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ABSTRACT

Title of Thesis: Filtering Results for a Joint Control-Decoding Problem in
Optical Communications
John A. Gubner, Master of Science, 1985
Thesis directed by: Prakash Narayan
Assistant Professor

Electrical Engineering Department

We consider a doubly-stochastic time-space Poisson-process model for a direct-detection
receiver in an optical communication system. Using a Bayesian decision approach to specify
the design of the receiver, we encounter a likelihood ratio which, in general, is a function of a
certain conditional expectation. We show how the design of the receiver leads to what we call
the Joint Control-Decoding Problem. In a degenerate case, we completely solve the Joint
Control-Decoding Problem and compute the conditional expectation mentioned. In the gen-
eral case, we cannot compute the conditional expectation mentioned above, and hence, cannot
proceed to solve the Joint Control-Decoding Problem; however, in order to gain insight into
the general filtering problem given time-space point-process observations, we attempt to apply
known filtering methods to the computation of a related conditional expectation. Finally, we
consider linear estimates to substitute for the needed conditional expectation. In the case of a
deterministic control, we reduce the linear estimation problem to the solution of a Fredholm
integral equation. In the final chapter, we present a discrete-time version of our model which
we hope will render the corresponding Discrete-Time Joint Control-Decoding Problem more

tractable.
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CHAPTER 1

INTRODUCTION

I. An Optical Communication System

Consider the optical communication system shown in Figure 1. Here, an optical source
transmits binary data by suitably modulating the intensity of a laser beam directed at the
receiver. Let T be a fixed, positive constant. At time {= 0, m ( 0 ) arrives at the optical
source. During the interval [0, T'], the optical source modulates the intensity of the laser
beam in accordance with whether m ( 0 ) represents a *“*0’”” or a ‘‘1.”” Also during this time
interval, the receiver observes the incident beam. At time t=—= T, the receiver produces its
decision nAz (T) as to whether a “‘0’” or a “‘1”” was sent. This process is repeated on the inter-

vals [T, 2T), [2T, 3T], and so on.

We assume that the receiver is a direct-detection device, by which we mean that the
incident laser beam proceeds more or less unaltered to a photodetector, and that the output
of that photodetector is then proportional to the intensity of the incident beam. This is in
contrast to a heterodyne system in which the receiver generates a local laser beam to coincide
physically with the incident laser beam. In this case the output of the photodetector oscil-
lates at the frequency difference between the incident beam and the local beam (see Harger
(1], pp. 1-6).

Refering again to Figure 1, if the optical source or the receiver is subject to vibrations,
or if the laser beam passes through a turbulent atmosphere, the spot of laser light at the
receiver will move randomly over the receiver’s optical detection equipment [2]. If no action is
taken, the receiver may eventually fail to intercept the laser beam completely, or even fail to
intercept the beam at all. Hence, some type of tracking and control system must be incor-

porated into the receiver’s structure in order to ensure continuous interception of the beam.



The major subsystems of a direct-detection receiver are shown in Figure 2. Figure 2 is
adapted from Figure 1 in [2], and hence, so is the following discussion.

The beam-acquisistion and fine-tracking equipment includes ‘‘... the collection optics, such as
a telescope, and any spatial or temporal filtering used to reduce the effects of background ra-
diation... [This equipment also includes] the elements used to effect tracking to maintain opti-
cal alignment. These might include servo-driven gimbal arrangements, bender bimorphs, and
Risley prisms, all of which are electromechanical devices... These devices are assumed to be
described by linear, stochastic differential-equations. This does not seem to be a restrictive
assumption for the limited range of operation associated with the ‘fine-tracking’ mode of
operation that we shall emphasize. Also, it is consistent with the linear, ordinary differential-
equation models found in textbooks for most electromechanical devices.” [2]

Initially, the beam-acquisition controller is used to direct the beam-acquisition and fine-
tracking equipment to acquire the laser beam. This ensures that when the fine-tracking
controller-decoder is activated, laser light will be passing through the optical processor and
photodetector subsystem.

The purpose of the optical processor *‘is to convert variations in the angle of arrival of the in-
cident beam of light into variations in the position of a spot of light on the active surface of
the photodetector. This can be accomplished with a lens [system].” [2]

We assume that the receiver has initially acquired the beam and that laser light is striking the
photodetector surface at the receiver. We ailso assume that the fine-tracking controller-
decoder (hereafter refered to as simply the controller-decoder) has been engaged and is direct-
ing the beam-acquisition and fine-tracking equipment (hereafter refered to as simply the fine-
tracking equipment) to compensate for the random motions of the spot of laser light at the
photodetector [2].

Our primary concern is the design of the controller-decoder. This subsystem generates
both the estimate, n;(T), of the message being sent, m ( 0 ), as well as the control signal,
{ U, OSt ST }, used to drive the fine-tracking equipment. Both controller subsystems are
driven by the observations, G,, which are produced by the photodetector. The observations
G; consist of the times and locations at which photoelectrons are generated in the receiver’s
photodetector up to time t. Based on the input { G;, 0<t <T }, the controller-decoder

must generate the two outputs, m (7 ) and { ¥,, 0<t <T }, in an optimal way.

In [2] the controller-decoder is split into two sub-units which operate independently (see
Figure 3), a fine-tracking controller subsystem and a communication subsystem. In [2, 3] the
fine-tracking controller generates a signal { u,, 0<t <T } which will minimize a certain qua-

dratic cost functional (see equation (2.29) and the Kemark at the end of Chapter 2). In [2] it



is assumed that the photodetector has an infinite photosensitive surface which is identified
with the Euclidean plane, R®>. Under this assumption, a formula for u, is derived in (3]. Also
in [2], a communication subsystem is considered in which maximum-likelihood estimates of

message sequences are generated. Details are found in [4].

The goal in designing a receiver is to minimize the probability of a decoding error. It is
not at all clear that in the system alluded to in the previous paragraph, generating
{w,0<t<T } to satisfy the criterion mentioned above, will minimize the probability of a
decoding error. Therefore, we shall consider the problem of designing a controller-decoder in
which it is not assumed a priori that the fine-tracking controller and the communication sub-
system will operate independently. This leads to the Joint Control-Decoding Problem we dis-
cuss in Section II. Further, we consider not only the probabilistic implications of the assump-
tion that the photodetector has an infinite photosensitive surface, but we also examine the

difficulties encountered when this assumption is dropped.

II. The Joint Control-Decoding Problem

As indicated in Section I, the design of the controller-decoder is related to the solution
of an optimization problem. In Section IV of Chapter 2, we let { u;, 0<¢t<T } be any pro-
cess generated from the observations { G,, 0<t<T } in a non-anticipative way. Using a
Bayesian decision approach, we require a decoding rule which will minimize the probability of

a decoding error, p, . This implies decoding using the likelihood ratio test
H,

Ly 1,

>
<
H,
where Ly is the likelihood ratio function, H, is the hypothesis that m (0) = 1, H, is the

hypothesis that m (0) = 0, and 1 is the threshold (we use the minimum probability of error

cost criterion, and assume equally likely hypotheses). Now, the probability of a decoding



error is given by
1
Pe =‘2‘[P(LT <1|m@=1) + P(Ly >1|m(0)=0)].

