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In systems with interrelated alternatives, the benefits or costs of each alternative depend on 

which other alternatives are selected and when they are implemented. System interrelations and 

uncertainties in various elements of transportation systems such as future demand, make it 

difficult to evaluate project impacts with analytical methods. This study proposes a general and 

modular framework for planning and scheduling interrelated infrastructure projects under 

uncertainties. The method should be general enough to address the planning problem for any 



interrelated system in a wide range of applications. The goal is to determine which projects 

should be selected and when they should be implemented to minimize the present value of total 

system cost, subject to a cumulative budget flow constraint. For this purpose, the scheduling 

problem is formulated as a non-linear integer optimization problem that minimizes the present 

value of system cost over a planning horizon. The first part of this dissertation employs a simple 

traffic assignment model to evaluate improvement alternatives. The algorithm identifies potential 

locations within a network that needs improvements and considers multiple improvement 

alternatives at each location. Accordingly, a probabilistic procedure is introduced to select the 

optimal improvement type for the candidate locations. The traffic assignment model is used to 

evaluate the objective function and implicitly compute project interrelations, with a Genetic 

Algorithm (GA) developed to solve the optimization problem. In the second part of the 

dissertation, the traffic assignment model is replaced with a more detailed evaluation model, 

namely a Cell Transmission Model (CTM). The use of CTM significantly improves the model by 

tracking queues and predicating queue build-up and dissipation, as well as backward propagation 

of congestion waves. Finally, since GA does not guarantee global optimum, a statistical test is 

employed to test the optimality of the GA solution by estimating the probability of arriving at a 

better solution. In effect, it is shown that the probability of finding a better solution is negligible, 

thus demonstrating the soundness of the GA solution. 
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Chapter 1 Introduction 
 

1.1 Background 

The problem of selecting transportation projects under budget constraints is a resource allocation 

problem which has been studied for decades. In early studies, the project selection problem was 

formulated as a simple linear and binary optimization problem (Lorie and Savage, 1955). In this 

case, there is some benefit and cost associated with each candidate project, and the objective 

function is formulated as a linear summation of benefits subject to the expenditure of projects 

bounded by a budget. This problem is well known as the knapsack problem, which is proved to be 

NP-hard (Crowder et al., 1983) and can be solved via dynamic programming or branch-and-bound 

methods (Martello and Toth, 1990).  Although this formulation can be effectively solved by 

mathematical modeling and produce the optimal selection, it assumes that projects are completely 

“independent”, which lacks any timing component, presuming that projects are implemented at 

about the same time.  

In the real world, especially in transportation networks, the benefits and costs of projects are quite 

“interrelated”.  In other words, the benefits and costs of each individual project depend on whether 

and when some other projects are implemented. This is the case for most transportation networks 

since changes in network components shift the locations of bottlenecks and redistribute flows. 

Therefore, the total benefits from multiple projects are not a linear summation of the impacts from 

individual projects. Nemhauser and Ullman (1969) conducted one of the early studies dealing with 

project interdependencies. They proposed the following quadratic objective function: 
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 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =  ∑𝑏𝑖𝑥𝑖

𝑛

𝑖=1

+∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (1) 

 

In this formulation 𝑑𝑖𝑗 represents the interaction between projects i and j having a positive 

value when projects are complementary and a negative value when they are competing. This is a 

binary, non-linear and non-separable knapsack problem which incorporates project interrelation. 

Variations of this method can be found in some recent works, such as Dickinson et al. (2001), 

Durango-Cohen and Sarutipand (2007), and Bhattacharyya et al. (2011).  

Compared to the linear objective function, the quadratic objective function shown above enhances 

the flexibility of the project selection problem by incorporating project interrelations. However, 

the quadratic formulation has its own shortfalls. First, the pairwise dependencies (𝑑𝑖𝑗) do not fully 

represent the complex interrelations and miss some relations among alternatives. This is because 

the actual interrelations may extend beyond just the two-way interactions between project i and j. 

In fact, the interaction may go to third, fourth and even higher degrees. Second, the interrelations 

may be difficult to quantify even for pairwise interactions (i.e. estimate 𝑑𝑖𝑗 parameter for all pairs 

of projects) and the number of interactions requiring estimation explodes if we go beyond pairwise 

relations. Third, such methods ignore the timing aspect of project implementation and do not 

optimize the schedule of projects. The benefits associated with particular projects may be highly 

related to the times when they are implemented. Therefore, evaluating projects without considering 

their timing may yield misleading results. 

 In general, methods for analyzing mutually exclusive and independent alternatives are adequately 

addressed in the literature. However, no such general methods are found for analyzing interrelated 
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alternatives. Even the methods that have been developed for analyzing interrelated alternatives in 

some specific applications have been incapable of dealing with enough interrelations and realistic 

problem features.  

1.2 Problem Statement 

Evaluating transportation infrastructure projects and determining which of them at what time 

should be implemented requires several criteria. Common evaluation practices use the linear 

summation of project impacts in the objective function which is later optimized. Nevertheless, 

these assumptions are inadequate since they disregard the interdependence due to non-linearly 

additive benefits, costs, budget constraints, constructability or operability requirements, and other 

possible factors. The selection and scheduling of projects with consideration of their interrelations 

is a challenging optimization problem, but its solution is very valuable as it has applications in 

various fields, including economics, finance, operations research, development, industrial 

engineering, and business administration. This research deals with constructing new roads and 

road expansion projects as an example of interrelated projects, however, the introduced methods 

may be used generally to analyze interrelated alternatives. 

As traffic increases and links become congested, passenger and freight movements experience 

increasing travel times and delays. One obvious solution to this problem is constructing new lanes 

and creating additional capacity on the highly congested links. Then we must determine which 

links should be selected, in what order they should be implemented and when they should be 

funded to minimize the present worth of cost. One simple idea is to identify congested links and 

prioritize them according to their congestion level, i.e., volume/capacity ratio. However, even after 

adjusting for the relative costs of links, this approach does not yield the best solution as it 

disregards the interrelations among network links. In fact, changes in one link affect the flows on 
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others and removing bottlenecks from some links may shift them elsewhere in the network. Thus, 

in sequencing a set of improvement projects we should consider their interrelations.  

Conceptually, the first step of a project planning problem is the project evaluation which identifies 

candidate projects and evaluates their merits, often in terms of their benefits and costs. A second 

step selects which projects from among the considered set should be chosen for implementation. 

After evaluating and selecting a set of projects for improvement, a third step determines the order 

of projects and, finally, a fourth step determines the scheduled time for completion under budget 

limitations (Wang and Schonfeld 2005). Project selection and scheduling easily becomes a large 

optimization problem whose feasible region increases rapidly as the number of considered projects 

in the system grows. Considering a set of improvement projects for a given network, the objective 

is to find a project implementation sequence that minimizes the total system cost or maximizes the 

net benefits over the analyzed period. To date, several methods have been developed for scheduling 

interrelated projects. However, the number of studies on this topic is relatively low. 

Another issue that complicates the project selection and scheduling is uncertainty. The 

presence of uncertainty in transportation systems causes new challenges in optimizing network 

investment decisions. Improving a transportation network requires a significant investment, and 

such investments are usually irreversible. Therefore, it is important to effectively plan and 

prioritize investments in a way that addresses present as well as uncertain future needs.   

1.3 Research objective 

The objective of this study is to is to develop a general framework for selecting, scheduling and 

sequencing of interrelated alternatives, and to demonstrate how a relatively simple method, namely 

a traffic assignment algorithm, can be efficiently used to evaluate the objective function of an 

investment planning optimization problem for a road network and thereby implicitly compute the 
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relevant interrelations among all projects that are implemented at various times. Although traffic 

assignment is a simple and quick way to test the algorithm, it may be replaced with a mesoscopic 

or microscopic simulation model if more precise evaluations are sought. As such, this study 

examines a Cell Transmission Model which is capable of tracking queues in the network, 

predicting queue spillbacks and dissipation in a reasonable way which makes CTM suitable for 

modeling intersections. Although road and intersection expansion projects are the focus of this 

study, the proposed methodology should be applicable to general cases involving more complex 

systems. In fact, GAs can be effectively combined with an appropriate evaluation tool (e.g. 

microscopic simulation, simulation approximates, queuing or neural networks) specific to the 

problem, to solve the planning and scheduling problem for a variety of interrelated alternatives. 

1.4 Research Approach 

This study aims to propose a general technical approach for planning and scheduling interrelated 

infrastructure projects under uncertainties. The key to generality of the approach is to incorporate 

modularity into the method by connecting the application-specific “evaluation component” with 

the “optimization component”. In this case it is important to separate the evaluation from the 

decision optimization component and connect them through data exchange rather than structural 

integration.  
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Figure 1.4-1 Optimization Model Separated from Evaluation Model 

 

Evaluation Module: In general, the evaluation component of the planning and scheduling process 

is application-specific. Depending on the type of project, different evaluation models can be used 

to evaluate effects of any combination of projects, which accounts for the interrelations between 

projects. These evaluation models include: queuing models (Dai and Schonfeld 1998), queuing 

networks (Zhu et al. 1999), artificial neural networks (Wei and Schonfeld 1994), traffic assignment 

models (Tao and Schonfeld 2005, Tao and Schonfeld 2006, Tao and Schonfeld 2007, Shayanfar 

et al. 2016), mesoscopic models such as Cell Transmission models and hybrid combinations of 

analytic queuing and microsimulation models (Yang et al. 2009). 

Optimization Module: On the other hand, the methods used for the decision optimization can be 

applied to a verity of interrelated systems regardless of their specific characteristics. These models 

can accept inputs from a wide range of application-specific models for evaluating the interrelated 
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alternatives. Some of the methods explored in the literature include: Swapping Algorithms 

(Martinelli 1993), Branch and Bound (Wei and Schonfeld 1994 ), Simultaneous Perturbation 

Stochastic Approximation (Ting and Schonfeld 1998), Lagrangian Relaxation (Tao and Schonfeld 

2005), Genetic Algorithms (Jong and Schonfeld 2001, Wang and Schonfeld 2008), Island Models 

(Tao and Schonfeld 2006, Tao and Schonfeld 2007), Simulated Annealing (Yang et al. 2009, 

Shayanfar et al. 2016) and Tabu Search (Shayanfar et al. 2016). 

It should be noted that the methods used for evaluating systems with interrelated projects could be 

largely separated (i.e., be designed to be modularly independent) from the methods for optimizing 

the selection, sequencing and scheduling of such projects. In other words, various system 

evaluation methods could be mixed and matched with various optimization methods. 

1.5 Dissertation Organization 
 

To achieve the above research purposes, this dissertation will consist of the following eight 

chapters. The focus of each chapter is detailed below. 

Chapter 1, “Introduction,” presents background information, problem statement, research 

objective and the research approach used in this research. 

Chapter 2, “Literature Review,” focuses on reviewing research completed in recent years that is 

relevant to the topic of this dissertation. Particularly, recent literature on project selecting and 

scheduling techniques, evaluation methods for project interrelations, and optimization models are 

comprehensively review. Based on the review results, a summary and the potential contributions 

of this research work are addressed. 
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Chapter 3, “Methodology,” describes the general framework proposed by this research. The 

problem formulation including the objective function and constraints are described in this chapter. 

Also, the “Evaluation” and “Optimization” models developed in this study are presented in detail. 

Note that two separate Evaluation models including Traffic Assignment and Cell Transmission 

model were developed and tested in this study. The application results of each model are presented 

separately in two chapters. 

Chapter 4, “Case Study Networks,” provides detailed information including maps, demand table, 

network characteristics, and interrelation example for two case studies implemented in the study. 

Specifically, the Sioux Falls and Anaheim network are described in this chapter. 

In Chapter 5, “Traffic Assignment Application and Results,” a traffic assignment model is used to 

evaluate improvement alternatives. The algorithm identifies potential locations within a network 

that needs improvements and considers multiple improvement alternatives at each location. A 

probabilistic procedure is used to select the optimal improvement type for the candidate locations. 

This approach is applied in two case study networks for which the improvement projects include 

adding new links and adding lanes to existing links. At the end a statistical test is presented to test 

the goodness of the optimized result. 

Chapter 6, “Cell Transmission Model,” presents a background on Cell Transmission mode, and 

describes the formulation, and network representation of this model. 

Chapter 7, “CTM Application and Results,” replaces the Traffic Assignment in Chapter 5 with a 

CTM and applied the modified model to a similar case study in Chapter 5. The use of CTM 

significantly improves the model by capturing many important traffic phenomena such as queue 
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build-up and dissipation, and backward propagation of congestion waves which allows to model 

intersections and consider intersection improvements. 

The conclusions, and recommendations for application and future studies will be summarized in 

Chapter 8. 
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Chapter 2 Literature Review 
 

2.1 Project Selecting and Scheduling  

Decisions about planning and scheduling of projects are two major aspects of any business and 

engineering applications. In practice, decision makers have to allocate limited resources to 

multiple candidate projects (which is called resource assignment, or project planning/selection) 

and decide the starting/completing times for each selected project over a time horizon (called 

scheduling), in order to optimize some performance metric (e.g., maximize Net Present Value). 

Resource assignment and project scheduling jointly are challenging from a computational 

perspective (Lombardi and Milano 2012). This problem lies within the class of resource-

constrained project scheduling problem, which is a well-known problem in operations research 

(Hartmann and Briskorn, 2010). 

Consider the binary Knapsack Problem as an example of project selection. The objective is to 

maximize the total value of items in the knapsack  

{0,1}
max
i

i i
x

i

v x

  (2) 

subject to a capacity constraint 

i i

i

w x W , (3) 

where iv  and iw  are value and cost of item i , respectively, and W is the maximum budget. 

Implicitly, this formulation assumes that projects can be evaluated independently, i.e., the 

objective is additive. The variant of the knapsack problem with one type of resource can be solved 
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optimally by ranking items according to their value-cost ratio, /i iv w , and selecting them 

sequentially until the budget constraint is violated. This is similar to the practice of prioritizing 

candidate projects according to their benefit-cost ratios (BCR), which is commonly applied in 

practice. However, such a strategy fails when a project’s benefit is affected by the acceptance or 

rejection of another project, i.e., when they are interdependent (Martinelli 1993).  

In general, project prioritization is an important problem in transportation policy as projects require 

significant investments which are usually irreversible. Therefore, many studies in the literature 

address the problem of project prioritization under uncertainty. Sadeghi and Moghaddam (2016) 

propose a Data Envelopment Analysis (DEA) method to prioritize safety retrofit projects, in which 

uncertainty is considered in benefit and cost estimations. Xu et al. (2017) propose two types of 

indices, namely (i) spatial connectivity and accessibility, (ii) urban land development to prioritize 

future funding and construction of the planned high-speed rail corridors of China. Quadros et al. 

(2015) apply the Analytic Hierarchy Process (AHP) to identify the most relevant criterion in 

prioritizing the decisions of transportation infrastructure investments in Brazil.  Machado-León et 

al. (2017) propose a methodological approach to analyze rail services performance in Algiers and 

identify the aspects that should be prioritized for improvements by combining an Importance-

Performance Analysis and a decision tree model. 

This research is in line with such studies to address the problem of project prioritization. However, 

it transcends the conventional prioritization practices by considering the timing of project 

implementation and demand uncertainties and focusing on the treatment of interrelations among 

projects in a network setting. 

 



12 

 

2.2 Evaluation of Project Interrelations 

2.2.1 Dependence Matrix 

One of the first works in the literature that considered interdependent alternatives was that of 

Markowitz (1952) on portfolio management. Since then more recent studies have addressed the 

problem of portfolio selection among interdependent projects (Cruz et al., 2014; Rebiasz et al., 

2014; Li et al., 2016).  In this study, a linear program was extended into a quadratic program with 

the inclusion of variances of returns for different stocks. The objective was to minimize the sum 

of purchase cost and interrelated risks 

0

1
max

2

T T

x
c x x Qx


+  (4) 

subject to minimum return requirement 

Ax b , (5) 

where Q  denotes the variance/covariance matrix and b  is the minimum return.  

The consideration of project interdependence significantly complicates the model’s structure 

because the combined costs and benefits for a set of projects are no longer equal to the sum of the 

costs and benefits, respectively, of individual projects. The dependence matrix, such as the Q  

matrix in the above formulation, is convenient in modeling interdependence between choices. 

This method and its variants can also be found in more recent works. Dickinson et al. 

(2001) developed a model to optimize a portfolio of development improvement projects for the 

Boeing Company. The authors used a dependence matrix to quantify the interdependencies among 

projects. Then a non-linear, integer program model was developed to optimize the project 

selection. Sandhu (2006) introduced a dependency structure matrix that captured the project 
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logistic interdependencies. Durango-Cohen and Sarutipand (2007) formulated a quadratic 

programming for optimizing maintenance and repair (M&R) policies for transportation 

infrastructure systems. The quadratic objective of their work included the pairwise economic 

dependencies capturing the costs and benefits of improving adjacent facilities. Dueñas-Osorio et.al 

(2007) studied the interdependence response of network systems to internal or external disruptions. 

They established interdependencies among network elements based on geographical proximity. 

Their work indicated that responses that are detrimental to networks are larger when 

interdependencies are considered after disturbances. Bhattacharyya et al. (2011) also considered 

n-way interdependencies in the Research and Development (R&D) project portfolio selection 

problem. Tofighian and Naderi (2015) developed a mixed integer linear program to formulate the 

selection and scheduling of projects maximizing total expected benefits. They also proposed an 

ant colony algorithm to optimize the objective function. This paper defined the interdependencies 

among projects with a simple dependence matrix, which is insufficient in capturing the full 

interrelations among projects in transportation networks and various other complex systems.  

Two main issues arise from using a dependence matrix. First, as Disatnik and Benninga (2007) 

argue, the estimation and manipulation of a dependence matrix becomes computationally difficult 

as the project space grows. Second, the pairwise and n-way dependencies do not completely 

represent the complex interrelations among alternatives. Instead of a dependence matrix, complete 

system models, such as queueing approximations (Jong and Schonfeld, 2001), equilibrium 

assignment (Tao and Schonfeld, 2005), microsimulation (Wang and Schonfeld, 2008) and neural 

networks (Bagloee and Tavana, 2012), are better suited for modeling interrelations. 



14 

 

2.2.2 Complete System Models 

Instead of a dependence matrix, complete system models, such as queueing approximations, 

equilibrium assignment, microsimulation, and neural networks are better suited for modeling 

interrelations.  

