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PREFACE

The CONSOLE tandem is a tool for optimization-based design of a large class of systems.
The essential requirements are that a simulator be available for evaluating the performance
of instances of the system under consideration and that the parameters to be optimally
adjusted are allowed to take on any real value in a given range. To date, CONSOLE has
been used on applications as diverse as design of various circuits, design of controllers for
a flexible arm, a high performance aircraft, a robotic manipulator, or determination of

optimal flow rate and temperature profile for a copolymerization reactor.

CONSOLE has been developed on Unix systems. While it has already been ported to
VMS, its use on Unix systems is strongly encouraged, as the Unix version is subjected to
intensive testing at the University of Maryland, and as certain current or future features
(e.g., graphics related) will not be available on other versions. In this manual, Unix specific
features are often not explicitly mentioned as such and this may at times be confusing for
the non Unix user.

This manual is essentially self-contained, although the serious CONSOLE user would
be well advised to consult at least reference [1]. Some familiarity with the C language is
assumed throughout and assistance of a local C guru may be helpful when dealing with the
question of interfacing CONSOLE with simulators.

The manual is organized as follows. In Chapter 1, the ideas and principles upon which
CONSOLE is constructed are outlined and the design methodology underlying CONSOLE is
sketched. Chapter 2 introduces the novice user to CONSOLE by way of a simple tutorial
example. This chapter is strongly recommended to new users as it leads them step by step
through a CONSOLE session. Chapter 3 is entirely devoted to CONVERT. It includes a
thorough description of the different data types, assignments and commands that form the
CONVERT syntax. Chapter 4 discusses SOLVE. The essential features of the optimization
algorithm are outlined and the operation of SOLVE is discussed. Special attention is given
to the interactive capabilities of SOLVE, in particular the Pcomb display. In Chapter 5,
the question of using an interface between SOLVE and simulators of the user’s choice is
discussed. A general structure for such an interace is given. Finally, Chapter 6 presents
two design examples. Appendices A and B consist of reference manuals, for CONVERT and

SOLVE respectively.



Development of the CONSOLE package and preparation of this User’s Manual has
been a team effort. Many of the ideas that led to the conception and implementation of
CONSOLE came out of our daily experience with the Berkeley DELIGHT system and its
offshoot DELIGHT.MaryLin, and our continuous interaction with Dr. W.T. Nye. We wish
to express deep gratitude to Bill for this. Central to the operation of SOLVE (one of the
components of the CONSOLE tandem) is the technique of dynamic loading. Chris Torek
introduced us to this technique and assisted us many times with his expert advice. We
address him many thanks. Several undergraduate and graduate students at the Chemical
and Electrical Engineering Departments of the University of Maryland spent long hours
trying out preliminary versions of CONSOLE and provided us with invaluable feedback. Of
particular help here were Digendra Butala, Xin Chen and Tam Nguyen. All are gratefully
acknowledged. Many thanks are due to Dr. E. Panier who thoroughly proofread an early

version of this manual and pointed out many potential sources of confusion.
CONSOLE Version 1.1 invokes several pieces of codes written elsewhere. This includes

the xorral routine written by C. Lemaréchal of INRIA (computation of the projection of
the origin on a polytope), the QPSOL quadratic programming solver developed at Stanford
University [2], as well as many short pieces of code (in particular for symbol table look-up)
borrowed from the book “The C Programming Language” by B.W. Kernighan and D.M.
Ritchie. Also, at several places, CONSOLE code is strongly inspired from routines due
to others. This includes our dynamic loader for which we borrowed ideas from a program
written by P. Powell at the University of Waterloo, as well as CONSOLE’s graphics routines,
patterned after routines from the DELIGHT graphics library written by W.T. Nye at the
University of California, Berkeley. This manual was typeset using D. Knuth’s TgX system
and references were organized by J. Alexander’s Tib bibliographic preprocessor to TEX.

Finally, the development of the CONSOLE package and the preparation of this manual
would not have been possible without the support of the National Science Foundation
(grants No. DMC-84-20740 and DMC-88-15996 and NSF’s Engineering Research Center
Program No. NSFD-CDR-88-03012) and that of the Westinghouse Corporation.

Main Enhancements in Version 1.1

(1) New, much more powerful optimization algorithm (see Section 4.2).

(if) New commands in CONVERT (global) and in SOLVE (algo, freeze/unfreeze, goutput).
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Scope

CONSOLE is a software tandem for interactive, optimization-based design. It has been

developed (and is under further development) at the University of Maryland, College Park.

The most challenging task when designing a complex engineering system is that of
coming up with an appropriate system structure. This task calls extensively upon the en-
gineer’s ingenuity, creativity, intuition and experience. After a structure has been (maybe
temporarily) selected, it remains to determine the best value of a number of design pa-
rameters. The engineer’s input is still essential here, as multiple tradeoffs are bound to
appear. However, except in the simplest cases, achieving anything close to optimal would
be impossible without the support of numerical optimization. Providing such support
while emphasizing tradeoff exploration through man-machine interaction is the purpose of

interactive optimization-based design packages such as CONSOLE.

As suggested above, design problems typically involve several competing objectives.
Also, while some design specifications must be met imperatively, others are amenable to
tradeoffs. Another typical aspect of optimization problems arising from design problems is
that it is generally impossible or at least impractical for the designer to exactly characterize
at the outset what (s)he means by an optimal design. Rather, a congenial environment
would allow the designer to refine his characterization of optimality as suboptimal designs
are obtained. A design methodology was recently developed, based on these considerations
[1]. The CONSOLE package is based on this methodology.

A designer using an optimization-based design package typically goes through two
phases while designing a system. In the first phase, the designer formulates the problem;
some time is spent checking and debugging this problem formulation. During the second
phase, solution of the optimization problem is attempted. These two phases have different
characters. The first phase is comparable to writing a classic C or Fortran program and

debugging it. During the second phase the user-machine interaction is more thorough and
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INTRODUCTION

qualitatively different, typically involving graphics. Accordingly, CONSOLE is composed of
two main programs: CONVERT and SOLVE. CONVERT is a batch program. It takes as
input the Problem Description File — a file containing a description of the optimization
problem to be solved — and compiles it into two binary files. After reading in these two
files, SOLVE solves the optimization problem in close interaction with the designer, allowing
him /her to explore design tradeoffs.

The range of problems that can be solved efficiently using a CAD tool depends very
much on the ability of this tool to be interfaced with arbitrary simulators. For instance,
the design of a control system will, in general, rely upon the characteristics of the plant,
and therefore at least an approximate model of the plant under study has to be made
available to the CAD tool. The CONSOLE tandem allows for an easy interfacing of almost
any simulator the user has available.

The following are among the main features of the CONSOLE tandem :
* The problem description is closely related to the character of a design problem.
* The problem description syntax is strict, but not hard to use. The C language is used

to describe objectives, functional objectives, constraints and functional constraints.

The Problem Description File is easy to read and understand.
* CONVERT allows easy debugging of the Problem Description File.

* SOLVE is interactive, with short and clearly defined commands providing efficient com-

munication between the program and the user.

* Interactive graphics provide the user with easy-to-interpret information on the current
design.

* Typically, one or more system simulators are invoked in the Problem Description File.
Essentially, any simulator can be used by the designer without complicated procedures
to interface it with SOLVE. Building in a simulator is not more difficult than linking
a program.

Figure 1 illustrates the structure of CONSOLE. The Problem Description File is the
input to CONVERT, which checks for all possible syntax errors and some logic errors and
then generates two files. One file is a data file which contains, among other things, the
names of design parameters and specifications, as well as good and bad values or curves to

be used for tradeoff exploration (see below). The other file is an object file. It contains a
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compiled version of the various specifications (objectives, functional ob jectives, constraints

and functional constraints) . Both of these files are input to SOLVE, together with any

object files for a simulator (or simulators) the user wishes to use. SOLVE then iterates

together with the user to obtain a solution with maximum or sufficient satisfaction.

SYSTEM DESCRIPTION FILE

PROBLEM DESCRIPTION FILE

SIMULATOR }

Y

CONVERT )

TWO BINARY FILES

{ SOLVE

~ 7

OPTIMAL SOLUTION

Figure 1: Structure of CONSOLE CAD tandem

1.2 Problem Description

In an attempt to better represent real world design problems, the methodology pro-

posed in [1] allows for three qualitatively different types of design specifications. An
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objective is a specification of a quantity that should be minimized or maximized. Typ-
ically multiple competing objectives are present. A hard constraint is a specification of a
quantity that must achieve a specified threshold, or the corresponding design has no or
little value. A soft constraint is a specification of a quantity that should achieve or at
least approach a specified threshold, i.e., should be minimized or maximized as long as
this threshold is not achieved. Soft constraints can be thought of as intermediate between
objectives and hard constraints. A precise meaning is then given to the optimization prob-
lem by means of good and bad values assigned by the designer to each objective and soft
constraint, according to the following uniform satisfaction/dissatisfaction rule: having any
of the various objectives or soft constraints achieve its corresponding good value should
provide the same level of satisfaction to the designer, while having any of them achieve its
bad value should provide the same level of dissatisfaction. Also, the good value of a soft
constraint must be the corresponding target value. Each objective and soft constraint will

later be scaled by SOLVE using its good and bad values according to the formula

raw_value — good_value

scaled_value = bad_value — good_value ’

so that achieving the good value will yield a scaled value of 0 while achieving the bad value
will yield a scaled value of 1. For possible use in phase 1 (see below) where the maximum
hard constraint violation is forced to decrease, hard constraints are also assigned good
values (which are the threshold values) and bad values (which must be consistent across
hard constraints). The only exception is that of hard bounds on the allowable values of
individual design parameters. For these, no good and bad values need be specified, as there
is little technical difficulty in keeping them satisfied throughout the optimization process.
The resulting optimization problem is as follows:
minimize obji(z) Vk

x
subject to soft;(z) <0 Vi

hard;(z) <0 Vy
hard_bound,(z) <0 V¢

(P)

where obj, soft;, hard; are now scaled values of objectives, soft constraints, and hard

constraints (except hard bounds), respectively and where hard_bound, represent the hard
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bound type constraints. Problem (P) is then assigned three different meanings, corre-
sponding to three different cases (or phases) according to feasibility or infeasibility of z
with respect to hard and soft constraints.
Phase 1: not all hard constraints are satisfied, (P) takes the form
minimize max hard;(z)
x J
subject to hard bound,(z) <0 W/
Phase 2: all hard constraints are satisfied. Not all (scaled) objectives and soft constraints
are nonpositive, (P) takes the form
minimize max {obji(z),soft;(z)}
x k,i
subject to hard;(z) <0 Vj
hard_bounde(z) <0 V¢

Phase 3: all hard constraints are satisfied and all (scaled) objectives and soft constraints
are nonpositive; (P) takes the form
minimize max obj(z)

z k
subject to soft;(z) <0 Vi

hard;(z) <0 Vj
hard bound,(z) <0 V¢

Typically most of the optimization run and user interaction (see below) will take place in
phase 2 or 3.

To keep the exposition simple, we have so far left out the question of functional spec-
ifications, i.e., functional objectives and functional constraints. These are specifications
according to which some quantity which depend on some free parameter (e.g., time or
frequency) must be made small or large for all values of this parameter. Such are, e.g.,
specifications on some time or frequency response of a dynamical system. Similar to or-
dinary (non-functional) specifications, these can be objectives, hard constraints or soft
constraints. They are normalized using user specified good and bad curves (i.e., functions

of the free parameter), according to the formula (w represents the free parameter)

raw_value(w) — good_value(w)

scaled.valued(w) = bad_value(w) — good_value(w)
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To complete this overview of the problem formulation, it remains to mention the
concept of nominal variation. For each design parameter, the designer is requested to
provide, besides an initial guess, a quantity indicating his degree of confidence in this guess,
1.e., how close he believes it may be away from the optimal value. This is the purpose of the
nominal variation, which should be selected according to the uniform parameter influence
rule: a modification of any design parameter by an amount equal to its nominal variation
should influence the most binding objectives and constraints to roughly the same degree.
Admittedly, this rule is impractical. Thus it is suggested to choose as nominal variation
the difference (in absolute value) between the initial guess and the next value the designer
would try if he had to proceed ‘by hand’. The nominal variations are used for the initial

scaling of the parameter space according to the formula

raw_value

scaled_value = - —
nominal_variation

Thus the penalty for an improper choice of the nominal variation is slower initial progress
of the optimization process. If no nominal variation is provided, the default value of 1 (no

scaling) will be used.

1.3 Interactive Solution

When dealing with a nontrivial problem, it cannot be hoped that the set of good
and bad values and curves provided by the designer will be such that the optimal solution
obtained by the optimization process (be it in phase 2 or in phase 3) be the closest to
the designer’s aspirations. Thus typically the designer will want to interactively modify
some of the good and bad values or curves, either to make them more realistic in view of
the limitations just encountered, or to either tighten or relax one specification or another
in order to alter the tradeoff solution. Such interaction is an essential component of the
methodology of [1](see also [3]). To aid him/her in his/her tradeoff exploration, information
is conveyed to the designer in numerical and graphical form, concerning the performance
of the current design (Pcomb [1]).

Above, we have outlined the design methodology proposed in [1] to the extent needed
for a basic understanding of CONSOLE; the reader is encouraged to consult [1] to get a

better feel for the motivation and implications of this methodology.
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CHAPTER 2

A TUTORIAL EXAMPLE

2.1 Introduction

Let us begin with finding a solution for a simple nonlinear programming example. OQur
aim is to show how to describe the design problem in the Problem Description File, how to
invoke CONVERT to translate the Problem Description File into two binary files, and how
to invoke SOLVE to perform optimization interactively, and obtain a local optimal solution.
The discussion will be kept simple and will not go into too many details so that a general
picture of the design procedure using the CONSOLE tandem can be grasped. The user is

strongly encouraged to run this example and to try out various modifications.

As pointed out in Chapter 1, the CONSOLE tandem can be used for design of a broad
class of engineering systems, provided simulators are available. However in the present
example, no simulator is necessary. In fact, due to the simplicity of this example, the

simulator is actually contained in the Problem Description File. This point will become

clear In a moment.

2.2 Example: A Simple Nonlinear Programming Problem

Consider the two-variable constraint optimization problem
minimize (z —1)*+ (y —2)?
T, Y
subject to x>0
r+y<1

and suppose that x > 0 is a hard constraint while 4+ y < 1 is soft with, as good value,
the given target value of 1, and with a bad value of 2 (see Section 1.2). For the objective,
assume a good value of 1 and a bad value of 4. Finally, suppose that our best a priori guess

is z = 5 and y = 10, to be used as initial values for the optimization process.

Problem Description

A suitable Problem Description File for the given problem is as follows (the numbers

o
-
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A TUTORIAL EXAMPLE

at the end of each line are used for the purpose of explanation only; they do not actually

appear in the Problem Description File)

/* Solving a nonlinear programming  */ 1
/* problem using the CONSOLE tandem. */ 2
3

design_parameter x init=56 min=0 4
design_parameter y init=10 5
6

objective 'quadratic' 7
minimize { 8
import x, ¥; 9
return (x-1)*(x-1)+(y-2)*(y-2); 10

3 11
good_value=1 12
bad_value=4 13

14

constraint 'linear" soft 15
{ dimport x, y; 16
return xty; 17

¥ 18

<= good_value=1 19
bad_value=2 20

The above consists of four sections.

