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Songrit Maneewongvatana David M. MountDepartment of Computer Siene Institute For Advaned Computer Studies &University of Maryland Department of Computer SieneCollege Park, Maryland 20742 University of Marylandsongrit�s.umd.edu College Park, Maryland 20742mount�s.umd.eduUMIACS-TR-2001-05CS-TR-4209AbstratIn nearest neighbor searhing we are given a set of n data points in real d-dimensional spae, Rd,and the problem is to preproess these points into a data struture, so that given a query point, thenearest data point to the query point an be reported eÆiently. Beause data sets an be quite large,we are interested in data strutures that use optimal O(dn) storage. Given the limitation of linearstorage, the best known data strutures su�er from expeted-ase query times that grow exponentially ind. However, it is widely regarded in pratie that data sets in high dimensional spaes tend to onsist oflusters residing in muh lower dimensional subspaes. This raises the question of whether data struturesfor nearest neighbor searhing adapt to the presene of lower dimensional lustering, and further howperformane varies when the lusters are aligned with the oordinate axes.We analyze the popular kd-tree data struture in the form of two variants based on a modi�ationof the splitting method, whih produes ells satisfy the basi paking properties needed for eÆienywithout produing empty ells. We show that when data points are uniformly distributed on a k-dimensional hyperplane for k � d, then expeted number of leaves visited in suh a kd-tree growsexponentially in k, but not in d. We show that the growth rate is even smaller still if the hyperplane isaligned with the oordinate axes. We present empirial studies to support our theoretial results.Keywords: Nearest neighbor searhing, kd-trees, splitting methods, expeted-ase analysis, lustering.1 IntrodutionNearest neighbor searhing is an important and fundamental problem in the �eld of geometri data strutures.Given a set S of n data points in real d-dimensional spae, Rd, we wish to preproess these points so that,given any query point q 2 Rd, the data point nearest to q an be reported quikly. We assume that distanesare measured using any Minkowski distane metri, inluding the Eulidean, Manhattan, and max metris(see, e.g. [AMN+98℄ for de�nitions). Nearest neighbor searhing has numerous appliations in diverse areasof siene.In spite a reent theoretial progress on this problem, the most popular linear-spae data struturesfor nearest neighbor searhing are those based on hierarhial deompositions of spae. Although thesealgorithms do not ahieve the best asymptoti performane, they are easy to implement, and an ahieve fairlygood performane (espeially for approximate nearest neighbor searhing) in moderately high dimensions.Friedman, Bentley, and Finkel [FBF77℄ showed that kd-trees ahieve O(log n) expeted-ase searh time andO(n) spae, for �xed d, assuming data distributions of bounded density. As mentioned earlier, Arya, et1



al. [AMN+98℄ shows that a somewhat more sophistiated tree an perform approximate nearest neighborqueries with guaranteed worst-ase performane. There are a vast number of variations on this theme.The unpleasant exponential fators of d in the worst-ase analyses of these simple data strutures wouldlead one to believe that they would be unaeptably slow, even for moderate dimensional nearest neighborsearhing (say in dimensions up to 20). Nonetheless, pratial experiene shows that, if arefully imple-mented, they an applied suessfully to problems in these and higher dimensions [AMN+98℄.The purpose of this paper is not to propose new data strutures, but to attempt to provide some the-oretial explanation for a possible soure for this unexpetedly good performane, and to omment on thelimitations of this performane. Conventional wisdom holds that beause of dependenies between the di-mensions, high dimensional data sets often onsist of many lusters, eah of whih resides in or near a muhlower dimensional subspae. A great deal of work in multivariate data analysis deals with the problems of di-mension redution and determining the intrinsi dimensionality of a data set. For example, this may be donethrough the use of tehniques suh as the Karhunen-Loeve transform (also known as prinipal omponentanalysis) [Fuk90℄.This suggests the question of how well do nearest neighbor data strutures take advantage of the preseneof low-dimensional lustering in the data set to improve the speed of searh? Traditional worst-ase analysisdoes not model the behavior of data strutures in the presene of simplifying struture in the data. In fat,quite to the ontrary, it fouses on worst-ase situations, whih may be rare in pratie. Even expeted-aseanalyses based on the assumption of (full dimensional) uniformly distributed data [FBF77, Cle79℄ are notdealing with \easy" instanes sine the urse of dimensionality is felt in its full fore.We onsider the following very simple senario. Assuming that the data points and query points aresampled uniformly from a k-dimensional hyperplane (or k-at), where k < d, what is the expeted-asesearh time for kd-trees as a funtion of n, k and d? In [FBF77℄ it is shown that when k = d (the fulldimensional ase) and if boundary e�ets are ignored (see Setion 4 for de�nitions), the expeted numberof leaf ells in the tree to be visited is at most (G(d)1=d + 1)d, where G(d) is the ratio of the volumes ofa d-dimensional hyperube and a maximal enlosed ball for the metri inside the hyperube. (Note thatthis does not involve the number of points n, whih enters as a logarithmi fator in �nding these leaves.)These results rely on the fat that when data points are uniformly distributed, the ells of the kd-tree anbe approximated by d-dimensional hyperubes. However this is not the ase when data points lie on a lowerdimensional hyperplane.It is natural to