We show that the probability law of the likelihood ratio function, Ly, and hence the proba-
bility of a decoding error, p, , will depend, in general, on the manner in which the controller-
decoder generates { u;, 0<t <T } from the observations { G;,0<t<T }. We use the
term Jotnt Control-Decoding Problem to refer to the task of designing a controller-decoder to

generate a process { %, 0<t <T } which will minimize the probability of a decoding error.

Unfortunately, in the general case, it is not possible to write down explicitly all of the
quantities appearing in the likelihood ratio. In particular, a certain conditional expectation

which is needed to write down the likelihood ratio usually cannot be computed.

In this thesis we consider the Joint Control-Decoding Problem, and in particular, the
computation of the conditional expectation which appears in the likelihood ratio. This condi-
tional expectation, if computed, would be a functional of the photodetector output and of the
control signal { ¥,, 0<t <T }. The likelihood ratio could then be computed explicitly so
that a decoder could be implemented, even for a suboptimal control signal. The long-range
goal, of course, is to obtain the probability of error corresponding to the likelihood ratio test,
as a function of the control, and then to choose a control which will minimize the probability

of error.

1. Thesis Outline

In Chapter 2 we motivate and then explicitly describe a mathematical model for the

Joint Control-Decoding Problem.

In Chapter 3 we consider the Joint Control-Decoding Problem under the assumption
that the photodetector has an infinite photosensitive surface. We prove that ‘“all controls are

optimal”’ in the sense that the probability of a decoding error is not a function of the control



signal. We show how this implies that the Joint Control-Decoding Problem degenerates into
a simple detection problem with Poisson-process observations. We also use the work of
Rhodes and Snyder [3], together with Theorem Al of Appendix A, to compute the conditional

expectation mentioned in Section II.

In Chapter 4 we drop the assumption that the photodetector has an infinite photosensi-
tive surface. We consider a related time point process, associated with which, there is a con-
ditional expectation similar to that appearing in the likelihood ratio. We attempt to apply
the work of Boel and Benes [5] on time point processes to gain some insight into the general

filtering problem given time-space point-process observations.

The conditional expectation for which we search is, of course, a functional of the obser-
vations. In Chapter 5 we restrict our attention to a certain class of linear functionals of the

observations.

In Chapter 6 we discuss our results and point out directions for future research.



CHAPTER 2

MATHEMATICAL FORMULATION OF THE
JOINT CONTROL-DECODING PROBLEM

I. Introduction

The receiver model we outline below in Sections II and I is essentially that given in [2],
and we refer the reader to that paper for a detailed description and justification of the model.
In Section IV we describe our model for the controller-decoder in which it is not assumed a
priors that the fine-tracking will be carried out independently from the message decoding.
Consequently, the criterion by which we optimize our control law is quite different from that

discussed in Rhodes and Snyder [3], as we will indicate at the end of Section IV.

II. Photodetectors, Point Processes, and Gaussian Beams

As in [2], we identify points on the receiver’s photodetector surface with the Euclidean
plane, R2. If a laser beam with light intensity-profile I(¢, r), where ¢ € [0,00) and r € R?,
strikes the photodetector, then the occurrence of photoelectrons can be modeled as a time-
space point process whose probabilistic intensity process A(¢, r) is proportional to [(¢, r).
(To be more accurate, we should add a deterministic term, say dq(t, r), to A, r) to
account for the dark current. However, since dy(f, r) is deterministic, there is no loss of gen-

erality in our probabilistic calculations if we assume d(t, r ) to be identically zero).

Following [2], we assume that the intensity profile of the laser beam is Gaussian. Con-

sequently, if the laser beam is centered at the origin,

I(t,r)=a(t)exp{——;—r' R(t)Y'r), (2.1)

where a (¢) modulates the intensity of the laser beam, R (¢) is a 2X2 positive definite matrix

describing the shape of the spot of laser light, and ' denotes transpose [2]. The maximum



value of I(¢, r) is, of course, a(t). Later we shall assume that a (¢) is one of two known
functions selected by the optical source in accordance with whether a *‘1” or a ‘0"’ is to be

sent.

If the receiver or the optical source is subject to vibrations, or if the laser beam passes
through a turbulent atmosphere, the spot of laser light will move randomly over the photo-
detector surface [2]. Let y,™ € IR? denote the random position of the center of the spot of laser

light at time ¢. Hence, I (¢, r) is now given by

I(t, r) = a(t)exp[- Z(r-u" Y R(£)* (r-y™)]. (2.2)

In general, a (t) will also be a random process due to the effects mentioned above. Later, in
order to simplify the analysis, we shall assume that a (¢) is strictly positive, deterministic,

and known.

As shown in Figure 2, the receiver incorporates fine-tracking equipment to try to
prevent the spot of laser light from drifting off the edge of the photodetector. We model the
influence of the fine-tracking equipment on where the incident beam strikes the photodetector

in the following way. Let I (¢, r) be given more generally by

I(t, r) = a(t)exp[ - S(r-lo™ - w1 R(E) (r={o" - 92 D). (2.3)

Here, — y/ denotes the position where the center of the spot of laser light would fall if g™
were identically zero. The vector yf € R? is completely determined by the (stochastic) state
of the receiver’s fine-tracking equipment. From equation (2.3), we see that if the receiver
knew y™, and could direct the fine-tracking equipment to operate so as to cause y to be

equal to ¥,”, the spot of laser light would be centered at the origin.

Continuing to follow the model in [2], we assume that

"= H"(t)z", (2.4)

and



yP = HP(t)zf, (2.5)
where
dz, = F™ (t)zdt + V™ (t)dv,” ; 25 =X", (2.6)
and
dzf? = FP(t)zfdt + GP(t)u,dt + VP(t)dv? ; z§ = X? . 2.7

In the above equations, H™, H?, F™, FP, V™, V? and G? are known matrices with
appropriate dimensions. The process { u, t 20 } is the control law which drives the fine-
tracking equipment. We take {v™ t>0} and {vf,t>0} to be standard Wiener
processes. The initial conditions X™ and XP? are assumed to be normal with known means,
m™ and mP?, and known covariances, S™ and S?, respectively. The four quantities

{vm t>0}, {v/t>0}, X™, and XP? are assumed to be statistically independent. To

simplify the notation, let

H()y=[H™(t) -H"(t)], (2.8)

ztm v,m
z, = K and v, = P | (2.9)

Ifwelet F, V, G, m, and S be the obvious block matrices, then we can rewrite equations

(2.3), (2.6), and (2.7) as
I(t,r) = a(t)expl- (r-H(t)n)Y R (r-H(D)z)), (2.10)
where

de, = F(t)z, dt + G(t)u, dt + V({t)dv, ; z,=X, (2.11)

and X is normal with mean m and covariance S.

With the above motivation and equations in mind, we next make a precise statement of

our probabilistic setting.



