
On the EÆ
ien
y of Nearest Neighbor Sear
hingwith Data Clustered in Lower Dimensions
Songrit Maneewongvatana David M. MountDepartment of Computer S
ien
e Institute For Advan
ed Computer Studies &University of Maryland Department of Computer S
ien
eCollege Park, Maryland 20742 University of Marylandsongrit�
s.umd.edu College Park, Maryland 20742mount�
s.umd.eduUMIACS-TR-2001-05CS-TR-4209Abstra
tIn nearest neighbor sear
hing we are given a set of n data points in real d-dimensional spa
e, Rd,and the problem is to prepro
ess these points into a data stru
ture, so that given a query point, thenearest data point to the query point
an be reported eÆ
iently. Be
ause data sets
an be quite large,we are interested in data stru
tures that use optimal O(dn) storage. Given the limitation of linearstorage, the best known data stru
tures su�er from expe
ted-
ase query times that grow exponentially ind. However, it is widely regarded in pra
ti
e that data sets in high dimensional spa
es tend to
onsist of
lusters residing in mu
h lower dimensional subspa
es. This raises the question of whether data stru
turesfor nearest neighbor sear
hing adapt to the presen
e of lower dimensional
lustering, and further howperforman
e varies when the
lusters are aligned with the
oordinate axes.We analyze the popular kd-tree data stru
ture in the form of two variants based on a modi�
ationof the splitting method, whi
h produ
es
ells satisfy the basi
 pa
king properties needed for eÆ
ien
ywithout produ
ing empty
ells. We show that when data points are uniformly distributed on a k-dimensional hyperplane for k � d, then expe
ted number of leaves visited in su
h a kd-tree growsexponentially in k, but not in d. We show that the growth rate is even smaller still if the hyperplane isaligned with the
oordinate axes. We present empiri
al studies to support our theoreti
al results.Keywords: Nearest neighbor sear
hing, kd-trees, splitting methods, expe
ted-
ase analysis,
lustering.1 Introdu
tionNearest neighbor sear
hing is an important and fundamental problem in the �eld of geometri
 data stru
tures.Given a set S of n data points in real d-dimensional spa
e, Rd, we wish to prepro
ess these points so that,given any query point q 2 Rd, the data point nearest to q
an be reported qui
kly. We assume that distan
esare measured using any Minkowski distan
e metri
, in
luding the Eu
lidean, Manhattan, and max metri
s(see, e.g. [AMN+98℄ for de�nitions). Nearest neighbor sear
hing has numerous appli
ations in diverse areasof s
ien
e.In spite a re
ent theoreti
al progress on this problem, the most popular linear-spa
e data stru
turesfor nearest neighbor sear
hing are those based on hierar
hi
al de
ompositions of spa
e. Although thesealgorithms do not a
hieve the best asymptoti
 performan
e, they are easy to implement, and
an a
hieve fairlygood performan
e (espe
ially for approximate nearest neighbor sear
hing) in moderately high dimensions.Friedman, Bentley, and Finkel [FBF77℄ showed that kd-trees a
hieve O(log n) expe
ted-
ase sear
h time andO(n) spa
e, for �xed d, assuming data distributions of bounded density. As mentioned earlier, Arya, et1

al. [AMN+98℄ shows that a somewhat more sophisti
ated tree
an perform approximate nearest neighborqueries with guaranteed worst-
ase performan
e. There are a vast number of variations on this theme.The unpleasant exponential fa
tors of d in the worst-
ase analyses of these simple data stru
tures wouldlead one to believe that they would be una

eptably slow, even for moderate dimensional nearest neighborsear
hing (say in dimensions up to 20). Nonetheless, pra
ti
al experien
e shows that, if
arefully imple-mented, they
an applied su

essfully to problems in these and higher dimensions [AMN+98℄.The purpose of this paper is not to propose new data stru
tures, but to attempt to provide some the-oreti
al explanation for a possible sour
e for this unexpe
tedly good performan
e, and to
omment on thelimitations of this performan
e. Conventional wisdom holds that be
ause of dependen
ies between the di-mensions, high dimensional data sets often
onsist of many
lusters, ea
h of whi
h resides in or near a mu
hlower dimensional subspa
e. A great deal of work in multivariate data analysis deals with the problems of di-mension redu
tion and determining the intrinsi
 dimensionality of a data set. For example, this may be donethrough the use of te
hniques su
h as the Karhunen-Loeve transform (also known as prin
ipal
omponentanalysis) [Fuk90℄.This suggests the question of how well do nearest neighbor data stru
tures take advantage of the presen
eof low-dimensional
lustering in the data set to improve the speed of sear
h? Traditional worst-
ase analysisdoes not model the behavior of data stru
tures in the presen
e of simplifying stru
ture in the data. In fa
t,quite to the
ontrary, it fo
uses on worst-
ase situations, whi
h may be rare in pra
ti
e. Even expe
ted-
aseanalyses based on the assumption of (full dimensional) uniformly distributed data [FBF77, Cle79℄ are notdealing with \easy" instan
es sin
e the
urse of dimensionality is felt in its full for
e.We
onsider the following very simple s
enario. Assuming that the data points and query points aresampled uniformly from a k-dimensional hyperplane (or k-
at), where k < d, what is the expe
ted-
asesear
h time for kd-trees as a fun
tion of n, k and d? In [FBF77℄ it is shown that when k = d (the fulldimensional
ase) and if boundary e�e
ts are ignored (see Se
tion 4 for de�nitions), the expe
ted numberof leaf
ells in the tree to be visited is at most (G(d)1=d + 1)d, where G(d) is the ratio of the volumes ofa d-dimensional hyper
ube and a maximal en
losed ball for the metri
 inside the hyper
ube. (Note thatthis does not involve the number of points n, whi
h enters as a logarithmi
 fa
tor in �nding these leaves.)These results rely on the fa
t that when data points are uniformly distributed, the
ells of the kd-tree
anbe approximated by d-dimensional hyper
ubes. However this is not the
ase when data points lie on a lowerdimensional hyperplane.It is natural to
onje
ture that if k � d, then sear
h times grow exponentially in k but not in d. Indeed, weshow that this is the
ase, for a suitable variant of the kd-tree. We introdu
e a new splitting method,
alledthe
anoni
al sliding-midpoint splitting method. This is a variant of a simpler splitting method
alled sliding-midpoint, whi
h is implemented in the ANN approximate nearest neighbor library [MA97℄. (De�nitions aregiven in the next se
tion.)Our main result is (assuming this splitting rule) kd-trees
an indeed a
hieve query times dependingexponentially on the intrinsi
 dimension of data, and not on the dimension of the spa
e. We show that ifthe data points are uniformly distributed on a k-
at, then the expe
ted number of leaf
ells that interse
ta nearest neighbor ball is O(dk+2). Further, we show that if the points are
lustered along a k-
at that isaligned with the
oordinate axes, even better performan
e is possible. The expe
ted number of leaf
ellsinterse
ting the nearest neighbor ball de
reases to O((d � k + 1)
k), where
 is the quantity (G(k)1=k + 1).The restri
tions of using the sliding-midpoint splitting method and having points lie on a
at do notseem to be easy to eliminate. It is not hard to show that if points are perturbed away from the
at, or ifsome other splitting method is used, there exist point
on�gurations for whi
h 2d
ells will be visited.We present empiri
al results that support our results. Furthermore, we
onsider its robustness to viola-tions in our assumptions. We
onsider the
ases where there is more than just a single
luster of points, buta number of
lusters of points lying on di�erent hyperplanes, and where the points do not lie exa
tly on thehyperplane, but are subje
t to small perturbations. These empiri
al results bear out the fa
t that the querytimes are mu
h more strongly dependent on k than on d.The rest of the paper is organized as follows. Se
tion 3 introdu
es kd-trees and the two splitting rules,sliding-midpoint and
anoni
al sliding-midpoint. Se
tion 4 presents the analysis for kd-trees when the pointslie on an arbitrarily oriented k-
at. Se
tion 5 presents the analysis for points lying on an axis-aligned k-
at.2