In some studies, the objective function was evaluated with approximations of simulation including 

queuing models (Dai and Schonfeld 1998), queuing networks (Zhu et al. 1999), artificial neural 

networks (Wei and Schonfeld 1994), traffic assignment models (Tao and Schonfeld 2005, Tao and 

Schonfeld 2006, Tao and Schonfeld 2007, Shayanfar et al. 2016) and hybrid combinations of 

analytic queuing and microsimulation models (Yang et al. 2009). By 2005 it became 

computationally feasible to optimize the U.S. waterway network using microsimulation directly, 

without approximations, for long-term planning problems (Wang and Schonfeld 2005). These 

models are generally applicable for modeling truly complex systems and relations among 

infrastructure developments. The remainder of this section overviews some recent studies applying 

these models. 

Queuing Approximation 

Jong and Schonfeld (2001) developed a genetic algorithm and a simple approximation to solve 

project investment planning problem. They showed that GAs are very effective at searching for 

minimum cost highway alignments.  

 

Artificial Neural Network 

Wei and Schonfeld (1993) developed an algorithm which combined artificial neural network and 

a branch and bound algorithm to find the optimal or near optimal solution for scheduling 

interdependent projects. They proposed a multi-period network design model for selecting the best 
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combination of improvement projects and schedules. Then they utilized the neural network 

approach to estimate total travel times corresponding to different project selection and scheduling. 

They applied their model to Calvert County highway system in southern Maryland to check the 

performance of their model. Bagloee and Tavana (2012) formulated the prioritization problem as 

a Traveling Salesman Problem (TSP) and incorporated a Neural Network (NN) to assess project 

interdependence. A heuristic algorithm with hybrid components was then used to search for the 

longest (most beneficial) path in the NN as a solution to the TSP.  

Equilibrium Assignment Model 

Tao and Schonfeld (2005) developed a Lagrangian heuristic for selecting interdependent projects 

under cost uncertainty. They developed a genetic algorithm for solving the Lagrangian problem 

and applied equilibrium assignment to evaluate the objective function. 

Simulation 

Wang and Schonfeld (2005) developed a waterway simulation model for evaluating lock 

operations over long analysis periods and then solved the problem of selecting, sequencing and 

scheduling interdependent projects with a genetic algorithm. Martinelli and Schonfeld (1995) 

developed an approximation to microsimulation model to evaluate lock improvements with 

consideration of their interrelation. 

2.3 Project Selecting and Scheduling Optimization 

2.3.1 Mathematical Programming 

Studies in the existing literature mainly deal with the selection and scheduling of projects by 

assuming independence among them. Two approaches are commonly used for selecting and 

sequencing of independent projects. These are integer programming (Weingartner 1966; Cochran 
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et al. 1971; Clark et al. 1984) and dynamic programming (Weingartner 1966; Nemhauser and 

Ullman 1969; Morin and Esogbue 1971; Erlenkotter 1973; Morin 1974). In a more recent effort, 

Li et.al (2013) proposed a hypergraph knapsack model to maximize the overall benefits for a sub 

collection of interdependent projects. For this purpose, a multi-commodity minimum cost network 

(MMCN) was developed to obtain traffic volume and speed to estimate benefits using a life cycle 

cost analysis method. Mollanejad and Zhang (2014) attempts to prioritize road improvements by 

accounting for equity issues into the interurban road network design problem. They did this by 

minimizing the total inaccessibility in the region by solving a mixed integer program. Chen et.al 

(2015) reformulated the mixed network design problem (MNDP) to simultaneously find both 

optimal capacity expansions of existing links and new link additions. The upper level aimed to 

minimize the network cost in terms of the average travel time via the expansion of existing links 

and the addition of new candidate links. The lower level was a dynamic user-optimal condition 

that could be formulated as a variational inequality problem. A surrogate based optimization 

framework was then proposed to solve the MNDP. 

The drawbacks of these approaches include the difficulty of capturing the interrelations among 

projects and their inefficiency or even the infeasibility for solving large problems (Jong and 

Schonfeld 2001). The objective function for problems such as prioritizing interrelated projects has 

a surface that is “noisy” (i.e. containing numerous local optima) and non-convex.  Moreover, as 

the number of candidate projects increases, the problem’s solution may soon exceed the 

capabilities of conventional mathematical optimization methods. Therefore, mathematical 

programming such as gradient-based search, integer programming and dynamic programming are 

incapable of solving the interrelated project-investment planning problems. 

 



17 

 

2.3.2 Heuristics/ Meta-Heuristics 

As mentioned earlier, mathematical programming such as gradient-based search, integer 

programming and dynamic programming are not suitable for solving the interrelated project-

investment planning problems. As a result, Heuristics and meta-heuristics, especially population-

based methods such as GA, have gained popularity for solving problems without analytical 

objective functions because they can be relatively easily and efficiently distributed among multiple 

processors (Balamurugan, 2006; Haq and Kennan, 2006). Also, objectives evaluated from 

computer simulations, which are usually analytically intractable (i.e., discontinuous and non-

differentiable) (Koziel et al. 2011), can easily be embedded directly into the heuristic optimization 

loop. The following are some of the recent studies that employed heuristic methods to solve the 

selecting and scheduling problem. 

Bouleimen and Lecocq (2002) developed a simulated annealing algorithm for the resource 

constrained project scheduling problem. The objective of this model was to minimize total project 

duration. A new design was substituted the conventional SA search scheme which considered the 

specificity of the solution space of project scheduling problems. Tao and Schonfeld (2005) 

developed a lagrangian heuristic to solve the selection of interdependent projects under cost 

uncertainty. In this paper a genetic algorithm was developed to solve the lagrangian problem, and 

an equilibrium assignment was applied to evaluate the objective function. Mika et.al (2005) 

proposed two local search meta-heuristics, simulated annealing and tabu search to solve the multi-

mode resource constrained project scheduling problem with discounted cash flows. The objective 

was set to maximize the net present value of all cash flows. Four payment models were considered 

in this study: lump-sum payment at the completion of the project, payments at activity completion 

times, payments at equal time intervals, and progress payments. They evaluated their model on a 
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set of instance switches that were based on some standard test problems constructed by the ProGen 

project generator.  Tao and Schonfeld (2007) developed variation of traditional genetic algorithms 

called island models to optimize the selection and scheduling of interrelated projects under 

resource constraints. Szimba and Rothengatter (2012) extended the classical benefit-cost analysis 

by integrating the occurrence of interdependence among the projects within an investment 

package. They addressed the interdependence problem by introducing a heuristic method to solve 

the large-scale problem with numerous projects. In this approach, the number of projects and their 

interrelations are reduced step by step in order to reduce the number of interdependence cases. 

2.4 Summary 

The above literature includes studies which employed both analytic methods and simulation 

models in various applications to solve the planning and prioritizing problem. Due to complex and 

combinatorial nature of the interrelated alternatives, heuristic algorithm was adopted as the 

dominant problem-solving approach. Table 2.4-1 provides a non-exhaustive summary of recent 

studies of the planning and scheduling of interrelated projects.  

Table 2.4-1 Summary of selected relevant studies since 2000 

Study Objective Optimization  Evaluation  Interrelation Application  

Lee and Kim 

2000 

Multi-

Criteria 

Goal program Analytic 

network 

process 

Pairwise 

comparisons 

 

Information 

systems 

Jong and 

Schonfeld 2001 

Total 

system 

delay 

Genetic 

algorithm 

Analytical  Queueing 

approximation 

Inland 

waterways 
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Dickinson et al. 

2001 

Net present 

worth 

Nonlinear, 

integer 

program 

Analytical Dependency 

Matrix 

Technology 

portfolio 

management 

Tao and 

Schonfeld 2005 

Net benefit Lagrangian 

Relaxation 

Heuristic 

Simulation Equilibrium 

assignment 

model 

Highway 

network 

Wang and 

Schonfeld 2005 

User 

benefit 

Genetic 

algorithm 

Simulation Marginal cost 

increments 

Inland 

waterways 

Tao and 

Schonfeld 2006 

User 

benefit 

Island model Simulation Equilibrium 

assignment 

model 

Highway 

network 

Durango and 

Sarutipand 2007  

Total cost Quadratic 

program 

Analytical Pairwise 

dependencies  

Generic 

transportation 

network 

Wang et al. 2009 Net 

benefits 

Simulation-

based 

optimization 

Simulation Simulation Waterway 

network 

maintenance 

Bhattachary-ya 

et al. 2011 

Multi-

objective 

Genetic 

algorithm 

Analytical Dependency 

matrix 

R&D projects 

Bagloee and 

Tavana 2012 

Travel 

time 

Hybrid meta-

heuristics 

Analytical Neural 

network 

Road projects 

Li et al. 2013 Total 

benefits 

Hypergraph 

knapsack  

Simulation Multicommo-

dity minimum 

cost network 

Tollway 

investments 
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Vilkkumaa et.al. 

2014 

Value of 

portfolio 

Bayesian 

estimation 

Analytical Bayes 

estimates 

Generic 

projects 

 

After reviewing the literature, the main research gap in this area can be summarized as the 

following: 

1) Although there are a number of application specific studies to deal with project 

interrelations, the literature lacks general methods for solving the selecting and scheduling 

of interrelated alternatives in a wide range of applications. 

2) Estimating and using the marginal pairwise or n-way interrelations is rarely adequate. More 

complete system models, especially microscopic and mesoscopic models, are desirable for 

evaluating systems with project interrelations.  

3) While uncertainties have been dealt mostly through sensitivity analyses, further efforts are 

justified to incorporate more sophisticated approaches for optimizing systems under 

different kinds of uncertainties. 

 

2.5 Expected Contributions 

 

Accounting the above observations, this research aims to contribute to the literature as the 

following: 
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1) This study proposes a general and modular framework for planning and scheduling 

interrelated infrastructure projects under uncertainties. The method should be general 

enough to address special problem characteristics and emerging issues in a wide range of 

applications, such as transportation networks, air transport systems, inland waterways, and 

areas beyond transportation. 

2) Along with a general framework, we apply the proposed framework on two special case of 

road network projects and propose application-specific enhancements to this problem. In 

this sense, first a traffic assignment model is combined effectively with a GA for selecting 

and scheduling projects while capturing more interactions among projects (i.e. beyond 

previously considered pairwise interactions) and captures realistic features such as 

uncertainties in transportation systems.  

3) In addition to the traffic assignment model which is a relatively simple method good for 

algorithm testing purposes, this study aims to use a more complex evaluation model to 

evaluate the objective function. For this purpose, I propose to use a Cell Transmission 

Model (CTM) which can be incorporated with the GA.  

4) This study accounts for uncertainties in some important parameters such as: demand, 

project costs, and budget flow. For this purpose, a deterministic objective function is 

introduced and then is transformed into a stochastic one that combines different plausible 

scenarios.  

5) the model is further developed to account for vehicle operation and safety costs. For this 

purpose, appropriate models are incorporated and added to the objective function to 

estimate the cost of fuel, tire, maintenance and repair along with the cost of crashes in the 

system. 
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6) In this study the budget constraint is formulated in a way to include possible internal 

funding from fuel taxes. In this case, throughout the analysis period, fuel taxes collected 

from users are added to an external budget in determining the overall investment budget. 

Additionally, this study proposes to add other constraints beyond budget including: 

construction time, precedence relations, and land availability. 

7) Many realistic characteristics, beyond previous studies are considered in this research 

including: 

a) A multi period analysis (including peak and off-peak periods) to account for daily 

demand fluctuations. 

b) Adding new links as well as expanding the capacities of existing links. 

c) Multiple alternatives per location and the ability to select the best improvement 

alternative at each location 

d) Exponential growth of demand over time during the planning horizon.  
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Chapter 3 Methodology 
 

3.1 General Framework 

As stated earlier, the aim of this study is to propose a general technical approach for planning and 

scheduling interrelated infrastructure projects under uncertainties. To ensure the generality of the 

approach, we need to incorporate modularity into the method by connecting the application-

specific evaluation component with the optimization component. In this sense, it is important to 

separate the evaluation from the decision optimization component and connect them through data 

exchange rather than structural integration. Figure 3.1-1 displays how the optimization module, in 

this case a GA can be combined with an application specific evaluation model. Note that in this 

framework the evaluation model feeds into the optimization loop and can be replaced with any 

suitable evaluation model for any type of projects. 
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Figure 3.1-1 Framework of Optimization Process 
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3.2 Problem Formulation 

The analysis in this paper focuses on (i) cost of travel time, (ii) vehicle operating cost, (iii) safety 

cost, and (iv) supplier cost. Therefore, the objective function is formulated to minimize the present 

value of total cost over planning horizon T bounded by some constraints. First, a deterministic and 

a stochastic objective function are introduced followed by the problem constraints including: 

budget flow, construction time, precedence relations, and land availability constraints. Next, 

detailed formulations are provided on how to estimate the cost components of the objective 

function including vehicle operating and safety costs. 

3.2.1 Deterministic Objective Function 

The mathematical formulation of the selection and scheduling problem can be quite complicated. 

One way to simplify the problem is to define decision variables as the completion time of each 

project. Let 𝑡𝑖 be the time at which project i is completed, and T be the planning horizon (e.g. 30 

years). Then, the set of 𝑡𝑖s will determine the resulting project selection, sequence and schedule 

(Jong and Schonfeld, 2001). Let 𝑥𝑖(𝑡) be a binary variable that shows if project i is finished by 

time t:  

 {
𝑥𝑖(𝑡) = 0   𝑖𝑓 𝑡 < 𝑡𝑖  

𝑥𝑖(𝑡) = 1   𝑖𝑓  𝑡 > 𝑡𝑖
 (6) 

 

 

The problem is then formulated as: 
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 𝑚𝑖𝑛 𝑍 =  ∑{
1

(1 + 𝑟)𝑗
(∑𝑤𝑖𝑗 ∗ 𝑣𝑡

𝑛𝑙

𝑖=1

+∑{𝐶𝑣𝑜𝑝(𝑖𝑗)

𝑛𝑙

𝑖=1

∗ 𝑉𝑀𝑇𝑖𝑗} + 𝑁𝑐𝑟(𝑗) ∗ 𝐶𝐶𝑟)}

𝑇

𝑗=1

+∑
𝑐𝑖𝑥𝑖(𝑡)

(1 + 𝑟)𝑡

𝑛𝑝

𝑖=1

 (7) 

Where: 

𝑤𝑖𝑗 = travel time over link i in year j 

𝑣𝑡 = value of time ($/hr) 

𝑛𝑙 = total number of links 

𝑉𝑀𝑇𝑖𝑗= vehicle miles traveled over link i in year j 

𝐶𝑣𝑜𝑝(𝑖𝑗)= vehicle operating cost over link i in year j ($/veh.mi) 

𝑐𝑖 = cost of project i 

𝑁𝑐𝑟(𝑗)= predicted number of crashes in year j 

𝐶𝑐𝑟= crash cost for one predicted crash 

𝑛𝑝= number of projects 

r= interest rate 

 

The above formulation minimizes the sum of total user and supplier cost subject to a budget flow 

constraint, over a specified planning horizon. Note that project interrelations are not explicitly 

included in the objective function. As mentioned previously, the proposed method considers not 

only pairwise or slightly higher degrees of interrelation among alternatives, but all possible 

interactions among all alternatives throughout an entire network. The complete interrelations are 

captured by applying a full network model after each project implementation, which cannot be 

explicitly expressed in the objective function.  In this setting, the user cost consists of travel time, 

vehicle operating, and safety costs while the supplier cost is the present value of implementation 

costs for all projects. This formulation improves the original form proposed by Jong and Schonfeld 

(2001) by including vehicle operating and safety costs as well as the project costs in the objective 

function. It is necessary to include project costs in the objective function since not all selected 
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projects are guaranteed to fit in the budget and be implemented within the analysis period. In fact, 

some projects may be discarded from the sequence as they may become unjustified during the 

analysis. Another improvement to previous studies is to account for the possibility that candidate 

projects may become economically justified or unjustified after the implementation of other 

projects. This means that the set of candidate projects is not fixed during the analysis and is 

constantly updated. It is important to consider this possibility because project interrelations and 

effects of completing earlier projects affect the cost savings of future projects. 

3.2.2 Stochastic Formulation 

In long-term planning, decision makers are often confronted with the problem of uncertain 

information. In transportation systems some of the major sources of uncertainties include: future 

demand, project cost and available budget. 

 

If we consider S plausible demand scenarios, then the stochastic formulation can be re-written as: 

 

𝑚𝑖𝑛 𝑍 =  ∑𝑃𝑠

{
  
 

  
 
∑{

1

(1 + 𝑟)𝑗
(∑𝑤𝑖𝑗𝑠 ∗ 𝑣𝑡

𝑛𝑙

𝑖=1

+∑{𝐶𝑣𝑜𝑝𝑠(𝑖𝑗)

𝑛𝑙

𝑖=1

∗ 𝑉𝑀𝑇𝑖𝑗𝑠} + 𝑁𝑐𝑟𝑠(𝑗) ∗ 𝐶𝐶𝑟)}

𝑇

𝑗=1

+∑
𝑐𝑖𝑥𝑖(𝑡)

(1 + 𝑟)𝑡

𝑛𝑝

𝑖=1 }
  
 

  
 

𝑆

𝑠=1

           (8) 

 

In the above formulation S represents the set of scenarios, 𝑃𝑠 denotes the probability of each 

scenario s, and the other parameters are the same as specified for Equation 7. The above 

formulation can be adapted to consider more scenarios regarding demand uncertainties, as in Sun 

and Schonfeld (2015). 
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3.2.3 Budget Constraint 

Jong and Schonfeld (2001) apply a budget constraint to ensure that at any time t, 0 ≤ t ≤ 𝑇, the 

cumulative expenditure on projects does not exceed the cumulative budget which is funded from 

“external” sources. In addition to their constraint, this paper considers an “internal” budget source 

for funding future projects. Within the analysis period, the “internal” fuel taxes collected from 

users are added to an external budget in determining the overall investment budget that is available. 

Other revenues collected from users can easily be added to the internal budget formulation. The 

external budget is assumed to “flow” uniformly over time in this analysis, but non-uniform budget 

flows can also be easily specified. The internal budget assumption is realistic, as fuel taxes and toll 

collections contribute substantially to highway improvement budgets.  The following equation 

specifies how the internal budget is calculated: 

 

 𝑏(𝑡𝑖)𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑉𝑀𝑇(𝑡𝑖−1) ∗ 𝑓𝑟 ∗ 𝑓𝑐 ∗ 𝑓𝑡 (9) 

 

In the above formulation𝑓𝑟, 𝑓𝑐, 𝑓𝑡  denote fuel consumption rate (gal/vehicle.mile), fuel cost ($/gal), 

and gas tax rate (percentage of tax collected from dollar spent on gas) respectively. This 

formulation shows that the fuel taxes collected from period 𝑡𝑖−1 contribute to the budget available 

in period 𝑡𝑖. More specifically, 𝑉𝑀𝑇(𝑡𝑖−1) presents the vehicle miles travelled during the period 

in which project 𝑖 − 1 is completed. During this time, the fuel taxes collected from users are 

calculated and added to the budget for the next project. 