1. CONVERT follows the ‘C’ rule that any text between ‘/*’ and ‘x/’ is treated as a
comment. Comments can span more than a line (the “*/’ and ‘/*’ at the end of line 1
and at the beginning of line 2 are used here for mere esthetic reasons).

2. Design parameters are declared on lines 4 and 5.* For instance, line 4 declares z as
a design parameter, assigns 5 as its initial value and indicates that the value 0 is a
hard lower bound.¥ An expression such as ‘min =[1,0] instead of ‘min=0’ would have
meant a soft lower bound with good and bad values of 1 and 0 respectively (good value
comes first); ‘max’ could have been used similarly, alone or in conjunction with ‘min’.
For constraints that are not simple bounds on design parameter values, see 4 below.

3. Lines 7 through 13 show how a simple objective function is declared. First, a name
(quoted string) is assigned to the objective. This name will be of great help later on, in

the interactive phase (SOLVE). Then the objective function is specified, between curly

* Although, conceptually, such declarations may be unnecessary in some cases (except for the initial
guess), they are mandatory in CONVERT, following the ‘strong typing’ philosophy.
* As pointed out in Section 1.2, hard parameter bounds are forced to be satisfied throughout the opti-

mization process, so that good and bad values are unnecessary.
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brackets, following the key word ‘minimize’ (alternatively, ‘maximize’ could be used).
The code between the curly brackets is ‘C’ code, except for the ‘import’ statement
indicating that = and y are the identifiers declared earlier, outside the braces (in this
case, design parameters). This pseudo-C code must include a return statement assign-
ing a value to the objective. The assignments on lines 12 and 13 are self-explanatory.
Code similar to that of lines 7 to 13 should be included for each of possibly many
objectives.

. Finally, the remaining constraint (not a simple bound on a design parameter) is spec-
ified on lines 15 to 20. Again, a name is assigned (quoted string on line 15), this time
followed by the keyword ‘soft’ indicating a soft constraint (‘hard’ could have been used
instead). Lines 16 to 20 follow a syntax similar to that of lines 8 to 13, except for the
absence of the keyword ‘minimize’ and the presence of the operator ‘<=’ (could have

been ‘>=") on line 19.

Let us assume that the Problem Description File has name gp. The next step is to invoke

CONVERT by typing

convert qp

A message similar to the following appears on the terminal

Welcome to CONVERT, Version 1.1 (Released 6/15/90)

Copyright (c) 1988, 1990
by
Michael K.H. Fan Andre L. Tits Jian Zhou
Li-Sheng Wang Jan Koninckx
A1l Rights Reserved.

[processing gpl
[compiling gp.cl]
[writing qp.d]

The bottom three lines (in brackets) correspond to three successive operations performed

by CONVERT. Each of these lines appears on the screen at the start of the correspond-

ing operation. First CONVERT generates a C routine, gp.c, containing the definitions of

objective and constraint functions. The main body of this routine consists of the various

pseudo-C code portions of gp. The import statements are appropriately compiled into

formal arguments of the C routine and suitable heading and tailing parts are included.

CONSOLE - A CAD Tandem for Optimization-Based Design
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After gp.c has been generated, CONVERT invokes the C compiler to generate the object file
gp.o. If no error has been detected, the file gp.c is removed. Finally, CONVERT generates
a binary data file, gp.d, containing information such as names, initial values and bounds of
design parameters, as well as names and good and bad values of objectives and constraints.

If any error is detected, CONVERT reports the corresponding file name and line number

and aborts.

Problem Solution

Once a Problem Description File has been processed successfully by CONVERT, the

next step then is to invoke SOLVE by typing

solve qp

to perform optimization interactively. A message similar to the following appears on the

terminal.

Welcome to SOLVE, Version 1.1 (Released 6/15/90)

Copyright (c) 1988, 1990
by
Michael K.H. Fan Andre L. Tits Jian Zhou
Li-Sheng Wang Jan Koninckx
A1l Rights Reserved.

[loading/reading qp.ol]

{reading qp.d]

[calling simulator initialization (if any)]
[calling problem initialization (if any)]

type "help" for help
type "help info" for information

type "help news" for local news

<0>

Similar to CONVERT, the lines in brackets correspond to successive operations performed
by SOLVE. First SOLVE invokes the Unix loader to load gp.o to a temporary file created
in the directory ‘/tmp’ and then reads the resulting file into memory if there is no error
during the loading step. This process is called dynamic loading or incremental loading.
SOLVE then reads in the binary data file gp.d. Following that, SOLVE would perform the
simulator initialization if a routine named simlat had been given to SOLVE (see Chapter

5) and would perform the problem initialization if it had been declared in the Problem

2.4 CONSOLE - A CAD Tandem for Optimization-Based Design
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Description File (see Chapter 3) (neither actually occurs in the present case). SOLVE then
prints out the information on how to get the on-line help for the use of SOLVE; on how
to obtain the CONSOLE package; and on how to read local news if there is any. Finally,
SOLVE gives the prompt ‘<0>’ which indicates that it is ready to receive commands from
the user to perform optimization.

A typical interactive session could be as follows. First the user types

identify

and gets the response

PROBLEM: qp
2 Design Parameter(s)
1 Objective(s)
1 Constraint(s)

<0>

which gives information on the problem being solved. The command

print

prompts the output

Name Value Variation wrt O Prev Iter=0
x 5.00000e+00 1.0e+00

y 1.00000e+01 1.0e+00

<0>

indicating the current (initial) value of the design parameters and the corresponding nom-
inal variations. To get a detailed explanation of the command print, the user can invoke

the on-line manual by typing

help print

while typing

help

gives general information of the on-line manual. The purpose of the session being to solve

the optimization problem, the user may then type

run 2

o
[
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requesting that 2 iterations of the optimization algorithm be executed. The new prompt

<2>

indicates that the first two iterations have been completed. Typing

print

displays the new value of the design parameters (at iteration 2), the percentage change
of design parameters with respect to iteration 0 (initial values) and previous iteration

(iteration 1 in this case), respectively

Name Value Variation wrt O Prev Iter=2
x 0.00000e+00 1.0e+00 -100% -100%

y 1.64042e+00 1.0e+00 -83%  -T7Y%

<2>

Here for example, design parameter y at iteration 2 has value 1.64042, which is 83% below
its initial value (10.0) and 77% below its value at the previous iteration (iteration 1). At

this time one could issue the command

pcomb

which prompts the output

Pcomb (Iter= 2) (Phase 2) (MAX_COST_SOFT= .640424)

SPECIFICATION PRESENT GOOD G B BAD
01 quadratic 1.13e+00 1.00e+00 ======z====x% | 4.00e+00
C1 linear 1.64e+00 1.00e+00 =================x% | 2.00e+00

The pcomb command displays some relevant information for the current iteration (it stands
for performance comb and is borrowed from [1,4]). Among other things, it indicates the
current phase number in the optimization algorithm (Phase 2); the maximal scaled value of
objectives and soft constraints (MAX_COST_SOFT= 0.640424); the names (quadratic and linear),
present values (1.13+00 and 1.64+00), and good (1.00e+00 and 1.00e+00) and bad (4.00e+00
and 2.00e+00) values of objectives and soft constraints at the current iteration. Finally, it
graphically displays the scaled values of all specifications to help the user quickly assess
the current design (see Section 4.4 and Appendix B).

Commands print and pcomb can be used as arguments of the command run. For

instance, typing

2.6 CONSOLE - A CAD Tandem for Optimization-Based Design
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run 2 print pcomb

requests that 2 more iterations be run, and that the print and pcomb commands be executed

at the end of each of these iterations. The optimization algorithm in SOLVE (and/or the

computation of the simulator if any) can be traced by the trace command. For example,

typing

trace

turns on the trace for the optimization algorithm. A subsequent input

run 1

shows

[RUNNING FSQP ALGORITHM]

[computing specifications for iteration 2]

[computing search direction]
[computing gradients of specifications by finite difference]
[computing search direction]

{computing stepsize along search direction]
[trying with stepsize = 1.000e+00 .

SPECIFICATION PRESENT SCALED
01 quadratic 1.591571787e+00 1.971905956e-01
C1  linear 1.229562171e+00 2.295621712e-01

accepted]

[computing specifications for iteration 3]
<3>

indicating the various steps in the optimization algorithm when they are being performed.

The user may then type

trace 0

to turn off the trace, and type

run 10

to request 10 more iterations. The following output would appear

CONSOLE - A CAD Tandem for Optimization-Based Design
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CONGRATULATIONS !!

It seems that SOLVE has obtained a local optimal solution
for your design problem. Type "help optimal" for the
optimality condition.

ENJOY !

Optimal code 5

<7>

This message indicates that SOLVE has found a locally optimal solution at the end of
iteration 7 and that the optimal code is 5. The meaning of this code is clarified by typing

help optimal

Typing

print

gives the local optimizer

Name Value Variation wrt O Prev Iter=7
x 1.02084e-01 1.0e+00 -97% 0%
¥ 1.10208e+00 1.0e+00 -88Y% 0%
<7>
and typing
pcomb

displays the corresponding values of the objective and constraint

Pcomb (Iter= 7) (Phase 2) (MAX_COST_SOFT= .204168)

SPECIFICATION PRESENT GOOD G B BAD

01 quadratic 1.61e+00 1.00e+00 ===========z=x | 4.00e+00
C1 linear 1.20e+00 1.00e+00 ===z=========x | 2.00e+00
<7>

There are some other features in SOLVE. For instance, plotting functional specifi-
cations; interactively changing the value of a design parameter; interactively modifying
selected good/bad values or curves; storing values of design parameters into a file; in-
terrupting the optimization algorithm; etc. All of these will be the topics of Chapter 4.
Also, in Chapter 5, we will discuss the question of linking SOLVE to existing programs

(simulators).
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CHAPTER 3

CONVERT

3.1 Introduction

In this chapter we discuss the language in which a Problem Description File is written.
This language is not meant for general purpose programming. Rather, its structure was
only required to be versatile enough to allow one to describe a design problem. Thus
its syntax is very simple and consists of only two types of statements, assignment and
command. An assignment gives a value to a variable and a command performs a task such
as declaration of a design parameter or of a specification. Assignments and commands are

constructed from identifiers, expressions, operators, and sections of pseudo-C code.

3.2 Identifiers, Expressions, Operators, and Pseudo-C Code

An identifier is a sequence of letters and digits. The first character must be a letter.
The underscore ‘.’ is considered a letter. Upper and lower case are distinguished. An
identifier must have a type. An identifier type is either predeclared by CONVERT or
declared by the user, and later redeclaration of an identifier is prohibited. The possible

identifier types will be the topic of the next section.

An expression consists of identifiers, balanced parentheses and operators. Operators
are unary operators (+,-), exponentiation operator (**), multiplicative operators (*,/) and
additive operators (+,-). Table 1 summaries the rules for precedence and order of evaluation
of all operators. * An expression has a double precision floating point value which is called
the value of the expression. An expression is evaluated when CONVERT encounters it.
Therefore, an expression must be evaluable in the sense that it can be finally translated
to a form with only constants, parenthesis and operators and computed with no syntax

errors. See Appendix A for the syntax rules of expressions. During the evaluation, besides

* These operators are strictly for CONVERT expressions. Expressions in the sections of pseudo-C code

of a Problem Description File must abide by the rules of C.
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syntax errors, errors such as division by zero, or attempt to evaluate the logarithm of a

non-positive number are also detected and reported.

Operator Order of Evaluation
+, - unary affirmation, negation left to right
*% exponentiation right to left
*x, / multiplication, division left to right
+, - addition, subtraction left to right

Table 1: Operators

As mentioned in Section 2.2, we call pseudo-C code certain sections of code, enclosed in
curly brackets, consisting of valid C code augmented by the import statement. An import
statement consists of the identifier import followed by a list of identifiers separated by
commas. These identifiers must have been declared with identifier type variable, define or
design parameter (see Section 3.4 below). The import statement makes them accessible
from within the section of pseudo-C code. An import statement ends at a semicolon or a
newline character, whichever comes first. In Section 3.5 below we discuss the question of

how to call C, Fortran and Pascal routines from inside a section of pseudo-C code.

3.3 Identifier Types

The identifier types can be classified into six categories: variable, define, design param-
eter, command, function and keyword. All the identifiers with identifier types command,
function or keyword are predeclared by CONVERT, i.e., the user cannot declare any identi-
fier with one of those identifier types. The declaration of identifier type is done by context,

as discussed below. An identifier may be declared only once.

Variable

An identifier with type variable is an identifier having a double precision floating point
value. The declaration of a variable and the assignment of its value are done by an assign-
ment (see below). A variable which appears in an expression is replaced by its value when

the expression is evaluated by CONVERT.

Define
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Command Functionality
constraint declare a constraint
define declare a define

design_parameter

declare a design parameter

exit

force CONVERT to exit the current file

functional_constraint

declare a functional constraint

functional_objective

declare a functional objective

global add plain C code

include read input from a file

initialization declare an initialization routine

objective declare an objective

set change the initial value of a design parameter
trace trace the value of a variable

Table 2: Commands

An identifier with type define is an identifier having a definition, which is a string of
characters. The declaration of a define and the assignment of its definition are done by the
command define (see below). A define which appears in an expression will be replaced by
its definition when the evaluation of the expression is being performed. Furthermore, the

replacement string is rescanned by CONVERT.

Design parameter

An identifier with type design parameter is an identifier whose value will be adjusted
by the optimization algorithm. A design parameter has 4 attributes: initial value, nominal
variation, minimum value and maximum value. All of these have default values. Declaring
a design parameter and assigning its attributes are done via the command design_parameter

(see below).

Command

An identifier with type command is an identifier which performs a special task. A
command may have arguments, some of which may be optional. Details of commands will
be discussed in Section 3.4. All commands are predeclared by CONVERT. Their names and

functionalities are given in Table 2.
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Function

An identifier with type function is an identifier which takes argument(s) in balanced
parentheses, performs a specific function and returns a double precision floating point value.
Functions must appear in expressions. All functions are predeclared by CONVERT. Table

3 gives a summary of various functions.

Function Description

abs(x) returns the absolute value of x

acos(x) returns the arc cosine of x in [0, 7]

asin(x) returns the arc sine of x in [—F, 7]

atan(x) returns the arc tangent of x in [5F, 7]

atan2(x,y) returns the arc tangent of x/y in [—7, 7]

cos(x) returns trigonometric cosine function of x (x in radians)
exp(x) returns the exponential of x

log(x) returns the natural logarithm of x

log10(x) returns the base 10 logarithm of x

max2(x,y) returns x or y, whichever is larger

min2(x,y) returns x or y, whichever is smaller

sign(x) returns 1 if x > 0, -1 otherwise

sin(x) returns trigonometric sine function of x (x in radians)
tan(x) returns trigonometric tangent function x (x in radians)

Table 3: Functions

Keyword
An identifier with type keyword is an identifier which is used in the argument of a
command, to separate arguments and increase readability. All keywords are predeclared

by CONVERT. Table 4 lists them, together with the names of the commands in which they

may ocCur.