III. Probabilistic Setting

Let (Q, F', P ) be a probability space. On this probability space, let X be normal with
known mean, m, and known, positive definite covariance, S. Let { v,, ¢ >0 } be a standard
Wiener process independent of X. We let the n-dimensional process {x,, tzo} be the

solution to the Ito stochastic differential equation

dz, = F(t)z,dt + G(t)u, dt + V(t)dv, ; z,=X . (2.12)

Here F', G, and V are known matrices with appropriate dimensions. We also assume that
F, G, and V are piecewise-continuous so that a unique solution of (2.12) exists (see Davis
[6], pp. 108-111, especially Theorem 4.2.4 on p. 111), at least when { u;, t >0 } is determinis-
tic. We shall further require that { u,t>0 } be predictable with respect to { G,.t>0 },
where G, is defined below. (This is trivially true for any deterministic control; it is also true

for any left-continuous process adapted to { G,, t >0 }).

Let B? denote the Borel subsets of IR?Z. Next, if I is any interval of IR, let B (I) denote
the Borel subsets of I. We define B(J)® B? to be the smallest o-field containing all sets of
the form E X A, such that E€ B(J) and A€ B2 The occurrence of photoelectrons at the

photodetector is modeled as a time-space point process

N°—= { N(B): BE B(0,00)®B*} . (2.13)

Sometimes, N° is called a random point field or a random measure. Here, this means that to
each Be€ B(O,oo)®B2, we associate a nonnegative, integer-valued random variable,
N(B) = N (w, B) (we will usually suppress the argument w). In addition, for each w € 0,
N(w, «) is an integer-valued measure on B (0,00)® B2 The motivation for this abstract
model is the following. Suppose C is a subset of R?, say a square centered at the origin. Let
0<t,<t,<oo. Then N((t,, t;]XC ) is interpreted as the number of photoelectrons

observed in the region C during the time interval (¢;, ¢, ].
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We now place further restrictions on the random field N°. In order to do this, we first
define the o-fields {X, } by
o{z,,0<s<c0}; t=0
X, = (2.14)
o{ N(B), BE B(0,t)®B?; z,,0<s<c0}; t>0
We shall assume, as in [2], that N° is a {X, }-doubly-stochastic, time-space Poisson process,

with X ,-measurable intensity (see Bremaud (7], pp. 21-23 and 233-238)

Ne(t, 7, @) = i (t)expl - —(r-H()zn Y R() (r-H()a)], (2.15)

where

t€ [0,00), r € R% and 7, is defined by equation (2.12),
| = 0 or 1 depending on the message,

i, H, and K are deterministic and known, with

i : [0,00) = (0,00), H: [0,00) = IR**", and

R : [0,00) — R¥*? is positive definite.

This means that for each t >0, the process
N* 2 {NB): BeB(t, 0)®B*?} (2.16)

is a Poisson random fleld under the measure P (o] X,), with rate X\;(s, r, z,), where
s€(t,o0), and r€ R® This implies the following. First, for B€ B(0,00)® B2 let
AB) & fB X(r,p,z,)dpdr Then if B€E B(t, 00)®B? and n is an arbitrary, nonnega-

tive integer,

A(B)" ¢ ~AB)
n! ’

P(NB)=rn|X,) =

and hence, for § € R,

E[e/®) | X, | =exp[(e?'-1)AB)].
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The second implication is that if B, and B, are disjoint sets in B (¢, c0)@ B?, then the ran-

dom variables N( B, ) and N( B, ) are independent under the measure P (o | X} ).

At this point, the model appears to assume that the photodetector has a photosensitive
surface equal to IR2. We let Fy represent the history of photoevents in IR” up to and includ-

ing time ¢ . More precisely, let F', be the trivial o-field, and for t >0, set
F, =c{ N(B): BeB(0,t)]®B?}. (2.17)

Note: We can now write X, = F, v X, for all t >0.
To model the fact that photodetectors have a finite photosensitive area, we introduce the o-

fields {G, }. Take G, to be the trivial o-fleld, and for ¢t >0, set

Gy =o{N(BM{(0o0) XD }):BEB(,t]®B*}. (2.18)

In (2.18), D is a Borel subset of R?, typically a rectangle or a circle centered at the origin; D
represents the actual photosensitive surface of the photodetector, and G; represents the
observations available from that region only, up to time ¢{. In Chapter 3 we will set D = IR2,
in which case, G, = F,. The notion of the o-fields {G, } is not found in [2, 3, 8]. However,
conditioning on G; seems to be more difficult than conditioning on F,, and this difficulty is
alluded to in [8]. The difliculty seems to arise from the fact that fD N({t,r,z) dr is, in
general, a random process, while fR2 N(t,r,z)dr=2mu; (t )\/d—et_IT(t—) is a deterministic

function.

IV. The Controller-Decoder

Let T be as in Chapter 1. Let { u,, 0<t <T } be any process predictable with respect
to { G,,0<t<T }, with otherwise arbitrary distributions. Suppose that our only task were
to make a decision, based on our observations { G;, 0<t <T }, as to whether a *“1” or a
““0”’ was being sent. Then we would be faced with the standard binary-hypothesis testing

problem. (Here we assume equally likely hypotheses and use the minimum probability of
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error cost criterion). The optimum decision rule for this problem is the likelihood ratio test
(see Snyder [9], section 2.5), which we reproduce later in equations (2.21) and (2.22). Before

writing down the likelihood ratio, we need to define the following quantity:

&,—(t,r) LS E[N(E,r,5) | G ]; i =01 (2.19)

Let N; be the number of photoevents that have occurred up to and including time ¢ in the

region D . More precisely, let N, = 0, and for t >0, set

N, = N((0,t1XD ). (2.20)

It Ny 21, let (t,, ry), ..., (tN', rN') be the times and locations of these events. Then the

likelihood ratio, L, , is given by (see Snyder [9], pp. 471-476)

Nt - t -
’I=Il M, ry) exp[—j; fD M(s, r)dr ds)
L, = N . (2.21)

TIT Xo(tj, r5) exp[—j;tfp 3\0(8, r) dr ds]

§=1

Convention. When N, = 0, the factors preceeding ezp in equation (2.21) are taken to be one.

With the above ideas in mind, we state the Joint Control-Decoding Problem.

Find a rule for generating a control signal, { u,, 0<t <T }, predictable with respect to
{ Gy, 0<t <T }, such that the probability of error corresponding to the likelihood ratio

test

v =

Ly 1 (2.22)

18 minimized.

In (2.22) H, is the hypothesis that a “1” is being sent, and H, is the hypothesis that a “0” is
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being sent.

Notation. If we let

F(t,r,2)=exp[- —;—(r—H(t)z, Y R(tY* (r-H()z)], (2.23)

and
f,ry=E[f(¢, r.5)| G], (2.24)

then
N(t,r,z)=p; ) (t,7r,2), (2.25)
N(t, r) = () (¢, 7), (2.26)

and

M p(t;) t -

=120 expl~ [ [pe)~po(e)] [, J (s, v)dr ds ]. (2.27)

We see from equation (2.27) that our immediate goal is to compute

fD f(s,r)dr. (2.28)

In Chapter 3 we consider the Joint Control-Decoding Problem under the assumption
that the photodetector has an infinite photosensitive surface; mathematically, this amounts to
setting D = IR?. We prove that “all controls are optimal”’ in the sense that the probability of
a decoding error is not a function of the control signal. We show how this implies that the
Joint Control-Decoding Problem degenerates into a simple detection problem with Poisson-
process observations. We also use the work of Rhodes and Snyder (3], together with Theorem

Al of Appendix A, to compute E [ f (¢, r, z,) | F, ] explicitly.