Assuming that 𝑛𝑝 is the number of candidate projects, for 0 ≤ 𝑡 ≤ 𝑇 the budget flow constraint is 

formulated as: 
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 ∑𝑐𝑖𝑥𝑖(𝑡) ≤ ∫ 𝑏(𝑡)𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑏(𝑡)𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑡 
𝑡

0

𝑛𝑝

𝑖=1

 (10) 

 

The left-hand side of the above formulation displays the total cost expended by time t, which 

should not exceed the cumulative budget available at that time.  

3.2.4 Project Schedule 

 

It is assumed here that projects should be funded sequentially rather than concurrently, with each 

successive project completed as soon as the cumulative budget permits, so that the cost savings 

from each completed project should start flowing as soon as possible. This in turn assumes that 

the cumulative budget constraint is binding, i.e. insufficient for all the available projects whose 

benefits exceed their costs. This situation generally prevails for transportation projects throughout 

the world. 

It should be noted that since the cumulative budget constraint is assumed to be binding, the optimal 

completion time for all projects is uniquely determined for all projects in a given sequence. Thus, 

the optimized schedule (in continuous time rather than discrete time periods) is uniquely 

determined by the optimized sequence in conjunction with the cumulative budget.  
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Figure 3.2-1 Project Completion Time Determined by Budget Flow and Project Costs 

 

For any sequence, projects which are not funded within the specified analysis period (e.g. 20 years 

in this paper’s numerical example), are effectively rejected. Construction periods that exceed the 

budget accumulation period of the respective project, and hence overlap with construction periods 

for other projects, can be considered without changing this formulation by assuming virtual 

borrowing. However, some modifications to the above formulation would be needed if resources 

other than budgets (e.g. construction equipment) were critical or if additional budget constraints 

(e.g. by region or type of projects) were applicable. 

3.2.5 Vehicle Operating Cost 

The cost of operating a vehicle on a given section is a function of costs for fuel, tires, and 

maintenance and repair.  These costs are estimated as a function of average speed. Fuel 

consumption rate, tire wear rate, and maintenance and repair rate are formulated, respectively, in 

Equations 11 to 13 (HERS-ST technical report, 2005): 
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𝑅𝑓𝑐 = 88.556 − 3.384 ∗ 𝑆̅ + 1.7375 ∗ G + 0.053161 ∗ 𝑆̅

2 + 0.18052 ∗ 𝐺2 +

0.076354 ∗ 𝑆̅ ∗ G  

(11) 

 𝑅𝑡𝑤 =  0.229 + 2.65 ∗ 10
−6 ∗ 𝑆̅3 − 0.0403 ∗  ln (𝑆̅) +  0.076354 ∗ 𝑆̅ ∗ G (12) 

 𝑅𝑚𝑟 =  48.4 + 0.00867 ∗ 𝑆̅
2 + 0.0577 ∗ 𝑆̅ ∗ G (13) 

where 

𝑅𝑓𝑐 = fuel consumption rate (gallons/1000 miles) 

𝑅𝑡𝑤 = tire wear rate (% worn/1000 miles) 

𝑅𝑚𝑟 = maintenance and repair rate (% avg. cost/1000 miles) 

𝑆̅ = average speed (miles/hour) 

G = grade (%) 

Figure 3.2-2, Figure 3.2-3, and Figure 3.2-4 show how fuel consumption rate, tire wear and 

maintenance and repair rate change with speed. 

 

Figure 3.2-2 Fuel Consumption Rate V.S. Speed 
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Figure 3.2-3 Tire Wear Rate V.S. Speed 

 

 

Figure 3.2-4 Maintenance and Repair Cost Rate V.S. Speed 
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The operating cost per vehicle-mile (𝐶𝑣𝑜𝑝) is estimated as the sum of the above cost components 

representing costs for fuel, tires, and maintenance and repair. The overall equation for combining 

these components is: 

 𝐶𝑣𝑜𝑝 = (𝑅𝑓𝑐 × 𝐶𝑓 + 0.01 × 𝑅𝑡𝑤 × 𝐶𝑡 + 0.01 × 𝑅𝑚𝑟 × 𝐶𝑚𝑟) ∗ 0.001 (14) 

 

where 

𝐶𝑣𝑜𝑝= operating cost ($/veh. mile) 

𝐶𝑓 = unit cost of fuel ($/gallon) 

𝐶𝑡 = unit cost of tire ($/tire) 

𝐶𝑚𝑟= unit cost of maintenance and repair 

 

𝐶𝑓, 𝐶𝑡, 𝐶𝑚𝑟 are, respectively, 2.1 ($/gallon), 105.8 ($/tire) and 151.1 ($/1000 mi). Prices are 

adjusted to 2015 dollars with the latest Consumer Price Index (CPI) provided by the Bureau of 

Labor Statistics. 

 

3.2.6 Safety Cost 

According to Highway Safety Manual (HSM, 2010) crash prediction models for two-lane and 

multi-lane roadway segments should include two analytical components: safety performance 

functions (SPFs) or baseline models and crash modification factors (CMFs). There are also 

calibration factors that adjust the predictions to a particular jurisdiction or geographical area. Here, 

we present two separate safety performance functions for two-lane and multi-lane roadway 
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segments. The general form of the crash prediction models for roadway segments is shown in 

Equation 15. Equations 16 and 17 present the safety performance functions for two-lane and multi-

lane roadway segments. 

 
𝑁𝑐𝑟 = 𝐶𝑟 ∗ 𝑁𝑐𝑟−𝑠𝑝𝑓 ∗ (𝐶𝑀𝐹1 ∗ … ∗ 𝐶𝑀𝐹12) 

(15) 

 
𝑁𝑐𝑟2−𝑠𝑝𝑓 = AADT ∗ L ∗ 365 ∗ 10

−6 ∗ 𝑒−0.312  
(16) 

 
𝑁𝑐𝑟𝑚−𝑠𝑝𝑓 = exp [−9.653 + 1.176 ∗ ln(𝐴𝐴𝐷𝑇) + ln(𝐿)]  

(17) 

where: 

𝑁𝑐𝑟= predicted number of crashes for a roadway segment per year. 

𝑁𝑐𝑟2−𝑠𝑝𝑓= predicted number of crashes for two-lane roadway segments per year for nominal or 

baseline conditions;  

𝑁𝑐𝑟𝑚−𝑠𝑝𝑓= predicted number of crashes for multi-lane roadway segments per year for nominal or 

baseline conditions;  

𝐶𝑟 = calibration factor for roadway segments developed for use for a particular jurisdiction or 

geographical area. 

𝐶𝑀𝐹𝑛 = crash modification factors for roadway segments. 

AADT = average annual daily traffic (veh/day) on roadway segment;  

L = length of roadway segment (mi). 

 

In this model there are twelve CMFs which include CMF1-lane width, CMF2-shoulder width and 

type, CMF3-horizontal curvature, CMF4-super elevation deficiency, CMF5- grade, CMF6-

driveway density, CMF7-centerline rumble strip, CMF8-passing lanes, CMF9-two-way left-turn 
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lane, CMF10-roadside hazard rating, CMF11-lighting, and CMF12-automated speed enforcement. 

In this study, the values of CMF2,..,CMF12 are 1.0, assuming their conditions remain the same 

before and after improvements. The only changing condition is lane width. Therefore, the 

algorithm estimates CMF1 (lane width) for each segment from the following equation: 

 

 𝐶𝑀𝐹1 = (𝐶𝑀𝐹𝑟𝑎 − 1) ∗ 𝑃𝑟𝑎 + 1 (18) 

where: 

𝐶𝑀𝐹1 = crash modification factor for the effect of lane width on total crashes. 

𝐶𝑀𝐹𝑟𝑎 = crash modification factor for related crashes (run-off-the-road, head-on, and sideswipe) 

calculated from Table 3.2-1.  

𝑃𝑟𝑎 = proportion of total crashes constituted by related crashes (with 0.574 as the default value). 

Table 3.2-1 Values of CMF1 for Lane Width on Roadway Segments (HSM, Table 10-8) 

Lane width (ft) ADT<400 (veh/day) ADT =400 to 2000 (veh/day) ADT>2000 (veh/day) 

9 1.05 1.05+0.000281*(ADT-400) 1.50 

10 1.02 1.02+0.000175*(ADT-400) 1.30 

11 1.01 1.01+0.000025*(ADT-400) 1.05 

12 1.00 1.00 1.00 

 

From Table 7-4 HSM (2010) (Societal Crash Costs by Severity) and Table 10-3 HSM (2010) 

(Default Distribution for Crash Severity Level), it is assumed that 32.1% of total crashes are “fatal 

and injury” (FI) and 67.9% are “property damage only” (PDO). Therefore, cost for one predicted 
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crash (𝐶𝑜𝑠𝑡𝐶𝑟) would be calculated as: 0.321*172,438 ($/FI crash) + 0.679*8,066 ($/PDO crash) 

= $60,830 / Crash. All costs are adjusted to 2015 dollars using an inflation factor from the latest 

Consumer Price Index (CPI) provided by the Bureau of Labor Statistics. 

3.3 Design of Improvement Alternatives 

The algorithm presented in this paper has the capability to consider multiple improvements over 

time at the same location as well as improvements throughout a network. These improvements 

include widening existing narrow lanes (from 10 ft. to 12 ft.), adding one or multiple narrow lanes 

(10 ft. wide) and adding one or multiple wide lanes (12 ft. wide). The alternatives considered for 

each link depend on the existing link characteristics, and are symmetric, i.e. the same for both 

directions of a link. According to the Highway Capacity Manual (HCM, 2010), lane widths under 

12 ft. reduce travel speed, and thus also reduce operational capacity. In this case, it is assumed that 

the narrow and wide lanes are, respectively, 10ft. and12 ft. wide. According to HCM (2010), 

widening lanes from 10 ft. to 12 ft. would increase the capacity by 15%. The following list shows 

the set of improvement alternatives at each location: 

A. If the existing link has narrow lanes: 

1. Widen the existing lanes. 

2. Add one narrow lane. 

3. Widen existing lanes and add one wide lane. 
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B. If the existing link has wide lanes: 

1. Add enough width for two narrow lanes. (In this case n wide lanes are transformed 

to n+1 narrow lanes.) 

2. Add one wide lane. 

 

C. If the there are no existing lanes (new development): 

1. Add one narrow lane. 

2. Add one wide lane. 
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3. Add two wide lanes. 

 

For each case A, B and C the potential improvements are listed in increasing order of project costs. 

In this case the algorithm first evaluates the characteristics of each location in terms of existing 

narrow/wide lanes, and whether new lanes can be added. (In some locations new lanes cannot be 

added due to land availability constraints.) Then, based on the current condition, the above set of 

improvements are considered at each location. 

Now there are two problems to be resolved. First, which links (locations) should be selected for 

improvement and in what sequence and when should those links be improved? Second, at each 

location, which alternative should be selected and implemented? The first problem is solvable by 

using the combination of the GA and the traffic assignment model (or CTM in future). This method 

will be explained further below.  

One way to address the second problem is to compute the benefit-cost ratio of each alternative and 

select the best one at each location. This myopic search is quite prevalent in current practices. 

However, it disregards the interrelation among projects. A simple benefit-cost ratio in this case 
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cannot capture the impact of selected projects on future project implementations. In other words, 

due to interrelations among network links, the alternative with lower benefit-cost ratio may be 

more beneficial if considered in the long run (over the entire analysis period) or in conjunction 

with other alternatives (e.g. in a series of links that remove all bottlenecks rather than just shifting 

them). Therefore, it seems preferable to consider all possible improvements at each location over 

the entire analysis period and allow the algorithm to evaluate them over the planning horizon. This 

means that the GA will both optimize the selection and sequence of projects among links in the 

network as well as optimize the selection of alternatives at each location, all within one 

optimization process. This will result in more search steps and increased computation time. In 

order to tackle this issue and guide the search process, we assign selection probabilities to each 

alternative based on project costs. This means that under each case the less costly alternatives have 

a higher probability of being selected. This is reasonable since in practice it is more desirable to 

start with less costly improvements, and later move to more expensive ones. More specifically, the 

selection probability of improvements at each location is inversely proportional to their relative 

costs. If M improvements are considered at one location, the probability of selecting each 

improvement Pr(m) is: 

 Pr(𝑚) =  

1
𝐶𝑜𝑠𝑡(𝑚)⁄

∑ (1 𝐶𝑜𝑠𝑡(𝑖)⁄ )𝑀
𝑖=1

 (19) 
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3.4 Development of the Evaluation Model 

3.4.1 User Equilibrium Traffic Assignment 

Basic traffic assignment models are suitable methods for estimating the traffic-related attributes 

for unsaturated networks with steady flows. These attributes include travel time, traffic flow, speed 

and volume-capacity ratio over all the links in the network. This information is useful for 

estimating the cost savings resulting from capacity improvements and therefore supports a proper 

evaluation method for selection, sequencing and scheduling of projects. These cost savings mainly 

pertain to the travel time reduction for users and can be obtained by running the traffic assignment 

model at different stages of the Genetic Algorithm (GA) to compute  𝑤𝑖𝑗 and, hence, the objective 

function (Equation 7). 

This convex combination algorithm is used here to evaluate improvement projects upon their 

implementation in the network. The Frank–Wolfe algorithm is an iterative first-order optimization 

algorithm for constrained convex optimization mostly used for solving traffic assignment 

problems. In each iteration, the Frank–Wolfe algorithm considers a linear approximation of the 

objective function, and moves slightly towards a minimizer of this linear function. A direction 

search is performed by solving a linear approximation of the objective function at each iteration. 

At this stage a step size is determined which leads the search towards that direction. Finally, the 

algorithm terminates when convergence criteria are met, which in this case is based on the 

similarity of successive solutions. In this case, the traffic assignment algorithm provides a 

relatively simple model for evaluating improvement projects (i.e. adding new links or expanding 

existing links), and estimating link travel time, speed, and volume. 

Given a current travel time for link a, 𝑡𝑎
𝑛−1 the nth iteration of the convex combination algorithm 

is summarized as follows: 

https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/First-order_approximation
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Constrained_optimization
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Linear_approximation
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1. Initialization: all or nothing assignment assuming 𝑡𝑎
𝑛−1 which yields 𝑥𝑎

𝑛. 

2. Updating travel time: using a BPR function 𝑡𝑎
𝑛 = 𝑡𝑎(𝑥𝑎

𝑛) = 𝑡0(1 + 0.15 (
𝑣

𝑐
)4). 

3. Direction finding: all or nothing assignment considering 𝑡𝑎
𝑛 which yields auxiliary flow 𝑦𝑎

𝑛. 

4. Line search: find 𝛼 that solves  𝑚𝑖𝑛∑ ∫ 𝑡𝑎(𝜔)𝑑𝜔
𝑥𝑎
𝑛+𝛼(𝑦𝑎

𝑛−𝑥𝑎
𝑛)

0𝑎 . 

5. Move: set 𝑥𝑎
𝑛+1 = 𝑥𝑎

𝑛 + 𝛼𝑛(𝑦𝑎
𝑛- 𝑥𝑎

𝑛),  ∀𝛼. 

6. Convergence test: If a convergence criterion met, stop. Otherwise set n=n+1 and go to step 1. 

 

3.4.2 Cell Transmission Model 

 

Traffic assignment model is a relatively simple method which is good for algorithm testing 

purposes. However more complex methods are desirable for evaluating the objective function. In 

general, traffic operations models can be microscopic, mesoscopic or macroscopic. Microscopic 

simulations assume that the behavior of an individual vehicle is a function of the traffic conditions 

in its environment. Mesoscopic and macroscopic models assume that the aggregate behavior of 

sets of vehicles depends on the traffic conditions in their environment (Daganzo, 1994). More 

specifically, Mesoscopic models analyze transportation elements in small groups, within which 

elements are considered homogeneous while Macroscopic models deal with aggregated 

characteristics of transportation elements.  

This study proposes to employ a mesoscopic model rather than a microscopic model for two 

reasons:     
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1. Although microscopic simulations usually monitor each vehicle’s destination, their 

assumptions are difficult to validate because humans’ behavior in real traffic (not in 

contrived “car-following” experiments) is difficult to observe and measure. This is 

unfortunate because for a simulation to work the microscopic details have to be just right. 

2. At planning level, which is the case of this research, the networks are quite complex and 

the analysis is conducted over multiple years. Therefore, in most cases microsimulation is 

computationally expensive, and are more suitable to be used at operation level where 

networks are simpler, but more detail is required about the system performance. 

 

In the last decades, the cell transmission model (CTM) by Daganzo (1994, 1995) has been used to 

capture shockwave and link propagation properties. CTM is a mesoscopic traffic model in which 

the physical length of roadways is divided into a number of cells which takes into account the 

traffic properties such as flow and density and thereby captures link spillovers and shockwave 

propagation. Ziliaskopoulos (2000) used the CTM to develop a system optimal problem as a linear 

programming. Ukkusuri and Waller (2008) compared the dynamic user equilibrium and dynamic 

system optimal by linear formulation with different objective functions.  

This study aims to use a CTM model which is more complex than a traffic assignment model to 

evaluate the objective function. A Cell Transmission Model (CTM) has the ability to consider 

queuing in the network and capture saturation effects in congested traffic networks. This model 

will be explained in detail in chapter 4. 
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3.5 Development of the Optimization Model 

In this problem, the objective function cannot be explicitly expressed in terms of the decision 

variable 𝑡𝑖. Therefore, it is not guaranteed to possess the desirable properties such as convexity 

and differentiability. In other words, the gradients of the objective function cannot be directly 

derived with respect to their corresponding decision variables. This makes it difficult to evaluate 

the objective function. Consequently, gradient-based research methods, integer and linear 

programming are ineffective in this case. Dynamic programming is also inapplicable since its 

independence and additive assumptions are violated in this problem. Moreover, as the number of 

candidate projects increases, the scope of the problem exceeds the capabilities of conventional 

mathematical optimization methods. Consequently, heuristic methods have become popular for 

solving such problems (Tao and Schonfeld, 2007; Wang and Schonfeld, 2008; Bagloee and Asadi, 

2015). This study finds a GA very useful for effectively finding near-optimal solutions for such a 

large solution space and noisy objective function. The goal of this study is to employ the GA to 

solve the optimization model jointly with a traffic assignment model (and later with a Cell 

Transmission Model) which is used to evaluate the objective function. In other words, the GA 

optimizes the selection and sequence of projects while the traffic assignment model estimates 

variables such as travel time, speed and volume for evaluating the benefits and costs of projects. 

