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 Preterm infants admitted to the NICU may spend up to 12 weeks in isolettes 

(incubators with controlled air temperature and humidity). Infants receive frequent 

contact with health-care professionals who use alcohol-based hygiene products. Ethanol 

is a known developmental neurotoxicant, and inhalation may have long-term effects on 

infant neurodevelopment. This study assessed alcohol concentration in isolette air after 

inserting hands cleaned with hand sanitizer, and effects of longer hand rubbing before 

insertion into the isolette. Each exposure consisted of two squirts (1.5 ± 0.1mL) of hand 

sanitizer, and hands rubbed for 10 or 20 seconds before insertion into isolettes. Air 

samples were collected by photoionization detector and breathalyzer. Average ethanol 

peaks were 387.04ppm (10s) and 104.36ppm (20s). Ethanol levels peaked within 1min, 

dissipated within 5min, and returned to background within 15 – 20min. Alcohol 

exposure from ethanol based hand sanitizer may be decreased significantly with longer 

duration of hand rubbing.  
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Alcohol exposure in preterm infants in neonatal isolettes 

Masters of Public Health Thesis 

 

Introduction 

A neonatal intensive care unit (NICU) is a facility or unit within hospitals that is 

designed to treat premature and ill newborn babies. Preterm babies spend up to 12 weeks 

in neonatal isolettes, which are enclosed spaces made of significant amounts of plastics. 

While spending time in these isolettes, infants come into frequent contact with health-

care professionals who utilize alcohol-based hygiene products before coming into contact 

with the infants. Ethanol-based hygiene products are increasingly used in NICUs to 

prevent infections. The isolettes have minimal air exchange, and it is possible that alcohol 

vapors from hand sanitizer build up in isolette with frequent entry into the isolettes. 

Ethanol is a known developmental neurotoxicant and may have long-term consequences 

on the neurodevelopment of these babies. 

The objective of this study is to determine the alcohol concentration and 

persistence levels in a NICU isolette air after introduction of hands cleaned with hand 

sanitizer. Prior to addressing the study design, a discussion is provided of several major 

issues affecting the preterm infant’s vulnerabilities to environmental exposures, followed 

by a discussion of the NICU environment that these infants are first exposed to upon their 

birth.  

Health Risks of Neonate Alcohol Exposure 

Ethanol exposure during gestation has been linked with number of harmful health 

effects to the neonate, including fetal alcohol syndrome (FAS) (Costa, 2004). Symptoms 
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of FAS include facial dysmorphologies, growth retardation, and central nervous system 

(CNS) abnormalities (e.g., mental retardation, microencephaly, and brain malformations) 

(Costa, 2004). Of particular concern are the CNS effects, as they are believed to be 

irreversible (Streissguth, 1991). 

Research indicates that the timing of ethanol exposure during fetal brain 

development affects the types of effects that manifest in the neonate (Costa, 2004). 

Animal studies and human observations have shown that exposure to ethanol during the 

brain growth spurt in the third trimester of pregnancy in humans (correlating to the first 

two postnatal weeks in the rat) is associated with microencephaly (Samson, 1986). This 

effect is present in more than 80% of children with FAS (Samson, 1986). One animal 

study investigated the relationship between dose, blood alcohol content (BAC), and 

microencephaly in rats. The study found that doses of 7.4 g/kg/day and above 

administered during the time period of brain growth spurt in neonatal rats resulted in 

microencephaly. Interestingly, the researchers found that BAC varied considerably 

among individual animals at each dose tested, and the amount of brain growth reduction 

was more dependent on BAC than dose (Pierce, 1986).  

One suspected mechanism of this damage is the result of alcohol metabolism. 

Alcohol metabolism is mediated through a number of important enzymes, including 

alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and cytochrome P450 

(CYP2E1). Alcohol metabolism results in the generation of acetaldehyde, a highly 

reactive and toxic byproduct that may contribute to tissue damage. Additionally, harmful 

effects associated with CYP2E1-mediated ethanol metabolism are primarily related to the 

production of reactive oxidative species (ROS) (i.e., superoxide and hydroxyl radicals). 
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This ROS production contributes to alcohol-induced damage to a variety of tissues not 

only by causing oxidative stress but also by enhancing apoptosis triggered by various 

stimuli (Zakhari, 2006).  

This effect is supported through animal studies in which the apoptotic response to 

ethanol was investigated for its role in loss of brain mass of neonatal rats, in particular 

during a specific developmental stage (or “window”) of brain growth known as 

synaptogenesis (Ikonomidou, 2000). This time frame correlates to the last three months 

of gestation. In this study, saline or ethanol (2.5 g/kg at 0 and 2 hours; total dose 5 g/kg) 

was administered to infant rats. The researchers found that the brain weights of ethanol-

treated rats were significantly lower than those of the saline-treated rats. This supports the 

hypothesis that the immature brain is vulnerable during this important developmental 

window (Ikonomidou, 2000). 

Health effects of exposure through inhalation, however, are not well known, and 

safe level of exposures have not been defined for infants. For adults, the OSHA limit to 

ethanol in ambient air is 1,000 ppm (1884 mg/m
3
) for an eight-hour period (OSHA, 

2012). Limits for children have not been determined, but would likely be much less than 

that of adults. 

 

Issues Affecting the Neonate 

One factor affecting the susceptibility of preterm infants to environmental exposures 

is their underdeveloped organ systems. Of particular relevance to this study are the 

neonatal excretory, nervous, and respiratory systems. In regards to the excretory system, 

studies examining the excretion capabilities of the preterm infant are limited; however, it 

is believed that the body systems that detoxify and excrete chemicals are not fully 
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developed in infants (ATSDR, 2012). In a study of premature infants conducted in 2011, 

the CNS of infants born at 22–26 weeks gestation were found to be at high risk for 

hypoxic/ischemic brain injury and intraventricular hemorrhage (Boat, 2011). 

Furthermore, this study found that immature respiratory systems in extremely premature 

neonates results in significant long-term morbidity in survivors (Boat, 2011). 

The same systems that are underdeveloped at the time of birth of preterm are 

rapidly developing after birth and become better able to handle environmental exposures 

(ATSDR, 2012). Additionally, there appears to be “windows” in which neonates are 

more susceptible to environmental insult (Costa, 2004). While studies examining the 

excretion capabilities of the preterm infant are limited, previous work investigating 

excretion capabilities of full term and preterm infants indicates that hemodynamic 

changes occur around the time of birth, which cause a significant (50 to 100%) increase 

in glomerular filtration rate during the first week of life (Aperia, 1983a; Aperia, 1983b). 

Specifically, in a study assessing alcohol elimination rates in newborns, Burd et al found 

that the ability of kidneys to excrete ethanol increases after birth. Of note, a newborn’s 

renal excretion is more effective than renal excretion by the fetus, in part, because there is 

no amniotic fluid reservoir to trap and recycle the ethanol back into the newborn. As the 

glomerular filtration rates increase, a greater amount of ethanol can be removed from 

circulation (Burd, 2012). The authors acknowledge that although the changes underlying 

the increase in elimination capacity are not fully understood, they suspect that there are a 

number of physiological and environmental changes around the time of birth that 

contribute to the increased alcohol elimination capability. 
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Importantly, the intake rates of chemicals by infants are greater proportionally 

than that of adults. This results in children receiving an increased body burden of 

toxicants they are exposed to. In particular, children have increased breathing rates (per 

body mass), resulting in a greater intake volume of air than adults (EPA, 2011). Their 

skin is also more permeable, permitting more dermal exposures. Additionally, the 

reduced weight of infants also contributes to the potential for increased body burden of 

environmental exposures (ATSDR, 2012). All of these factors are compounded further by 

the degree of infant prematurity. 