3.4 Assignment and Commands
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Keyword Occurs in Command
bad_curve functional_objective, functional_constraint
bad_value objective, constraint
by functional objective, functional_constraint
dec functional_objective, functional_constraint
for functional_objective, functional_constraint
from functional_objective, functional_constraint

good_curve

functional_ob jective, functional_constraint

good_value

objective, constraint

hard

constraint, functional_constraint

init design._parameter

max design_parameter

maximize objective, functional_objective

min design_parameter

minimize objective, functional_objective

soft constraint, functional_constraint

times functional_ob jective, functional_constraint
to functional_ob jective, functional _constraint
variation design_parameter

Table 4: Keywords

In this section we specify the syntax rules of an assignment and of various commands.
We use the convention that anything printed in boldface must appear exactly as is, while
anything surrounded by ()’ stands for a generic term and its meaning is given in Ap-

pendix A by a BNF-like rule. For example, we will write
define (identifier) (quoted string)

The user is referred to Appendix A for more details.

Assignment

An assignment has the form
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(identifier) = (expression)

If {identifier) has not been declared before, the assignment declares it to be a variable with
the value of (expression). Otherwise, (identifier) must exist as a variable, and the assign-

ment simply changes its value to the value of {expression). For example, the assignment

a=1

declares a to be a variable if a has not been declared before and assigns to it the value 1.

The subsequent assignment

a = atl

changes that value to 2.

Define

The command define has the form
define (identifier) (quoted string)

(identifier) may not have been declared before. The command define then declares (identifier)
to be a define with definition (quoted string) surrounded by parentheses. For example, the

statement

define PI "3.1416"

declares the identifier PI to be a define with the definition (3.1416). The reason that
CONVERT adds balanced parentheses to the definition automatically is to avoid the possible

ambiguity in the following case

define a ''1+2"

Suppose that the definition of the identifier a were ‘1+2’ rather than ‘(14-2)’. Then the
expression ‘a*a’ will be expanded to ‘1+2%1+2’ which is incorrect.
A define cannot appear in its own definition directly or indirectly. For example, the

following statements are incorrect (on two counts)

define a "a+1i"
define b "c+1%
define ¢ "b**2"
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However, CONVERT does not check the recursion until the define is actually used in an

expression.

Trace

The trace command is used to trace the value of a variable during the processing of

the Problem Description File. It has the form
trace (identifier)

(identifier) here must be a variable. For example, if the first 4 lines of the file test are

a=25
trace a
b = a**2 - a

trace b

then CONVERT will print

TRACE at line 2 in test, a = 5

after it processes the first trace and

TRACE at line 4 in test, b = 20

after the second.

Design_parameter

The design_parameter command declares a design parameter, i.e., a parameter which

will be adjusted by the optimization algorithm. It has the form

design_parameter (identifier) \
init=(expression) \
variation={expression) \
min=(soft or hard expression) \
max=(soft or hard expression)

The command design_parameter terminates at the first newline character (the end of line
character). If continuation lines are desired, as shown above, a backslash ‘\’ must be used
at the end of each of the continued lines. The command design_parameter is the only one
with optional arguments. Specifically, any of

init=(expression)
variation=({expression)
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min=(soft or hard expression)
max=(soft or hard expression)

can be omitted; the ones that are included can appear in any order. The specification
init=(expression)
if given, assigns as initial value (or ‘initial guess’) of the design parameter the value of
(expression). The default value is 0. The line
variation=(expression)
if given, assigns to the nominal variation of the design parameter (see Section 1.2) the value
of {expression). The default value is 1. The nominal variation must be strictly positive.

In many cases, the absolute value of the initial guess is suitable for the nominal variation

(unless it is zero). The line
min= (soft or hard expression)

if given, indicates a lower bound constraint on the corresponding design parameter. (soft

or hard expression) is either
[ (expression), (expression) ]
or
(expression)
The line
min = [ (expression), {expression) ]
indicates a soft lower bound constraint with good value being the value of the first (expression)

and bad value being the value of the second. The good value in this case must be greater

than the bad value since the design parameter is constrained from below. The line
min = (expression)
indicates a hard lower bound constraint. The default is a hard constraint with value —102°

(i.e., no constraint). Similar rules apply to the line
max = (soft or hard expression)

except that, in the case of a soft upper bound constraint, the good value must be smaller

than the bad value, and the default is a hard bound with value 102°.

Global
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The global command allows the user to put a piece of plain C code into the C program
generated by CONVERT. When global is encountered, CONVERT puts everything till the
end of the line into the C program. CONVERT puts all such lines on the top of the C

program in the same order as they appear in the Problem Description File.

The global command provides an easy way to declare, for instance, functions or vari-
ables that will be used in the pseudo-C code of the specifications. The following example

shows a use of the command.

global double cost(x,y)

global double x, y;

global {

global return (x-1)*(x-1)+(y-2)*(y-2);
global }

objective "quadratic"

minimize {
import x, y;
double cost(); /* this line is not necessary */
return cost(x,y);
}

good_value=1

bad_value=4

Include

The include command has the form

include (quoted string)

It causes the replacement of that line by the entire contents of the file with name (quoted
string). If the named file does not begin with a slash ¢/’ (i.e., it is given as a relative
pathname), CONVERT searches in the directory in which the Problem Description File is

located. For example, suppose the Problem Description File is

/glu/vwangli/design/robot

The line

include "robot.additional"

in the Problem Description File is equivalent to
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include '"/glu/wangli/design/robot.additional®

which causes the named file to be processed. Include commands may be nested.

Exit

The ezit command has the form
exit

It causes CONVERT to stop processing and leave the current file prematurely. That is,
anything that follows in the current file will be skipped.

Objective

The objective command declares an objective. It has the form

objective (quoted string)
(optimize) (pseudo-C code)
good_value= (expression)
bad_value= (expression)

Note that for this and the following commands, no backslash is necessary (but it is al-
lowed) to indicate the continuation of lines (unlike the command design_parameter), as
the arguments are all required. Above, the form of the command objective is written on
multiple lines with indentation only for the sake of readability. It makes no difference if
it is compacted into fewer lines or expanded to more lines with comments or empty lines
in between. (quoted string) serves as an identification for the objective and could be a
character string of any length. However only the first 10 characters will be considered by
CONVERT. (optimize) is either ‘minimize’ or ‘maximize’. The returned value of (pseudo-C
code) is the value of the objective (which should be design parameter dependent) to be
minimized or maximized. The last two lines then set the good value and bad value respec-
tively. The two (expression) above should contain no blanks or tabs. The good value and
bad value must be given in a consistent manner, i.e., for the objective to be minimized
(resp. maximized), the good value must be smaller (resp. larger) than the bad value. The

following two examples have identical objective functions.

Ezample 1.
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objective "money spent" minimize {
import x, y; /* x and y are design parameters */
double a; /* local variable */
a = xty;
return (a);
} good_value=100 bad_value=200

Ezample 2.
objective '"money spent"
/* comment here ... */
minimize {
import x, y; /* x and y are design parameters */
return x+y; /* x+y is the money spent */
}
good_value = 100 /* comment here ... */
bad_value = 200 /* comment here ... */
Constraint

The constraint command declares a constraint. It has the form

constraint (quoted string )(soft or hard)
( pseudo-C code){inequality)
good_value=(expression)
bad_value={expression)

(soft or hard) is either ‘soft’ or ‘hard’ and (inequality) is either ‘<= or ‘>=" The constraint
command is very similar in form to the objective command, except for the indication of

whether it is soft or hard. The definitions of soft and hard constraints have been given in

Section 1.2. An example follows.

constraint "highest temperature' hard
{ import heat;

return heat*3.2; /* formula relating heat and temperature */
}
<= good_value = 55
bad_value = 60

Functional_objective

The functional objective command declares a functional objective. It has the form

functional-objective {(quoted string)
for (identifier) from (expression ) to {expression) (mesh type ) (expression)
{optimize ){pseudo-C code)
good_curve= (pseudo-C code)
bad_curve= (pseudo-C code)
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Again, (quoted string) serves as an identification of the functional objective. Recall that
a functional objective is a specification according to which some quantity which depends
on some free parameter must be made small or large for all values of this parameter in an
interval (see Section 1.2). Practically, the interval is discretized to a finite set of points

specified by
for (identifier) from (expression) to (expression)(mesh type)({expression)

where (identifier) is the free parameter, the first two (expression) specify the interval and
the discretization is given by (mesh type) and the last (expression). (mesh type) is either

by, times or dec. For examples, the line

for t from a to b by ¢

requests that the corresponding functional objective be made small or large for t at all

values of a, a+c, a+2c, ... until ¢ > b. Similarly,

for t from a to b times c

indicates that t is to take values of a, ac,ac?,... until t > b.

for t from a to b dec ¢

is the same as

for t from a to b times d

with d = 10% (c points per decade). The following is an example of a functional objective.

final = 5
functional_objective '"upper bound" hard
for t from 0 to final by final/20

minimize {

import x1, x2;

return t*x1+x2;

}
good_curve
bad_curve

{ return 2*t; }
{ return 3*t+1; }

It should be noticed that the free parameter (¢ in this example) does not have any identifier
type belonging to any of the categories given in Section 3.3. It is a C identifier declared
(automatically) outside a pseudo-C code section with data type double and is known to

any of the three pseudo-C code above without explicit declarations or import statements.
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In fact, any further declaration of this parameter would create a local variable, and this

usually results in errors. Following is an erroneous example.

final = 5

functional_objective "upper bound" hard
for t from 0 to final by final/20
minimize {

import x1, x2, t; /* no need to import t; detected by CONVERT x/
return t*xi+x2;
}

good_curve = { double t; /* should not redeclare t */

return 2%t; }
bad_curve = { double t;
return 3*t+1; }

Another important point that must be remembered is that the good and bad curves should
not be design parameter dependent. This is because their values are evaluated and stored
at the very beginning of the optimization. No further evaluation will be performed during

the optimization.

Functional_constraint

The functional_constraint command declares a functional constraint. It has the form

functional_constraint (quoted string)
for (identifier ) from (expression ) to (expression) (mesh type) (expression)
(pseudo-C code )(inequality)
good_curve= (pseudo-C code)
bad_curve= (pseudo-C code)

The syntax of the command functional_constraint can be easily understood by comparing

it to that of the constraint and functional objective commands. Following is an example.

final = 10%*3
functional_constraint '"upper bound" hard
for w from 0.1 to final dec 5 /* five mesh points per decade */
{ import x1, x2;
return w*(w-1)+(1-w)*(-3.0/4.0*x1+7.0/4.0)+uwx(x1+x2);

}
<= good_curve = { return wkw; }
bad_curve = { return 0.5*w*w; }

Set

The set command has the form

set (identifier ) = (expression)
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Here (identifier) must be a design parameter. The set command sets the initial value of
the design parameter to the value of (expression), irrespective of whether or not its initial
value has been given by the command design_parameter or a previous set command. Files
created by the store command (in SOLVE, see Appendix B) consist of instances of the set

command. As an example, suppose that gain is a design parameter. Then

set gain = 1+2

produces the output

design parameter gain is set to 3.000

which indicates its initial value has been set to 3.000.

Initialization

The initialization command has the form
initialization (pseudo-C code)

It declares a C routine that will be executed only one time before the optimization is
performed. Usually, this C routine is used to initialize the design problem. This could
include reading the system configuration under consideration (such as a circuit description
if the simulator SPICE is used) or setting simulator-specific parameters to accommodate the
design problem. Following is an example (assume the routine ‘read_system_configuration’ is

provided by the user to perform one-time problem-specific initialization of the simulator).

initialization { /* initialization */
read_system_configuration();

1

3.5 Calling Programs in a Section of Pseudo-C Code

In this section we discuss how to call programs in a section of pseudo-C code. Most of
this quotes computer messages sent to us by Chris Torek, of the Computer Science Depart-
ment; we gratefully acknowledge his help. Any program written in C, Fortran or Pascal
can be called from pseudo-C code since their object codes are compatible. However, the

following three rules must be respected: consistent data type passing, identifier matching
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and consistent data passing mechanism.

Consistent Data Type Passing

It should be obvious that the data types in the calling program and called program

must be consistent. For instance, when calling the following C program

foo (n, x, )
int n;

double x[], r;
{

}

in the pseudo-C code, one may have

{ #define TOTAL 100
double samples[TOTAL];
import width; /* width is a design parameter */

foo (10, samples, width);

3

Here we show an instance where an inconsistency occurs and is not easily noticed by the

user. Suppose n is a variable declared by the statement

n =10

Then the following usage of variable n in pseudo-C code causes inconsistency in data

passing.

{ #define TOTAL 100
double samples[TOTAL];
import width; /* width is a design parameter */
import n; /* n has value 10 */

foo (n, samples, width);

3

This is because the line

foo (n, ...)

will be translated to
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foo (10.0, ...)

rather than

foo (10, ...)

since all CONVERT variables and expressions have double precision. The latter case causes
the routine foo to receive an unexpected value of the first argument. To overcome this

difficulty, one may, instead of declaring n as a variable, declare it to be a define by giving

define n ’10?

If this is done, the translated line becomes

foo((10), ...);

which is valid (recall that the surrounding parentheses are added automatically). Alterna-

tively, the user may introduce an extra local variable for data translation as follows.

{ #tdefine TOTAL 100
double samples[TOTAL];

import width; /* width is a design parameter */
import n; /* n has value 10 */

int n_int; /* temporary integer variable */
n_int = n; /* now n_int has integer value 10 */

foo (n_int, samples, width);

}

Identifier Matching

The second rule is to match nonlocal identifiers, i.e., the identifiers in the object files

must match in order that the loader invoked by SOLVE may correctly resolve the references.
Each compiler has its own methods for mapping from source to object. Within one language
we may safely ignore this mapping; but when mixing tongues, it becomes important indeed.
The Unix C compiler takes any global identifier and prepends an underscore character.

Identifiers are not limited in length. Thus

int global_var;
char *
somefunc()

{

3.16 CONSOLE - A CAD Tandem for Optimization-Based Design



CONVERT

generates the identifier ‘_global var’ and ‘_somefunc’. The F77 compiler limits identifiers

to six characters, then prepends and appends an underscore. For instance, given

subroutine sub

it generates ‘sub_’. F77 does not allow underscores in source-level identifiers, e.g., ‘sub-
routine sub._1’ is illegal. The Berkeley Pascal compiler strings together the identifiers of all
nested procedures to concoct unique global identifiers. Only variables defined in the ‘pro-
gram’ part are global, and these identifiers are constructed in the same way as C’s globals.
The Pascal compiler does not permit source-level identifiers to contain an underscore, e.g,.,
‘procedure proc_a’ is illegal.

It should be clear at this point that C programs can call any F77 or Pascal subroutines

(procedures) or functions.

Consistent Data Passing Mechanism

The last rule that needs to be kept in mind is that data passing mechanism between
programs must be consistent. The F77 compiler uses call by reference; the Pascal compiler
uses call by value or call by reference, depending on the declaration of the called routine.
The C compiler invariably uses call by value, but the language is powerful enough to
simulate other data passing mechanisms using only call by value. One thing that can be
done in Pascal but not C is to pass arrays by value. (This can be simulated in C using
structures.) For example, suppose the routine foo mentioned above is written in Fortran

as

subroutine foo (n, x, r)
integer n
double precision x(1), r

return
end

Then to call it in a pseudo-C code, one may have

foo_ (&n, samples, &width);

Note that an underscored is appended. Also identifiers n and width are passed by their
addresses (the identifier samples itself is a pointer to a double array). See interface in

Section 6.2 for another example.
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CHAPTER 4

SOLVE

4.1 Introduction

This chapter describes SOLVE in detail. SOLVE is used after CONVERT, as it takes
CONVERT’s output as its input. It performs the main task, namely solving the optimization

problem defined by the designer.