The final results determine which links should be selected for expansions and which new links 

should be added, in what order, and when they should be completed over the horizon period T.  

3.5.1 Genetic Algorithm 

 

A Genetic Algorithm (GA) is a metaheuristic method that mimics the process of natural selection 

and is a successful optimization method in a wide range of fields. GAs get a set of possible 
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solutions called the population. Each individual in the population is specified by a string of 

encoded genes which is called a chromosome. In this process some individuals are selected to 

reproduce off springs and since each individual has a probability of selection according to its 

fitness value, better (“fitter”) solutions have a higher opportunity of being selected. The selected 

solutions are then processed through a series of crossover and mutation operators which create 

offspring and change their attributes while maintaining the diversity of the population. Designing 

an appropriate GA can lead to an optimal or near optimal solution.  

3.5.2 Solution Representation 

 

The solutions are represented by the sequence of projects in which projects are implemented. In 

this setting, each project has to occur after all its predecessors and after all its successors. Figure 

3.5-1 represents an example of a feasible solution. 

 

Figure 3.5-1 Example of a Feasible Solution 

 

3.5.3 Initial population 

 

In general, solutions of GAs are mostly represented by binary digits and the initial population is 

generated randomly. In this research, each individual in a population is defined by a string 

including a sequence of numbers each corresponding to a specific project. In addition to random 
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order solutions, two other methods comprising greedy-order solutions and bottleneck-order 

solutions are used to create the initial population (Jong 2001). In greedy-Order solutions, projects 

are selected based on their benefit-cost ratio, regardless of their interrelations. In bottleneck-order 

solutions, projects are ranked based on the link volume-capacity ratio which describes the 

congestion severity over that link. This assumes that more congested links should have higher 

priority for being implemented. 

3.5.4 Fitness function and parent selection 

The fitness function is considered equivalent to the value of the objective function (NPV of total 

cost) and it is computed through the traffic assignment model. The selection probability is 

generally based on the value of the objective function in maximization problems. Therefore, in 

minimization problems the selection probability varies inversely with the objective function value. 

However, for preventing some undesirable properties of prematurity, a ranking method is applied 

instead (Wang 2001). In this method, the population is sorted with nonlinear ranking from the best 

to the worst. Then the selection probability of each chromosome is assigned according to its 

exponential ranking value considering the lowest fitness value equal to one (Michalewicz 1995). 

Let q be the selective pressure∈ [0,1], the selection probability is defined as follows: 

 

 𝑃𝑖 = 𝑐 ∗ 𝑞(1 − 𝑞)𝑖−1,       𝑐 = 1/[1 − (1 − 𝑞)𝑃𝑜𝑝𝑆𝑖𝑧𝑒] (20) 

 

Next, a roulette wheel approach is incorporated to select appropriate parents based on their 

selection probabilities (Michalewicz 1995). This process is conducted by spinning the roulette 

wheel pop_size times. Each time a random number r [0,1] is generated, then the 𝑖𝑡ℎ chromosome 

is selected such that 𝑤𝑖−1 < 𝑟 ≤  𝑤𝑖 , where 𝑤𝑖 is the cumulative probability for each chromosome.  
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3.5.5  Crossover and mutation 

 

Then a crossover and a mutation operator are applied to reproduce offspring and create the new 

population. Common methods of mutation and crossover are not very efficient for sequencing 

problems since they construct many infeasible solutions with repetitive project numbers in one 

sequence. To avoid producing such solutions, some other genetic operators are employed to solve 

the project sequencing problem. These crossover and mutation operators are described below 

adapted from Wang (2001): 

Crossover operators: 

1. Partial Mapped Crossover (PMX)  

Proposed by Goldberg and Lingle (1985), this two-point crossover exchanges the sequence of 

projects between two random positions in the selected parents. Then a mapping mechanism is 

established to correct for the possible duplication of projects by replacing the repeated projects 

by their corresponding projects. Figure 3.5-2 illustrates this process.  
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Figure 3.5-2 Example of Partial Mapped Crossover (PMX) 

 

2. Position Based Crossover (PBX) 

The PBX operator was proposed by Syswerda (1991). In this multi-point crossover, a set of 

random positions are selected from the first parent and copied to the same positions in the 

offspring. Then the projects that already exist in the offspring are deleted from the second 

parent and the rest are copied to the offspring with their original order. (Figure 3.5-3) 
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Figure 3.5-3 Example of Partial Based Crossover (PBX) 

 

 

3. Order Crossover (OX) 

This two-point crossover operator was introduced by Davis (1985). This operator works by 

selecting two random points in the first parent and copying the sequence in between those 

points to the new offspring, keeping their original positions. The copied projects are deleted 

from the second parent and the remaining projects are inserted to the vacant positions in the 

offspring while keeping their order. (Figure 3.5-4) 

 

Figure 3.5-4 Example of Order Crossover (OX) 

 

4. Order Based Crossover (OBX) 



49 

 

This operator also proposed by Syswerda (1991) is similar to PBX but imposes the selected 

positions in one parent on the corresponding projects in the second parent. (Figure 3.5-5) 

 

Figure 3.5-5 Example of Order Based Crossover (OBX) 

 

5. Edge Recombination Crossover (ERX) 

The edge recombination operator (ERX) is an operator that creates offspring exclusively by 

looking at the edges rather than the vertices. The idea here is to use as many existing edges, or 

node-connections, as possible to generate children. This operator is specifically useful when a 

genotype with non-repeating gene sequences is needed such as for the sequencing problem in 

this study. The method is introduced by Whitley et.al. (1989). 

For each project i, the edge list consists of all other neighbor projects connected to project i 

from both parents. The construction of the offspring begins by selecting a project with the 

lowest number of edges. In case projects have equal number of edges, one of them is randomly 

chosen. The selected project is then crossed out from all the other edge lists, and the procedure 

continues by selecting the next project with the smallest number of edges until all projects are 

selected. Figure 3.5-6 shows an example of the ERX operator. 

http://en.wikipedia.org/w/index.php?title=Darrell_Whitley&action=edit&redlink=1
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Figure 3.5-6 Example of Edge Recombination Crossover (ERX) 

 

Mutation operators: 

6. Insertion Mutation (IM) 

In this operator a project is randomly selected and is inserted to a random position. Other 

projects are shifted over while keeping their original sequence. (Figure 3.5-7 a) 

7. Inversion Mutation (VM) 
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This operator selects two random positions and inverts the subsequence between those two 

points. The other projects keep their positions. (Figure 3.5-7 b) 

 

8. Reciprocal Exchange Mutation (EM) 

The EM operator simply exchanges the position of two random projects while other projects 

keep their original order. (Figure 3.5-7 c) 

 

Figure 3.5-7 Example of Mutation Operators 

 

The reproducing process randomly selects one operator and applies it on the selected parents. 

3.5.6 Termination Criterion  

In this case the termination criterion is based on the similarity of successive solutions. If the 

solution of the algorithm remains the same after 10 successive generations, then the algorithm 

stops. 
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Chapter 4 Case Study Networks 
 

4.1 Sioux Falls Network 

Figure 4.1-1 presents the Sioux Falls network consisting 24 nodes and 76 links which is used in 

LeBlanc et.al (1975). This network is suitable for testing user equilibrium and the metaheuristic 

algorithms. In this study a slightly different version of Sioux Falls is used which is displayed in 

Figure 4.1-2. Table 4.1-1 describes the hourly travel demand between each origin destination pair. 

These numbers are assumed as the peak hour demand and the off-peak travels is considered half 

of these values. It is also assumed that the demand increases exponentially as a function of time 

over the planning horizon as follows: 

 𝑑𝑖𝑗
𝑡 = 𝑑𝑖𝑗

0 ∗ (1 + 𝑟)𝑡 (21) 

Where 𝑑𝑖𝑗
𝑡  is the demand between origin 𝑖 and destination 𝑗 at time t, 𝑑𝑖𝑗

0  is the base demand for 

the 𝑖𝑗  O/D pair at time 0, and 𝑟 is the growth rate. 
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Figure 4.1-1 Sioux Falls Network (Le Blanc, 1975) 
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Figure 4.1-2 Sioux Falls Network Used in This Study 

 

Table 4.1-1 Trip Table between Each Two Node Pairs (Vehicle per Hour) 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 20 12 36 18 24 30 48 36 84 36 18 36 18 30 36 30 12 18 18 6 24 18 12 

2 20 0 6 18 6 30 12 30 18 36 12 12 18 6 12 24 18 6 6 12 6 12 6 6 

3 12 6 0 18 6 18 6 12 12 18 18 18 12 6 6 12 6 0 6 6 6 6 6 6 

4 36 18 18 0 30 30 30 42 48 72 90 42 36 30 30 48 30 6 18 24 12 24 30 18 
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5 18 6 6 30 0 18 12 36 48 60 36 12 12 12 18 36 18 6 12 12 6 12 12 6 

6 24 30 18 30 18 0 24 48 24 48 24 18 18 12 18 60 36 6 18 24 6 18 12 6 

7 30 12 6 30 12 24 0 66 36 114 30 48 30 18 30 84 60 60 30 36 18 36 12 6 

8 48 30 12 42 36 48 66 0 0 96 54 36 36 24 42 132 84 18 42 54 24 36 24 12 

9 36 18 12 48 48 24 36 0 0 168 90 42 36 36 60 90 60 12 30 42 24 42 36 12 

10 84 36 18 72 60 48 114 96 168 0 240 126 114 132 240 264 0 42 108 156 78 162 108 54 

11 36 12 18 90 36 24 30 54 90 240 0 90 60 96 90 84 60 12 30 42 30 66 84 36 

12 18 12 18 42 12 18 48 36 42 126 90 0 84 42 48 42 42 12 18 30 24 48 42 30 

13 36 18 12 36 12 18 30 36 36 114 60 84 0 36 42 42 36 6 24 42 36 78 48 48 

14 18 6 6 30 12 12 18 24 36 132 96 42 36 0 45 42 42 6 24 30 24 72 66 24 

15 30 12 6 30 18 18 30 42 60 240 90 48 42 45 0 78 90 18 48 66 48 156 60 30 

16 36 24 12 48 36 60 84 132 90 264 84 42 42 42 78 0 168 100 84 102 36 72 36 18 

17 30 18 6 30 18 36 60 84 60 0 60 42 36 42 90 168 0 42 102 102 42 102 36 18 

18 12 6 0 6 6 6 60 18 12 42 12 12 6 6 18 100 42 0 24 100 6 24 6 6 

19 18 6 6 18 12 18 30 42 30 108 30 18 24 24 48 84 102 24 0 78 30 78 24 12 

20 18 12 6 24 12 24 36 54 42 156 42 30 42 30 66 102 102 100 78 0 78 0 42 30 

21 6 6 6 12 6 6 18 24 24 78 30 24 36 24 48 36 42 6 30 78 0 114 42 36 

22 24 12 6 24 12 18 36 36 42 162 66 48 78 72 156 72 102 24 78 0 114 0 0 72 

23 18 6 6 30 12 12 12 24 36 108 84 42 48 66 60 36 36 6 24 42 42 0 0 48 

24 12 6 6 18 6 6 6 12 12 54 36 30 48 24 30 18 18 6 12 30 36 72 48 0 
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The Sioux Falls network illustrated in Figure 4.1-2 is selected for demonstrating the performance 

of the proposed algorithms. As mentioned earlier, this is not considered a realistic network since 

it mainly includes the city’s major arterial roads and omits many characteristics of its 

transportation system. However, it has widely been used to examine and compare studies on 

networks (LeBlanc et.al 1975).  

4.1.1 Project Interdependence 

Conceptually, if the capacity increases in one link the network, congestion and average travel times 

tend to increase in other links that are “in series” with it and decrease in its “parallel” links. Table 

4.1-2 shows a sample of the travel time savings from separate implementation of projects in the 

network. The second column presents the initial link travel times prior to project implementations 

while columns three to seven present the travel time reductions for single projects. Positive values 

indicate travel time reductions, while negative values show increases in travel time due to network 

interdependence. The bolded numbers indicate the travel time changes in the location of the 

expanded links. These numbers are relatively higher since the expanded links gain direct benefits 

after project implementation. Notably, the sum of all the cells in one column is not equal to the 

travel time changes on the links which are getting expanded. This, in effect, confirms the 

interrelation among links and the possible shifting of bottlenecks to surrounding links. 

Furthermore, the last column implies that the total system cost reduction from implementing two 

projects together is different from the sum of cost savings for the two individual projects, 

emphasizing that the cost saving of multiple projects is not a linear summation of their individual 

savings. 
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Table 4.1-2 Travel Time Reduction due to Link Expansion 

  

link travel time reduction (min/veh) 

link 

Link travel time 

without 

projects  

expanding  

2 & 5 

expanding  

4 & 14 

expanding  

6 & 8 

expanding  

10 & 31 

expanding  

13 & 23 

expanding  

(2&5)&(4 &14) 

1 3.594 0.006 -0.018 0.008 0.000 -0.004 -0.023 

2 5.021 1.115 0.720 -0.408 -0.062 0.031 1.659 

3 3.594 0.006 -0.018 0.008 0.000 -0.004 -0.023 

4 10.356 2.338 5.712 3.468 0.658 -0.342 7.240 

5 5.021 1.115 0.720 -0.408 -0.062 0.031 1.659 

6 4.550 -0.346 0.570 0.927 -0.269 -0.144 0.736 

7 2.618 0.016 0.041 0.032 0.021 0.041 0.052 

8 4.550 -0.346 0.570 0.927 -0.269 -0.144 0.736 

9 1.629 -0.093 0.166 -0.060 0.015 -0.206 0.164 

10 7.374 -0.038 -4.221 -4.398 2.803 2.051 -2.308 

11 1.629 -0.093 0.166 -0.060 0.015 -0.206 0.164 

12 3.001 -0.344 0.340 -0.526 -0.272 -0.851 0.367 

13 7.390 0.053 1.214 0.933 0.883 2.392 1.013 

14 10.356 2.338 5.712 3.468 0.658 -0.342 7.240 

15 3.001 -0.344 0.340 -0.526 -0.272 -0.851 0.367 

16 7.882 -0.494 -1.261 -0.065 0.881 2.222 -2.483 
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17 1.796 0.013 0.089 0.028 0.015 0.018 0.087 

18 1.312 0.000 0.001 0.001 0.000 0.000 0.001 

19 7.882 -0.494 -1.261 -0.065 0.881 2.222 -2.483 

20 1.796 0.013 0.089 0.028 0.015 0.018 0.087 

21 7.333 0.691 1.464 1.392 0.647 0.267 1.475 

22 4.369 0.151 0.788 0.999 0.500 0.378 0.537 

23 7.390 0.053 1.214 0.933 0.883 2.392 1.013 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

75 3.287 0.090 0.189 0.164 -0.190 -0.173 0.139 

76 1.431 -0.003 0.041 -0.087 0.050 0.033 0.079 

Total travel time saving 9.753 15.656 8.054 13.632 18.037 25.216 

 

 

 

4.2 Anaheim Network 

In addition to Sioux Falls network which is fairly small, this method is also applied to the much 

larger Anaheim network, which is displayed in Figure 4.2-1. It has 416 nodes (of which 38 are 

origin/destination centroids), 914 links, and 1406 O-D pairs. All the network-related information 

is extracted from Bar-Gera (2011). 
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Figure 4.2-1 Anaheim Network 
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Chapter 5 Traffic Assignment Application and Results 
 

In this paper, the Sioux Falls network (LeBlank et al., 1975) is used as a case study for the proposed 

model. This network consists of 24 nodes and 33 links as depicted in Figure 4.1-2, and is widely 

used in the literature for testing purposes. The main cost savings of link expansion projects are the 

reduced travel time, vehicle operating cost, and number of crashes for all the users. These 

parameters can be computed through the traffic assignment model by comparing the total system 

cost before and after project implementation. Next, we use the GA described in previous sections 

to find near optimal solutions for the sequence and schedule of selected projects. When optimizing, 

it is desired to find a sequence of projects which can be implemented within the planning horizon. 

Therefore, each project with a scheduled completion time after the planning horizon is eliminated 

from the sequence. Additionally, the projects with unacceptable marginal benefit-cost ratio are 

discarded form the sequence list during the evaluation stages and replaced by other justifiable 

projects.  

In Figure 4.1-2, the dashed lines indicate the potential locations for adding new lanes. In this case 

there are three potential alternatives described in the section 3-2 (case C). The links surrounded by 

dashed circles indicate cases A and B with multiple alternatives at each location. The other links 

only have one potential improvement.  

In this example, the narrow and wide lanes have a capacity of 1000 and 1150 vehicles/hour, 

respectively (HCM, 2010). In the following numerical examples, the equivalent annual cost of 

constructing roads is assumed to be 396,000 $/mile per foot of road width (Zhang et al., 2013). 
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Therefore, the cost of widening a lane, adding one narrow lane, and one wide lane are 792,000 

($/mile), 3,960,000 ($/mile) and 4,752,000 ($/mile), respectively. 

The following table summarizes the potential improvements for all the links. 

 

Table 4.2-1 Improvement alternatives for different links 

Case Link Number Possible improvements 

A 3, 11, 25 -Widen the existing lanes. 

-Add one narrow lane in each direction. 

-Widen existing lanes and add one wide lane. 

B 8, 21, 36 - Add enough width for two narrow lanes.  

- Add one wide lane in each direction. 

C 9, 16, 24, 32, 35 - Add one narrow lane in each direction. 

- Add one wide lane in each direction. 

- Add two wide lanes. 

D All other links -Add one narrow lane in each direction. 

 

 

The first step is to identify critical lanes with high volume-capacity ratios to form the first set of 

candidate projects. This is done by running the traffic assignment model with the given O/D 

demand matrix which is symmetric for O/D pairs. It is assumed that the improvement projects, 

whether expanded or newly added links, are implemented in both directions between two nodes. 

This makes sense because the demand matrix is symmetric and also because it saves costs to use 
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mobilized construction equipment and other resources for both directions of a link. In this problem, 

the potential new links (shown by dashed lines in Figure 4.1-2) are actually existing links in the 

original network which are treated as potential new links. Initially, the algorithm considers zero 

capacity for these links and later examines whether and when they should be added to the network. 