While the metabolic capability of the newborn is not fully understood, there are a 

number of known metabolic differences in infants. Several studies suggest that a number 

of metabolic enzymes undergo postnatal development (LeBel, 1988; Burd, 2012). This is 

important to consider when studying environmental exposures in preterm infants. As 

previously mentioned, ethanol metabolism is mediated through the enzymes ADH, 

ALDH, and CYP2E1. Metabolism of ethanol with ADH produces acetaldehyde, a highly 

reactive and toxic byproduct (Zakhari, 2006). Levels of these enzymes appear to differ 

between adults and preterm infants. One study found that mean liver concentrations of 

class I ADH (there are five classes) was significantly lower in perinatal infants than 

adults (Tran, 2007). The study also indicated that only one ADH isoform was present in 

the liver of perinatal infants, while several variations in were present in the liver of 

adults, indicating the rapidly developing metabolism of neonates. These results are 

consistent with previous finding reported in enzyme activity between fetuses aged two to 

six months in gestation, infants aged one week to seven months of birth, and children and 

adults aged 2–50 years (Pikkarainen, 1967).  
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Another study also supports this idea, finding that ethanol metabolism enzymes 

may be less developed for preterm infants than term newborns. LeBel et al found that 

reduced percentages of benzyl alcohol metabolites were present in the urine of preterm 

babies than newborns, indicating deficient production of these metabolites. Still, enzyme 

activity appears to increase upon birth, regardless of gestational age at the time of birth, 

suggesting infants are better able to handle environmental exposures after birth. Burd et 

al discussed a study (Grow, 2001) in which levels of CYP2E1 was found to increase 

significantly at birth. This increase in metabolic activity persisted regardless of 

gestational age with notable increase on the first post natal day.  

 

NICU Environment 

Infants are admitted to the NICU under varying conditions, many of which are 

associated with preterm birth. These conditions may be low birth weights (less than 2,500 

grams [5.5 pounds]) or very low (less than 1,500 grams, or [3.25 pounds]), 

underdeveloped organ systems, and congenital abnormalities (In the NICU, 2009). These 

factors predispose infants to environmental exposures via the previously mentioned 

means (underdeveloped organ systems, increased intake rates, and reduced metabolic 

activity).  

When the infants are brought into the NICU, they are placed in isolettes until they 

reach an acceptable level of health. These isolettes are plastic incubators with controlled 

air temperature and humidity, allowing the baby to remain at a constant temperature. It is 

important that the baby stay within this controlled environment as it grows and develops. 

The isolettes often have ports for necessary tubing such as ventilation support, 



 

 

7 

intravenous feeding, and other monitoring equipment. These ports are designed to 

minimize the amount of ambient air that enters the isolette and have minimal air 

exchange. Figure 1, below, is an image of a Giraffe Omnibed isolette, a common type of 

isolette used in the NICUs. 

 

Figure 1. Image of Giraffe Omnibed Isolette. 

The average infant in the NICU receive care from healthcare workers every three 

hours (eight times/day), with each instance of care requiring two to four hand insertions 

into the isolette, for approximately 24 hand insertions per day. Very sick babies may 

receive more care (and therefore, more hand introductions) over the course of a day. 

Additionally, infants remain in the isolettes for varying lengths of time, again depending 

on their health and prematurity at the time of their birth. More stable babies may stay in 

isolette for up to 10-12 weeks, while a 25 week baby may remain in the isolette up to 32-
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33 weeks. Very sick and/or premature infants may be on ventilation support, so they may 

not be breathing the isolette air.  

Air quality in isolettes is not typically monitored. Because of this, and because 

infants are more susceptible to environmental exposures than adults, the current study is 

important piece of work for this topic. One relevant study was identified that studied air 

quality in isolettes, in particular, that quantified volatile organic chemicals (VOC) in 

NICU isolettes (Prazad, 2008). In this study, two compounds, 2-heptanone and n-butyl 

acetate, were found at elevated concentrations inside the incubators compared with 

ambient room air samples. These VOCs were not found to be toxic in animal models 

(Lynch, 1981; David, 2001); however, some degeneration of the olfactory epithelium was 

found. This degeneration effect was associated with the formation of n-butanol and acetic 

acid (David, 2001). Prazad et al suggested that possible sources of VOCs is the isolettes 

include the plastic materials that comprise much of the internal surface area of typical 

incubators, or from the incubator’s bedding materials. 

In addition to the potential VOCs present in the NICU, another environmental 

exposure of concern is ethanol from alcohol-based hand sanitizers. Alcohol-based, 

waterless hand sanitizers are used frequently in hospital settings, due to their 

effectiveness in eliminating disease-causing microbes (Boyce, 2002). Ethanol is 

relatively volatile compound and evaporates readily into the air. Typical alcohol-based 

hand sanitizers are over 50% ethanol and since ethanol is volatile, hand sanitizer use 

increases ethanol concentrations in hospital air. Policy dictates that workers apply hand 

sanitizer prior to entering occupied isolettes, and as such, babies may receive significant 

exposure to ethanol. The typical guidance is for health care workers to apply hand 



 

 

9 

sanitizer, rub hands for 20 to 30 seconds (WHO, 2009) or until hands are dry (CDC, 

2013), before proceeding with providing care. It is thought that longer hand rubbing 

allows for the evaporation of ethanol vapors, prior to hand insertion into the isolette. If 

healthcare workers rub their hands for less time (or their hands are still wet with 

sanitizer) in the attempt to provide rapid care, this may be a source of ethanol exposure to 

neonates. 

One study investigating ethanol concentration in hospital air as a result of using 

hand sanitizer found that during application on hands, ethanol vapors peaked at 20-30 

seconds and reach peak concentrations of 14.3 ± 1.4 and 13.2 ± 0.7 mg/mL in the nose 

(Bessonneau, 2012), corresponding to 7,590 and 7,010 ppm at room temperature and 

pressure. Because of this direct correlation with hand sanitizer use and ethanol 

concentration in ambient air, combined with the frequency with which alcohol is used in 

health care settings, high levels of ethanol may be expected in NICU isolettes.  

The effects of dermal exposure to alcohol-based hand sanitizers have also been 

investigated. A study investigating risk of systemic effects caused by the use of alcohol-

based hand sanitizers in adults found minimal amounts of propanol getting absorbed 

through skin during hand rubs and that risk of chronic systemic toxic effects associated 

with alcohol hand rubs appeared to be minimal. This study, however, may have 

implications for preterm infant dermal exposure alcohol-based products from health care 

providers. The study also did not evaluate the effects of long-term daily and frequent use 

of hygienic hand rubs, which are typical of health care settings (Below, 2012).  