Finally, Se
tion 6 presents our empiri
al results.2 Prior WorkThere is an extensive literature on methods for nearest neighbor sear
hing in high dimensional spa
es.Our primary interest is in data stru
tures that
an be stored in main memory (as opposed to databaseappli
ations). Sin
e su
h data sets
an be quite large in pra
ti
e (tens of thousands to tens of millions) welimit ourselves to
onsideration of data stru
tures whose total spa
e grows linearly with d and n. Underthese stringent assumptions, it is diÆ
ult to a
hieve very eÆ
ient sear
h times in higher dimensions. Arya,et al. [AMN+98℄ showed that (1 + �) approximate nearest neighbor queries
an be answered from su
h adata stru
ture in O((d=�)d logn) time, assuming O(dn) storage. There have been a number of approa
hesto redu
e the exponential dependen
e on d. The
losest to a
hieving the linear storage bound are the datastru
tures by Indyk and Motwani [IM98℄, whi
h a
hieves O(d logO(1) n) sear
h time using O(1=�)dn logO(1) nstorage. For the large data sets we are interested in, even polylogarithmi
 fa
tors and polynomial fa
tors in(1=�) may ex
eed reasonable storage limits. If spa
e is not an issue, then there are a number of alternatives.For example, Clarkson [Cla88℄ presents a data stru
ture that has O(dO(d)) sear
h time and O(n(1+Æ)dd=2e)spa
e.There is a wealth of literature on methods for \dimension redu
tion" for high dimensional data sets. Agood survey is presented by Carreira-Perpi~n�an [CP96℄. However, our interest is on how high dimensionaldata stru
tures adapt to low-dimensional stru
ture.The problem of how hierar
hi
al de
omposition methods perform when given data with low intrinsi
dimensionality has been studied before. Faloutsos and Kamel [FK94℄ have shown that under
ertain as-sumptions, the query time of range queries in an R-tree depends on the fra
tal dimension of the data set.Their results do not apply to nearest neighbor queries, be
ause their analysis holds in the limit for a �xedquery range as the data size tends to in�nity. However, with nearest neighbor queries, the analogy of thequery range is the nearest neighbor ball, and its size varies with point density. Otherwise, we know of notheoreti
al results on our problem.3 Ba
kgroundFirst we re
all the basi
 fa
ts about kd-trees [Ben75℄. Consider a set S of n data points in Rd. A kd-tree isa binary tree that represents a hierar
hi
al subdivision of spa
e, using splitting planes that are orthogonal tothe
oordinate axes. Ea
h node of the kd-tree is asso
iated with a
losed re
tangular region of spa
e,
alled a
ell. Ea
h is the produ
t of d
losed intervals, along ea
h of the
oordinate axes. The root's
ell is asso
iatedwith a bounding hyper
ube that
ontains all the points of S. Ea
h
ell is asso
iated with two pie
es ofinformation, a splitting dimension i (from 1 to d) and splitting value x. These de�ne an axis-orthogonalsplitting hyperplane. The points of the
ell are partitioned to one side or the other of this hyperplane (andpoints lying on the hyperplane
an be pla
ed on either side). The resulting sub
ells are the
hildren of theoriginal
ell. This pro
ess
ontinues until the number of points is at most one (or more generally a small
onstant value). There are a number of ways of sele
ting the splitting hyperplane, whi
h we outline below.Standard split: Friedman, Bentley and Finkel [FBF77℄ sele
ted the splitting dimension to be the one forwhi
h the data points have the maximum spread (di�eren
e between the maximum and minimumvalues). The splitting value is
hosen to be the median in that dimension. This is the most well-knownand widely used splitting method.Midpoint split: The splitting hyperplane passes through the
enter of the
ell and bise
ts the longest sideof the
ell. If there are many sides of equal length, any may be
hosen �rst, say, the one with the lowest
oordinate index. This is just a binary version of the well-known quadtree and o
tree de
ompositions.Observe that in the standard splitting rule, roughly half of the data points are asso
iated with ea
h
hild.This implies that the tree has O(logn) depth and O(n) nodes. The midpoint tree has the feature that for all3

ells, the ratio of the longest to shortest side (the aspe
t ratio) is at most 2. (We will sometimes use the termbox to mean a
ell of bounded aspe
t ratio.) This is not ne
essarily true for the standard splitting method.As shown in [AMN+98℄, bounded aspe
t ratio is important to the eÆ
ien
y of approximate nearest neighborsear
hing. Unfortunately, if the data are
lustered, it is possible to have many empty
ells that
ontain nodata points. This is not un
ommon in pra
ti
e, and may result in trees that have many more than O(n)nodes.Note that the set of possible splitting planes in midpoint split is not determined by the data points,only by the position of the initial bounding hyper
ube. For example, suppose that the initial bounding boxis aÆnely mapped to a unit hyper
ube [0; 1℄d. The splitting values are all of the form k=2i, for some oddinteger k, 1 � k < 2i. We
all any
ell whi
h
ould result from the appli
ation of this method a midpointbox. The
on
ept of su
h a
anoni
al set of splitting planes and
ells will be
onsidered later.Unfortunately, there does not seem to be a single simple splitting rule that provides us with all theproperties one might wish for (linear size, logarithmi
 depth, bounded aspe
t ratio,
onvexity,
onstant
ell
omplexity). In [AMN+98℄ the BBD-tree was introdu
ed. This tree uses a
ombination of two operations,splitting and shrinking to provide for all of these properties (ex
ept for
onvexity). The BAR-tree [DGK99℄provides all of these properties, by using nonorthogonal splitting planes, but the
ells may have as many as2d bounding fa
es.We dis
uss two other variants of kd-trees, both designed to provide the same simpli
ity that makes kd-trees so popular, while over
oming some of the short
omings in the above splitting methods. To understandthe problem, suppose that the data points are highly
lustered along a few dimensions but vary greatly alongsome the others (see Fig. 1). The standard kd-tree splitting method will repeatedly split along the dimensionin whi
h the data points have the greatest spread, leading to many
ells with high aspe
t ratio. In nearestneighbor pro
essing it is ne
essary to visit all the leaf
ells that overlap the nearest neighbor ball, sin
e anyone of them might
ontain the nearest neighbor. A nearest neighbor query near the
enter of the boundingsquare would visit a large number of these
ells. On the other hand, midpoint split visits limited number of
ells be
ause of the bounded aspe
t ratios, but produ
es a large number of empty
ells.
Standard split Midpoint split Sliding-midpoint split

