TecHNIcAL RESsEaARCH REPORT

Optimization Based Rate Control for Multipath Sessions
by Koushik Kar, Saswati Sarkar, Leandros Tassiulas

CSHCN TR 2001-2
(ISR TR 2001-1)

catellite o
ot e

1 Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University
of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN

h%
)
= The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
9
&
& series originating at the University of Maryland.

l)’a".’if.‘atlnl‘l ‘AG@‘
Web site http://www.isr.umd.edu/CSHCN/



ISR TECHNICAL REPORT 2001-1 1

Optimization Based Rate Control for Multipath Sessions

Koushik Kaif Saswati Sarkar Leandros Tassiulas

1 ECE Department x EE Department
University of Maryland University of Pennsylvania
College Park, MD 20742, USA Philadelphia, PA 19104, USA

{koushik,leandrog@eng.umd.edu swati@ee.upenn.edu

Abstract

In this paper, we consider the rate control problem for multipath sessions with the objective of maximizing the total
user (session) utility. This problem provides a framework in which flow control and routing are jointly optimized. We
consider two cases of this problem, and develop two different rate control algorithms for these two cases. The first
algorithm is an end-to-end rate control algorithm which requires, on the part of the user, explicit knowledge of the paths
that the user uses. The second algorithm is a hop-by-hop rate control algorithm which does not require the user to keep
track of the paths it uses. Both the algorithms are distributed and do not require the network to know the user utility
functions. We analyze the convergence properties of these algorithms, and discuss how they can be implemented in areal

network. Both of these algorithms are computationally simple, and have very low communication overhead.
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. INTRODUCTION

Effective rate control of traffic sources is required in order to control congestion in a communication network. A
rate control strategy should ensure that the network is used efficiently, while guaranteeing that the traffic offered to the
network by different traffic sources remain within the limits that the network can carry. Besides these, it is also desirable
that the rate control algorithm would ensure that the available network resources are shared by the competing streams
of traffic in some fair manner.

An optimization based approach to rate control was suggested in [7]. Here each user is associated with an utility
function, which connects the bandwidth given to the user with the “value” associated with the bandwidth (note that
throughout the paper, the terms “user”, “session” and “end-host” are used synonymously). The utility could be some
measure of say, the perceived quality of audio/video, the user satisfaction, or even the amount paid by the user for
the bandwidth allotted to it, and could be different for different users. The rate control objective is to achieve traffic
rates that maximize the sum of the user utilities, subject to the link capacity constraints. This problem provides a
framework for achieving a wide range of fairness objectives, by choosing the user utility functions appropriately. This
utility maximization problem has received considerable attention in recent literature, and several algorithms, based on

different approaches, have been proposed for this problem (see [14], [8], [12], [11], [9]).
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Most of the above-mentioned work is concerned only with the case where a session sends traffic over a single path.
In this paper, however, we consider a generalization of this problem, where there can be multiple paths between the
source and the destination of a session. The multipath routing problem has received significant attention in recent
literature (see [4], [6], [20], [21], [15]). However, most of the work done in this context is concerned with finding
and establishing “good”, loop-free multipaths, and with the forwarding of packets on these paths. The problem of
congestion-sensitive rate control on these multipaths has not been thoroughly explored. Note that multiple paths can
be used for load balancing, thus allowing more efficient use of the network. In the multipath rate control problem, an
user not only determines how much traffic to send, but also how to split the traffic amongst the multiple paths. Thus the
multipath rate control problem can be viewed as one in which flow control and routing are jointly optimized.

The optimization-based multipath flow control problem has not been adequately addressed in the literature so far. Al-
though this problem has been addressed in [8], [13], these approaches have certain limitations. The algorithm presented
in [13] is only a heuristic, and may not, in general, converge to the optimum solution of the problem (see Section IV for
a more detailed discussion on this). The algorithms in [8] solve an approximate version of the original problem rather
than the actual problem. Moreover, the authors do not claim any convergence result for their multipath rate control algo-
rithms. From a practical perspective, another drawback of these algorithms is their high communication overhead (we
discuss these limitations in detail in Section IV, where we also compare our approach with the previous approaches).
Moreover, in these algorithms, the user has to keep track of the different paths it uses, and explicitly adjust the traffic
rates on these paths. Therefore, these algorithms do not scale as the number of paths increases (note that there could t
an exponential number of paths between a source and a destination), and are not applicable in cases where the user doe
not have any explicit knowledge about the paths it uses.

In this paper, we consider two formulations of the multipath utility maximization problem, and develop two different
algorithms based on them. The first formulation is the same as the one in [8], [13]. Based on this formulation, we present
an end-to-end flow control algorithm that has guaranteed convergence, and has very low overhead of computation and
communication. However, this algorithm, like previous approaches, assumes that the user knows the set of paths it uses,
and is able to directly monitor the traffic rates on these paths. Thus it is applicasderme routingor similar other
schemes where the source knows the set of paths and determines which path a packet will follow (such as those in [4],
[6]).

The second formulation is new, and it allows us to develop a hop-by-hop flow control algorithm that achieves the op-
timal rates for our problem. This algorithm too has a very low overhead of computation and communication. Moreover,
this algorithm does not require the user to keep track of the different paths it uses, and therefore scales with increasing
number of paths. It is applicable tiestination-based routingr similar other schemes where the each router in the path
of the packet determines its next-hop node (such as those in [15], [20], [21]).

The motivation, derivation and analysis of algorithms presented in this paper are heavily based on results in non-

differentiable optimization theory, mainly those by B.T. Poljak and N.Z. Shor [16] [18].
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It is also worth noting here that the second algorithm presented in this paper could be used to solve the well-known
network flow problem [1] (as well as its concave and multicommodity generalizations) in a distributed and scalable way.