In Chapter 4 we drop the extra assumption that the photodetector has an infinite pho-
tosensitive surface. We consider the time point process { N;, t >0 }. Associated with this
process, there is a conditional expectation similar to that in equation (2.19). We attempt to

apply the work of Boel and Benes [5] on time point processes to gain some insight into the
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problem of finding X\; (f, r) when D £ R2.

Finally, in Chapter 5 we look at linear estimates of \; (¢, r, ;) given G,.

Remark. We are trying to find a rule for generating a control signal, { v, 0<t<T },
which will minimize the probability of a decoding error when the likelihood ratio detector
described by equations (2.21) and (2.22) is used. This is quite different from the approach in
Rhodes and Snyder [3]. In that paper, a control signal, { 4,, 0<t <T }, was sought which

would minimize

T
E{f [w M(t)u + z' My(t)z ]dt + 2r' Myzr }, (2.29)

where the matrix M ,(t) is positive definite, and the matrices M,(t) and M ; are nonnegative

deflnite.
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CHAPTER 3

RESULTS FOR THE INFINITE DETECTOR

I. Introduction

In this chapter we consider the Joint Control-Decoding Problem under the assumption
that the photodetector has an infinite photosensitive surface; mathematically, this amounts to
setting D = IR%. Under this assumption, we prove that *‘all controls are optimal’ in the sense
that the probability of a decoding error is not a function of the control signal. We show how
this implies that the Joint Control-Decoding Problem degenerates into a simple detection
problem with Poisson-process observations. More precisely, assume D = RZ. For each t >0,

define the random fleld

M! ={N(EXR?):E€B(t,)}. 3.1)

We establish that M? is independent of the o-field X; defined in (2.14). In particular, this
implies that M? is independent of X,. From this we conclude that the process { N,, t>0 }
is independent of X, (note that D = R? implies Ny = N ( (0,t]XIR?) ). We next show that
when D = R?, the quantity in (2.28) is deterministic. With these facts we examine (2.27) and
find that the likelihood ratio, Ly, is independent of X,. We conclude that when D = IR?, the
probability of a decoding error is not a function of the rule used to generate { u,, 0<t <7 }

from the observations.

Also, up to this point we have not needed the quantity f (¢, r) in (2.24) in an explicit

form. We have, however, been able to compute it and present it as Theorem 3.3.

II. The Photodetector with an Infinite Photosensitive Surface

We present the fact that M’ is independent of X, and that { N,, t >0 } is independent

of X, as Theorem 3.1. The proof depends primarily on the fact, mentioned in Chapter 2,
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that fR2 XN(t, r, z) dr=2m p;(t)/det R(t).

Theorem 3.1. For each t >0, the random field M' defined in equation (8.1) i independent

of the o-field X, defined by equation (2.14). The process { N,, t >0 } is independent of X,

Proof. To prove that M?! is independent of X,, it is sufficient to show that the conditional
characteristic function of N( E X IR?) is deterministic for E€ B(t, co). Now, it follows

immediately from the assumption and comments following (2.14), that for § € R,

E| ¢ FIN(E xXR?) | X, ] = exp[ (¢7? - 1) fE fRQ)\;(s,r,z,) dr ds | (8.2)

= exp[ (e?/?-1) fE 27p; (8 )Vdet R(s) ds .

Hence M! is independent of X, . Clearly, since { Ny, t >0 }C M° { N,, t >0 } is indepen-

dent of X .
QED

The following corollary is an immediate consequence of the assumption following (2.14)

together with equation (3.2).

Corollary 3.2. Under the (unconditional) measure P, { Ny, t >0 } 15 a Poisson process, and

for each t >0, M' is a Poisson random field. Each process has the same deterministic inten-

sity, 2m p; (8 )Vdet R (s).

To establish that (2.28) is deterministic is also quite straightforward. Observe that since

D= R?
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[ f =l Bl (r.a)| Fdr

=E[fR2f(t,r,x,)dr | Fy ]

(3.3)
=E [2nVdet R(t) | F, ]
= 2mvdet R(t).
Substituting (3.8) into (2.27) and setting t = T yields
X om(ty) T
Ly =11 i) exp[—27rj; vdet R(s) [ puy(s)—po(s) ] ds | . (3.4)
J=1 FO0\%
Now, Ly depends only on Nr and its jump times, { ¢,,..., ¢y }. As a consequence of

Corollary 3.2, under the measure P, the probability law of Ny and its jump times is not
affected by the manner in which we generate { u,,0<t<7T } from the observations
{ G, ,o0<t<T } Hence, the probability of a decoding error is not a function of the control
law used to drive the fine-tracking equipment. This means that under the assumption that
the photodetector has an infinite photosensitive surface, the Joint Control-Decoding Problem
degenerates into a simple detection problem with Poisson-process observations. The complete

solution of this problem is given by (3.4) and (2.22).

Remark. Professor A. M. Makowski pointed out that the preceding comments hold even if we
generate { u;, 0<t<T } from { X;,0<t<T }. This means that perfect knowledge of

F,; v X, cannot improve our ability to decode.

We next present Theorem 3.3 in which we compute E [ f (¢, r, 2,) | G, ], which,

since D=R%isjussE[ f (¢, r, ) | F; ).



18

Theorem 8.3. Under the assumptions of Chapter 2,

E [ exp(- S(r-H(t)n) R() (r-H()z)) | Fi ) (3.5)
__ Vdet R(t) 1 oy oA -
—TT—QT—CXD[—?("HU)I:) Q(r-H(t)z,)],

where
z, 2 E[z | Fe 1, (3.6)
Y AE([(z- 2z -2,y | F,] >0, P —as., (3.7)
Q 2 H()S,H(tY + R(t), (3.8)
and
dz, — F(t)z.dt + G(t)u dt (3.9)

+ [ B HEY Q7 (r-H(t)z )N X dr); zq—=m

dr, =F({)zS,dt + S, F@)y dt + V{)V(i)y dt (3.10)

-, Hit-Y @ H(t-)L, N X R?); T,= 8.
Proof. In [3] it is proved that the conditional density of z; given F; is Gausstan with condi-
tional mean z, and conditional covariance ¥; (which is positive definite almost surely

because we are assuming that S is positive definite) satisfying (3.9) and (3.10) above. Our

result, equation (3.5), follows immediately from Theorem Al of Appendix A.

QED

Remark. From “Proof (2)” of Theorem Al, we see that the following more general result is
also true. Let ¢; (1), 7 € R", be the conditional characteristic function of z, given G,, even
if Dz R? Then the Fourier transform of E[ f (t,r, z;) | G, ] as a function of r, is

given by

. ~Lery
fan[f(t,r,z,) | G, e’ dr =2rVdet R(t)e * Y (H'9); 0eR>
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We have an immediate corollary concerning the !-th conditional moments of f (¢, r, z,).

Corollary 3.4. For [2>1,

\/dCTﬁTt—) 1 - 1 -1 -
F—\/—(RB—W—I-)—CXD[—;(T"HU)-’H) Q)" (r=-H(t)z,)], (3.11)

Ef(t,r.o) |F]l=

where

Q) & HU)S H(tY + [TR(t).