It should be noted that a multi-period analysis is incorporated in this model to account for cyclical 

demand fluctuations during the day. While only peak and off-peak periods are presently 

considered, the number of periods per day can be easily increased. 

After determining the initial set of candidates, the algorithm considers multiple improvement 

projects at each location based on Table 4.2-1. Then, all projects are investigated through a benefit-

cost analysis to identify the economically beneficial projects and rank them based on their benefit-

cost ratio. Thus, we can obtain two set of initial solutions, one based on volume-capacity ratio 

(bottleneck order solution) and the other based on benefit-cost ratio (greedy-order solution). These 

two set of initial solutions are later used as the initial population in the GA. Note that the optimal 

sequence of projects is different from the benefit-cost ratio and volume-capacity ratio ranked lists. 

These two sets of projects are only useful as good initial solutions for the GA. 

5.1 Optimal Sequence and Schedule 

The analysis begins by running the traffic assignment model to assess the travel times and traffic 

volumes before and after improvement projects. Then the GA is used to find the near-optimal 

solution for selecting and scheduling projects. At this stage the algorithm selects one improvement 

from a set of multiple improvement alternatives at each location following the procedure explained 

in section 3-3 and the probabilistic Equation 20. Ultimately, the GA yields the optimal project 

selection at each location, the order of their implementation, and the schedule of completing each 

one. In this study, we assume a 20-year planning horizon. That is, projects with scheduled 
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completion time after the planning horizon are eliminated from the sequence. Table 5.1-1 presents 

the results from the stochastic model which yields the optimal selection of projects along with their 

order and schedule time. In this sequence, link 16 is a new link and the rest are lane addition 

projects.  The results also indicate the optimal improvement type for each link which is also 

obtained from the GA results. As stated earlier, the stochastic model yields the optimized sequence 

which directly determines the optimized schedule. It is shown in the third column that this method 

is capable of determining the schedule of projects in continuous time. 

 

                                     Table 5.1-1 GA Optimal Sequence and Schedule 

Project 

rank 
Project # 

Improvement Type 

(on both directions) 

Completion 

Time (year) 

1 25 Widen existing lanes 0.19 

2 34 Add one narrow lane 1.13 

3 36 Add one wide lane 4.60 

4 14 Add one narrow lane 5.03 

5 22 Add one narrow lane 7.17 

6 16 Add a new link with a narrow lane 9.32 

7 11 Widen existing lanes 9.94 

8 15 Add one narrow lane 11.61 

9 30 Add one narrow lane 13.35 
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10 3 Widen existing lanes 13.99 

11 37 Add one narrow lane 15.90 

12 2 Add one narrow lane 19.24 

 PV of Total Cost×106($)                8917 

 

       

Figure 5.2-2 displays the accumulated cost over time broken down to travel time, vehicle operating 

and safety costs. It can be seen that most of the user cost pertains to travel time, then vehicle 

operating and safety costs. 

 

Figure 5.1-1 PV of Travel Time, Vehicle Operating and Safety Costs Over Time 
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Table 5.1-2 presents the results for GA, greedy-order, and bottleneck-order solutions. These results 

are in terms of the Present value (PV) of total costs that include: user travel time, vehicle operating, 

crash, and total cost. The results indicate lower costs for the results obtained by the GA (i.e. 9.03% 

less than the bottleneck-order and 8.06% less than the greedy-order solution). In fact, it is shown 

that BCR does not yield the optimal order of projects when project interrelations are considered.  

 

Table 5.1-2 GA, Bottleneck-order and Greedy-order Solution Results 

User Travel Time 

Cost ($) 

Vehicle Operating 

Cost ($) 

Crash Cost ($) Total Cost ($) 

Cost Improvement  

by GA (%) 

GA solution 

7,505,448,440 890,475,922 489,829,910 8,917,684,007 - 

Bottleneck order 

8,265,225,305 970,186,444 533,935,197 9,803,467,182 9.03% 

Greedy-order 

8,194,600,060 950,522,818 521,753,124 9,700,467,112 8.06% 

 

Figure 5.1-2 illustrates the evolution of GA process. It indicates how the objective 

function converges to the optimized value. This optimization process is completed after the 

genetic search has stopped improving for 10 generations. In this figure, the value of the objective 

function is depicted for 100 generations. 
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Figure 5.1-2 GA Evolution Process 

 

 

5.2 Stochastic V.S. Deterministic Solution 

A simpler and easier alternative to the stochastic program is to insert the average demand scenario 

into the deterministic program, which is smaller and can thus be solved in less time. Figure 5.2-1 

displays the average demand growth compared to the three scenarios. We can see that the average 

demand is close to the medium growth rate and roughly between the low and high growth rate 

scenarios. With this average demand growth rate, we solve a deterministic version of the selection 

and sequencing problem whose objective is defined in Equation 7. However, with this approach 

the results are subject to the flaw of averages (Savage and Markowitz, 2009) and, hence, less 

reliable, as shown in De Neufville and Scholtes (2011).  

8.9E+09

8.95E+09

9E+09

9.05E+09

9.1E+09

9.15E+09

9.2E+09

0 20 40 60 80 100 120

O
b

je
ct

iv
e 

V
al

u
e 

(T
o

ta
l C

o
st

) 
($

)

Generation



67 

 

 

Figure 5.2-1 Demand in the average scenario V.S. demand in each scenario (low, med, 

high) 

In order to compare the deterministic formulation with the stochastic one, the model is applied 

using the average demand growth rate through the deterministic formulation (Equation 7). Figure 

5.2-2 shows the PV of total cost in the average scenario compared to each scenario. We can see 

that the total cost in the average scenario is skewed to the medium and low scenarios, 

underestimating the high cost of the high demand scenario. If decisions are made only based on 

the average scenario, some high costs are expected if the high demand scenario occurs. In fact, the 

results indicate that the total cost under the average demand growth scenario (solving only a 

deterministic program) is 7.5% above that using the proposed stochastic program. This shows that 

solving the stochastic model yields a better solution with a lower objective function i.e. yields a 

solution with a lower cost. Furthermore, the difference between the objective function value (PV 

of total cost) of the deterministic and stochastic program, which is called the Value of Stochastic 

Solution (VSS), is $669 million. This value shows the possible gain from using the stochastic 

model rather than using the expected value and solving the deterministic model. Failure to consider 
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the full probability distribution instead of the average scenario is also called the “flaw of averages” 

(Savage and Markowitz, 2009). 

 

 

Figure 5.2-2 PV of total cost in the average scenario V.S. each scenario (low, med, high) 

5.3 Computation Time 

In this case, we tested the algorithm for 20, 40, 80 and 100 candidate projects. Table 5.3-1 

compares CPU times for the Anaheim and Sioux Falls networks. It can be seen that a larger 

network significantly increases the CPU time. The results also indicate that the network size affects 

the CPU time much more than the number of projects. In this case, where the number of links in 

the Anaheim network is 12 times higher than Sioux Falls, the CPU time per generation becomes 

almost 115 times higher. This occurs because the traffic assignment algorithm has to evaluate the 

entire network regardless of the number of projects. Also, the number of generations for 

comparable precision is likely to increase with network size. In conclusion, this method is 

applicable to fairly large networks with numerous projects, but computational improvements 
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Table 5.3-1 CPU Time per Generation (Sec) 

Sioux Falls 

Number of projects 5 10 15 20 

CPU time 51.65 91.26 149.25 161.53 

Anaheim 

Number of 

projects  

20 40 80 100 

CPU time 10,472 12,764 16,897 18,533 

 

 

5.4 Complete Enumeration Test 

To evaluate the results of this algorithm, an exhaustive enumeration is carried out for the Sioux 

Falls network. Since the enumeration of the original problem with 20 candidate projects (i.e. 20! 

possible solutions) is lengthy and requires extensive computation time, this test is done for smaller 

problems with fewer projects. In this case, we consider four problems with 4, 5, 6 or 7 projects to 

be ranked. Each case is solved both by the GA and by a complete enumeration which evaluates 

each possible combination of projects and renders the exact solution. The results presented in Table 

5.4-1 indicate that the GA yields the exact solution from enumeration in all four cases. 

 

Table 5.4-1 Complete Enumeration Test 

  Complete enumeration GA solution 
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Number of 

projects 

Solution 

space 

Total 

system cost 

* 106 

Optimal 

sequence 

Total 

system cost 

* 106 

Optimal 

sequence 

4 4!=24 90980 3,2,1,4 90980 3,2,1,4 

5 5!=120 94248 3,2,5,4,1 94248 3,2,5,4,1 

6 6!=720 98009 3,2,5,4,1,6 98009 3,2,5,4,1,6 

7 7!=5040 99301 3,2,5,4,1,6,7 99301 3,2,5,4,1,6,7 

 

 

5.5 Statistical Test 

One major limitation of meta-heuristics is that global optimality is almost never guaranteed, and 

it is challenging to assess the goodness of solutions obtained by evolutionary methods. However, 

for large problems where no globally optimal solution can be guaranteed, meta-heuristics can 

generate satisfactory solutions and their quality can be verified with statistical tests. This can be 

done by estimating probabilities of finding better solutions. For this purpose, first a sample of 

random solutions is created, and the objective function value (fitness value) is calculated for each 

solution. Next, an appropriate distribution function is fitted to the fitness values. Then, the 

cumulative probability of the solution obtained from the algorithm is computed based on the fitted 

distribution. In this case, it is desirable to obtain a very low probability to demonstrate the goodness 

of the solution.  
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For this test a random sample consisting of 100,000 solutions is created. After testing different 

distribution functions, the Lognormal (mu=22.997, sigma= 0.0238) distribution is found to best fit 

the sample. Figure 5.5-1 shows the fitted distribution and the data from random sampling. From 

this figure, it is evident that the GA solution (8917 ×106 from Table 5.1-1) is located at the far left 

side of the diagram meaning that the GA solution has a lower objective function value than almost 

the entire sample. In other words, the solution found by the algorithm has a lower cost than any of 

the 100,000 random solutions in the distribution. 

The next step is to calculate the cumulative probability of the best solution found by the GA (8917 

×106 from Table 5.1-1) according to the Lognormal distribution: 𝑝 = 𝐹(𝑥| μ, σ) =  𝐹(8917 ×

106|22.997, 0.0238) = 1.568 × 10−4 . This can be derived from the following equation: 

` 𝑝 = 𝐹(𝑥| μ, σ) =
1

𝜎√2𝜋
∫

𝑒
−(ln(𝑡)−𝜇)2

2𝜎2

𝑡

𝑥

0

 𝑑𝑡 
(22) 

 

This result implies that the probability of finding a solution better than the GA solution is 

vanishingly small, i.e. 2.834 × 10−5 . In other words, the GA solution dominates 99.999% of the 

random solutions in the distribution. Therefore, the solution found by the GA, although not 

guaranteed to be globally optimal, is very good compared to other possible alternatives in the 

solution space and the likelihood that significantly better solutions exist is negligible. Moreover, 

errors from imperfect optimization (i.e. deviations from global optimality) are likely to be greatly 

dominated by uncertainties in input parameters.  
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Figure 5.5-1 Fitted Lognormal Distribution 
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Chapter 6 Cell Transmission Model (CTM) 
 

6.1 Background 

So far, a traffic assignment model has been used to evaluate the objective function. In other words, 

a traffic assignment model is employed to obtain  𝑤𝑖𝑗  (travel time), 𝑉𝑀𝑇𝑖𝑗(vehicle miles travelled), 

𝑁𝑐𝑟(𝑗)(number of crashes), and other parameters to feed in to equations 7 and 8. As mentioned 

earlier, this study aims to develop and use a more detailed evaluation model specifically the Cell 

Transmission Model introduced by Daganzo (1994). The CTM discretizes the LWR model (or its 

simplified version) in both time and space, which is shown to be computationally efficient and 

easy to analyze yet capture many important traffic phenomena, such as queue build-up and 

dissipation, and backward propagation of congestion waves. 

The CTM uses an algorithm that is consistent with the kinematic wave theory of traffic flow. This 

method assumes that the road has been divided into homogeneous sections (cells), i, whose lengths 

equal the distance traveled by free-flowing traffic in one clock interval. Under light traffic then, 

all the vehicles in a cell can be assumed to advance to the next with each tick of the clock; it is 

unnecessary to know where within the cell they are located. The state of the system at instant t is 

given by the number of vehicles contained in each cell, 𝑛𝑖(𝑡). To incorporate queuing, the 

following parameters are introduced for each cell:  

𝑁𝑖(𝑡): The maximum number of vehicles that can be present in cell i at time t  

𝑄𝑖(𝑡): The maximum number of vehicles that can flow into cell i when the clock advances from t 

to t + 1 (time interval t).  
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The first constant is the product of the cell’s length and its “jam density”( 𝑘𝑗), and the second one 

is the minimum of the “capacity flows” (𝑞𝑚𝑎𝑥)of cells i - 1 and i. As such, this method keeps track 

of the overall traffic state over time. The model is also able to keep track of the location of moving 

queues in the network, predicting queue spillbacks and dissipation in a reasonable way.  

 

6.2 Similarity to a Hydrodynamic Model 

The Lighthill, Whitham, Richards (LWR) hydrodynamic model with a density-flow (k-q) 

relationship is depicted in Figure 6.2-1 and can be expressed as: 

 

𝑞 = 𝑚𝑖𝑛{𝑣𝑓𝑘, 𝑞𝑚𝑎𝑥, 𝜔𝑐(𝑘𝑗 − 𝑘)},              for  0 ≤ 𝑘 ≤ 𝑘𝑗               (23) 

 

where 𝑣𝑓 is the free-flow speed, 𝑘𝑗 is the jam density and 𝑞𝑚𝑎𝑥 is the maximum flow, and 𝜔𝑐 is 

the backward wave speed. Daganzo (1994) shows that the LWR equations for a single highway 

link can be approximated by a set of difference equations where current conditions (the state of 

the system) are updated with the tick of a clock.  
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Figure 6.2-1 Flow-Density Relationship for CTM 

 

The number of vehicles that can flow from cell i -1 to cell i when the clock advances from t to t+1, 

𝑦𝑖(𝑡), is assumed to be the smallest of three quantities: 

 

 𝑛𝑖−1(𝑡):           the number of vehicles in cell i-1 at time t,  

𝑄𝑖(𝑡):               the capacity flow into cell i for time interval t,  

𝑁𝑖(𝑡)- 𝑛𝑖(𝑡):    the amount of empty space in cell i at time t. 

 

This last quantity ensures that the vehicular density on every section of the road remains below 

jam density. In other words, if cells are numbered consecutively starting with the upstream end of 

the road from i = 1 to I, the inflow to cell i in the time interval (t, t+1) can be expressed as: 

 

                    𝑦𝑖(𝑡) = 𝑚𝑖𝑛{𝑛𝑖−1(𝑡) ,  𝑄𝑖(𝑡),  𝜔/𝑣[ 𝑁𝑖(𝑡) − 𝑛𝑖(𝑡)]}                                             (24) 
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where the cell occupancy at time t + 1 equals its occupancy at time t, plus the inflow and minus 

the outflow: 

                                    𝑛𝑖(𝑡 + 1) = 𝑛𝑖(𝑡)+ 𝑦𝑖(𝑡) - 𝑦𝑖+1(𝑡)                                                      (25) 

 

Note that these equations are a discrete approximation to the LWR hydrodynamic model explained 

above. 

 

6.3 Network Representation 

CELL 

A cell is the smallest component of CTM. There are three types of cells: 

1. Normal cell 

 

Vehicles can move into a normal cell stay there or move out of it from time period t to t+1. The 

characteristics of a normal cell include: capacity, the number of contained vehicles and the 

maximum flow rate. 

2. Input cell 

 

An input cell or “source” feeds vehicles in to the system and has an infinite number of vehicles 

(𝑛𝑖 = ∞). This cell may only be an abstract representation. The setting for this type of cell includes 

the number of discharged vehicles in to the system. 

3. Output cell 
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The output cell or “sink” cell that absorbs the traffic from the system should have infinite size 

(𝑁𝑖 = ∞). This cell could be abstract and not physically present in the network. The setting of this 

cell includes the number of vehicles that leave the system into this cell. 

LINK 

The links represent how cells are connected in the network. There are three types of links: 

1. Ordinary link 

The direct link is the simplest form of link in the CTM which connects two cells. In any interval, 

the flow over a direct link is the minimum of the output from upstream cell and the input from the 

downstream cell.  

 

 

For an ordinary link the equivalent of equation 24 is: 

                    𝑦𝑘(𝑡) = 𝑚𝑖𝑛{𝑛𝐵 , min[ 𝑄𝐵, 𝑄𝐸],  𝜔/𝑣[ 𝑁𝐸 − 𝑛𝐸]}                       (26) 

Where, 𝑦𝑘(t) is flow on link k from clock tick t to clock tick t+1. For simplicity, the time variable 

“t” is omitted from the right side of the above and in forthcoming expressions. It should be noted 

that any time-dependent quantities should be valued at “t”, unless explicitly stated otherwise. The 

cell occupancy at time t+1 (𝑛𝑘(𝑡 + 1) can be derived from equations 25.  

A further simplification is desirable by the following equations: 
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𝑆𝑖(𝑡) = min[𝑄𝑖, 𝑛𝑖]      (27) 

 

𝑅𝑖(𝑡) = min [𝑄𝑖,  𝜔/𝑣[ 𝑁𝑖 − 𝑛𝑖]]   (28) 

 

Where 𝑆𝑖(𝑡) is the maximum flows that can be sent and 𝑅𝑖(𝑡) is the maximum flows that can be 

received by cell i in the interval between t and t + 1, 

then we can write  𝑦𝑖(𝑡) in the more compact form: 

 

 𝑦𝑖(𝑡) = 𝑚𝑖𝑛{𝑆𝐵 > 𝑅𝐸}   (29) 

 

That is, the flow on link “k” should be the maximum that can be sent by its upstream cell unless 

prevented to do so by its end cell. 

We now explain the extensions of equation (25) for merge and diverge links. 