q q q

Figure 1: Splitting methods with
lustered point sets.Sliding-midpoint: It �rst attempts to perform a midpoint split, by
onsidering a hyperplane passingthrough the
enter of the
ell and bise
ting the
ell's longest side. If the data points lie on both sidesof the splitting plane then the splitting plane remains here. However, if a trivial split were to result(in whi
h all the data points lie to one side of the splitting plane), then it \slides" the splitting planetowards the data points until it en
ounters the �rst su
h point. One
hild is a leaf
ell
ontaining thissingle point, and the algorithm re
urses on the remaining points.This splitting method was �rst introdu
ed in the ANN library for approximate nearest neighbor sear
hing[MA97℄ and was subsequently analyzed empiri
ally in [MM99a℄. This method produ
es no empty nodes,and hen
e the tree has O(n) nodes. Although
ells may not have bounded aspe
t ratio, observe that everyskinny
ell that is produ
ed by sliding is adja
ent to a fat leaf
ell. In [MM99b℄ we show that this is suÆ
ientto satisfy the ne
essary pa
king
onstraint that fat subdivisions possess. This tree
an be
onstru
ted inO(dn logn) time, as is true for the standard kd-tree [MM99a℄.4

Be
ause there is no guarantee that the point partition is balan
ed, the depth of the resulting tree may ex-
eed O(log n). This theoreti
al de�
ien
y
ould be remedied by introdu
ing more
omplex splitting methodsor auxiliary data stru
tures. However this additional
omplexity does not seem to be warranted in pra
ti
e.In our experien
e with real data sets in higher dimensions, we have observed that the depth of the sear
htree (whi
h is almost always O(log n)) seems to be less of a dominating fa
tor in running time than thenumber leaves visited in the sear
h (whi
h is almost always grows exponentially with dimension).We introdu
e a small modi�
ation of sliding-midpoint. It has been introdu
ed primarily for te
hni
alreasons. The proof of the main theorem of Se
tion 4 relies on the presen
e of having a
anoni
al set ofsplitting planes, while retaining the property that no empty
ells are produ
ed. Although this method issomewhat arti�
ial, our empiri
al studies indi
ate that its performan
e is very similar to sliding-midpoint.We
onje
ture that similar results hold for the sliding-midpoint method, but we have no proof of this. Thismethod is based on using the same midpoint
uts that midpoint split uses, rather than using the truemidpoint of the
ell.Canoni
al sliding-midpoint: De�ne the en
losure for a
ell to be the smallest midpoint box that en
losesthe
ell. During the
onstru
tion phase, ea
h node of the tree is asso
iated both with its
ell andthe
ell's en
losure. We �rst try to split the
ell using a hyperplane that bise
ts the longest side ofthis en
losure (rather than the
ell itself). By the minimality of the en
losure, this
ut interse
ts the
ell. If this results in a trivial split, then it slides the splitting plane towards the data points until iten
ounters the �rst su
h point. This point is stored in a leaf
ell, and the algorithm re
urses on theremaining points.
Sliding-midpoint Canonical sliding-midpointFigure 2: Sliding-midpoint and
anoni
al sliding-midpoint.The di�eren
es between these two splitting methods is illustrated in Fig. 2. Noti
e that in the sliding-midpoint method the slides originate from a line that bise
ts the
ell (shown in dashed lines), whereas inthe
anoni
al sliding-midpoint method, the slides originate from the midpoint
uts of the en
losing midpoint
ell (shown in dashed lines).Be
ause of prior sliding operations, the initial split used in the
anoni
al sliding-midpoint method maynot pass through the midpoint of the
ell. After splitting, the en
losures for the two
hild
ells must also be
omputed. This
an be done in O(d) time [BET93℄. Thus, this tree
an be
onstru
ted in O(dn logn) time,and has O(n) nodes, just like the sliding-midpoint split kd-tree.4 Points Clustered on Arbitrarily Oriented FlatsLet F be an arbitrary k-dimensional hyperplane (or k-
at, for short) in Rd. We assume that F is ingeneral position, and in parti
ular that F is not parallel to any of the
oordinate axes. Let S denotea set of data points sampled from a
losed
onvex, sampling region of F a

ording to some probabilitydistribution fun
tion. We assume that the distribution fun
tion satis�es the following bounded densityassumption[BWY80℄. There exist
onstants 0 <
1 �
2, su
h that for any
onvex open subregion of the5

sampling region with k-dimensional volume V , the probability that a given sampled point lies within thisregion is in the interval [
1V;
2V ℄. (This is just a generalization of a uniform distribution but allows somevariation in the probability density.)To avoid having to deal with boundary e�e
ts, we will assume that there are suÆ
iently many datapoints sampled, and that the query points are
hosen from a suÆ
iently
entral region, su
h that with highprobability the nearest neighbor ball for any query point lies entirely within the sampling region. Moreformally, �x any
ompa
t
onvex region on F ,
alled the query region, from whi
h query points will besampled. Let w denote the diameter of this region. Now, take the data points to be sampled from ahyper
ube of side length w0 > w
entered around this region, su
h that the lo
al density of the distributionis independent of w0. Our results hold in the limit as w0 tends to in�nity. The work of Arya, et al. [AMN96℄shows that
onsideration of boundary e�e
ts for kd-trees with uniformly distributed points only tends tode
rease the number of
ells of the tree visited. Nonetheless these e�e
ts
an be quite messy to deal with.Let B(r) denote a ball of radius r. Let VF (q; r) denote the k-dimensional volume of interse
tion of F andball B(r)
entered at point q. If we restri
t q to lying on F , then VF (q; r) is a
onstant for all q, whi
h wedenote as VF (r). Following the approa
h taken in [AMN96℄, let us �rst s
ale spa
e so that the lower densitybound be
omes
1 = 1=Vk(1). After this s
aling, a ball of unit radius is expe
ted to
ontain at least one pointof the sample. As observed in [AMN96℄, as k in
reases, a ball of unit radius is a very good approximationto the expe
ted nearest neighbor ball. The reason is that VF (r) is growing as rk , and so for large k, theprobability that a data point lies in B((1 � Æ)r) drops rapidly with Æ, and the probability that there is atleast one point in B((1 + Æ)r) in
reases rapidly with Æ.Consider a kd-tree built for su
h a distribution, assuming the
anoni
al sliding-midpoint splitting method.Our analysis will fo
us on the number of leaf
ells of the kd-tree that are visited in the sear
h. The runningtime of nearest neighbor sear
h (assuming priority sear
h [AMN+98℄) is more aptly bounded by the produ
tof the depth of the tree and the time to a