Remark. Observe that (3.9) is coupled to (3.10). However, (3.10) evolves independently of
(3.9). Recalling that { ({,, r,) } is the family of times and locations of the photoelectrons we

have observed, we interpret (3.10) as

-;—t %, = FQ)S, + S F(t)Y + V@E)Vy , (3.12)

for t€ {0, t,) or tE [, , ¢, ,,), the initial conditions being

i)0 = S ’
- . - . (3.13)
By, =%, - - I, ~H(ty-) Qt;l— H(t, )z, - .
After solving (8.12) and (3.13), we interpret (3.9) as
d -~ ~
= T =F(t)z, + G(t)u , (3.14)
forte o, t,)or t€ [t,, t,,,), with initial conditions
to=m ,
(3.15)

.’L‘gn = ;:tn_ + :E,n_H(t,.—)' t;l- (rn - H(tn");t‘—) .

In the next chapter we will give an indication of the difficulties encountered if instead of

computing E [ \; (¢, r, 2,) | F; ], one tries to compute E [ X\;(t, r, 8) | G, ].



20

CHAPTER 4

A LOOK AT THE GENERAL FILTERING PROBLEM

I. Introduction

In this chapter we no longer assume that the photodetector has an infinite photosensi-
tive surface. We consider the time point process { N,, ¢t >0 }. Associated with this process,
there is a conditional expectation similar to that in equation (2.19). We attempt to apply the
work of Boel and Benes [5] on time point processes to gain some insight into the general filter-

ing problem given time-space point-process observations.

Recall from Chapter 2 that our immediate goal is the calculation of (2.28), which can be

rewritten as

E[[ N(t,r,z)dr | G ], (4.1)

where
N(t, 7. 3) = pi(t)expl - 2(r-H(t)a Y R(¢)* (r-H(t)a) ). (4.2)
In this chapter we are going to demonstrate some of the difficulties in computing
E(f, N(t,r,z)dr | H ], (4.3)

when D 5% IR® and where

H 2 o{N,,0<s<t}. (4.4)

Observe that since N, £ N((0,t]XD )= N({(0,t]XR?} M {(0,0)XD }), we have

HCo{ N(BN{(@©x)XD }):BEB(,t|®B?} 2 G;. Now, define

X, =HvX,. (4.5)

We claim that { N;, t >0} is an {X, }-doubly-stochastic Poisson process with stochastic
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intensity

x,:fD N(t,r, z)dr . (4.6)

This means, of course, that under the measure P ( o | )_(, )

N* 24 {N, - N,, s>t} (4.7)

is a Poisson process with X -measurable intensity X,. This follows because for ¢ >0,

N' ¢ N! and X, C X, and because X, = X, (recall the discussion following (2.14)).

In Section II we will outline an approach due to Boel and Benes {5] for computing
E [ )\, | H, ]. We will show that in the general case, the method leads from the problem of
computing E [ X\, l H, ] directly, to a new problem which is no less tractable; however, there
is a special case (generalized very slightly from [5] ) where this method yields a well-defined
family of partial differential equations. If one can solve these PDE’s, then the conditional
moment generating function of X\, given H, can be recovered, and from this, of course,
E [\, | H; ) can be found. In Section Il we demonstrate that for our particular \;, this

method does not lead to a tractable approach for finding E [\, | H; ].

II. Outline of Method

Following [5], we begin with our processes { N,, t >0} and { \;, t >0 } as described
in Section I; our goal is to compute E [ X\, | H, ] for t >0. To simplify the calculations, we

assume that yu; (¢ ) = 1 and that u; = 0 in the remainder of this chapter. Then

A = fD exp[——;-(r—H(t)zt Y R(t)'(r-H(t)z,)) dr , (4.8)

where { z,, t >0 } satisfles

dz, = F(t)z, dt + V(t)dy, ; zo= X (4.9)

The general method proceeds as follows. (Note that it will make no use of the functional
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form of X\,, other than the fact that it is a twice-continuously-differentiable function of z,,
where z; is the solution to an arbitrary Ito stochastic differential equation). In view of (4.8),

{4.9), and Ito’s rule, we may write
d X: = o dt + ﬂg dv, . (4.10)
Here «; and f§; are determined by Ito’s formula; «; is a scalar and 8, is a row vector. Now,

let f be an arbitrary, twice-continuously-differentiable function defined on [0,00). Applying

Ito’s rule to f and (4.10),

d(f))=n,dt + 6, dv, . (4.11)

Again, 4; and §, are determined by Ito’s rule. For any such f , define

f+=E[fO) | H . (4.12)
According to [5],
df , =E [~ | H Jdt + k_(dN, - X, dt), (4.13)
where
3\, S E[N | H), (4.14)
and

ke =ATE[(f Q)= f )0 = M) | H ]
) ) (4.15)
=XATE[f ()N | H 1~ f¢ .

At this point, we should say a few words about stochastic differential equations of the

form

dy = adt + b dN, ; zo= 2.

Let { t, } be the sequence of jump times of { Ny, t >0 }. We interpret the above equation

as the sequence of ordinary sample-path differential equations
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—dt—=at; 05t<t1, ZO=Z)

dzt

o T % W<ti<bga., Z =2+ be,
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In light of this, (4.13) implies that f , is differentiable, and therefore continuous, on

(o, t,) and (¢, , t,,,) for n >1. Now consider the quantity f (X\;)\;. This is also a twice-

continuously-differentiable function of X\,. By the preceding argument, E [ f (A, )\, | H, ]

is differentiable (as a function of ¢) and therefore continuous between the jump times, { t, }

As a consequence, k; is continuous and differentiable between the jump times.

Defining

A

ds, t)=¢ ",

we have by Ito’s rule that

Bigls, t) = d(e, ) sow + - o®| B |*1dt + (s, )Br du, .

Set
1
p(a’t)=¢(8!t)[8at + ;82116‘ |2]:
and let
ps, t)=E[p(s,t) | H].
Next, let

$s,t)=E(gs,t) | H)=E[e'™ | H ].

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Thus, ¢(s, t) is the conditional moment generating function of A, given H,. If we can deter-

mine ¢(s, t), then

N ad)
Xt - 88 |a=0-

Following the procedure described at the beginning of this section, we see that
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B, (5., t)=pla, t)dt + k,_(dN, — X\, dt), (4.21)

where now

ke =XTE[¢(s, )N | H ]- ¢(s, t). (4.22)

A
At this point, observe that since ¢(s, t) = e ‘ !, we have

Bo, N = == §ls, 1) (4.23)
Thus,
b= b, ) - B, t) 02
t t 38 » ’ » ( . 4)
since
a -
Bl . t) | H)=2El46.0) | Hl=236.0). (420
We now define
t . A)\tn -
golt) = exp[—fo e — o) dr] T1 [ ] . (4.26)
t, <t+ Mo

The quantity ¢,(¢) defined in (4.26) can be interpreted as the Radon-Nikodym derivative of

P with respect to new measure P,. More precisely, for each set C €& H,,
P(C)= fC go(t) d Py .