 

2. Merge link 

 

The merge link is provided when traffic from two cells enter the same cell. In this case, the volume 

is determined by the outputs of two upstream cells, the input of the downstream cell, and the 

proportion (spill back) of traffic between links. In this case the flow satisfies: 
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𝑦𝑘1(𝑡) ≤ 𝑆𝐵1 ;  𝑦𝑘2(𝑡) ≤ 𝑆𝐵2   (30a) 

𝑦𝑘1(𝑡) + 𝑦𝑘2(𝑡)  ≤  𝑅𝐸   (30b) 

It is assumed that cells B1 and B2 send the maximum possible flow if cell E can receive it, 

therefore: 

 

𝑦𝑘1(𝑡) = 𝑆𝐵1 ;  𝑦𝑘2(𝑡) = 𝑆𝐵2,           𝑖𝑓     𝑆𝐵1 + 𝑆𝐵2 ≤ 𝑅𝐸        (31) 

 

If the condition in (30) is not satisfied we will assume that a fraction (p1) of the vehicles come 

from B and the remainder (p2) from B2, where p1 + p2 = 1. Thus, we can write: 

 

 𝑦𝑘1(𝑡) = 𝑚𝑖𝑑{𝑆𝐵1, 𝑅𝐸 − 𝑆𝐵2, 𝑝1 ∗ 𝑅𝐸}     (32a) 

 𝑦𝑘2(𝑡) = 𝑚𝑖𝑑{𝑆𝐵2, 𝑅𝐸 − 𝑆𝐵1, 𝑝2 ∗ 𝑅𝐸}      (32b) 

𝑖𝑓     𝑆𝐵1 + 𝑆𝐵2 > 𝑅𝐸            (32c) 

 

 

3. Diverge link 

 

The diverge link describes the case where vehicles from one cell enter two different cells. In this 

case, the volume is determined by the output of the upstream cell, the inputs of the downstream 

cells and the proportion of traffic between links. We assume that the proportions of 𝑆𝐵(t) going to 

cells E1 and E2 are q1 and q2 (q1+q2=1) which are exogenously determined, and that traffic flows 

in these proportions continuously between clock ticks. Therefore: 
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 𝑦𝐵(𝑡) = min{ 𝑆𝐵, 𝑅𝐸1/𝑞1, 𝑅𝐸1/𝑞1}            (33a) 

 𝑦𝐾1(𝑡) = 𝑞1 ∗  𝑦𝐵(𝑡);   𝑦𝐾2(𝑡) = 𝑞2 ∗  𝑦𝐵(𝑡)        (33b) 

As it does for ordinary and merge links, equation (25) complete the set of equations needed to 

update the state of the system. 

 

LANE 

A lane represents a section of the traffic area and includes multiple cells and links. A lane has input 

flow, output flow, and it connects two intersections. The traffic area of a lane will be separated 

into several cells which are automatically connected after the parameters of the lane are given to 

the model. These parameters include length, number of lanes, free flow speed, maximum capacity, 

etc.  Furthermore, a normal lane also includes an input cell and an output cell to represent its input 

and output flow. 

 

INTERSECTION 

The traffic intersection is the area where different traffic flows meet and conflict. A typical 

intersection consists of the input lanes, the output lanes and the conflict area. To describe the flows 

within the intersection, the conflict area should be separated into several cells. Then, different set 

of merges and diverges links are introduced to create different phases. An example of a two-phase 
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intersection is displayed below. It is shown how links are set for East-West and North-South 

phases. There are 6 inner cells within an intersection and 6 links corresponding to each phase. 

 

Figure 6.3-1 Two-Phase Intersection Cells and Links 

 

According to Roess et.al. (2011), if it is assumed that the demands on intersections are known and 

the “critical lanes” can be identified, then the following equation could be solved to find a 

minimum acceptable cycle length: 

 

                                                   𝐶𝑚𝑖𝑛 =
𝑁∗𝑡𝐿

1−(
𝑉𝑐

3600/ℎ
)
                                                 (34) 

Where: 

𝐶𝑚𝑖𝑛 = minimum cycle length (s) 

N=number of phases 

𝑡𝐿=total loss time per phase (4 s/phase in this study) 

𝑉𝑐=sum of critical lane volumes (veh/h) 
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ℎ=saturation headway (s/veh) 

The “critical lane” concept involves the identification of specific lane movements that will control 

the timing of a given phase. During a simple two-phase signal, all E-W movements are permitted 

in one phase, and all N-S movements are permitted in another phase. 

 

EXAMPLE 

An example of CTM application for a small network is presented below. This network consists of 

four intersections and 24 lanes. A similar configuration will be used later on for the Sioux Falls 

network. 
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Figure 6.3-2 Example of Cell Transmission Application on a small network 
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Chapter 7 CTM Application and Results 
 

In this chapter the goal is to replace the previous evaluation model (Frank-Wolf traffic assignment) 

with a more detailed model (CTM) and solve the similar problem of optimizing the selection and 

schedule of projects. The model is applied to the same Sioux Falls network with some alterations 

which were essential to apply CTM. These changes are described in more detail in the following 

section.  

7.1 Initial Network Set-up 
 

In this section the Cell Transmission model described in the previous chapter is applied to the 

Sioux Falls network. In this network each node presents a two-phased intersection. In order to be 

compatible with CTM, some characteristics are changed in this network compared to the one used 

in Chapter 5. First, the O/D demand table is modified in order to have volume/capacity ratio < 1 

for all links. Unlike the Frank-Wolf algorithm, CTM does not allow a volume that exceeds 

capacity. The modified demand table is presented in Table 7.1-1. Second, the numbering of lanes 

is changed based on CTM order rules. It starts consecutively from intersection 1, numbering (i) 

east, (ii) west, (iii) north and (iv) south inflow lanes and moving to the next intersection. The new 

network with modified numbering is shown in Figure 7.1-1. 

Table 7.1-1 Modified Demand Table 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 18 18 16 8 11 7 22 8 9 16 8 16 8 27 16 7 5 8 8 3 11 8 5 

2 18 0 2 6 2 11 2 11 3 3 4 4 6 2 1 9 3 2 2 4 2 4 2 2 
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3 18 2 0 6 2 6 1 4 2 2 6 6 4 2 1 4 1 0 2 2 2 2 2 2 

4 16 6 6 0 11 11 5 15 9 6 32 15 13 11 3 17 5 2 6 9 4 9 11 6 

5 8 2 2 11 0 6 2 13 9 5 13 4 4 4 2 13 3 2 4 4 2 4 4 2 

6 11 11 6 11 6 0 4 17 4 4 9 6 6 4 2 22 6 2 6 9 2 6 4 2 

7 7 2 1 5 2 4 0 12 3 5 5 9 5 3 3 15 5 11 5 6 3 6 2 1 

8 22 11 4 15 13 17 12 0 18 9 19 13 13 9 4 48 15 6 15 19 9 13 9 4 

9 8 3 2 9 9 4 3 18 0 8 16 8 6 6 5 16 5 2 5 8 4 8 6 2 

10 9 3 2 6 5 4 5 9 8 0 22 11 10 12 22 24 11 4 10 14 7 15 10 5 

11 16 4 6 32 13 9 5 19 16 22 0 32 22 35 8 30 11 4 11 15 11 24 30 13 

12 8 4 6 15 4 6 9 13 8 11 32 0 30 15 4 15 8 4 6 11 9 17 15 11 

13 16 6 4 13 4 6 5 13 6 10 22 30 0 13 4 15 6 2 9 15 13 28 17 17 

14 8 2 2 11 4 4 3 9 6 12 35 15 13 0 4 15 8 2 9 11 9 26 24 9 

15 27 1 1 3 2 2 3 4 5 22 8 4 4 4 0 7 4 2 4 6 4 14 5 3 

16 16 9 4 17 13 22 15 48 16 24 30 15 15 15 7 0 30 18 30 37 13 26 13 6 

17 7 3 1 5 3 6 5 15 5 11 11 8 6 8 8 30 0 8 18 18 8 18 6 3 

18 5 2 0 2 2 2 11 6 2 4 4 4 2 2 2 18 8 0 9 18 2 9 2 2 

19 8 2 2 6 4 6 5 15 5 10 11 6 9 9 4 30 18 9 0 28 11 28 9 4 

20 8 4 2 9 4 9 6 19 8 14 15 11 15 11 6 37 18 18 28 0 28 54 15 11 

21 3 2 2 4 2 2 3 9 4 7 11 9 13 9 4 13 8 2 11 28 0 41 15 13 
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Figure 7.1-1 Modified Sioux Falls Network 

Initial link attributes including flow and density are provided in Table 7.1-2 : 

Table 7.1-2 Initial Link Flows and Densities 

Link # 
Flow 

(veh/h) 

Density 

(veh/mi.ln) 
Link # 

Flow 

(veh/h) 

Density 

(veh/mi.ln) 
Link # 

Flow 

(veh/h) 

Density 

(veh/mi.ln) 

22 11 4 2 9 4 6 6 13 8 15 24 17 28 26 14 26 18 9 28 54 41 0 48 26 

23 8 2 2 11 4 4 2 9 6 10 30 15 17 24 5 13 6 2 9 15 15 48 0 17 

24 5 2 2 6 2 2 1 4 2 5 13 11 17 9 3 6 3 2 4 11 13 26 17 0 
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1 1307 16.34044 26 1536 173.2249 51 887 205.673 

2 1140 14.24884 27 3155 92.25792 52 1338 183.1067 

3 1395 17.44329 28 3785 60.7459 53 2097 26.21804 

4 1030 12.87447 29 776 211.2222 54 3705 64.77415 

5 3614 45.16903 30 56 0.70282 55 3356 82.1842 

6 3535 73.2683 31 1878 23.47339 56 1105 194.7354 

7 3028 37.84825 32 2945 102.7371 57 1786 22.32115 

8 3898 55.11182 33 1527 173.6687 58 1158 192.0866 

9 1229 188.5685 34 376 4.696037 59 1247 15.58592 

10 2771 34.63521 35 2818 35.22547 60 3833 58.36024 

11 1944 152.7968 36 1970 151.5151 61 1753 21.91405 

12 3067 38.33588 37 3650 67.49629 62 949 11.86159 

13 2435 30.43786 38 2389 29.86544 63 1216 189.2008 

14 3784 60.81826 39 1744 21.80504 64 2236 27.95485 

15 846 207.7248 40 1488 18.60571 65 778 211.0888 

16 3312 84.40222 41 2794 110.315 66 3430 78.4854 

17 578 7.230776 42 3531 44.13872 67 1166 14.57373 

18 2897 36.2155 43 3727 46.59138 68 823 208.8364 

19 133 1.666874 44 1985 150.7569 69 1098 195.0758 

20 912 204.3908 45 1502 174.8948 70 1078 13.47504 

21 1943 152.8443 46 1055 13.18984 71 3942 49.28057 

22 724 213.7881 47 2429 128.5733 72 2714 33.92908 

23 171 2.132808 48 2694 115.296 73 1517 174.1411 

24 843 207.8495 49 878 206.0913 74 1447 177.6746 

25 3370 42.12574 50 2798 110.0838 75 3912 54.37932 

 

7.2 CTM Set-up 
 

The CTM described in the previous chapter is applied to the above network with 75 links and 20 

two-phased intersections. All intersections are assumed to have two phases in E-W and N-S 

directions. It is also assumed that the nominal flow–density relationships of all cells are 

characterized by triangular fundamental diagrams shown in Figure 7.2-1. 
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Figure 7.2-1 Fundamental Density-Flow Diagram for Each Cell 

Table 7.2-1 indicates the main input parameters of CTM and their respective values. 

Table 7.2-1 CTM Input Parameters 

Parameter Value 

Free flow speed (𝒗𝒇) 40 (mi/h) 

Spill back speed (𝒘𝒄) 10 (mi/h) 

Jam density (𝒌𝒋) 250 (veh/ln.mi) 

Maximum flow ((𝑸𝒎) 2000 (veh/h.ln) 

Cell length (𝑳𝒄) 290 (ft) 

Vehicle length (𝑳𝒗) 16 (ft) 

Simulation interval (𝒅𝒕) 5 (s) 
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The following provides a step-by-step summary description of CTM: 

1. Set inputs: Define input parameters and specify their values. Input parameters include free 

flow speed, maximum flow, spill back speed, jam density, etc. as described in Table 7.2-1. 

2. Add links: Add each link based on specified attributes such as length, saturation flow, and 

number of lanes as provided in Table 7.1-2. The model then divides the links to multiple 

cells and links. 

3. Add intersections and phases: Add intersections and determine the number of phases. 

4. Set up initial link volumes: Initial link volumes is determined using the traffic assignment 

model based on the demand table. 

5. Start CTM: The simulation begins calculating the inflow to all cells from clock tick t to 

clock tick t+1 (i.e. during time interval dt) based on equations 29 to 33. Then the cell 

occupancies are derived from equation 25 to update the state of the system. It should be 

noted that q1 and q2 from equation 33 determines the turning flows at each intersection. 

These parameters are considered exogenous and in this case are determined by traffic 

assignment. 

6. Obtain delays and densities: At each time interval the model outputs the cell densities 

and delays at each intersection.   

7.3 Identifying Link and Intersection Improvement Projects 
 

In order to identify the most congested links and set up the initial set of candidate projects, we run 

the CTM for 40 intersection cycles (equal to approximately one hour of simulation time) on the 

unimproved network. The cell occupancy can be tracked at each step of the simulation which can 
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yield the vehicle density for each link. The figures below show the density changes for all links 

during the analysis period. 

 

Figure 7.3-1 Initial Link Densities (Links 1-10) 
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Figure 7.3-2 Initial Link Densities (Links 11-20) 
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Figure 7.3-3 Initial Link Densities (Links 21-30) 
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Figure 7.3-4 Initial Link Densities (Links 31-40) 
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Figure 7.3-5 Initial Link Densities (Links 41-50) 
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Figure 7.3-6 Initial Link Densities (Links 51-60) 
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Figure 7.3-7 Initial Link Densities (Links 61-70) 
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Figure 7.3-8 Initial Link Densities (Links 71-75) 

 

From the above observations, the links with the highest average densities are selected as candidate 

projects for link improvements. In addition to link improvements, capacity improvements for 

intersections are also considered. That is, the upstream and downstream intersections of selected 

links are also considered for capacity improvements. The following figures display the “cyclic 
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delay” at each intersection. This cyclic delay at each intersection is defined as the total time all 

vehicle are stopped in queue while waiting to pass through the intersection (veh.s). 

 

 

Figure 7.3-9 Initial Intersection Cyclic Delays (Intersections 1-12) 
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Figure 7.3-10 Initial Intersection Cyclic Delays (Intersections 13-24) 

 

Similar to previous analysis, projects are selected as pair of links between two nodes which means 

improvements are implemented on both directions. Figure 7.3-11 displays the average density of 

all links over 40 cycles.  
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Figure 7.3-11 Initial Link Densities Variations among All Links 

 

Accordingly, the links with highest densities (i.e. closest to jam density) are selected as candidate 

link improvements. The list is provided in Table 7.3-1. Additionally, the intersections at both ends 

of candidate links, are also selected for capacity improvements. Table 7.3-2 presents the list of 

selected intersections. 

Table 7.3-1 Candidate Links and Initial Link Attributes 

Project # link 1 link 2 length (mi) 
Link 1 Density 

(veh/mi) 

Link 2 Density 

(veh/mi) 

1 22 15 0.9 213.8 207.7 

2 29 24 0.4 211.2 207.8 

3 65 68 0.6 211.1 208.8 

4 51 58 0.6 205.7 192.1 

5 20 17 1.1 204.4 193.1 

6 69 45 1.2 195.1 174.9 

7 56 44 1.1 194.7 150.8 
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8 63 74 1 189.2 177.7 

9 9 11 1 188.6 152.8 

 

Table 7.3-2 Intersection Candidates and Initial Cyclic Delays 

Intersection 

candidate 

Cyclic delay 

(veh.s/cycle) 
Cycle time (s) 

4 68.3 169 

5 59.0 156 

6 175.4 166 

8 69.9 119 

9 89.6 73 

10 163.0 156 

15 0.1 180 

17 391.5 177 

19 29.9 29 

21 104.0 33 

22 147.8 161 

24 61.1 169 

 

As mentioned earlier, cyclic delay at each intersection is defined as the total time all vehicle are 

stopped in queue while waiting to pass through the intersection at each cycle (veh.s/cycle). 
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In Table 7.3-2, cycle time is calculated using equation 34. The example below demonstrates how 

the critical lane volume and the cycle length is estimated for intersection 8. Figure 7.3-12 illustrates 

the critical lanes for intersection 8. 

 

Figure 7.3-12 Critical lanes for intersection 8 

 

𝐶𝑚𝑖𝑛 =
𝑁 ∗ 𝑡𝐿

1 − (
𝑉𝑐

3600/ℎ
)
=  

2 ∗ 4

1 − (
1855

3600/1.81
)
~119 (𝑠) 

 

Figure 7.3-13 displays the location of candidate projects on Sioux-Falls map. 
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Figure 7.3-13 Location of candidate link and intersection improvement projects 

7.4 Problem Formulation 
 

7.4.1 Objective function 

 

The objective function is similar to the one described in section 3.2. However, an additional term 

∑ 𝑑𝑒𝑙𝑖𝑗
𝑛𝐼
𝑖=1  is added to account for intersection delays. 𝑛𝐼 is the number of intersections while 𝑑𝑒𝑙𝑖𝑗 
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denotes delay at intersection i at time period j. The goal is to minimize the PV of total cost 

including travel time, vehicle operating and safety costs. 

𝑚𝑖𝑛𝑍 =  ∑𝑃𝑠

{
  
 

  
 
∑{

1

(1 + 𝑟)𝑗
(∑𝑤𝑖𝑗𝑠

𝑛𝑙

𝑖=1

∗ 𝑣𝑡 +∑𝑑𝑒𝑙𝑖𝑗 ∗ 𝑣𝑡

𝑛𝐼

𝑖=1

+∑{𝐶𝑣𝑜𝑝𝑠(𝑖𝑗)

𝑛𝑙

𝑖=1

∗ 𝑉𝑀𝑇𝑖𝑗𝑠} + 𝑁𝑐𝑟𝑠(𝑗) ∗ 𝐶𝐶𝑟)}

𝑇

𝑗=1

+∑
𝑐𝑖𝑥𝑖(𝑡)

(1 + 𝑟)𝑡

𝑛𝑝

𝑖=1 }
  
 

  
 

𝑆

𝑠=1

           (35) 

As done earlier in section 4.1, the demand increases exponentially as a function of time over the 

planning horizon as follows: 

 𝑑𝑖𝑗
𝑡 = 𝑑𝑖𝑗

0 ∗ (1 + 𝑟)𝑡 (21) 

Three plausible demand scenarios are considered: (i) low demand growth, (ii) med (medium) 

demand growth, and (iii) high demand growth. Under the three demand growth scenarios we 

assume the growth rate per year 𝑟  = 0.005, 0.01, 0.015 for the low, med and high scenarios, 

respectively (in Equation 35: S = {low, med, high}). Figure 7.3-1 displays demand change under 

three demand growth scenarios over 20 years of analysis. 
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Figure 7.4-1 Demand growth scenarios 

7.4.2 Constraints 

 

Budget Constraint 

 

The budget constraint is described earlier in section 3.2.3. As a reminder, assuming that 𝑛𝑝 is the 

number of candidate projects, for 0 ≤ 𝑡 ≤ 𝑇 the budget flow constraint is formulated as: 

 ∑𝑐𝑖𝑥𝑖(𝑡) ≤ ∫ 𝑏(𝑡)𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑏(𝑡)𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑡 
𝑡

0

𝑛𝑝

𝑖=1

 (10) 

 𝑏(𝑡𝑖)𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑉𝑀𝑇(𝑡𝑖−1) ∗ 𝑓𝑟 ∗ 𝑓𝑐 ∗ 𝑓𝑡  (9) 

Precedence and Concurrent Relation Constraint 

 

In addition to the budget constraint, the precedence and concurrent relation constraints among 

projects are considered in this study. Generally, due to political or geographical considerations, it 

may be necessary to implement some projects before others or some projects might have to be 

implemented concurrently with other projects. (Wang and Schonfeld, 2012).  
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In this study we consider both link and intersection improvements. Logically, it is preferred to 

concurrently improve links and their upstream and downstream intersections or have the end-point 

intersections improved prior to the link improvements. Therefore, this constraint is enforced to the 

link and intersection projects. 