ess these nodes, whi
h
an be assumed to be O(log n) (eitherbe
ause the tree is balan
ed, or auxiliary data stru
tures are used). We fo
us just on the number of leaf
ellsprimarily be
ause in higher dimensions this seems to be the more important fa
tor in
uen
ing the runningtime.The main result of this se
tion is that the expe
ted number of
ells of a
anoni
al sliding-midpoint kd-treethat interse
t a unit ball
entered on F is exponential in k, but not in d. To see that the proof is nontrivial,suppose that instead of a kd-tree we had stored the points in a regular grid instead. If the nearest neighborball
ontained even a single vertex of the grid, then it would overlap at least 2d
ells. A remarkable featureof the
anoni
al midpoint-split tree is that it is not possible to generate a vertex that is in
ident to su
h alarge number of
ells when the points lie on a lower dimensional
at. This feature of kd-trees seems to bean important reason that these trees adapt well to the intrinsi
 dimensionality of the point set. Although itis not
lear how to establish this property for other types of splitting methods in the worst
ase, we believethat something analogous to this holds in the expe
ted
ase (over all possible pla
ements of the query point).Before we
an prove the main result, we de�ne some de�nitions and state some lemmas that will be usedin the theorem.De�ne a splitting hyperplane to be any axis orthogonal plane. De�ne a
ut to be the interse
tion of asplitting hyperplane and a
ell of the kd-tree (that is, a d� 1 dimensional re
tangle). Let B denote the unitball, and let B
ut denote the set of
uts that interse
t B. Sin
e ea
h su

essive element of B
ut subdividesa
ell that interse
ts B into two sub
ells that interse
t B, it follows that the total number of leaf
ells thatinterse
t B is just B
ut + 1. Thus it suÆ
es to bound the size of B
ut .The
hoi
e of the initial splitting hyperplanes (prior to sliding) made at ea
h node of the
anoni
almidpoint-split kd-tree depends only on the indexing of the
oordinate axes and the shape of the en
losure.The data points themselves only a�e
t whether a split is made and whether sliding takes pla
e. For ea
hdimension, these splitting values naturally de�ne an (in�nite) tree stru
ture. Order these values a

ordingto a breadth-�rst traversal of this tree. (For example, for a kd-tree built on the unit interval [0; 1℄, thisorder would be h1=2; 1=4; 3=4; 1=8; 3=8; 5=8; : : :i.) We
all this the
anoni
al tree ordering of splittinghyperplanes.De�ne the initial splitting hyperplane to be the splitting hyperplane
hosen before any sliding. This isalways a midpoint-split hyperplane. Consider the initial splitting hyperplanes in T . For ea
h axis i, 1 � i � d,6

de�ne the �rst split for ith axis, denoted Fsplit(i), to be the earliest (in the
anoni
al tree order) hyperplaneorthogonal this axis to interse
t B. Note that if B interse
ts two parallel hyperplanes at some level in thistree ordering, then it must interse
t a parallel hyperplane between them at the next higher (
loser to theroot) level. Thus Fsplit(i) is unique highest level splitting hyperplane interse
ting B. De�ne Fsplit to bed-element set
onsisting of Fsplit(i) for 1 � i � d. Note that B
ut is a set of
uts (the interse
tion of ahyperplane and a
ell), whereas Fsplit is a set of hyperplanes.Here is a high-level overview of the proof of the main result. We �rst bound the number of nonemptymidpoint kd-tree
ells that are bounded on some side by one of these hyperplanes. This bound is based onthe fa
t that there are only d su
h Fsplit hyperplanes. We use
ombinatorial arguments, similar to boundson the number of fa
es in an arrangement of d hyperplanes in dimension k. We argue that ea
h of the B
ut 'sarise in one of three ways.(1) It is supported an Fsplit hyperplane, in whi
h
ase the previous bound is applied. This is a worst-
asebound (holding irrespe
tive of the data distribution), and turns out to provide the dominant term inthe overall bound.(2) It arose by applying a slide to a midpoint
ut that does not interse
t the ball. We argue that ea
hsu
h slide results in a leaf
ell on one side, whi
h will not be split further, thus preventing this fromhappening again with a parallel split on the same side of the ball. We bound the number of
uts ofthis type by arguing that there
an be at most 2d su
h
uts for ea
h
ut of types (1) and (3).(3) Its initial
ut is not a �rst split and interse
ts the ball. To bound this last type of
ut, we observethat they arise from
ells whose width is bounded (be
ause this not the �rst
ut in this dire
tion tointerse
t the ball). We apply an argument based on the observation that be
ause points lie on a k-
at,their density grows exponentially with k and not with d.We
lassify the
uts of B
ut into three types. Consider a
ut
 orthogonal to dimension i. If the initialsplitting hyperplane (prior to any sliding) is Fsplit(i), then we
all this a �rst
ut. If its initial splittinghyperplane does not interse
t B, (and hen
e the
ut interse
ts B be
ause of sliding) we
all it a sliding
ut. Otherwise, (its initial splitting hyperplane interse
ts B but is not Fsplit(i)) we
all it a
lose
ut. Forexample, Fig. 3 shows the various types of
uts. The initial midpoint splitting
uts are shown as dashedlines, and the �nal
uts are shown as solid lines. Double arrows indi
ate where initial
uts were slid. Thetwo Fsplit hyperplanes are shown as dotted lines. Note that the horizontal �rst
ut was slid away from itsinitial splitting hyperplane. The sliding
uts all arose from initial splitting hyperplanes that do not interse
tB. The remaining
ut is a
lose
ut. There is one verti
al
ut that does not interse
t B, and so is not aB
ut .
FSplit(1)