Additionally, there are noted age and racial disparities in NICU admission, 

including advanced maternal age (AMA) and race. According to one study, AMA women 
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more likely than teenaged mothers to have a pregnancy result in a NICU admission (de 

Jongh, 2012). This is supported by a 2011 National Vital Statistics Report, which found 

that a number of NICU admission disparities were noted, particularly between AMA and 

race. According to the report, nearly 7 percent of newborns (66.7 per 1,000) in the 27-

state reporting area were admitted to a NICU in 2008. Furthermore, in women over aged 

40, nearly 10% of babies born were admitted to the NICU, compared to the national 

average of 7%. Black infants in the same period were 40 percent more likely than white 

and approximately 60 percent more likely than Hispanic infants to be admitted to a NICU 

(Osterman, 2011). Further work has shown that Black/Non-Hispanic infants in hyper 

segregated areas are more likely to be preterm than in non-hyper segregated areas 

(Osypuk, 2008) and that Black/Non-Hispanic mothers with private insurance had 

increased odds for NICU admission; lower odds of NICU admission seen with Hispanic 

and White/Non-Hispanic pregnancies with private insurance (de Jongh, 2012).  

In summary, exposure to ethanol, a known developmental neurotoxicant, in NICU 

is a significant concern to public health, particularly given the extreme vulnerability of 

these preterm and ill babies. Understanding inhalation exposure at these NICUs are 

important to inform successful exposure mitigation strategies. The results of our study 

may be able to inform policies regarding the amount of necessary for hand rubbing 

during sanitizer application prior to inserting hands into to isolettes. It is hoped that the 

results of this study could aid in quantifying the effects of NICU admission disparities. 
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Materials and Methods 

This study investigated alcohol levels in unoccupied isolette units over three (3) 

days. In particular, data was collected on the amount of alcohol present in the isolette 

environment after insertion of handing over a 30 minute as well as the duration and 

persistence of alcohol in the isolette environment after insertion of hands over the course 

of each trial. 

In this study, alcohol level within isolettes were determined using unoccupied 

Giraffe Isolettes (Giraffe Omnibeds) located within the NICU at Mercy Hospital in 

Baltimore, Maryland. These isolettes were set to maintain an air temperature of 36.5°C, 

and contained a bed wrapped in baby blankets, and medical equipment monitor leads. To 

mimic the process of nurse/attending physician’s use of hand sanitizer, each exposure 

consisted of two squirts (1.5mL + 0.1mL) of hand sanitizer (EcoLab Quik-Care Foam 

Waterless Hand Sanitizer) applied into the palms of the hands. Following the application, 

hands were rubbed for either 10 or 20 seconds, and then placed into the isolette through 

ports designed for healthcare worker use. Hands were placed inside the isolette for 5 min 

to mimic performing various tasks and all port doors remained closed while hands were 

not placed in the isolette. Exposures occurs at 30-minute intervals, and background levels 

were assessed before initiation of hand insertion on all days. 

For the three (3) days of this study, each day consisted of 16 trials. Each trial 

consisted of applying equal amounts of hand sanitizer, inserting hands for 5 minutes and 

collecting data over the subsequent 25 minutes for a total exposure time of 30 minutes. 

Air samples were collected through the apertures designed for leads on medical devices. 

Air samples were collected prior to the insertion of hands and throughout the 30 min after 
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the hands were placed into the isolettes (specific sampling frequency is described in 

detail, below).  

Alcohol Levels 

Real time alcohol data (average in 5-second intervals) was collected inside the 

isolette using a photoionization (PID) detector (MiniRAE3000, 10.6 eV) that is sensitive 

to volatile organic compounds (VOCs). Air was sampled through Tygon tubing attached 

to the PID pump. The tube was supported by a moveable arm inside the isolette and 

placed so that the tube inlet was ~16.5 cm above the infant bed, at the head-end of the 

bed. The PID sampled isolette air on all three days of trials. 

To validate the results from the PID, a supplementary method was used to 

determine ethanol concentrations in the isolettes. Air from the isolette (~1.5 L) was 

drawn out from the isolette using a 3-liter syringe and pumped into a breathalyzer 

(Drager Alcotest 6510) calibrated for 0.5-liter minimum detection volume and 30-second 

response time. Air was drawn at the time of hand insertion, every 2 minutes for the first 

10 minutes post insertion, and every 4 minutes for the subsequent 20 minutes for each 

exposure. This procedure was performed on Days 2 and 3 of the study, for the first 10 

trials of each day. The unit’s detection range for ethanol is 3-300 ppm. 

Passive alcohol monitoring badges (Vapor-Trak Alcohol Monitors [KEM Medical 

Products]) were placed in the isolette for eight-hour periods. In the isolette, each monitor 

was clipped to a moveable arm, and placed so that the monitor center was ~8.5 cm above 

the infant bed, at the head-end of the bed. After an eight-hour exposure, each monitor was 

placed in the device’s foil bag, as directed by the manufacturer, and mailed to the 

manufacturer for laboratory analysis. Laboratory analysis came from KEM Medical 



 

 

13 

Products, who report a detection range of 0.02 to 1000 ppm for exposures ranging from 

15 minutes to 8 hours. This data was to be used to determine a time weighted average of 

ethanol present in the isolette and to serve as another means to validate the PID and 

breathalyzer data. 

 

Statistical Analysis 

PID response is not specific to alcohol; rather it reports data in isobutylene 

equivalents. Thus, the application of a correction factor of 12 is applied to the data to 

generate ethanol levels as per manufacturer’s recommendation (RaeSystems, 2010). 

Table 1 illustrates the steps to convert the PID results from isobutylene equivalents to 

ethanol levels in ppm. 

Table 1. Methods to convert PID reading to ppm of ethanol in air. 

 

Prior to analyzing any data, it was noted that the PID read a number of extremely 

high readings (more than 5 orders of magnitude of the highest peak) over short periods of 

time (between 30 seconds and 1 minute). These readings were deemed to be equipment 

errors and were excluded and declared “missing” in the data set prior to statistical 

analysis. 

Similar to the PID, breathalyzer readings also required the application of 

correction factors. Breathalyzer readings were in BAC%; as such, the data required 

correction to parts per million (ppm) of ethanol in air. Table 2 shows the conversion that 

Step Conversion 

1. PID reading in ppb of isobutylene equivalents  

ppm of isobutylene equivalents 

PID reading / 1000 

2. ppm of isobutylene equivalents  multiplied by 

the compound of interest’s correction factor  

Result from step 1 x 12 
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was used to convert BAC% to ppm of ethanol in air. This method was validated by the 

breathalyzer manufacturer.  

Table 2. Methods to convert breathalyzer reading from BAC% to ppm of ethanol in air. 

 

PID and breathalyzer data were analyzed using Microsoft (MS) Excel for 

descriptive statistics (minimum peak, maximum peak, standard deviation of peaks, and 

average peaks). Results were also tested to ensure they were statistically different from 

zero. Data was plotted over time to show any conspicuous patterns. Potential patterns 

expected include, consistent peaks among all exposures for 10- and 20-second hand rubs, 

approximate peak heights, duration of peaks, and whether alcohol concentrations return 

to background levels prior to subsequent exposures.  

Ethanol levels from the PID and breathalyzer were analyzed using STATA 11 

(StataCorp LP) to determine statistical differences between observed alcohol levels for 

background, 10-second hand rubs, and 20-second hand rubs. To determine the 

appropriate statistical tests (i.e., parametric vs. nonparametric), the data must be 

examined for normality. To examine the data for normality, histograms were generated to 

generate initial thoughts on the normality (or lack of normality) of the data. 