4.2 Optimization Algorithm

This is the core of SOLVE. Yet, in line with the premise that CONSOLE users need not
be optimization experts, its details are mostly hidden.

Probably the main enhancement in CONSOLE Version 1.1 is the replacement of the first
order feasible direction algorithm used in Version 1.0 by a recently developed quasi-Newton
type feasible direction algorithm [5], extended to handle the various types of specifications
available in CONSOLE [6] (see Section 1.2 above). This algorithm enjoys a local superlinear
rate of convergence and extensive experimentation on standard test problems has shown
that it compares well with the most popular algorithms (not of the feasible direction type).
Feasible direction algorithms, which generate sequences of iterates that all satisfy the hard
constraints, are especially valuable in the present context. This is because (i) a design
may have no practical value unless at least the hard constraints are satisfied, (ii) tradeoff
exploration entails that hard constraints be satisfied, (iii) in some cases, it may not even be
possible to evaluate the objectives and soft constraints when hard constraints are violated
(e.g., unstable dynamical systems). Forcing feasible iterates also leads to simplifications in
the algorithm (see [5,6]).

SOLVE is structured in such a way that a new optimization algorithm can be substituted
if deemed appropriate. In this section, we briefly discuss the main features that are required
(or recommended) from any optimization algorithm to be used in SOLVE. These features
are directly related to the underlying design methodology alluded to in the introduction

and exposed in detail in [1]. Except where otherwise indicated, they are present in the
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algorithm currently used by SOLVE.

We introduced earlier the three possible phases in which the optimization process
can happen to be: phase 1 where some hard constraints are violated, phase 2 where all
hard constraints are satisfied but some good values are not achieved by objectives or soft
constraints, and phase 3 where hard constraint are satisfied and all good values of objectives
and soft constraints are achieved. Natural evolution of the optimization process would be,
after a possible start in phase 1, to remain in phase 2 until, possibly, phase 3 is reached.
This means in particular that, once all hard constraints are satisfied, they should remain
satisfied,* and (essentially) similarly for soft constraints. A second and related desirable
feature of the optimization algorithm would be to improve the design at each iteration. This
is important if the designer is to get a feel for how the optimization progresses, which is
essential is an interaction-oriented environment. To this end the current overall objective
(maximum of the ‘objectives’ in the current minimax problem) should decrease at each
iteration. It should be noted that the two desirable properties just mentioned generally
cannot be achieved in the presence of functional objectives or constraints, as only a finite
subset of values of the independent parameter are taken into account at each iteration. This
however is generally a minor problem, as long as there are no functional hard constraints,
which is typical.

While the above are desirable features, it is obviously required that the algorithm be
able to handle constrained minimax problems with functional objectives and constraints,
and highly recommended that a specifically tailored scheme be used to handle bound type

constraints (i.e. lower and upper bounds on design parameters.)

Suitable scaling of the design parameters is essential. Initial scaling should be based on
the nominal variation provided by the user (see Section 1.2). Automatic scaling as provided
by quasi-Newton methods (such as that used in this Version 1.1) is highly desirable and will
significantly affect the behavior of the algorithm at the latest after a number of iterations
of the order of the number of design parameters. Still, in almost every real world design
problem, manual initial scaling via the nominal variations will be useful when introduced
correctly. If no other clue is available, a good (first) estimate for the nominal variation is

the absolute initial value of the design parameter (unless it is zero).

* As indicated in Section 1.2, hard bounds on individual design parameters must be satisfied throughout.
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4.3 Invoking SOLVE

We have indicated in Section 2.2 how to invoke SOLVE. Here we give more details.
SOLVE takes an arbitrary number of arguments, but at least one. The first argument
must be the name of a Problem Description File that has been successfully processed by
CONVERT. The remaining arguments can be anything that is a valid argument for the Unix
loader Id. They can be classified into four categories :

1. A C, Fortran or Pascal object file (ending in .o).
2. A collection of C, Fortran and/or Pascal object files obtained as output of the Unix

command ar, i.e., a library archive file (ending in .a).

3. The output file of the Unix loader Id. In this case, the -r option of Id must be given
to preserve the relocation bits such that it may become the input for a further Id run

(for more detail, see Unix manual entry for Id). Such file should not contain any part

of the standard C, Fortran and Pascal libraries.

4. A standard library archive file (without the ¢.a’ but preceded by *-1’).

The third type is suggested for the final version since it results in minimum dynamic
loading time with SOLVE. The user is encouraged to consult the Id entry of the Unix
manual for details on the various types of files. In certain cases, the order of the arguments
is important.

Before SOLVE is ready to receive commands from the user, it performs four successive
operations. First SOLVE invokes the Unix loader Id to load the compiled version of the
Problem Description File together with the simulators and interface routines (they could be
of any of the 4 types mentioned above), if any, into a temporary file created in the directory
‘/tmp’ and reads the resulting file into memory if there is no error during the loading
phase. SOLVE then reads in the binary data file associated with the Problem Description
File. Following that, SOLVE calls the routine named simlat with certain arguments to
perform an initialization of the simulator. If this routine is not provided by the user,
SOLVE calls a dummy one. In Chapter 5, we will thoroughly discuss the routine simlat.
Finally, SOLVE calls the routine declared by the command initialization, if given, in the

Problem Description File (see Chapter 3). The prompt

<0>

then indicates that the four operations have been completed without error, and SOLVE is
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ready to receive commands from the user to perform the optimization task. Otherwise,

SOLVE simply reports the error and aborts.

4.4 Interaction

SOLVE is a command-driven package. It currently includes 18 commands. Table 5
describes the functionalities of various commands. The pcomb command, central to the
design methodology used by CONSOLE, is discussed here. For a detailed description of each
command, the user is referred to Appendix B and the on-line manual.

The complex information that needs to be conveyed to an optimization user to assist
him /her in making decisions requires graphical feedback showing design performance. The
graphical display Pcomb (performance comb) allows the user to quickly grasp the perfor-
mance tradeoffs of a design (see [1] for more details). Currently, only a nongraphical Pcomb

is available in CONSOLE. An example is as follows.

Pcomb (Iter= 0) (Phase 2) (MAX_COST_SOFT= 4.15)

SPECIFICATION PRESENT GOOD G B BAD

01 cost 1.00e+00 O 2.00e+00
02 stability 9.00e+00 1 0.00e+00
FO1 error 2.00e+00 1 4.00e+00
€1 volume 8.00e+00 1.20e+01 [ I *=======  9.00e+00
Cc2 snsitivity b5.00e+00 1.00e+00 ===============ss==s=sss==s=====> 2.00e+00
FC1 tmperature 6.00e+00 1.00e+01 --~~-- * | 2.00e+01
L1 gainil 3.00e+00 3.00e+00 ¥======ss===========zz=== 2,00e+00
U2 gain2 7.00e+00 4.00e+00 ==z===scz==s===sz===z=Xk 7.00e+00

This example is constructed artificially to illustrate the essential features of the Pcomb
display.

On the Pcomb display, the first row gives the current iteration number ‘(Iter= 0)’,
phase number ‘(Phase 2)’, and the value of the worst (largest) scaled specification ‘(MAX_COST.SOFT=
4.15)". In the given example, the latter has name MAX_COST_SOFT because, in Phase 2, objec-
tives (costs) and soft constraints are all ‘objectives’ of the current minimax problem (see
Section 1.2). Similarly, MAX HARD would be given in Phase 1 and Max_cosT in Phase 3. Under
the headings, one row is associated with each specification which is identified by both a
symbol and its name. For instance, ‘01’ identifies the first objective with the name ‘cost’
given in the Problem Description File. The value under ‘PRESENT’ is its current (unscaled)

value. Its good and bad values are indicated under ‘coop’ and ‘BAD’ respectively. Similarly,
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Command Functionality

algo display/change optimization algorithm

erase erase graphic screen

freeze freeze design parameter(s)

goutput redirect graphic output

help display on-line manual

identify identify the problem being solved

iter display/change iteration number

pcomb display performance

plot plot functional objective/constraint

print display design parameters

quit exit SOLVE

reset reset SOLVE

run perform optimization

scale change nominal variation of design parameter
set change value of design parameter

setgb change good and bad values or curves of specification
sim call simlat(x,INTA) (see Section 5.2)

store store design parameters into file

time display CPU time

trace trace optimization algorithm and/or simulator (on/off)
unfreeze unfreeze design parameter(s)

Table 5: Commands

‘F01’ identifies the first (and only) functional objective ‘error’, ‘c1’ and ‘c2’ identify the
constraints ‘volume’ and ‘smnsitivity’ (SOLVE only allows up to 10 characters for the names
of design parameters and specifications) and ‘Fc1’ identifies the functional constraint ‘tm-
perature’. Finally, ‘L1’ identifies a (soft) lower bound on the design parameter ‘gaint’ and
‘v2’ identifies a (soft) upper bound on the design parameter ‘gain2’. The current, good and

bad values of a functional specification are given at the value of the free parameter at which
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the specification has the maximal scaled value.

The scaled value of each specification is graphically displayed in relation with the
column marked ‘Good’ and the column marked ‘Bap’. The position of the tip of each line
represents the scaled value of the specification. If the scaled value is between —1 and 2,
the corresponding tip position is shown in the display window and marked by a ‘*’ (such
as 01, F01i, €1, FC1, L1 and U2). A tip position lying under the heading ‘¢’ (on the vertical
dashed ‘good’ line) represents a scaled value close to 0 (such as L1), and a tip position under
the heading ‘B’ (on the vertical dashed ‘bad’ line) indicates a scaled value close to 1 (such
as U2). If the scaled value is smaller than —1, it is displayed by an arrow towards the left
(such is the case for 02). If the scaled value is larger than 2, it is then displayed by an arrow
towards the right (such is the case for ¢2). Lines drawn from the left (o1, Fo1, c2, Fci,
u2) corresponds to specifications which are to be minimized or upper bound constraints
and lines drawn from the right (02, ¢1, L1) corresponds to specifications which are to be
maximized or lower bound constraints. Thus a ‘short’ line always corresponds to a ‘small’
numerical value of the corresponding quantity. Finally, lines drawn with ‘=’ represent cither
objectives or soft constraints, and lines drawn with ‘-’ represent hard constraints.

Pcomb may be output automatically during each optimization iteration or manually,
say, after adjusting the good or bad values for a particular objective or constraint. As
discussed in Section 4.2, within a given phase, the maximum scaled value of the current
‘objectives’ (may include soft constraints and even hard constraints, depending on the
phase) is decreased at each iteration. Correspondingly, the rightmost tip among these
‘objectives’ will move to the left at each iteration. Tradeoffs between competing objectives
or constraints can be explored by adjusting good and bad values using the setgh command
after best or near best performance of the system being designed has been achieved following

several iterations of optimization.

4.5 Error Checking

Although CONVERT attempts to check for all possible inconsistencies in the Problem
Description File, some inconsistencies may still find their way through to SOLVE. These
errors will very often be related to the formulation of functional objectives or constraints.
CONVERT cannot check the consistency of the good and bad curves of functional specifica-

tions. For a functional objective that has to be minimized (maximized), or for a functional
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constraints that is ‘<=’ (‘>=’), the good curve has to be below (above) the bad curve over
the entire range of the free parameter. When CONVERT scans the Problem Description
File and processes it to its output (the two binary files indicated in Figure 1 (Section 1.1)),
it does not have an executable version of the good and bad curves of the functional speci-
fications available. SOLVE, however, has an executable version of the curves available and

will check them and report any inconsistency.

4.6 Interrupt

When the user types, say

run 5

in SOLVE, the optimization algorithm will try to perform five more iterations and give
the control to the user. It may stop earlier if a local optimal solution has been obtained.
However, it could be also forced to stop prematurely. This is done by issuing an interrupt
signal, i.e., by depressing ‘control-C’, ‘break’ or ‘delete’ (depending on the current terminal
setup, see the Unix manual entry stty for details). When SOLVE detects an interrupt signal

while running the optimization algorithm, it prints out the message

An interrupt has been detected by SOLVE. SOLVE will
stop running the optimization algorithm as soon as
it finishes the current iteratiom.

CONTINUING EXECUTION ...

and calls ‘simlat(x,SIM_INTR)’ (see Chapter 5). As indicated in the message above,
SOLVE will stop and give control to the user as soon as the current iteration is completed
(soft interrupt). If the user issues a second interrupt signal before this happens, a ‘hard’
interrupt is generated: SOLVE stops immediately and gives control to the user. The user is
cautioned against using hard interrupts as the optimization process will likely be put into

an inconsistent state.
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SOLVE AND SIMULATORS

5.1 Introduction

While solving the optimization problem, SOLVE repeatedly makes use of the values
of the various objectives and constraints (and possibly of their gradients) for the current
design parameter vector. Computation of these values is performed by a simulator. In the
simplest cases, the simulator is part of the Problem Description File. For instance, in the

tutorial example of Chapter 2, the statement

return (x-1)*(x-1)+(y-2)*(y-2);

in the objective

objective ''quadratic'
ninimize {
import x, y;
return (x-1)*(x-1)+(y-2)*(y-2);
}
good_value=1
bad_value=4

can be thought of as a simulator. For practical design problems, however, the definition
of various specifications requires a fairly large amount of code and hence the simulator
usually exists as a stand alone program. The simplest such case is when the simulator
is a Fortran (or C, or Pascal) subroutine with design parameters as input arguments and
quantities involved in the specifications as output arguments. For example, we could have

the following C routine to perform the evaluation of the objective in the tutorial example.

double cost(x,y)
double x, y;
{
return (x-1)*(x-1)+(y-2)*(y-2);
}

The objective would then be expressed as
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objective ''quadratic"

minimize {
import x, y;
double cost();
return cost(x,y);
}

good_value=1

bad_value=4

When invoking SOLVE, one would then type

solve qp cost.o

where the file cost.o is the object code of the function cost above. In many instances,
however, communication between SOLVE and a simulator is more complex. If an off-the-
shelf simulator is used, the details of this communication will be handled by an interface.

We now discuss these.

5.2 Components of an Interface

Typically, most of the CPU time is spent in simulations. It is thus important to avoid
multiple simulations for the same values of the design parameters. To this effect, calls for
simulation in the Problem Description File could be made through an interface routine, say
output, that would store values of design parameters and corresponding values of simulator
outputs. Pushing this idea further one could have the interface routine save intermediate
results (LU factorization, Schur decomposition, ...) that could be of help for later calls to

the simulator.

In many cases, the interface between CONSOLE and the simulator must be yet more
sophisticated. This is so, among other instances, when the simulator itself is interactive,
or when the simulator needs to be initialized or reset at appropriate times. Also, it is
often convenient that values of design parameters be passed automatically to the simulator
whenever they are modified. Most of these tasks are performed by a routine called simlat.
As SOLVE is unaware of what simulator is currently being used, it calls simlat whenever
there is a possibility that the simulator require that some action be taken. If no simlat
routine is provided with the simulator, the default dummy routine will be called and no

action will be taken. simlat has arguments as follows:
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simlat(x,flag)
double x[];
int flag;

where x is a design parameter vector and where flag indicates what type of actions may
have to be taken. At this writing, 9 different flags are used by SOLVE. In the interfaces we

have already implemented, these flags are represented by defines as follows:

#define SIM_INIT 101
#define SIM_INTA 102
#define SIM_INTR 103
#define SIM_ITER 104
#define SIM_NOTR 105
#define SIM_PUPD 106
#define SIM_QUIT 107
#define SIM_RSET 108
#define SIM_TRAC 109

The meaning and occurrences of the various flags are as follows.