FSplit(0)

sliding cut

close cut

first cuts

B

F

sliding cut

Figure 3: Types of
uts.7

Lemma 4.1. If B is a Eu
lidean ball, the expe
ted number of
lose
uts in B
ut is O((2d)k=2).Proof Consider some
lose
ut
 2 B
ut , and let i be its splitting axis. Let h be the initial splittinghyperplane (before any sliding). Sin
e
 is a
lose
ut, h 6= Fsplit(i). Let
0 be the initial midpoint
utfrom whi
h
 resulted. Sin
e both h and Fsplit(i) interse
t B, and sin
e Fsplit(i) would be tried before h,it follows that the
ell C that is bise
ted by
0 lies entirely to one side of Fsplit(i). Sin
e initial
uts aremidpoint
uts, it follows that the width of C along dimension i is at most 2, the diameter of B. Sin
e
0 isa midpoint
ut, the longest side C is of length at most 4. There must be at least two points lying within Cthat are separated by
. The Eu
lidean diameter of C is at most 4pd.Thus, ea
h
lose
ut separates at least two points that are within a distan
e of 4pd of the
enter of B. Ifm denotes the expe
ted number of su
h points, the number of
lose
uts is at most m� 1. A ball of radius4pd interse
ts the k-
at as a k-dimensional ball whose k-volume is proportional to (4pd)k. This impliesthat the expe
ted number of points lying within this ball is O(4pd)k. Therefore the total number of
uts isO((2d)k=2). utIt is easy to generalize the above to any Minkowski ball. The
orresponding bound for the Lm Minkowskim <1 is O((4d1=m)k). For the L1 ball (a hyper
ube) this redu
es to O(4k).Next, we
onsider �rst
uts. We say that a
ell is void if does not interse
t F , and nonvoid otherwise.Note that void
ells
annot possible
ontain points of S, whereas nonvoid
ells might, but need not. Void
ells may be
reated as a result of the initial midpoint subdivision, but if so, sliding will be invoked so thatthe would-be void
hild has exa
tly one data point. We will make use of the well known bound fk(m) onthe number of k-dimensional
ells in an arrangement of m hyperplanes in k-spa
e [Ede87℄.fk(m) = kXj=0�mj � 2 �(mk):Lemma 4.2. The number of �rst
uts in B
ut is at most fk+1(d)� 1, whi
h is O(dk+1).Proof It suÆ
es to
onsider the tree resulting from the initial splitting hyperplanes, sin
e these initial
utsall interse
t B, and sliding
an only de
rease the number of
uts in B
ut .Consider a minimal subtree of the kd-tree that in
ludes all the �rst
uts. More formally, starting at theroot, for ea
h internal node whose splitting hyperplane does not interse
t B, one
hild is entirely disjointfrom B and the other
ontains B. Dis
ard the entire subtree of the �rst
hild, and repla
e this node withse
ond
hild. After en
ountering Fsplit(i) it is possible to see a des
endent with a parallel
ut in B
ut , butbefore en
ountering Fsplit(j) for j 6= i. We may ignore these parallel
uts (taking either
hild) sin
e their
uts are
ounted among the
lose
uts or sliding
uts. Take either
hild to be in the subtree. The resultingtree only has
uts supported by Fsplit hyperplanes. We will show that the number of
uts in the subtree isat most fk+1(d) � 1,Our proof is based on a re
urren
e, whose solution is the desired number of
uts. Be
ause of the
anoni
alordering of
uts in the kd-tree, we
an think of these
uts as being introdu
ed in a series of rounds. All the
uts supported by the same Fsplit hyperplane are introdu
ed in the same round. Let us assume that theaxes have been sorted a

ording to the order of introdu
tion of the Fsplit hyperplanes (that is, if Fsplit(i) isat a higher level than Fsplit(j) then all the
uts supported by Fsplit(i) will be inserted in one round beforethose supported by Fsplit(j)). There are d rounds.As mentioned earlier, it is not ne
essarily the
ase that an nonvoid
ell will be split with the introdu
tionof a new Fsplit . However, to produ
e an upper bound, we may assume that this always happens. Let nidenote the number of nonvoid
ells that are
reated in round i, by splitting all nonvoid
ells at round i� 1.Let vi denote the number newly
reated void
ells, whi
h result whenever a nonvoid
ell has been split butonly one of its
hild
ells is nonvoid. Our goal is to determine the total number of void and nonvoid at theend of the pro
ess, namely nd + dXi=0 vi:8

On
e a void
ell is
reated, it
annot be split further. However, for the sake of analysis, imagine that ea
hvoid
ell is split with ea
h subsequent round. Let si denote the number of void
ells under the assumptionthat they
ontinue to be split. Call these pseudo
ells.For the basis, we have one nonvoid
ell and no void
ells, and hen
e n0 = 1 and v0 = s0 = 0. Aswe pro
eed from round i � 1 to round i, observe that all nonvoid
ells are split, and all pseudo
ells aresplit. Sin
e these sets are disjoint, it follows that ni + si = 2i. At round i, the �rst i Fsplit hyperplanesintrodu
ed so far subdivide the
at F into an arrangement of i hyperplanes. Ea
h nonvoid
ell at round iinterse
ts F as a k-dimensional
ell in this arrangement. Hen
e, in the worst
ase we have ni = fk(i), andthus si = 2i � fk(i).Pseudo
ells arise in two ways. First o�, they
an arise from newly
reated void
ells at round i, or they
an be pseudo
ells from the previous round that were split. Thus, si = vi+2si�1. Combining this, we havevi = si � 2si�1 = 2i � fk(i)� 2(2i�1 � fk(i� 1))= 2fk(i� 1)� fk(i) = 2 kXj=0�i� 1j �� kXj=0�ij�:To simplify this, we break the �rst summation into two
opies and break o� the last term. For the se
ondterm, we use the identity �ij� = �i�1j �+ �i�1j�1�.vi = 0� kXj=0�i� 1j �+ k�1Xj=0�i� 1j � + �i� 1k �1A � kXj=0��i� 1j �+�i� 1j � 1��= kXj=0�i� 1j �+ kXj=0�i� 1j � 1� + �i� 1k � � kXj=0�i� 1j �� kXj=0�i� 1j � 1�= �i� 1k �:Using the fa
t that Pni=0 �ik� = �n+1k+1�, we
on
lude that the total number of
ells isnd + dXi=0 vi = fk(d) + dXi=0 �i� 1k � = fk(d) +� dk + 1� = fk+1(d);whi
h is O(dk+1). The total number of
uts is one less that this. utLemma 4.3. The number of sliding
uts in B
ut is at most 2d times the number of �rst
ut and
lose
uts
ombined.Proof By de�nition, a sliding
ut arises from a initial splitting hyperplane that lies outside of B and wasslid until it interse
ts B. Whenever a slide o

urs, the
ell is partitioned into two
hildren, one
ontains asingle point and
annot be further subdivided. Thus, it is impossible to slide twi
e from the same dire
tion,without an intervening split. Hen
e, if we label all the internal nodes of the kd-tree a

ording to whetherthey are sliding
uts or not, the sliding
ut nodes will form linear
hains (a node with at least one leaf
hild)of length at most 2d. If we were to
ompress this tree by removing all these
hains, the result would be atree that is smaller by a fa
tor of at most 2d, but in whi
h the B
ut 's
onsist only of �rst
uts and
lose
uts. This establishes the bound. utTheorem 4.1. Let S be a set of points from Rd sampled independently from a k-
at F by a distributionsatisfying the bounded density assumptions and s
aled as des
ribed above. Let T be a kd-tree built for S usingthe
anoni
al sliding-midpoint splitting method. Then, the expe
ted number of leaf
ells of T that interse
t aunit ball
entered on F is O(dk+2). 9