The paper is organized as follows. In the next section, we present an end-to-end rate control algorithm for the case
where the user has explicit knowledge of the set of paths it uses. In Section Ill, we present a hop-by-hop rate control
algorithm where the user is not required to keep track of the different paths. In Section IV, we survey the previous

approaches, and compare them with our approach. We conclude in Section V.

Il. MULTIPATH FLOW CONTROL WITH EXPLICIT KNOWLEDGE OFPATHS

In this section, we consider the case where the set of paths used by an user is known to the user, and it is able
to explicitly adjust the traffic rates on these paths. Typically, source-routing schemes satisfy these conditions, and

therefore, the algorithm that we propose in this section is applicable to such schemes.

A. Problem Formulation

Next we describe the network model that we consider, and present a convex programming based formulation of the
problem, which will form the basis of the algorithm that we develop.

Consider a network consisting of a deof unidirectional links, where a link € L has capacity; (0 < ¢ < o0).
The network is shared by a sétof unicast (possibly multipath) sessions. Each sesgisnassociated with a utility
functionU; : 8 — R, which is assumed to be concave, continuous, bounded and increafingaihn

In the following, we assume that the the set of paths used by an user is already determined/established by some
multipath route-finding algorithm (like those in [4], [6]). We are interested in the problem of finding the optimal traffic
rates on these paths.

Let P; be the set of paths used by sessjoa J. We assume tha®; is known to session (usef) Let P = Ujc s P;
be the set of all paths (over all sessions). For any pathP, let the set of links on the path be denotedﬂqy Let P,
denote the set of paths (of all sessions) on anylliakL. Associate a rate variabig with each pattp € P. Note that
the traffic rate of sessiofis equal toy_ P; Yp- Our objective is to maximize the “social welfare”, i.e., the sum of the

utilities over all the sessions, subject to the link capacity constraints. The problem can be posed as:

P;: maximize > U;( Y yp)
JjeJ pEPj
subject to >y < a VIEL (1)
peER
yp > 0 Vpe P 2)

Constraints (1) indicate that the total rate of traffic on a link cannot exceed the capacity of the link, and (2) represent
the non-negativity constraints on the rate variables. Note that in the problem formulation, we have not assumed any

maximum/minimum constraints on the session/path rates, apart from the obvious non-negativity constraints. However,
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if some additional maximum/minimum constraints exist on the session/path rates, our algorithm can easily be modified
to take those into account.

We will make the following assumption on the utility functiofis

Assumption 1: (Bounded slopghere exists anl < oo such that/;(y) < A Vg € [0,00) forall j € J.

Note that the above assumption inherently assumes that the furictiom differentiable. This is, however, not

necessary. I/; is not differentiable, the above assumption should hold fosuigradients of U.

B. An lterative Algorithm

Next we present an iterative algorithm for the problBq Later we will describe how this algorithm can be imple-
mented in a real network in a distributed way.

Let y,(,”) denote the value of the rate variabilgat thenth iterative step. For each linke L, defineel(") as

i )
el(n) _ 0 if ZpePz Yp s a A3)
10t S >a

We will refer to the variables; as the “link congestion indicator” of link Thus a linkl is considered “congested” if
e; = 1, and “uncongested” if; = 0.

The iterative rate update procedure, as will be stated shortly, has a very simple interpretation. In the procedure, the
traffic rate on a path of a session is increased according to the derivative of the session’s utility function, while it is
decreased according to the number of congested links on the path.

Now let us state the rate update procedure formally. Consider gpaitsessiory, i.e.,p € P;. In the following,

[ -]+ denotes a projectidron [0, 0o). At the nth iterative step, the rate variabjg is updated as follows

yz()n—i-l) _ [yz()n) + A ( Uj’( Z yz(;,%)) _ ’{(Z egn) ) ]+ (4)

p'EP; i,
wherex is a positive constant, and, > 0 is the step-size at theth iterative step. Note that I is not differentiable,
thenU; in (4) should be replaced by a subgradientUgfat that point.
Note that(zldp er) is the number of congested links in pathin the next subsection, we investigate the convergence

properties of this iterative algorithm under certain conditions on the constamd the step-sizes.

C. Convergence Analysis

In the following, lety = (y,,p € P) denote the vector of all path rates. L&Y denote the value of this vector at the
nth iterative step. Also, leY* be the set of optimal solutions #f; (note that the optimal solution can be non-unique).

! A subgradient [18], defined in the context of convex/concave functions, can be viewed as a generalized gradient, and may exist even if the
gradient does not (as is the case for non-differentiable functions).

For any scalag, [§]+ = max(0, §).
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Define the overall user utility functiof : %f‘ — RasU(y) = Xjes Uj(zpepj yp), andU* be the corresponding
optimal value. Thu¢/* = U (y*) for anyy* € Y*. Also letp(y, S) = min,cg ||y — z|| denote the Euclidean distance
of a pointy from any compact sef. Now we state some convergence results under various conditions of the step-sizes.

Assume that the sequence of step-siges} in (4) satisfies the following criteria
nlglgo An =0 i Ap =00 (5)

As an example),, = (1/n) is a sequence that satisfies (5).
The following theorem shows that our algorithm converges to the optimum if the step-sizes satisfy the above condi-
tion.

Theorem 1:Consider the iterative procedure stated in (3)-(4), with the step-sizes satisfying (5). Then:for 4l)

lim p(y™,Y") =0

The above theorem is proved in Appendix Il. Note that from the continuity ibfollows thatlim,, U(y(")) =U".

The above theorem basically states that the distance of the rate vector from the set of optimal rates decreases to zero. It
the special case where this optimum is unique, the rate vector converges to the unique optimum.

