
UMIACS-TR-93-133 December, 1992CS-TR-3192 Revised April, 1993De�nitions of Dependence DistanceWilliam PughInstitute for Advanced Computer StudiesDept. of Computer ScienceUniv. of Maryland, College Park, MD 20742AbstractData dependence distance is widely used to characterize data dependences in ad-vanced optimizing compilers. The standard de�nition of dependence distance assumesthat loops are normalized (have constant lower bounds and a step of 1); there is nota commonly accepted de�nition for unnormalized loops. We have identi�ed several po-tential de�nitions, all of which give the same answer for normalized loops. There are anumber of subtleties involved in choosing between these de�nitions, and no one de�nitionis suitable for all applications.
This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.



1 IntroductionData dependence distance vectors are used to describe loop carried data dependences. Fornormalized loops, it simply describes the di�erence in the loop variables between the sourceand sink of the dependence. The dependence distance can be used to derive informationsuch which loop(s) carries the dependence and whether or not the dependence preventsloop interchange. This paper assumes some familiarity with data dependences and datadependence distances. A good overview is provided by [ZC91].Let s be an array reference contained in several loops. We use s(i) to refer to the iterationof s when the loop variables of the surrounding loops have the value i (i is a vector). Assumethere is a dependence from s(i) to s0(i0) (where s0 is an array reference, possibly the sameas s). Let t be a vector of the loop trip counters corresponding to s(i) (a trip count startsat 1 whenever the loop is started or re-started and is incremented by one in each successiveiteration) and let t0 correspond to s0(i0). We assume there are c common loops around s ands0. Let step be a vector of the step values for the common loops that surround both s ands0. If i1:::c = i01:::c, the dependence is loop independent. Otherwise, the dependence is carriedby the loop minfpj1 � p � c ^ ip 6= i0pg. We have identi�ed four potential de�nitionsof dependence distance (in the case of normalized loops, all four of these de�nitions areequivalent):a The dependence distance is i01:::c � i1:::c.b The dependence distance is (i01:::c � i1:::c)=sign(step1:::c).c The dependence distance is (i01:::c � i1:::c)=step1:::c.d The dependence distance is t01:::c� t1:::c. This de�nition corresponds to normalizing all theloops to have constant lower bounds and a step of 1.Usually, there is a dependence from several iterations of s to several iterations of s0. Inthis case, dependence distance from s to s0 is described by the union of the dependencedistance for each dependent pair. This information can be summarized by the possible signsof the dependence distance or by the range of possible dependence distances.Figure 1 shows several code fragments, and all of the dependence distances for thatfragment, based on each of these de�nitions.2 De�nition PropertiesThese de�nitions each possess certain properties, some of which are listed in Figure 2. Here,we discuss some of these properties in more detail.1



Iteration space Trip count Dependence Distance Def.# Code Fragment i i0 t t0 a b c d1 for i1 := 1 to 2 doa[i1]:= ... a[i1-1] ... (1) (2) (1) (2) (1) (1) (1) (1)2 for i1 := 0 to 2 by 2 doa[i1] := ... a[i1-2] ... (0) (2) (1) (2) (2) (2) (1) (1)3 for i1 := 2 to 0 by -2 doa[i1] := ... a[i1+2] ... (2) (0) (1) (2) (-2) (2) (1) (1)4 for i1 := 1 to 2 dofor i2 := i1 to 2 doa[i1, i2] := ... a[i1-1, i2] ... (1,2) (2,2) (1,2) (2,1) (1,0) (1,0) (1,0) (1,-1)5 for i1 := 0 to 1 dofor i2 := i1 to 3 by 3 doa[i1, i2] := ... a[i1-1, i2+2] ... (0,3) (1,1) (1,2) (2,1) (1,-2) (1,-2) (1,�23 ) (1,-1)for i1 := 1 to 3 dofor i2 := max(1, i1-1) to min(2, i1) do (1,1) (2,1) (1,1) (2,1) (1,0) (1,0) (1,0) (1,0)6 a[i1, i2] := ... a[i1-1, i2] ... (2,2) (3,2) (2,2) (3,1) (1,0) (1,0) (1,0) (1,-1)Figure 1: Dependence distance, according to di�erent de�nitions, for several examplesProperty a b c dDependence distances are always lexicographically positive p p pDependence distances are always integral p p pDirectly usable for instruction scheduling p pSkewing the loops skews the dependence distances p p pInterchanging loops interchanges the dependence distances p p pFigure 2: Dependence distance de�nitions properties2



