes not only alter the cellular 

metabolism but also are genes involved in several biosynthetic pathways. However, 

this study did not specifically identify the actual signaling mechanisms or the 

downstream signaling molecules involved in these pathways. Figure 16 shows a 

schematic representation of probable signal transduction pathways based on this and 

previous research knowledge. BarA/UvrY may act independently or together to 

partially regulate genes involved in adaptive response. Motility is found to be 

regulated both independent of each other as well as together by BarA/UvrY. The 

BarA/UvrY may probably play a role in methyl cycle by regulation SAM (S-adenosyl 

methionine) breakdown, specifically via luxS. Thus this TCS may help in 

detoxification of methyl cycle intermediates and in turn synthesis of auto inducers AI-

2/AI-3 required for quorum sensing. UvrY plays a role in regulation of luxS 

expression in the presence of glucose. Future research should focus on finding what 

other genes are involved with this system in this process. In short, the actual identity 

of up/downstream signaling molecules should be determined to verify the direct 

regulatory effect of BarA/UvrY on them. The work should also be extrapolated in 

pathogenic strains of E. coli to extensively study the infective process. 
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