The condition}>;>2; A, = oo in (5) can be somewhat relaxed. Our algorithm can be also be shown to converge if
the step-sizes,, satisfy\, = AX™ where0 < X < 1 andA is a “sufficiently large” constant. However, the condition
lim, . A, = 0 is required for exact convergence. In practice, however, it may not be possible (due to precision
limitations) or efficient (since it could slow down the convergence rate considerably) to decrease the step-size beyond a
certain value. Next we investigate the convergence of our algorithm with constant step-sizes.

If the step-sizes are constant, we can prove a slightly weaker convergence result, as we state below. A similar result
holds even in the case where the step-sizes are not constant but converge to some positive value.

For any compact set S, 1&t.(.S) be the set of all points at a distanceradr less fromS, i.e.,®,(S) = {y : p(y, S) <
T}

Theorem 2:Let {(™ (1)} denote the sequence of rate vectors defined by (3)-(4)wite A\ Vn. Then there exists

a functionr () such thatim,_,o, #(\) = 0, and for allx > A,

Jim p(y™ (V) @) (Y*) =0 YA>0
Theorem 2 can be proved along the same lines as Theorem 1. The theorem states that for a constant step-size, the rat
vector converges to a neighborhood around the optimum, and the size of this neighborhood becomes arbitrarily small
with decreasing step-size. For a given constant step-size, the size of the neighborhood depends on the parameters of th
problemP, including the utility functions (Appendix Il shows how(\) can be calculated in terms aj. Note that
the above theorem also implies that given any neighborhood around the optimum, we can choose thestedsize

sufficiently small so that our algorithm (with constant step-sizes) converges to that neighborhood.
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D. Distributed Implementation

Now let us see how the iterative algorithm described above can be implemented in an asynchronous network environ-
ment in a distributed way.

Assume that the variablg is stored and updated at liiKi.e., at the node where linkoriginates). Also assume that
the rate computation for all paths of a session (according to (4)) is carried out at the source of the session.

Now assume that the source of a session periodically sends out some rate packets (RPs), each containing a rate fielc
R, on the paths of that session. Before sending out an RP, the source sRt&idlteto the current transmission rate
on the path over which the packet is routed. The links on the path of the packet re&adighe in order to know the
current traffic rate on that path. These rate values are used to update the link congestion indicator.

Note that in order to update the path rates, a source needs to know only the total number of congested links on its
path and not the exact set of congested links. Now assume that the receiver of a session periodically sends out some
congestion packets (CPs), each containing a rate @ieloh the paths (in the backward direction) of that session. The
receiver sets thé' field to O before sending out the CP. Subsequently, when the CP goes through a link on its path, the
link adds its congestion indicator to the entry in thidield of the CP. Thus when the CP reaches the source node, the
field C of the CP contains the number of congested links on that particular path, which is used in the computation of
the new path rates at the source.

Note that although we have described the RPs and the CPs as separate packets, in practice, they can simply be
piggybacked on the data and acknowledgement (ACK) packets (in an ACK based protocol). TRugetdecan be a
part of the data packet, and thefield a part of the ACK packet.

The link and session algorithms are described below (the step-size is assumed to be constant). In the algorithms, the
rates and the link congestion indicators are updated periodically. However, in practice, they can also be updated on the

arrivals of RPs/CPs.

Link [’s algorithm:

On receiving an RP of patt

Read theR field of the RP to know the new value gf, and forward the RP onto the next link.
Periodically :
Updatee; as

e 0 I.f Loper Up <
1 if Zpepl Yp > C

On receiving a CP :

Add e, to theC field of the CP and forward the CP onto the next link.

Sessiory’s algorithm:

On receiving a CP of patf
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Read theC field of the CP to know ;. i, e1), the current number of congested linkgin
Periodically :
1. For eaclp € P;, updatey, as

v — [up+ MUY ) = 6D e)) s

p' EP; leL,

2. For eaclp € P;, send an RP op, setting the fieldR toy,,.

E. Discussion

One drawback of the algorithm described above is that the actual rates need to be communicated from the users to
the links. This not only results in a communication overhead, but also requires the links to maintain states on a per-path
basis. In practice, however, the traffic on a link can be estimated, and this estimated rate can be used to update the link
congestion indicator. Note that only thatal traffic rate on a link needs to be estimated, and not the individual path
rates. Therefore, with estimation of traffic rates at the links, we do not require per-path or per-session information to be
maintained at the links. This also removes the overhead of communicating the rates from the users to the links.

Now consider the overhead of communicating to the user the number of congested links on the user’s path. Note that
the value in theC field of the CP can be at mogt, the maximum number of links on the path of any session. Thus
the congestion field’ needs to béog,(| L] + 1) bits long. Therefore for most real networks, including the internet,
allocating just one byte to th@ field should be sufficient (note that one byte would allow 255 links on a sessions path).
Thus the overhead of the network congestion feedback to the users is quite small.

Note that in the algorithm described above, the storage and processing complexity at the end-host is linear in the
number of paths it uses. Therefore, this algorithm does not scale as the number of paths between a source-destinatior

pair increases.

I1l. MULTIPATH FLOW CONTROL WITHOUT EXPLICIT KNOWLEDGE OFPATHS

In this section, we will present a rate control algorithm which does not require the user to keep track of the different
paths it uses. This algorithm applies to cases where the user does not know the exact set of paths, or is unable to directly
control the traffic rates on these paths. In this algorithm, the storage/processing complexity at the network/end nodes
does not depend significantly on the number of paths used. In this case, however, the nodes in the network need to keef
track of the sessions whose paths pass through that node. This algorithm, therefore, requires per-session information
to be maintained at the network nodes. It is also important to note that while the algorithm previously presented is an

end-to-end flow control algorithm, the algorithm that we present in this section works on a hop-by-hop basis.