onjeture that if k � d, then searh times grow exponentially in k but not in d. Indeed, weshow that this is the ase, for a suitable variant of the kd-tree. We introdue a new splitting method, alledthe anonial sliding-midpoint splitting method. This is a variant of a simpler splitting method alled sliding-midpoint, whih is implemented in the ANN approximate nearest neighbor library [MA97℄. (De�nitions aregiven in the next setion.)Our main result is (assuming this splitting rule) kd-trees an indeed ahieve query times dependingexponentially on the intrinsi dimension of data, and not on the dimension of the spae. We show that ifthe data points are uniformly distributed on a k-at, then the expeted number of leaf ells that interseta nearest neighbor ball is O(dk+2). Further, we show that if the points are lustered along a k-at that isaligned with the oordinate axes, even better performane is possible. The expeted number of leaf ellsinterseting the nearest neighbor ball dereases to O((d � k + 1)k), where  is the quantity (G(k)1=k + 1).The restritions of using the sliding-midpoint splitting method and having points lie on a at do notseem to be easy to eliminate. It is not hard to show that if points are perturbed away from the at, or ifsome other splitting method is used, there exist point on�gurations for whih 2d ells will be visited.We present empirial results that support our results. Furthermore, we onsider its robustness to viola-tions in our assumptions. We onsider the ases where there is more than just a single luster of points, buta number of lusters of points lying on di�erent hyperplanes, and where the points do not lie exatly on thehyperplane, but are subjet to small perturbations. These empirial results bear out the fat that the querytimes are muh more strongly dependent on k than on d.The rest of the paper is organized as follows. Setion 3 introdues kd-trees and the two splitting rules,sliding-midpoint and anonial sliding-midpoint. Setion 4 presents the analysis for kd-trees when the pointslie on an arbitrarily oriented k-at. Setion 5 presents the analysis for points lying on an axis-aligned k-at.2



Finally, Setion 6 presents our empirial results.2 Prior WorkThere is an extensive literature on methods for nearest neighbor searhing in high dimensional spaes.Our primary interest is in data strutures that an be stored in main memory (as opposed to databaseappliations). Sine suh data sets an be quite large in pratie (tens of thousands to tens of millions) welimit ourselves to onsideration of data strutures whose total spae grows linearly with d and n. Underthese stringent assumptions, it is diÆult to ahieve very eÆient searh times in higher dimensions. Arya,et al. [AMN+98℄ showed that (1 + �) approximate nearest neighbor queries an be answered from suh adata struture in O((d=�)d logn) time, assuming O(dn) storage. There have been a number of approahesto redue the exponential dependene on d. The losest to ahieving the linear storage bound are the datastrutures by Indyk and Motwani [IM98℄, whih ahieves O(d logO(1) n) searh time using O(1=�)dn logO(1) nstorage. For the large data sets we are interested in, even polylogarithmi fators and polynomial fators in(1=�) may exeed reasonable storage limits. If spae is not an issue, then there are a number of alternatives.For example, Clarkson [Cla88℄ presents a data struture that has O(dO(d)) searh time and O(n(1+Æ)dd=2e)spae.There is a wealth of literature on methods for \dimension redution" for high dimensional data sets. Agood survey is presented by Carreira-Perpi~n�an [CP96℄. However, our interest is on how high dimensionaldata strutures adapt to low-dimensional struture.The problem of how hierarhial deomposition methods perform when given data with low intrinsidimensionality has been studied before. Faloutsos and Kamel [FK94℄ have shown that under ertain as-sumptions, the query time of range queries in an R-tree depends on the fratal dimension of the data set.Their results do not apply to nearest neighbor queries, beause their analysis holds in the limit for a �xedquery range as the data size tends to in�nity. However, with nearest neighbor queries, the analogy of thequery range is the nearest neighbor ball, and its size varies with point density. Otherwise, we know of notheoretial results on our problem.3 BakgroundFirst we reall the basi fats about kd-trees [Ben75℄. Consider a set S of n data points in Rd. A kd-tree isa binary tree that represents a hierarhial subdivision of spae, using splitting planes that are orthogonal tothe oordinate axes. Eah node of the kd-tree is assoiated with a losed retangular region of spae, alled aell. Eah is the produt of d losed intervals, along eah of the oordinate axes. The root's ell is assoiatedwith a bounding hyperube that ontains all the points of S. Eah ell is assoiated with two piees ofinformation, a splitting dimension i (from 1 to d) and splitting value x. These de�ne an axis-orthogonalsplitting hyperplane. The points of the ell are partitioned to one side or the other of this hyperplane (andpoints lying on the hyperplane an be plaed on either side). The resulting subells are the hildren of theoriginal ell. This proess ontinues until the number of points is at most one (or more generally a smallonstant value). There are a number of ways of seleting the splitting hyperplane, whih we outline below.Standard split: Friedman, Bentley and Finkel [FBF77℄ seleted the splitting dimension to be the one forwhih the data points have the maximum spread (di�erene between the maximum and minimumvalues). The splitting value is hosen to be the median in that dimension. This is the most well-knownand widely used splitting method.Midpoint split: The splitting hyperplane passes through the enter of the ell and bisets the longest sideof the ell. If there are many sides of equal length, any may be hosen �rst, say, the one with the lowestoordinate index. This is just a binary version of the well-known quadtree and otree deompositions.Observe that in the standard splitting rule, roughly half of the data points are assoiated with eah hild.This implies that the tree has O(logn) depth and O(n) nodes. The midpoint tree has the feature that for all3