SIM_INIT: sent by SOLVE right after the data file created by CONVERT has been
read. z is the initial design parameter vector. This should be used to perform one-time
(problem independent) initialization of the simulator if necessary. For problem dependent
initialization, see Section 3.4.

SIM_INTR: sent by SOLVE when an interrupt signal has been issued by the user. z
is the current design parameter vector. If appropriate, simlat should notify the simulator
that an interrupt has occurred, so that appropriate action can be taken.

SIM_ITER: sent by SOLVE whenever an iteration has been completed. z is the new
design parameter vector.

SIM_ITRA: sent by SOLVE when the sim command is issued. z is the current design
parameter vector. If the simulator can be used interactively, simlat should then initiate an
interactive session.

SIM.NOTR: sent by SOLVE when the command trace is issued with the argument 0.
x is the current design parameter vector. If the simulator has the capability to trace its
computation, simlat should disable it.

SIM_PUPD: sent by SOLVE whenever the value of a design parameter is modified. 2
is the new design parameter vector. If appropriate, simlat should then modify accordingly
the design parameter vector that may have been stored by the simulator.

SIM_QUIT: sent by SOLVE when the quit command is issued. @ is the current design

parameter vector. If appropriate, simlat should then request a simulator cleanup, e.g., that
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temporary files created by the simulator be deleted or that the simulator environment be
saved to a file.

SIM_RSET: sent by SOLVE when the reset command is issued. z is the current design
parameter vector. If appropriate, simlat should reset the interface and/or the simulator.

SIM_TRAC: sent by SOLVE when the command trace is issued with the argument 2
or 3. z is the current design parameter vector. If the simulator has the capability to trace
its computation, simlat should request it.

Information concerning the design parameters (their names, nominal variations, etc.),
the name of the Problem Description File and the finite difference approximation parameter
pdelta (see below) can also be accessed by the simulator (or simlat). This is done by

including the following piece of C code.

extern struct _despar {

char *name;

double variation; /* variation */

int min_soft_or_hard; /* =0 no lower bound, =1 if soft lower bound, */
/* =2 if hard lower bound */

int max_soft_or_hard; /* similar to above, for upper bound */

double min_good; /* if min_soft_or_hard = */
/* 0: min_good = -pow(10.0, 20.0) */
/* 1: min_good = good value of lower bound */
/* 2: min_good = lower bound */

double min_bad; /* if max_soft_or_hard = */
/* 0: not used */
/* 1: min_bad = bad value of lower bound */
/* 2: not used */

double max_good; /* similar to min_good above, for upper bound */
double max_bad; /* similar to min_bad above, for upper bound */
};

extern int numdes; /* number of design parameters */

extern struct _despar **despars; /* pointer to design parameters */

extern char *pdf; /* Problem Description File name */

extern double pdelta; /* delta used in computing gradients */

/* by finite difference x*/

Parameter pdelta is used by SOLVE for computing gradients by finite differences. Specifi-
cally, SOLVE makes use of the approximations

(z 4 6; * variation; * e;) — f(x)

(Vfa)); 2 :

where f is a scaled specification, z is the raw (unscaled) design parameter vector, variation;

the nominal variation corresponding to the j-th component of z, and e; the j-th standard
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basis vector, and §; is obtained from pdelta as follows. When the default algorithm (FSQP)
is used, ¢; is given by
6; = max{dm, 0p;, 6u}

with

bm = \/machine precision,

b6p; = 6m max{1, Wi%(;j}’

and &, is pdelta. When the first order algorithm is used (see description of algo command),
all 6;’s are equal to pdelta. The default value of pdelta is the square root of the machine
precision when FSQP is used, and it is 107° when the first order algorithm is used. (The
latter should be suitable if computations are performed in double precision; if computa-
tions are performed in single precision, a somewhat larger value, say 1072, may be more
appropriate. )

For an example of a relatively sophisticated interface, the reader is referred to [7].
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CHAPTER 6

DESIGN EXAMPLES

6.1 Introduction

In this chapter we provide two design examples: control of a copolymerization reactor
and control of a flexible mechanical arm. * For each example, we divide the discussion into
three parts. First we give some details on the system for which a design is to be performed.
Then the problem description is given. Finally, running the design problem with SOLVE is
discussed. For detailed discussion of the design examples, the reader is referred to [8] and

[9], respectively.

6.2 Control of a Copolymerization Reactor

The System

Polymerization is a group of chemical chain reactions that links a large number (more

than a thousand) of ‘monomer’ molecules together. The product, called polymer, can
consist of long strings, entangled in each other, but can also be branched or even have
a three dimensional structure. Copolymerization is polymerization using two different
monomers at the same time. The group of materials popularly identified as plastics mainly
consists of polymers and copolymers with a carbon skeleton. Plastics show a vast variety of
physical properties (strength, color, elasticity, etc.). The giant polymer molecule structure
and the location of the chemically active groups on this molecule determine the properties
of the product. However, the relation between these properties and the molecular structure
is not fully understood yet, and therefore the former cannot be predicted.

Polymers and copolymers are produced in different types of reactors. Some are pro-
duced in continuous processes, others are produced in batch processes. We consider the
copolymerization of styrene and acrylonitrile. This is done in a well-mixed semi-batch re-

actor. This means that the reactor, in this case a vessel with a stirring mechanism and a

* These designs were actually carried out as part of two Systems Research Center re-

search projects directed by Drs. Choi and Krishnaprasad respectively.
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cooling water jacket, is initially filled with a certain volume of feed. During the production,
phase feed is added, but no production stream leaves the reactor. The product is removed
at the end of the batch time. The composition of the feed to the semi-batch copolymer-
ization reactor is fixed. It consists of both monomers, a solvent and the initiator. The
initiator is a substance that initiates the polymerization reaction.

The producer of polymer or copolymer wants to produce as much product as possible
during a fixed amount of time. It is important however for the product to have the correct
properties. Products that are even only slightly off-spec will be refused by the clients and
are absolutely worthless. Therefore designing a control strategy to obtain the product with
the appropriate properties is necessary. These properties are not measurable on-line. The
requirements will be adjusted every few batch runs as lab results come in, so that changes
in equipment and feedstock can be slowly adjusted for. The objective of obtaining a certain
molecular copolymer structure is simplified to obtaining a certain molecular weight and a
given ratio of both monomers in the product. The molecular weight is a measure of the
average number of monomer molecules chained together in each copolymer molecule. The
ratio of both monomers in the product, is often referred to as the copolymer composition.
All control problems are definitely not solved yet. Neither the molecular weight, nor the
copolymer composition is measurable on-line. Therefore the control is selected using a
model, and afterwards the model parameters are corrected based upon the prediction error.
The selection of this control is done with CONSOLE. The manipulated variables are the
feed flowrate and the reactor temperature which are all functions of time.

The simulator, copoly, is a Fortran program that existed before CONSOLE was devel-
oped. It simulates an existing copolymerization reactor which is part of the experimental
equipment of the Department of Chemical and Nuclear Engineering of the University of

Maryland at College Park.

Problem Description

We give here (piece by piece) the entire contents of the Problem Description File.
First, one must specify the time span of interest and the distance between two consecutive

time points at which the simulation outputs should be recorded, e.g.,

final_time = 5.0 /* in hours */
mesh_size = 0.25 /* in hours */
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Then, the design parameters must be declared. Since CONSOLE cannot solve problems
with infinite dimensional parameter space, an approximate problem is solved instead. It is
thus assumed that the temperature and feed flowrate profiles are polynomials in time. This
will result in a suboptimal solution. However, if the order of the polynomials is sufficient,
the performance obtained will be very close to the true optimal. Thus, temperature and

feed flowrate are expressed as

temperature = a; + aqt + a3t2 + a4t3

and

feed flowrate = by + bot + byt? + byt3.

The design parameters are then a;’s and b;’s for 1 = 1,2, 3, 4.

design_parameter al init=333 variation=5.0 min=323.0 max=368.0
design_parameter a2 init=10 variation=1.0 min=-10.0 max=10.0
design_parameter a3 init=0.1 variation=0.01 min=-1.0 max=1.0
design_parameter a4 init=0.1 variation=0.01 min=-0.1 max=0.1
design_parameter bl init=20 variation=1.0 min=5.0 max=50.0
design_parameter b2 init=-1 variation=0.1 min=-2.0 max=2.0
design_parameter b3 init=-0.1 variation=0.01 min=-0.2 max=0.2
design_parameter b4 init=-0.01 variation=0.001 min=-0.05 max=0.05

The initial value, variation, minimum and maximum values of each design parameter are
obtained either from a previous design or from physical considerations (for temperature

expressed in degree K and feed flowrate expressed in liters/minute).

Every call to the simulator copoly will be made through an interface routine ‘interface’.
This routine has many input arguments (among which the design parameters) and many
output arguments (simulation outputs). As the calling sequence is practically identical for

many specifications, the following define will be used.

CONSOLE - A CAD Tandem for Optimization-Based Design 6.3



DESIGN EXAMPLES

define call_interface "\
import al,a2,a3,a4,b1,b2,b3,b4; \
import final_time, mesh_size; \
\

double molecular_weight_t, /* molecular weight at time ‘time’ */ \
composition_t, /* composition at time ‘time’ */ \
final_volume; /* final volume */ \

\

interface (ai,a2,a3,a4,b1,b2,b3,b4, /* input arguments */ \
final_time,time,mesh_size, \
&molecular_weight_t, /* output arguments */ \

\

&composition_t,
&final_volume)"

There will be two design objectives, both functional: the maximum (over time) square
deviation from the desired molecular weight and the maximum (over time) square deviation
from the desired composition should both be made as small as possible. The former is

required only after transients have died out. The formulation is as follows.

desired_molecular_weight = 3e4
bad_Mn_sgerr = 5e3*%2
functional_objective "(Mn-Mns)"2" /% square of error in molecular weight */
for time from 3 to final_time by mesh_size
minimize {
double diff;
import desired_molecular_weight;
import call_interface; /* so that the define can be used here */

call_interface;
diff = molecular_weight_t - desired_molecular_weight;
return (diff*diff);
}
good_curve = {return 0.0;}
bad_curve = {import bad_Mn_sqerr;
return bad_Mn_sqerr;}
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desired_composition = 1 /* proportion of monomers 1 and 2 */
bad_CC_sqerr = 0.225%%2
functional_objective '"(CC-CCs)~2" /* square of error in copolymer composition */
for time from O to final time by mesh_size
minimize {
double diff;
import desired_composition;
import call_interface;

call_interface;
diff = composition_t - desired_composition;
return (diff*diff);
3
good_curve = {return 0.0;}
bad_curve = {import bad_CC_sqerr;
return bad_CC_sqerr;}

The volume of product at the end of the batch is limited by the size of the tank. This is

expressed by the following design constraint.

constraint "final volume" hard
{ import call_interface;
double time; /* here time is dummy; but it must be declared */
/* because it appears in the call_interface define*/

call_interface;
return final_volume;

}
<= good_value = 4.0 /* liters */
bad_value = 4.1 /* liters */

Constraints on operating variables are necessary for safety and reasonable operation of

the reactor. Based on the requirements for reaction rate, heat transfer limitations and

reactor safety, upper and lower bounds on reactor temperature are defined as constraints.

Similarly, in order to avoid negative flowrate and to limit the maximum flowrate which can

be handled by the reactor system, upper and lower bounds on feed flowrate are defined

as constraints. Since the constraints are time dependent, they are given as functional

constraints as follows.

functional _constraint "upper temperature' hard /* upper bound on temperature */
for time from 0 to final_time by mesh_size
{ import al,a2,a3,a4;
return al+a2*time+a3*pow(time,2.0)+ad*pow(time,3.0);
}
<= good_curve = {return 363.0;} /* degrees K */
bad_curve = {return 364.0;} /* degrees K */
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functional_constraint 'lower temperature'" hard /* lower bound on temperature */
for time from O to final_time by mesh_size
{ import al,a2,a3,ad;
return al+a2*time+a3*pow(time,2.0)+ad*pow(time,3.0);
}
>= good_curve = {return 328.0;} /* degrees K */
bad_curve = {return 323.0;} /* degrees K %/

functional_constraint "upper flowrate" hard /* upper bound on feed flowrate */
for time from 0 to final_time by mesh_size
{ import bi,b2,b3,b4;
return bil+b2*time+b3*pow(time,2.0)+bd*pow(time,3.0);

}
<= good_curve = {return 0.07;} /* liters per minute */
bad_curve = {return 0.075;} /* liters per minute */

functional_constraint '"lower flowrate' hard /* lower bound on feed flowrate */
for time from 3 to final time by mesh_size
{ import bi,b2,b3,b4;
return bl+b2*time+b3*pow(time,2.0)+bd*pow(time,3.0);

}
>= good_curve = {return 0.0;} /* liters per minute */
bad_curve = {return -0.005;} /* liters per minute */

This completes the Problem Description File.

We now suggest a possible interface routine for this example. It should be clear
that interface routines should not be problem dependent, but merely simulator dependent.
Thus, in the present case, the same interface could be used with virtually any Problem

Description File, provided the same simulator is used.

For our purpose, the simulator copoly can be viewed as ‘unsophisticated’. Thus the
interface used here acts as a mere buffer, avoiding redundant calls to copoly (see Chapter 5
for more on interfaces). The entire listing of the interface (the file interface.c, consisting of

C-code) is given now, with a discussion of the various sections.

The first part contains the declarations. The static type is used to ensure that the

value of the memorized variables will remain unchanged between calls.
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/* interface between SOLVE and Copolymerization simulator (copoly) */

#define UNDEFINED -10e20
#define MNMP 100 /* maximal number of mesh points */
/* thus ftime can be as large as 100*meshsz */

static double sal=UNDEFINED, 8a2=UNDEFINED, /* saved coefficients ai’s */
sa3=UNDEFINED, 8a4=UNDEFINED,
sb1=UNDEFINED, sb2=UNDEFINED, /* saved coefficients bi’s */
sb3=UNDEFINED, sb4=UNDEFINED,

sftime=UNDEFINED, /* saved final time */
smeshsz=UNDEFINED, /* saved mesh size */

smn [MNMP] , /* saved molecular weight */
scomp [MNMP] , /* saved composition */
sfvol; /* saved final volume */

interface (al,a2,a3,a4,b1,b2,b3,b4,ftime,time,meshsz,mnt,compt,fvol)
double al,a2,a3,a4,bl,b2,b3,bd,ftime,time,mesh,*mnt,*compt,*fvol;
{

int k; /* counter for mesh points */

First it is checked whether or not the design parameters changed between the current call
and the previous call. If they did not, then no new simulation is necessary. The values

corresponding to the meshpoint closest to the requested time are returned.

if (a1l == sal && a2 == sa2 &% a3 == sa3 &k a4 == sat &&
bl == sbl && b2 == sb2 && b3 == sb3 && b4 == sb4 &&
ftime == sftime && /* if inputs are the same as at the */
meshsz == smeshsz) { /* previous call, simply return the */

/* stored values */
k = (int) time/meshsz; /* meshpoint closest to ‘time’ */
*mnt = smn(k];
*compt = scomp[kl;
*fvol = sfvol;

}

However, if at least one of the design variables changed, then a new simulation run is

needed.

else {

/* store all value of inputs */

sal = al; sa2 = a2; sa3 = a3; sad
sbl = bl; sb2 = b2; sb3 = b3; sbd
sftime = ftime; smeshsz = meshsz;

a4;
b4;

/* and call the simulator (routine copoly) */
copoly_(&ai,&a2,&a3,&a4,&b1,&b2,&b3,&b4,&ftime,&meshsz,smn,scomp,&sfvol);

CONSOLE - A CAD Tandem for Optimization-Based Design 6.7



DESIGN EXAMPLES

After the simulation, all the time profiles are stored, and the values corresponding to the

meshpoint closest to the requested time are returned.