A. Problem Formulation

Next we provide an alternative formulation of the multipath flow control problem, which forms the basis of the

algorithm that we develop. In the following, we assume that each node on a session path maintainingsetirdés
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(the links through which traffic of that session arrives at that node) and a setpmit links(the links through which
traffic of that session departs from that node) for the session. Note that the set of input links of a session at a node is
a subset of the set of all incoming links at that node; similarly, the set of output links of a session at a node is a subset
of the set of all outgoing links at that node. We assume that set of paths used by a session, and therefore, the sets of
input and output links of the session at a node, are already determined by some multipath route-finding algorithm (like
those in [20], [21]). We are interested in determining the traffic rates on these links/paths so that the total user utility is
maximized.

Consider a network consisting of a deof unidirectional links, where a link € L has capacity; (0 < ¢ < o0).
Let the set of nodes of the network be denotedshyThe network is shared by a sétof unicast (possibly multipath)
sessions. Let; andd; respectively denote the source and destination nodes of a sgssioh Let K; C K denote
the set of nodes which sessigitraverses (including; andd;). We will refer to the nodes in the séf; \ {s;,d;} as
the “intermediate nodes” of sessignlLet .J; C J denote the set of sessions that use liekL. Also let L; C L denote
the set of links used by sessigre J. Let I, andO,, respectively denote the set of incoming and outgoing links at node
k. Letl,; C I andOy; C O respectively denote the set of input and output links of sess@imodek. Note that
I;;; = Oq;; = ¢. As before, each sessigris associated with a utility functiofl; : ®, — %, which is assumed to be
concave, continuous, bounded and increasirg,ix).

Now for each linkl € L; for each session € J, associate a variable; denoting the traffic rate of sessigron link
[. Then the utility maximization problem can be posed as:

P : maximize > U;( Y )
je€J ZGOS].]‘

subject to Z Ty = Z Ty Vke Kj \ {Sj,dj} VjedJ (6)
lEIk.j leij
Z Tij < ¢ VieL (7)
JES
Tij > 0 VlELj VjedJ (8)

Each constraint in (6) states the flow constraint of a session at a node, i.e., the total input flow of a session at an
intermediate node is equal to the total output flow of that session at that node. Constraints (7) are the link capacity

constraints, while (8) are the non-negativity constraints on the rates.

B. An lterative Algorithm

Next we present an iterative algorithm for the probl®s The algorithm is developed using techniques similar to
those used in deriving the algorithm of Section 1l. We will describe a distributed implementation of this algorithm in

Section IlI-D.



ISR TECHNICAL REPORT 2001-1 9

Let xl(;‘) denote the value of the rate variahlg at thenth iterative step. For each linke L, defineel(") as

0 if Y., a™<
6§n) _ Z]EJlxl] =G (9)

The variables; is the “link congestion indicator” of link (g; is similar to the variable; defined in the Section 1I-B).

Now for each nodé € K; \ {s;,d;} for each sessiop € J, definey,(g.) as

0 it er, xg?) = Dlcoy, *'”gyn)

W= 1 S, #l) > Sico,, o) (10)
—1 it Yier, 31 < Ticoy, o))

We will refer to the variables;; as the “node congestion indicator” of nodefor session;. For a sessiory, an
intermediate nodé is considered “balanced” ify; = 0, “congested” ifv;; = 1, and “underutilized” ifvy; = —1.

In the following, we will refer to the node where a link originates asstaet nodeof the link. Similarly, we will refer
to the node where a link ends as #rad nodeof the link. The rate update algorithm, stated below, has a simple intuitive
interpretation. In the algorithm, the rate of a session on a link decreases if the start node of the link is underutilized or if
the end node of the link is congested. Similarly, the rate of a session on a link increases if the opposite conditions hold,
i.e., if the start node of the link is congested or if the end node of the link is underutilized. Also, the rate of a session on
a link decreases if the link itself is congested. In addition, if the start node of the link is the source node of the session,
then the rate of the session on the link increases according to the derivative of the session utility.

Now we state the rate update procedure formally.#,end@, respectively denote the start node and end node of link
I € L. Consider a sessiohe J, and a linkl € L;. In the following, [ - ] denotes a projection 0o, co), as before.

The update procedure of; at stepn is

!

L) + M (Uj(Sico, , o) = (el + i) 1 ife Oy

+1 n n n .
AR [l + X (—r(ef™ =) 14 if 1 € Iy, (11)
[xg_z) + 2 ( _“(5§n) + Vé?j) - Vﬁ?}) ) 1+ otherwise

wherex is a positive constant, and, > 0 is the step-size at theth iterative step.

C. Convergence Analysis

In this section, we investigate the convergence of the iterative algorithm outlined in the last subsection.
In the following, letz = (5,1 € Lj, j € J) denote the vector of all rates. Let”) denote the value of this vector at
thenth iterative step. Also, leX* be the set of optimal solutions &¥,.
Now we state some convergence results under various conditions of the step-sizes, similar to those stated for the

algorithm in Section Il. As before, we assume that the utility functions satisfy Assumption 1.
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Theorem 3:Consider the iterative procedure stated in (9)-(11), with the step-sizes satisfying (5). Then there exists a

K1 < oo, such that for alk > k1,

lim_p(z™, X*) =0
Theorem 4:Let {z(™)()\)} denote the sequence of rate vectors defined by (9)-(11)with X Vn. Then there exists

ak1 < oo and a functionr(\) such thatim,_ o, 7(\) = 0, and for allx > «1,

lim p(z™(N), (X)) =0 VYA>0

In general,x; can be obtained as follows. Note that the set of lagrange multiplier vectors for prébjesmnon-
empty (from Proposition 5.2.1 of [5]). Let* = {u;,l € L} be any lagrange multiplier vector fa@,. Let u);,. =
max;cy, i1 . Then the result of Theorems 3 and 4 can be shown to holdfer v} ... Under an additional “interior
point assumption”, upper bounds pf,... can be easily calculated in terms of the parameters of the praBlgisee
[5] (pp. 450)). If the set of linkd.;, for every session € J, forms a directed acyclic graph (DAG), then it can be
shown thatx > A is sufficient to guarantee the convergence results stated in the above theorems. Note that in practice,
the routing algorithms usually establish the multipaths in the form of a DAG so as to ensure “loop-free” routing [20],
[21].