Proof Combining Lemmas 4.1, 4.2, and 4.3, it follows that the total number of
uts in B
ut is dominatedby the bound on the sliding
uts (in
onjun
tion with the �rst
uts) to get O(2d(dk+1)) = O(dk+2). This
ompletes the proof of Theorem 4.1. utUsing Theorem 4.1 and the observation made earlier that a ball of unit radius is good approximation to(or larger than) the nearest neighbor ball, we have the following bound on the number of leaf
ells visited innearest neighbor sear
hing.Corollary 4.1. The expe
ted number of leaf
ells of T en
ountered in nearest neighbor sear
hing is O(dk+2).5 Points Clustered on Axis-Aligned FlatsWe
onsider the
ase where the set S of data points in Rd sampled independently from a distribution ofbounded density along an axis-aligned k-
at. This is a parti
ularly good
ase for the standard kd-treesplitting method, sin
e the point spread is always widest along axes spanned by the
at, and hen
e all splitswill be orthogonal to the
at. The behavior of the algorithm will be isomorphi
 to its behavior on pointsthat are uniformly distributed in Rk. However, we will analyze the sliding-midpoint methods, for the sakeof
omparison with the results of the previous se
tion.If we split orthogonal to any of the d� k
oordinate axes that are orthogonal to the
at, the points willall lie to one side of this splitting hyperplane (barring the degenerate
ase where the
at lies on the splittinghyperplane). The splitting hyperplane will slide until it lies on the
at. After any sequen
e of 2(d� k) su
hslides, the
at will be tightly en
losed within a
ell. Splits along other axes will be orthogonal to the
at,and so will behave essentially the same a sliding-midpoint de
omposition in k-spa
e. The main
ompli
ationis that the algorithm does not know the lo
ation of the
at, and hen
e these two types of splits may o

urin an unpredi
table order.Let G(k) denote the dimension dependent ratio of the volumes of a k-dimensional hyper
ube and amaximal en
losed k-ball for the metri
 inside the hyper
ube. Let
(k) = (G(k)1=k + 1). For example,for the L1 (max) metri
 the metri
 ball is a hyper
ube, and
(k) = 2. For the L2 (Eu
lidean) metri
G(k) = k�(k=2)=(2k+1�k=2).Theorem 5.1. Let S be a set of points from Rd sampled independently from an axis-aligned k-
at F by adistribution satisfying the bounded density assumptions des
ribed in Se
tion 4. Let T be a kd-tree built forS using the
anoni
al sliding-midpoint splitting method. Then, the expe
ted number of leaf
ells of T thatinterse
t a unit ball
entered on F is O((d � k + 1)
(k)k).Proof Let assume that spa
e has been s
aled so that the bounding box for the point set is a unit
ube.De�ne the ith length of a
ell to be its length along the ith
oordinate axis. Let DF denote the set of k axesthat F spans on and let EF be the remaining set of d� k axes. We will assume the worst-
ase, that when asplit is made along an axis in DF it results in a nontrivial partition of the points, and hen
e no sliding takespla
e. In
ontrast, when a split is made along an axis in EF , the points will all lie on one side or the otherof this split, and hen
e the split will slide until it
onta
ts the
at. Thus, all splits along axes in DF behaveessentially the same and all splits along EF behave essentially the same.Observe that the
uts along the axes in DF behave with respe
t to F exa
tly as they would if we were
onstru
ting a kd-tree for a set of points in Rk. So, from the analysis given in [FBF77℄, it follows that theexpe
ted number of leaf
ells visited is O(
(k)k). For ea
h su
h
ell, as many as 2(d � k) slides may havetaken pla
e surrounding this
ell, and ea
h of the resulting leaf
ells might be visited. Thus the total numberof expe
ted
ells visited is O((2(d � k) + 1)
(k)k) = O((d � k + 1)
(k)k). ut6 Empiri
al ResultsWe
ondu
ted experiments on the query performan
e of the kd-tree for data sets lying on a lower dimensional
at. We used the ANN library [MA97℄ to implement the kd-tree. The experiments were run on a PC, running10

Linux. The program was
ompiled by the g++
ompiler. We measured a number of statisti
s for the tree,in
luding its size, depth, and the average aspe
t ratio of its
ells.We used priority sear
h to answer queries. We gathered a number of statisti
s in
luding CPU time,the number of internal and leaf nodes visited in the tree, and the number of
oating-point operations. Wepresent the total number of nodes, and the number of leaf nodes in our grades, be
ause these parametersare ma
hine-independent, and they are
losely
orrelated with CPU time.6.1 Distributions testedBefore dis
ussing what we did in the experiments, we brie
y des
ribe the distributions used.Uniform: Ea
h
oordinate of ea
h point was
hosen uniformly from the interval [�1; 1℄.Gauss: Standard deviation, �, is provided to the distribution. The points are generated using zero meanGaussian distribution. All
oordinates have the same value of �.Clustered-orthogonal-ellipsoids: This distribution is designed to model point sets that are
lustered onlower dimensional
ats, where all the
ats are aligned with the
oordinate axes. The distribution isgiven a number of
lusters
. Then

luster
enters are generated from a uniform distribution over[�1; 1℄. The distribution is also given two standard deviation values, �thin ; �fat . The dimensions aredivided into fat and thin dimensions. Another parameter, dmax, indi
ates the maximum number of thefat dimensions. For ea
h
olor
lass, a number, k, between 1 and dmax is randomly
hosen to be thenumber of fat dimensions (the dimension of the
at). Then k dimensions are
hosen at random to befat dimensions. Ea
h point is generated from a Gaussian distribution
entered at a randomly
hosen
luster
enter. For the fat (resp., thin) dimensions, the standard deviation is set to �fat (resp., �thin).Uniform-on-orthogonal-
at: The dimension of the
at, k, is provided, and k dimensions are
hosen atrandom. Among these dimensions, the points are distributed uniformly over [�1; 1℄. For, the other(d � k) dimensions, we generate a uniform random
oordinate that is
ommon to all the points. Forour experiments, we
onsidered both points exa
tly on the
at, and points perturbed o� the
at by aGaussian error with standard deviation 0.005.Uniform-on-rotated-
at: This distribution is the result of applying r random rotation transformationsto the points in uniform-on-orthogonal-
at distribution. The
at is therefore rotated in a randomdire
tion. Ea
h rotation is through a uniformly distributed angle in the range [��=2; �=2℄ with respe
tto two randomly
hosen dimensions.6.2 Sliding-midpoint and
anoni
al sliding-midpointOur theoreti
al results for arbitrary
ats apply only to the
anoni
al sliding-midpoint method. This waslargely for te
hni
al reasons. A natural question is how mu
h this method di�ers from the more naturalsliding-midpoint method. We dis
overed that the two trees are quite similar. If the number of points isfairly small (less than 2k) then the trees are identi
al. Be
ause it bise
ts the
ell, we expe
t sliding-midpointto perform somewhat better on average. We ran a set of experiments to
ompare query times for bothsliding-midpoint and
anoni
al sliding-midpoint methods.Distributions tested in
luded Gauss and Clustered-orthogonal-ellipsoids. We set � to 0.4 for the Gaussdistribution. For Clustered-orthogonal-ellipsoids, �fatand�thin were set to 0.4 and 0.005, respe
tively, anddmax was set to d=2, where d is the number of dimensions of the spa
e. The number of points, n, rangedfrom 40 to 163,840 and d ranged from 2 to 16.The queries
ome from the same distribution as the set of points and the number of queries is n. Table 4shows the average numbers of nodes visited over all queries when the tree was built by two splitting methods.Observe that the number of nodes visited are similar, with di�eren
es the performan
e of
anoni
al sliding-midpoint being worst with larger data sets and lower dimensions. Thus it would reasonable to
onje
ture thatour upper bounds on the performan
e of
anoni
al sliding-midpoint may hold for standard sliding-midpointas well. 11