/* then return the stored values */
k = (int) time/mesh;

*mnt = smn[k];

*compt = scomp[k];

*fvol = sfvol;

}

Running the Problem

Let ‘copoly-design’ be the name of the Problem Description File listed above. One
then first ‘compiles’ this file by typing

convert copoly-design

which prompts the output

Welcome to CONVERT, Version 1.1 (Released 6/15/90)

Copyright (c) 1988, 1890
by
Michael K.H. Fan Andre L. Tits Jian Zhou
Li-Sheng Wang Jan Koninckx
411 Rights Reserved.

[processing copoly-design]
[compiling copoly-design.c]
[writing copoly-design.d]

Then SOLVE is invoked

solve copoly-design copoly.o interface.o

yielding
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<0>

Welcome to SOLVE, Version 1.1 (Released 6/15/90)

Copyright (c) 1988, 1990

by

Michael K.H. Fan Andre L. Tits Jian Zhou
Li~-Sheng Wang Jan Koninckx
A1l Rights Reserved.

type "help" for help
type "help info" for information
type "help news" for local news

[loading/reading copoly-design.o and ...]
[reading copoly-design.d]
[calling simulator initialization (if any)]
[calling problem initialization (if any)]

Issuing the command

run 0 print pcomb

displays the initial values and the corresponding Pcomb

Name
al
a2
a3
ad
bl
b2
b3
b4

Value

3.33000e+02
1.00000e+01
1.00000e-01
1.00000e-01
2.00000e+01
-1.00000e+00
-1.00000e-01
-1.00000e~-02

Variation wrt O Prev Iter=0

[ T S T

.0e+00
.0e+00
.0e-02
.0e-02
.0e+00
.0e-01
.0e-02
.0e-03

C1  final
FC1 upper
FC2 lower
FC3 upper
FC4 lower

SPECIFICATION
FO1 (MN-MNs)~2
Fo2 (cc-CCs)"2

1

4
vol 5
temp 3.
temp 3
flow 2
flow 1

PRESENT

.57e+08
.75e-02
.91e+00
98e+02
.33e+02
.00e-02
.12e-02

Pcomb (Iter= 0) (Phase 1)

(MAX_HARD= 35)

GOOD ¢ B
.00e+00 ==s=s==s=ss==s=ss==s=====s=sszzas)>
.00e+00 ======ss======s=s=zz=x|

.00€+00 —m—mmmmm o >
B T T T — >
2286402 Ko mmm e
.00e-02 <-- I

.00@+00 <=——mmmmmm e

O ~NWw Ww ek oo

BAD

W N

7

.50e+07
.06e-02
.10e+00
.64e+02
3.

23e+02

.50e-02
-5.

00e-03

The Pcomb shows that, for the given initial values of the design parameters, the molecular

weight (Fo1), copolymer composition (Fo2), final volume of the product (¢1) and temperature

(Fc1) are all unsatisfactory. Plots of the functional specifications can be also seen by the

command plot (see Section 4.4 and Appendix B). Typing
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run 6

causes SOLVE to run 6 iterations of the optimization algorithm (this may take some time ...),

until finally the prompt

<6>

appears on the screen. The command

pcomb

yields
Pcomb (Iter= 6) (Phase 2) (MAX_COST_SOFT= 0.0766327)
SPECIFICATION PRESENT  GOOD BAD
FO1 (MN-MN=s)"2 1.92e+06 0.00e+00 2.50e+07
FO2 (CC-CCs)"2 3.88e-03 0.00e+00 5.06e-02
Ci final vol 3.47e+00 4.00e+00 4.10e+00
FC1 upper temp 3.53e+02 3.63e+02 3.64e+02
FC2 lower temp 3.45e+02 3.28e+02 3.23e+02
FC3 upper flow 9.70e-03 7.00e-02 7.50e-02
FC4 1lower flow 6.00e-03 0.00e+00 ~-5.00e-03

All hard constraints are now satisfied. Objectives Fo1 and Fo2 have almost reached their
good values and seem to be competing against each other. If, in the designer’s opinion, the
current molecular weight is acceptable while a composition closer to the desired is highly

desirable, a suitable action would now be to type

setgb FO1 = 2e6, 2.5e7

After a few more iterations, e.g,

run 5 pcomb

the designer may be satisfied. He would then type

print

to see the ‘optimal’ design parameters
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Name Value Variation wrt 0 Prev Iter=27
al 3.53188e+02 5.0e+00 6% 0%
a2 -3.19240e+00 1.0e+00 -68% 0%
a3 9.13515e-02 1.0e-02 9% 0%
a4 5.31340e-02 1.0e-02 47% 0%
b1 9.69793e+00 1.0e+00 52Y 0%
b2 -3.74885e-01 1.0e-01 63% 0%
b3 -4.07314e-02 1.0e-02 59% 0%
b4 -6.40500e-03 1.0e-03 36Y% 0%
then
store "copoly_optimal_design_parameters"
and finally

quit

6.3 Control of a Flexible Arm

The System

Here we want to design a controller for a one-link flexible robot arm (see [9]). The

system includes a one-meter flexible beam, a DC brush motor, three sensors (position
encoder, tachometer, tip accelerometer), A/D and D/A converters, and an IBM PC/AT.
We use a linear time-invariant model of state-dimension 6, completely observable from the
three sensors [10]. A Luenberger observer sensor is implemented in the IBM PC/AT and,
based on experimental observations, it is assumed that the estimated states is close enough
to the exact states that their differences can be neglected. The input to the system is the
armature voltage of the DC motor and it i1s intended to control the system using full state

constant linear feedback, to be implemented in the PC/AT. Thus we have
&(t) = Az(t) + bu(t)
y(t) = Cx(t)
u(t) = kz(t) + v(t)

where v is the external input. Here we consider as output y all the quantities susceptible
of being involved in design specifications, namely the full state and the tip acceleration, so

that C is a 7 x 6 matrix. * The first state variable represents the tip position, and the last

* Clearly the last output is redundant; it is included for sake of simplifying the formulation of the design

problem.
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two, respectively the hub velocity and position.

We will use the linear simulator MaryLin. A corresponding System Description File
has to be set up. It consists of the specification of the matrices A+ bk (renamed A), b, and

¢, and of the chosen input v (here a unit step). It is as follows

PI = 3.1415926

G = 0.125

R1 9% 2%P1

R2 = 20.6%2%PI

R3 = 9.5%2%PI

R4 = G/(0.383 *x 2.124)

Al = 0.04>R2+0.22*R1

A2 = R1*R1+0.0088*R2*R1+R2*R2
A3 = 0.22%R2*R2*R1+0.04*R2*R1*R1
A4 = R2*R2*R1*R1

B2 = Ri*R2*R1*R2/(R3*R3)

B3 = 2*B2*R3

B4 = B2*R3*R3

B6 = 2+«PIx1.16%2.124

€1 = (A1*A1-A2)%0.383%R4

C2 = -41%0.383*R4

C3 = 0.383*R4

C5 = B2%0.383%R4

i

system_size Ninputs=1 Nstates=6 Noutputs=8

readmatrix 4

-A1 1 0 0 0 0
-A2 0 1 0 B2 0
-A3 0 0 1 B3 0
-A4 0 0 0 B4 0
0 0 0 0 0 1
-B6é*k1 -B6xk2 -B6%k3 -B6*k4 -B6*kb ~-7.29-B6*k6

readmatrix B

© O O O ©
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readmatrix C

1 0 0 o 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
c1 c2 c3 0 Cc5 0

readmatrix Ut
1

Note that values of the feedback gains k1,---,k6 are not specified (and thus are initially
0), as it is intended to use these gains as design parameters. Other values (than 0) could
have been given here but they would be overridden (with the initial value specified in the

Problem Description File) at the start of the optimization.

Problem Description

Again, we list here the contents of the Problem Description File. As suggested above,

we select as design parameters the feedback gains k1 through £6.

design_parameter k1 init=8.234939958e+00 variation=1.43e-1
design_parameter k2 init=-1.58345004e-01 variation=2e-1
design_parameter k3 init=-1.579990251e-03 variation=1.4e-3

design_parameter k4 init=2.38706e-5 variation=1e-5
design_parameter k5 init=4.0899395087e1 variation=1lel
design_parameter k6 init=5.853e-1 variation=le-1

In the specifications below, all system variables are divided by the final value of the tip
position (approximated by its value at t = 20), to take into account the effect of a mag-
nification of the step input to achieve a final value of 1 for the tip position. The design
objective is that, given a step input, the response at the tip position be close to a step

function. Good and bad curves are given on Figure 2.

This is declared as follows as two functional objectives.
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Figure: 2 Desired Position Profile

functional_objective
for t from 0 to 3
minimize {
double Ytr();
return Ytr(“i",
}
good_curve = {
if( t <= 1.2 )
else
}
bad_curve = {
if( t <= 1.2 )
else

}

"max-positive"
by .03

t)/Ytr(''1",20.0);

return 1.1;
return 1.02;

return 1.2;
return 1.1

maximize {
double Ytr();

}

good_curve = {
if( t <= 1.2 )
else
}

bad_curve = {
if( t <= 1.2 )
else

}

functional_objective 'min-positive"
for t from 0.8 to 3 by .03

return Ytr("1",t)/Ytr("1",20.0);

return 0.9
return 0.98;

return 0.85;
return 0.95;

Ytr is an interface routine.

It recognizes the string ”1” as indicating that the value of the

first output (as defined in the system description file) at the given time ¢ must be returned

(see Chapter 5 for more on interface routines). The design parameters are not passed

explicitly as arguments to Ytr. Instead simlat automatically sends the values of the design

6.14
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parameters to MaryLin whenever they are modified (see Chapter 5: flag PUPD). Next, one

could also include constraints on the tip acceleration, to ensure a smooth motion.

functional_constraint '"max-accel' hard

for t from 0 to 3 by .03
{

double Ytr();

return Ytr("7",t)/Ytr("1',20.0);
}
<=
good_curve = { return 10; }
bad_curve = { return 11; }

functional_constraint "min-accel" hard
for t from 0 to 3 by .03

{

double Ytr();

return Ytr("7",t)/Ytr("1",20.0);
}
>=

good_curve = { return -10; }
bad_curve = { return -11; }

Finally, the armature voltage may not exceed the specification of the motor.

functional_constraint '"control" hard
for t from 0 to 3 by .03
{
import ki k2 k3 k4 kb k6
double Ytr();
return fabs( 1-(kix¥tr("1",t)+k2*Ytr("2",t)+k3*¥tr("3",t)+ka*Ytr("4",t)
+k5*Ytr("5",t) +k6*Ytxr("6",t) ))/Ytr("1",20.0);
} <=
good_curve = {
return 4;
}
bad_curve = {
return 5;
}

Running the Problem

The initial guess of the design parameters is chosen as described in [10]. After SOLVE

has run for several iterations, the final values of the design parameters are
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Name Value Variation wrt O Prev Iter=12
k1 8.27618e+00 1.4e-01 0% 1%
X2 -2.14794e-01 2.0e-01 35% -2Y%
k3 ~-1.02094e-03 1.4e-03 -35% 0%
k4 5.67104e-06 1.0e-05 -76% 0%
kb 1.04953e+01 1.0e+01 -74% -2%
k6 6.03690e-01 1.0e-01 3% 1%

with the Pcomb output

Pcomb (Iter= 4) (Phase 3) (MAX_COST= -0.000817857)

SPECIFICATION PRESENT GOOD G B BAD

FO1 max-positi 1.00e+00 1.02e+00 ========x% | | 1.10e+00
FO2 min-positi 9.02e-01 9.00e-01 ¥======z================= §,50e-01
FC1 max-accel 2.96e+00 1.00e+01 <-- | | 1.10e+01
FC2 min-accel -4.75e-01 -1.00e+01 <~——~————mmm—mmmm e -1.10e+01
FC3 control 1.07e+00 4.00e+00 <-- | | 5.00e+00

showing that the design is satisfactory. Typing

plot FO1
plot FC3

one obtains Figures 3 and 4.
Finally, it should be clear that specifications involving frequency responses could have

been included, alone or in conjunction with time-domain specifications.
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CONVERT Reference Manual

This appendix describes the assignment and the various commands,which are used to
write a Problem Description File as presented in Chapter 3, by a BNF (Backus Normal
Form)-like rule. Identifiers enclosed in triangular brackets are non-terminal symbols; the
symbols ‘~—’, ‘|, and ‘\’ are so called meta-symbols; their meanings is given below. All

others are terminal symbols and they may appear in the Problem Description File. The
production rule is as follows: a ‘—’ indicates that the item to its left may generate the
items to its right. A ‘|’ indicates that either the item to its left or right may be generated
by the same non-terminal symbols. A ‘\’ indicates the continuation of a line and it may
be actually used in the Problem Description File. Besides the rules, some explanations
or examples may be also added. By the productions of these rules, the user may write a
Problem Description File without any syntax error. Part A below gives BNF rules for the
assignment and the various commands described in Chapter 3. Part B contains the rules

for the necessary elements.
Part A.

(assignment) —
(identifier) = (expression)

(constraint) —

constraint (quoted string) (soft or hard)
(pseudo-C code) (inequality type)
good_value={expression)
bad_value=(expression)

(define) —
define (identifier) (quoted string)

design parameter) —
&

design_parameter (identifier) \
init=(expression) \
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variation={expression) \
min=(soft or hard expression) \
max = (soft or hard expression)
Here, all the lines, except the first one, are optional. Also, the order is not important.

(exit) —
exit

(functional constraint) —

functional_constraint (quoted string ) (soft or hard)
for(identifier) from (expression) to {expression) (mesh type) (expression)
(pseudo-C code) (inequality type)
good_curve=(pseudo-C code)
bad_curve=(pseudo-C code)

(functional objective) —

functional_objective (quoted string)
for (identifier) from (expression) to (expression) (mesh type) {(expression)
(optimize) ( pseudo-C code)
good_curve=(pseudo-C code)
bad_curve=(pseudo-C code)

(global) —
global (newline-ended string)

(include) —

include (quoted string)

(initialization) —

initialization (pseudo-C code)

(objective) —
objective (quoted string)
(optimize) (pseudo-C code)
good_value=(expression)
bad_value=(expression)

(set) —
set (identifier) = (expression)

(trace) —

trace (identifier)
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Part B.