Subsequently, the data were tested for normality using the Shapiro-Wilk test. This test 

hypothesizes that the data is normally distributed. If the data are normally distributed, 

Step Conversion 

1. Breathalyzer reading  grams of ethanol (EtOH) 

per mL of air 

Breathalyzer reading / 102/ Blood:air ratio (2100, 

obtained from breathalyzer manufacturer) 

2. Grams of EtOH per mL of air  moles EtOH per 

L air 

Result from step 1 / molar mass of EtOH (46.07 

g/mol) 

3. Moles EtOH per L air  moles EtOH per mole 

air 

Result from step 2 x Molar volume of air at 1 atm 

(L) (24.496004) 



 

 

15 

analysis of variance (ANOVA) would be used to determine if PID data are statistically 

different between background, 10-second, and 20-second hand rub groups.  

If the data fail the Shapiro-Wilk test for normality, nonparametric tests would be 

used to determine statistical differences between observed alcohol levels for background, 

10-second hand rubs, and 20-second hand rubs. Two nonparametric tests identified for 

potential utility are the Kruskal-Wallis and Wilcoxon ran-sum tests. The Kruskal-Wallis 

test is a rank-based, nonparametric test for comparing two or more independent samples. 

The Kruskal-Wallis test is generally used when there is one independent variable with 

two or more levels. An additional test that may be employed is the Wilcoxon rank-sum 

test, which is a non-pairwise comparison test.  

 

Risk Assessment  

The last step is to generate useful information on the potential dose of ethanol 

received by infants in the isolette. To do this, average daily dose can be calculated. 

Average daily dose is the average dose over a pathway-specific period of exposure, 

expressed on a per-unit-body-weight basis using the following equation: 

               

Where ADD = average daily dose; C = concentration; IR = intake r(of air/breathing rate); BW = body 

weight 

 

The information needed for this calculation is concentration of the alcohol. Daily 

time-weighted averages (TWA) of alcohol concentrations in the isolette were calculated 

using the breathalyzer data. Any measurements of 0.00 were replaced with half the level 

of detection (LOD) of the breathalyzer (LOD = 3 ppm, therefore ½ LOD = 1.5 ppm). 
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TWAs were calculated for both 10 and 20 second hand rubs, and for different numbers of 

hand insertions per day using the following equation: 

    
                

            
 

Additional factors for the calculation of average daily dose include intake rate and 

body weight. Intake rate was taken from the Exposure Factors Handbook, Chapter 6, 

which indicated infants from birth to one month have a mean breathing rate of 3.6 m
3
/day 

(95
th

 percentile 7.1 m
3
/day). The definition of low birth weight (less than 2,500 grams 

[5.5 pounds]) or very low birth weight (less than 1,500 grams, or [3.25 pounds]) for body 

weight was also used in average daily dose calculations.  

Infants in the NICU receive varying amounts of care, based on their health and 

prematurity at the time of their birth, making estimations of exposure more complicated. 

To help take into account the variables associated with the infant’s intake rate of isolette 

air, Oracle Crystal Ball, Release 11.1.2.2 software was used to define parameters around 

the components of our average daily dose equation (concentration, intake rate, and body 

weight) and to forecast average daily dose for both average and most susceptible infants 

in the NICU. These forecasts were generated using Monte Carlo simulation, run for 1,000 

simulations. Average daily dose was evaluated for 50
th

, 95
th

, and 99
th

 percentiles, in 

addition to maximum values. Sensitivity analysis charts were generated to determine 

which factors (concentration, intake rate, number of hand insertions, etc.) contribute most 

to the average daily dose of ethanol an infant receives in the isolette. 
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Results 

Analysis of Ethanol Concentration in Isolettes  

Passive Alcohol Monitoring Badges 

All passive alcohol monitoring badges yielded no detection of alcohol over all 

days sampled and as such are not included in any of the subsequent results, figures, and 

tables. 

Photoionization Detector 

Figure 2 shows a representative peak from each hand rub group over all trials. 

Criteria for selecting the peaks included, their occurrence on a day where breathalyzer 

monitoring was conducted, contained a high number of breathalyzer readings, lack of 

outliers, and average peak height for the length of hand rubbing. Alcohol concentration 

peaked within 1 minute of insertion of hands and quickly decreased to base line around 

20 minutes. 

 

Figure 2. Example peaks of 10 and 20 second hand rubs as measured by the PID. 
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Over all trials, ethanol concentration peaked at 387.04 ± 191.50 ppm (range, 

139.56 - 902.01 ppm) after 10 seconds of hand rubbing and 104.36 ± 50.35 ppm (range, 

45.49 - 269.41 ppm) after 20 seconds of hand rubbing. All results were shown to be 

statistically different from zero. These results are shown below, in Table 3. 

Table 3. Peak EtOH concentrations for background trials, 10 second hand rubs, and 20 second hand rubs. 

 No of 

Trials* 

Average 

Peak 

(ppm) 

Range of Peaks 

(ppm) 

Std. 

Deviation 

(ppm) 

p-value 

Background 3 6.5 2.1 – 11.2 4.6 p<0.001 

10s  32 387.0 139.6 – 902.0 191.5 p<0.001 

20s  16 104.4 45.5 – 269.4 50.4 p<0.001 

*Background at the beginning of each trial day (2 days with 10 second hand rubs, 1 day with 20 

second hand rubs, = 3 total days) 

 

From these results, it appears that there are significant differences between the 0, 

10, and 20 second hand rub groups. To validate this, STATA 11 was used to determine 

statistical differences between observed alcohol levels for background, 10-second hand 

rubs, and 20-second hand rubs. First, the data were examined for normality, by 

generating a histogram for PID results for all trials, as well as cumulatively. The 

histograms for each trial were similar to the shape and pattern of the histogram for all 

PID values. As such, this histogram of all PID values is shown in Figure 3. The 

histogram supports the previous observation that the data are not normally distributed, 

but may have a log normal distribution. A histogram of all log-transformed PID values is 

shown in Figure 4. 
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Figure 3. Histogram of values of ethanol, as measured by PID. 

 

Figure 4. Histogram of log transformed values of ethanol, as measured by PID. 

 

0

.0
1

.0
2

.0
3

.0
4

D
e
n

s
it
y

0 200 400 600 800 1000
Corrected PID

0
.2

.4
.6

.8

D
e
n

s
it
y

0 2 4 6 8
log_PID



 

 

20 

Subsequent analysis confirmed the lack of normality. The Shapiro-Wilk test for 

normality assumes that data are normally distributed. After running the Shapiro-Wilk 

test, the results for each trial, 10 and 20 secong groups, and all PID values (shown in 

Table 4) indicate that we can reject the null that the PID data are normally distributed.  

Table 4. Shapiro Wilk test for normality of PID. 

Exposure 

No. 