Gaussian distributionn 40 640 10,240 163,840
-sl sl
-sl sl
-sl sl
-sl sld = 4 27.55 27.55 60.09 59.9 88.43 80.91 91.5 89.58d = 8 354.9 355 999.8 972.2 1447 1439Cluster-orthogonal-ellipsoids distributionn 40 640 10,240 163,840
-sl sl
-sl sl
-sl sl
-sl sld = 4 9.675 7.925 28.05 26.04 67.18 60.43 102.2 82.55d = 8 44.58 43.46 262.3 256.2 833 782.4Figure 4: Total number of nodes visited by sear
h algorithm (
-sl:
anoni
al sliding-midpoint, sl: sliding-midpoint)6.3 Points on a k-
atTo support our theoreti
al bounds on number of leaf nodes visited when the point set is on a k-
at, we setup an experiment with both k and d varying, while �xing the other parameters. This allows us to observethe dependen
y of the query performan
e (in terms of the number of nodes visited) relative to d and k.The Uniform-on-orthogonal-
at and Uniform-on-rotated-
at distributions were used in the experiments. We�xed d at 4, 8, 12, 16, 20, 24, 32, 40 (note that the s
ale is nonlinear), and k ranged from 4 to min(d; 16).Again, the number of points, n ranged from 40 to 163,840. For Uniform-on-rotated-
at, the number ofrandom rotations is r = d2=2. The
ase of perturbed data is presented, but the results were very similarto the
ase of data points lying exa
tly on the
at. The queries were sampled from the same distribution.Number of query points was set to min(n; 2560).Figure 5 shows the average number of nodes visited,
ounting both internal and leaf nodes (total) and justleaf nodes visited by the priority sear
h when the tree was built by the
anoni
al sliding-midpoint method.We shows the results only for n = 163; 840 sin
e the relative performan
e of other
ases is similar. Also, theperforman
e of the splitting method is identi
al to one of the sliding-midpoint method in this distributionthroughout the range of parameters we tested.
4 8 12 16 20 24

32
40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
ot

al
 n

od
es

 v
is

ite
d

(lo
g)

d

Uniform on orthogonal flat

k=4
k=8
k=12
k=16

4 8 12 16 20 24
32

40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Le
af

 n
od

es
 v

is
ite

d
(lo

g)

d

Uniform on orthogonal flat

k=4
k=8
k=12
k=16

Figure 5: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-orthogonal-
at distributionIt is easy to see that the number of nodes visited depends only on k for a �xed n. The performan
edoes not respond to the
hange of d. This is be
ause of the way the tree is built. In ANN library [MA97℄,12

the kd-tree is
onstru
ted re
ursively. Initially, there is one node, the root, that
ontains all points. Alsoit
omputes the tight bounding box of the point set in order to determine the splitting value and splittingdimension. Sin
e the points in Uniform-on-orthogonal-
at lie on k-subspa
e, so does the initial boundingbox. Therefore, the splitting methods never
hoose one of d � k dimensions that the
at does not lie on asthe splitting dimension.
4 8 12 16 20 24 32

40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
ot

al
 n

od
es

 v
is

ite
d

(lo
g)

d

Uniform on orthogonal flat (cube initial bounding box)

k=4
k=8
k=12
k=16

4 8 12 16 20 24 32
40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Le
af

 n
od

es
 v

is
ite

d
(lo

g)

d

Uniform on orthogonal flat (cube initial bounding box)

k=4
k=8
k=12
k=16

Figure 6: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-orthogonal-
at distribution with
ube initial bounding boxIn order to observe the behavior of the s
enario
onsidered in Theorem 5.1, we modi�ed the library sothat the initial bounding box is the hyper
ube [�1; 1℄d. The results of this modi�
ation are showed in Fig.6. Note that we plotted the logarithm base 10 of the number of nodes visited. As predi
ted, the runningshows a strong dependen
e on k, and very little dependen
e on d. However, it does not grow as fast as whatTheorem 5.1 predi
ts. This suggests that the average
ase is mu
h better than our theoreti
al bounds.The Uniform-on-rotated-
at distribution is also used in the experiment to see the e�e
t assuming thatdata is uniform on an arbitrarily oriented
at. Fig. 7 shows the results of this distribution, again showingthe logarithm of the number of nodes visited and for n = 163; 840. In this distribution,
anoni
al sliding-midpoint is a little slower (typi
ally, the di�eren
e is less than 5%) than sliding-midpoint in few
ases. Theplot shows the result of trees built by the
anoni
al sliding-midpoint method. Noti
e that the number ofnodes visited still shows a greater dependen
e on k than on d, but the dependen
e on d has in
reased, againas predi
ted by Theorem 4.1. Yet, the growth rate is still less than what the theorem predi
ts.We also tested the sensitivity of our result to the presen
e of multiple
lusters. Ea
h data set
onsistsof four
lusters generated on four di�erent hyperplanes for the uniform-on-rotated-
at distribution. Fig. 8shows the results of this experiment.6.4 Standard kd-treeWe were also interested in test the performan
e of trees built by the standard kd-tree method. We testedwith Uniform-on-rotated-
at distribution with the same parameters as above. The results, showed in Fig.9, are quite similar to the other splitting methods. Our experien
e has shown that standard kd-tree tendsto perform very well when data and query points are taken from the same dimension, even though it seemsto be mu
h harder to establish theoreti
al bounds on its performan
e.
13