For more information on this ““change of measure’ interpretation, see ( {5], section II and the

comments following equation (18)). Clearly, ¢o(f) is continuous between the jump times,

-

At

9oty — ). Also, note that since \; is continuous between the

{ t, }’ and, go(t,) =
0

jump times, go(t) is continuously differentiable between the jump times. Therefore, we can

write
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-

Ao
Ho

dgo(t) = (Ho— Ae)go(t)dt + (== — 1go(t-)dN, ; go(0) =1. (4.27)

The next step is to define the function g (s, t) by

g(s, t) = got) $ls, t). (4.28)

Since ¢(0, t) = 1, we see that ¢(s, t) = ¢g(5,t)/g(0,t). This means that finding ¢ (s, t) is
equivalent to finding ¢(s, t). The plan is to use (4.21) and (4.27) to obtain a partial
differential equation for g (s, t). So, for ¢ between the jump times, { ¢, }, we may use the

product rule with (4.21) and (4.27). Thus,

a P ~ ~ PN
S5 = o) p(s, )= kde 1+ (s, ) (o= N)golt) ] (4.29)
- ag -~ a
= got)o(s, )= ==+ e g(s, )+ pog(s, t)= X g(s,¢).
Simplifying and rearranging terms,
9y 3y -
a3 7 a—8=llog(8,t)+ go(t)o(s, t). (4.30)
To determine the behavior of ¢g(s, ) at the jump times, observe that if ¢ — {, for any
n 21, then (4.21) and (4.24) imply
d(s,t)— (s, t-)=k._ (4.31)
~ _ a ~ ~
= >‘t-l '5— ¢(8» t")'— ¢(8, t_) .
8
So,
PN - -1 a N
B(s, t) = N_ 5 (s, t-). (4.32)

Multiplying both sides of (4.32) by go(t), we find that

§(e, 1) = go(t) N7 o= 9o, t-) (4.33)
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-

Ao
Substituting go(t) = —’-:— go(t-) into {4.33), we have
0

906, t) =it o= g (s, ). (1.39)

The final piece of information needed to start solving (4.30) is the initial data
{g(s,0),all s }. However, since ¢g(0,0) =1, we have ¢(s,0)=¢(s,0)2 E | c'>‘°].
We assume that the unconditional moment-generating function is known. Then the course of

action is to solve

9g dg Y
5 + -a—;'leog(G,t)“/' go(t)p(s,t), (4'35)

for t between the jump times, using the boundary conditions

g(s,0)=E[ "]
(4.36)
g(s,t..)r—ﬂo"ig(a,t..—); n>1.
0s

The problem in solving (4.35) and (4.36) is that usually we don’t know go(t)})(s , t).

Recall that

po. )= (s, Dl sy + 5% B 7],

where

d)\‘ =a,dt + ﬂtdvt .

Now, just suppose that o, = p(\,) and |8, |%2= ¢()\,) where p and ¢ are polynomials.

A
Recall that ¢(s, t) = ¢ ** " With the obvious meaning of the symbols p (82- ) and ¢ (ai- )
5 5

pls, t) =3 p(— Jb(s, 1) + oo q(—)¢(s t), (4.37)

and hence
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o, )= Pl )Bls, ) + L 02 g(2 o6, 1) (1.39)

We now see that

Go(tIp(s, 1) =8 P(2=)g (s, 1)+ 2 6 g (2= )g (s, 1) . (4.39)

Under these very special conditions, (4.35) becomes

3, 95 _ R AN
e + as——#og+8p(as )g + 5 ° 'I(as )9 . (4.40)

In [5], examples in which o, and |B; |2 are polynomials in X\, are worked out in detail;

equations of the form of (4.40) are derived and solved.

III. An Application of the General Method

In this section, we apply the above procedures to the following problem. Similar to

(4.8) and (4.9), let
1 -1
- ;(r—Hz,)’ R~ (r-Hz,)

A = fp e dr | (4.41)

and

d:t, ——"th dt + Vdvt N (442)

where we have assumed that H, R, F, and V are no longer functions of time in order to

simplify the calculations. We introduce the following notation. Let

- %(r—H: Y RV (r-Hz)

u(r,z)=c¢ R (4.43)

and set

Mz ) = fD u(r,z)dr . (4.44)

Then (4.41) becomes
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A = XNzy) = fD v(r, z,)dr . (4.45)

The first step is to apply Ito’s rule to (4.45) and (4.42). Before doing so, note that

Ju

E——_—u(r,z)[r'R‘lH—z'H' R'H ], (4.46)
and that
(92|l ' -1 ~1
Py =u(r,z) H R |[(r-Hz)(r-Hz) - R|)RH). (4.47)
Hence,
3)\ ] ! ! -1
E:(fD u(r,z)r' dr — XNz)z' H YR'H , (4.48)
and
82)\ ' -1 ' -1 ' =1
51—2:.[0 u(r,z)H' R (r-Hz)r-Hz)Y R H dr - Nz)H' R H . (4.49)

Applying Ito’s rule to (4.45) and (4.42) yields

d)\ = oz, )dt + B(z,)dv, , (4.50)
where
alz)= ([, u(r.a)r' dr - Mz)z' H' )R H Fz
+ %fD u(r,z) | V' H R (r-Hz)|?dr (4.51)
- %)\(z) w (V! H RV H V),
and
Bz)= ([, u(r.z)r' dr — Nz)z' H' YR H V. (4.52)

Clearly, a(z, ) and | A(z,) | ? do not take a form which will give us a partial differential
equation only in terms of the unknown function ¢ (s, ¢).

Remark. When D = IR%, (4.48) and (4.49) become
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O\

E—:(ZW\/detR - NMz))z' H' R7'H , (4.53)
and
O\ a
a2=(27r\/detR - XNz))H' R H . (4.54)
z
Now, (4.51) and (4.52) become
a(z)=(2rVdet R - Xz))z' H R H Fz (4.55)

+ —;—(21r\/detR — Nz)) (V' H' RV H V),

and

Blz)=(2rvdet R - Xz))z' H' R*H V. (4.56)

Note that even in this case, a(z ) and | 8(z) | ? are not polynomials in A(z ), even though the

second term of (4.55) 15 a first degree polynomial in A(z ).

IV. Remarks

(i) We have seen the difficulties in computing E [\, | H, ]. Clearly, any similar attempt
to compute E [ A, | G, ] would require a ‘‘time-space version” of (4.13) (see, for example,
Bremaud [7], Theorem T9 on pp. 240-241).

(i) In the next chapter we meet with some success when we look at linear estimates of

X; (t, r, ) given G,.
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CHAPTER 5

RESULTS FOR THE LINEAR FILTERING PROBLEM

I. Introduction

As shown in Chapter 4, the computation of 3\; (t, r)=p; (¢t )f (t, r) has proven to be
intractable when D £ IR%. This has motivated us to look at linear estimates of \;(t, r, z,)
given G;. In this chapter we show that if ¥, = u (¢) for some deterministic control signal
u (t), then we can compute the quantities necessary to write down the integral equation

which defines the best linear estimate of X\; (¢, r, z,) given G, .

II. Linear Estimators

To simplify the notation, we suppress the subscript ¢ in the remainder of this chapter.