ells, the ratio of the longest to shortest side (the aspet ratio) is at most 2. (We will sometimes use the termbox to mean a ell of bounded aspet ratio.) This is not neessarily true for the standard splitting method.As shown in [AMN+98℄, bounded aspet ratio is important to the eÆieny of approximate nearest neighborsearhing. Unfortunately, if the data are lustered, it is possible to have many empty ells that ontain nodata points. This is not unommon in pratie, and may result in trees that have many more than O(n)nodes.Note that the set of possible splitting planes in midpoint split is not determined by the data points,only by the position of the initial bounding hyperube. For example, suppose that the initial bounding boxis aÆnely mapped to a unit hyperube [0; 1℄d. The splitting values are all of the form k=2i, for some oddinteger k, 1 � k < 2i. We all any ell whih ould result from the appliation of this method a midpointbox. The onept of suh a anonial set of splitting planes and ells will be onsidered later.Unfortunately, there does not seem to be a single simple splitting rule that provides us with all theproperties one might wish for (linear size, logarithmi depth, bounded aspet ratio, onvexity, onstant ellomplexity). In [AMN+98℄ the BBD-tree was introdued. This tree uses a ombination of two operations,splitting and shrinking to provide for all of these properties (exept for onvexity). The BAR-tree [DGK99℄provides all of these properties, by using nonorthogonal splitting planes, but the ells may have as many as2d bounding faes.We disuss two other variants of kd-trees, both designed to provide the same simpliity that makes kd-trees so popular, while overoming some of the shortomings in the above splitting methods. To understandthe problem, suppose that the data points are highly lustered along a few dimensions but vary greatly alongsome the others (see Fig. 1). The standard kd-tree splitting method will repeatedly split along the dimensionin whih the data points have the greatest spread, leading to many ells with high aspet ratio. In nearestneighbor proessing it is neessary to visit all the leaf ells that overlap the nearest neighbor ball, sine anyone of them might ontain the nearest neighbor. A nearest neighbor query near the enter of the boundingsquare would visit a large number of these ells. On the other hand, midpoint split visits limited number ofells beause of the bounded aspet ratios, but produes a large number of empty ells.
Standard split Midpoint split Sliding-midpoint split

q q q

Figure 1: Splitting methods with lustered point sets.Sliding-midpoint: It �rst attempts to perform a midpoint split, by onsidering a hyperplane passingthrough the enter of the ell and biseting the ell's longest side. If the data points lie on both sidesof the splitting plane then the splitting plane remains here. However, if a trivial split were to result(in whih all the data points lie to one side of the splitting plane), then it \slides" the splitting planetowards the data points until it enounters the �rst suh point. One hild is a leaf ell ontaining thissingle point, and the algorithm reurses on the remaining points.This splitting method was �rst introdued in the ANN library for approximate nearest neighbor searhing[MA97℄ and was subsequently analyzed empirially in [MM99a℄. This method produes no empty nodes,and hene the tree has O(n) nodes. Although ells may not have bounded aspet ratio, observe that everyskinny ell that is produed by sliding is adjaent to a fat leaf ell. In [MM99b℄ we show that this is suÆientto satisfy the neessary paking onstraint that fat subdivisions possess. This tree an be onstruted inO(dn logn) time, as is true for the standard kd-tree [MM99a℄.4



Beause there is no guarantee that the point partition is balaned, the depth of the resulting tree may ex-eed O(log n). This theoretial de�ieny ould be remedied by introduing more omplex splitting methodsor auxiliary data strutures. However this additional omplexity does not seem to be warranted in pratie.In our experiene with real data sets in higher dimensions, we have observed that the depth of the searhtree (whih is almost always O(log n)) seems to be less of a dominating fator in running time than thenumber leaves visited in the searh (whih is almost always grows exponentially with dimension).We introdue a small modi�ation of sliding-midpoint. It has been introdued primarily for tehnialreasons. The proof of the main theorem of Setion 4 relies on the presene of having a anonial set ofsplitting planes, while retaining the property that no empty ells are produed. Although this method issomewhat arti�ial, our empirial studies indiate that its performane is very similar to sliding-midpoint.We onjeture that similar results hold for the sliding-midpoint method, but we have no proof of this. Thismethod is based on using the same midpoint uts that midpoint split uses, rather than using the truemidpoint of the ell.Canonial sliding-midpoint: De�ne the enlosure for a ell to be the smallest midpoint box that enlosesthe ell. During the onstrution phase, eah node of the tree is assoiated both with its ell andthe ell's enlosure. We �rst try to split the ell using a hyperplane that bisets the longest side ofthis enlosure (rather than the ell itself). By the minimality of the enlosure, this ut intersets theell. If this results in a trivial split, then it slides the splitting plane towards the data points until itenounters the �rst suh point. This point is stored in a leaf ell, and the algorithm reurses on theremaining points.