Obs W V z Prob>z 

10 second hand rub trials 

1 315 0.48222 115.192 11.168 0.00001 
2 360 0.39975 150.395 11.87 0.00001 
3 360 0.39893 150.601 11.874 0.00001 
4 346 0.50266 120.281 11.32 0.00001 
5 292 0.46089 112.138 11.064 0.00001 
6 360 0.3889 153.115 11.913 0.00001 
7 348 0.45854 131.624 11.536 0.00001 
8 364 0.45691 137.422 11.663 0.00001 
9 324 0.42416 131.355 11.492 0.00001 

10 360 0.4295 142.94 11.75 0.00001 
11 325 0.48726 117.284 11.227 0.00001 
12 364 0.41003 149.284 11.859 0.00001 
13 359 0.4817 129.54 11.515 0.00001 
14 358 0.46927 132.316 11.564 0.00001 
15 345 0.47569 126.477 11.437 0.00001 
16 340 0.48435 122.78 11.359 0.00001 
17 360 0.47584 131.33 11.549 0.00001 
18 360 0.50992 122.792 11.39 0.00001 
19 360 0.47927 130.47 11.534 0.00001 
20 360 0.4639 134.322 11.603 0.00001 
21 323 0.48222 117.788 11.234 0.00001 
22 360 0.48482 129.081 11.508 0.00001 
23 360 0.50373 124.343 11.42 0.00001 
24 340 0.45057 130.823 11.509 0.00001 
25 358 0.50994 122.178 11.375 0.00001 
26 360 0.53602 116.251 11.261 0.00001 
27 360 0.43784 140.85 11.715 0.00001 
28 306 0.54613 98.41 10.783 0.00001 
29 360 0.52096 120.025 11.336 0.00001 
30 360 0.60963 97.808 10.852 0.00001 
31 360 0.51495 121.531 11.366 0.00001 
32 313 0.54691 100.231 10.837 0.00001 

20 second hand rub trials 

 1  360 0.44571 138.879 11.682 0.00001 
2 360 11.747 142.739 11.747 0.00001 
3 360 0.44688 138.586 11.677 0.00001 
4 336 0.61266 91.262 10.653 0.00001 
5 360 0.57523 106.427 11.052 0.00001 
6 360 0.58767 103.312 10.981 0.00001 
7 335 0.56375 102.514 10.926 0.00001 
8 360 0.55321 111.945 11.171 0.00001 
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9 360 0.55413 111.715 11.166 0.00001 
10 360 0.59603 101.216 10.933 0.00001 
11 360 0.57996 105.242 11.025 0.00001 
12 360 0.56484 109.03 11.109 0.00001 
13 355 0.60215 98.447 10.86 0.00001 
15 360 0.57141 107.385 11.703 0.00001 
15 360 0.5579 111.298 11.157 0.00001 
16 445 0.55319 135.346 11.735 0.00001 

10 sec 11120 0.43526 3080.854 21.565 0.00001 
20 sec 5971 0.56201 1352.091 19.002 0.00001 

All Trials 18215 0.40191 4950.387 23.119 0.00001 

 

Subsequent to this assessment of normality, a box plot of the PID data was 

generated to determine if the groups support the observation that the groups are 

statistically significant. Because the data appear to have a log normal distribution, a box 

plot was generated of log-transformed PID values for all trials, as well as for all PID 

readings. The box plot for all readings is shown in Figure 5. This box plot suggests that 

there may be statistical differences between the background, 10, and 20 second hand rub groups. 

 

Figure 5. Box plot of log transformed values of ethanol, as measured by PID, by length of hand rub. 
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As such, subsequent analysis was conducted with nonparametric tests. The 

Kruskal-Wallis is a nonparametric alternative to ANOVA. The Kruskal-Wallis test 

assesses if the distributions of multiple groups (which are not normally distributed) are 

equal. The results of the Kruskal-Wallis equality-of-populations rank test on the PID data 

indicate that the 0, 10, and 20 second hand rub groups do not have the same distribution 

(p<0.0001) and are thus statistically different.  

The Wilcoxon rank-sum test was then employed to assesses whether the rank for 

each condition (in this case, 10 and 20 second hand rubs) indicates a systematic 

difference between the two groups. If so, most of the high ranks belong to one condition 

and most of the low ranks belong to the other. For this study, the results of the Wilcoxon 

test indicate that the PID results were significantly affected by the length of time hands 

were rubbed after applying hand sanitizer (p<0.00001).  

 

Breathalyzer 

As previously mentioned, the breathalyzer was used to validate the readings from the 

PID. Figure 6 shows a representative peak from each hand rub group over all trials. For ease of 

comparison, they are the same peaks selected in Figure 2, above. Alcohol concentration peaked 

within 2 minutes of insertion of hands and decreased to base line by 15 minutes. 
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Figure 6. Example peaks of 10 and 20 second hand rubs as measured by the breathalyzer. 

 

The breathalyzer has a much lower time-resolved sampling rate and as such did 

not provide as many data points and was less effective at characterizing peak ethanol 

levels within the isolette. Still, the data were assesses in the same manner as the PID data.  

As shown in Table 5, ethanol concentration peaked at 141.8 ± 50.7 ppm (range, 

78.5 – 250.7 ppm) after 10-second hand rub and 49.9 ± 16.2 ppm (range, 27.9 – 76.0 

ppm) after 20-second rub. Alcohol concentration peaked within 1 minute of insertion of 

hands and quickly decreased to base line by 15 minutes. Breathalyzer samples of the 

background period (prior to the initiation of daily trials) were not obtained for any of the 

days. 
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Table 5. Peak EtOH concentrations for background trials, 10 second hand rubs, and 20 second hand rubs. 

 No of 

Trials* 

Average 

Peak 

(ppm) 

Range of Peaks 

(ppm) 

Std. 

Deviation 

(ppm) 

p-value 

Background N/A N/A N/A N/A N/A 

10s  10 141.8 78.5 – 250.7 50.7 p<0.001 

20s  10 49.9 27.9 – 76.0 16.2 p<0.001 

*Background at the beginning of each trial day (2 days with 10 second hand rubs, 1 day with 20 

second hand rubs, = 3 total days) 

 

From these results, it appears that there are significant differences between the 0, 

10, and 20 second hand rub groups. To validate this, STATA 11 was used to determine 

statistical differences between observed alcohol levels for 10-second hand rubs, and 20-

second hand rubs (recall that no breathalyzer readings were taken during the background 

sampling time period).  

First, the data were examined for normality, by generating a histogram for 

breathalyzer results for each trial, as well as cumulatively. The histograms for each trial 

were similar to the shape and pattern of the histogram for all breathalyzer values. As 

such, this histogram of all breathalyzer values is shown in Figure 7. Similar to the 

histogram for PID data, the histogram of breathalyzer data supports the previous 

observation that the data are not normally distributed, but may have a log normal 

distribution. A histogram of all log-transformed breathalyzer values is shown in Figure 8. 
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Figure 7. Histogram of values of ethanol, as measured by breathalyzer. 

 

Figure 8. Histogram of values of ethanol, as measured by breathalyzer. 
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Table 6. Shapiro Wilk test for normality of Breathalyzer. 