(binary operator) —

**|*|/|+|—

(constant) —

(constant) is defined as any Fortran constant.
Examples: 1 -5.2 3.6e2 542

(digit) —
0| t |2 | 3|4 /|5 |6 |7]8]°6s

(expression) —
(identifier)
(constant)
(unary operator) {expression)
(expression)(binary operator)(expression)
({expression))
(two argument function) ( (expression) ,
(one argument function) ( (expression) )

(expression) )

(optimize) —
minimize | maximize
(identifier) —

(letter) | (identifier)( letter) | (identifier)(digit)

(inequality type) —

(letter) —
Al ... 2| a | ... | 2z | -

(mesh type)

by | dec | times

(newline-ended string) —
(newline-ended string) is defined as any character string ended at a newline character.

The newline character is part of the string.

(one argument function) —
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abs | acos | asin | atan | cos | sin | sign
cosh | sinh | exp | log | logl0 | tan

(pseudo-C code) —
(pseudo-C code) is defined as a valid C code augmented by the import statement
enclosed in curly brackets. An import statement consists of the identifier ‘import’
followed by a list of identifiers separated by commas. These identifiers must have
been declared with identifier type ‘variable’; ‘define’ or ‘design parameter’.
An import statement ends at a semicolon or a newline character.

(quoted string) —
(quoted string) is defined as any character string quoted in balanced double quotes
or single quotes., so that (double) quoted strings may contain (single) quotes

and conversely. Quotes are not part of the string.
Examples:
"This is a string quoted by double quotes"
’This is a string quoted by single quotes’
"I don’t know your phone number"

(soft or hard) —

soft | hard

(soft or hard expression) —

[ (expression), (expression) 1 | (expression)

(two argument function) —

atan?2 | max2 | min2

(unary operator) —

+ | -

A4 CONSOLE - A CAD Tandem for Optimization-Based Design



APPENDIX B

SOLVE Reference Manual

Outline

CONSOLE - A CAD Tandem for Optimization-Based Design B.1



B.2

ALGO

NAME
algo - display/change optimization algorithm

SYNOPSIS
algo
algo FSQP
algo FIRST_ORDER

DESCRIPTION
Used without argument, ‘algo’ displays the optimization
algorithm currently being used. Otherwise, ’algo’ switches
to corresponding algorithm. If there is a change of algorithm,
‘algo’ resets iteration number to 0, uses the current design
parameter vector as the initial one, changes the prompt
(<> for FSQP, [] for FIRST_ORDER). The default algorithm
is FSQP.
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NAME
erase — erase graphic screen

SYNOPSIS
erase

DESCRIPTICON
‘erase’ erases the graphic screen.

SEE ALSO
plot
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NAME
freeze -~ freeze design parameter(s)
unfreeze - unfreeze design parameter(s)

SYNOPSIS
freeze <namel> <name2>
unfreeze <namel> <name2>

DESCRIPTION
‘freeze’ freezes the value of design parameters <namel>,
<name2>, ..., during subsequent optimization until they

are ’unfreeze’d.

EXAMPLE
freeze x
freeze x y
unfreeze x z

FREEZE
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NAME
goutput - redirect graphical output

SYNOPSIS
goutput
goutput <file>

DESCRIPTION
Used without argument, ‘goutput’ displays the current
redirection of graphical output. The default is the
standard output. Otherwise, it redirects future graphical
outputs to the file <file>.
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NAME

help - display manual entry

SYNOPSIS
help

help <command>
help <concept>

DESCRIPTION

Used without argument or with ‘help’ as its first argument,
‘help’ prints this message. Otherwise, ‘help’ prints the
manual entry for the command <command> or the concept
<concept>. Following are available commands:

algo
erase
freeze
goutput
help
identify
iter
pcomb
plot
print
quit
reset
run
scale
set
setgb
sim
store
time
trace
unfreeze

display/change optimization algorithm

erase graphic screen

freeze design parameter(s)

redirect graphic output

print this message

identify design problem being solved
display/change iteration number

display performance

plot functional objective/constraint

display design parameters

exit SOLVE

reset SOLVE

perform optimization

change nominal variation of design parameter
set values of design parameters

change good/bad values or curves of specification
call simlat(x,SIM_INTA)

store design parameters into file

display CPU time

trace optimization algorithm and/or simulator (on/off)
unfreeze design parameter(s)

and information for which help is available

info
interrupt
matlab
nevs
optimal
simlat
version

how to obtain the CONSOLE package

stop optimization prematurely

how to use CONSOLE and MATLAB jointly
local newvs

explanation of optimal code (optimality)
interface between CONSOLE and simulator
changes in the version 1.1 of CONSOLE

HELP
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NAME
identify - identify design problem being solved

SYNOPSIS
identify

DESCRIPTION
‘identify’ identifies the design problem being solved.
A typical output would be

PROBLEM: robot_joint

4 Design Parameter(s)
Objective(s)
Functional Objective(s)
Constraint(s)
Functional Constraint(s)

W N e

CONSOLE - A CAD Tandem for Optimization-Based Design B.7



B.S

For assistance with or information on CONSOLE, contact:

or

CONSOLE is available for VAX(UNIX/VMS), MicroVAX(UNIX/VMS), SUN computers.

Professor Michael Fan

School of Electrical Engineering
Georgia Institute of Technology
Atalanta, GA 30332

(404) 853-9828

Email: eefacmf@prism.gatech.edu

Professor Andre Tits
Systems Research Center
University of Maryland
College Park, MD 20742
(301) 405-3669

Email: andre@src.umd.edu

INFO
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INTERRUPT

SUBJECT
interrupt - stop optimization algorithm prematurely

DESCRIPTION
When a command such as ‘run 5’ is issued, the optimization
algorithm will usually perform 5 more iterations and stop,
or it could stop earlier if a local optimal solution is
obtained (see ‘optimal’ for details). However, it could be
forced to stop prematurely by the user. This is done by
sending interrupt signals. An interrupt signal could be
generated by depressing either ‘control-C’, f‘break’ or
‘delete’ key which depends on the current terminal setup
(see Unix manual entry ‘stty’ for details). When an
interrupt is given, SOLVE calls the C routine
simlat(x,SIM_INTR), where x is the design parameter vector
at the current iteration. If this is the first interrupt,
SOLVE also prints out the message

An interrupt has been detected by SOLVE. SOLVE will
stop running the optimization algorithm as soon as
it finishes the current iteration.

CONTINUING EXECUTION ...
and continues the execution of the optimization until
the current iteration is finished. This is known as
’soft interrupt’. If a second interrupt is given at the
same iteration, SOLVE prints out the message

WARNING: A second interrupt has been received before

SOLVE has processed the first ... SOLVE is possibly

hung in a routine.

INTERRUPTED

and it stops momentarily. This is known as a ’hard interrupt’.

SEE ALSO
optimal, simlat, trace
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ITER

NAME
iter - display/change iteration number

SYNOPSIS
iter
iter <number>

DESCRIPTION
Used without argument, ‘iter’ displays the current
iteration and the number of the last available iteration.
The last available jteration is defined as the iteration
of highest number for which design parameters have been
computed. If a nonnegative integer <number> is given
as the argument, ‘iter’ sets the current iteration to
<number> provided that <number> is no more than the last
available iteration.

EXAMPLE

iter
iter 0
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MATLAB

SUBJECT
matlab

DESCRIPTION
The SOLVE-MATLAB interface is included in the standard
distribution of CONSOLE. Assuming that the user is familiar
with the use of CONSOLE and MATLAB as individual programs,
here we describe how to use them together. Consider the
tutorial example in the manual, for which the corresponding
PDF (Problem Description File) looks like

design_parameter x init=5 min=0
design_parameter y init=10

objective '"quadratic"
minimize {
import x, y;
return (x-1)*(x-1)+(y-2)*(y-2);
}
good_value=1
bad_value=4

constraint '"linear" soft
{ import x, y;
return xty;

}
<= good_value=1
bad_value=2

Now suppose that we wish to use MATLAB to evaluate the
objective (i.e., (x-1)*(x-1)+(y-2)*(y-2)) and the constraint
(i.e., x+y) for given values of x and y when the optimization
is performed. Here is a list of things we need to do :

1. create a M-file named "init.m" which does all operatioms
that do not depend upon the design parameters (x and y).
This file is optional, and in our case, is not necessary.
However, we still write one to show how it looks like

%init - simulator one time initialization
one = 1;
two = 2;

2. create a M-file named "simu.m" which does all operations
that depend upon the values of the design parameters and
then save the results in the file "simu.mat"

%simu - perform simulation

obj = (x-one)~2 + (y-two)"2;
const = x+y;
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3.

4.

There

B.12

MATLAB

save simu obj const
modify the PDF as follows

design_parameter x init=5 min=0
design_parameter y init=10

objective 'quadratic"
minimize {
double getout();
return getout('obj", 1);
}
good_value=1
bad_value=4

constraint "linear" soft
{ double getout();
return getout('const", 1);

¥
<= good_value=1
bad_value=2

then, at csh command prompt, type (assuming the file
pdf is PDF)

% convert pdf
% solve -matlab pdf

and proceed as before. The optimization should give you
identical results compare to that if you use CONSOLE
alone.

are a couple of useful remarks

As mentioned before, the file "init.m" is optional.
However, the file "simu.m" must be present and properly
defined.

The working directory must be writable by the user (since
MATLAB will create the file '"simu.mat" for storing
simulation results).

In the file "simu.m", the names follow "save simu" could be
either variables or arrays.

. The routine getout() reads the file "simu.mat" and returns

the simulation result in double according to its arguments.
The first argument is the name of variable or array, and
the second is the index. For variables, the index is always
one, and for arrays, the index gives the corresponding
element in the array.
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MATLAB

5. You are probably wondering why the variables x and y are
never defined in either "init.m" or "simu.m". Here is
the basic concept of the operation between SOLVE and
MATLAB : first SOLVE asks MATLAB to evaluate the M-file
"init.m". Then during optimization, each time when SOLVE
changes the values of the design parameters, it sends
out strings like

x=5.000000000;
y=10.00000000;

to MATLAB, and then asks MATLAB to evaluate the M-file
"gimu.m”. Finally, the routine getout() gets back the
simulation results to SOLVE. Therefore, any assignment
to a design parameter in the file "init.m" will be
overwritten by the assignment given by SOLVE, and any
assignment to a design parameter in the file "simu.m"
will overwrite the assignment given by SOLVE. You may
still want to put initialization of design parameters
in the file "init.m" such that "init.m" and "simu.m"
can run separately with MATLAB. However, you never put
assignments of design parameters in the file "simu.m".

6. In the prompt of SOLVE, when you type
sim
and you will see

Enter MATLAB, type ’back’ to leave
>>

Now, you are effectively talking to the copy of MATLAB
which SOLVE was talking to. You may examine

or even modify the value of any variable (including
variables affecting the optimization). In principle,

you may talk to MATLAB just like you are using MATLAB
alone, with the exceptions that (1) commands that give
more than a screenful of output (e.g., "help" and "demo")
should be avoided (SOLVE may hang up), and (2) interrupt
is disabled.
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SUBJECT

OPTIMAL

optimal - explanation of optimal code (optimality)

DESCRIPTION

SOLVE stops optimization process under one of the following
circumstances and prints out a message with an ‘optimal’ code
associated with each case (codes 1-3 are for algorithm
FIRST_ORDER, and codes 5-8 are for algorithm FSQP) :

Optimal code

Descriptions

4 local optimal solution has been found.
(The Euclidean norm of the search
direction is small and the threshold for
determining the most active specifications
is smaller than 1e-5.)

A local optimal solution has been found.
(The Euclidean norm of the gradient

of the most active specification is smaller
than 1le-5.)

Further decrease of the most active specifications
cannot be achieved. (A suitable move along the
search direction cannot be made after 100

trials. This is sometimes due to inaccurate
evaluations of gradients).

Not used.

A local optimal solution has been found.
(The Euclidean norm of the search direction
is smaller than the square root of machine
precision.)

A feasible point has been found that satisfies
all constraints and there is no objective
specification.

A proper search direction cannot be found
due to errors reported by QPSOL (quadratic
programming sub-problems).

Further decrease of the most active specifications
cannot be achieved. (A suitable move along the
search direction cannot be made after 50 trials,
or the Euclidean norm of the difference of

two successive iterates is smaller than machine
precision.)
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PCOMB

NAME
pcomb - display performance

SYNOPSIS
pcomb

DESCRIPTION
‘pcomb’ displays the performance of the optimization
algorithm and the design problem at the current
iteration. Please refer to ‘CONSOLE Users’s Manual’
(Section 4.4) for details. The command ‘pcomb’ can be
issued for each iteration automatically (see ‘run’
for details).

EXAMPLE
pcomb

SEE ALSO
run
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PLOT

NAME
plot - plot functional objective/constraint

SYNOPSIS
plot FO <number>
plot FC <numbexr>
plot FO <number> log
plot FC <number> log

DESCRIPTICN
‘plot’ erases the graphic screen and plots <number>th
functional objective (F0) or functional comstraint (FC).
the x-axis of the plot is of linear scale if the
mesh type of the specification is ‘by’. Otherwise
(‘dec’ or ‘times’) the x-axis is of logarithmic scale.
Y-axis is of logarithmic scale if the argument ‘log’
is present. Otherwise, linear scale is used.

SEE ALSO
erase
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PRINT

print ~ display design parameters

SYNOPSIS

pPrint
print <number>

DESCRIPTION

Used without argument, ‘print’ displays values, variations
and changes with respect to iteration 0 and previous
iteration of design parameters at the current iteration. If
an integer number <number> is given, ‘print’ displays the
similar information for iteration <number>. <number> should
not exceed the number of the available iteration.

A typical output looks like

Name Value Variation wrt O Prev Iter=10
x 1.35200e+00 1.0e+00 1Y% 2%
y 9.99091e+01 1.0e+00 -2% 4y,

The columns marked '"wrt 0" and "Prev" stand for change with
respect to iteration 0 and previous iteration respectively.
If the magnitude of a percentage change is more than 9999,
“k¥*xx? ig printed. The command ‘print’ can be issued for
each iteration automatically (see ‘run’ for details).

EXAMPLE

print
print 3

SEE ALSO

iter, store, run
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QUIT

NAME
quit - exit SOLVE

SYNOPSIS
quit

DESCRIPTION
‘quit? calls the C routine simlat(x,SIM_QUIT) if it has
been given to SOLVE by the user and exits SOLVE, where x
is the design parameter vector at the current iteration.

SEE ALSO
simlat
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RESET

NAME
reset - reset SOLVE

SYNOPSIS
reset

DESCRIPTION
‘reset’ erases values of specifications which have been
stored for the current iteration. It then calls the C
routine simlat(x,SIM_RSET) if it has been given to SOLVE
by the user, where x is the design parameter vector
at the current iteration.

SEE ALSO

simlat
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run - perform optimization

SYNOPSIS

run <number>
run <number> <commands>

DESCRIPTION

‘run’ performs <number> iterations of the optimization
algorithm. <number> must be nonnegative integer. ‘rumn 0’
means to evaluate various specifications for the current
iteration. Iterations may prematurely end due to an
interrupt sent by the user (see ’interrupt’ for details)
or due to a an optimality condition is satisfied in the
optimization algorithm (see ‘optimal’ for details). If
a list of commands <commands> is also given, f‘run’
executes them during or after each iteration. Possible
commands are

active - display gradients of active specifications
and the search direction in the optimization
algorithm for the current iteration.

print - display design parameters for the current
iteration.

pcomb - display performance for the current iteration.

time - display CPU time.

pause - pause after each of the above commands until

the user types ‘return’.