 For a given sequence S, let’s assume that ℎ𝑖 for i=1…𝑛𝑝 is the location of project i in the sequence. 

If the precedence relation requires that project i precedes project j, then this constraint could be 

demonstrated as  ℎ𝑖  <   ℎ𝑗 .  A scheduling problem may have multiple precedence relation 

constraints, and a sequence that violates any of them is infeasible. 

In order to maintain the diversity of solutions in GA (the GA and its operators are explained further 

in the text in section 3-5), it is not desirable to discard solutions that violate the precedence 

constraints. Instead, a high penalty for solutions that violate the precedence constraint cab be 

considered. This means that if any solution in the population violates these constraints, instead of 

evaluating it, a very large number (1020) is assigned to its fitness value. This will significantly 

reduce the chance of the infeasible solution to be selected for mutation and cross over for the next 

generation. 

7.4.3 Benefits-Costs 

 

Conventional methods for prioritizing projects are based on the benefit-cost ratio. This section 

provides the details on estimating the benefits and costs of each project. However, benefit-cost 

ratio does not yield the optimal sequence of projects as is proven at the end of this study. In this 

section, the benefits and costs of each individual project is introduced. Then the benefit-cost ratio 

of each projects is estimated. 

Project Costs  
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It is assumed that the cost of link improvements is $4,500,000 per lane. mile.  The cost of 

intersection project i can be estimated as: 

 

 𝐶𝑖 = 𝐴𝐼𝑖 ∗ 𝐶𝑐𝑖 + 𝐴𝑖 ∗ 𝐶𝑝 = 𝐴𝐼𝑖 ⋅ 51.6 + 𝐴𝑖 ⋅ 20 (36) 

where: 

 

𝐶𝑐𝑖 – capital cost of improvement of intersection i ($/ft2), 

𝐶𝑝 – unit cost of pavement maintenance ($/ft2), 

𝐴𝐼𝑖 – area of the land needed to improve intersection i (ft2), 

𝐴𝑖 – overall area of the intersection i (ft2) 

 

Project Benefits 

 

Although there are different approaches to calculate the benefits of projects, in this study the 

benefit of each project is the cost saving form implementing a project compared to the no project 

scenario. Accordingly, the benefits, costs and the benefit-cost ratio of each project are summarized 

in the following table: 

Table 7.4-1 Project Benefits and Costs 

Project # links Intersections Length 

(mi) 

cost 

($million) 

Benefits 

($million) 

B/C 

ratio 

1 22,15 6,8 0.9 3.6 24.8 6.9 

2 29,24 9,10 0.4 2.1 2.3 1.1 

3 65,68 22,21 0.6 2.7 3.6 1.3 

4 51,58 19,17 0.6 2.2 4.7 2.1 

5 20,17 8 1.1 3.3 12.9 3.9 
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6 69,45 15,22 1.2 4.0 16.3 4.0 

7 56,44 15,19 1.1 3.3 11.9 3.6 

8 63,74 21,24 1 3.4 22.0 6.4 

9 9,11 4,5 1 3.9 6.2 1.6 

 

7.5 Optimization Process 
 

Figure 7.5-1 illustrates the optimization process. Each population is comprised of I sequences, and 

each sequence i is a string of J numbers which represents the location of the candidate project.  

 

Figure 7.5-1 Optimization Process 
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The analysis begins by selecting the greedy-order solution (ranked based on vehicle density) and 

bottleneck-order solution (ranked based on benefit-cost ratio) presented in Table 7.5-1 as initial 

population. For each sequence i, the algorithm selects projects 1 to j one-by-one and runs the CTM 

after each one is implemented. In this sense, each project implementation requires a specific 

change in the network e.g. widening lanes and increasing the intersection capacity. At each step, 

the CTM outputs the cell occupancies which can be translated into link densities. Using the 

fundamental diagram in Figure 7.2-1 travel time, and speed are obtained which are plugged to the 

objective function to calculate the fitness value (i.e. objective function). Next, the budget 

constraint, uniquely determines the completion time 𝑡𝑗 of project j. That is, project j is completed 

as soon as the available budget equalizes the cost of project.  This process is performed for all 

projects in the sequence until the completion time exceeds the planning horizon T. Then the 

algorithm moves to the next sequence until all sequences in the population are evaluated. At this 

step, the best sequences i.e. the ones with lowest fitness values, are given higher probabilities to 

be selected as parents and produce offspring. Through several crossover and mutation operators 

the selected parents produce the next generation. The algorithm begins to evaluate the new 

generation and continues to do so until the termination criterion is met. In this case, the algorithm 

stops if the optimal sequence does not change after 10 generations. 

Table 7.5-1 Bottleneck and Greedy-order Sequences 

Bottleneck-order Density (veh/mi) Greedy-order B/C ratio 

1 213.7 1 6.9 

2 211.2 8 6.4 

3 211.0 6 4.0 

4 205.6 5 3.9 
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5 204.3 7 3.6 

6 195.0 4 2.1 

7 194.7 9 1.6 

8 189.2 3 1.3 

9 188.5 2 1.1 

  

7.6 Results 
 

For this test network, 9 link improvements and 12 intersection improvements are considered over 

20 years planning horizon. As stated before precedence and concurrent implementation constraints 

are imposed to implement end-point intersections prior or simultaneous with each link 

improvement.  The proposed GA is used to search for the sub-optimal sequence, and the proposed 

CTM is applied to evaluate each sequence. Table 7.6-1 optimized sequence and schedule for the 

candidate link and intersection improvements. 

 

 

Table 7.6-1 Optimized Sequence and Schedule from GA 

Optimal 

sequence 
Links improved 

Intersections 

improved 

Schedule 

(completion 

year) 

Total cost (PV) 

2 links 29, 24 9,10 1.4 $2,942,134,572 

9 links 9, 11 4,5 4.7 $4,597,458,784 

3 links 65, 68 22,21 6.2 $5,805,421,657 

1 links 22,15 6,8 8.6 $7,310,551,145 

5 links 20, 17 - 10.8 $8,522,919,492 
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7 links 56, 44 15,19 13.4 $9,693,185,295 

4 links 51, 58 17 14.9 $10,459,070,244 

8 links 63, 74 24 17.3 $11,386,405,776 

6 links 69, 45 22 18.8 $12,049,723,799 

 

 

Figure 7.6-1 illustrates the evolution of GA process. It indicates the fitness value for each 

individual in each generation. This optimization process is completed after the genetic search has 

stopped improving for 10 generations. In this case the algorithm reaches convergence in generation 

40 at stops at the 50th generation. 
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Figure 7.6-1 Genetic Search Progress 

 

Intuitively, if projects are considered individually, the construction projects would be implemented 

according to the rank of their congestion severities (Bottleneck-order), or their benefit-cost ratio 

would be their proritization criteria (Greedy-order). Table 7.6-2 presents the sequence and 

schedule and total accumulated cost from these two ranks. which is different from  the optimazed 

GA results in Table 7.6-1. It can be seen that the bottleneck and greedy-order solutions result in 
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total costs of 1.247×109 and 1.259×109 respectively. However, the optimal sequence found in 

Table 7.6-1 yields a lower total cost of 12.049×109 . 

 

Table 7.6-2 Greedy and Bottleneck Order Solutions 

Bottle-neck solution Greedy solution 

sequence schedule Total cost(PV) sequence schedule Total cost (PV) 

1 2.4 $2,653,761,866 1 2.4 $2,653,761,866 

2 3.8 $4,053,972,412 8 4.9 $4,801,308,166 

3 5.3 $5,383,842,359 6 6.4 $6,059,315,892 

4 6.8 $6,588,495,541 5 8.6 $7,561,467,852 

5 9.0 $8,029,698,012 7 11.2 $9,006,384,789 

6 10.5 $9,016,009,862 4 12.7 $9,919,951,558 

7 13.1 $10,290,858,238 9 16.0 $11,242,543,974 

8 15.5 $11,368,803,475 3 17.5 $11,946,111,153 

9 18.8 $12,478,192,927 2 18.8 $12,591,957,683 
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Figure 7.6-2, Figure 7.6-3, and Figure 7.6-4 indicate the accumulated cost for the GA optimized 

sequence, bottleneck-order and greedy-order sequences respectively. The cost is broken down into 

travel time, vehicle operating, and crash cost as formulated in the objective function.  

 

 

Figure 7.6-2 Cost Change Over Analysis Period for GA solution 

 

 

Figure 7.6-3 Cost Change Over Analysis Period for Bottleneck-order solution 

0

2000

4000

6000

8000

10000

12000

14000

0 1.4 4.7 6.2 8.6 10.8 13.4 14.9 17.3 18.8

To
ta

l C
o

st
 (

$
M

ill
io

n
s)

Years

Travel time cost

Vehicle operating cost

Crash cost

0

2000

4000

6000

8000

10000

12000

14000

0 2.4 3.8 5.3 6.8 9.0 10.5 13.1 15.5 18.8

P
V

 o
f 

C
o

st
 (

$
M

ill
io

n
s)

Years

Travel time cost

Vehicle operating cost

Crash cost



115 

 

 

Figure 7.6-4 Cost Change Over Analysis Period for Greedy-order solution 

 

Table 7.6-3 shows to what extent the GA improves the outcome of the project sequencing and 

schedule. More specifically, the table shows the percentage of cost savings resulting from 

employing the GA compared to bottleneck and greedy ranks. It can be seen that the GA improves 

costs for all cost categories. It improves the total cost by 3.6% from bottleneck-order and 4.5% 

from greedy-order solution. Note that these values should be interpreted in comparison with the 

“No Project” scenario. Figure 7.6-5 compares the “No project” scenario where no improvement 

projects are implemented, versus the GA solution. The results indicate a 6.9% improvement in 

total cost. The improvement seems low because in this case we are dealing with a relatively small 

and low congested network. The improvements are expected to be much higher for a larger 

network with higher level of congestion. As such, 3.6% and 4.5% improvements from the GA 

solution compared to the bottle-neck and greedy-order solutions are significant in this case. 
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Figure 7.6-5 GA Solution versus “No Project”  

 

Table 7.6-3 Cost Saving from GA Compared to Bottleneck and Greedy Order Solutions 
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solution 
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Crash cost 5.2% 8.3% 

Vehicle operating cost 3.5% 3.0% 

Travel time cost 3.3% 4.3% 

Total Cost 3.6% 4.5% 
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Figure 7.6-6 and Figure 7.6-7 illustrate total cost change over the analysis period for GA solution, 

greedy and bottleneck-order solutions. It is evident that at each period the genetic solution yields 

a lower objective value.  

 

Figure 7.6-6 GA versus Bottleneck solution 

 

 

Figure 7.6-7 versus Greedy solution 
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Figure 7.6-8 and Figure 7.6-9 display how the implemented projects impact the cyclic delays at 

each intersection. It can be seen that in some cases the delay has increased, however, the 

intersections with the highest cyclic delays such as 6,7,10,17 and 22 are significantly improved 

and experience much less delay compared to the “before” scenario. 

 

Figure 7.6-8 Cyclic Delays Before and After Projects (intersections (1-12) 
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Figure 7.6-9 Cyclic Delays Before and After Projects (intersections (13-24) 

 

The following figures illustrate the density improvements on the most congested links. It can be seen 

that the density is significantly reduced on most links.  
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Figure 7.6-10 Link Densities Before and After Projects (1) 



121 

 

 

 

Figure 7.6-11 Link Densities Before and After Projects (2) 
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Figure 7.6-12 Link Density Before and After Projects (3) 

 

It can be concluded from this case study that for a complex system, even though the improvements 

are simply adding capacity to links and intersections, no general project sequencing and scheduling 

pattern can be discerned from the resulting optimal sequence due to the interrelations and diverse 

geometric configurations. Therefore, an optimization process such as the one proposed in this 

study, including efficient and accurate evaluation and search algorithms can effectively solve the 

problem of planning and scheduling of interrelated systems. 

7.7 Sensitivity Analysis 
 

7.7.1 Optimal Sequence and Schedule 
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This section explores how the uncertainty in the output of the optimization model  (sequence and 

schedule of projects) can be apportioned among different sources of uncertainty in inputs. This is 

useful in understanding model behavior and enhancing the efficiency of the proposed 

methodology. For this purpose, sensitivity analysis is conducted to investigate the effects based on 

project cost, available budget and demand growth rate. In real life systems, such factors could 

significantly impact the output of the optimization model. 

Project cost 

 

Table 7.7-1 demonstrates the sensitivity of the optimized sequence, schedule, and the objective 

function value (total cost) to changes in project cost. The cost of each project is changed by the 

same percentage of their original value specified in Table 7.4-1. It is evident that as cost increases 

the optimal sequence slightly changes, and the completion time and total cost increases. 

Table 7.7-1 Sensitivity of Optimal Sequence and Schedule to Project Cost 

70% Cost 100% Cost 150% Cost 

Sequence Schedule Sequence Schedule Sequence Schedule 

3 1.0 2 1.4 9 4.9 

9 3.4 9 4.7 2 7.0 

2 4.3 3 6.2 1 10.6 

1 6.0 1 8.6 5 13.9 

5 7.5 5 10.8 3 16.2 

4 8.6 7 13.4 7 20.0 

7 10.4 4 14.9 4 22.3 

8 12.1 8 17.3 8 26.0 

6 13.2 6 18.8 6 28.3 

PV of Total cost $10,805,066,641 Total cost $12,049,723,799 Total cost $13,198,762,022 

 

Figure 7.7-1 demonstrates how the objective function value (in terms of PV of total cost) increases 

as the available budget grows. 

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Uncertainty
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Figure 7.7-1 Objective Value for Different Levels of Project Cost 

 

Available Budget 

Similarly, Table 7.7-2 presents the sensitivity of results to changes in the available budget. The 

variation in budget is specified as different percentages of the original value, which was set to $1.5 

million/year. It can be seen that the available budget affects the optimal sequence, schedule and 

total cost. 

Table 7.7-2 Sensitivity of Optimal Sequence and Schedule to Available Budget 

50% Budget 100% Budget 150% Budget 

Sequence Schedule Sequence Schedule Sequence Schedule 

3 2.8 2 1.4 9 0.9 

9 9.4 9 4.7 2 3.1 

2 14.1 3 6.2 1 4.8 

1 18.5 1 8.6 5 6.3 

5 21.5 5 10.8 3 8.0 

4 24.5 7 13.4 7 9.0 

7 29.7 4 14.9 4 10.0 

8 34.7 8 17.3 8 11.0 

6 37.7 6 18.8 6 12.6 

Total cost $13,579,074,339 Total cost $12,049,723,799 Total cost $10,694,073,881 
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Figure 7.7-2 demonstrates how the objective function value (in terms of PV of total cost) decreases 

as the available budget grows. 

 

Figure 7.7-2 Objective Value for Different Budget Levels 

 

Demand Growth 

Table 7.7-3 shows the optimized sequence and total cost under three demand growth scenarios 

discussed in section 7.2.1. If decisions are made only based on the average scenario, some high 

costs are expected if the high demand scenario occurs. In this case, the results indicate that the 

total cost under the average demand growth scenario (solving only a deterministic program) is 

2.1% above that using the proposed stochastic program. This shows that solving the stochastic 

model yields a better solution with a lower objective function, i.e. yields a solution with a lower 
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$252 million. This value shows the possible gain from using the stochastic model rather than using 

the expected value and solving the deterministic model. 

Table 7.7-3 Optimal sequence and total cost for different demand scenarios 

 Growth rate Optimal Sequence Total cost 

Low demand growth 0.005 2-9-3-1-5-4-7-6-8 11,682,443,810 

Medium demand growth 0.01 2-9-3-5-1-7-8-4-6 12,302,399,183 

High demand growth 0.015 9-2-1-5-3-7-4-8-6 12,886,405,776 

Stochastic solution - 2-9-3-1-5-7-4-8-6 12,049,723,799 

 

Interest Rate 

Table 7.7-4 demonstrates the sensitivity of the optimized sequence, schedule, and the objective 

function value (total cost) to changes in interest rate. For this purpose, the interest rate is given 

values from 3% to 12%. From Table 7.7-4, it is evident that the objective value is higher for lower 

interest rates; however, the sequence and the schedule appear not to change for different values of 

interest rate. 

Table 7.7-4 Sensitivity of Optimal Sequence and Schedule to Interest Rate 

3% Interest Rate 7% Interest Rate 12% Interest Rate 

Sequence Schedule Sequence Schedule Sequence Schedule 

2 1.4 2 1.4 2 1.4 

9 4.7 9 4.7 9 4.7 

3 6.2 3 6.2 3 6.2 

1 8.6 1 8.6 1 8.6 

5 10.8 5 10.8 5 10.8 

7 13.4 7 13.4 7 13.4 

4 14.9 4 14.9 4 14.9 

8 17.3 8 17.3 8 17.3 

6 18.8 6 18.8 6 18.8 

Total cost $18,338,800,606 Total cost $12,049,723,799 Total cost $10,995,199,180 
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Figure 7.7-3 shows how the objective function value (in terms of PV of total cost) decreases as the 

interest rate rises. 