Exposure No. Obs W V z Prob>z 

10 second hand rub trials 

1 10 0.81405 2.866 2.024 0.02147 

2 10 0.73065 4.151 2.867 0.00208 

3 10 0.78982 3.239 2.294 0.01090 

4 10 0.74832 3.879 2.706 0.00340 

5 10 0.81192 2.898 2.049 0.02023 

6 10 0.7897 3.241 2.295 0.01087 

7 10 0.83404 2.558 1.781 0.03742 

8 10 0.77492 3.469 2.448 0.00718 

9 10 0.81661 2.826 1.994 0.02306 

10 10 0.77898 3.406 2.407 0.00804 

20 second hand rub trials 

11 10 0.75003 3.852 2.69 0.00357 

12 10 0.89205 1.664 0.92 0.17882 

13 10 0.75192 3.823 2.672 0.00377 

14 10 0.75782 3.732 2.616 0.00444 

15 10 0.6674 5.126 3.385 0.00036 

16 10 0.72264 4.274 2.937 0.00166 

17 10 0.77209 3.512 2.477 0.00663 

18 10 0.77672 3.441 2.43 0.00755 

19 10 0.78927 3.248 2.3 0.01074 

20 10 0.7558 3.763 2.636 0.00420 

10 sec 100 0.85095 12.306 5.568 0.00001 

20 sec 100 0.80698 15.937 6.142 0.00001 

All Trials 200 0.77313 33.846 8.103 0.00001 

 

Subsequent to this assessment of normality, a box plot of the log-transformed 

breathalyzer data was generated to support the observation that the groups are statistically 

significant for each trial, as well as for all breathalyzer trials. The box plot for all readings 

is shown in Figure 9. (Again, recall that no breathalyzer measurements were taken during 

the “background” period used in the analysis). 
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Figure 9. Box plot of values of ethanol, as measured by breathalyzer, by length of hand rub. 

 

Similar to that of the PID, the breathalyzer data were not normally distributed and 

as such, subsequent analysis was conducted using nonparametric tests. The Kruskal-

Wallis was used again as the nonparametric alternative to ANOVA. The results of the 

Kruskal-Wallis equality-of-populations rank test on the breathalyzer data for the 10 and 

20 second hand rub groups indicated that that each hand rub group has different 

distributions (p<0.0005).  

The Wilcoxon rank-sum test, was then used to compare the 10 and 20 second 

hand rub groups. Again, instead of assessing whether the means of two groups are equal, 

this test assesses whether there is a difference between the medians of the groups. For the 

breathalyzer data, the Wilcoxon test showed that ethanol levels were significantly 

affected by the length of time hands were rubbed after applying hand sanitizer 

(p<0.0001).  
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Side-by-side Comparison of PID and Breathalyzer Results 

Figure 10 illustrates the PID and breathalyzer results from Days 1, 2, and 3. From 

this figure, the breathalyzer results appear highly correlated with the PID results over all 

trials, with the PID providing significantly greater time resolution of results because of its 

more frequent sampling rate. As such, the PID appears to give a greater resolution of the 

decay curve of the ethanol and a more accurate characterization of peak ethanol levels 

overall trials. 
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Figure 10. PID data from Day 1, 2, and 3. 
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To more closely analyze the peaks shown in the figure above, Figure 11 illustrates 

an overlay of a representative peak from a trial with 10 seconds of hand rubbing and 20 

seconds of hand rubbing. Criteria for selecting the peaks included, their occurrence on a 

day where breathalyzer monitoring was conducted, contained a high number of 

breathalyzer readings, lack of outliers, and average peak height for the length of hand 

rubbing. Alcohol concentration peaked within 1 minute of insertion of hands and 

decreased to base line around 20 minutes. 

 

Figure 11. Example peaks of 10 and 20 second hand rubs. 
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Risk Assessment 

The Oracle Crystal Ball was used to run Monte Carlo simulations to generate 

average daily dose. The software works by using a number of parameters defined around 

independent variables to generate a forecast of the dependent variable you are looking 

for. For this study, recall that average daily dose is dependent on concentration of alcohol 

in the isolette, intake rate of air by the infants, and infant body weight as shown in the 

equation below: 

               

ADD = average daily dose; C = concentration; IR = intake rate (of air/breathing rate); BW = body weight 

 

This section describes the parameters used to calculate average daily dose.  

 

10 second hand rub 

For the value of concentration, time weighted averages were calculated from 

breathalyzer data for 10 second hand rubs using the methodology described above (in the 

Methods section). The TWA for each trial was calculated to be 6.0 ppm (11.2 mg/m
3
) 

with a standard deviation of 14.4 ppm (27.1 mg/m
3
). The intake rate was taken from the 

Exposure Factors Handbook, Chapter 6, which indicated infants from birth to one month 

have a mean breathing rate of 3.6 m
3
/day (95

th
 percentile 7.1 m

3
/day). For body weight, 

the definition of low birth weight (less than 2,500 grams [5.5 pounds]) for body with a 

standard deviation of 500 grams in average daily dose calculations was used. 

To calculate average daily dose, concentration in terms of TWA were input into 

the Crystal Ball software. Because concentration follows a lognormal distribution, 

parameters were defined in the model using the TWA, as well as the average and 
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standard deviation for concentration. In addition, concentration of ethanol in isolette air, 

is a dependent variable based on both the length of hand rubbing as well as the number of 

hand insertions into the isolette. A forecast was generated for concentration to take into 

account the number of hand insertions in a typical day. Using information provided by 

NICU subject matter experts, a typical infant in the NICU may receive care every three 

hours, with approximately 2 to 4 hand insertions per instance of care. As such, we 

assumed an average of 15 hand insertions per day, with a standard deviation of 

approximately 7 insertions per day. Table 7 below shows the inputs used in the average 

daily dose modeling.  

Table 7. Crystal Ball parameter and forecast inputs, for the 10 second hand rubs. 

Inputs for Crystal Ball 

Concentration   

 Average 11.2 mg/m3 Standard Deviation: 27.1 mg/m3 

 No of Hand Insertions  15 Standard Deviation: 7 

Intake Rate of Air 3.6 m3/day 95th percentile 7.1 m3/day 

Body weight 2500 grams  Standard Deviation: 500 g 

 

Figure 12 shows the frequency distribution of average daily dose for the 10 

second hand rub. This shows a simple histogram of the frequencies of average daily dose 

in the model. From this, we see that individuals in the highest percentiles (95-99%) 

receive significantly more exposure to ethanol than those in lower percentiles.  
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Figure 12. Frequency distribution of average daily dose for the 10 second hand rubs. 

 

Table 8 shows several key percentiles of average daily dose, exported directly 

from Crystal Ball. From this, we see that the average daily dose of the 50
th

 percentile is 

17.3 mg/Kg-BW per day, with the maximum being 400.8 mg/Kg-BW per day. From the 

95
th

 percentile to the 99
th

 percentile, the average daily dose appears to double, while the 

maximum value is nearly triple the 99
th

 percentile.  

Table 8. Average daily dose values for key percentiles in the 10 second hand rubs. 

Percentile mg/Kg-BW per day 

50% 17.3 

95% 76.1 

99% 140.7 

Maximum 400.8 

 

To see what is driving the average daily dose, we can again create a sensitivity 

analysis, similar to that done for the concentration forecast. The sensitivity analysis 
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output is shown in Figure 13. This allows us to see that the intake rate of the infant is the 

most significant factor (accounting for 40.8% of the average daily dose) .The next 

greatest contributor to an infant’s exposure to ethanol in the isolette is the concentration 

of ethanol in the isolette (accounting for 31.0% of the average daily dose), while the 

number of hand insertions accounts for 22.0% of the average daily dose. Conversely, 

bodyweight appears to be marginally protective, accounting for -6.2% of the average 

daily dose.  

 

Figure 13. Sensitivity analysis of average daily dose for the 10 second hand rubs. 