Sliding-midpoint Canonical sliding-midpointFigure 2: Sliding-midpoint and anonial sliding-midpoint.The di�erenes between these two splitting methods is illustrated in Fig. 2. Notie that in the sliding-midpoint method the slides originate from a line that bisets the ell (shown in dashed lines), whereas inthe anonial sliding-midpoint method, the slides originate from the midpoint uts of the enlosing midpointell (shown in dashed lines).Beause of prior sliding operations, the initial split used in the anonial sliding-midpoint method maynot pass through the midpoint of the ell. After splitting, the enlosures for the two hild ells must also beomputed. This an be done in O(d) time [BET93℄. Thus, this tree an be onstruted in O(dn logn) time,and has O(n) nodes, just like the sliding-midpoint split kd-tree.4 Points Clustered on Arbitrarily Oriented FlatsLet F be an arbitrary k-dimensional hyperplane (or k-at, for short) in Rd. We assume that F is ingeneral position, and in partiular that F is not parallel to any of the oordinate axes. Let S denotea set of data points sampled from a losed onvex, sampling region of F aording to some probabilitydistribution funtion. We assume that the distribution funtion satis�es the following bounded densityassumption[BWY80℄. There exist onstants 0 < 1 � 2, suh that for any onvex open subregion of the5



sampling region with k-dimensional volume V , the probability that a given sampled point lies within thisregion is in the interval [1V; 2V ℄. (This is just a generalization of a uniform distribution but allows somevariation in the probability density.)To avoid having to deal with boundary e�ets, we will assume that there are suÆiently many datapoints sampled, and that the query points are hosen from a suÆiently entral region, suh that with highprobability the nearest neighbor ball for any query point lies entirely within the sampling region. Moreformally, �x any ompat onvex region on F , alled the query region, from whih query points will besampled. Let w denote the diameter of this region. Now, take the data points to be sampled from ahyperube of side length w0 > w entered around this region, suh that the loal density of the distributionis independent of w0. Our results hold in the limit as w0 tends to in�nity. The work of Arya, et al. [AMN96℄shows that onsideration of boundary e�ets for kd-trees with uniformly distributed points only tends toderease the number of ells of the tree visited. Nonetheless these e�ets an be quite messy to deal with.Let B(r) denote a ball of radius r. Let VF (q; r) denote the k-dimensional volume of intersetion of F andball B(r) entered at point q. If we restrit q to lying on F , then VF (q; r) is a onstant for all q, whih wedenote as VF (r). Following the approah taken in [AMN96℄, let us �rst sale spae so that the lower densitybound beomes 1 = 1=Vk(1). After this saling, a ball of unit radius is expeted to ontain at least one pointof the sample. As observed in [AMN96℄, as k inreases, a ball of unit radius is a very good approximationto the expeted nearest neighbor ball. The reason is that VF (r) is growing as rk , and so for large k, theprobability that a data point lies in B((1 � Æ)r) drops rapidly with Æ, and the probability that there is atleast one point in B((1 + Æ)r) inreases rapidly with Æ.Consider a kd-tree built for suh a distribution, assuming the anonial sliding-midpoint splitting method.Our analysis will fous on the number of leaf ells of the kd-tree that are visited in the searh. The runningtime of nearest neighbor searh (assuming priority searh [AMN+98℄) is more aptly bounded by the produtof the depth of the tree and the time to aess these nodes, whih an be assumed to be O(log n) (eitherbeause the tree is balaned, or auxiliary data strutures are used). We fous just on the number of leaf ellsprimarily beause in higher dimensions this seems to be the more important fator inuening the runningtime.The main result of this setion is that the expeted number of ells of a anonial sliding-midpoint kd-treethat interset a unit ball entered on F is exponential in k, but not in d. To see that the proof is nontrivial,suppose that instead of a kd-tree we had stored the points in a regular grid instead. If the nearest neighborball ontained even a single vertex of the grid, then it would overlap at least 2d ells. A remarkable featureof the anonial midpoint-split tree is that it is not possible to generate a vertex that is inident to suh alarge number of ells when the points lie on a lower dimensional at. This feature of kd-trees seems to bean important reason that these trees adapt well to the intrinsi dimensionality of the point set. Although itis not lear how to establish this property for other types of splitting methods in the worst ase, we believethat something analogous to this holds in the expeted ase (over all possible plaements of the query point).Before we an prove the main result, we de�ne some de�nitions and state some lemmas that will be usedin the theorem.De�ne a splitting hyperplane to be any axis orthogonal plane. De�ne a ut to be the intersetion of asplitting hyperplane and a ell of the kd-tree (that is, a d� 1 dimensional retangle). Let B denote the unitball, and let But denote the set of uts that interset B. Sine eah suessive element of But subdividesa ell that intersets B into two subells that interset B, it follows that the total number of leaf ells thatinterset B is just But + 1. Thus it suÆes to bound the size of But .The hoie of the initial splitting hyperplanes (prior to sliding) made at eah node of the anonialmidpoint-split kd-tree depends only on the indexing of the oordinate axes and the shape of the enlosure.The data points themselves only a�et whether a split is made and whether sliding takes plae. For eahdimension, these splitting values naturally de�ne an (in�nite) tree struture. Order these values aordingto a breadth-�rst traversal of this tree. (For example, for a kd-tree built on the unit interval [0; 1℄, thisorder would be h1=2; 1=4; 3=4; 1=8; 3=8; 5=8; : : :i.) We all this the anonial tree ordering of splittinghyperplanes.De�ne the initial splitting hyperplane to be the splitting hyperplane hosen before any sliding. This isalways a midpoint-split hyperplane. Consider the initial splitting hyperplanes in T . For eah axis i, 1 � i � d,6