D. Distributed Implementation

Next we describe how the algorithm described in Section IlI-B can be implemented in a distributed way in an asyn-
chronous network environment. Let us assume that the link congestion indicator variable is updated at the start node of
the corresponding link. Also assume that the node congestion indicator variable is updated at the corresponding node.
Thus noder; is responsible for keeping track ef, while nodek is responsible for keeping track of ;. Assume that
the rate variabler;; is updated at node;. In the optimization process, a node has to communicate with the previous-
hop and next-hop nodes. In this case too, we assume that this communication is carried out using rate packets (RPSs)
and congestion packets (CPs). However, unlike the algorithm described in Section Il, the RPs and CPs in this case are
exchanged only between adjacent network nodes and not between end-hosts. A node on a session path communicate
the rate variable updated by it to the session’s next-hop node throughfiblel of a rate packet (RP) (note that this rate
variable is required for the update of the node congestion indicator variable at the next-hop node). The node commu-
nicates the node congestion indicator variable updated by it to the session’s previous-hop node thréufigldhaf
congestion packet (CP) (note that this node congestion indicator variable is required for the update of the rate variable
at the previous-hop node).

The algorithms for the source and intermediate nodes of a sessi@nstated below. Note that the destination node
does not take part in the optimization process. In the algorithms described below, the step-size for rate updates is kept

constant ah.
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Source nodes;’s algorithm:

On receiving a CP from; :
Read theC field of the CP to know the new value of, ;.

Periodically :
1. For eacti € O, ;, updates; as
G 0 lf ZjeJl T < ¢
1 if ZjeJl T >
2. For eachi € O, ;, updater;; as
wij  [21;+ X (Uj( > wy) — ke +vey) ) It

lEOsJ-j

3. Send RPs to the next-hop nodes of sesgj@etting theR field to the updated value of the appropriate rate variafle

Intermediate nodek’s algorithm (k ¢ 1) :

On receiving a CP fro; :
Read theC' field of the CP to know the new value of, ;.

On receiving an RP from,; :
Read ther field of the RP to know the new value of;.

Periodically :
1. For eacht € Oy, updates; as
G 0 lf ZjeJl T < ¢
1 if ZjeJl T >
2. For eacli € Oy;, updater;; as

wij  [w5 + X (—k(er + Vo — vmj) ) I+

3. Updatevy,; as
0 if Zlelkj Tij = Eleokj Ty
Vij ¢ Lot Yien, T > Xieo,, T
-1 if Zlelk]— zyj < Zleokj Ty

4. Send RPs to the next-hop nodes of sesgj@etting theR field to the updated value of the appropriate rate variafle

5. Send CPs to previous-hop nodes of sesgj@etting theC' field to the updated value of the node congestion indiagtar

Intermediate node#’s algorithm (% € Iy,;) :

On receiving an RP from,; :

Read thek field of RP to know the new value af;.

11
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Periodically :
1. For eachi € Oy;, updates; as
EH—{ 0 if Xjenay<a
1 if ZjeJl x> q
2. For eacti € Oy;, updater;; as
aij < [wg + A (—ker—vay) ) I+
3. Updatevy,; as
0 if Zlelkj Ty = Zleokj Zij
Vkj < 1 if > ien, T > 2ieoy,; T
-1t Yen, % < Xico,, T

4. Send CPs to previous-hop nodes of sesgj@etting theC field to the updated value of the node congestion indiaatar

E. Discussion

Note that since the node congestion indicator variaglesakes only three values (namely, 0, 1 and -1),@higeld of
the CP needs to be allocated only 2 bits. Moreover, note that with measurement-based traffic rate estimation at the nodes,
the overhead of rate communication (from a node to its next-hop node) can be avoided. Thus the total communication
overhead of this algorithm is quite small.

As mentioned before, since the storage and processing complexity of this algorithm does not depend significantly on
the number of paths, this algorithm scales with increasing number of session paths. However, note that a node has to
maintain a congestion indicator for each of the sessions going through it. Moreover, even with measurement-based rate
estimation, a node has to estimate the traffic rate for each session going through it (and not just the total rate of traffic at
that node). This implies that the storage and processing complexity at an intermediate node is proportional to the number
of sessions going through it. While maintaining per-session states is usually not feasible in backbone routers (where
there can be thousands of sessions going through the router), it can be feasible in Virtual Private Networks (VPNS)
and intranets. In backbones, state aggregation could be used to reduce the overhead of these additional flow states
thus making the algorithm more feasible. Comparing the algorithm of Section Il with the algorithm just presented, we
see that some of the storage/processing complexity at the end-host in the former algorithm has been transferred to the
intermediate network nodes in the case of the latter.

An interesting feature of the algorithm presented in this section is that it can be used in solving the multicommodity
flow problem [1] with concave utility functions (note that the multicommodity flow problem is usually defined with
linear objective functions) in a distributed way. To see this, in probimsetK; = K Vj € J, so that traffic of
a session could pass through all possible nodes in the network. Aldp;set ) \ {d;}, Ox; = O \ {s;} Vk €
K; Vj € J, so that the traffic of an session could pass through all possible links (except the links going into the source
node or coming out of the destination node, which can obviously be excluded). With these settings, all possible paths

between the source and destination nodes of a session are included in the problem formulatiddy fpresents
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a generalized multicommodity flow problem which can be solved in a distributed way using the algorithm described

above.