 

Figure 7.7-3 Objective Value for Different Interest Rates 

 

7.7.2 Computation Time 

 

The computation time, is a major factor in determining the feasibility and efficiency of any 

optimization algorithm. In general, for a large scheduling problem, a huge computation time is 

required if a mesoscopic model such as CTM  is used model for project evaluations. Therefore, 

this section extensively investigates the sensitivity of computation time to different network 
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Problem size 
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investigation. In selection and scheduling projects, problem size is defined as the number of 

candidate projects for implementation. While increasing the problem size, the population size 

should also increase to guarantee sufficient exploration of the solution space. It should be noted 

that due to project interdependency, the computation time is also related to network configuration. 

More specifically, if the problem size is the same for different network sizes (i.e. number of nodes 

and links), the computation time needed to solve the problem will be different. However, in this 

section, a network with the same characteristics is tested in this section, and the only variable that 

changes is the problem size.  

 Table 7.7-5 and Figure 7.7-4 show the optimization results and the computation time for each 

problem size. It can be seen that the computation time increases exponentially as problem size 

grows. 

 

Figure 7.7-4 Computation time versus problem size 
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Table 7.7-5 Computation time 

Problem size 5 7 9 

# of generations 20 30 50 

Population size 15 20 25 

Computation time (s) 42,383 160,059 431,617 

 

CTM time interval 

The time interval (dt) is the time between two click ticks which is an important parameter that 

impacts the overall computation time. Each clock tick requires a specific set of calculations to be 

done for every cell and every link.  For large networks, this compares well with the number of 

calculations for an iteration of the static equilibrium traffic assignment model, which is 

proportional to the number of the destinations but grows supralinearly with the number of nodes 

in network. Figure 7.7-6 shows how the computation time changes when the time interval is 

increased. Basically, for a fixed number of simulation cycles (40 cycles), the set of calculations 

decreases as the interval time increases. The figure shows the computation time for 40 intersection 

cycles. Note that the optimization algorithm runs CTM numerous times for different sequences 

throughout different generations. Therefore, the time interval greatly effects the optimization 

computation time as well. In the case study example, the time interval was set to 5 seconds. 
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Figure 7.7-5 CTM Computation Time for Different Time Intervals 

 

Cell length 
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Figure 7.7-6 CTM Computation Time for Different Cell Lengths 

 

7.8 Statistical Test 
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probability of finding a solution better than the GA solution (1.204 ×1010 from Table 7.6-1) can 

be calculated using the Cumulative Distribution Function (CDF) of the Normal Distribution: 𝑝 =
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Figure 7.8-1 Objective function distribution of randomly generated solutions 
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Chapter 8 Conclusions and Recommendations 
 

8.1 Conclusion 

The goal of this study is to develop a general framework for selecting and scheduling interrelated 

alternatives. For this purpose, first, a simple traffic assignment and later a detailed Cell 

Transmission Model is developed to evaluate link and intersection improvements in a road 

network. With this model’s detailed evaluation of project interrelations, capital investment 

planning can be properly conducted. Further, a reliable and efficient search approach using a 

genetic algorithm to optimize the selection and sequence of interrelated projects is presented. The 

model development and study results are summarized below: 

 

8.1.1 Traffic assignment evaluation model 

 

In the first part of this study a simple traffic assignment model (Frank-Wolf) is developed to 

evaluate improvement alternatives. Although traffic assignment is a basic evaluation model, it is a 

simple and quick way to test different features the algorithm. First, a stochastic objective function 

is introduced to solve the problem under three demand growth scenarios. The study then 

investigates the merit of the stochastic optimization compared to the deterministic one. It is shown 

that by considering demand uncertainties we can substantially improve the resulting objective 

function.  Second, the model considers multiple improvements at each location. In fact, the 

algorithm selects potential locations for improvement and considers multiple improvement 

alternatives based on link conditions. For this purpose, a probabilistic procedure is introduced to 

select the optimal improvement at each location.  Third, the algorithm is further developed to 
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consider the possibility of adding new links in addition to expanding the capacities of existing 

links. Fourth, the model is further developed to account for vehicle operation and safety costs in 

addition to travel time costs. For this purpose, vehicle operating cost and safety cost functions are 

incorporated in the combined model. Their resulting fuel, tire, maintenance and repair costs, along 

with the cost of crashes in the system, are included in the objective function. 

 

8.1.2 Cell Transmission Model 

 

In the second part of this dissertation (chapters 6 and 7) a detailed Cell Transmission Model (CTM) 

is introduced and replaced the traffic assignment model. The goal of employing CTM is to 

effectively model traffic intersections and capture important traffic phenomena, such as queue 

build-up and dissipation, and backward propagation of congestion waves. The optimization model 

is further developed by considering intersection improvement alternatives in addition to link 

improvements and intersection delays in the objective function. Also, concurrent and precedence 

relation constraints are introduced in this section to restrict the relative implementation schedules 

between link and intersection improvements (i.e. intersection improvements should be scheduled 

simultaneously or prior to corresponding link improvements). The improved model is applied to a 

problem similar to that in the chapter 4. The optimized sequence and schedule, system 

performance, and sensitivity of results to important factors is provided in the rest of the study. 

 

8.1.3 Genetic Algorithm 

 

A genetic procedure performs numerous evaluations for the objective functions while exploring 

each generation. Especially with the CTM-based genetic search, problem size significantly affects 
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the solution space and required evaluation time. Thus, establishing the termination rule is as an 

important factor. However, either specifying the number of generations or tracing the value of the 

objective function for a fixed number of generations cannot guarantee achieving global optimum. 

Due to limited computational resources, it is impossible to employ the genetic search on the entire 

feasible region even by starting with a sizable population or an enormous number of generations. 

Therefore, setting the best genetic parameters is essential to avoid local optimums and approaching 

the global optimum as closely as possible. Thus, a major limitation of genetic search is that global 

optimality is almost never guaranteed, and it is challenging to assess the goodness of solutions 

obtained by evolutionary methods. Therefore, for large problems where no globally optimal 

solution can be guaranteed, the goodness of the search can be verified with statistical tests which 

draws distribution of sample solutions and estimates probabilities of finding better solutions.  

 

 

8.2 Applications 
 

Although road and intersection expansion projects are the focus of this study, the proposed 

methodology should be applicable to general cases involving more complex systems. In fact, GAs 

can be effectively combined with any appropriate evaluation tool (e.g. microscopic simulation, 

simulation approximates, queuing or neural networks) specific to the problem, to solve the 

planning and scheduling problem for a variety of interrelated alternatives. 

With a well-developed evaluation model, users can investigate the system according to their 

interests. For example, in case of congested urban networks, such as one presented in this study, 

CTM can be a good evaluation tool in assessing the system performance. The proposed CTM 

provides a good representation of the urban traffic with congested links and intersections. Any 
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analysis of urban network improvements and the related sensitivity analysis could be easily 

conducted through the CTM-based genetic process. Unlike simulation models which are expensive 

and time consuming, CTM assesses the overall system performance while considering realistic 

traffic conditions such as queuing forming and dissipation. Furthermore, the model can be 

modified in terms of objective function and constraints to fit different application preferences. 

 

8.3 Future Research 
 

This study develops an approach for solving a combinatorial problem of interrelated project 

sequencing and scheduling through CTM and genetic search. However, considerable scope is left 

for future research.  

• In addition to demand uncertainties, it would be interesting to explore supply uncertainties. 

In general, CTM, has a common assumption of a steady-state speed–density relationship 

which does not allow fluctuations around the equilibrium (nominal) fundamental flow–

density diagram, and adopts a number of deterministic parameters (e.g. free-flow speed, 

jam density, capacity, etc.). However, research and empirical studies on the fundamental 

flow–density diagram have revealed that the fundamental flow–density diagram admits 

large variations (Figure 8.3-1). Recent microscopic and mesoscopic modeling approaches 

such as the Stochastic Cell Transmission Model (SCTM) (Sumalee et.al, 2011), which is 

an extension to CTM, model and interpret variations in the fundamental diagram. Future 

studies can incorporate such models into the selecting and scheduling problem to consider 

both demand and supply uncertainties. 



137 

 

 

Figure 8.3-1 Variation in Fundamental Flow–Density Diagram 

 

• As discussed in the previous section, the proposed optimization approach based on CTM-

based genetic search requires burdensome computations of multiple generations. One way 

to tackle this problem is parallel processing. The main goal of parallel processing is to 

reduce the search time by using multiple processors concurrently. For a genetic algorithm, 

the fitness evaluation for individuals in the population are independent. Therefore, these 

tasks could be modeled as subtasks of the whole problem and different processors can be 

used concurrently. Integrating methods of parallel computing with the genetic algorithms 

and applying them in the project selection and scheduling problem remains a future task. 

• Problem specific genetic operators may significantly enhance the performance of GAs. 

GA parameters for project sequencing actually depend on network characteristics. A 

general rule for determining GA parameters cannot be conclusively determined from a 

single network analysis. More test examples are needed to investigate the characteristics 

of the solution algorithms. 



138 

 

• Incorporate a hybrid optimization process to reduce the computation time. In general, for 

assessing the overall system performance a quick and computationally efficient model 

such as a traffic assignment can be used rather than a detailed and cumbersome model. 

After identifying critical locations, a more sophisticated model such as CTM or simulation 

can be used to understand the detailed traffic behaviors.  

• Consider some more realistic characteristics, such changes over time at the same location, 

and traffic delays during construction. 

• Instead of assuming some pre-specified improvement projects, it is useful to optimize and 

design improvement projects at each location. In other words, in addition to project 

sequencing and scheduling at multiple locations, the model also optimizes and designs 

improvement projects at each location. 

• It is also desired to consider broader impacts such as travel time reliability, environmental 

effects and economic impacts in addition to the conventional direct impacts in the 

objective function. Future research may attempt to quantify such impacts and incorporate 

them in the optimization process. 
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Appendix 
 

This Appendix provides more detailed information about the Cell Transmission Model 

components applied to Sioux Falls network. The information and examples provided in this section 

could be helpful for application on other networks. 

A.1 CTM Link Table 
 

The following table shows the detailed cell information for each link. Each link is divided to 

homogenous cells which are numbered consecutively from the first to last cell. Each link also 

includes an input and output cell which accommodates the exogenous flow going in and out the 

network from. These cells are numbered after the last cell in the link. 

 

Table A.1-1 Cell Information for All Links 

Link 

number 
sat_rate 

input 

cell 

output 

cell 
first cell last cell 

number of 

cells 
out_link 

1 1.2 52 51 1 50 50 1 

2 1.2 88 87 53 86 34 50 

3 1.2 140 139 89 138 50 83 

4 1.2 173 172 141 171 31 132 

5 1.2 201 200 174 199 26 162 

6 1.2 238 237 202 236 35 187 

7 1.2 274 273 239 272 34 221 

8 1.2 302 301 275 300 26 254 

9 1.2 319 318 303 317 15 279 

10 1.2 343 342 320 341 22 293 

11 1.2 360 359 344 358 15 314 

12 1.2 384 383 361 382 22 328 

13 1.2 402 401 385 400 16 349 

14 1.2 426 425 403 424 22 364 

15 1.2 441 440 427 439 13 385 

16 1.2 474 473 442 472 31 397 

17 1.2 492 491 475 490 16 427 

18 1.2 512 511 493 510 18 442 

19 1.2 542 541 513 540 28 459 
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20 1.2 560 559 543 558 16 486 

21 1.2 580 579 561 578 18 501 

22 1.2 595 594 581 593 13 518 

23 1.2 625 624 596 623 28 530 

24 1.2 633 632 626 631 6 557 

25 1.2 651 650 634 649 16 562 

26 1.2 665 664 652 663 12 577 

27 1.2 683 682 666 681 16 588 

28 1.2 701 700 684 699 16 603 

29 1.2 709 708 702 707 6 618 

30 1.2 735 734 710 733 24 623 

31 1.2 766 765 736 764 29 646 

32 1.2 780 779 767 778 12 674 

33 1.2 795 794 781 793 13 685 

34 1.2 819 818 796 817 22 697 

35 1.2 850 849 820 848 29 718 

36 1.2 881 880 851 879 29 746 

37 1.2 918 917 882 916 35 774 

38 1.2 942 941 919 940 22 808 

39 1.2 973 972 943 971 29 829 

40 1.2 991 990 974 989 16 857 

41 1.2 1006 1005 992 1004 13 872 

42 1.2 1021 1020 1007 1019 13 884 

43 1.2 1039 1038 1022 1037 16 896 

44 1.2 1057 1056 1040 1055 16 911 

45 1.2 1077 1076 1058 1075 18 926 

46 1.2 1095 1094 1078 1093 16 943 

47 1.2 1113 1112 1096 1111 16 958 

48 1.2 1128 1127 1114 1126 13 973 

49 1.2 1136 1135 1129 1134 6 985 

50 1.2 1156 1155 1137 1154 18 990 

51 1.2 1167 1166 1157 1165 9 1007 

52 1.2 1175 1174 1168 1173 6 1015 

53 1.2 1190 1189 1176 1188 13 1020 

54 1.2 1229 1228 1191 1227 37 1032 

55 1.2 1249 1248 1230 1247 18 1068 

56 1.2 1267 1266 1250 1265 16 1085 

57 1.2 1285 1284 1268 1283 16 1100 

58 1.2 1296 1295 1286 1294 9 1115 

59 1.2 1317 1316 1297 1315 19 1123 

60 1.2 1356 1355 1318 1354 37 1141 

61 1.2 1379 1378 1357 1377 21 1177 

62 1.2 1397 1396 1380 1395 16 1197 

63 1.2 1414 1413 1398 1412 15 1212 

64 1.2 1435 1434 1415 1433 19 1226 
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65 1.2 1446 1445 1436 1444 9 1244 

66 1.2 1463 1462 1447 1461 15 1252 

67 1.2 1486 1485 1464 1484 21 1266 

68 1.2 1497 1496 1487 1495 9 1286 

69 1.2 1517 1516 1498 1515 18 1294 

70 1.2 1534 1533 1518 1532 15 1311 

71 1.2 1543 1542 1535 1541 7 1325 

72 1.2 1558 1557 1544 1556 13 1331 

73 1.2 1582 1581 1559 1580 22 1343 

74 1.2 1599 1598 1583 1597 15 1364 

75 1.2 1608 1607 1600 1606 7 1378 

 

A.2 Intersection CTM design 
 

In this section an example of a three-leg and four-leg intersection is provided. First, Table A.2-1 

shows the cell information including input, output and inner cell numbers for each intersection. 

Then an example of two-phase intersection is displayed. It is shown how links are set for East-

West and North-South phases. 

 

Table A.2-1 Cell Information for each Intersection 

Intersection 

Number 

Input-cells Output-cells Inner-cells 

1 [213,359] [362,977] [6361,6362] 

2 [574,707] [1,1785] [6363,6364] 

3 [822,974,1120] [1123,216,3522] [6365,6366,6367,6368] 

4 [1235,1300,1396] [1399,710,3172] [6369,6370,6371,6372] 

5 [1461,1557,1628] [1631,1238,2541] [6373,6374,6375,6376] 

6 [1724,1782,1915] [1464,577,2335] [6377,6378,6379,6380] 

7 [1986,2063] [2187,4890] [6381,6382] 

8 [2184,2255,2332,2390] [1918,2393,1727,4530] [6383,6384,6385,6386,6387,6388] 

9 [2511,2538,2609] [2066,1560,2806] [6389,6390,6391,6392] 

10 [2661,2732,2803,2830,2932] [4374,3062,2514,4303] [6393,6394,6395,6396,6397,6398] 

11 [3059,3111,3169,3265] [2612,3268,1303,4026] [6399,6400,6401,6402,6403,6404] 

12 [3392,3519,3671] [2935,825,3770] [6405,6406,6407,6408] 

13 [3767,3894] [6167,3395] [6409,6410] 

14 [3965,4023,4081] [4084,3114,6109] [6411,6412,6413,6414] 

15 [4152,4223,4300,4371] [4967,3897,2735,5934] [6415,6416,6417,6418,6419,6420] 

16 [4442,4500,4527,4604] [4674,2664,2258,4647] [6421,6422,6423,6424,6425,6426] 
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17 [4644,4671] [4503,5109,2833] [6427,6428] 

18 [4729,4887,4964] [4445,1989,5232] [6429,6430,6431,6432] 

19 [5035,5106,5146] [4155,4607,5480] [6433,6434,6435,6436] 

20 [5229,5387,5477,5548] [4732,5616,5038,5804] [6437,6438,6439,6440,6441,6442] 

21 [5613,5696,5736] [5149,6263,5894] [6443,6444,6445,6446] 

22 [5801,5891,5931,6008] [5390,6011,4226,5699] [6447,6448,6449,6450,6451,6452] 

23 [6073,6106,6164] [5739,3968,6328] [6453,6454,6455,6456] 

24 [6260,6325,6358] [5551,3674,6076] [6457,6458,6459,6460] 

 

Example of a three-leg intersection (intersection at node 3) is provided below. In phase 1, there 

are 2 inner cells, and 3 links (1 diverge + 2 normal links) which provides left-turn and right-turn 

movements. In phase 2, there are 4 inner cells, and 5 links (2 diverge + 1 merge + 2 normal links) 

which provides left-turn through and right-turn movements. 

 

 

Figure A.2-1 Example of a Three-leg Intersection Design (Phase 1) 
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Figure A.2-2 Example of a Three-leg Intersection Design (Phase 2) 

 

Example of a four-leg intersection (intersection at node 8) is provided below. In both phases, there 

are 6 inner cells, and 6 links (4 diverge + 2 merge links) which provides which provides left-turn 

through and right-turn movements. 
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Figure A.2-3 Example of a Four-leg Intersection Design (phase 1) 
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Figure A.2-4 Example of a Four-leg Intersection Design (phase 2) 
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A.3 Intersection delay subject to demand change 
 

Figure A.3-1 and Figure A.3-2 demonstrate how the intersection delay increases as demand grows. 

In these figures demand change is expressed as percentages of the original demand.  

 

Figure A.3-1 Intersection Delay Change Based on Different Demand Levels (1-12) 
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Figure A.3-2 Intersection Delay Change Based on Different Demand Levels (13-24) 
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Figure A.3-3 Total Intersection Delay for Different Demand Levels 

 

A.4 Link Density subject to demand change 
 

Figure A.3-1 and Figure A.3-2 demonstrate how the intersection delay increases as demand grows. 

In these figures demand changes are expressed as percentages of the original demand.  
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Figure A.4-1 Link Density Change Based on Different Demand Levels (1-18) 
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Figure A.4-2 Link Density Change Based on Different Demand Levels (19-36) 
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Figure A.4-3 Link Density Change Based on Different Demand Levels (37-54) 
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Figure A.4-4 Link Density Change Based on Different Demand Levels (55-75) 
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