 

The results of the 10 second hand rub average daily dose analysis will be 

compared to the of the 20 second hand rub analysis in the next section. 
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20 second hand rub 

For the value of concentration, time weighted averages were calculated from 

breathalyzer data for 20 second hand rubs using the methodology described above (in the 

Methods section). The TWA for each trial was calculated to be 2.8 ppm (5.2 mg/m
3
) with 

a standard deviation of 5.5 ppm (10.3 mg/m
3
). Intake rate was taken from the Exposure 

Factors Handbook, Chapter 6, which indicated infants from birth to one month have a 

mean breathing rate of 3.6 m
3
/day (95

th
 percentile, 7.1 m

3
/day). For body weight, the 

definition of low birth weight (less than 2,500 grams [5.5 pounds]) for body with a 

standard deviation of 500 grams in average daily dose calculations was used.  

To calculate average daily dose, concentration in terms of TWA were input into 

the Crystal Ball software. Again, we defined parameters around concentration, including 

the lognormal distribution of the data, the average TWA and standard deviation for 

concentration. Similar to that of the 10 second hand rub, a forecast was generated for 

concentration to take into account the number of hand insertions in a typical day. Again, 

using information provided by NICU subject matter experts, a more stable infant in the 

NICU may receive care every three hours, with approximately 2 to 4 hand insertions per 

instance of care. As such, we assumed an average of 15 hand insertions per day, with a 

standard deviation of approximately 7 insertions per day. Table 9 below shows the inputs 

used in the average daily dose modeling.  

Table 9. Crystal Ball parameters and forecast inputs, for the 20 second hand rubs. 

Inputs for Crystal Ball 

Concentration   

 Average 5.2 mg/m3 Standard Deviation: 10.3 mg/m3 

 No of Hand Insertions  15 Standard Deviation: 7 

Intake Rate of Air 3.6 m3/day 95th percentile 7.1 m3/day 

Body weight 2500 grams  Standard Deviation: 500 g 
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Crystal Ball generated forecast charts of average daily dose. Figure 14 shows the 

frequency distribution of average daily dose for the 20 second hand rub. This shows a 

simple histogram of the frequencies of average daily dose in the model. From this, we see 

that individuals in the highest percentiles (95-99%) receive significantly more exposure 

to ethanol than those in lower percentiles.  

 

Figure 14. Frequency distribution of average daily dose for the 20 second hand rubs. 

 

Table 10 shows several key percentiles of average daily dose, exported directly 

from Crystal Ball. From this, we see that the average daily dose of the 50
th

 percentile is 

7.7 mg/Kg-BW per day, with the maximum being 107.6 mg/Kg-BW per day. From the 

95
th

 percentile to the 99
th

 percentile, the average daily dose almost doubles, while the 

maximum value is more than double the 99
th

 percentile.  
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Table 10. Average daily dose values for key percentiles in the 20 second hand rubs. 

Percentile mg/Kg-BW per day 

50% 7.7 

95% 27.3 

99% 40.4 

Maximum 107.6 

 

To see what is driving the average daily dose for the 20 second hand rub, we can 

again create a sensitivity analysis. This analysis is shown in Figure 15. This allows us to 

see that the intake rate of the infant is again the most significant factor (accounting for 

61.4% of the average daily dose) .The next greatest contributor to an infant’s exposure to 

ethanol in the isolette is the concentration of ethanol in the isolette (accounting for 25.0% 

of the average daily dose), while the number of hand insertions accounts for 7.4% of the 

average daily dose. Conversely, bodyweight appears to be marginally protective, 

accounting for -6.2% of the average daily dose. 

 

Figure 15. Sensitivity analysis of average daily dose for the 20 second hand rubs. 
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Table 11 below, shows a comparison of all the generated values from Crystal Ball 

for the 10 and 20 second hand rubs. From this table, we can see that for the average TWA 

per insertion, daily concentration, and average daily dose for the 10 second hand rubs 

appear to be more than double that of the 20 second hand rub.  

Table 11. Comparison of Crystal Ball analysis of 10 and 20 second hand rubs. 

 10 second hand rub 20 second hand rub 

Concentration (TWA) 11.2 mg/m3 

(SD: 27.1 mg/m3) 

5.2 mg/m3 

(SD: 10.3 mg/m3) 

Average Daily Dose 

50% 

95% 

99% 

Maximum 

 

17.3 mg/Kg-BW-day 

76.1 mg/Kg-BW-day 

140.7 mg/Kg-BW-day 

400.8 mg/Kg-BW-day 

 

7.7 mg/Kg-BW-day 

27.3 mg/Kg-BW-day 

40.4 mg/Kg-BW-day 

107.6 mg/Kg-BW-day 

 Intake rate sensitivity 40.8% 61.4% 

 Concentration sensitivity 31.0% 25.0% 

 Number of hand insertions 22.0% 7.4% 

 Body weight sensitivity -6.2% -6.2% 

 

Interestingly, from the sensitivity analysis, it appears that infant intake rate is the 

most important factor for determining the average daily dose of ethanol. This is followed 

by the concentration of ethanol in isolette air (as measured by TWA and corresponds to 

duration of hand rubbing). Together, these two factors account for more than two-thirds 

of infant ethanol daily dose in isolettes. The number of hand insertions into the isolette 

appears to be more significant for 10 second hand rubbing than for 20 second hand 

rubbing. This could be due to the effects of increased ethanol levels per hand insertion 

(i.e., the greater the concentration per hand insertion, the more influential each insertion 

is on daily dose). In both instances, body weight marginally protective, with the 

percentages being the same between that of the 10 and 20 second hand rubs groups. 
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Discussion 

These results suggest that use of alcohol based hand sanitizers within the NICU 

may result in unintended short term, elevated levels of ethanol exposure among preterm 

infants. Ethanol levels peaked very quickly in all trials (within one minute) and then 

dissipated, returning to background levels in approximately 15 to 20 minutes. While this 

indicates that ethanol levels do not building up over time with each singular exposure 

despite the minimal air exchanges of isolettes, further tests should be done to determine if 

ethanol levels accumulate with multiple insertions within a short period of time.  

These results also indicated that ethanol levels in isolettes appear to vary based on 

the amount of time healthcare workers rub their hands after applying hand sanitizer. 

Alcohol peaks were approximately three times higher for 10 second hand rubs than for 20 

seconds. The average peak for 10 second hand rubs was 387.0 ppm (729.3 mg/m
3
), while 

the average peak for 20 second hand rubs was 104.4 ppm (196.6 mg/m
3
). These resulted 

in average daily dose in 10 second hand rub groups of more than double than that for the 

20 second hand rub group. This is important to note because the longer a healthcare 

worker rubs their hands, the longer the ethanol has time to off-gas in the hospital room, 

rather than off-gassing in the isolette and exposing the neonate to ethanol. 

In addition, the severe peaks, and their rapid decline from each exposure to hand 

sanitizer, contribute to the overall daily TWA for ethanol in isolette air. Even though 

individual peaks appear to be nearly three times greater for 10 and 20 second hand rubs, 

daily concentration for 10 second hand rubs appear to be double that of 20 second hand 

rubs, when using the same amount of hand sanitizer, same number of exposures, and 

same length of exposure duration. 
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This study exhibits a number of strengths. This study is one of the first studies 

assessing air quality of NICU isolettes in the literature and ethanol concentrations, in 

particular. The earliest study noted in the literature addressing air quality in NICU 

isolettes was conducted by Prazad in 2008, which investigated VOCs in the NICU. This 

is an important future direction because isolettes are comprised primarily of plastics. This 

study looks at ethanol concentrations in NICU isolettes, another important area of 

investigation for future work for a number of reasons. For example, some babies receive 

medications to enhance their breathing rate, but if there are elevated levels of ethanol in 

isolette air, babies may receive an increased daily dose. 