IV. RELATED WORK

In this section, we mention some of the recent work on the optimization based flow control problem. We then compare
our approach to the multipath utility maximization problem with two other approaches for the same problem, presented
in [8], [13].

In recent literature, several different algorithms have been proposed for the single-path case of the problem addressed
in this paper. In [14], Low et al. propose an algorithm based on the dual approach for the same problem. In [2],
the authors suggest a randomized marking based implementation of the algorithm in [14], that uses only one bit for
the network congestion feedback. In [8], the authors propose both primal and dual algorithms that solve approximate
versions of the same problem. Another related, but different, approach is proposed in [11], in which the user adjusts
its rate based on the proportion of marked packets or end-to-end (measurable) losses. In [12], the authors present &
window-based based flow control approach for this problem. Here the users choose some weights and the window-
based flow control scheme, on convergence, allocates rates that are proportionally fair with respect to those weights.
The weights are updated in such a way that the algorithm finally converges to the optimal rates. In [9], the authors
present a simple algorithm for the same problem where the user adjusts its rate based on the number of congested links
Like the approach taken in this paper, the algorithm in [9] is also based on non-differentiable optimization methods, and
has certain similarities with the single-path version of the first algorithm presented in this paper. It is important to note
that all of the above-mentioned algorithms are end-to-end flow control algorithms.

As already mentioned, the multipath case of the utility maximization problem have not been adequately addressed
in the literature. Most of the approaches for the single-path case of the problem, as mentioned above, require strict
concavity of the objective function in order to guarantee convergence. However, in the multipath case, the overall
objective function may not be strictly concave, even if the individual user utility functions are strictly concave (consider
the objective function oP;). This is one of the reasons why extending these approaches to the multipath case becomes
difficult, and in fact, direct extensions of these algorithms do not provide convergence guarantees.

In [13], the author presents a dual-based algorithm for the problem, which is in fact a generalization of the algorithm
presented in [14] for the single-path case of the problem. Here, the network conveys to the user the “congestion
prices” for each of the paths it uses (the “congestion price” of a path is the sum of the dual variables of the capacity
constraints for all links on the path). The user then sends all its traffic on the path with the smallest congestion price.
This algorithm, however, does not guarantee convergence to the optimal rates. Since the dual in this case is non-
differentiable, it does not converge to the optimum under a constant step-size gradient projection method. However, it is
possible to make the dual converge to the optimum with decreasing step-sizes (see [10] where a case similar to this has

been addressed). However, in this case, due to the lack of strict concavity of the primal objective function, it is difficult
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to obtain the optimal primal variables (the traffic rates) from the optimal dual variables (the congestion prices). In this
case, maximizing the Lagrangian (with the dual variables set to their optimal values) can yield multiple primal solutions,
and some of these solutions can be infeasible (see [5] (Chp. 6) for a more detailed discussion on this). In Appendix IV,
we provide a counterexample to show that in the algorithm presented in [13], the path rates could constantly fluctuate
between two infeasible rates for the problem.

In [8], the authors present both primal and dual algorithms that attempt to solve approximations of the multipath
utility maximization problem. These are also generalizations of the algorithms for the single-path case of the problem,
presented in the same paper. However, no formal convergence result is stated in the paper for the multipath case of
the problem. The authors do show that the value of the approximate objective function (that they are interested in
maximizing) is increasing in time, but that does not guarantee convergence to the optimal solution.

Both of the above-mentioned approaches are end-to-end flow control algorithms based on the same formulation that
we have used in developing the end-to-end flow control algorithm presented in this paper. However, our algorithm pro-
vides guaranteed convergence, and significantly less overhead of communication compared to the previous algorithms
(in these algorithms, the “congestion prices” communicated between the network and end-hosts are real numbers, and
this poses a difficulty in conveying the prices using a small number of bits without sacrificing precision).

As mentioned before, the previous approaches do not scale with increasing number of paths, and require the user to
keep track of the different paths it uses. This necessitated the development of the second algorithm presented in this
paper, based on the multicommodity flow formulation. Distributed solutions of network flow and multicommaodity flow
problems have been proposed in the network optimization literature (see [3]). The problems addressed in this regard
typically fall into two categories. The first one is the standard network flow problem. However, this problem does
not have the multi-user aspect that we have in our problem. The second kind of problems are flow routing problems
based on multicommodity flow formulations. However, these problems are only concerned with the routing of flows,
and do not have the flow control aspect that we have in our problem. Moreover, they are concerned with minimizing
a cost function of the link load, whereas we are concerned with maximizing the user utility. These factors make our
problem considerably different from the previously-addressed problems. Also note that the techniques used to develop
the algorithms in this paper are also significantly different from those used in the previous approaches, resulting in a

lower overhead of computation and communication.

V. DISCUSSION ANDCONCLUSION

In this paper, we addressed the problem of optimization based rate control for multipath sessions. We presented two
rate control algorithms, one end-to-end and the other hop-by-hop, that converge to the rates that maximize the total
user utility. The algorithms require very simple computations on the part of the users/nodes of the network, and the
communication overhead is also small.