We call ‘)\L(t, r) a linear estimate of \(t, r, ;) given G,, if “>\L can be written in the form
R t —
>\L(t,r)=j; jD h(t,r;np) [N(ArXdp) - Nr.p)drdp] + ho(t,r), (5.1)

where k and h, are deterministic, X(t, rY2E[Xt,r,2)], and N(dr X dp) represents
the number of photoelectrons generated by the photodetector in an infinitesimal area d p dur-

ing a time interval d 7. We wish to choose A and A, to minimize

E[ |Mt,r, z)- A (t,r)]2]. (5.2)

Lemma 5.1. (Grandell {10] ). Let }\L(t , 1) be given by (5.1). Under the assumption follow-

ing (2.14), (5.2) will be minimized if ho(t, r) = X(t, r), and if h satisfies

t
P(t,r;r,p):_[;fo h(t,r;o, 000, ¢;1,p)d¢do + h(t, r;7 pIA(r, p), (5.3)

where
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T, r;7.p) 2 cov [At,r, ), Mrp.2))].

With reference to Lemma 5.1, we state our Theorem 5.2.

Theorem 5.2. If the assumptions of Chapter 2 hold, and tf u(t) ts a deterministic control

signal, then

- VCEHA0) ; , _
X, 1) = wt) YT el - S -HOTOY QU r-HWZEN], 6.9

where

z(t) = E[=],

|

>

=(t) cov [7;],

Q(t) & H(S(H)H(tY + R(t).

Furthermore,

det B (t) det R (7)

F(t , r T, p) -+ X(t, T)X(T, P) - ”(t)l‘(T)J det Q(t 7-)

X

(5.5)
e Hit)y o ||{z®)] Al [EO e [z
e"p["?‘{p]'[ 0 H(f)] [;m]) et m (H“[ 0 H(f)] [f(r)]”’

where

2(t,n & cov [z, 2,],

and

N Q(t) H()x(t, DH (7
Qt,n = H(®(r, t)H(t) Q (1)
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Proof. Let u; = u(t) for some deterministic control u (¢). For completeness, we make the

following observations. Equation (2.12) becomes
dey, = F(t)z, dt + G(t)u(t)dt + V(t)dv, ; z,— X
Let ®(t, t,) be the transition matrix corresponding to F' (¢). Then

T(t) = ®(,00m + j;t<1>(t,s)G(s)u(s)ds ,
and

min(t, r

=(t, 1) = &(t, 0)S &(r, O + j; )<I>(t, 8) V(s)V(s) &1, 8) ds

Note that £(¢) = £(t, t). Because u (t) is deterministic, { z,, ¢ >0 } is a Gaussian process.

To compute Mt, r)=E [\¢, r, ,) ], observe that 7, is Gausstan with mean T (t)

and covariance (¢ ). Now apply Theorem Al, and (5.4) is immediate.

The computation of (5.5) is similar, but requires some judicious preliminary arithmetic.
First, observe that I(¢t, r; 7, p) + X(t , r )X(T, p) is just another way of writing

E [ A, r, 2.)N\(7, p, ,) ]. Next, rewrite X(¢, r, 7, )\(7, p, z,) as

1 | H{i) o z ' R(t)yY* o r H{t) o z,
I‘(t)ﬂ(T)exD[";( pl” o H@ | |z, ) 0 R (1)} ( ol o H®| |z,

which is equal to

),

p(t Yu(n) (5.6)

(el [HO o =] Ry o [T L] [HE) o [
Xexp[——z-( pl o H(D z,) 0 R(D (p - o H(| e, ).

T

Because { z;, t >0 } is a Gaussian process, L

:' is a Gaussian random vector with mean,
T
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Z(t) . B(t) =(t,n
70 | and covariance 5 t) = | Clearly, Theorem Al now applies to the expres-

sion in (5.6), and (5.5) readily follows.

QED

Remark. 1In equation (5.3), if we regard ¢ and r as fixed, and divide through by X(T, p), then
the result has the form of the Fredholm equation

g =Bh + h,

for known function ¢, known operator B , and unknown function A .
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CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

I. Conclusions

In this thesis we introduced the Joint Control-Decoding Problem as a part of the design
of a direct-detection receiver for an optical communication system. This led us to investigate
the computation of the conditional expectation E [ A\;(t, r, 2;) | G; ). We considered three
“versions” of this problem: the case D = IR? the case D £ R?, but conditioning on H,, and
finally, the case of linear estimators. In this section, we make a few comments about our
results. In the next section we introduce a discrete-time version of the Joint Control-

Decoding Problem as a possible starting point for future research.

In Chapter 3 we assumed that the photodetector had an infinitely large photosensitive
surface ( D = IR?). Our results suggest that while the Joint Control-Decoding Problem is
well-posed, the model is not realistic when D= IR?, since no control was necessary for
optimal decoding. Heuristicly, suppose the optical source sends messages by modulating the
intensity of a laser beam. The position of the beam on an infinitely large photodetector car-
ries no information about the message being sent, while the intensity of the beam determines
how many photoelectrons will be observed at the detector. Intuitively then, only the total
number of photoelectrons at each time ¢ € (0,7 ] carries information about the incoming mes-
sage. Because we assume D = IR?, no matter where the beam falls on the photodetector, we
count all photoelectrons; hence, use of the fine-tracking equipment to control where the beam

falls cannot improve our ability to decode.

In Chapter 4 we dropped the assumption that D = IR?%. We tried to gain some insight
into the general filtering problem for time-space point-process observations by examining an

analgous problem for time point processes.
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The kind of result we were looking for in Chapter 4 was at least something along the

lines of Theorem 3.3, from which we obtained

Vdet R(1) ~2r-H B2,y @V (r-H(®) )
vdet @ ’

E[ N, r,z) | Fi]l=p(t)

together with equations for computing z, and ;. With a result like this for Daé R?, at
least a decoder could be implemented for any given control, even a suboptimal one. We note,
however, that the long-term goal is to choose { u,, 0<t <T } so as to minimize the proba-

bility of error corresponding to the likelihood ratio test in (2.22).

In Chapter 5, we looked at linear estimators given doubly-stochastic, time-space,
Poisson-process observations. Here, one would like to substitute 3\ L into Ly and to choose a
deterministic control { u(¢), 0<t<T } to minimize the probability of error corresponding
to the likelihood ratio test in (2.22). Even if this could not be done, (2.22) could still be used
with a suboptimal, deterministic control. In terms of the Joint Control-Decoding Problem,
Theorem 5.2 is of limited usefulness since it considers only deterministic controls. However, if
we consider a similar situation in which decoding is the only concern (say u () = 0) but it is
not reasonable to assume D = R? and if the integral equation (5.3) can be solved, then
A)\L (t, r) might be used in the likelihood ratio, Ly, instead of E [X(t, r, ) | G, ], for

teo, T}

II. Future Research

The filtering problems we have discussed have proved to be quite formidable. We
present here a modification of our model which we hope will lead to more tractable filtering

problems, and perhaps to a solution of the Joint Control-Decoding Problem.

The idea here is to present a discrete-time, discrete-space version of the probabilistic
setting introduced in Section III of Chapter 2. As before, let D represent the photosensitive

surface of the photodetector. Let D, ..., Dg be a partition of D into disjoint subrectan-



36

gles. With each D, 1<k <K, we associate a process { N;(k); t=0,1,2,...} such that
Nyk)=0, and n, (k)2 N,(k)- N,_(k) for t >1, takes only the values 0 and 1. We also
assume that the events {n,(k) = 1}, 1<k <K, are disjoint, so that simultaneous jumps do
not occur. We call { n,(k); t 21, 1<k <K } a discrete-time, multivariate point process.