This study also demonstrates that ethanol is a significant exposure on a daily basis 

to infants in the NICU. This is an important area of future investigation because preterm 

infants are a very susceptible to environmental exposures due to their underdeveloped 

organ systems, relatively high intake rates for their body weight, and their low body 

weights, and because ethanol is a known toxicant to the developing systems of infants.  

Another strength of this study is the comparison of different ethanol detection and 

measurement devices. While the passive alcohol monitoring badges yield non-detects for 

all trials, the PID and breathalyzer showed good correlation with their results, validating 

their use in detecting ethanol in this study. The PID is a versatile device that measures in 

near real-time. The PID is typically used in industrial hygiene, as well as leak and 

hazardous material detection. PIDs use ultraviolet light to break down detected VOCs in 

the air into ions. The PID then detects this change to determine the concentration of the 

VOCs in the air. PIDs are especially good at various chemicals in an environment 

because they measure concentration in isobutylene equivalents. A conversion factor can 
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be applied to convert the concentration of isobutylene equivalents to the concentration of 

the agent of interest. Interestingly, the Alcotest breathalyzer utilizes an electrochemical 

sensor, which is a micro-reactor that produces a small current when reactive gases (i.e., 

ethanol) are present (Drager, 2011). These complementary methods were shown to 

correlate very well in the current study. Despite the limitations of the breathalyzer (poorer 

time resolution, potentially more error) the breathalyzer is cheaper, easier to use, and 

requires less software and analysis than the PID, and it may be a step in the right 

direction towards policy compliance or passive monitoring of isolette air for ethanol.  

There are number of limitations of this study as well. In this study, hands were 

inserted into the isolette for 5 minutes every 30 minutes. This may not reflect the true 

interactions of babies with health care workers in the isolette. For example, each time an 

infant receives care from a health care worker, there may be multiple hand insertions 

required, with each requiring application of hand sanitizer. This may not allow the 

alcohol to fully dissipate before subsequent insertions. Perhaps, this may affect how long 

it takes ethanol to clear the isolette before returning to background levels and thus the 

concentration and duration of ethanol exposure in the isolette. There may also be 

implications for differences in ethanol concentrations at different temperatures; however, 

isolettes tend to be kept at 36.5°C degrees for keeping babies warm. 

An additional limitation is that errors may be introduced into the measurements 

by drawing out air to conduct the sampling for ethanol. For example, to conduct the 

breathalyzer testing, 1.5 L of air was drawn out and used to perform the breathalyzer test. 

It is suspected that the effect of this drawing of air is negligible, as there were no 

observed dips in PID results during the times in which air was sampled for use in the 
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breathalyzer tests; however, it would be advisable to investigate, empirically and in the 

literature, how this may impact the results of the PID and breathalyzer. To address these 

limitations, a longer study time with more trials should be employed with both the PID 

and breathalyzer. This would allow for more data to be collected to confirm the positive 

correlation between the PID and breathalyzer results. These tests should include collect 

breathalyzer data during background times, as well as collecting breathalyzer data at 

more frequent intervals. 

One additional limitation of this study is that only one type of hand sanitizer was 

used. This particular hand sanitizer (EcoLab Quik-Care Foam Waterless Hand Sanitizer) 

is dispensed as a white foam. Vigorous rubbing was needed to completely rub the foam 

away when rubbing hands for 10 seconds and hands would often feel damp or have 

visible foam in between fingers when placing them in the isolette. In comparison, when 

hands were rubbed for 20 seconds, foam was completely gone and hands felt relatively 

drier before placing them into the isolette. Because the foam was visible, it was clear 

when the hand sanitizer was not completely rubbed into hands. Thus, the vigor with 

which hands were rubbed may have been biased by the visibility of the foam. It would be 

interesting to conduct similar tests with a clear hand sanitizer (e.g., a gel) to see if similar 

results are obtained over different hand rubs.  

Similarly, it was hard to distinguish if the amount of hand sanitizer applied was 

the same for every pump squirted into hands. The pumping device on sanitizer dispensers 

may not be accurate or consistent. Further investigation using finite amounts of hand 

sanitizer per trial would be useful, as well as testing effects on ethanol levels of isolette 

air using varying amounts of hand sanitizer. 
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It would also be interesting to see the effects of rubbing hands for longer (e.g., 30 

seconds) on ethanol peaks and daily TWAs. This would be beneficial to help inform 

policy decisions regarding the length of time to rub hands before inserting into the 

isolette. It is important to note that in health care settings, providing care to infants in the 

NICU may require quick response times. As such, longer hand rubbing times may result 

in delays in care, particularly in emergency situations.  

 

Conclusion 

Ethanol based hand sanitizer is ubiquitous in healthcare settings, and in NICUs in 

particular. Premature infants breathing isolette air may receive significant exposure to 

ethanol vapors for short durations as a result of healthcare workers using hand sanitizer 

prior to entering the isolettes. Premature infants routinely require multiple instances of 

care in short time frames (three to four insertions per care, every two to three hours), and 

may thus be at risk of significant alcohol exposure. Repeated exposure to ethanol may 

have long-term consequences for developing organ systems, in particular the rapidly 

developing CNS of preterm infants.  

Peak alcohol concentrations and TWA of ethanol per day are significantly 

decreased if hands are rubbed for more time before placing them in the isolette. It seems 

that exposure to alcohol may be decreased significantly if hands are rubbed with hand 

sanitizer for at least 20 seconds. 

The OSHA permissible short-term exposure limit for alcohol is 1000 ppm (1884 

mg/m
3
) for healthy adults, but the acceptable limit for developing preterm babies is 

unknown. A reasonable permissible exposure limit is expected to be much less for 
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preterm and developing infants because the effects of ethanol exposure may have long-

term development consequences for developing brain. Determining an appropriate level 

of ethanol for isolette air would be an interesting area of future effort. 

The antimicrobial properties of ethanol-based hand sanitizer have been a health 

intervention strategy that has saved countless; however, this intervention may have 

unintended consequences on some of the most vulnerable members of the population. It 

may be necessary to implement policy measures to reduce ethanol exposure in NICU 

isolettes through a three-pronged approach: 

 Mechanical intervention – determine mechanical means to increase ventilation to 

reduce ethanol levels during periods of hand insertion; 

 Training and education of healthcare workers and parents entering isolette – 

provide training on the appropriate amount of hand sanitizer to use, length of hand 

rubs, and implications to ethanol air if these measures are not followed; and  

 Policy compliance – determine acceptable levels of ethanol in isolette air and 

identify devices and methods to monitor ethanol levels in the isolette. 

In summary, exposure to ethanol, a developmental neurotoxicant, in the NICU is 

a significant concern to public health given the extreme vulnerability of preterm and ill 

infants. Understanding inhalation exposure in the NICU is important to inform successful 

exposure mitigation strategies. As such, alcohol exposure from ethanol based hand 

sanitizer may be significantly reduced with longer durations of hand rubbing or until 

hands are completely dry. 
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