de�ne the �rst split for ith axis, denoted Fsplit(i), to be the earliest (in the anonial tree order) hyperplaneorthogonal this axis to interset B. Note that if B intersets two parallel hyperplanes at some level in thistree ordering, then it must interset a parallel hyperplane between them at the next higher (loser to theroot) level. Thus Fsplit(i) is unique highest level splitting hyperplane interseting B. De�ne Fsplit to bed-element set onsisting of Fsplit(i) for 1 � i � d. Note that But is a set of uts (the intersetion of ahyperplane and a ell), whereas Fsplit is a set of hyperplanes.Here is a high-level overview of the proof of the main result. We �rst bound the number of nonemptymidpoint kd-tree ells that are bounded on some side by one of these hyperplanes. This bound is based onthe fat that there are only d suh Fsplit hyperplanes. We use ombinatorial arguments, similar to boundson the number of faes in an arrangement of d hyperplanes in dimension k. We argue that eah of the But 'sarise in one of three ways.(1) It is supported an Fsplit hyperplane, in whih ase the previous bound is applied. This is a worst-asebound (holding irrespetive of the data distribution), and turns out to provide the dominant term inthe overall bound.(2) It arose by applying a slide to a midpoint ut that does not interset the ball. We argue that eahsuh slide results in a leaf ell on one side, whih will not be split further, thus preventing this fromhappening again with a parallel split on the same side of the ball. We bound the number of uts ofthis type by arguing that there an be at most 2d suh uts for eah ut of types (1) and (3).(3) Its initial ut is not a �rst split and intersets the ball. To bound this last type of ut, we observethat they arise from ells whose width is bounded (beause this not the �rst ut in this diretion tointerset the ball). We apply an argument based on the observation that beause points lie on a k-at,their density grows exponentially with k and not with d.We lassify the uts of But into three types. Consider a ut  orthogonal to dimension i. If the initialsplitting hyperplane (prior to any sliding) is Fsplit(i), then we all this a �rst ut. If its initial splittinghyperplane does not interset B, (and hene the ut intersets B beause of sliding) we all it a slidingut. Otherwise, (its initial splitting hyperplane intersets B but is not Fsplit(i)) we all it a lose ut. Forexample, Fig. 3 shows the various types of uts. The initial midpoint splitting uts are shown as dashedlines, and the �nal uts are shown as solid lines. Double arrows indiate where initial uts were slid. Thetwo Fsplit hyperplanes are shown as dotted lines. Note that the horizontal �rst ut was slid away from itsinitial splitting hyperplane. The sliding uts all arose from initial splitting hyperplanes that do not intersetB. The remaining ut is a lose ut. There is one vertial ut that does not interset B, and so is not aBut .
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Figure 3: Types of uts.7



Lemma 4.1. If B is a Eulidean ball, the expeted number of lose uts in But is O((2d)k=2).Proof Consider some lose ut  2 But , and let i be its splitting axis. Let h be the initial splittinghyperplane (before any sliding). Sine  is a lose ut, h 6= Fsplit(i). Let 0 be the initial midpoint utfrom whih  resulted. Sine both h and Fsplit(i) interset B, and sine Fsplit(i) would be tried before h,it follows that the ell C that is biseted by 0 lies entirely to one side of Fsplit(i). Sine initial uts aremidpoint uts, it follows that the width of C along dimension i is at most 2, the diameter of B. Sine 0 isa midpoint ut, the longest side C is of length at most 4. There must be at least two points lying within Cthat are separated by . The Eulidean diameter of C is at most 4pd.Thus, eah lose ut separates at least two points that are within a distane of 4pd of the enter of B. Ifm denotes the expeted number of suh points, the number of lose uts is at most m� 1. A ball of radius4pd intersets the k-at as a k-dimensional ball whose k-volume is proportional to (4pd)k. This impliesthat the expeted number of points lying within this ball is O(4pd)k. Therefore the total number of uts isO((2d)k=2). utIt is easy to generalize the above to any Minkowski ball. The orresponding bound for the Lm Minkowskim <1 is O((4d1=m)k). For the L1 ball (a hyperube) this redues to O(4k).Next, we onsider �rst uts. We say that a ell is void if does not interset F , and nonvoid otherwise.Note that void ells annot possible ontain points of S, whereas nonvoid ells might, but need not. Voidells may be reated as a result of the initial midpoint subdivision, but if so, sliding will be invoked so thatthe would-be void hild has exatly one data point. We will make use of the well known bound fk(m) onthe number of k-dimensional ells in an arrangement of m hyperplanes in k-spae [Ede87℄.fk(m) = kXj=0�mj � 2 �(mk):Lemma 4.2. The number of �rst uts in But is at most fk+1(d)� 1, whih is O(dk+1).Proof It suÆes to onsider the tree resulting from the initial splitting hyperplanes, sine these initial utsall interset B, and sliding an only derease the number of uts in But .Consider a minimal subtree of the kd-tree that inludes all the �rst uts. More formally, starting at theroot, for eah internal node whose splitting hyperplane does not interset B, one hild is entirely disjointfrom B and the other ontains B. Disard the entire subtree of the �rst hild, and replae this node withseond hild. After enountering Fsplit(i) it is possible to see a desendent with a parallel ut in But , butbefore enountering Fsplit(j) for j 6= i. We may ignore these parallel uts (taking either hild) sine theiruts are ounted among the lose uts or sliding uts. Take either hild to be in the subtree. The resultingtree only has uts supported by Fsplit hyperplanes. We will show that the