Next, let
G, = a{ N, (k) 0<s<t, 1<k <K } .

Note that G, is the trivial o-fleld, and that for {21, we have
G =o0{n,(k);1<s<t,1<k <K }. Let X be a Gaussian random vector with mean m
and covariance S. Let {v, t >0} be a sequence of independent, identically distributed,
Gaussian random vectors independent of X . Let { v, t>0 } denote the fine-tracking con-
trol signal. We require that %, be G,!; -measurable for ¢ 21, and that u, be a constant. Let

F, G, and V to be known matrices with appropriate dimensions; then let
2, =F(t)z, + G(t)u, + V(t)v, ; 2,=X
Now define

o{X}; t=-1
X* =
o{z,,0<s<t+1; N,(k);0<s<t,1<k<K }; t>o0

The notable features of the model so far are that G,* C X,*, that z; is X,*, -measurable, and

that u, is G,?, -measurable. Let
M) 2 E[n(k) | X4 ] t21, i =01,
and assume that

Nk = i () [, expl - —(r-H()z) R(t)* (r-H(t)a)] dr . (6.1)

Set

MNY=E[X(K) | G |; t>1 (6.2)



37

‘We can show that the likelihood ratio, Lt‘, is given by

t K -
L* =TI [1+ 3 Be(k) n, (k)- NXk))]; t2>1, (6.3)
=1 k=1
where
K “ .
Mgy 1T X NG
Bo(k) & - - i : (6.4)
(k) 1- 33 2(5)
7=l
Note that Lo‘ == 1. Also, since we are assuming that simultaneous jumps do not occur,
K . K ]
YN =P | U{mG)=1}]| G
=1 j=1
K .
Here, P; is the probability P under hypothesis H;. Clearly, we assume that 3 A\2(j) < 1
J=1

and that \2(k)>0 for each 1<k <K . We see from equations (6.3) and (6.4) that we must

compute (k) in order to implement the likelihood ratio test

Lt‘ 1 ’ (6‘5)

>
<
H,

even for a suboptimal control. We now state the Discrete-Time Joint Control-Decoding Prob-

lem. (Let T be a fixed, positive integer).

Find a rule for generating a control signal, { w,, t =0,1,..., T }, predictable with
respect to { G,*,t = 0,1, ..., T }, such that the probability of error corresponding to

the likelihood ratio test in (6.5) i8 minimized.

Our initial investigation into the computation of (6.2) has led us to the following prelim-
inary results. We have been able to extend a representation result of Bremaud (Exercise E12,
equation (3.19) on page 70 of [7], the solution of which is given on page 80 there) to the case

of discrete-time, multivariate point processes. Based on this we have extended some of the
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filtering results of Segall [11] to the case of discrete-time, multivariate point processes. We
hope that future research, perhaps along these lines, may yield an explicit formula or a set of
recursive equations for computing A)\,"(k) in terms of the observations. We hope that eventu-
ally this discrete-time version of the Joint Control-Decoding Problem can be rendered more

tractable, at least under some conditions yet to be determined.
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APPENDIX A

In this appendix we present two proofs of a theorem which we have used throughout the

text in order to compute various integrals. The second proof is the simpler one.

Theorem Al. Suppose that

exp(- =(z - mY S (z - m)]

- (A1)
p(z) (zm"/*/det ’
where 2 and m belong to R", and S 15 a positive definite n Xn mairiz. Next, let
g(r,z)=exp[——;-(r—Hz)' R (r - Hz)], (A2)
where rE RY , H ts a k Xn matriz, and R s a positive definite k X k matriz. Then
Vdet R 1
, d T —— — — _ ! ~1 —
[ 96 200 (0) de = 2o expl = 2 - HmY Q7 (- Hm)]. (A9
where
@ =HSH' + R .
Proof (1). Let
fry=[, 90, 2)p()ds . (A4)

Define B = H' R H + S'andsetb = H' R'r + S'm. Note that as a consequence

of the hypotheses on R and S, @ and B are positive definite. Now observe that
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exp[—%(r' Rl'r +m'" S m-~b' B'b)]
f(r)=

Vdet S

X fR" (27)"/2exp| - %(Bz - b)Y B'(Bz - b)) dz

exp[——;—(r’ Rl'r + m' S m-5b'B1bh)]

Vdet S Vdet B

We now evaluate b’ B~ b. It is not hard to verify that B(S~SH' @™ HS) — I and hence
that B! = S-SH' Q' HS (see [12], p. 656). From the definition of @, Q -R = HSH' ,

and so

R™-Q'= Q™ HSH' R™. (A5)

Taking the transpose of (A5) yields

RY'-Q'=RMHSH' Q. (As)

It follows that

B'H' R'=SH' R™' - SH' Q™ HSH' R}
=SH' (R - Q'HSH' R™)

using (A5),

— SH' Q™.

From these equations,

B3 =B YH'R'r + S'm)
=B7'H' R'r + (§S- SH' Q' HS)S'm
=SH' Q'r + m - SH' Q' Hm

=m + SH' Q7' (r - Hm) .
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After a little more computation using (A6) we arrive at

b' B'b =r'"R'r + m’' S'm -~ (r - Hn)Y Q7' (r - Hm).

Hence,
exp[——;-(r - Hm) Q' (r - Hm)] an
/)= Vdet S Vdet B
Clearly,
_ (2m*/%V/det Q
fR" fr)dr = Vdet S Vdet B (A8)
However, by Fubini’s Theorem,
[ feydr=f [, g0, 2)p(a)dr ds (A9)
= fn' (2m)*/?p (z)Vdet R dz
= (2m)*/*/det R .
From equations (A7), (A8), and (A9) we see that
£(r) = YEET expl= 4~ HmY Q7 (r = Hm)).
QED

Remark. We concluded from (A8) and (A9) that det @ = vdet R . This is
;det S ;/_det, B
equivalent to the statement that

det (I, + RP"HS H' )=det(I, + S H R H), (A10)

where [, and I, are the k¥ X k and the n Xn identity matrices respectively. It was pointed
out to me by a fellow student, D. C. MacEnany, that (A10) follows immediately from the
identity (see [12], p. 651) det ([, + af)=det (I, + PBa ), if we set o« = R'H and
= SH' .

We now present a second, simpler proof of Theorem Al.
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Proof (2). Consider equations (A2) and (A4). The function f (r) is essentially a convolution

integral. Let
— ) & . k
F(o)_fnk F(r)e?? dr ; 6ERF.
Using Fubini's Theorem,

FO=[ v [, 90 2) dr iz

§¥Hz - %wm

= fR" p(z)em)*/>/det B e dz

1

-Lore S
= (2n)**Vdet B ¢ 2 fn* p(z)e?H= 4z

--;-o'm §0'Hm - %N{SHW

= (2m)*/*>V/det R e e

jOHM - %rQa

= (2n)*/?/det R e
Taking inverse Fourier transforms, we see by inspection that

Vdet R

f(")=\/—§—€t—-—-Q—eXD[—-;—(r - Hm) Q7 (r - Hm)].

QED
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