Some transformations, such as loop interchange, depend on the dependence direction(forward, backward, or independent) in each loop. Often, the dependence direction is equatedwith the sign (positive, negative or zero) of the dependence distance. For normalized loops,as well as de�nitions b, c and d, this equivalence holds. However, if a is used, the dependencedirection must be determined from both the sign of the dependence distance and the sign ofthe step.Dependences must be chronological forward: from one array s reference to a later arrayreference s0. A dependence that is chronological backward must be reversed to represent adependence from s0 to s. For de�nitions b, c and d, a dependence is chronologically forwardif and only if the dependence distance is lexicographically positive. For de�nition a, thesign of the loop steps needs to be taken into account when determining which dependencesare chronologically forward. (Alternatively, whether or not a dependence is chronologicallyforward can be determined from the direction vector, as described above).If dependence distances are not guaranteed to be integral, it is more di�cult to repre-sent dependence distances in a way that they can be manipulated e�ciently and accurately.Alternatively, we could retain the use of integers by marking non-integral distances as un-known (the only known examples that produce non-integral distances using de�nition c arearti�cially contrived).Some loop transformations, such as loop skewing, loop interchange and unimodular trans-formations [Ban90], are most naturally treated as transformations of the iteration space ofthe loops. Having information about the dependence in terms of the iteration space makesit easier to determine when these transformations are legal and what their e�ects are. Usingde�nition d, skewing has no e�ect on the dependence distance, making it di�cult to deter-mine how to skew a loop in order to enable loop interchange (it might be possible to use acombined skew/interchange transformation).For applications such as instruction scheduling and perhaps synchronization, it is im-portant to know the number of iterations of the loop carrying the dependence between thesource and sink of the dependence. This would suggest the use of de�nition c or d. However,this value can also be calculated from the distance as calculated by de�nition a or b and thestep of the loop that carries the dependence. It is unclear if the trip-count distance for loopsinside of the loop carrying the dependence is useful when doing instruction scheduling (thisvalue cannot always be calculated from de�nitions a, b or c).3 Potential problems and errorsThere are at least two potential traps regarding dependence distance. One is that all partsof a system must communicate consistently with regards to what the dependence distanceis. This problem occurred in Parascope: when programs were sent to PFC for analysis, the3



returned analysis was in terms of de�nition d, but was interpreted as de�nition c.A number of systems, including the KAP and Parafrase-2 compilers (from Kuck andAssociates and from Univ. of Illinois) and the Parascope programming environment (fromRice University) all reported that there is no dependence in Example 5. This is apparentlybecause they all attempt to short-cut the GCD test by simply checking if the dependencedistance is integral. Example 5 shows that this can lead to false negatives if de�nition c isused. All three of these systems also found a dependence from c[2*i] to c[2*p+1] (wherep had an unknown value), which a correct implementation of the GCD test would haverecognized as impossible. We have con�rmed that Parascope uses de�nition c. This bug hasbeen �xed in KAP, and may be �xed in subsequent releases of Parafrase and Parascope.4 ConclusionIn any system, dependence distance may be used in several contexts. In some of these con-texts, de�nition d might be the appropriate de�nition, in others, one of the other de�nitionsmay be more appropriate. People have been able to avoid deciding whether they need thetrip-count distance (d) or some version of the iteration-space distance (a � c), since all ofthese de�nitions are the same for normalized loops. Plugging any one de�nition into allexisting uses will probably break things. Careful thought needs to be given as to exactlywhat de�nition of dependence distance is needed in any application, and several de�nitionsmay be needed within a single system.This unfortunately leaves us with a situation where the term \dependence distance" hasseveral possible meanings. We introduce the new term \dependence di�erence" for the valuecalculated by de�nition a. Within our work, we �nd this value easy to calculate, has a cleande�nition, and we can easily change our system to work with dependence direction anddi�erence rather than dependence distance. De�nition c might require the fewest changes toexisting systems, assuming fractional dependence distances are handled by marking them asunknown distances. However, it may not be the best dependence abstraction on which tobuild future work.Whatever choice is made, careful thought needs to be given as to how the system needsto be adapted so as to work with whichever choice is made.Of course, another approach is to abandon dependence distance all together. A numberof researchers have noted that dependence distance and directions are inadequate depen-dence abstractions for some transformations [Wol91, Pug91, Fea91, MAL93]. However, noalternative has yet gained acceptance. 4



References[Ban90] U. Banerjee. Unimodular transformations of double loops. In Proc. of the 3rdWorkshop on Programming Languages and Compilers for Parallel Computing,pages 192{219, Irvine, CA, August 1990.[Fea91] Paul Feautrier. Data
ow analysis of array and scalar references. InternationalJournal of Parallel Programming, 20(1), February 1991.[MAL93] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array data-
owanalysis and its use in array privatization. In ACM '93 Conf. on Principles ofProgramming Languages, January 1993.[Pug91] William Pugh. Uniform techniques for loop optimization. In 1991 InternationalConference on Supercomputing, pages 341{352, Cologne, Germany, June 1991.[Wol91] Michael Wolfe. Experiences with data dependence abstractions. In Proc. of the1991 International Conference on Supercomputing, pages 321{329, June 1991.[ZC91] Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Com-puters. ACM Press, 1991.

5