number of uts in the subtree isat most fk+1(d) � 1,Our proof is based on a reurrene, whose solution is the desired number of uts. Beause of the anonialordering of uts in the kd-tree, we an think of these uts as being introdued in a series of rounds. All theuts supported by the same Fsplit hyperplane are introdued in the same round. Let us assume that theaxes have been sorted aording to the order of introdution of the Fsplit hyperplanes (that is, if Fsplit(i) isat a higher level than Fsplit(j) then all the uts supported by Fsplit(i) will be inserted in one round beforethose supported by Fsplit(j)). There are d rounds.As mentioned earlier, it is not neessarily the ase that an nonvoid ell will be split with the introdutionof a new Fsplit . However, to produe an upper bound, we may assume that this always happens. Let nidenote the number of nonvoid ells that are reated in round i, by splitting all nonvoid ells at round i� 1.Let vi denote the number newly reated void ells, whih result whenever a nonvoid ell has been split butonly one of its hild ells is nonvoid. Our goal is to determine the total number of void and nonvoid at theend of the proess, namely nd + dXi=0 vi:8



One a void ell is reated, it annot be split further. However, for the sake of analysis, imagine that eahvoid ell is split with eah subsequent round. Let si denote the number of void ells under the assumptionthat they ontinue to be split. Call these pseudo ells.For the basis, we have one nonvoid ell and no void ells, and hene n0 = 1 and v0 = s0 = 0. Aswe proeed from round i � 1 to round i, observe that all nonvoid ells are split, and all pseudo ells aresplit. Sine these sets are disjoint, it follows that ni + si = 2i. At round i, the �rst i Fsplit hyperplanesintrodued so far subdivide the at F into an arrangement of i hyperplanes. Eah nonvoid ell at round iintersets F as a k-dimensional ell in this arrangement. Hene, in the worst ase we have ni = fk(i), andthus si = 2i � fk(i).Pseudo ells arise in two ways. First o�, they an arise from newly reated void ells at round i, or theyan be pseudo ells from the previous round that were split. Thus, si = vi+2si�1. Combining this, we havevi = si � 2si�1 = 2i � fk(i)� 2(2i�1 � fk(i� 1))= 2fk(i� 1)� fk(i) = 2 kXj=0�i� 1j �� kXj=0�ij�:To simplify this, we break the �rst summation into two opies and break o� the last term. For the seondterm, we use the identity �ij� = �i�1j �+ �i�1j�1�.vi = 0� kXj=0�i� 1j �+ k�1Xj=0�i� 1j � + �i� 1k �1A � kXj=0��i� 1j �+�i� 1j � 1��= kXj=0�i� 1j �+ kXj=0�i� 1j � 1� + �i� 1k � � kXj=0�i� 1j �� kXj=0�i� 1j � 1�= �i� 1k �:Using the fat that Pni=0 �ik� = �n+1k+1�, we onlude that the total number of ells isnd + dXi=0 vi = fk(d) + dXi=0 �i� 1k � = fk(d) +� dk + 1� = fk+1(d);whih is O(dk+1). The total number of uts is one less that this. utLemma 4.3. The number of sliding uts in But is at most 2d times the number of �rst ut and lose utsombined.Proof By de�nition, a sliding ut arises from a initial splitting hyperplane that lies outside of B and wasslid until it intersets B. Whenever a slide ours, the ell is partitioned into two hildren, one ontains asingle point and annot be further subdivided. Thus, it is impossible to slide twie from the same diretion,without an intervening split. Hene, if we label all the internal nodes of the kd-tree aording to whetherthey are sliding uts or not, the sliding ut nodes will form linear hains (a node with at least one leaf hild)of length at most 2d. If we were to ompress this tree by removing all these hains, the result would be atree that is smaller by a fator of at most 2d, but in whih the But 's onsist only of �rst uts and loseuts. This establishes the bound. utTheorem 4.1. Let S be a set of points from Rd sampled independently from a k-at F by a distributionsatisfying the bounded density assumptions and saled as desribed above. Let T be a kd-tree built for S usingthe anonial sliding-midpoint splitting method. Then, the expeted number of leaf ells of T that interset aunit ball entered on F is O(dk+2). 9



Proof Combining Lemmas 4.1, 4.2, and 4.3, it follows that the total number of uts in But is dominatedby the bound on the sliding uts (in onjuntion with the �rst uts) to get O(2d(dk+1)) = O(dk+2). Thisompletes the proof of Theorem 4.1. utUsing Theorem 4.1 and the observation made earlier that a ball of unit radius is good approximation to(or larger than) the nearest neighbor ball, we have the following bound on the number of leaf ells visited innearest neighbor searhing.Corollary 4.1. The expeted number of leaf ells of T enountered in nearest neighbor searhing is O(dk+2).5 Points Clustered on Axis-Aligned FlatsWe onsider the ase where the set S of data points in Rd sampled independently from a distribution ofbounded density along an axis-aligned k-at. This is a partiularly good ase for the standard kd-treesplitting method, sine the point spread is always widest along axes spanned by the at, and hene all splitswill be orthogonal to the at. The behavior of the algorithm will be isomorphi to its behavior on pointsthat are uniformly distributed in Rk. However, we will analyze the sliding-midpoint methods, for the sakeof omparison with the results of the previous setion.If we split orthogonal to any of the d� k oordinate axes that are orthogonal to the at, the points willall lie to one side of this splitting hyperplane (barring the degenerate ase where the at lies on the splittinghyperplane). The splitting hyperplane will slide until it lies on the at. After any sequene of 2(d� k) suhslides, the at will be tightly enlosed within a ell. Splits along other axes will be orthogonal to the at,and so will behave essentially the same a sliding-midpoint deomposition in k-spae. The main ompliationis that the algorithm does not know the loation of the at, and hene these two types of splits may ourin an unpreditable order.Let G(k) denote the dimension dependent ratio of the volumes of a k-dimensional hyperube and amaximal enlosed k-ball for the metri inside the hyperube. Let (k) = (G(k)1=k + 1). For example,for the L1 (max) metri the metri