4 8 12 16 20 24 32
40

0

1

2

3

4

5

6

T
ot

al
 n

od
es

 v
is

ite
d

(lo
g)

d

Uniform on rotated flat

k=4
k=8
k=12
k=16

4 8 12 16 20 24 32
40

0

1

2

3

4

5

6

Le
af

 n
od

es
 v

is
ite

d
(lo

g)

d

Uniform on rotated flat

k=4
k=8
k=12
k=16

Figure 7: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-rotated-
at distribution

4 8 12 16 20 24 32 40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
ot

al
 n

od
es

 v
is

ite
d

(lo
g)

d

Uniform on rotated flat (4 clusters)

k=4
k=8
k=12
k=16

4 8 12 16 20 24 32
40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Le
af

 n
od

es
 v

is
ite

d
(lo

g)

d

Uniform on rotated flat (4 clusters)

k=4
k=8
k=12
k=16

Figure 8: Number of total and leaf nodes visited, n = 163; 840, four
lusters Uniform-on-rotated-
at distri-bution
14

1 2 3 4 5 6 7
8

0

 1

 2

 3

 4

 5

 6

T
ot

al
 n

od
es

 v
is

ite
d

(lo
g)

d

Uniform on rotated flat (standard kd-tree)

k=4
k=8
k=12
k=16

1 2 3 4 5 6 7
8

0

 1

 2

 3

 4

 5

Le
af

 n
od

es
 v

is
ite

d
(lo

g)

d

Uniform on rotated flat (standard kd-tree)

k=4
k=8
k=12
k=16

Figure 9: Number of total and leaf nodes visited, n = 163; 840, Uniform-on-rotated-
at distribution, (stan-dard kd-tree method is used)6.5 Comparison with theoreti
al resultsIn this se
tion, we take a
loser look on whether or not our theoreti
al bounds
an predi
t the a
tual queryperforman
e in terms of the number of leaf nodes visited. From Corollary 4.1, the expe
ted number of leafnodes of a kd-tree en
ountered in the sear
h is O(dk+2). We model this bound as L =
1(
2d)
3k, where Lis the number of leaf nodes visited and
1;
2;
3 are
onstants. We set up the experiment su
h that the dataand query distributions are uniform-on-rotated-
at. The parameters are slightly di�erent from the previousexperiments. The number of random rotations is d2, and there is no gaussian noise. The number of datapoints, n, remains at 163,840. We gathered results for k = 1 to 12 and d = 10; 20; 40; 80. The results areplotted in Fig 10.

0 1 2 3 4 5 6 7 8 9 10 11 12

Dimension of the flat

1

10

100

1000

10000

N
um

be
r

of
 le

af
 n

od
es

 v
is

ite
d

d = 10
d = 20
d = 40
d = 80

Figure 10: Number of leaf nodes visited, n = 163; 840, Uniform-on-rotated-
at distributionThe model suggests that the
urves (ea
h for a �xed value of d) in Fig 10 should be linear. However, the15

empiri
al results show that it is not the
ase. Our
onje
ture is that this is due to boundary e�e
ts, whi
hwould presumably diminish as n in
reases. These boundary e�e
ts are more pronoun
ed for larger values ofk [AMN96℄. Be
ause of memory limitation, we
annot s
ale n exponentially with the value of k.We observed that for smaller values of k (e.g. k = 1; 2; 3), the number of leaf nodes visited, L, is almostun
hanged when n is in
reased. It indi
ates the boundary e�e
ts are minimum within this range of k.Therefore we use the results from k = 1; 2 to �nd values of
1;
2;
3 of our model equation. This yields thefollowing equation, L = 2:054(1:674 � d)(0:312�k):7 A
knowledgementsWe would like to thank Sunil Arya for many helpful
onversations and suggestions.Referen
es[AMN96℄ S. Arya, D. M. Mount, and O. Narayan. A

ounting for boundary e�e
ts in nearest neighborsear
hing. Dis
rete Comput. Geom., 16(2):155{176, 1996.[AMN+98℄ S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm forapproximate nearest neighbor sear
hing. Journal of the ACM, 45:891{923, 1998.[Ben75℄ J. L. Bentley. Multidimensional binary sear
h trees used for asso
iative sear
hing. Communi
a-tions of the ACM, 18(9):509{517, 1975.[BET93℄ M. Bern, D. Eppstein, and S.-H. Teng. Parallel
onstru
tion of quadtrees and quality triangula-tions. In Pro
. 3rd Workshop Algorithms Data Stru
t., volume 709 of Le
ture Notes in ComputerS
ien
e, pages 188{199. Springer-Verlag, 1993.[BWY80℄ J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expe
ted-time algorithms for
losest-pointproblems. ACM Trans. Math. Software, 6(4):563{580, 1980.[Cla88℄ K. L. Clarkson. A randomized algorithm for
losest-point queries. SIAM J. Comput., 17(4):830{847, 1988.[Cle79℄ J. G. Cleary. Analysis of an algorithm for �nding nearest neighbors in eu
lidean spa
e. ACMTrans. Math. Software, 5(2):183{192, 1979.[CP96℄ M. Carreira-Perpi~n�an. A review of dimension redu
tion te
hniques. Te
hni
al Report CS{96{09,Dept. of Computer S
ien
e, University of SheÆeld, UK, 1996.[DGK99℄ C. Dun
an, M. Goodri
h, and S. Kobourov. Balan
ed aspe
t ratio trees: Combining the advan-tages of k-d trees and o
trees. In Pro
. 10th ACM-SIAM Sympos. Dis
rete Algorithms, pages300{309, 1999.[Ede87℄ H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs onTheoreti
al Computer S
ien
e. Springer-Verlag, Heidelberg, West Germany, 1987.[FBF77℄ J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for �nding best mat
hes inlogarithmi
 expe
ted time. ACM Trans. Math. Software, 3(3):209{226, 1977.[FK94℄ Christos Faloutsos and Ibrahim Kamel. Beyond uniformity and independen
e: Analysis of R-trees using the
on
ept of fra
tal dimension. In Pro
. Annu. ACM Sympos. Prin
iples DatabaseSyst., pages 4{13, 1994.[Fuk90℄ K. Fukunaga. Introdu
tion to Statisti
al Pattern Re
ognition. A
ademi
 Press, 2nd edition, 1990.16

[IM98℄ P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the
urse ofdimensionality. In Pro
. 30th Annu. ACM Sympos. Theory Comput., pages 604{613, 1998.[MA97℄ D. M. Mount and S. Arya. ANN: A library for approximate nearest neighbor sear
hing. Centerfor Geometri
 Computing 2nd Annual Workshop on Computational Geometry, 1997.[MM99a℄ S. Maneewongvatana and D. Mount. Analysis of approximate nearest neighbor sear
hing with
lustered point sets. In ALENEX, 1999.[MM99b℄ S. Maneewongvatana and D. Mount. It's okay to be skinny, if your friends are fat. Center forGeometri
 Computing 4th Annual Workshop on Computational Geometry, 1999.

17