The two algorithms presented in this paper are applicable in different scenarios, and each has certain advantages ovel



ISR TECHNICAL REPORT 2001-1 15

the other. The end-to-end rate control algorithm is applicable to schemes where the source of the session can spec-
ify the path a packet takes, and therefore can directly monitor the traffic rates on the different paths. This algorithm
has the advantage that per-flow state need not be maintained at the network routers. However, in this case, the stor-
age/computation complexity at an end-user is proportional to the number of paths used by the user. The hop-by-hop
flow control algorithm is applicable to schemes where the intermediate network nodes determine the next-hop node of
a packet. Thus an intermediate node directly controls the traffic rates on the links leading to the next-hop nodes. The
complexity of computation/storage for this algorithm does not depend significantly on the total number of paths used.
However, in this case, per-session information needs to be maintained at the intermediate nodes. Note that the flow
control algorithms used in the current internet are end-to-end flow control algorithms. However, as pointed out in [19],
hop-by-hop congestion control algorithms have certain advantages over end-to-end algorithms, and could be used in
LAN based networks.

On a different note, it is worth mentioning here that the second algorithm presented in this paper could be used to
solve a generalized multicommodity flow problem in a distributed way. Since the network flow problem is a special case

of the multicommodity flow problem, this algorithm also provides a distributed solution to the network flow problem.
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APPENDIX |: SUBGRADIENTS AND THEIR PROPERTIES

Definition 1: [18] (Subgradient and SubdifferentjalConsider a convex and continuous functigrdefined on a

convex sef” C R¥. Then a vectow, € R* is called asubgradienif f at a pointz, € F if it satisfies

fy) = flyo) > (wo,y—yo) Yy e F

Thesubdifferentialof f aty, € F, denoted bydf(yo), is the set of all subgradients gfatyy, i.e.,

Of(yo) = {woeR*: fy) — f(yo) > (wo,y—wo) Vy € F}

In general, subgradient at a point may be non-unique. HoweVerf (i) exists, therdf (zy) = {V f(x0)}.

Next we state some properties of subgradients (see Theorems 1.12 & 1.13 of [18]), which will be useful in our
analysis.

Lemma 5:Let I be a finite index set. Lef;,i € I, be convex, continuous functions defined on a convex'sdtet
yo € F, andw;y € dfi(yo), i € I.
(@) Letf(y) = Xicraifi(y), wherea; > 0,1 € I. Theny ;. ; a;wio € Of (yo).
(b) Let f(y) = maxic; fi(y). Definel(y) = {i € I : fi(y) = f(y)}. Thenwqy € 9f (yo), for all i € I(yo).
In terms of subgradients, the optimality condition is as follows (Theorem 1.11 of [18]):

Lemma 6:Let f be a convex, continuous function defined on a convex'sethen an interior poingy of £ is the

minimum point of f in F' if and only if 0 € 0f (yo).

APPENDIX II: PROOF OFTHEOREM 1

We will first state a lemma that would be used in the proof of Theorem 1. Forleach, defineg; : %f‘ — R as
agy) = Epeﬁ, yp — ¢;. Thus the capacity constraint for lidkcan be simply written ag;(y) < 0.

Now consider the following problem

P: maximize > U;( Y yp) — £ Y max{0,q(y)}, subjectto y, >0 VpeP
JeJ  peP; leL

wherek is a non-negative constant.



ISR TECHNICAL REPORT 2001-1 17

Now define a functior : R — % asti(y) = Y jes Ui (Zoep, Up) — £ ier, max{0,gi(y)}. ThusP is the
problem of maximizingU (y) subject toy > 0. Let Y* denote the set of optimal solutions Bf, and U* be the
corresponding optimal value.

Lemma 7:If x > A, thenY* coincides withy *.

Proof: DefineY, = {y: g/(y) <0Vl € L}. Thus the set of link constraints can be simply writtery &Y7,. Consider

a pointy ¢ Yz. Therefore, there existslac L, such thay;(y) > 0. Choose any € 131 Then from the properties in

oU(y)
0y

Therefore, from Lemma 6; can not be an optimal solution &. Therefore all optimal solutions d& must belong to

Lemma 5,

lg; < A—K <O. Therefore 9U (j), the set of subgradients 6f at, can not incude the zero vector.

Yz,. However, for any € Y7, the values of the objective function BfandP are equal. Therefore any optimal solution
of P is an optimal solution 013, and vice versa. Theerefore, for> A, Y* = Y*. O

The above result is fairly intuitive. Comparing probleisand P, we see that the link constraints B have been
transferred to the objective function . The terms max{0, g;(y)} can be interpreted as the penalty associated with
the violation of the capacity constraint of liik Thus the above lemma states that when the penalty associated with
constraint violations is sufficiently large, the optimal solution set of the unconstrained prbblEnomes the same as
that of P.
Proof of Theorem 1. We will first show thatlim,,_,, p(y™,Y*) = 0.

Choose an arbitrary > 0. Letd’ = (§/2). For anye > 0, defineD_ asD, = {y : y > 0,U(y) > U* — ¢ }. It

follows from Theorem 27.2 of [17] that there existseas €(d’) > 0 such that
De C {y:ply,Y*) <4} (12)

Consider am for whichy(™ ¢ D,. Therefore[/(y(™) < U* — e. Choose any* € Y*. Note that the rate update
procedure for the receiver nodes, as stated in (4), can be compactly staggtitads= [ 4™ + \,0(™ 1., wherev™
is a subgradient of/ (y(™), and [- ] denotes a projection on the non-negative orthant. Sifidec oU (y™), and

using the definition of a subgradient (Definition 1), we obtain
™,y —5) < ™) -U@F) < —e (13)

From Assumption 1), it is easy to see thét) is upper-bounded. Le(™ || < A for all n.