The order of commands given is irrelevant. The command
‘active?’, if given, is executed after the optimization
algorithm finds a search direction. The commands ‘print’,
‘pcomb’ and ‘time’, if given, are executed after each
iteration is completed. The order of execution is
‘print?’, ‘pcomb’ then ‘time’.

EXAMPLE

run 0

run 0 pcomb

run 3 active print pause

run 2 pcomb print active pause time

SEE ALSO

print, pcomb, time

RUN
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SCALE

NAME
scale -~ change nominal variation of design parameter

SYNOPSIS
scale <name> = <number>

DESCRIPTION
‘scale’ changes the nominal variation of a design
parameter. <name> is the design parameter and <number>
its new nominal variation. <number> is either a positive
integer or a positive floating point constant.

EXAMPLE
scale x = 10
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B.22

NAME
set - change value of design parameter

SYNOPSIS
set <name> = <number>

DESCRIPTICN
‘set’ changes the value of a design parameter at the
current iteration. <name> is the design parameter and
<number> its new value. <number> is either an integer
or a floating point constant.

EXAMPLE
set x = 0.5

SET
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SETGB

NAME
setgb ~ change good/bad values or curves of specification

SYNGPSIS
setgb 0 <number>
setgb C <number> <good>, <bad>
setgb FO <number> = <good>, <bad>
setgb FC <number> = <good>, <bad>

<good>, <bad>

DESCRIPTION
‘setgb’ changes the good and bad values or curves of
the <number>th objective (0), constraint (C), functional
objective (FO) or functional constraint (FC). The new good
and bad values or curves are <good> and <bad> respectively.
For functional specification, the good and bad curves
become constant curves after changed by ‘setgb’.

EXAMPLE

setgh 01 =1, 2
setgb FC 2 = 10, 2.5
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SIM

NAME
sim - call simlat(x,SIM_INTA)

SYNOPSIS
sim

DESCRIPTION
fgim’ calls the C routine simlat(x,SIM_INTA) if it has
been given to SOLVE by the user, where x is the design
parameter vector at the current iteration.

SEE ALSO

simlat
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SUBJECT

simlat - interface between CONSOLE and simulator

DESCRIPTION

The C routine ‘simlat’ is the main part for a sophistical

interface between CONSOLE and a simulator. While SOLVE
is unaware of what simulator is currently being used,
it calls the routine ‘simlat’ with specific arguments

whenever there is a possibility that the simulator requires

that some action be taken. If no routine ‘simlat’ is
provided with the simulator, the default dummy routine

will be called and no action will be taken. Please refer

to ‘CONSOLE Users manual’ (Section 5.2) for details.
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STORE

NAME
store - store design parameters into file

SYNOPSIS
store <file>

DESCRIPTION
‘store’ stores the design parameters at the current
iteration into file <file> in a form that can be added
directly into the Problem Description File, where <file>
is any quoted string.

EXAMPLE
store ''dp_save"
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TERMINAL

SUBJECT
terminal

DESCRIPTION
The version 1.1 of SOLVE only supports tektronic 4014 terminal
type. Consequently, no terminal setup is necessary.

SEE ALSO
goutput
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TIME

NAME
time - display CPU time

SYNOPSIS
time

DESCRIPTION
‘time’ displays a summary of CPU time used by SOLVE.
A typical output is

Cpu time: Total 6 Delta 2 (seconds)

which shows that the total CPU time used by SOLVE is
five seconds and that two seconds have elapsed since
last ‘time’ command was issued. The command ‘time’ can
be issued for each iteration automatically (see ‘run’
for details).

SEE ALSO
run
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TRACE

NAME
trace - trace optimization algorithm and/or simulator
(on/off)
SYNOPSIS
trace

trace <number>

DESCRIPTION
Used without argument, ‘trace’ is the same as ‘trace 1’.
‘trace’ traces the optimization algorithm and/or the
computation of the simulator based on the value of
<number>, which should be 0, 1, 2 or 3. The corresponding
action is as follows.

<number> Action

0 ‘trace’ turns off the trace for the
optimization algorithm and calls the C
routine simlat(x,SIM_NOTR), where x is
the design parameter vector at the
current iteration.

1 ‘trace’ turns on the trace for the
optimization algorithm.

2 ‘trace’ calls the C routine
simlat(x,SIM_TRAC), where x is the design
parameter vector at the current iteration.

3 ‘trace’ turns on the trace for the
optimization algorithm and calls the C
routine simlat(x,SIM_TRAC), where x is
the design parameter vector at the
current iteration.

simlat(x,SIM_NOTR) and simlat(x,SIM_TRAC) may be
implemented in such a way that ‘trace 0’ turns off the
trace for both the optimization algorithm and the
simulator; ‘trace 1’ turns on the trace only for the
optimization algorithm; ‘trace 2’ turns on the trace
only for the simulator; and ‘trace 3’ turns on the
trace for both the optimization algorithm and the
simulator.

EXAMPLE
trace

trace 2

SEE ALSO
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TRACE

simlat
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VERSION

SUBJECT
Changes in Version 1.1 of CONSOLE

DESCRIPTION
Things changed from version 1.0 to version 1.1:

1. A superlinearly convergent algorithm (FSQP) is added.
2. New commands algo, freeze, unfreeze, goutput are added.
3. Hard interrupt is implemented.

4. Only support tektronic 4100 terminal for graphics.
Consequently, the command terminal is removed.

SEE ALSO
algo, freeze, goutput, interrupt
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INDEX

abs, 3.4, A4.

acos, 3.4, A.4.
addition, 3.2.
additive operator, 3.1.
argument, 4.3, 6.3.
asin, 3.4, A.4.
assignment, 3.1, 3.4-3.5, A.1.
atan, 3.4, A.4.

atan2, 3.4, A4.
automatic scaling, 4.2.
backslash, 3.7.

bad curve, 1.5-1.6, 2.8, 3.4, 3.13, 4.7, 6.4—
6.5, 6.13-6.15, A.2.

bad value, 1.3-1.4,1.6, 2.1, 2.8, 3.4, 3.10—
3.11,4.4,6.5, A.1-A.2.

Berkeley Pascal compiler, 3.17.
best value, 1.1.

binary operator, A.3.

BNF-like rule, 3.5, A.1.
bound-type constraint, 4.2, 4.6.
buffer, 6.6.

C, 1.1, 3.2,3.14, 4.3, 5.1, 5.4.
C compiler, 3.16.

call by reference, 3.17.

call by value, 3.17.

command, 3.1-3.4, 4.4, A.1.
competing, 1.1, 1.4.

consistent data passing mechanism, 3.15,

3.17.
consistent data type passing, 3.14-3.15.

constant, A.3.

constraint, 1.2-1.4,2.3, 3.3, 3.11,4.4, 5.1,
6.5, A.1.

continuation of line, 3.7.

cos, 3.4, A4.

cosh, A.4.

CPU time, 5.2.

define, 3.2-3.3, 3.6, 5.3, A.1.
definition, 3.3.

design methodology, 1.1, 1.3, 4.1, 4.4.

design parameter, 1.6, 2.2, 2.5, 3.2-3.3,
3.7, 5.1-5.3, 6.3, 6.7, 6.9, 6.13, A.2.

design parameters, 1.1.
design performance, 4.4.
design specifications, 1.1.
digit, A.3.

discretization, 3.12.
dissatisfaction, 1.4.

division, 3.2.

double, 5.5, 6.4-6.5, 6.15.
double precision, 3.1-3.2, 3.16, 5.5.
double quotes, A.4.

dummy routine, 5.2.
dynamic loading, 2.4, 4.3.
erase, 4.4.

error checking, 4.6.

exit, 3.3, 3.10, A.2.

exp, 3.4, A4.
exponentiation, 3.2.
exponentiation operator, 3.1.

expression, 3.1, 3.6-3.8, 3.10-3.11, 3.13,
A.3.

F77 compiler, 3.17.
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INDEX

feasibility, 1.5.

feasible direction, 4.1.

finite difference, 5.4.

flag, 5.3.

flexible robot arm, 6.11.

Fortran, 1.1, 3.2, 3.14, 4.3, 5.1, 6.2, A.3.
free parameter, 1.5, 3.12.

function, 3.2, 3.4.

functional constraint, 1.2-1.3, 1.5, 3.3,
3.13,4.2, 4.5, 4.7, 6.5, 6.15, A.2.

functional objective, 1.2-1.3,1.5, 3.3, 3.11,
4.2,4.5,4.7, 6.4, 6.13-6.14, A.2.

functional specification, 1.5, 2.8.
global, 3.3, 3.8, A.2.

good curve, 1.5-1.6, 2.8, 3.4, 3.13, 4.7,
6.4-6.5, 6.13-6.15, A.2.

good value, 1.3-1.4, 1.6, 2.1, 2.8, 3.4,
3.10-3.11, 4.2, 4.4, 6.5, A.1-A.2.

gradient, 5.1, 5.4.

graphical feedback, 4.4.
graphics, 1.2.

hard, 3.4, 3.11, A4

hard constraint, 1.4-1.5, 4.2, 4.4.
hard expression, 3.7-3.8.

help, 2.5, 2.8, 4.4.

identifier, 3.1, 3.5-3.6, 3.11, 3.13, A.l,
A3.

identifier matching, 3.14, 3.16.
identifier type, 3.2.

identify, 2.5, 4.4.

import, 2.3, 3.2, 3.12, 6.4-6.5, 6.15, A.4.
include, 3.3, 3.9, A.2.
incremental loading, 2.4.
inequality, 3.11, 3.13, A.3.
infeasibility, 1.5.

infinite dimensional, 6.3.

init, 3.4, 3.7, 6.3, A.1.

initial guess, 1.6, 2.1-2.2.
initial value, 2.1, 3.3, 3.14, 6.3.

initialization, 3.3, 3.14, 4.3, 5.2-5.3, A.2.
initialization of simulator, 5.3.

input, 6.3.

interaction, 1.1-1.2, 1.5-1.6, 4.2, 4.4, 5.3.
interactive, 1.1-1.2, 1.6, 2.5, 5.2.
interactive graphics, 1.2.

interactive simulator, 5.2-5.3.

interactive solution, 1.6.

interface, 1.2, 3.17, 4.3, 5.2-5.3, 5.5, 6.6,
6.14.

interrupt, 2.8, 4.7, 5.3.
interrupt of simulator, 5.3.
iter, 4.4.

iteration, 2.6, 4.7, 5.3.
keyword, 3.2, 3.4.

linear simulator, 6.12.
linking, 2.8.

loader, 2.4, 3.16, 4.3.

local optimal solution, 4.7.
local optimizer, 2.8.

log, 3.4, A4.

logl0, 3.4, A.4.

logic error, 1.2.

lower bound, 4.2.

lower case, 3.1.

MaryLin, 6.12.

max, 3.4, 3.7, 6.3, A.2.
max2, 3.4, A4.

maximize, 2.3, 3.4, 3.10, A.3.
maximum value, 3.3, 6.3.
mesh type, 3.11-3.12, A.3.
min, 3.4, 3.7, 6.3, A.2.
min2, 3.4, A4.

minimax problem, 4.2, 4.4.
minimize, 2.3, 3.4, 3.10, 6.4, A.3.
minimum value, 3.3, 6.3.
multiplication, 3.2.
multiplicative operator, 3.1.
newline character, 3.2.
newline-ended string, A.3.
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INDEX

nominal variation, 1.6, 3.3, 4.2.
non-functional specification, 1.5.

normalized, 1.5.

objective, 1.1-1.5, 2.2-2.3, 2.6, 3.3, 3.10,
4.2,4.4, 5.1, 6.13, A.2.

on-line manual, 4.4.

one argument function, A.3.
operator, 3.1.

optimal code, 2.7.

optimal solution, 1.6, 2.8, 4.7.
optimization algorithm, 2.6-2.7, 4.1, 4.7.
optimize, 3.10-3.11, A.3.
ordinary specification, 1.5.
output, 5.2, 6.2-6.3.

Pascal, 3.2, 3.14, 4.3, 5.1.
Pascal compiler, 3.17.
Pcomb, 1.6, 2.6, 4.4, 4.6,6.9, 6.16.
pcomb, 2.6, 2.8, 4.4, 6.9.
performance, 1.6.
performance comb, 2.6.
phase, 1.4-1.5, 2.6, 4.2.

plot, 4.4, 6.9.

polymerization, 6.1.
polynomial, 6.3.

print, 2.5-2.6, 2.8, 4.4, 6.9.
problem dependent, 6.6.

Problem Description File, 1.2, 2.1, 2.3,
3.1, 3.7, 3.9, 4.3-4.4, 4.7, 5.1-5.2, 5.4,
6.2, 6.6, 6.8, 6.13, A.1.

problem formulation, 1.1.
problem initialization, 2.4.

pseudo-C code, 2.3, 3.1-3.2, 3.10-3.15,
3.17, A.1, A.4.

quit, 4.4, 5.3, 6.11.

quoted string, 3.5-3.6,3.9-3.11, 3.13, A 4.

readmatrix, 6.13.
recursion, 3.7.
redundant calls, 6.6.
relative pathname, 3.9.

reset, 4.4, 5.2, 5.4.

run, 2.5-2.6, 4.4, 6.8.
satisfaction, 1.3-1.4, 6.10.
scale, 4.4.

scaled value, 1.4-1.6, 2.6.
scaling, 4.2.

semicolon, 3.2.

set, 3.3, 3.13, 4.4, A.2.
setghb, 4.4.

sign, 3.4, A.4.

sim, 4.4.

simlat, 2.4, 4.7, 5.2-5.3.
simulation, 6.2.

simulator, 1.2-1.3, 2.1, 2.8, 4.3, 5.1-5.2,
6.2.

simulator cleanup, 5.3.
simulator dependent, 6.6.
simulator environment, 5.4.
simulator initialization, 2.4.
simulator output, 5.2.
SIM_INIT, 5.3.
SIM_INTA, 5.3.
SIM.INTR, 5.3.
SIM_ITER, 5.3.
SIMITRA, 5.3.
SIM_LNOTR, 5.3.
SIM_PUPD, 5.3.
SIM_QUIT, 5.3.
SIM_RSET, 5.3-5.4.
SIM_TRAC, 5.3-54.

sin, 3.4, A.4.

single, 5.5.

single precision, 5.5.

single quotes, A.4.

sinh, A.4.

soft, 3.4, 3.11, A.4.

soft constraint, 1.4-1.5, 2.3, 2.6, 4.2, 4.4.
soft expression, 3.7-3.8.
soft or hard expression, 3.7-3.8, 3.11.
solution, 4.7.
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specification, 1.4, 6.3.
square deviation, 6.4.
store, 3.14, 4.4, 6.11.
suboptimal, 6.3.
subtraction, 3.2.
syntax error, 1.2.
tan, 3.4, A.4.

target value, 1.4.
temporary file, 4.3.
terminal, 4.4.

time, 4.4, 6.2.

trace, 2.6, 3.3, 3.7, 4.4, 5.3-5.4, A.2.
tradeoff, 1.2, 1.6.

1.4

INDEX

transient, 6.4.

two argument function, A.4.
unary affirmation, 3.2.
unary negation, 3.2.

unary operator, 3.1, A.3-A.4.

uniform parameter influence rule, 1.6.

uniform satisfaction/dissatisfaction rule, 1.4.

upper bound, 4.2.

upper case, 3.1.

value of the expression, 3.1.
variable, 3.2.

variation, 3.4, 3.7, 4.2, 6.3, A.2.
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