ball is a hyperube, and (k) = 2. For the L2 (Eulidean) metriG(k) = k�(k=2)=(2k+1�k=2).Theorem 5.1. Let S be a set of points from Rd sampled independently from an axis-aligned k-at F by adistribution satisfying the bounded density assumptions desribed in Setion 4. Let T be a kd-tree built forS using the anonial sliding-midpoint splitting method. Then, the expeted number of leaf ells of T thatinterset a unit ball entered on F is O((d � k + 1)(k)k).Proof Let assume that spae has been saled so that the bounding box for the point set is a unit ube.De�ne the ith length of a ell to be its length along the ith oordinate axis. Let DF denote the set of k axesthat F spans on and let EF be the remaining set of d� k axes. We will assume the worst-ase, that when asplit is made along an axis in DF it results in a nontrivial partition of the points, and hene no sliding takesplae. In ontrast, when a split is made along an axis in EF , the points will all lie on one side or the otherof this split, and hene the split will slide until it ontats the at. Thus, all splits along axes in DF behaveessentially the same and all splits along EF behave essentially the same.Observe that the uts along the axes in DF behave with respet to F exatly as they would if we wereonstruting a kd-tree for a set of points in Rk. So, from the analysis given in [FBF77℄, it follows that theexpeted number of leaf ells visited is O((k)k). For eah suh ell, as many as 2(d � k) slides may havetaken plae surrounding this ell, and eah of the resulting leaf ells might be visited. Thus the total numberof expeted ells visited is O((2(d � k) + 1)(k)k) = O((d � k + 1)(k)k). ut6 Empirial ResultsWe onduted experiments on the query performane of the kd-tree for data sets lying on a lower dimensionalat. We used the ANN library [MA97℄ to implement the kd-tree. The experiments were run on a PC, running10



Linux. The program was ompiled by the g++ ompiler. We measured a number of statistis for the tree,inluding its size, depth, and the average aspet ratio of its ells.We used priority searh to answer queries. We gathered a number of statistis inluding CPU time,the number of internal and leaf nodes visited in the tree, and the number of oating-point operations. Wepresent the total number of nodes, and the number of leaf nodes in our grades, beause these parametersare mahine-independent, and they are losely orrelated with CPU time.6.1 Distributions testedBefore disussing what we did in the experiments, we briey desribe the distributions used.Uniform: Eah oordinate of eah point was hosen uniformly from the interval [�1; 1℄.Gauss: Standard deviation, �, is provided to the distribution. The points are generated using zero meanGaussian distribution. All oordinates have the same value of �.Clustered-orthogonal-ellipsoids: This distribution is designed to model point sets that are lustered onlower dimensional ats, where all the ats are aligned with the oordinate axes. The distribution isgiven a number of lusters . Then  luster enters are generated from a uniform distribution over[�1; 1℄. The distribution is also given two standard deviation values, �thin ; �fat . The dimensions aredivided into fat and thin dimensions. Another parameter, dmax, indiates the maximum number of thefat dimensions. For eah olor lass, a number, k, between 1 and dmax is randomly hosen to be thenumber of fat dimensions (the dimension of the at). Then k dimensions are hosen at random to befat dimensions. Eah point is generated from a Gaussian distribution entered at a randomly hosenluster enter. For the fat (resp., thin) dimensions, the standard deviation is set to �fat (resp., �thin ).Uniform-on-orthogonal-at: The dimension of the at, k, is provided, and k dimensions are hosen atrandom. Among these dimensions, the points are distributed uniformly over [�1; 1℄. For, the other(d � k) dimensions, we generate a uniform random oordinate that is ommon to all the points. Forour experiments, we onsidered both points exatly on the at, and points perturbed o� the at by aGaussian error with standard deviation 0.005.Uniform-on-rotated-at: This distribution is the result of applying r random rotation transformationsto the points in uniform-on-orthogonal-at distribution. The at is therefore rotated in a randomdiretion. Eah rotation is through a uniformly distributed angle in the range [��=2; �=2℄ with respetto two randomly hosen dimensions.6.2 Sliding-midpoint and anonial sliding-midpointOur theoretial results for arbitrary ats apply only to the anonial sliding-midpoint method. This waslargely for tehnial reasons. A natural question is how muh this method di�ers from the more naturalsliding-midpoint method. We disovered that the two trees are quite similar. If the number of points isfairly small (less than 2k) then the trees are idential. Beause it bisets the ell, we expet sliding-midpointto perform somewhat better on average. We ran a set of experiments to ompare query times for bothsliding-midpoint and anonial sliding-midpoint methods.Distributions tested inluded Gauss and Clustered-orthogonal-ellipsoids. We set � to 0.4 for the Gaussdistribution. For Clustered-orthogonal-ellipsoids, �fatand�thin were set to 0.4 and 0.005, respetively, anddmax was set to d=2, where d is the number of dimensions of the spae. The number of points, n, rangedfrom 40 to 163,840 and d ranged from 2 to 16.The queries ome from the same distribution as the set of points and the number of queries is n. Table 4shows the average numbers of nodes visited over all queries when the tree was built by two splitting methods.Observe that the number of nodes visited are similar, with di�erenes the performane of anonial sliding-midpoint being worst with larger data sets and lower dimensions. Thus it would reasonable to onjeture thatour upper bounds on the performane of anonial sliding-midpoint may hold for standard sliding-midpointas well. 11