Using these facts, and (13), we obtain,
Iyt — g2 = [ILy™ + o™ 14— 7]
< ™+ ™ — g2 (14)
= Iy =5[] + X2 ™]]? + 22 (™ — 5, 0™)

< g™ =¥ + 4202 - 20, (15)

Note that (14) follows from the fact thgt > 0 (use projection theorem).
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Since), — 0, A, < (¢/A2%) whenn is sufficiently large. For all such, from (15), we get
ly ™ =g (P < g™ =[P = e (16)

Now, for the sake of contradiction, let us assume that there exidts @ oo such thaty(") ¢ D, foralln > N/
Therefore, there existd, > N! be such that (16) holds for all > N.. Summing up the inequalities obtained from

(16) forn = N, to N, + m, we obtain

Ne+m
|lyNermt ) —g# 12 < |y —g* 2 —e 3 N, (17)
n=N,

which implies that|y(Netm+1D) —g*|| - —oco asm — oo, sinceY A, diverges. This is impossible, singg™:+m+1) —
g*|| > 0. Hence our assumption was incorrect. Hence, there exists an infinite sequenceny . < nz < ... such
thaty(™i<) € D, for all i = 1,2,3,.... This implies that there exists @nsuch that (16) holds for aft > n;, .. Also,
since),, — 0, there exists ané, such that\, < (¢ /A) for all n. > n,, ..

Lets’ = max(i1,42). We show thap(y(™,Y*) < ¢ for all n > ny . Pick anyn > n; .. There can be three cases:
Case t n =nj, forsomej >i': Inthis casey™ € D.. From (12), it trivially follows thatp(y(™, Y*) < & < 4.

Case2 n=nj, + 1forsomej > : Inthiscasey™ = y(ructl) = [y(id) 4§, o) ], Thus
ly™ —ymd]] = [[[yM) 4 Ny, 0 |, — gyl
< lyae) 4+ Anj,ev(n“) — yms)]|
= Any 09| < AN, <O (18)
From (18) and the fact thai(y("i<), Y*) < § (Case 1), we get
p(y™,Y*) < p(yT), V) 4 [y =yl < 840 = 200 = 6 (19)

Case 3 nj.+1<mn<njforsomej > i : Notethaty™) ¢ D, for all n’ satisfyingn; . < n' < nji1,. From
(16), it follows that|y™ +1 —5*|| < ||y™) —¢*||. Summing up these inequalities obtainedifoe= n; . +1ton—1, we
obtain||y(™ —j*|| < ||yt —g*||. Since this inequality holds for ajt* € Y*, hencep(y(™, Y*) < p(ymieth) ¥*).
Sincep(y™i<t1) Y*) < § (Case 2), it follows thap(y(™, Y*) < 4.

From cases 1, 2, 3,, if follows thaty(™, Y*) < ¢ for all n > n; .. By virtue of the arbitrariness @, it follows that

lim,, 0 p(y™, Y*) = 0. Now, from Lemma 7, it follows that if{ > K, thenlim,,_, p(y™,Y*) = 0. O

APPENDIX III: CALCULATION OF 7(\)

Define a functiorl/ (y) as in the proof of Theorem 1, i.é/,(y) = et Uj(zpepj Yp) — K D1, max{0, Ypei, Yp—
¢;}. Consider the problem of maximizirig* subject toy > 0. LetY* be the set of optimal solutions for this problem,
andU* be the corresponding optimal value. Since A, Y* = Y*, andU* = U* (use Lemma 7 in Appendix II). Let

L be the maximum number of links on any session’s path. Now define tHe(s¢tas follows

. 1 ..
D) = {y>0:Uy) 2U" - 5x"L*|P|\}
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Now definer(\) as follows

7(A) = max p(y,Y")
yeD(A)
Thenr(X) can be expressed as follows
r(A) = () +&Ly/|P|A (20)

It is easy to show tha&()), and hencd~)(>\), is bounded. Moreover, from Theorem 27.2 of [17], it follows that
7(A) = 0 asA — 0+. Therefore, from (20), it follows that(\) — 0 asA — 0+.

APPENDIX IV: A COUNTEREXAMPLE FOR THEDUAL -BASED ALGORITHM

Next we provide a counterexample to show that in the algorithm presented in [13], the path rates may not converge
to the optimal rates. Consider the 3-node network shown in Figure 1. There is a single session witls smatce

destinationd, sending traffic on two different pathg andp,.

Link 1

Link 2

Fig. 1. An example networkThe numbers across the links are the link capacities.

Assume that the session utilitylisg(1 + =), wherez is the session rate. Assume that there is a maximum constraint
on each path rate, and that is equal to 10 units. It is easy to see that the optimal rates on the two paths are (0.9,1.1).
Now assume that the rates and the prices are all zero initially. Moreover, assume that the rates/prices are updated
synchronously. Let the step-size for price updates at:theteration be equal td1/n) (such step-sizes ensure the
convergence of the dual [10]). Figure 2 shows the path rates in the window 0-250 iterations. Note that after an initial
phase, the path rates constantly fluctuate between (0,2) and (2,0). These fluctuations do not die down as the numbet
of iterations increases. Note that the rates fluctuate even as the step-size for price updates become arbitrarily close tc
zero. Note that the rates (2,0) and (0,2) are infeasible, although these path rates yield the same primal objective function
value. Figure 3 shows the link prices in the window 0-250 iterations. In the figure, we see that the link prices converge.

This example demonstrates, that even if the prices converge to their optimal values, the rates may not, and could
achieve values that are infeasible to the original problem. This is due to the lack of strict concavity of the primal
objective function. Note that we could make the primal objective function strictly concave by adding to it a strictly
concave ternf]p(yp) for eachp € P. For instance, we could tal(ép(yp) = —iyﬁ, wherek is some large constant

(this kind of approach was succesfully applied in [10] to solve a similar problem). In this case, however, with the
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addition of these extra functions, the user algorithm would become substantially more complex. More specifically, user

j has to maximize the teri; (3 ,cp, ¥p) + Xpep, Uy(yp) — >_pep; VpYp, Whereu,, is the total congestion price for

pathp. In general, this maximization problem will be too difficult to solve in a single step.