Gaussian distributionn 40 640 10,240 163,840-sl sl -sl sl -sl sl -sl sld = 4 27.55 27.55 60.09 59.9 88.43 80.91 91.5 89.58d = 8 354.9 355 999.8 972.2 1447 1439Cluster-orthogonal-ellipsoids distributionn 40 640 10,240 163,840-sl sl -sl sl -sl sl -sl sld = 4 9.675 7.925 28.05 26.04 67.18 60.43 102.2 82.55d = 8 44.58 43.46 262.3 256.2 833 782.4Figure 4: Total number of nodes visited by searh algorithm (-sl: anonial sliding-midpoint, sl: sliding-midpoint)6.3 Points on a k-atTo support our theoretial bounds on number of leaf nodes visited when the point set is on a k-at, we setup an experiment with both k and d varying, while �xing the other parameters. This allows us to observethe dependeny of the query performane (in terms of the number of nodes visited) relative to d and k.The Uniform-on-orthogonal-at and Uniform-on-rotated-at distributions were used in the experiments. We�xed d at 4, 8, 12, 16, 20, 24, 32, 40 (note that the sale is nonlinear), and k ranged from 4 to min(d; 16).Again, the number of points, n ranged from 40 to 163,840. For Uniform-on-rotated-at, the number ofrandom rotations is r = d2=2. The ase of perturbed data is presented, but the results were very similarto the ase of data points lying exatly on the at. The queries were sampled from the same distribution.Number of query points was set to min(n; 2560).Figure 5 shows the average number of nodes visited, ounting both internal and leaf nodes (total) and justleaf nodes visited by the priority searh when the tree was built by the anonial sliding-midpoint method.We shows the results only for n = 163; 840 sine the relative performane of other ases is similar. Also, theperformane of the splitting method is idential to one of the sliding-midpoint method in this distributionthroughout the range of parameters we tested.
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Figure 5: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-orthogonal-at distributionIt is easy to see that the number of nodes visited depends only on k for a �xed n. The performanedoes not respond to the hange of d. This is beause of the way the tree is built. In ANN library [MA97℄,12



the kd-tree is onstruted reursively. Initially, there is one node, the root, that ontains all points. Alsoit omputes the tight bounding box of the point set in order to determine the splitting value and splittingdimension. Sine the points in Uniform-on-orthogonal-at lie on k-subspae, so does the initial boundingbox. Therefore, the splitting methods never hoose one of d � k dimensions that the at does not lie on asthe splitting dimension.
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Figure 6: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-orthogonal-at distribution withube initial bounding boxIn order to observe the behavior of the senario onsidered in Theorem 5.1, we modi�ed the library sothat the initial bounding box is the hyperube [�1; 1℄d. The results of this modi�ation are showed in Fig.6. Note that we plotted the logarithm base 10 of the number of nodes visited. As predited, the runningshows a strong dependene on k, and very little dependene on d. However, it does not grow as fast as whatTheorem 5.1 predits. This suggests that the average ase is muh better than our theoretial bounds.The Uniform-on-rotated-at distribution is also used in the experiment to see the e�et assuming thatdata is uniform on an arbitrarily oriented at. Fig. 7 shows the results of this distribution, again showingthe logarithm of the number of nodes visited and for n = 163; 840. In this distribution, anonial sliding-midpoint is a little slower (typially, the di�erene is less than 5%) than sliding-midpoint in few ases. Theplot shows the result of trees built by the anonial sliding-midpoint method. Notie that the number ofnodes visited still shows a greater dependene on k than on d, but the dependene on d has inreased, againas predited by Theorem 4.1. Yet, the growth rate is still less than what the theorem predits.We also tested the sensitivity of our result to the presene of multiple lusters. Eah data set onsistsof four lusters generated on four di�erent hyperplanes for the uniform-on-rotated-at distribution. Fig. 8shows the results of this experiment.6.4 Standard kd-treeWe were also interested in test the performane of trees built by the standard kd-tree method. We testedwith Uniform-on-rotated-at distribution with the same parameters as above. The results, showed in Fig.9, are quite similar to the other splitting methods. Our experiene has shown that standard kd-tree tendsto perform very well when data and query points are taken from the same dimension, even though it seemsto be muh harder to establish theoretial bounds on its performane.
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Figure 7: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-rotated-at distribution
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Figure 8: Number of total and leaf nodes visited, n = 163; 840, four lusters Uniform-on-rotated-at distri-bution
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Figure 9: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-rotated-at distribution, (stan-dard kd-tree method is used)6.5 Comparison with theoretial resultsIn this setion, we take a loser look on whether or not our theoretial bounds an predit the atual queryperformane in terms of the number of leaf nodes visited. From Corollary 4.1, the expeted number of leafnodes of a kd-tree enountered in the searh is O(dk+2). We model this bound as L = 1(2d)3k, where Lis the number of leaf nodes visited and 1; 2; 3 are onstants. We set up the experiment suh that the dataand query distributions are uniform-on-rotated-at. The parameters are slightly di�erent from the previousexperiments. The number of random rotations is d2, and there is no gaussian noise. The number of datapoints, n, remains at 163,840. We gathered results for k = 1 to 12 and d = 10; 20; 40; 80. The results areplotted in Fig 10.
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Figure 10: Number of leaf nodes visited, n = 163; 840, Uniform-on-rotated-at distributionThe model suggests that the urves (eah for a �xed value of d) in Fig 10 should be linear. However, the15
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